
1 
 

5 May 2021 1 
 2 

Towards Reliable Global Allowances for Sea Level Rise 3 
 4 

Philip L. Woodworth 1, John R. Hunter 2, Marta Marcos 3,4 and Chris W. Hughes 5,1 5 
 6 

1. National Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool L3 7 
5DA, United Kingdom  8 
 9 

2. Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, 10 
Tasmania 7001, Australia 11 
 12 

3. IMEDEA (UIB-CSIC), Miquel Marquès 21, 07190 Esporles, Balearic Islands, Spain 13 
 14 

4. Department of Physics, University of the Balearic Islands, Cra. Valldemossa, km 7.5, Palma, 15 
Spain 16 
 17 

5. Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Jane Herdman 18 
Building, 4 Brownlow Street, Liverpool L69 3GP, United Kingdom 19 

 20 

Corresponding author: P.L. Woodworth (plw@noc.ac.uk) 21 

Abstract 22 

 23 

Tide gauge data and information from tide, surge and ocean models have been used to calculate and 24 

validate the Gumbel scale parameters of extreme sea level distributions along the world coastline. 25 

The inclusion of ocean model information is found to result in significantly improved correspondence 26 

between observed and modelled scale parameters to that obtained using tide and surge model 27 

information alone. The scale parameters so obtained are shown to be consistent with findings 28 

reported previously, such as in assessments of the Intergovernmental Panel on Climate Change. 29 

However, the considerably improved provision of scale parameters along the coast means that coastal 30 

planners, and others concerned with impacts of sea level rise, can now undertake more complete 31 

investigations of the likely increase in sea level exceedance frequencies. In addition, coastal engineers 32 

will have access to more reliable estimates of the ‘sea level allowances’ needed to design defences for 33 

protecting coastal populations. 34 

 35 
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 39 

1. Introduction 40 

 41 

Numerical models of tide and surge are now being used extensively in order to compute annual 42 

maxima of sea level  around the world coastline. The extreme sea level distributions obtained from 43 

these maxima at each position are usually parameterised as Gumbel distributions that are expressed 44 

in terms of two numbers: the scale and location parameters (Gumbel, 1941; Coles, 2001). The scale 45 

parameter is the important one for the present study. It sets the scale of the exponential rate of 46 

reduction in the observed number of extremely high sea level events. Good estimates of scale 47 

parameters are required in order to calculate the likely increase in the frequency of occurrence of sea 48 

level extremes due to a future rise in mean sea level (the ‘multiplication factor’). A smaller scale factor 49 

implies a greater sensitivity to sea level rise. They are also needed for determining the ‘allowances’, 50 

which are the amounts by which defences need to be raised in order to provide the same likelihood 51 

of coastal flooding following a rise in sea level (Hunter, 2012; Slangen et al., 2017). The scale 52 

parameters derived from numerical models used in some previous studies are known to have been 53 

highly inaccurate and have resulted in pessimistic assessments of future flood risk (Hunter et al., 2017; 54 

Muis et al., 2017). 55 

 56 

The Global Tide and Surge Reanalysis (GTSR) data sets of tide and surge made possible one of the first 57 

reliable attempts at estimating sea level extremes on a global scale (Muis et al., 2016), with those 58 

extreme values used to compute Gumbel scale parameters around the world coastline (archived at 59 

GTSR, 2019). The parameters were used in sensitivity studies with regard to the exposure of coastal 60 

populations to flooding due to extreme sea levels (Muis et al., 2016, 2017). However, we believe that 61 
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a software misunderstanding led to these computed scale parameters being too large.1 When 62 

computed correctly and compared to those from tide gauge data, then it is clear that there remains a 63 

~30% under-estimate in the scale parameters derived from tide and surge modelling at many 64 

locations, as will be demonstrated below.  65 

 66 

The following Section 2 explains why the Gumbel distribution is a reasonable choice for 67 

parameterisation of extreme sea levels and, therefore, why Gumbel scale parameters been used in 68 

the study that follows. Section 3 then explains how Gumbel scale parameters have been determined 69 

from the GTSR and GESLA-2 data sets, and demonstrates that the two sets are far from being in 70 

agreement. Section 4 considers consider whether the variability in sea level due to the large-scale 71 

ocean circulation is capable of explaining at least a part of the mis-match between modelled and 72 

observed scale parameters, leading to more reliable estimates of extreme level parameters for the 73 

world coastline. We show in Section 5 that it is then possible, given a projection of future sea level rise 74 

and its uncertainty, to determine the likely increases in the frequency of sea level extremes and 75 

allowances at each point along the coast, building on the previous studies of these topics by Hunter 76 

(2012) and Hunter et al. (2013). Finally, Section 6 provides a discussion of our findings and the 77 

conclusions of the study. 78 

 79 

2. The Gumbel Scale Parameter 80 

We use the Gumbel scale parameter as our preferred descriptor of sea-level extremes for two main 81 

reasons. Firstly, the Gumbel distribution has been widely used by other workers and has been found 82 

to be an adequate approximation for return periods of tens to hundreds of years, which covers almost 83 

                                                             
1 The Matlab® evfit function provides maximum likelihood estimates of Type 1 (Gumbel) parameters from a set 
of extreme minima; the software documentation (https://uk.mathworks.com/help/stats/evfit.html) makes clear 
that if one is modelling maxima then values should be entered with a reversed sign. From tests with GESLA-2 
data, we have verified that the incorrect use of evfit leads to scale parameters about 30% too large, as we 
understand occurred in the earlier applications of the GTSR data sets and which we are informed has since been 
remedied. 

https://uk.mathworks.com/help/stats/evfit.html
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all observed extremes except for the most rare events (e.g. van den Brink and Können, 2011). 84 

Secondly, our main aim was to estimate, from each sea-level record, a single parameter that would 85 

provide useful global comparisons of observed and modelled extremes. The Gumbel scale parameter 86 

is the e-folding distance in height of the Average Recurrence Interval (ARI) or Return Period or, 87 

alternatively, the slope of a plot of height against log(ARI). For other distributions, such as the 88 

Generalised Extreme Value (GEV) or the Generalised Pareto (GPD) distributions, this slope may vary 89 

with ARI. However, in these cases, the derived Gumbel scale parameter represents a typical slope for 90 

the range of ARI over which the Gumbel scale parameter is fitted. 91 

 92 

Distributions such as the GEV or GPD are generally used as a way of extrapolating the observed 93 

extremes to ARIs longer than the observational period; this is not the purpose of the present work. 94 

 95 

For a Gumbel distribution, the scale parameter is 𝜎𝜎√6/𝜋𝜋, where 𝜎𝜎 is the standard deviation of the 96 

annual maxima (e.g. https://en.wikipedia.org/wiki/Gumbel distribution; Yousef and Al-Subh, 2014). 97 

This may be used to check how closely the actual extremes distribution is to a Gumbel. Using two 98 

different types of annual maxima from GESLA-2 data, Figures S1 and S2 in the Supplementary 99 

Information show that, in most cases, the derived scale parameters are statistically identical to those 100 

that would be obtained from a Gumbel distribution (i.e. they do not differ significantly from 𝜎𝜎√6/𝜋𝜋). 101 

 102 

3. GTSR and GESLA-2 Gumbel Scale Parameters 103 

  104 

The GTSR data set was obtained using a global barotropic model to simulate storm surges every 10 105 

minutes for 36 years (1979-2014) at 16611 coastal points. The surges were combined with tidal 106 

elevations from the Finite Element Solution (FES) 2012 tide model (Carrère et al., 2012). Time series 107 

of daily maximum total sea level and daily maximum surge at each coastal point are also archived at 108 

GTSR (2019). 109 
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 110 

Figure 1(a) compares scale parameters derived from the GTSR data set to those calculated from 658 111 

tide gauge records with at least 20 years of data in the Global Extreme Level Analysis Version 2 (GESLA-112 

2) set (Hunter et al., 2017; Woodworth et al., 2017). The median length of this subset of GESLA-2 113 

records is 39 years, similar to the length of the time series in the GTSR data set. In each case, the 114 

Matlab® function evfit function was used to determine the scale parameters. We have made such 115 

calculations with evfit before, and believe it to be reliable when used correctly. Hunter et al. (2017) 116 

describes how our evfit values were verified using independent software based on that of Coles 117 

(2001). 118 

 119 

Most of the GESLA-2 records contain gaps. Therefore, in order to avoid any issues to do with the 120 

sampling of different years of data, exactly the same years were used for both GTSR and GESLA-2 with 121 

a requirement of at least 20 years in common between 1979 and 2012 (the reason for using 2012 and 122 

not 2014 will be given below). That reduced the number of useful GESLA-2 stations to 549. Because 123 

the coastal locations in the GTSR data set differed from the tide gauge positions, common locations 124 

were identified by finding the nearest GTSR coastal point. The median distance between tide gauge 125 

and nearest coastal point was 4.9 km. Figure 1(a) shows that, while the scale parameter for an 126 

individual GESLA-2 station could be said to be consistent with that from GTSR given its statistical 127 

uncertainty, most points fall below the diagonal. This means that the scale parameters from GTSR as 128 

a whole under-represent those from GESLA-2, being only 70% of the GESLA-2 values on average. There 129 

are clearly many ways of comparing such model-derived and measured quantities. The 70% in this 130 

case comes from a simple unweighted least squares fit constrained to pass through the origin using 131 

the GESLA-2 value as the independent variable (red line). 132 

 133 
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This finding means that the GTSR annual maxima are far from being accurate enough for computing 134 

the likely changes in frequency of extreme sea levels in the future. For a Gumbel distribution one can 135 

express the frequency of exceedance (𝑁𝑁) of a level (𝑧𝑧) as follows: 136 

 137 

𝑁𝑁 = 1 𝑅𝑅⁄ = 𝑒𝑒�
(𝜇𝜇−𝑧𝑧)
𝜆𝜆 � 138 

 139 

[1] 140 

 141 

where 𝑅𝑅 indicates the Average Recurrence Interval and 𝜆𝜆 and 𝜇𝜇 are the scale and location parameters 142 

respectively. Therefore, given a rise in sea level (𝐻𝐻), the location parameter (𝜇𝜇) will increase by 𝐻𝐻 and 143 

the frequency of exceedance of a given level will increase by a factor 𝐹𝐹 (the ‘multiplication factor’): 144 

 145 

𝐹𝐹 = 𝑒𝑒�
𝐻𝐻
𝜆𝜆� � 146 

[2] 147 

 148 

and differentiating one has: 149 

 150 

𝑑𝑑𝐹𝐹
𝑑𝑑𝜆𝜆

=  −𝐹𝐹𝐻𝐻/𝜆𝜆2 151 

[3} 152 

 153 

or (ignoring the sign): 154 

 155 

𝑑𝑑𝐹𝐹
𝐹𝐹

=  
𝐻𝐻𝑑𝑑𝜆𝜆
𝜆𝜆2

=
𝑑𝑑𝜆𝜆
𝜆𝜆
𝐻𝐻
𝜆𝜆

 156 

 157 

[4] 158 
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 159 

Consequently, if one takes  𝑑𝑑𝜆𝜆
𝜆𝜆

 ~ 0.3, which is roughly the mis-match between GTSR and GESLA-2 scale 160 

parameters in Figure 1(a), then if we assume a sea level rise of 0.5 m and a typical scale parameter of 161 

0.1 m, one finds 
𝑑𝑑𝑑𝑑
𝑑𝑑

 ~ 1.5, which is clearly inadequate for reliable impact studies. 162 

 163 

4. Adding Ocean Variability 164 

 165 

The importance of ocean climate variability in time series of extreme sea levels has been 166 

demonstrated in studies by Menéndez and Woodworth (2010), Marcos and Woodworth (2017) and 167 

many others. Consequently, an obvious missing component in the GTSR determination of scale 168 

parameters is that due to intra-annual, seasonal and interannual variability in the ocean circulation. 169 

This component will become particularly important where it is of comparable magnitude to storm 170 

surge variability and to the nodal and perigean cycles in extreme astronomical tides (Haigh et al., 171 

2011).  172 

 173 

In Muis et al. (2018), the authors extended their GTSR modelling by combining their daily maximum 174 

sea levels from tide and surge with monthly mean steric sea levels computed by the method described 175 

by Amiruddin et al. (2015). Data sets of the steric component are to be found in the same archive 176 

(GTSR, 2019). They focused on the contribution of El Niño Southern Oscillation (ENSO) variability to 177 

extreme sea levels given that ENSO is the most important ocean climate mode. The authors found 178 

significant improvements in correspondence between modelling and tide gauge measurements of 179 

extreme levels in the Pacific, but rather less so in regions with lower seasonal and/or interannual 180 

variability in sea level. However, we have found that the addition of this steric component to the 181 

present study results in only a small improvement when comparing GTSR (plus steric) scale parameters 182 

to those from GESLA-2. A similar plot to Figure 1(a) showed the steric-corrected GTSR values to be 183 
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only 74% of those from GESLA-2 on average. (One may note in passing that the Amiruddin et al. (2015) 184 

method is based on Bingham and Hughes (2012) who pointed out that its validity on continental coasts 185 

is limited to equatorial regions and low to mid-latitude eastern ocean boundaries. Elsewhere, even 186 

density-related variability cannot be expected to be captured using a simple steric sea level 187 

calculation.) 188 

 189 

A better representation of sea level variability due to the ocean circulation would be obtained from 190 

an ocean model. As a test of this possibility, we used 5-day averaged sea surface heights for the period 191 

1958-2012 calculated from the state-of-the-art Nucleus for European Modelling of the Ocean (NEMO) 192 

1/12° model run (Moat et al., 2016). This is a global baroclinic model forced by wind stresses and 193 

heat/salt fluxes derived from atmospheric reanalysis fields: the Drakkar Surface Forcing dataset 194 

version 5.2 (Brodeau et al., 2010; Dussin et al., 2014). These forcings do not include surface air 195 

pressure. Therefore, these 5-day heights can be thought of as inverse-barometer (IB) corrected sea 196 

levels, and so represent steric and wind-forced dynamical ocean variability. They were linearly 197 

interpolated in time and added to the daily maximum values from GTSR, with annual maxima and 198 

Gumbel parameters recomputed at each GESLA-2 location. 199 

 200 

Figure 1(b) shows that the scale parameters computed from GTSR+NEMO are on average 90% of those 201 

from GESLA-2, once again using the same 20 or more years in common within 1979-2012 (the 202 

limitation to 2012 mentioned above now explained). This is a satisfactorily closer agreement, although 203 

the correspondence remains slightly less than 1.0 suggesting that there could be a need for other 204 

ocean processes to be taken into account in modelling of extreme sea levels (see Discussion below). 205 

 206 

However, a simple comparison of scale parameters is insufficient for deciding if the addition of NEMO 207 

data represents genuine improvement because scale parameters depend on the spread of annual 208 

maxima, and not whether the individual maxima are computed more accurately. Another test is to 209 
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consider the correlation between the individual GTSR+NEMO and GESLA-2 annual maxima. Figure 2(a) 210 

shows in blue a histogram of correlation coefficients between GTSR and GESLA-2 annual maxima 211 

within 1979-2012. The median coefficient of 0.513 demonstrates reasonable average correlation, the 212 

fact that they are not all 1.0 being due to inaccuracies in the modelling and/or measurements. When 213 

NEMO is also taken into account the median increases to 0.625, as shown in red. 214 

 215 

Figure 2(b) shows a map of correlation coefficients using GTSR+NEMO while Figure 2(c) demonstrates 216 

the improvement between using GTSR+NEMO and by using GTSR alone. As might have been expected, 217 

it can be seen that the addition of NEMO has limited impact in areas such as NW Europe where annual 218 

maxima are known to be dominated by tide and surge (Merrifield et al., 2013). Most improvement is 219 

in regions such as the western Pacific islands and Japan, the western coastline of Australia and the 220 

west coast of the Americas where variability due to ENSO is important. Improvement can also be seen 221 

in the Gulf of Mexico and Mediterranean. 222 

 223 

However, we suspect that the explanation for the improvement is more complicated than simply 224 

assigning it to interannual variability alone. Figures S3-S6 show distributions of mesoscale variability 225 

(S3), the amplitude (S4) and phase (S5) of the annual cycle (12 month harmonic of the seasonal cycle), 226 

and the interannual variability (S6), obtained from the NEMO model. These findings correspond 227 

adequately with published measurements of these quantities from satellite altimetry. Mesoscale 228 

variability can probably be disregarded as a major factor as it will not propagate to the coast without 229 

considerable dynamical modification except perhaps at ocean islands where, being stochastic, it 230 

would tend to reduce correlations. However, the modelled annual cycle can be seen to be as large as 231 

interannual variability, especially in the northern hemisphere, even though the model does not 232 

include seasonal processes due to changes in ocean mass. It is possible, therefore, that some of the 233 

improvement might come from a better representation of the seasonal cycle in the extremes, and not 234 

only from ENSO-type interannual variability. One notes that while the addition of NEMO benefitted 235 
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the western Pacific islands, some of those in the central and eastern parts of the basin remain for 236 

further improvement. 237 

 238 

One concern in combining NEMO with GTSR information in this way is that, because both models are 239 

wind-driven, there could be a contribution to the computed extremes due to double counting of wind-240 

driven storm surges on 5-day timescales. The ideal approach to this problem would be to remove 5-241 

day mean surge values from GTSR before combining with NEMO. However, this option was not 242 

available to us as we did not have access to the original GTSR 10-minute time series, but only to the 243 

daily maxima described above. Therefore, in order to assess how large a problem this was, we made 244 

use of the 0.25° resolution Advanced Global Barotropic Ocean Model (AGBOM, Stepanov and Hughes, 245 

2004; Hughes et al., 2018) to provide daily IB-corrected sea levels for 1990-2003, with daily values 246 

averaged into 5-day means. Such values will thereby represent the wind-driven component of sea 247 

level variability on 5-day timescales. Standard deviations of this variability were computed for each of 248 

the 16611 GTSR locations and are shown in Figure S7a. These values are similar to those for the full 249 

ocean shown in Figure 5 (top) of Hughes et al. (2018) and have a median value of 2.1 cm. Using longer 250 

35-day means, the median standard deviation reduced to 0.96 cm, although sections of coast such as 251 

the eastern North Sea, Baltic, Gulf of Carpentaria, Gulf of Thailand, Yellow Sea, Bering Strait and Arctic 252 

Russia indicated values of ~5 cm or more (Figure S7b). 253 

 254 

Therefore, as a sensitivity test, we repeated the above calculations for GTSR+NEMO extreme sea level 255 

values and scale parameters using interpolated 35-day NEMO means instead of 5-day means, thereby 256 

reducing any double-counted storm surge contribution as far as possible, at the expense of losing skill 257 

in NEMO on timescales of less than a month. Almost identical results were obtained, with a 258 

distribution of correlation coefficients shown in green in Figure 2(a), a median correlation coefficient 259 

of 0.614, and virtually the same spatial distributions as in Figure 2(b,c). Therefore, for the remaining 260 

discussion of this paper we have focused on the use of the original 5-day NEMO mean values, given 261 
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that they provided a marginally higher median correlation, and that findings below are unaffected by 262 

the choice of using either 5-day or 35-day smoothed NEMO levels. 263 

 264 

Recently, the group responsible for the GTSR models has published a new global tide+surge data set 265 

with improvements to both tide and surge modelling, including an increase in spatial resolution along 266 

the coast from 5 to 2.5 km. This data set is called CoDEC-ERA5 (Coastal Dataset for the Evaluation of 267 

Climate Impact using the ERA5 climate reanalysis data set of the European Centre for Medium-Range 268 

Weather Forecasts, Muis et al., 2020) and provides measurements at 14110 coastal points covering 269 

the period 1979-2017. The authors have to date made available the Gumbel scale parameters 270 

computed from this data set, but not the tide and surge time series from which they were calculated. 271 

Therefore, it is not possible as yet to use the above methods to investigate how well the addition of 272 

NEMO would benefit the new modelling. 273 

 274 

However, there are various ways to decide whether CoDEC-ERA5 might lead to more accurate Gumbel 275 

parameters. One way is to make a simple comparison of scale parameters derived from all GTSR or 276 

CoDEC-ERA5 information (1979-2014 and 1979-2017 respectively), to those obtained from all GESLA-277 

2 records with at least 20 years of data i.e. without the restriction of 1979-onwards (Figures 3a,b 278 

respectively). Because of differences between the GTSR and CoDEC-ERA5 grids, a coarse 50 km 279 

maximum distance requirement was imposed between a GESLA-2 location and each of the nearest 280 

model grid points; given that the median distances are ~5 km in each case, few GESLA-2 data points 281 

are rejected by this selection. 282 

 283 

Figure 3(a) is little different from Figure 1(a), indicating once again that GTSR scale parameters under-284 

estimate GESLA-2 ones. In this case, GTSR values are approximately 72% of GESLA-2 ones on average, 285 

an almost identical value to that obtained previously using matching years in the calculations. 286 

Similarly, Figure 3(b) demonstrates that, even though the CoDEC-ERA5 modelling might have 287 
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improved on GTSR, its scale parameters remain lower than GESLA-2 ones (73%). However, the scatter 288 

of points using CoDEC-ERA5 is somewhat reduced. The differences between GTSR scale parameters in 289 

Figure 3(a) and those suggested by the fitted slope times the GESLA-2 scale parameter have an 290 

approximately normal distribution, with the difference between 90 and 10 percentiles (essentially full-291 

width) of 0.084 m. The corresponding difference in percentiles for CoDEC-ERA5 in Figure 3(b) is 0.066 292 

m, supporting a genuine improvement in tide+surge modelling. In particular, there are fewer instances 293 

of the model producing much larger scale factors than those derived from GESLA-2. 294 

 295 

Another way to test CoDEC-ERA5 is to estimate the scale parameters that might be obtained using 296 

CoDEC-ERA5 modelling in combination with NEMO (λCN), instead of GTSR in combination with NEMO 297 

(λGN), by assuming that Gumbel scale parameters from each component can be combined 298 

quadratically. This assumption was tested using information for 1979-2012 at every GTSR location and 299 

by calculating scale parameters that would be inferred for GTSR+NEMO using GTSR and NEMO annual 300 

maxima alone i.e. 301 

λ2
CAL = λ2

G + λ2
N 302 

[5] 303 

where subscripts indicate GTSR alone (G), NEMO alone (N) and calculated (CAL). The latter can then 304 

be compared to those computed from GTSR+NEMO annual maxima (λGN) as shown in Figure 4(a). 305 

Satisfactory agreement can be seen, although many calculated values lie below the diagonal for λGN 306 

values larger than about 0.15 m. These coastal locations correspond closely to those identified above 307 

from AGBOM modelling as having higher standard deviation of wind-driven variability on 5-day 308 

timescales (Figure S7a). In turn, this implies that some double counting must be occurring in these 309 

areas and that Equation 5 cannot be expected to hold. (One may note that, if there was 100% double 310 

counting, i.e. GTSR and NEMO were modelling identical processes, then the scale parameters for GTSR 311 
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and NEMO would be identical, and the λCAL values in Figure 4(a) would have been 1/√2 of the 312 

corresponding λGN values on average, instead of being approximately the same). 313 

We can persevere with this approach given that there are relatively few GESLA-2 stations in the areas 314 

identified above as probably suffering from double counting. Therefore, we have estimated values of 315 

λCN using: 316 

λ2
CN = λ2

C + λ2
N 317 

[6] 318 

where subscripts indicate CoDEC-ERA5 + NEMO (CN), CoDEC-ERA5 alone (C) and NEMO alone (N). 319 

Ideally, all parameters in such combinations should be obtained from exactly the same years, as was 320 

the case for the test of Equation 5. However, that is not possible for Equation 6, for the reasons given 321 

above. As the object of the exercise is to compare the λCN to the scale parameters from GESLA-2, we 322 

computed λN for exactly the same years as we had GESLA-2 information within 1979-2012 (minimum 323 

of 20 years), but were obliged to use the λC values calculated for 1979-2017 by Muis et al. (2020). The 324 

comparison of λ2
CN  to GESLA-2 is shown in Figure 4(b). The modelled scale parameters (CN) are 85% 325 

of the GESLA-2 ones on average, with a 10-90 percentile width of their differences of 0.054 m. The 326 

fact that this is a somewhat tighter distribution than GTSR+NEMO in Figure 1b (in which scale 327 

parameters are 90% of the GESLA-2 ones on average but with 10-90 percentile width of 0.090 m) is 328 

another encouraging result, and suggests that even more accurate calculations of the allowances 329 

discussed in the next section might be possible, once we are able to combine CoDEC-ERA5 with an 330 

ocean model such as NEMO more rigorously. Of course, the accuracy of any comparisons to GESLA-2 331 

such as those above will always be limited by whatever inaccuracies there are in the historical tide 332 

gauge data. 333 

 334 

5. Changes in Frequency and Allowances 335 

 336 
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We can now move to the objectives of the present study, to calculate the likely increase in the 337 

frequency of occurrence of extreme sea levels due to a future rise in mean sea level and to determine 338 

the allowances required for coastal protection. 339 

 340 

Figure 5(a) shows the reciprocal of scale parameters calculated from GESLA-2 at each location. This is 341 

essentially the same figure as Figure 3(b) of Hunter et al. (2017), although the scale parameters in the 342 

latter were computed using the alternative Coles (2001) software. An exponential of the product of 343 

sea level rise and the reciprocal of the scale parameter determines the increase in the frequency of 344 

extreme sea levels using a Gumbel distribution (Equation 2). Figure 5(b) shows the corresponding 345 

reciprocals of scale parameters derived from GTSR+NEMO, suggesting that, at first sight at least, the 346 

modelled reciprocals are similar to those of GESLA-2 around the world coastline, the Mediterranean 347 

appearing to be one exception. An almost identical global coastline distribution is obtained using 348 

GTSR+NEMO 35-day smoothed scale parameters. 349 

 350 

To calculate the likely increase in frequency (the ‘multiplication factor’, 𝐹𝐹), we first assume a uniform 351 

sea level rise of 0.5 m and apply Equation 2, resulting in Figure 6(a) which has many similarities to 352 

Figure 13.25(a) in the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) 353 

(Church et al., 2013). The AR5 figure included information only at GESLA-2 locations without the now 354 

considerably improved coverage of the global coastline provided by the modelling. 355 

 356 

Figure 6(b) shows the multiplication factor using the spatially-dependent RCP4.5 scenario for regional 357 

sea level rise between the epochs 1986-2005 and 2081-2100 (Figure 13.19a of Church et al., 2013; 358 

ICDC, 2020). That scenario has a global mean of 0.48 m and includes contributions from vertical land 359 

movements (i.e. Glacial Isostatic Adjustment, GIA).2 One notes that Figure 6(b) is similar to Figure 6(a), 360 

                                                             
2 A slightly updated version (Version 5, 27-March-2014) of the data presented in the AR5, and used in this 
study, is available from ftp-icdc.cen.uni-hamburg.de/ar5_sea_level_rise. 
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apart from at high northern latitudes where GIA has a negative contribution to relative SLR. This 361 

becomes more understandable from inspection of Figure S8 which shows the same values for SLR as 362 

Figure 13.19a of Church et al. (2013) but for the coastline only. 363 

 364 

The RCP4.5 projection of sea level rise is accompanied by a spatially-dependent estimate of the model 365 

uncertainty, which has an average standard deviation of 0.15 m but with much larger values at high 366 

northern latitudes (Figure S9). This uncertainty is based on the difference between two leading GIA 367 

models. The AR5 considered that this model uncertainty might be only about 58% of the actual 368 

uncertainty, although the evidence for this is not strong. We here use the model uncertainty as our 369 

estimate of standard deviation; we may, therefore, be underestimating the true allowance (see 370 

discussion of this topic in McInnes et al., 2015). The availability of uncertainty estimates enables the 371 

computation of coastal protection ‘allowances’, which are the amounts by which defences need to be 372 

raised in order to provide the same likelihood of coastal flooding following a rise in sea level. We follow 373 

the approach of Hunter (2012) for this calculation although variations on the method are possible (e.g. 374 

Buchanan et al., 2016). Assuming the uncertainty is normally-distributed, then the allowance (𝐴𝐴 ) can 375 

be calculated as: 376 

 377 

𝐴𝐴 = 𝑆𝑆𝑆𝑆𝑅𝑅 +
𝜎𝜎2

(2𝜆𝜆)  378 

[7] 379 

 380 

where  𝑆𝑆𝑆𝑆𝑅𝑅 is the spatially-dependent sea level rise in RCP4.5 and σ is the corresponding standard 381 

deviation of the uncertainty. Once again, one notes the dependence on the reciprocal of the scale 382 

parameter. 383 

 384 
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Figure 7(a) shows how allowances (𝐴𝐴) vary around the world coastline in RCP4.5, while Figure 7(b) 385 

focusses only on the second term in Equation 7, which is the main aspect of interest for the present 386 

study. It can be seen that this second term contributes one or two decimetres to the allowances, apart 387 

from certain local areas such as the NE coast of N America where it is several decimetres and, 388 

therefore, comparable in magnitude to the first term (𝑆𝑆𝑆𝑆𝑅𝑅). Allowances for that particular area have 389 

been studied in detail by Zhai et al. (2015). The second term is also larger than two decimetres at 390 

central Indian Ocean islands, the east coast of Madagascar and in the Caribbean. Figure 7(c) presents 391 

the ratio �𝜎𝜎
2

(2𝜆𝜆)� � /𝐴𝐴 which has a median value of 0.18 for the world coastline but larger values in 392 

the aforementioned areas. There are high latitude locations where the overall allowance (Figure 7(a)) 393 

and the ratio (Figure 7(c)) are negative due to the contribution of GIA to SLR; such a pattern should be 394 

regarded as qualitative only in view of uncertainties in GIA models. 395 

 396 

Figure 7(a) demonstrates that, in this particular case of the RCP4.5 scenario, the largest allowances 397 

apply to the east coast of N America and at the locations noted for Figure 7(b). Smaller values, but still 398 

at the 0.5 m level, apply to most other coasts, except for much lower values along the northern Pacific 399 

coasts of N America and northern Europe. There is general similarity of Figure 7(a) to Figure 4 of 400 

Hunter et al. (2013), although in that study allowances were considered only at the tide gauge 401 

locations themselves and the earlier A1F1 emission scenario of the IPCC was employed instead of 402 

RCP4.5. 403 

Once again, the findings in Figures 6 and 7 were found to be almost identical when using scale 404 

parameters obtained from GTSR+NEMO or GTSR+NEMO 35-day smoothed. 405 

 406 

6. Discussion and Conclusions 407 

 408 
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A study of sea level extremes such as this has to make many assumptions. For example, there is an 409 

assumption that scale parameters derived from modelling of several decades of the present climate 410 

will be representative of those in the future. In particular, there is an assumption that the present 411 

climatology of surges remains the same. In addition, there are technical issues such as whether 412 

Gumbel distributions are adequate parameterisations of extremes calculated from tide gauge and 413 

model data (e.g. Wahl et al., 2017; IPCC, 2019, Section 4.2.3.4). As noted in Section 2, for distributions 414 

other than a Gumbel, such as the Generalised Extreme Value (GEV) or the Generalised Pareto (GPD) 415 

distributions, the slope of a plot of height against log(ARI) may vary with ARI. This slope may, 416 

therefore, be regarded as a scale parameter which is ’local’ to a particular ARI, with the resulting 417 

multiplication factor and allowance also varying with ARI. When a Gumbel distribution is fitted to a 418 

non-Gumbel distribution, the resultant scale parameter, multiplication factor and allowance should, 419 

therefore, be regarded as representative values for the range of ARI over which the Gumbel scale 420 

parameter is fitted. Alternatively, one might consider a completely different approach to determine 421 

scale parameters along a coastline where some tide gauge information is available, such as the 422 

Bayesian hierarchical modelling of Calafat and Marcos (2020). 423 

 424 

The present study has focussed on the use of sea level extremes from the GTSR+NEMO model data 425 

set to determine scale parameters. In fact, we also investigated the use of alternative modelling, such 426 

as the Dynamic Atmospheric Correction (DAC) data set (Carrère and Lyard, 2003) for surges, and the 427 

Technical University of Denmark DTU-10 model for tides (Cheng and Andersen, 2010). These were 428 

found to result in an even larger under-estimate of GESLA-2 scale parameters. Nevertheless, their use 429 

was worthwhile as a partial validation of the GTSR data sets. We have not so far experimented with 430 

ocean models other than NEMO, although it should be straightforward to do so; higher resolution 431 

regional ocean models might improve the results even further. Our main conclusion from this study is 432 

that the inclusion of an ocean model such as NEMO results in the removal of most of the systematic 433 
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under-estimate of scale factors that exist using tide and surge models alone (however good they may 434 

be). 435 

 436 

Once one has obtained reliable estimates of scale parameters for sections of coast, then it is 437 

straightforward to calculate the likely increase in the frequency of extreme levels (Equation 2) and 438 

allowances for sea level using any scenario provided by climate models (Equation 7). The second term 439 

of the allowances using GTSR+NEMO in Figure 7(b) would be approximately 30% larger, or roughly a 440 

decimetre on average, if scale factors from GTSR alone were used. That might seem a small amount 441 

in comparison to the uncertainties in predicting regional SLR itself, but it is at least a source of 442 

uncertainty that we can now account for. In addition, even small amounts such as these have major 443 

consequences with regards to the costs of future coastal protection. 444 

 445 

There are many projections of future change in sea level available, the most recent being in the Special 446 

Report on the Ocean and Cryosphere in a Changing Climate (IPCC, 2019). However, application of the 447 

above equations to any new projection or probabilistic set of projections is a straightforward exercise 448 

(e.g. Vitousek et al., 2017; Vousdoukas et al., 2018; Taherkhani et al., 2020). For the present paper we 449 

have focused on the use of the RCP4.5 projection from the last full IPCC assessment (Church et al., 450 

2013) which has enabled comparisons to be made to previously-reported similar findings on extreme 451 

levels. For example, the findings presented here are similar to those obtained by Hunter et al. (2013), 452 

although the present study has enabled an important extension to most of the global coastline. The 453 

new findings are also qualitatively similar to those reported in IPCC (2019, Figure 4.12) based once 454 

again on RCP4.5 projections of regional sea level change (IPCC, 2019, Figure 4.10) but using a more 455 

general parameterisation of tide gauge extremes than the Gumbel distribution used in the present 456 

paper. 457 

 458 
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In conclusion, comparison of Figure 5(a) and (b) shows that scale parameters for extreme sea levels 459 

can now be inferred with good accuracy from modelling for a large fraction of the world coastline. 460 

There remain deficiencies in both modelling and measurements. The modelling is obviously 461 

incomplete, not accounting for other coastal processes such as wave setup (Dean and Walton, 2009; 462 

Woodworth et al., 2019); we note that progress is being made on this topic (e.g. Kirezci et al., 2020). 463 

In addition, it will not account for higher-frequency local processes such as seiches that will contribute 464 

to an observed extreme sea level (Pugh et al., 2020). Surge modelling also has particular challenges in 465 

simulating the storm surges during tropical cyclones (Muis et al., 2019; Tadesse et al., 2020). Waves 466 

themselves, as opposed to still water level, also need to be taken into greater account in the study of 467 

extremes (Lambert et al., 2020). The conclusions of the latter study confirm our main finding, that 468 

omission of critical processes (waves in their case, ocean circulation in ours) tends to decrease the 469 

variance of the modelled annual maxima and the derived Gumbel scale parameters and, therefore, 470 

increase the computed multiplication factors and allowances. As regards measurements, there are 471 

still many gaps in areas such as Africa and South America where major improvements in the availability 472 

of tide gauge data are required. Such data sets are unlikely to become available for many years. 473 

Whether sea level measurements from a new generation of satellite altimetry close to the coast can 474 

provide suitable complementary information on extremes remains to be seen (Vignudelli et al., 2011). 475 

Either way, continued improvement in the combination of tide, surge and ocean modelling, properly 476 

validated by measurements, seems to offer a suitable way forward for obtaining even more reliable 477 

extreme level parameters for the global coastline. 478 
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Figure captions 663 

 664 

1. (a) Scale parameters from GTSR versus those derived from tide gauge records from GESLA-2 665 

with at least 20 years of data during 1979-2012, using exactly the same years to compute the 666 

parameters. (b) Scale parameters from GTSR+NEMO versus those from GESLA-2, similarly 667 

computed. The horizontal error bars represent 95-percent uncertainty in the GESLA-2 scale 668 

parameters. The red lines are unweighted linear least-squares fits constrained to pass through 669 

the origin with the GESLA-2 value as the independent variable with slopes of 0.70 and 0.90 in 670 

(a) and (b) respectively.  671 

2. (a) Correlation coefficients between annual maxima from GTSR and GESLA-2 with at least 20 672 

years in common during 1979-2012 (blue), from GTSR+NEMO and GESLA-2 (red) and from 673 

GTSR+NEMO and GESLA-2 with NEMO 5-day means smoothed into 35-day means (green). (b) 674 

Distribution of coefficients using GTSR+NEMO, and (c) of the improvement in correlation using 675 

GTSR+NEMO over that using GTSR alone. 676 

3. Scale parameters from (a) GTSR and (b) CoDEC-ERA5 versus those from GESLA-2. The 677 

modelled scale parameters were calculated using their entire data sets (1979-2014 and 1979-678 

2017 respectively). The latter are those archived by Muis et al. (2020). The GESLA-2 scale 679 

parameters were computed from all records containing at least 20 years of data (i.e. without 680 

the restriction of 1979-onwards) with horizontal error bars representing their 95-percent 681 

uncertainties. The red lines are unweighted linear least-squares fits constrained to pass 682 

through the origin with the GESLA-2 value as the independent variable with slopes of 0.72 and 683 

0.73 in (a) and (b) respectively. 684 

4. Tests of combining Gumbel scale parameters. (a) Scale parameters for all 16611 GTSR coastal 685 

locations estimated using the quadratic addition of those of GTSR alone and NEMO alone 686 

(Equation 5) (y-axis) compared to those obtained from GTSR+NEMO (x-axis). The red line 687 

simply represents a ratio of 1. (b) Scale parameters estimated from the quadratic combination 688 
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of CoDEC-ERA5 and NEMO alone (Equation 6) versus those from GESLA-2 using records 689 

containing at least 20 years of data within 1979-2012 with horizontal error bars representing 690 

their 95-percent uncertainties. The red line is an unweighted linear least-squares fit 691 

constrained to pass through the origin with the GESLA-2 value as the independent variable 692 

with a slope of 0.85. 693 

5. Reciprocal (m-1) of the Gumbel scale parameter obtained from (a) tide gauge records in GESLA-694 

2 with at least 20 years of data, and (b) estimated from GTSR+NEMO modelling. 695 

6. The likely increase in the frequency of occurrence of extreme sea levels (the ‘multiplication 696 

factor’) (a) due to a spatially independent rise of 0.5 m in mean sea level, and (b) due to a 697 

spatially dependent rise provided by the RCP4.5 scenario (Church et al., 2013), using scale 698 

parameters from GTSR+NEMO. 699 

7. (a) The overall allowance for sea level rise suggested by the RCP4.5 scenario (Church et al., 700 

2013) together with a contribution to the allowance due to the uncertainty in the rise, and (b) 701 

the contribution to the overall allowance due to the uncertainty in the rise, using scale 702 

parameters from GTSR+NEMO. Units are metres. (c) The ratio of the contribution to the 703 

allowance due to uncertainty in the rise compared to the overall allowance itself (i.e. figures 704 

b/a). Note the colour scale saturates at 0.4 to aid visualisation of the areas where the ratio is 705 

smaller than that value. 706 
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 741 

Supplementary Information 742 

 743 

Figures S1 and S2 show that, in most cases, the scale parameters derived from evfit do not differ 744 
significantly from 𝜎𝜎√6/𝜋𝜋, as expected for a Gumbel distribution. See Section 2. 745 
 746 
Figures S3-S6 are obtained from 5-day NEMO sea surface heights for 1959-2012. They are intended to 747 
demonstrate that the model compares reasonably well to information obtained from satellite 748 
altimetry. 749 
 750 
Figure S7 shows standard deviations of (a) 5-day and (b) 35-day mean values of wind-driven sea level 751 
from the AGBOM barotropic model during 1990-2003. Units are cm. 752 
 753 
Figure S8 shows the spatially-dependent RCP4.5 scenario for regional sea level rise around the world 754 
coastline between the epochs 1986-2005 and 2081-2100. Adapted from Figure 13.19a of Church et al. 755 
(2013). Figure S9 shows its spatially-dependent uncertainty (σ). Units are metres.  756 
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 757 

 758 

Figure S1. Scale parameters computed from 𝜎𝜎√6/𝜋𝜋, where 𝜎𝜎 is the standard deviation of the annual 759 
maxima of observed sea level, versus those calculated from evfit for records used in the present 760 
analysis with at least 20 years of data during 1979-2012. The two should be the same in the ideal case 761 
of the annual maxima conforming to a Gumbel distribution. The horizontal error bars represent 95-762 
percent uncertainty in the fitted scale parameters. The red line simply represents a ratio of 1. 763 
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 764 

Figure S2. A different example of Gumbel fitting, in this case using 471 records with at least 30 years 765 
of GESLA-2 data from which we have used skew surges computed in the analysis of Marcos and 766 
Woodworth (2017).  Errors bars are colour-coded according to the number of years in each record and 767 
the error bars represent 95-percent uncertainty in the fitted values. 768 

 769 
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770 
Figure S3 shows the standard deviation of the variability of 5-day sea surface heights. This compares 771 
reasonably well to, for example, figures in Pascual et al. (2006) (Improved description of the ocean 772 
mesoscale variability by combining four satellite altimeters. Geophysical Research Letters, 33, L02611, 773 
doi:10.1029/2005GL024633). 774 

 775 

Figure S4 shows the amplitude of the annual cycle of sea level. This can be compared to Figure 10.4 of 776 
Woodworth and Pugh (2014) (Sea-level science: Understanding tides, surges, tsunamis and mean sea-777 
level changes. Cambridge: Cambridge University Press. ISBN 9781107028197. 408pp) or Figure 7 of 778 
Wunsch and Stammer (1998) (Satellite altimetry, the marine geoid, and the oceanic general 779 
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circulation. Annual Review of Earth and Planetary Sciences, 26, 219–253, 780 
doi:10.1146/annurev.earth.26.1.219). 781 

 782 

Figure S5 shows the peak month of the annual cycle of sea level. This may also be compared to 783 
Figure 10.4 of Pugh and Woodworth (2014). 784 

 785 

Figure S6 shows the standard deviation of annual mean sea surface height. This may be compared to 786 
Figure 1(a) of Meyssignac et al. (2017) (Causes of the regional variability in observed sea level, sea 787 
surface temperature and ocean colour over the period 1993–2011. Surveys in Geophysics, 38, 187–788 
215, doi:10.1007/s10712-016-9383-1). 789 
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790 
(a) 791 

 792 

(b) 793 

Figure S7. (a) Standard deviation of 5-day mean values of wind-driven sea level from the AGBOM 794 
barotropic model during 1990-2003. (b) Standard deviation of 35-day mean values. Units are cm.  795 
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 796 

Figure S8 showing the spatially-dependent RCP4.5 scenario for regional sea level rise around the world 797 
coastline between the epochs 1986-2005 and 2081-2100. Adapted from Figure 13.19a of Church et al. 798 
(2013). Units are metres. 799 

 800 

 801 

Figure S9 showing the uncertainty (σ) in the projected sea level rise of Figure S8. Units are metres. 802 


