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Abstract 

Wearable antennas have attracted more attention due to the increasing popularity of 

wearable electronics over the last decade. These antennas situated on the human body, 

in the clothing or on daily accessories help form the wireless channel required in a 

Wireless Body Area Networks (WBAN). The wearable antennas designs face a series 

of challenges due to its working environment. Frequency shifting, efficiency 

degradation and radiation distortion will be induced by the human body tissue. More 

importantly, a level of radiation shielding into the body should be provided to meet the 

Specific Absorption Rate (SAR) requirement.  

In this study, the aim is to design a type of antennas which are suitable for on-body 

applications over a long period of time. The proposed antennas should have the 

following properties: (1) being conformal and ergonomic to avoid any discomfort; (2) 

minimizing the radiation into the human body for safety concerns and also ensuring a 

high on-body radiation efficiency; (3) utilizing reasonable materials and manufacturing 

process to limit the overall cost and maintaining a certain level of robustness. To 

achieve these properties, the belt buckle was chosen to be the platform for the proposed 

antenna designs. The belt buckle, with rigid metallic nature, enabled the designs to be 

efficient and robust. 

In this thesis, two types of novel belt antennas will be presented. The first one, based 

on a pin-buckle type design and the second one is based on a single tongue buckle. An 

in-house reverberation chamber is designed and installed to accurately measure the on-

body radiation efficiency of the proposed antennas. Textile electromagnetic bandgap 

materials are studied and applied with the second belt antenna, to raise the on-body 

radiation efficiency of the antenna from around 40% to a level over 70%. 

Key Words: wearable antennas, Artificial magnetic conductor (AMC), belt antenna, 

characteristic mode analysis (CMA), electromagnetic band gap (EBG) materials, 

metamaterial, specific absorption rate (SAR), reverberation chamber.  
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Chapter 1 Introduction 

This thesis presents a study on high-efficiency wearable antenna designs, starting 

from the conception and justification of the research, through background investigation 

and theoretical development, to design, manufacture, test and evaluation of the novel 

ideas and processes cultivated. In this chapter, an introduction to the development of 

wireless communications and antennas is provided. In specific, wearable antenna 

designs are highlighted because the challenges of designing wearable antennas with 

high on-body radiation efficiency lead to the motivation of this project. The detailed 

research focus and objectives are further discussed and a brief overview of this thesis 

is provided at the end of this chapter. 

1.1 Background 

In 1864 a set of equations, which later became known as Maxwell’s Equations, were 

summarised and established by James Clark Maxwell [1]. These equations 

characterised the properties of electromagnetic waves and laid the foundations for 

wireless communications. For years, scientists and engineers have devoted themselves 

to the development of communication systems without physical wires radically 

changing the way in which the world functions and operates for the betterment of 

humankind. This journey began in 1886 when German physicist Heinrich Hertz proved 

the existence of the electromagnetic waves predicted by Maxwell’s Equations with an 

experiment involving two resonating metal rings [2]. These rings can be considered the 

world’s first loop antennas.  

Antennas are essential components of all wireless communications systems. They 

are responsible for converting guided waves on transmission lines into freely 

propagating electromagnetic waves. Various types of antenna have been designed to 
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meet the specific or desirable requirements of a communication system, e.g., band of 

radiation, size, shape, ability to direct energy and efficiency. In 1901, electrical dipole 

antennas were developed and used to conduct the first wireless communications across 

the ocean [3]. Yagi-Uda antennas were invented in 1926 and were later widely applied 

in television broadcasting and shortwave communication [4]. Modern horn antennas 

were invented in 1938, and their properties made them suitable for point-to-point 

communications and as feeds for radar antennas and satellite dishes [4]. The 

popularisation of printed circuit board (PCB) technology in the 1960’s gave rise to the 

development of low-profile planar antennas such as the microstrip patch [5]. These so-

called patch antennas consist of a metallic patch as top layer, a dielectric substrate layer 

and a metallic ground plane as bottom layer. They could be directly integrated with 

printed circuits and it was relatively easy to manufacture these with different shapes 

and properties, so that antennas could be rapidly designed to meet specific system 

requirements. Examples of the aforementioned antennas are shown in Figure 1-1. 

 

Figure 1-1：Examples of different antenna types: (a) Loop antenna. (b) Yagi-Uda antenna. (c) 
Horn antenna. (d) Microstrip patch antenna [6]-[9].  

Recently there has been a boom in the use of wirelessly connected wearable 

electronics, which has led to the need for antennas to be designed to work in a body-

centric environment. Such antennas that are specifically designed to function well in a 

complicated near-body environment are referred to by the general terminology 

wearable antennas. Generally speaking, wearable antennas are antennas designed to 

operate while being worn. Examples of wearable antennas can be seen in smartwatches, 

wristbands, glasses (Google Glass) and motion cameras (GoPro). These devices usually 

operate via Wi-Fi or Bluetooth at 2.45 GHz and 5.8 GHz. The close presence of the 



 

3 
 

human body to the antenna in such devices results in a number of special design 

challenges for wearable antenna designers, including, user safety, overcoming 

efficiency obstacles and maintaining desirable radiating characteristics whilst being 

ergonomic and fit for purpose. 

1.2 Research Motivation 

For modern wearable applications, ergonomic design requirements limit the shape 

and size of antenna designs. The typically limited battery capacity in wearable 

electronic devices brings about the need for an energy-efficient wireless 

communication link that reduces power consumption. For antenna engineers, this 

means designing an antenna with high radiation efficiency, which radiates into an 

appropriate half-space and that is conformal to the wearable accessory is desired. 

To develop such an antenna suitable for wearable applications, the following factors 

and issues are taken into consideration: 

1. Material selection – The material properties are imperative to the performance of 

an antenna. Metal would be an ideal choice for the resonating element as this should 

be a low loss, highly conductive material, but the shape and size of accessories to 

accommodate metallic antennas are quite limited. Other deformable materials 

commonly seen on daily clothing have issues regarding conductivity, dielectric loss 

and robustness. The analysis and selection of the material is a crucial factor for the 

antenna design to meet the efficiency target. 

2. Antenna structure design – The structural design of wearable antennas requires 

special consideration. For metallic structures, the shape and size should be similar 

to those of daily accessories so that they can be situated in everyday life without 

causing discomfort and inconvenience. For designs based on deformable materials 

like conductive fibres, the effect of bending, crumpling and other deformations must 

be taken into consideration in the design process to ensure stable performance. 
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3. Safety issues – The radio frequency waves utilised in the common types of modern 

communication systems found in wearable applications are classified as forms of 

non-ionizing radiation making them relatively safe for use close to the human body. 

However, there are still safety regulations imposed, designed to prevent hazardous 

heating of body tissues. Specific Absorption Rate (SAR), is used to quantify the 

heating of body tissues due to radio frequency waves and has a unit in Watts per 

Kilogram (W/Kg). The International Commission on Non-Ionizing Radiation 

Protection (ICNIRP) requires a maximal SAR value of 2 W/kg averaged over every 

10 g of tissue [10]. This standard is widely applied in the EU and China. In the 

United States, the Federal Communications Commission (FCC) restricts SAR over 

1 g of tissue to below 1.6 Watts per Kilogram [11]. Wearable devices by their nature 

pose potential SAR risks, particularly due to the locality of the antenna to the human 

body and so antenna designs which limit the radiation directed into the human body 

are preferrable. It will be seen later that this can be challenging for planar antennas. 

4. Measurement of the on/off-body efficiency – To accurately measure the on-body 

radiation efficiency of an antenna is a challenging task. Since many of the materials 

used for wearable applications tend to be lossy and non-uniform as they are 

integrated with items worn by the user on a daily basis e.g. textile. The ability to 

measure the radiation efficiency of the antenna can help determine the quality and 

consistency of the dielectric material used and the quality of the fabrication. 

Moreover, the ability to measure the on-body radiation efficiency with an actual 

human test subject provides a reliable validation of the proposed design. 

Determination of methods for practically achieving such measurements is an 

important challenge to be addressed. 
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1.3 Aims and Objectives 

The main aim of this study is to propose wearable antenna designs with high on-

body radiation efficiency. This main target can be divided into the following objectives, 

which also illustrates the research focus at different stages of this PhD study. 

1. To explore the possibility of designing high-efficiency antennas based on daily 

clothing accessories. The challenge here lies in two aspects: first, to determine the 

properties of the materials to be used in the antenna design and evaluate material 

losses; second is to obtain enough isolation to the human body so that the antenna 

can maintain relatively high on-body radiation efficiency when applied on the 

human body. 

2. Design and construct a reverberation chamber along with a measurement 

methodology which can be used to measure the on-body radiation efficiency of the 

wearable antenna designs created. This will allow the effectiveness of the antenna 

designs to be physically evaluated and provide a general set of guidelines on the 

method required for such measurements. 

3. To explore the possibility of providing sufficient shielding between the wearable 

antenna and the body through the application of conductive textile materials to 

significantly improve device performance and reduce SAR. The selection of the 

material, the effect of bending and overall performance evaluation are key factors 

in determining performance improvement. 

1.4 Overview of the Thesis 

It is found in this research that using metallic and rigid structures to comprise the 

radiating element of a wearable antenna to the fullest extent is critical to ensuring stable 

and high efficiency radiating properties for wearable antennas. The metallic belt buckle 

structure is chosen as the platform for the proposed wearable belt antenna designs in 
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this study. The designed belt buckle antennas are targeted for use in the industrial, 

scientific and medical (ISM) band (at 2.45 GHz and 5.8 GHz) as components in Wi-Fi 

and Bluetooth applications. The concept of the smart belt is also proposed, along with 

a prototype. 

This thesis contains seven chapters covering basics on antennas, a review on 

wearable antennas, background on reverberation chambers and relevant details relating 

to the design, construction and commissioning a reverb for this work, characteristic 

mode analysis, electromagnetic band gap materials, and most importantly, two 

wearable belt antenna designs.  

In detail, this thesis is organised as follows:  

In chapter 1, an introduction to the project is provided. Information on wireless 

communications and antennas is discussed and the motivations for this research are 

presented together with the thesis aims and objectives.  

In chapter 2, a general review of the research area, wearable antennas, is provided. 

The review classifies wearable antennas into two types: textile-based antennas and 

accessory-like antennas. Example antennas from both categories are studied and the 

advantages and challenges for each antenna type are discussed in this section. 

In chapter 3, an overview of the reverberation chamber and the design and 

commissioning of the in-house reverberation chamber used in this study is presented. 

The measurements in the reverberation chamber with a human test subject are key for 

this study. 

Chapter 4 presents the first proposed belt buckle antenna design. This belt buckle 

antenna design has a similar structure to a patch antenna and follows the quasi-TM30 

mode. Despite not using the commonly applied low-loss dielectric materials designed 

for RF applications, the antenna is able to achieve a higher on-body radiation efficiency 

and realised gain than reported in other studies. The effect of different voxel human 

body models is also studied. 
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In chapter 5, a second belt buckle antenna, based on a loop design, is developed 

with the aid of characteristic mode analysis (CMA). The antenna is analysed with 

various voxel human body models and shows significant advantages for use in wearable 

applications over existing designs.  

In chapter 6, a textile-based electromagnetic band gap ground plane is proposed for 

application together with the belt buckle antenna. The ground plane, when applied 

closely with the antenna, can increase the radiation efficiency and the realised gain of 

the antenna. Also, the isolation provided by the ground plane brings a significant drop 

in SAR value. The presented designs can all be considered safe under the regulations 

stated in [10] and [11]. A prototype of a smart belt system is proposed for proof of 

concept in this chapter and sample functions have been achieved. 

Chapter 7 is the final chapter in which conclusions are drawn and the key 

contributions summarised. Some promising future directions are also discussed in this 

section. 
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Chapter 2 Wearable Antennas 

This chapter provides a review of wearable antennas, including some related 

antennas theory, historical discussion on the development of wearable antennas and 

some cutting-edge design concepts. Discussions are made with a focus on the design 

challenges addressed during this study. 

2.1 Antenna Theory 

A number of parameters are used to describe the performance of an antenna. Some 

of these parameters: S-parameters, radiation pattern and radiation efficiency, will be 

discussed briefly with special consideration in regards to wearable antenna designs.  

Scattering parameters, commonly referred to as S-parameters in RF engineering, 

describe the reflection and transmission relationships between incident waves and 

reflected or transmitted waves from a network. For an RF signal incident at one port of 

a multi-port system, a portion of the signal gets reflected from the incident port, while 

the remainder gets transmitted to, or 'scatters' to, some or all the other ports. 

S-parameters quantify this process. S-parameters are normally analysed over a 

frequency range. For antenna measurements, a two-port network model is commonly 

used. Port 1 in the system denotes the feed port of the antenna under test (AUT) and S11 

represents the ratio of the voltage reflected at that port (2‑1), 

 S11= Vreflected at port 1

Vtoward port 1
= Zinput-Z0

Zinput+Z0
 (2-1) 

V=voltage, Zinput =input impedance, Z0=characteristic impedance. 

The parameter S11 is used in evaluating the impedance matching between the 

antenna and its feeding network. In practice, the ratio of the voltage reflected from the 
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antenna feed to the incident voltage is a major concern as this represents power being 

reflected and hence lost in the system. Reflected power results in low power efficiency 

and can cause problems to the feeding circuit. S11 is often represented in dB (2-2), 

 S11(dB)= 10 log S11
2 = 20 log S11 (2-2) 

This coincides with the data provided by the main simulation software package used 

throughout this work, CST Microwave Studio, and is also common practice in the 

research community and industry. 

For a typical antenna, the frequency range with S11 of lower than ‑10 dB (indicating 

power lost to reflection of less than 10%) is considered as the usable bandwidth. This 

bandwidth is sometimes referred to as the impedance bandwidth, as it evaluates the 

impedance match of the antenna and the feeding network. An example of the simulated 

return loss for a microstrip patch antenna (S11 in dB) is provided in Figure 2-1  

 

Figure 2-1：S11-parameter of a microstrip patch antenna. 

The impedance bandwidth for an S11 of less than ‑10 dB is labelled blue in Figure 

2-1. The situation is considered differently when an antenna is applied in close 

proximity to the human body. Human body tissues are generally quite lossy in the 

frequency band ranging from 10 Hz to 10 GHz and therefore a large portion of power 

radiated close to the human body will be absorbed by the body tissues. The dielectric 

properties of the body tissue have a significant impact on antenna performance. These 
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properties are normally frequency dependant. As an example, the pertinent properties 

of muscle and blood over the frequency range from 2 GHz to 10 GHz are provided in 

Table 2-1, which shows that the relative permittivity of these two tissue types ranges 

between 40 and 60. This relatively large permittivity could cause a frequency shift to 

an antenna in close proximity. It can also be seen that at RF frequencies, the dielectric 

loss tends to increase with frequency while relative permittivity tends to decrease. The 

body tissues are very lossy when compared to other materials dedicated for circuits and 

RF applications (e.g., FR‑4 with a loss tangent of 0.017 to 0.025, which is already 

considered lossy for some RF applications). 

Table 2-1: Dielectric properties for body tissues (from IFAC-CNR) [1] 

Frequency (GHz) Relativity Permitivity Loss tangent 

Tissue Type Blood Muscle Blood Muscle 
2 59.022 53.290 0.33290 0.24520 
4 55.677 50.821 0.33364 0.26665 
6 52.184 48.217 0.39010 0.32321 
8 48.610 45.497 0.45628 0.38511 

10 45.109 42.764 0.52326 0.44666 

When an antenna is analysed along with the human body (either using a voxel 

human model in simulation software or testing including human presence), a significant 

drop in S11 could be seen. This drop would be even more significant if the antenna were 

implanted into the body rather than worn close to or stuck on the body surface. The 

reduction in S11 would cover a wide frequency range hence a wider impedance 

bandwidth would be apparent. The wearable designs in this work focus on the band 

ranging from 2 GHz to 6 GHz. At this target band, the relative permittivity and loss 

tangent of blood and muscle are much higher than the substrate material used for 

antenna design. These body tissues will introduce significant frequency shifting and 

efficiency degrading to antennas in close proximity. The increased impedance 

bandwidth does not necessarily mean a wider useful bandwidth therefore other 

parameters, including the gain and radiation efficiency, become more important when 

analysing the performance of the antenna. 
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Antenna gain is a measure of how well an antenna transmits (or receives) 

electromagnetic energy in a given direction. The antenna gain is usually measured with 

the unit dBi, referring to ratio of the power radiated by the antenna to the power that 

would be radiated by an ideal isotropic antenna. An isotropic antenna is a hypothetical 

antenna that radiates the same amount of energy in all directions. The dBi unit is used 

throughout this thesis in the analysis of antenna designs. 

Gain measurements in this work are performed using a gain-comparison method. 

This requires the use of a standard gain antenna as a reference. The two most-widely 

used reference antenna types are the half-wavelength dipole and the pyramidal horn. In 

this thesis, measurements of antenna gain are performed inside an in-house anechoic 

chamber with a set of standard gain horn antennas. Two sets of measurements are 

performed for each antenna gain measurement. For the first part, the antenna under test 

was paired with a standard gain horn antenna and viewed as a receiving terminal. A 

single-axis rotary table located in the anechoic chamber enables one-dimensional 360° 

cuts to be measured. The largest received power is recorded and denoted as P1. Then the 

AUT is replaced with another standard gain horn antenna and the horns are aligned 

along the direction of their maximal gain. A measurement with the same input power 

level is then performed and the received power is denoted as P2. 

The calculation process then follows the equation, 

 GAUT = Gref +10 log10
P1
P2

 (2-3) 

𝐺 =gain of the antenna under test, 𝐺 = gain of the reference antenna, P1=received 

power from the first measurement; P2=received power from the second measurement. 

It should also be noted that the term realised gain is commonly used. This term 

specifically refers to the gain value when all losses (mismatch loss, conduction and 

dielectric loss) are considered. In this study, when antennas are analysed along with the 

human body model, it is the realised gain which includes losses from the human body 

that is considered. 



 

13 
 

Aside from gain, another very important parameter that this study focuses on is 

antenna efficiency. Generally speaking, antenna efficiency is the ratio of radiated power 

to the power fed to the antenna by the source. Antenna efficiency can be further 

categorized into two values: radiation efficiency and total efficiency. 

The radiation efficiency is the ratio of the power radiated to the power accepted at 

the antenna input terminal. This efficiency includes conduction and dielectric losses. 

Total efficiency is the ratio of the radiated power to the power from the feeding source. 

This includes one more potential loss: the mismatch loss due to the reflection between 

the antenna port and the feeding network. For a well-matched design, the term antenna 

efficiency usually refers to the radiation efficiency. 

For designs in this thesis, the primary target efficiency is the on-body efficiency, 

which is the antenna total efficiency when applied to a lossy human body. The 

significant dielectric loss of the human body is considered throughout the design 

process. To achieve on-body efficiency in simulation, the CST voxel family model is 

used. To accurately measure the on-body efficiency, a reverberation chamber is 

designed and constructed. Details about the reverberation chamber and the 

measurement process will be discussed in Chapter 3. 

2.2 Overview of Wearable Antenna Designs 

The wearable consumer electronic market has seen a boom in recent years with the 

advent of products including smartwatches, fitness bands and augmented reality glasses. 

To improve user experience many of these wearable products operate in a wireless 

mode and hence to facilitate this, wearable antennas are required. For this reason, 

wearable antenna designs have received a significant amount of attention from the 

research community in recent years.  

Wearable antennas are required to operate close to the human body, and often over 

relatively long time periods. Thus, special requirements for the antenna design exist 



 

14 
 

depending on the specific working environment of the device. Typically, for these 

applications, traditional antennas on PCB board, small dielectric resonator antennas or 

antennas on metal frames are used [2]-[5]. Recently some state-of-the-art designs have 

used transparent conducting material to form transparent antennas on glass [6]-[7]. 

For applications in the health and rescue areas, including protective garments and 

life jackets, antennas embedded in the specialised items of clothing are commonly used 

[8]-[9]. These designs are usually planar and low-profile, and are likely to undergo a 

certain level of deformability and stretchability during use. 

Some wearable antenna designs have utilised structures that allow them to be 

integrated with daily accessories, making use of their natural materials and size to 

achieve better antenna performance. Examples of this include button antennas, watch 

strap antennas, shoelace antennas, zipper antennas and belt antennas [10]-[17]. 

A special circumstance is encountered for applications requiring an antenna to be 

implanted or ingested into the human body. An example of this is found in a wireless 

capsule endoscope, which uses an antenna to broadcast real-time images from inside 

the body to a receiver on the outside. This kind of application normally requires an 

omnidirectional radiation pattern. The key issue for the design is to determine the 

properties of the tissues and contents surrounding the antenna and then evaluate the 

radiation efficiency. Commonly, conformal loops or meander lines are applied for this 

kind of application [18]-[19]. 

Throughout the literature review phase of this project, it is found that the designs of 

wearable antennas can be divided into two groups: soft-substrate based antennas and 

accessory-like antennas. Soft-substrate antennas are planar antennas with deformable 

substrates and conductive layers. Accessory-like antennas are antennas designed in 

accordance with the shape and size of common wearable accessories. Antenna designs 

in both categories are discussed in this chapter. 
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2.3 Soft-substrate Antenna Designs 

Soft-substrate antennas are generally meant to be integrated into a garment of 

clothing to be worn. The challenges of designing such antennas mainly fall into two 

areas: the material selection and the fabrication techniques used. In the following 

sections, some published studies are provided with an emphasis on how they meet these 

challenges. 

2.3.1 Conductive material selection 

Conductive and dielectric materials are required to form a planar, layered antenna 

structure, normally seen in wearable antenna designs.  

For conductive materials, high conductivity, and stable performance under 

deformation (bending, stretching, crumpling, etc.) are the two most critical factors to 

ensuring stable, high-efficiency antenna performance. Electro-textiles provide one 

solution to meet the conductivity requirements. Conductive fabrics used to have poor 

conductivity and high losses resulting in reduced antenna efficiency and gain [20]. 

However, recent advances in the fabrication of conductive fabrics have led to improved 

efficiencies for embroidered antennas and circuits. Electro-textiles are commonly 

created using metal-plated thread. Silver-plated thread is widely applied due to its high 

conductivity and nickel is sometimes added to increase the thread’s corrosion resistance 

[20]. Silver-plated threads have been used with various substrates to form planar 

antennas [21]-[25]. An example of a planar spiral antenna sewn with such threads is 

shown in Figure 2-2. In a state-of-the-art work, improved embroidery techniques allow 

conductive fibres made with silver-plated threads to be used to fabricate antennas and 

circuits which meet the high-efficiency, low-loss requirements. An application of this 

has been made in an RF energy harvesting system [25]. In the energy harvesting system, 

the conductive fibre antennas can achieve a radiation efficiency of 77.3% at 2.45 GHz 

while the rectifying circuit can achieve an efficiency over 70% in the same operation 
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band. The efficiency improvement presented in [25] is based on prior studies on the 

loss characterization of embroidered conductive textiles [24], in which a transmission 

line method was used to characterize the loss of the fibres in RF band.  

 

Figure 2-2：Example planar antenna fabricated with conductive threads [21]. 

Due to the complexity of thread composition and alignments, the conductivity of a 

single thread cannot directly reflect the loss of the conductive textile structure in the RF 

band. Thus, it is difficult to quantify the loss theoretically. By fabricating a transmission 

line using the thread and fabrication technique to be tested and then measuring the 

transmission coefficient of that transmission line, the loss of the conductive fibre can 

be quantified. In [24], three transmission lines were fabricated and tested as shown in 

Figure 2-1. These three transmission lines use the same Polydimethylsiloxane (PDMS) 

substrate material. The difference between them is the conductive material. Sample A 

in Figure 2-3 uses conductive E-fibre for both the transmission line top layer and the 

ground plane. Sample B uses conductive E-fibre for the top layer and copper as the 

ground plane. Sample C, as a conventional comparison, uses copper for both the top 

layer and the ground plane.  
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Figure 2-3：Three transmission line (TL) samples. (a) E-fibre TL with E-fibre ground plane, (b) 
E-fibre TL with a copper ground plane, and (c) copper TL with copper ground plane [24]. 

The transmission loss per unit length for the three transmission lines are compared. 

The transmission loss per centimetre in dB for case A, B and C are 0.21 dB/cm, 

0.17 dB/cm and 0.14 dB/cm. Patch antenna fabricated with E-fibres in this study can 

achieve a realised gain of 5.6 dBi, which is only 0.3 dB lower than the copper patch 

used as comparison.  

In addition to conductive fibres, other conductive materials including graphene and 

conductive ink have been applied in antenna designs [26]-[33]. These materials can also 

achieve desirable conductivity. For example, a low-cost dipole antenna was 

manufactured achieving a radiation efficiency of 32 % using graphene on a paper 

substrate [29]. An example of how graphene ink can be applied to a substrate and an 

antenna fabricated using that process is shown in Figure 2-4 [26]. The application of 

graphene or conductive ink usually requires a flat, stable, and homogeneous substrate. 

Such requirements on the substrate could be a problem for wearable applications.  
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Figure 2-4：Low-cost graphene antenna made with doctor blade technique. (a) The process of 
fabrication. (b) Side view of the finished antenna with dimensions. (c) Top view of the finished 

antenna with dimensions [26]. 

2.3.2 Substrate material selection 

The dielectric substrate material is important in determining an antennas’ 

performance, the two most important properties in affecting antenna performance are 

the dielectric constant and the loss tangent of the substrate. A high dielectric constant 

would result in a smaller size antenna, which is obviously good for convenience in 

wearable applications, but also tends to result in a small operational bandwidth which 

may not be application friendly. The dielectric loss of the substrate will directly affect 

the efficiency of the antenna and so should be minimised. Therefore, ideally, the soft 

substrate used would have a tuneable dielectric constant and low loss tangent, allowing 

a tradeoff between bandwidth and size whilst maintaining high radiation efficiency.  
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Textile materials are a common choice as the wearable substrate allowing antennas 

to be fabricated directly onto items of clothing. Felt, fleece, Cordura and spacer fabric 

are some examples chosen in previously published research. The dielectric properties 

of some materials are summarised in [33]. Normal fabrics reported in [33] have a 

relative permittivity ranging from 1.3 to 1.95 and a loss tangent ranging from 0.0004 to 

0.0400. It should be noted that these dielectric properties are only indicative for the 

textile materials as actual values depend on thickness, weave, any applied dye and 

natural properties of the thread. Therefore, measurements of textile material properties 

should always be performed prior to simulation and fabrication. 

Polymer-based substrates have recently attracted attention due to their flexibility 

and stretchability. Polydimethylsiloxane (PDMS) is one promising example of poly-

based substrate material. Figure 2-5 shows an example of a PDMS-embedded 

conductive fibric antenna and indicates its flexibility. 

 

Figure 2-5：Fabricated PDMS-embedded conductive fabric antenna. (a) Top view. (b) Bottom 
View. (c) Side view. (d) Bent view [35]. 

For PDMS, doping with various powders can change its dielectric properties and 

hence make the material adjustable for different applications. Examples of this 

dielectric constant tuning by mixing in ceramic powders can be seen in [22] and [35]. 

With ceramic composite added, the relative permittivity of the PDMS substrate was 

around 6 (stable over a frequency range between 0.5 GHz to 5 GHz), with a loss tangent 

lower than 0.05 [35]. PDMS deposited around conductive rubber can be an ideal 

substrate for stretchable wearable antennas [36]. Generally, the PDMS substrates used 

for wearable applications have a relative permittivity between 2.8 to 6. This value is 

considerably larger than normal fabrics ranging from 1.3 to 1.95. Therefore, the overall 
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antenna size achievable using PDMS substrate can be smaller than that using other 

textile fabric substrates. 

2.3.3 Fabrication techniques 

The fabrication techniques used to manufacture soft-substrate wearable antennas 

tend to be those general techniques already commonly associated with the type of 

substrate material selected. These include techniques such as screen-printing, inkjet 

printing and embroidery. 

The embroidery method is commonly applied with antennas using conductive 

thread and textile materials as the substrate. A typical process to fabricate an 

embroidered antenna is shown in Figure 2-6. Fabrication parameters including the 

number of threads per centimetre, alignment of the threads and the embroidery tension 

will affect the performance of the fabricated antenna [24]. These parameters can be 

adjusted with an automated embroidery machine. 

 

Figure 2-6：Embroidery process of the E-fibres to create RF designs on polyester fabrics [22]. 

An alternative example is provided in Figure 2-7, where conductive fibres are 

attached onto a PDMS substrate. With this manufacturing process, the antenna design 

can enjoy the benefit of a tuneable substrate dielectric constant and a high conductivity 
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at the same time. 

 

Figure 2-7：Manufacturing process flow for polymer-embedded conductive fabric antennas [22]. 

The screen-printing method has also been shown to be a viable process for wearable 

antenna fabrication. The screen used in this method is made of a mesh of fabric thread 

with non-image area blocked by a stencil and the image (antenna pattern) area left open. 

The printing is performed by pressing a conductive ink (typically silver based) onto the 

substrate through the screen. Successful fabrication of an E-shape patch antenna on a 

multi-layered polyester fabric has been demonstrated in [37]. A picture of the screen-

printed antenna is shown in Figure 2-8. The polyester fabric has a water-resistant 

characteristic and can stand severe bending conditions. The screen-printing method has 

also been applied to materials including PDMS and graphene [38]. 

 

Figure 2-8：Screen printed antenna on polyester fabric [37]. 



 

22 
 

Ink-jet printing utilizes a specialized printer to spread conductive ink particles onto 

the surface of substrates. Similar to conventional printing, paper has been used as a 

substrate and good performance has been achieved in 1.8 GHz, 2.4 GHz and 3.5 GHz 

bands [31]-[32]. This method has also been used on leather to achieve a wearable 

wideband antenna [33]. 

2.4 Accessory-like Antenna Designs 

For accessory-like antennas, the general idea is to utilise the rigid metallic structures 

of typical daily accessories as the main radiating element of the antenna. A good 

example of this is the handbag zipper antenna [15]. A gain of 5 dBi at 2.44 GHz was 

achieved owing to the shape, size, and metallic nature of the zipper. The detailed design 

of the antenna is shown in Figure 2-9. 

  

Figure 2-9：Geometry of the handbag zipper antenna [15]. 
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The design of the zipper antenna reveals a major limitation for metallic accessory 

antennas. The shape and size of the antenna structure should be very similar to the 

original accessory to maintain its functionality. In this case, the shape of the zipper teeth 

and handle, along with the overall length of the zipper are unchanged from the original 

handbag design. The proposed zipper antenna achieved a realised gain of about 5 dBi 

at 2.45 GHz. 

Another good example of an accessory antenna is the button antenna [10]-[13]. 

Buttons are one of the most rigid items found on daily clothing. The special shapes 

possible with buttons enables the antenna to be slightly high profile. The co-design of 

a textile substrate or a conductive textile ground plane also becomes possible. A 

maximal on-body radiation efficiency of 72% at 2.45 GHz was achieved by the button 

design proposed in [13]. 

 

Figure 2-10：Geometry of a proposed button antenna. (a) Top view. (b) Side view [11]. 

The first belt buckle antenna found in published literature was seen in 2008 [16]. 

The design is shown in Figure 2-11. This belt buckle antenna design uses a single 

tongue buckle type of belt to create an antenna using a principle similar to a regular 

loop antenna. The antenna achieved a measured gain of over 1 dBi in the 2.45 GHz and 

5.25 GHz bands. 
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Figure 2-11：The first proposed belt antenna [16]. 

2.5 Textile Shield/Reflector Structures with EBG 

Aside from the aforementioned wearable antenna designs, a special structure called 

an electromagnetic band gap (EBG) structure has been proven desirable in wearable 

antenna designs to provide antenna isolation for the body [41]-[43]. This type of 

structure is applied in this project to reduce the power from the antenna that radiates 

towards the human body and to improve antenna gain performance. 

The special wave propagation properties of EBGs have been used in various antenna 

designs. One common application is to use the structure as a high impedance surface 

(HIS) to improve radiation performance for low profile antennas [39]. It should be noted 

that the EBG structures in this study have been denoted as high impedance surfaces 

(HIS) or artificial magnetic conductors (AMC) in other literature [40]-[42]. The textile 

EBG structure was first applied with a planar textile antenna to improve antenna 

performance in [43]. 

Generally, EBG structures have two main desired properties for RF applications. 

The first one is an in-phase reflector designed to function as such over specific 

frequency bands. A properly designed EBG surface can have a property similar to a 
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perfect magnetic conductor (PMC), with a reflection phase of 0° for normal incident 

waves. In contrast, a perfect electric conductor would have a reflection phase of 180° 

under the same condition. The possible in-phase reflection property allows for 

constructive reflections to be formed when the reflecting plane is located in close 

proximity to the radiating element. 

The second use of an EBG is for surface wave suppression. EBG structures can 

block the propagation of surface waves over their designed working frequency bands. 

This feature allows the suspended transmission line method, which will be discussed in 

Chapter 6, to be used to evaluate the performance of the EBG surface. 

 

Figure 2-12：The mushroom EBG structure. (a) Overview of the structure. (b) Side view and LC 
model of the structure [44]. 

A very popular EBG structure is the mushroom structure, as shown in Figure 2-

12 (a). The side view of the structure is provided in Figure 2-12 (b). A via is used to 

connect each unit cell patch to the ground plane. An L-C resonance model can be used 

to characterize each unit cell structure. This structure is evaluated in detail in Chapter 6 

for the textile EBG design in this study. 

The reflected phase in this study is obtained using the frequency domain solver with 

periodic unit cell boundary condition in CST Microwave studio. An incident plane 
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wave labelled in Figure 2-13 (a) is sent towards the EBG unit cell and the phase of the 

reflected wave is evaluated. The point of 0° reflected phase is considered as the centre 

of the response. Generally, a frequency band with reflected phase ranging from -90° to 

90° is considered the band gap of the EBG structure and is the usable band when the 

EBG is acting as a reflecting plane. 

 

Figure 2-13： EBG (a) unit cell simulation environment and (b) reflected phase. 

2.6 Antenna Design Challenges 

The general design challenges for wearable antennas are summarised in this section 

and some antenna model ideas are proposed. The challenges can be categorised into the 

following three aspects: 

1. Maintaining stable performance with non-standard RF materials. For wearable 

antenna designs, materials ranging from leather, to wool, to PDMS and metal can 

be found. The determination of accurate material properties for these materials and 

the specific use of the materials is crucial to developing high-efficiency antennas. 

Moreover, the mechanical effects of bending and crumpling on the RF performance 

of the material should be taken into consideration.  

2. Minimising the effect of the human body on antenna performance. Wearable 

antenna designs may not provide enough isolation to the human body. This lack of 
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isolation could result in an undesired frequency shift, degraded efficiency, and 

result in SAR safety related issues. 

3. For accessory-like antennas, designing the antenna to fit within or following the 

shape and size of a wearable accessory is difficult. Accessories-like antenna designs 

should share the shape and size of the original accessories to meet ergonomic 

requirements. Designing a high-performance antenna of limited shape and size is a 

challenging task. 

This thesis seeks to design high-efficiency wearable antennas and therefore based 

on the previous discussions; accessory type antennas are the most appropriate choice. 

They allow for a rigid metal structure that is not necessarily dependent on the use of an 

RF inappropriate or deformable substrate material. Considering the various types of 

accessory available, the belt buckle is the most suitable choice. It is a popular accessory 

item, used daily by consumers. It can be made from conductive material and can be of 

a size suitable to operating in the frequency bands of interest in wearable applications 

e.g. Bluetooth and Wi-Fi, and finally its overall shape is designable. 

The general structure of a belt buckle gives rise to two basic antenna types, the loop 

antenna, and the aperture (patch type) antenna, dependent on the buckle type. In either 

case, these antennas are bi-directional and as they lie flat on the body will direct a 

significant amount of EM radiation into the body, decreasing performance and leading 

to potential safety issues. An EBG ground plane can be used in conjunction with the 

antenna to control EM radiation into the body and simultaneously improve antenna 

radiation efficiency and gain.  

A loop antenna is a wire-type antenna. Figure 2-14 shows a circular shaped loop 

antenna. Loop antennas can have a variety of configurations including circular, 

rectangular, elliptical, and other shapes.  
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Figure 2-14：Loop antenna structure and its magnetic current form [45]. 

The parameters a and b in Figure 2-14 are important for loop antennas as the radius 

a determines the overall length and hence the resonant frequency of the loop. The value 

of b, which is the diameter of the loop metal, is closely related to the impedance of the 

antenna. The symbol J denotes the current flow in the loop. The analysis of the current 

flow in the loop is useful in loop-type antenna designs and is used in Chapter 5 for the 

loop belt buckle antenna structure design. 

Considering the shape and configuration for regular belt buckles, the aperture type 

belt antenna in this study shares similar principle with that of a planar microstrip patch 

antenna. For the thoroughness of the thesis, microstrip patch antenna is also introduced 

here. 

A typical planar patch antenna consists of a metal patch, a substrate layer (dielectric 

material with permittivity εr and thickness d and a metal ground plane, as shown in 

Figure 2-15. At resonance, the length L for the patch should be around half of the 

wavelength so that the antenna can be considered as a half wavelength transmission line 

resonant cavity with two open ends. The two open ends, labelled as radiating slots in 

Figure 2-15, create fringing field and are the main reason for the radiation. 
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Figure 2-15：Structure for a planar patch antenna [45]. 

As a resonant cavity, there are many possible modes in a patch antenna depending 

on the frequency. The fundamental and dominant mode is TM100 mode. The term TM 

here represents a magnetic field distribution. The magnetic field between the patch and 

the ground, as denoted with black arrows in Figure 2-16, is transverse to the z-axis. The 

three numbers in the term TM100 represents the number of half wave changes (field 

direction changes along a distance of half a wavelength) along the x, y and z-axis. The 

third zero, which is the one with respect to the z-axis, is usually dropped as the magnetic 

field in this type of patch antenna is transverse to the z-axis. With the TM mode setup, 

the patch antenna can be characterised with three field components: the electric field in 

the z-direction and the magnetic field in the magnetic field components in the x and y 

directions. In practice, the electric field in the z-direction is commonly used to 

determine the TM mode for a patch antenna. Figure 2-16 illustrates a typical electric 

field distribution for a patch antenna with a TM10 mode. One field direction change can 

be seen over a span of half a wavelength, hence the subscript notation of 10 is used. 
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Figure 2-16：An illustration of a patch antenna TM10 mode. 

Similar TM mode characterisation is used in Chapter 4 for the proposed patch type 

belt buckle antenna design. 

2.7 Summary 

In this chapter, basic antenna theory and a review for wearable antenna designs are 

included. The wearable antennas included in this chapter are categorised into two 

groups: soft substrate antenna designs and accessory-like designs. The challenges in 

material selection, fabrication techniques and structural designs are addressed. For the 

thoroughness of this thesis, basic information on textile electromagnetic band gap (EBG) 

materials, loop antennas and patch antennas are included.  
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Chapter 3 Reverberation Chamber and 

On-body Efficiency Measurements 

This chapter discusses the design and commission of a reverberation chamber vital 

to the completion of this work. In addition, detailed measurement processes are defined 

for the measurement of on-body antenna efficiency. The specifications and 

performance of the Xi’an Jiaotong-Liverpool University (XJTLU) in-house 

reverberation chamber are provided. Design of the chamber was completed in 

conjunction with Dr. Qian Xu. The concept and key definitions of parameters related 

to the reverberation chamber follow the textbook [1]. 

3.1 An Overview of the Reverberation Chamber 

A reverberation chamber, also referred to as a reverberating chamber, mode-stirred 

chamber or mode tuned chamber, is a conducting-screened room with electrically large 

stirrers used to stir the EM field inside. An example of a reverberation chamber without 

two walls and the ceiling is shown in Figure 3-1. This structural design shown is used 

for the chamber developed for this study. In some of the following context, the name 

reverberation chamber is simplified to reverb for conciseness. The core objective for 

the reverb is to create a statistically uniform and isotropic EM field in the usable volume 

of the chamber. The metal walls of the chamber form an electrically large resonant 

cavity. The horizontal and vertical stirrers in the chamber can rotate stepwise and create 

different paths of reflection. With enough paths generated, a near-isotropic and 

mathematically uniform field distribution can be formed. In practice, aside from the 

change of stirrer positions, change of radiating source position and polarisation are also 

necessary to achieve the desired uniform distribution. 
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Figure 3-1：A model for the in-house reverberation chamber design. 

As the reverb is normally considered as an electrically large resonant cavity, the 

resonant cavity model can be used for analysis. The cavity model states that the field in 

the cavity can be decomposed into the superposition of modes with different weights. 

Each mode is a distinct field distribution pattern in the cavity. When the field inside a 

reverb is stirred with the stirrers, the weighting coefficients for many modes are 

changed. In the practical design and application of a reverb, the mode number, rather 

than the detailed distribution of a single model is the main focus. With a determined 

chamber size, the mode number can be written as a function of the frequency, as defined 

in [1], is shown by the following function, 

 Ns( f )= 8πHWLf 3

3c3 -(H+W+L) f
c
+ 1

2
 (3-1) 

where H, W and L are the height, width and length of the chamber. The variable f is the 

frequency and c is the speed of light in the cavity. It should be noted that the term 

H×W×L represents the volume of the cavity, which will later be denoted by V. 

Another important parameter, mode density, can be obtained by differentiating (3‑1) 
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leading to: 

 Ds( f )= lim
∆ f→0

∆Ns( f )
∆ f

=8πHWL  f 2
c3 - H+W+L

c
. (3-2) 

Mode density provides a measure of how many modes can be excited in a given 

bandwidth. If the mode density is low, a statistical nonuniformity could be present in 

the chamber modes. 

Mode number and mode density are important parameters for the reverb because 

the lowest usable frequency (LUF) depends on them. Empirically, at the LUF, the mode 

number in the chamber should satisfy, 

 Ns( f )~ 8πVf 3
3c3 ≥60 (3-3) 

 Ds( f )~8πV f 2
c3 ≥1.5 modes/MHz (3-4) 

Mode number and mode density are analytical evaluations of the chamber 

performance without considering the stirring in the chamber. The performance of the 

reverb needs to be further analysed with the effect of stirring considered. The 

measurement in this case involves a pair of identical antennas with bandwidth covering 

the band of interest. In a reverb, three types of stirring are commonly used to create a 

statistically uniform field distribution in the chamber, these are mechanical stirring, 

source stirring and polarisation stirring. Mechanical stirring involves stepwise rotation 

of the stirrers in the chamber. S-parameters (especially S21) between the two antennas 

are documented for each stirrer position. Source stirring involves moving one antenna 

(the one considered as the transmitting antenna). Source stirring could be achieved 

using a robotic arm or a moving platform. In this study, six fixed antenna positions are 

manually selected to perform source stirring due to the limitation in equipment. 

Polarisation stirring requires the polarisation of both the transmitting and receiving 

antennas to be changed. A complete test including all three stirring schemes will follow 
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these procedures: 

1. Setting up a pair of antennas in one position and performing S-parameter 

measurements with a stepwise changed stirrer position (e.g., 360 data sets with a 1° 

step size for both horizontal and vertical stirrer rotations). 

2. Changing the polarisation of both antennas and repeating step 1 again (720 data sets 

acquired at this stage).  

3. Changing the transmitting antenna location and perform the previous two steps 

again. If six different transmitter positions are used, a full measurement set using 

all 3 stirring types generates 4320 datasets. 

The ratio of the standard deviation and the mean value of the received power taken 

over different stirring positions(10log(Std/Mean)) is a measure of the field distribution 

in the chamber. Generally, if a random variable follows an exponential distribution, 

which is the ideal distribution for a reverb, the standard deviation should equal the mean 

value. This property provides a quick method to assess the performance of the reverb. 

In a measurement setup with vector network analyser (VNA) available (Agilent 

N5230C used in this study), the received power can be represented by measuring S21 

and determining │S21│2. If the value of 10log(Std/Mean) is close to 0 dB (within a 

range of ±1 dB), the distribution of the received power is very close to an exponential 

distribution.  

The field uniformity (FU) describes how uniform the field distribution is in a reverb. 

It is defined as the standard deviation from the normalised mean value of the normalised 

maximal values at each of the eight locations during one rotation of the stirrer [2]. The 

FU is quantified with standard deviation. In practice, there are two possible forms of 

FU. In one form, the maximal S21 values in all measurements with both mechanical and 

source stirring are taken as the reference value. The standard deviation over N antenna 

positions calculated with the maximal S21 obtained with one fixed position and the 

reference value, is as shown in formula (3-5). 
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 Stdmax=
∑ (|S21|max,p

2 -〈|S21|max
2 〉)2N

p=1

N-1
 (3-5) 

In another form, the average S21 values in all measurements with both mechanical 

and source stirring are taken as the reference value. The standard deviation is calculated 

with the average values, as shown in formula (3-6). 

 Stdavg=
∑ (|S21|aver,p

2 -〈|S21|aver
2 〉)2N

p=1

N-1
 (3-6) 

The FU in dB is defined as, 

 FU(dB)=10 log10
Std(linear)+Mean(linear)

Mean(linear)
 (3-7) 

The selection of the FU calculation method is dependent on the application of the 

chamber. If the testing of the maximum E-field is of interest, then the MaxE method 

should be selected. This is normally used when evaluating the ability to handle maximal 

E-field for a device under test in EMC testing. If the average E-field is of interest, then 

the MeanE method is the choice. This is normally used for long-term duration EMC 

tests. 

A reverb has another pair of important and closely related parameters, the quality 

factor (Q) and the time constant τ. The quality factor shows the chamber’s ability to 

store energy.  

 Q = 16π2V
λ3 × 〈Pr〉

Pt
 (3-8) 

The term Pr in formula (3-8) is the averaged received power in the chamber while 

the term Pt is the transmit power. The term λ is the wavelength. In practice, this quality 

can be measured in the frequency domain as the S21 between two antennas. 
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 Q = 16π2V
λ3ηTxηRx

〈|S21|2〉 (3-9) 

The term ηTx and ηRx are the total efficiency of the two selected antennas for reverb 

testing. 

It is also common practice to translate the frequency dependent quality factor into 

the time domain, where it becomes the reverb time constant τ. 

 τRC= Q
2πf

 (3-10) 

3.2 The In-house Reverberation Chamber 

A model for the reverberation chamber constructed for this study is shown in Figure 

3-1. The chamber is a sealed metallic structure containing one vertical and one 

horizontal stirrer, a manual shielded door with shielding finger stripes and two 

waveguide windows for chamber ventilation. The chamber uses solid stirrers to ensure 

stability and reduce overall cost. It is acknowledged that cutting slots in the stirrers can 

improve the low frequency performance of the chamber, however this can also lead to 

mechanical instability. Also, the frequency range for which coverage is desired in this 

study is far above the lowest operating frequency covered by this chamber design. The 

specific dimensions of the chamber are provided in the following Table 3-2 and a 

photograph of the finished reverberation chamber is shown in Figure 3-2. 

Table 3-2: The specifications of the reverberation chamber 

Dimension Value (m) 

Length of the chamber L 5.4 

Width of the chamber W 3.0 

Height of the chamber H 2.8 

Width of vertical stirrer D1 1.5 

Width of horizontal stirrer D2 1.0 
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Figure 3-2：The finished in-house reverberation chamber. 

Since this chamber is not a standard commercial product, characterisation is 

important. Two broadband Vivaldi antennas have been used to measure the chambers 

performance and the results (Std/Mean, field uniformity, time constant, etc.) will be 

discussed in the following.  

The mode number versus frequency graph from equation (3-1) based on chamber 

size for the reverb built in this study is shown in Figure 3-3. 

 

Figure 3-3：The mode number of the reverberation chamber. 
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The mode density of the reverb calculated with equation (3-2) in this study is 

provided in Figure 3-4. 

 

Figure 3-4：The mode density of the reverberation chamber. 

The value of Std/Mean is measured with mechanical stirring and source stirring. 

With a 1° step size for both horizontal and vertical stirrers' rotation and six different 

antenna positions, a data set of 2160 S21 values were used to calculate the Std/Mean. 

The results are shown in Figure 3-5. 

From the results on mode number, mode density and the Std/Mean value, it can be 

seen that the performance of the reverb is acceptable above 0.3 GHz, with a Std/Mean 

value range of ±1 dB.  
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Figure 3-5：The Std/Mean value in dB of the reverberation chamber.  

The FU with maximum E-field versus received power is shown in Figure 3-6. The 

red line here outlines the minimal FU tolerance given in [2]. When the FU level is below 

the limit, the chamber performance can be considered usable. 

The FU with average E-field versus received power is shown in Figure 3-7.  

 

Figure 3-6：The field uniformity (FU) with MaxE in dB of the reverberation chamber. 



 

46 
 

 

Figure 3-7：The field uniformity (FU) with MeanE in dB of the reverberation chamber. 

The time constant of the chamber is shown in Figure 3-8. 

 

Figure 3-8：The time constant (τ) in ns of the reverberation chamber. 

The maximal E-Field for an input power of 1 Watt against frequency are shown in 

Figure 3-9. The results are measured with Narda EP-601 E-field probes. The E-field 

values shown in the figure are maximal values obtained in horizontal with one fixed 

stirrer position (no stirring), with 15 stirrer positions over 360 degrees and 100 stirrer 

positions over 360 degrees. It can be seen that with more stirring positions sampled, it 

is possible to achieve a higher electric field intensity. This property can be used in EMC 



 

47 
 

testing to create a large E-field with limited input power. With an input power of 1 W, 

the E-field in the in-house chamber can achieve a level of over 60 V/m for frequencies 

over 1 GHz. 

 

Figure 3-9：The E-field strength in V/m for the reverberation chamber. 

With the previous measurements and characterisations, the performance of the in-

house reverberation chamber is found to be acceptable for 300 MHz and above. 

3.3  Measurement of Antenna On-body Efficiency in a 

Reverberation Chamber 

The measurement of the on-body radiation efficiency for wearable antennas adapts 

the method proposed in [3]. The method requires one references antenna, one antenna 

undertest (AUT) and a VNA. The reference antenna is connected to port 1 of the VNA 

while the AUT is connected to port 2. The definition used for antenna efficiency 

measurement is as follows, 

 ηRAD= 〈|S21AUT|2〉〈|S21REF|2〉 × 1-|S22REF|2

1-|S22AUT|2 ×ηREF (3-11) 

In this formula, <.> represents the averaging of the S parameter data set obtained 

with different stirring conditions. The term ηRAD is the radiation of the antenna under 
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test (AUT) and ηREF is the efficiency of the known reference antenna. It should be noted 

that for the total radiation efficiency the antenna mismatch loss, denoted as S22 in this 

case, can be measured in an anechoic chamber and the total efficiency can be calculated 

with the following formula, 

 ηTOTAL= ηRAD×(1-(S22AUT)2) (3-12) 

The measurement of wearable antenna efficiency generally follows the principle 

shown with equations (3-11) and (3-12). The main difference is that the human body 

dominates the losses in the chamber with its presence. The calibration of the chamber 

needs to be performed with the human body in the chamber as it has a severe loading 

effect on the chamber. The calibration is performed with two identical reference horn 

antennas and with the human body (including same clothing and pocket contents) in the 

chamber. The S-parameter datasets with the three types of stirring is documented as the 

reference value. The detailed measurement process is as follows, 

1. Setting up the reference horn antennas in one position and performing S-parameter 

measurements with a stepwise changed stirrer position (180 data sets with a 2° step 

size for both horizontal and vertical stirrer rotations). 

2. Changing the polarisation of both antennas and repeating step 1 again (360 data sets 

acquired at this stage).  

3. Changing the transmitting antenna location and perform the previous two steps 

again. Four different transmitter positions are used in this case considering both the 

test subject's tolerance and the accuracy of the measurement. 

The S parameter measured with two horns are the S21REF and S22REF values. One of 

the horns is then changed to the belt antenna attached to the test subject and the same 

process is repeated for one more time, obtaining S21AUT and S22AUT.  

Enough data points must be selected to ensure sufficient modes in the chamber. The 

original work in [3] proposed use of a total of 710 sample points per frequency sample. 
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In the measurements in this study, a slightly different setting is used considering the 

different frequency range, equipment set up and the test subject’s tolerance. The stirring 

sequence for the on-body measurement in this study includes mechanical stirring 

(2 degrees, 180 measurements), polarisation stirring (two orthogonal linear 

polarisations) and position stirring (4 receiver positions). A total of 1440 datasets are 

documented for each run to calculate the efficiency in this study. With the calibration 

run (two horns) and the measurement run (AUT on-body and one horn), 2880 datasets 

are used for the whole calculation process. 

3.4 Summary 

A reverberation chamber was designed constructed and characterised in XJTLU 

during this project. For wearable applications, the reverberation chamber enables 

researchers to test the antenna’s on-body radiation efficiency with an actual human test 

subject. The reverberation chamber provides a high-accuracy and affordable solution 

for the assessment of the efficiency of wearable antenna designs. 

3.5 Reference 
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Reverberation Chamber," IEEE Trans. Antennas Propag., vol. 61, pp. 871-881, 2013. 
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Chapter 4 Dual-band Patch Style Belt 

Buckle Antenna Design 

A dual-band high efficiency wearable belt buckle antenna design offering stable 

performance for both on and off body scenarios is presented. The proposed antenna is 

composed of a metal buckle affixed to a lossy leather substrate. A layer of conductive 

fibre is attached to the leather to provide isolation between the human body and the 

radiating element. A novel snap on button structure is used to feed the antenna. With 

the Bluetooth and Wi-Fi bands targeted, the antenna can achieve an on body realised 

gain of 5.10 dBi at 2.45 GHz, 4.05 dBi at 5.2 GHz and 3.31 dBi at 5.8 GHz. A 

simulated specific absorption rate of 0.87 W/kg is achieved which meets the SAR 

regulations. The on/off body radiation efficiency of the antenna is measured in a 

reverberation chamber. The antenna can operate in both on and off-body 

communication as the frequency shift induced by the human body tissue is not 

significant. The proposed belt antenna is a low-cost and reliable solution for smart on-

body applications. 

The work in this chapter is mainly based on the following publication: 

R. Pei, M. P. Leach, E. G. Lim, Z. Wang, J. Wang, Y. Wang, Z. Jiang and Y. Huang, 

"Wearable Belt Antenna for Body Communication Networks," IEEE Antennas and 

Wireless Propagation Letters, pp. 1-1, 2020. 

4.1 Motivation for the Belt Antenna Design 

The increasing popularity of wearable electronic devices has brought more attention 

to wearable antenna designs. Wearable antenna designs must address the following 

three challenges during the design process, frequency shifting and radiation distortion 

due to the proximity of the body tissues, Specific Absorption Rate (SAR) limitations 
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and the ergonomics and robustness of the design. To contend with these challenges, 

previous studies have tried to exploit existing metal parts of personal accessories worn 

daily as the radiating element of the antenna. Examples of such designs include button 

antennas [1]-[4], watch strap antennas [5], watch frame antennas [6], zipper antennas 

[7], shoelace antennas and belt buckle antennas [8]-[10]. Each of these has restrictions 

in terms of their shape and size in order to maintain their function as daily accessories. 

The belt buckle is an ideal platform for wearable antenna designs due to its solid 

metallic nature and relatively large size. Previous studies [9]-[10] have made use of 

single tongue buckles (as shown in Figure 4-1. (a) and (b)) as the main radiating element 

of the antenna, proving the feasibility of the structure. The loop style of these buckles 

results in a radiation pattern similar to a one wavelength loop antenna, which is 

omnidirectional in the vertical plane. The radiation pattern would mean that at least half 

of the energy radiated by the belt buckle would be directed into the human body, leading 

to low radiation efficiency and hence low realised gain. Tissue absorption would also 

raise concerns about SAR. These issues will be addressed through antenna system 

designs in Chapters 5 and 6. 

 
Figure 4-1：Types of belt buckle and corresponding antenna design. (a) Single tongue buckle 

[11]. (b) Single tongue antenna design as in [9] and [10]. (c) Pin buckle [11]. (d) Pin buckle 
antenna design proposed in this study. 

In this section, a dual-band belt antenna aimed at Bluetooth (2.45 GHz) and Wi-Fi 

(2.45/5.2/5.8 GHz) applications based on a pin buckle, as shown in Figure 4-1 (c) and 

(d), is proposed. For this type of belt, there is a pin on the back of the buckle, which 
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hooks through a notch in the belt leather to hold the belt in position. In the proposed 

design, the buckle and the pin function as the radiating element. In addition, a layer of 

conductive fibre is attached to the leather to provide isolation to the human body and 

functions as a ground plane for the patch. A snap-on button structure, as shown in 

Figure 4-2, is used as the feed point as well as to hold the pin stable during use. Despite 

being quite lossy (a loss tangent of 0.08), leather is chosen to be the main material for 

the belt due to its popularity in the market. 

The proposed antenna operates over bands around 2.4 GHz and 5 GHz. It has stable 

performance in both on-body and off-body situations. Without using any specific low 

loss materials for radio frequency applications, the designed antenna achieves desirable 

levels of on body radiation efficiency and realised gain. 

4.2 Antenna Structure Design 

The design is illustrated in Figure 4-2 with the key parameters detailed in Table 4-

3. The metallic buckle and pin for this design are both made of brass. The snap-on 

button used here is a commercial one made of stainless steel. The ground layer is a 

conductive fibre glued to the leather belt. The conductive fibre is produced by the YGM 

company located in Foshan, China. The relative dielectric constant of the leather was 

measured to be 2.9 and the loss tangent was measured to be 0.08.  

 

Figure 4-2：The structure of the proposed belt antenna and key parameters. 
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Table 4-3: Antenna Geometry Parameters 

Symbol Quantity 
Value 
(mm) 

W1 width of the metal cap 25 
W2 width of the belt leather 30 
L1 length of the metal cap 42 
L2 length of the belt pin 7.7 
R1 radius of the belt pin 3 
R2 radius of the belt pin snap-on 3.5 
R3 radius of the snap-on button 6 
T1 thickness of the leather 3.6 

Determination of the dielectric constant and loss tangent of the leather was made 

using a Keysight N1501A open-ended coaxial cable probe. Figure 4-3 shows the 

measurement apparatus. 

 

Figure 4-3：The measurement setup for the electric properties of the leather. 

Instead of a conventional holder, the human hand was used to press the open-ended 

testing probe firmly on the leather surface to avoid any air gaps. Low permittivity foam 

was placed beneath the leather to reduce any effects from the table on the measurement. 

Due to the limitations of the open-ended coaxial probe and measurement errors, the 

properties obtained have an error of approximately 15 %. A process of trial and error 

was used during the fabrication and measurement process of the belt buckle patch. The 

initial fabricated belt antenna has a frequency shift of 150 MHz. The reason of that is 

the measurement error of the leather permittivity. Further simulation was performed in 

accordance with the measured results to estimate the accurate permittivity (2.9 for the 
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leather used in this study). The design parameters for the belt buckle were revised and 

fabricated again. 

At 2.45 GHz, the proposed belt antenna functions as an elevated patch antenna with 

a TM10 mode along the long side (L1) of the buckle. The E-field distribution and a 

sketch of the TM10 mode are included in Figure 4-4. The 2D field cross-section was 

taken through the centre of the feeding pin to illustrate the effect of the pin on the 

electrical field distribution. In Figure 4-4 (a), a strong E-field distribution can be seen 

beneath the snap-on button, where the maximal SAR value is observed in the voxel 

human body analysis later. 

 

Figure 4-4：The E-field distribution of the proposed belt buckle at 2.45 GHz. (a) The simulated 
E-field distribution. (b) A sketch of the operation mechanism: a TM10 mode. 

There are two reasons why the patch was designed to be elevated. The first is that 

the leather material selected in this design, which is widely used in belt manufacture, 

has a relatively large loss tangent and the elevation was found to reduce the loss and 

hence increase radiation efficiency in simulations. The second is that the presence of 

this small gap is common among pin buckle belts. In a number of belt designs studied 

during the research, the tip of the pin would hook to the leather and leave a gap between 

the metal cap and the leather. This is an ergonomic design and allows the buckle to 

accommodate belt leathers with slightly different thicknesses and curvatures.  

The snap-on button structure was carefully designed to make sure the gap stays 

relatively stable when the antenna is in use. It has a locking structure, formed by two 
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metallic pins, to ensure solid contact between the original snap-on pin and the holder 

socket, as shown in Figure 4-5 (b). This structure also ensures a fixed distance between 

the ground plane and the radiating patch for our antenna design. The designed belt pin 

shares the same shape as the original snap-on button pin to ensure solid locking. Once 

the belt pin is locked and used on the human body, the tension would be mainly lateral 

to the body and hence would have little effect on the size of the gap to the underside of 

the buckle. 

 

Figure 4-5：The snap-on button holding structure. (a) Crosssection view of the belt pin and the 
snap-on button holder. (b) The enlarged view of the snap-on holder (two holding bars) and the 

original snap-on pin structure. 

In the 5 GHz band, the radiation follows a quasi-TM30 mode. The E-field 

distribution at 5.5 GHz is shown in Figure 4-6 (a) along with a magnified structure of 

the connection between the snap-on button and the belt pin. The cavity between the tip 

of the pin and the button sockets creates parallel capacitance, as shown in Figure 4-6 

(a), which compensates for the inductance brought about by the long feeding pin. The 

size of the snap-on button affects the capacitance values and has to be carefully selected 

for impedance matching. The E-field distribution near the feeding pin does not coincide 

with the conventional TM30 mode as a transverse electrical field is present. Nonetheless, 

the field distribution elsewhere, especially at the radiation edge, still coincides with that 

of a TM30 mode. 

The ground plane was made of conductive fibre adhered to the back of the leather. 
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It provided enough isolation between the radiating elements and the human body to 

achieve a low SAR value. A small gap is left between the conductive ground and the 

bottom of the snap-on button to place the feed. 

 

Figure 4-6：The E-field distribution of the proposed belt buckle at 5.5 GHz. (a) The simulated E-
field distribution with the snap-on button structure enlarged. (b) A sketch of the operation 

mechanism: a quasi-TM30 mode. 

4.3 Antenna Performance Analysis 

Based on normal use the belt buckle antenna will function in close proximity to the 

human body and thus the effect of body tissues must be evaluated. The model Gustav 

(38-year-old male, 176 cm and 69 kg) from the CST voxel family was used to evaluate 

the effect of the human body on antenna performance. Two common postures, standing 

straight and sitting down were customised with CST poser and used in the analysis. 

4.3.1 The effect of the standing/sitting human body. 

The effects of the human body on the belt antenna performance include the 

following two aspects: frequency shifting due to the dielectric properties of the body 

tissue nearby and the reflection/absorption of the overall human body. The simulated 

S-parameters with the two human body postures are summarised in Figure 4-7 and 

Figure 4-8. With the isolation provided by the textile ground layer, the frequency shift 



 

57 
 

due to the human body tissue is not significant. The bandwidths for each posture, based 

on a -10 dB S11 criterion, are listed in Table 4-4. In terms of the reflection coefficient, 

the proposed antenna can achieve both on-body and off-body communication. In the 

5 GHz band, the S11 value indicates a slight impedance mismatch.  

 

Figure 4-7：Simulated S11 for 2.45 GHz band with voxel models. (OB: on body). 

 
Figure 4-8：Simulated S11 for 5 GHz band with voxel models. (OB: on body). 
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4.3.2 The effect of different body composition. 

Different body shapes present different material compositions. In terms of 

electromagnetics, this means that the dielectric properties close to the antenna are 

person dependent. Two additional CST voxel models have been used to analyse the 

performance of the antenna in this work as follows: Donna (40-year-old female, 176 cm, 

79 kg, standing) and Child (7-year-old female, 115 cm, 21.7 kg, standing). 

The antenna bandwidth and gain performances with different voxel models are 

summarised in Table 4-4. The proposed belt buckle antenna achieves relatively stable 

performance in terms of both bandwidth and radiation pattern across the family of 

human body models. The realised gain values with Donna and Child model are slightly 

reduced compared to those for Gustav. This is mainly because the impedance matching 

in the Gustav case is the best among the three. In terms of the realised gain, different 

body positions (standing versus sitting) have a more significant influence than different 

body model types as the reflection caused by the sitting condition (mainly at the upper 

thighs) is significantly larger. Despite the effect of body positions and body types, the 

antenna still operates well within the intended band with a good gain value compared 

to other published works. 

Table 4-4: Simulated antenna performance with different voxel model 

Model. BW(GHz)/% 
Realised Gain 

2.45/5.2/5.8 (GHz/dBi) 

Free space 2.19-2.52/13.4% 
5.23-6.05/14.9% 4.59/1.73/0.92 

Gustav 
stand 

2.26-2.58/13.0% 
5.14-6.1/17.4% 5.31/4.21/3.52 

Gustav sit 2.25-2.56/12.6% 
5.31-6.06/13.6% 6.54/5.33/4.74 

Donna 2.28-2.57/11.8% 
5.15-6.08/16.9% 4.97/3.91/3.37 

Child 2.27-2.60/13.4% 
5.22-6.06/15.2% 4.81/3.99/3.28 
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4.3.3 The effect of bending on the structure 

Performance of the belt buckle antenna under various bending conditions used to 

simulate real life use has been studied. As shown in Figure 4-9, the antenna was bent 

onto cylinders with radii of 200 mm and 250 mm in simulation. This level of bending 

is more severe than the antenna would commonly experience on an actual human body 

estimated based on typical body size. A frequency shift can be seen as a result of the 

bending. The frequency shift is more severe in the 2.45 GHz band (108 MHz in 

2.45 GHz band vs. 3 MHz in 5GHz band). For on-body measurements, the antenna was 

attached tightly to the human body to experience the actual level of bending. In both 

cases, the antenna performance can be considered stable and fit for the application in 

2.45 GHz and 5 GHz ISM band. 

 

Figure 4-9：The simulated frequency shift of the belt antenna under bending towards cylinders 
with radii of 200 mm and 250 mm. 

4.3.4 The measured bandwidth and radiation pattern 

The proposed belt antenna was fabricated and tested. For ease of production, the 

metal structure was 3D printed with brass. The thickness of the printed buckle is 1 mm. 
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The resulting belt prototype is shown in Figure 4-10 (a). The off-body radiation pattern 

of the belt antenna was measured in an anechoic chamber as shown in Figure 4-10 (b). 

A holder with similar curvature of the human waist was 3D printed for the test. 

The measured S11 is shown in Figure 4-11 and Figure 4-12 for each frequency band 

and compared with the appropriate simulation results. A frequency shift can be 

observed with human presence in both simulation and measurement. A discrepancy can 

be found for the sitting case between simulated and measured results. This is mainly 

due to the upper thighs of the human body which w closely located to the direction of 

the radiated field in the sitting case. In our on-body measurement, the test subject was 

wearing trousers and the biological composition of the test subject was different from 

the voxel data used during simulation. A reduction in bandwidth in the 2.45 GHz band 

in the on-body cases can be seen in Figure 4-11. This is likely due to the bending of the 

cable when placing the belt antenna close to the actual human body. 

 

Figure 4-10：(a) Belt antenna prototype (b) Anechoic chamber measurement (c) Reverberation 
chamber measurement. (d) On-body measurement in reverberation chamber. 
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Figure 4-11：Simulated and measured S11 for 2.45 GHz band. (OB: on body). 

 

Figure 4-12：Simulated and measured S11 for 5 GHz band. (OB: on body). 

The measured radiation patterns are shown in Figure 4-13, along with the simulated 

results with/without human voxel data. The measurement was performed in an in-house 

anechoic chamber (length: 6 m, width: 4 m, height: 3 m) with a one-dimensional rotary 

table. The measurement setup is shown in Figure 4-10 (b). The measured gain results 
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were included in Table 4-5. It should be noted that at higher frequency bands, the gain 

of the proposed belt antenna was lower than that of the lower bands. The nature of this 

TM30 mode (with a lower maximal gain and a wider beamwidth comparing to TM10) 

and the higher loss at the upper frequency band both contribute to this result. Moreover, 

the simulated front-to-back ratio in free space is 8.275 dB at 2.45 GHz, 8.80 dB at 

5.2 GHz and 4.99 dB at 5.8 GHz. The measured front-to-back ratio is 9.128 dB at 

2.45 GHz, 13.31 dB at 5.2 GHz and 7.09 dB at 5.8 GHz. Due to the presence of the 

antenna holder in the anechoic chamber, the measured values were higher than the 

simulated ones. Generally, the measured results match the simulation results well.  

The measured normalised radiation patterns at 2.45 GHz, 5.2 GHz and 5.8 GHz are 

shown in Figure 4-13. In Figure 4-13, E_free/H_free denotes the simulated free space 

radiation pattern in the E and H plane respectively for the antenna. E_stand/H_stand 

denotes the simulated radiation pattern with a standing voxel model Gustav. 

E_sit/H_sit denotes the simulated radiation pattern with the sitting voxel model Gustav. 

E_meas/H_meas denotes the measured radiation pattern results in the chamber. It 

should be noted that the measurement was performed in the anechoic chamber without 

the presence of human body due to equipment limitations. This means that the 

comparison of the measured results and simulation results was only fair between 

measured results and simulated free space radiation pattern. Comparing the free space 

simulation and measurement, a good agreement between simulated and measured 

results can be seen. When the human body was considered, the effect of the thighs in 

the sitting simulation can be clearly seen in the H-plane results (Figure 4-13 (b), (d) and 

(f)). 

The SAR value was obtained by simulation according to the FCC standard and with 

the averaging method stated in IEEE/IEC 62704-1 [12], for an input power of 0.5 W. 

The results are included in Table 4-5. This input power is far in excess of that used in 

current Bluetooth (up to 20 dBm/100 mW for Bluetooth 5) and Wi-Fi systems (up to 

20 dBm/100 mW on 2.4 GHz and 23 dBm/200 mW on 5 GHz for access points) [13].  
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Figure 4-13：Simulated and measured radiation patterns: (a) E-plane at 2.45 GHz. (b) H-plane 
at 2.45 GHz. (c) E-plane at 5.2 GHz. (d) H-plane at 5.2 GHz. (e) E-plane at 5.8 GHz. (f) H-plane 

at 5.8 GHz. 
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4.3.5 The measured on-body realised gain and efficiency. 

The on-body realised gain was measured in our in-house anechoic chamber with a 

test subject (male, 188 cm and 82 kg). The antenna was attached to the waist of the test 

subject with the subject standing straight during the measurement. The measured results 

are summarised in Table 4-5. A comparison with other state-of-the-art wearable 

solutions is also included in Table 4-5. It should be noted that due to the lack of original 

performance data, the reference [10] listed was remodelled and re-simulated in the same 

simulation environment as this work and data the used for comparison here came from 

that re-simulation. 

The on-body efficiency, which is an important parameter for wearable antenna 

applications, was also studied with the same human subject. An in-house reverberation 

chamber (length: 5.4 m, width: 3.0 m, height: 2.8 m), as discussed in Chapter 3, was 

used to enclose both the human subject and the proposed belt antenna. The chamber has 

one vertical and one horizontal stirrer. The lowest usable frequency (LUF) of the 

chamber is 300 MHz. For on-body measurement, the belt antenna was fixed at the waist 

of the test subject, as shown in Figure 4-10 (d). The measurement of the on-body 

efficiency follows the method presented in Chapter 3. The human subject has a severe 

loading effect on the chamber. Thus, calibration with the human subject in the chamber 

is required prior to measurement. During each measurement, the dressing of the test 

subject was kept constant, including the contents in the subject’s pockets. The stirring 

sequence in this experiment included mechanical stirring (2 degrees, 180 

measurements), polarisation stirring (two orthogonal linear polarisations) and position 

stirring (4 receiver positions). A total of 1440 measured sample points were taken for 

each frequency point. A large number of samples were required to keep the uncertainty 

of the measurement to an acceptable level. Meanwhile, the number of mechanical stirs 

in each run was limited so that the test subject did not have to stay in the chamber for a 

prolonged period of time. For position stirring, in each run, the receiving antenna in the 

chamber was spaced by a half wavelength to the previous location, in order to create 
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independent samples. The resulting radiation efficiency is shown in Figure 4-14. In both 

frequency bands, an efficiency degradation of approximately 20 % can be seen when 

the belt antenna is closely attached to the human subject. Generally, the measured 

radiation efficiency is lower than the simulated value except for in several narrow 

frequency bands. This is mainly because the dielectric properties of the leather used for 

design and optimisation was taken at one specific frequency point (2.45 GHz in this 

case). The varying property of the leather will induce impedance mismatch at a wide 

frequency band. 

 

Figure 4-14：Simulated and measured radiation efficiency. 
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Table 4-5: Comparison of antenna performance with other systems 

Ref. BW(GHz)/% 
Realised Gain 

(dBi) 
SAR (10g) 

[3] 
(button) 

2.38-2.52/6% 
4.92-6.9/36% 

0.24 (2.45 GHz) 
4.73 (5.2 GHz) 
4.29 (5.8 GHz) 

0.18 (2.45 GHz) 
0.12 (5.2 GHz) 
0.13 (5.8 GHz) 

[6] 
(watch) 2.33-2.60/11% -0.89 (2.45 GHz) N/A 

[7] 
(zipper) 

2.37-
2.49/4.92% 5 (2.45 GHz) N/A 

[8] 
(shoelace) 

2.43(center)/11
% 9.73 (2.45 GHz) N/A 

[9] 
(belt) 

2.45 
(center)/22.8% 

2.8 (2.45 GHz) 
4.5 (5.25 GHz) N/A 

[10] 
(belt) 

0.7-1.2/55.56% 
1.69-

2.63/38.37% 

-4.16 (0.9 GHz) 
-8.61 (1.8 GHz) 
-8.61 (2.45 GHz) 

1.90 (0.9 GHz) 
1.63 (1.8 GHz) 
1.00 (2.45 GHz) 

Proposed 

2.28-
2.53/10.2% 

4.88-
6.15/23.1% 

5.10 (2.45 GHz) 
4.05 (5.2 GHz) 
3.31 (5.8 GHz) 

0.87 (2.45 GHz) 
0.83 (5.2 GHz) 
0.13 (5.8 GHz) 

4.4 Summary 

In this chapter, a dual-band belt buckle antenna based on the pin buckle belt was 

proposed that does not require any dedicated low-loss RF substrates. The antenna 

designed achieved an on-body realised gain of 5.10 dBi and radiation efficiency of 

approximately 40 % at 2.45 GHz. A snap-on button and pin structure was used as the 

feeding structure. This structure provided a sufficient level of fixture for the antenna to 

have a stable on-body performance. A TM10 and a quasi-TM30 mode similar to a 

microstrip patch antenna were formed for the two resonant frequencies. Unlike a 

conventional loop-based belt buckle structure, this design limits the radiation towards 

the inside of the human body and ensures that the specific absorption rate in both bands 

was well within standard safety limits [14]-[15]. The belt antenna maintains stable 

performance for both on and off-body communication. It is a low-cost, highly efficient, 

reliable solution for wearable body area network applications. 

The belt buckle antenna presented in this chapter was based on a pin buckle. A 
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single tongue buckle with a loop style structure, when used as an antenna, typically 

result in an omnidirectional radiation pattern, and hence reduces on-body efficiency. 

However, a possible modified single tongue buckle structure is designed to overcome 

this drawback for a loop style belt buckle in the following chapter. 
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Chapter 5 Loop Style Belt Buckle Antenna 

Design with Characteristic Mode Analysis 

In addition to the pin buckle antenna presented in the previous section, further 

research on the more commonly seen single tongue buckle type is also conducted in 

this study. A single tongue belt buckle antenna designed with the aid of characteristic 

mode analysis and modified to direct radiation away from the body is proposed in this 

chapter. This proposed belt buckle antenna works at 2.45 GHz in the Industrial, 

Scientific and Medical Radio Band (ISM band) for Bluetooth Low Energy (BLE) 

communications. During the design process, characteristic mode analysis (CMA) was 

used to explore the underlying design and further optimize antenna performance. 

This chapter is mainly based on work published in: 

R. Pei, M. P. Leach, E. G. Lim, Z. Wang, C. Song, J. Wang, W. Zhang, Z. Jiang and Y. 

Huang, "Wearable EBG-Backed Belt Antenna for Smart On-Body Applications," IEEE 

Transactions on Industrial Informatics, vol. 16, no. 11, pp. 7177-7189, 2020. 

5.1 Introduction  

A belt with a metal buckle is an ideal platform to integrate wearable electronics not 

only due to its metal sections, but also its popularity in daily life. The idea of a belt 

buckle antenna has been considered in the previous chapter as well as in previous 

studies [1]-[2]; however, the previous studies did not consider the effect of the human 

body in detail. In this work, the effect of the body has been investigated in detail. 

Characteristic mode analysis (CMA) has been applied to the structural design of the 

belt’s metal fixtures to achieve a desirable current distribution. CMA offers two 

advantages in the design of such antennas, firstly, there are typically restrictions in belt 
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buckle shape and size which can be used to provide an initial structure for the 

Eigencurrent analysis required by the CMA. Secondly, since the field distribution and 

hence the radiation pattern is closely related to the current modes, by analysing and 

selecting a specific current mode, the radiation pattern of the wearable antenna can be 

carefully designed to be steered away from the human body. This helps to reduce the 

specific absorption rate (SAR) in the body as well as the effect of the human body on 

antenna performance. 

5.2 Characteristic Mode Analysis 

Developed by Garbacz and refined by Harrington and Mautz in 1971 [3]-[4], the 

Theory of Characteristic Modes (TCM) was initially applied to the analysis of slots in 

perfect electric conductors (PEC) [5], but also showed the potential to provide current 

model solutions for conductors with arbitrary shapes. The theory was extended to 

include objects with dielectric and magnetic materials as described in [6]. TCM was 

revisited in 2007 with specific attention drawn to the application of antenna design [7], 

for which it has been used extensively, for example in [8]-[10], often because it provides 

a physical interpretation of the antenna radiation. 

For thoroughness, some key concepts and mathematics formulation are included here. 

The characteristic modes can be obtained as the eigenfunctions of the eigenvalue equation 

XJn=λnRJn [7] where matrices R and X are the real and imaginary Hermitian parts of the 

impedance operator Z=R+jX [7]. The characteristic modes or characteristic currents Jn 

here can be interpreted as the real currents flowing on the conducting body. Being 

independent to any source or excitation, the characteristic currents only depend on the 

shape and size of the conductor itself. The eigenvalue term λn is always real and has a 

magnitude which describes how well the nth characteristic mode radiates. When a mode 

resonates, the absolute value of λn is 0. The absolute value used as the eigenvalue can be 

either positive (storing magnetic energy) or negative (storing electric energy). The total 

current denoted by J can be expressed by (5-1) 
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 J= ∑ Vn
i Jn

1+jλn
 (5-1) 

 1
1+jλn

 (5-2) 

From this formula, it can be found that the total current J is inversely dependent on 

the eigenvalue λn. Thus, the term (5-2) is more commonly used to characterize the 

current distribution and evaluate how well a mode resonates. This term is called the 

model significance (MS) which has a range between 0 and 1 and is independent of any 

sources or excitations. When MS is 1, the model is resonant and will radiate most 

efficiently. Vni in Equation (5-1), is the model-excitation coefficient and is defined as, 

 Vn
 i= Jn,E i = ∮ Jn•E idsn  (5-1) 

This term quantifies how the excitation influences the contribution of each current 

mode to the total current. The term VniJn denotes the coupling of the excitation (could 

be antenna feed or incident field) and the nth current mode determines whether a specific 

mode is properly excited by the excitation source. This term also provides a conceptual 

guideline for placing the excitation, which should induce an electrical field or current 

with strong coupling to the desired model current. 

5.3 Antenna Structure Design 

Characteristic mode analysis was used to test the feasibility of the initial design and 

provide a range for further parametric study. Intuitively, the basic shape of the belt 

buckle will lead to a current distribution and radiation pattern similar to that of a loop 

antenna. However, if the belt antenna follows the radiation pattern of a conventional 

one-wavelength loop, a considerably large portion (up to half) of the energy will be 

directed towards the human body leading to a relatively low radiation efficiency and 

limitations on output power due to SAR regulations. Also, antenna performance would 

be particularly sensitive to the condition of the human body behind it (clothing, fat to 
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muscle ratio, etc.). Utilising a metal cap in the structure, as seen in Figure 5-1 (a), 

commonly used to hold the end of the belt in place, radiation can be better directed 

away from the body.  

The characteristic modes for the shape of the belt buckle and holding cap were 

analysed. To save computational complexity, only the metal parts are considered, the 

leather belt, which is essentially a lossy dielectric material, was not included initially. 

The analysis at this stage did not include an excitation source. The meshed radiating 

element and the corresponding model significance are shown in Figure 5-1. The model 

significance illustrates that at 2.45 GHz there are two near-resonant modes, mode 1 and 

mode 4. The specific current distribution for these two modes and their associated 

radiation patterns are illustrated in Figure 5-2. 

The current distribution of mode 1 has current maximums concentrated on each of 

the two sides of the buckle (along the x-axis), along the same two sides of the cap and 

in the corner of the cap connecting arms. The resulting radiation pattern is shown in 

Figure 5-2 (c). The pattern is almost omnidirectional in the yoz plane. In real-life 

scenarios, the human body will be located directly behind the metal buckle, in the 

negative z direction. The omnidirectional property of mode 1 would mean that 

approximately half of the radiation would be directed towards the human body. This 

would result in a low radiation efficiency and a high specific absorption rate. 

 

Figure 5-1：CMA anlysis of the belt. (a) The meshed metal structure of the belt buckle. (b) Model 
Significance. 
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Figure 5-2：The current distribution and corresponding radiation pattern for different 
characteristic modes. (a) The current distribution of mode 1. (b) The current distribution of 

mode 4. (c) The radiation pattern for mode 1. (d) The radiation pattern for mode 4. 

Meanwhile, for mode 4, the current maximums are concentrated on the belt buckle 

arms aligning with the y-axis. The main benefit of this mode is that there is a significant 

amount of current flow on the metal cap. The radiation pattern of this mode is 

bidirectional as shown in Figure 5-2 (d). This offers the potential to increase the 

radiation in the positive z-direction, away from the human body. To achieve this, the 

aim is to increase the current intensity on the cap and to make sure the current flow on 

the cap is in the same direction as the current flow on the buckle legs. In other words, 

the current flow on the cap and the buckle legs should be in phase to create an additive 

effect towards the positive z-direction and an out-of-phase cancelling effect towards the 

negative z-direction. By placing the feed and tuning the dimensions of the design, the 

intended current distribution on the metal cap can be achieved, resulting in more 

radiation directed away from the body. The optimal feed point was found to be at the 

buckle arm below the metal cap. 
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Figure 5-3：The current distribution and corresponding radiation pattern for the characteristic 
mode 4 with size tuning and feed added. (a) The current distribution. (b) The 3D radiation 

pattern. 

In Figure 5-3 (a), the coupling between the excitation and the current flow, labelled 

with blue arrows, is maximised. With the excitation added, the radiation pattern, shown 

in Figure 5-3 (b), exhibits an uneven distribution as more radiating energy is guided 

away from the body. With the metal radiating structure determined, other essential parts 

of the belt, the leather and the pin were added to the model. Further optimisation of the 

structure parameters was required after these dielectric materials were added.  

The optimised belt antenna design with all features added is shown in Figure 5-4. 

The metal parts include the belt buckle, the metal cap and two holding arms for the 
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metal cap. The material selected for these parts is brass. For ease of manufacturing, the 

belt pin was 3D printed from non-conducting high strength ABS material. In the belt 

buckle, a small gap was left to fit an SMA connector as a feed. The relative dielectric 

constant of the leather was measured to be 2 using a Keysight N1501 probe with the 

same method as described in Section 3.3. The loss tangent of the leather was measured 

to be 0.16.  

 

Figure 5-4：The geometry and key parameters of the belt antenna. 

The final dimensions of the design are summarised in Table 5-1.  

Table 5-1: The belt antenna geometry parameters 

Symbol Quantity Value (mm) 
W1 width of the metal cap 31 
W2 width of the belt loop 31 
W3 width of the leather 25 
W4 width of the cap holding arm 3 
W5 width of the cap holding arm 5 
L1 length of the metal cap 27 
L2 length of the belt loop 30 
L3 length of the holding arm 16 
L4 length of the belt pin 25.5 
H1 height of the holding arm 7.6 
T1 thickness of the leather 3.6 

 

The full belt antenna model was simulated in free space using Computer Simulation 

Technology (CST) Microwave Studio; and the 3D radiation pattern is shown in Figure 

5-5 (a). The yoz-plane cut of the normalised radiation pattern is shown in Figure 5-5 (b). 
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It can be seen from the figure that a 3-dB front-to-back ratio is obtained with this belt 

structure. This means that a much larger portion of the radiated energy is now towards 

the outside of the human body. Further simulations using the CST human voxel model 

were performed to check the response of the structure in its proposed operating 

environment, around the waist of the model and the results will be discussed in the 

following section. 

 

Figure 5-5：The radiation pattern for the final belt design with all features added. (a) The 3D 
radiation pattern. (b) The yoz plane cut. 

5.4 Antenna Performance 

5.4.1 The effect of human body on the antenna 

When the belt antenna is placed close to the human body using the CST voxel 

human body model Gustav, a frequency shift is observed in comparison to the free 

space case. In the simulation, the belt leather is closely attached to the voxel model, 

leaving a gap of 3.6 mm (the thickness of the leather) between the radiating belt buckle 

and the human body model. As this situation reflects the principal usage of such an 

antenna, the parameters are further optimised to compensate for the on-body frequency 

shift; and the resulting antenna parameters are those in Table 5-1. 
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The main beamwidth of the belt antenna has been considered in two common body 

positions, standing straight and sitting down. The reflection coefficient (S11) of the 

antenna for each of these positions is shown in Figure 5-6. In the sitting position, a 

greater level of absorption from the thigh causes a decrease in S11 and a slight frequency 

shift. 

 

Figure 5-6：The simulated S11 of the belt antenna including voxel human model with two 
common postures. 

For wearable applications, antenna radiation efficiency is a crucial indicator of 

antenna performance. Using the lossy voxel human body model, the resulting radiation 

efficiency for each body position at 2.45 GHz is given in Table 5-2. Despite more 

radiation being guided away from the body due to the belt cap, (recall the 3-dB front-

to-back ratio in the previous section), the radiation efficiency is still only around 50%. 

The radiation efficiency is slightly lower for the sitting scenario as there is more 

absorption from the thighs, which is consistent with the S11 results. The realised gain, 

including the mismatch loss as shown in Table 5-2 confirms that the sitting position 

reduces the gain by almost 0.4 dB. The 3D in-situ radiation patterns for the two poses 

are shown in Figure 5-7 with normalised 2D E-plane and H-plane cuts shown in Figure 

5-8. 
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Figure 5-7：The simulated realised gain (dB) of the belt antenna including voxel human model 
with two common postures at 2.45 GHz. 

 

Table 5-2: Radiation performance of the antenna at 2.45 GHz 

Postion Radiation Efficiency (%) Realised Gain (dB) 
Standing 54.36 4.373 
Sitting 46.78 3.989 

 

 

Figure 5-8：The simulated E-plane and H-plane for including voxel human model with two 
common postures at 2.45 GHz. (a) E-plane. (b) H-plane. 



 

79 
 

Due to the proximity of the antenna to the human body, SAR regulations must be 

considered. There are two common regulatory values for SAR on human body tissues, 

the first is imposed by the International Commission on Non-Ionizing Radiation 

Protection (ICNIRP) [11], which generally requires a maximum SAR value of 2 W/kg 

averaged over every 10 g of tissue. The second standard is from the Federal 

Communications Commission (FCC), which requires a maximum SAR of 1.6 W/kg 

averaged over each 1 g of tissue [12]. 

In Table 5-3, the SAR value was obtained by simulation according to the FCC 

standard and with the averaging method stated in IEEE/IEC 62704-1 [13], for an input 

power of 0.5 W. Simulated input power limitations for the antenna based on the ICNIRP 

and FCC standards are shown in Table 5-4. This input power is far in excess of that 

used by the BLE system proposed in this study, which would have a maximum output 

power of 0 dBm (i.e. 1 mW) [14]. The SAR distribution averaged over 10 g is shown 

in Figure 5-9. In both sitting and standing conditions, the maximal SAR was 

concentrated beneath the centre of the belt buckle loop. 

Table 5-3: SAR value of the antenna at 2.45 GHz (0.5 W input power) 

Postion SAR (1g) SAR (10g) 
Standing 8.03 W/kg 2.71 W/kg 
Sitting 3.16 W/kg 1.67  W/kg 

 

Table 5-4: Maximum input power to meet SAR regulations 

Postion ICNIRP (2W/kg for 10g) FCC (1.6W/kg for 1g) 

Standing 370 mW 100 mW 
Sitting 600 mW 190 mW 
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Figure 5-9：The SAR distribution of the belt antenna without the EBG. (a) The distribution with 
the standing model averaged over 10 g tissue. (b) The distribution with the sitting model 

averaged over 10 g tissue. 

5.4.2 A comparison with conventional loop-like belt antenna 

In this section, the antenna performance with the presence of the human body was 

studied. In order to determine the performance enhancement of this design 

quantitatively, the structure presented in [2] was used as a comparison. Since the 

radiation pattern and accurate efficiency data were not provided in the original paper, 

the design was re-modelled and simulated in the same simulation environment used 

here. At its design frequency, 1.8 GHz, the radiation pattern is similar to a one-

wavelength loop antenna, omnidirectional in the vertical plane, resulting in almost half 

of the radiated energy being directed towards the human body. The simulation of the 

antenna showed a radiation efficiency of 3.61 % and a realised gain of -8 dBi when 

applied to the same voxel human body model used in the previous section. The belt 
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buckle antenna proposed here achieved a radiation efficiency of 54.35 % and a realised 

gain of 4.37 dBi under the same conditions. This numerical comparison demonstrates 

the effectiveness of this novel belt buckle structure design presented. 

 

Figure 5-10：The radiation pattern of the loop belt structure proposed in [1] re-simulated. 

 
Figure 5-11：The radiation pattern of the loop belt structure proposed in [1] re-simulated with 

voxel human body model. 
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5.5 Summary 

In this section, a novel belt buckle antenna developed with the aid of characteristic 

mode analysis and able to direct more radiation away from the human body through the 

use of a raised cap section was presented. The advantages of the proposed antenna 

structure and the effectiveness of CMA in wearable antenna designs are shown with 

analysis of the antenna performance with voxel human body models and a comparison 

with another proposed belt antenna. The proposed antenna can achieve an on-body 

radiation efficiency of over 50 %. The antenna can be considered safe for BLE systems 

which have a maximum output power of 0 dBm. 
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Chapter 6 Textile EBG Ground Plane for 

the Belt Antenna 

A textile ground plane has been designed to be integrated into trouser fabric behind 

the belt buckle antenna of Chapter 5 to provide isolation from the body and 

simultaneously improve antenna radiation characteristics. Through the application of 

the ground plane, the belt buckle antenna achieves a maximum realised gain of 7.94 dBi 

and a minimum specific absorption rate (SAR) of 0.04 W/kg at 0.5 W input power at 

2.45 GHz. Two EBG structures were designed and analysed in detail for this application 

scenario. The suspended transmission line method was used to evaluate EBG 

performance variations when the textile ground plane was bent. A prototype of the 

system was fabricated and tested. Experimental results showed that the belt antenna, 

together with the textile EBG ground plane, is an excellent candidate for a smart belt 

system with desirable radiation pattern, efficiency, and safety limit. 

This chapter is mainly based on the following publication: 

R. Pei, M. P. Leach, E. G. Lim, Z. Wang, C. Song, J. Wang, W. Zhang, Z. Jiang and Y. 

Huang, "Wearable EBG-Backed Belt Antenna for Smart On-Body Applications," IEEE 

Transactions on Industrial Informatics, vol. 16, no. 11, pp. 7177-7189, 2020. 

6.1 Motivation for the Ground Plane Design 

From Chapter 5, the performance of the belt antenna can be considered appropriate 

for establishing a BLE link for a smart belt application. However, the efficiency of the 

antenna is still significantly influenced by the human body. Also, if the belt antenna 

was to be used in applications requiring a higher antenna input power level, for example, 

the latest Bluetooth 5 protocol which has a maximal output power of 20 dBm [1], SAR 

limitations could still present a problem. In real-life applications, a belt is commonly 
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worn with pants or trousers located between the belt and the human body. The 

utilisation of this material area offers the potential to further improve antenna 

performance. For example, by placing a ground plane between the antenna and the 

human body, the efficiency and gain of the on-body antenna can be increased. A 

conventional metallic ground would need to be located at a distance of around a quarter 

of the operating wavelength from the radiating element, otherwise, the mirrored 

currents due to the ground plane would interfere destructively with currents in the 

radiating element, reducing radiation efficiency. For the belt antenna scenario, leaving 

a quarter wavelength distance or using high dielectric constant materials to reduce the 

distance is not realistic. 

Using an electromagnetic bad-gap (EBG) structure as a ground plane woven into 

the garment worn between belt and body would allow the ground plane to be placed 

directly beneath the radiating element. It should be noted that the EBG structures in this 

study have been denoted as high impedance surfaces (HIS) or artificial magnetic 

conductors (AMC) in other literature [2]-[5]. In previous studies, EBG substrates and 

ground plane layers have been applied to loop antennas and planar slot antennas to 

achieve low profile, high gain antenna performance [2]-[5]. In this study, the EBG 

structure is situated separately from the radiating element, thus acting more like a 

reflector located very close to the radiating element. Unlike the rigid belt structure, the 

textile EBG structure will experience a level of mechanical bending in-situ. Also, 

effects like stretching make it difficult to model the textile EBG in simulation accurately. 

The process of textile EBG design is discussed in the following sections. 

6.2 Analysis of Two Basic EBG Unit Cell Structures 

Two EBG structures suitable for loop-style linear polarised antennas [3]-[5], square 

patches with vias (also named mushroom-like structures) and concentric squares, have 

been analysed according to this specific application scenario. The unit cell designs of 

the two types of EBG are shown in Figure 6-1 (a) and (b). Each unit cell consists of a 
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conductive upper layer, a dielectric substrate, and a conductive ground plane. For 

mushroom-like structures, a conductive shorting via is located at the centre of the patch. 

Concentric square designs can provide dual band gap properties and are commonly 

applied with dual-band antenna though in this design only a single band was targeted. 

The simplified equivalent circuits of the two structures are shown in Figure 6-1. 

The conducting loop of the square structure is characterised as inductance L1 and the 

inter-element capacitance is characterised as capacitance C1. For the concentric square 

structure, the conducting central loop is characterised by inductance L2, the outer loop 

by inductance L3 and the ground plane by inductance L4. The gap between the outer and 

inner loops gives rise to capacitance C2 and the inter-element capacitance is denoted by 

capacitance C3. The resonant frequency of each structure can be determined from the 

capacitances and inductances of the equivalent circuits. 

 
Figure 6-1：The unit cell structure of two types of EBG structure and their equivalent circuits. 

(a) The square patches with vias. (b) The concentric squares. (c) The simplified equivalent circuit 
of square patches. (d) The simplified equivalent circuit for concentric squares structure. 
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6.3 Application of the Textile EBG with the Belt Antenna 

For an EBG plane to be used as a ground plane, a resonant cavity model previously 

developed for a planar antenna with an EBG surface can be used [6]. The main 

difference between other planar EBG ground plane designs and this textile EBG ground 

plane with the belt antenna is that the radiating element here is not on a flat plane, which 

leads to different distances between the partial reflective surface and the main radiating 

sections. This relationship is illustrated in Figure 6-2, in which 3 radiating sub-elements 

are labelled for detailed analysis. The upper layer of the textile EBG is denoted as a 

partial reflective surface (PRS) and the bottom layer is denoted as a perfect electric 

conductor (PEC). The PRS has two significant parameters, the reflection phase 

coefficient ϕR and the transmission phase coefficient ϕT. The phase shift introduced by 

the PEC surface is π. Ray optics analysis, which has been used for high gain planar 

antennas with PRS [6], has been applied to analyse this scenario. 

 

Figure 6-2：Cavity model with ray analysis for the EBG ground plane and the belt antenna 
(PRS: partial reflective surface. PEC: perfect electric conductor). 

For sub-elements located at a distance h from the PRS (example point 2 in Figure 

6-2), the phase difference between the radiating wavefront (ϕi) and the reflected wave 

through the EBG cavity (ψi) is: 

 ϕi - ψi=2ϕT - 4π(h+T)
λ

 – π (6-1) 

The term T here denotes the height of the cavity, which is the thickness of the textile 

material in this case. Once the type of textile material is determined, this value is fixed 

for the design. 
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For a micro radiating element placed very close to the EBG ground plane (example 

points 1 and 3), the previous formula can be simplified to, 

 ϕi - ψi=2ϕT - 4πT
λ

 - π (6-2) 

When the radiating element is located a distance above the EBG plane, an additional 

wave reflected from the PRS needs to be considered. The phase difference between 

these two waves can be calculated using (6-3) 

 ϕi - θi=ϕR - 4πh
λ

 (6-3) 

The structural design of this antenna and the EBG structure should be optimised 

with respect to the following boundary conditions to avoid cancelation between the 

original outgoing wave and the reflected wave by consideration of: 

 - π
2

 ≤ ϕi - ψi ≤ π
2
 (6-4) 

 - π
2

 ≤ ϕi - θi ≤ π
2
 (6-5) 

The wavefront created by the ith subvolume element can then be denoted by, 

 Ei = ai,1ej(2πf0ti+ϕi) + ai,2ej(2πf0ti+θi) + ai,3ej(2πf0ti+ψi) (6-6) 

where ai is the attenuation factor for a certain reflected wave from the ith subvolume 

and f0 is the resonant frequency. The term ϕi denotes the directly radiated wave. The 

terms θi and ψi are the reflected wave from the PRS and the PEC respectively. A 

graphical representation of these terms can be found in Figure 6-2. 

The total wavefront can be expressed as a superposition of all the subvolume 

element waves by 

 E = gk(E1,E2,E3...,Ek) (6-7) 

where gk represents the superposition.  
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This theoretical analysis provides a guideline for the optimisation of the EBG design 

parameters. The phase of the reflected waves at each plane, one closely attached to the 

PRS and one elevated by a distance h, should be considered in the simulation. The 

reflected phase can be obtained in CST by adding a thin layer of air between the PRS 

and a floquet port located in the unit cell simulation. The ideal reflected phase is 

0 degrees from both planes. However, for a certain EBG design with fixed parameters, 

the reflected phase would change with the distance between the floquet port, the PEC 

and the PRS. Thus, a middle ground where the reflected phase at the two planes were 

both very close to zero was selected. Detailed dimensions of the concentric square EBG 

unit cell are listed in Table 6-1. For the square patches with vias, the optimised 

dimension for the edge is 50 mm long and the gap between patches is 6 mm. 

Comparing the two types of EBG design, the square patches with vias design is 

almost 4 times larger in size than the concentric square design. Moreover, the via 

structure used to suppress the surface wave is much more difficult to fabricate with 

textile materials.  

Table 6-1: The EBG geometry parameters 

Symbol Quantity Value (mm) 
W1 outer width of the square 50 
W2 outer width of the square 26 
W3 inner width of the square 8 
G1 gap between two unit cells 6 
G2 gap between two unit cells 4 
S1  width of the inner square track  2 

 

6.4 Suspended Transmission Line Method and Bending 

EM wave suppression is a characteristic for EBG structures. As discussed in section 

2.4, the EBG structure can stop EM wave transmission in its band gap frequency. This 

property can be used together with a transmission line to evaluate the band gap of the 

EBG structure.  
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Figure 6-3：An illustration of the suspended transmission line method. 

The method places a suspended strip line across the EBG surface and evaluates the 

transmission coefficient (S21) of the line. The S21 value can be measured directly by 

placing two feeding points at the two terminals of the transmission line; the simulation 

setup is illustrated in Figure 6-3. This method has been used in previous studies to 

determine the resonating frequency for EBG/AMC structures [7]. 

Figure 6-1 shows that the capacitance formed by the gap between unit cells or within 

each unit cell is crucial in determining the resonant frequency of the EBG structure. 

When the textile EBG is applied on the human body, the bending of the material may 

cause changes especially in this capacitance and influence the resonant frequency, 

therefore this influence must be evaluated. The reflected phase can be obtained through 

simulation using the CST unit cell boundary condition; however, it is difficult to either 

perform the reflection phase simulation over the entire textile ground or perform actual 

measurements of the reflected phase, especially under bending conditions. Therefore, 

the suspended transmission line method has been used to evaluate the performance of 

the entire EBG structure under bending conditions. To the best knowledge of the author, 

this is the first time that such a method has been applied in the evaluation of bending 

effects for textile EBG material. In the experimental condition, the S21 value can be 

directly obtained using a calibrated network analyser. The actual experimental setup is 

shown in Figure 6-10 (c). 
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Figure 6-4：Comparison between the reflected phase of the EBG structure and the S21 of the 
corresponding suspended transmission line. (a) The reflected phase and band gap for square 

patches with vias EBG structure. (b) The reflected phase and band gap for concentric squares 
EBG structure. (c) The band gap of the square patches with vias EBG structure when bent. (d) 

The band gap of the concentric squares EBG structure when bent. 

Figure 6-4 (a) and (b) show the simulation results characterising the relationship 

between the reflected phase and EBG band gap for each EBG type, square and 

concentric square respectively. The band gap of each design was determined from the 

S21 of the suspended transmission line experiment. The ideal reflected phase of 

0 degrees was located approximately at the centre of the band gap. From both the 

reflected phase and the band gap, it can be seen that the square patches with vias 

structure would provide a wider bandwidth compared to the concentric squares 

structure. This is the main benefit of the square patches structure. 

Figure 6-4 (c) and (d) show the effects of bending on the band gap of the two EBG 

structures evaluated using suspended transmission line simulation. The structures were 
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bent towards a cylinder with radii of 100 mm, 150 mm and 200 mm. 

From the figures, it can be seen that for both structures the bending leads to a slight 

reduction in bandwidth. The square patches structure has a larger bandwidth, however, 

for the targeted BLE application, the concentric squares structure provides sufficient 

bandwidth and is preferable due to its smaller size and fabrication simplicity. 

 

Figure 6-5：Comparison between fields. (a) The E field of the belt antenna over the EBG plane. 
(b) The E field of the suspended transmission line. 

Figure 6-5 supports the use of the suspended transmission line method in 

determining the properties of the EBG ground plane. The E-field cross-section plots 

show that the main radiating fields towards the EBG in the case of both the belt antenna 

and the suspended transmission line are perpendicular to the EBG. Thus, the band gaps 

seen by the radiated field in these two cases are similar. 

6.5 Antenna Performance Analysis  

6.5.1 The radiation pattern, efficiency and SAR value 

The belt antenna with textile concentric square EBG ground plane has been 

simulated using the voxel model Gustav in CST with two different postures. The 3D 

far-field results are shown in Figure 6-6. The radiation pattern is very similar to that 

observed without the textile EBG. However, the maximum realised gain significantly 

increases from 4.37 dBi to 7.70 dBi with the help of the textile EBG. 



 

93 
 

 

Figure 6-6：The simulated radiation pattern and realised gain of the belt antenna with EBG 
ground plane. 

One-dimensional polar radiation patterns are shown in Figure 6-7. In the E plane, 

antenna boresights in both the standing and sitting case are almost aligned. The effect 

of the upper thighs can be clearly seen in the H plane with the sitting model. 

 

 
Figure 6-7：The simulated radiation pattern of the belt antenna with textile EBG ground plane. 

(a) E plane. (b) H plane. 

Aside from the radiation pattern, the radiation efficiency and SAR values are two 

very important figures for wearable antenna applications. The application of the textile 

EBG plane has improved the belt antenna performance in these two aspects, as shown 
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by Table 6-3. An increase in radiation efficiency and a reduction in SAR value can be 

achieved due to the isolation and reflection of the textile EBG ground plane. The SAR 

value distribution is shown in Figure 6-8. It should be noted that, due to the isolation of 

the textile EBG, the maximal SAR in the sitting condition was located at the right thigh 

close to the belt metal cap. The SAR values in both cases are below the ICNIRP (2W/kg) 

and FCC (1.6W/kg) requirement used in this study. 

 

Figure 6-8：The SAR distribution of the belt antenna with the EBG. (a) The distribution with the 
standing model averaged over 10g tissue. (b) The distribution with the sitting model averaged 

over 10g tissue. 
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6.5.2 The effect of different human body 

The simulation process in the previous sections used only the Gustav model in the 

CST voxel family, which is a model of a 38-year-old male (176 cm, 69 kg). With 

different body shapes, the tissue composition would vary and thus result in different 

electrical properties. To evaluate the effect of different body shapes on antenna 

performance, two other body models from the CST voxel family, Donna (40-year-old 

female, 176 cm, 79 kg) and Child (7-year-old female, 115 cm, 21.7 kg), were also used 

in the simulation. The reflection coefficients for different body models are shown in 

Figure 6-9 and the radiation parameters are summarised in Table 6-2. Without the 

textile EBG, frequency shifts and changes in radiation efficiency and gain can be 

observed with different human body models. When the textile EBG is used, the effect 

of the human body was significantly reduced. The belt antenna backed with the textile 

EBG offers stable performance when applied to people with different body 

compositions and shapes. 

 

Figure 6-9：S parameters of the antenna with/without textile EBG on different voxel human 
models. 
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Table 6-2: Comparison of the antenna performance with different human body model 

Model Radiation Efficiency (%) Realised Gain (dBi) 

Gustav 54.36 4.37 

Gustav_EBG 84.11 7.70 

Donna 49.56 1.87 

Donna_EBG 83.96 7.57 

Child 47.78 2.06 

Child_EBG 84.24 7.59 

 

6.5.3 The fabricated antenna and performance comparison 

The metal part of the belt antenna was fabricated by 3D printing brass while the belt 

pin was 3D printed from high-intensity ABS material. Three part-cylinders were also 

made by 3D printing from ABS to provide mounting structures to allow the band gap 

of the textile EBG to be measured under bending conditions. The fabricated antenna 

and EBG, along with the testing conditions, are shown in Figure 6-10. Before being 

applied to the belt buckle antenna, the textile EBG was firstly evaluated with a 

suspended transmission line and the results are shown in Figure 6-11. 
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Figure 6-10：The fabricated prototype and measurement setup. (a) The radiation pattern 
measurement in the anechoic chamber. (b) The testing on the real human body. (c) The 

suspended transmission line test for textile EBG. (d) The prototype integrated with the BLE 
module. 

In all cases, the measured results indicate a slight frequency shift (shift down by 

0.15-0.21 GHz) and a larger bandwidth in comparison to the simulation result. This is 

mainly due to the inability to accurately model the electrical properties of the 

conducting fibre, especially under the effects of bending and stretching. Also, the 

measured results show that the band gap of the fabricated EBG covers the desired band 

and can be applied with the belt buckle antenna. 
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Figure 6-11：The simulated and measured band gap for the suspended transmission line over 

concentric square textile EBG ground plane: (a) Flat. (b) Bent towards cylinder with a radius of 
100 mm. (c) Bent towards cylinder with a radius of 150 mm. (d) Bent towards cylinder with a 

radius of 200 mm. 

The measured S11 and radiation patterns are shown in Figure 6-12(a), Figure 6-

13 (a) and Figure 6-13 (b) respectively. The measured maximal realised gain versus 

frequency is shown in Figure 6-12 (b). The measurements were performed in our in-

house anechoic chamber. A low permittivity foam was used as the support structure on 

the rotary table. Generally, the measured results match the simulations well. Some 

discrepancies occurred in the radiation pattern measurement at 90° and 270° in both the 

E- and H-planes. This was due to the slight curvature of the lossy belt leather and the 

textile EBG when they are closely attached. The measured radiation pattern matches 

the simulated radiation pattern with the sitting/standing voxel human model well in the 

direction of the main lobe. However, a larger back lobe can be observed due to the lack 
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of body tissue absorption. 

 

Figure 6-12：The simulated and measured results. (a) S11 for the belt antenna with the textile 
EBG ground plane. (b) Realised gain over frequency. 

Both free space and on-body realised gains were measured. The antenna was 

attached to the waist of a human subject (188 cm, 81 kg) in the chamber to measure the 

on-body realised gain. The measured maximal realised gain of the belt antenna with 

textile EBG at 2.45 GHz was 7.94 dBi without human presence and 7.15 dBi when the 

antenna was attached to the human waist. 

 

Figure 6-13：The simulated and measured radiation pattern for the belt antenna with textile 
EBG ground plane (a) E plane (b) H plane. 
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Table 6-3: Comparison of Antenna Performance with/without EBG and with Other Systems 

Ref. Antenna Type Radiation Efficiency 
(%) 

Realised Gain 
(dBi) 

(sim/mea) 

SAR (10g, with 0.5 W 
input) 

(W/kg) 

This 
Work 

Standing with EBG 84.11 7.70/7.15 0.04 

Standing without EBG 54.36 4.37/4.01 2.71 

Sitting with EBG 67.77 7.30/- 0.21 

Sitting without EBG 46.78 3.98/- 1.67 

Free space with EBG 86.25 7.98/7.94* N/A 

[8] Replicated belt antenna 
design 

19.01 -1.33/- N/A 

[4] Textile antenna with EBG 
structure 

61.30 5.20/- 0.37 

[9] Button with textile ground 72.10 5.16/1.1* 0.176 
(32 mW input) 

[10] Smart watch frame antenna 26.00 -0.89/3.8* N/A 

[11] Loop over high impedance 
surface 

40.00 4.20/3.00 0.55 
(100 mW input) 

* The gain measured is free space gain, without actual human or phantom presence, 

A comparison between the proposed belt antenna and some related state-of-the-art 

wearable antenna solutions is included in Table 6-3. The results with/without the textile 

EBG on different voxel model structures (standing model and sitting model) are all 

included. It should be noted that in this study, CST voxel models were used to evaluate 

the human body effect on the antenna performance and the value of SAR was calculated 

according to IEEE/IEC 62704-1 with a 0.5 W input power [12]. The simulation 

condition for [8] and [4] in Table 6-3 was identical to the condition used in this study. 

In [9], a partial uniform human body model was employed whilst the SAR was 

evaluated with the same standard but with an input power of 32 mW. In [10], a one-

layer wrist model was used for evaluation. In [11], a four-layer human tissue model was 

used. The SAR was evaluated with the same standard whilst the input power was set to 

be 100 mW. Moreover, a noticeable difference in the simulated and measured realised 

gain values can be seen for [9] and [10] in Table 6-3. This is because the provided 

simulated value was with the human body model whilst the measurements were 
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performed in a free space scenario. For the design in [9], the human body would have 

a significant reflecting effect and hence the on-body gain would be higher. Meanwhile 

in [10], the effect of body tissue absorption was more significant than the reflection. 

Therefore, the on-body realised gain was lower. For the proposed belt buckle antenna 

with EBG, the measured free space and on-body realised gain is consistent due to the 

textile EBG structure. 

Measurements were performed in the XJTLU in-house anechoic chamber (length: 

6 m, width: 4 m, height: 3 m) and the antenna was attached to a human subject (188 cm, 

81 kg) for on-body measurements. Generally, all evaluations of the results in Table 6-

3 and this work were performed under similar experimental conditions and therefore 

the results are comparable and promising. Overall, the proposed belt buckle antenna 

achieves a higher realised gain and a lower SAR value due to the structural design and 

the isolation/reflection provided by the textile EBG. 

 

Figure 6-14：The measurement of the on-body antenna radiation efficiency. (a) The 
measurement setup. (b) The measured result compared with simulation with voxel model Gustav. 

The on-body efficiency was studied with the same human subject using the same 

in-house reverberation chamber (length: 5.4 m, width: 3.0 m, height: 2.8 m) as 

discussed in Chapter 3. Figure 6-14 (a) shows the experimental setup. The belt antenna, 

along with the textile EBG ground plane, was fixed at the waist of the test subject. The 

measurement of the on-body efficiency follows the method presented in section 3.3. 
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The calibration with the human subject in the chamber is performed prior to 

measurement. During each measurement, the dressing of the test subject was kept 

constant, including the contents in the subject’s pockets. The stirring sequence in this 

experiment included mechanical stirring (2 degrees, 180 measurements), polarisation 

stirring (two orthogonal linear polarisations) and position stirring (4 receiver positions). 

A total of 1440 measured sample points were taken for each frequency point. A large 

number of samples were required to keep the uncertainty of the measurement to an 

acceptable level. Meanwhile, the number of mechanical stirs in each run was limited so 

that the test subject did not have to stay in the chamber for a prolonged period of time. 

The position of the receiving antenna in the chamber was spaced by a half wavelength 

for each run to create independent samples. The resulting radiation efficiency is shown 

in Figure 6-14 (b). An approximately 70 % radiation efficiency is achieved in the 

measurement.  

6.5.4 Smart Belt System Prototype 

A smart belt prototype system was developed using a Texas Instrument CC2401 

BLE chip and a developer board obtained from AMO MCU as shown in Figure 6-10 (d), 

as proof of concept. A link between the smart belt and an Android cellphone was set up 

and the output power for the chip was set to be -10 dBm. The relationship between the 

received signal strength indicator (RSSI) and line-of-sight distance in the lab is shown 

in Figure 6-15 (a). The raw data was not enough to provide accurate distance 

measurement and was largely influenced by the surrounding multipath environment. 

The data can still be used to make sure the cell phone stays in Bluetooth range of the 

belt and the range can be changed by setting the input power. 

An onboard gyroscope was integrated into the smart belt prototype. In Figure 6-

15 (b), data from 40 seconds of walking and a simulated falling over was recorded. The 

simulated falling over happened at the 26th second on the timeline and a sharp increase 

in the acceleration in the z-direction can be observed at that moment. The smart belt 
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system could provide a fall alarm for the elderly. 

The belt antenna with the textile EBG ground plane has a high efficiency when 

placed in close proximity with the human body and a low SAR value towards the body. 

When applied in the smart belt system, it can reduce requirements on system power use 

and hence prolong battery life.  

 

Figure 6-15：The smart belt prototype. (a) The BLE received signal strength index (RSSI) on the 
cellphone at different distances. (b) The data from the gyroscope onboard the smart belt system. 

6.6 Summary  

The belt antenna proposed in Chapter 5 can satisfy the BLE transmission 

requirement on its own. However, considering that the belt antenna could be operating 

for long periods of time and that the available battery size for typical wearable systems 

is limited, further improvements should be made regarding SAR and radiation 

efficiency. 

In this chapter, a textile EBG ground plane is designed to work together with the 

belt buckle antenna proposed in the previous section. The effect of the human body 

with/without the EBG ground plane was closely evaluated. The separate textile EBG 

ground plane can be integrated into the trousers behind the belt antenna. A set of wave 
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propagation equations for designing the EBG with non-planar wearable antennas were 

proposed. Also, for the first time, the suspended transmission line method was proposed 

in this case to accurately determine the band gap of the textile EBG under bending 

conditions. The belt antenna together with the textile EBG forms a highly efficient and 

safe transmission mechanism for a smart belt system. 
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Chapter 7 Conclusion and Future Work 

7.1 Conclusions 

Motivated by the burst in the development of wearable electronic products and their 

high level of adoption by consumers, the need for ergonomic, high efficiency, low SAR 

value antennas has been increasing. The main constraints on wearable antenna design 

include the usage of non-standard RF materials that are lossy, the shape and size limit 

to ergonomically fit within the wearable device or on a daily item of clothing or 

common accessory and the effect of the lossy human body on antenna performance.  

This thesis focused on the development of high efficiency wearable belt buckle 

antennas, with the goal of addressing the aforementioned research constraints. Two 

novel antennas have been proposed. A reverberation chamber was constructed at Xian 

Jiaotong-Liverpool University to allow antenna efficiency to be practically evaluated. 

A textile EBG ground plane was proposed to provide necessary isolation to the human 

body for one of the belt buckle antennas, which loosely based on a loop structure had 

significant radiation directed towards the body. The EBG provided an to improved 

realised gain and efficiency for the antenna. 

A brief history and basic information on wireless communications and antennas was 

provided in Chapter 1, along with the motivation and aims of this study. 

In chapter 2, a review on wearable antennas was provided. Planar wearable antennas 

using soft substrates and accessory-like antennas were discussed in detail with state of 

the art designs presented. The challenges to be addressed in designing wearable antenna 

were then summarised.  

In chapter 3, some basic information on the use of electromagnetic reverberation 

chambers was provided. The specifications and performance analysis of the chamber 
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built during this project were detailed for future reference and a test procedure was set 

out for efficiency testing of a wearable device. 

In Chapter 4, the first belt antenna based on a pin buckle belt was presented. The 

proposed belt antenna utilised a TM10 mode and a quasi-TM30 mode to achieve dual 

operational bands. The proposed antenna was able to achieve an on-body realised gain 

of 5.10 dBi and radiation efficiency of approximately 40 % at 2.45 GHz without using 

any materials dedicated for RF applications and a separated large ground plane. 

Another belt antenna designed with the aid of characteristic mode analysis was 

presented in Chapter 5. It was found during the design process that CMA was of great 

significance to determining the design parameters and placing the feed. This belt 

antenna design was able to direct more radiated energy towards the outside of the 

human body through the use of a cap in comparison to a simple loop type belt buckle 

antenna. Thus, the radiation efficiency is increased whilst the SAR value is reduced. 

A textile EBG ground plane design was presented in Chapter 6. This separate textile 

EBG ground plane is designed to be integrated into the garment worn behind the belt 

antenna. A set of wave propagation equations for designing the EBG with non-planar 

wearable antennas was proposed. The suspended transmission line method was 

proposed in this case to accurately determine the band gap of the textile EBG especially 

in bending conditions. The loop type belt buckle antenna together with the textile EBG 

forms a highly efficient and safe transmission mechanism for a smart belt system. 

7.2 Key Contributions 

This work provided a study of wearable antennas. With the help of techniques 

including CMA and the suspended transmission line method, two high efficiency belt 

antennas were proposed. The main outcomes of the research are summarised in two 

published journal papers and one published conference paper, as listed in the preface of 

this thesis on page V. 
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There are three key contributions in this project, 

1. Two novel belt antenna structures were presented; both can achieve high on-body 

radiation efficiency.  

2. An in-house reverberation chamber was constructed and commissioned during this 

project. Test procedures were developed allowing wearable antenna efficiency 

measurements to be made. On body radiation efficiency measurement can now be 

performed on campus. 

3. A textile EBG ground plane working together with a loop type belt antenna was 

proposed. Analysis of textile EBG material with circuit model and elevated 

transmission line method were performed. A smart belt prototype with 

demonstrative functionality was developed and connectivity via BLE link was 

established to a smartphone.  

7.3 Future work 

In this project, the effect of the textile properties on the antenna has not been 

investigated in detail. In 2020, state-of-the-art works have shown that antennas using 

conductive textile threads fabricated with computer-aided embroidery techniques can 

achieve similar radiation efficiencies as similar PCB solutions. With this achievement, 

wearable energy harvesting antenna arrays with conductive fibres have been proposed. 

There are two possible future research directions: 

1. To explore the effect of textile EBG ground planes fabricated with embroidery 

techniques. The embroidery techniques would increase the conductivity of the 

conductive squares in each unit cell. It is unclear how this would increase the overall 

performance of the belt buckle antenna. 

2. To explore the possibility of high radiation efficiency for an all textile antenna. In 

this study, the idea of the belt buckle antenna was initially chosen for its high-
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conductivity metallic nature. The limitation in shape, size and the necessity for a 

lossy substrate (leather) limit the performance of belt buckle antennas. With 

embroidered conductive threads reaching similar conductivity, it is possible that an 

all textile high-efficiency wearable antenna can do the job better. To come to this 

conclusion, more detailed work needs to be done.  


