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Describing the movement of molecules in
reduced-dimension models
Natasha S. Savage 1✉

When addressing spatial biological questions using mathematical models, symmetries within

the system are often exploited to simplify the problem by reducing its physical dimension. In

a reduced-dimension model molecular movement is restricted to the reduced dimension,

changing the nature of molecular movement. This change in molecular movement can lead to

quantitatively and even qualitatively different results in the full and reduced systems. Within

this manuscript we discuss the condition under which restricted molecular movement in

reduced-dimension models accurately approximates molecular movement in the full system.

For those systems which do not satisfy the condition, we present a general method for

approximating unrestricted molecular movement in reduced-dimension models. We will

derive a mathematically robust, finite difference method for solving the 2D diffusion equation

within a 1D reduced-dimension model. The methods described here can be used to improve

the accuracy of many reduced-dimension models while retaining benefits of system

simplification.
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S imple models of complex systems are an invaluable tool for
gaining conceptual insight into biological mechanism1,2. In
spatial models a powerful simplification technique often

used is to exploit symmetries within a biological system’s geo-
metry and patterning to reduce the physical dimension of the
problem. For example, consider a single cell and the formation of
a concentrated patch of membrane-associated proteins, a polarity
patch, this system has radial symmetry and so mechanisms
controlling patch formation could be explored by considering a
one-dimensional (1D) slice through the centre of the patch,
rather than considering the entire two-dimensional (2D)
membrane3–8 (Fig. 1a). When addressing questions which
include cytoplasmic gradients, for example, a system’s dimension
is often reduced from 3D to 2D1,9–13, or even 1D1,2,14–16. An
analogy for reduced-dimension models is the focal plane in
microscopy: Analysis is performed on data acquired from a
representative slice through the system, then results are inferred
onto the entire cell or tissue. All spatial models contain a
description of molecular movement. Molecular movement in
reduced-dimension models is restricted to the focal plane (com-
pare Fig. 1b and c). Thus, when one reduces the dimension of a
system and restricts molecular movement to the reduced
dimension, they are changing the geometry of the problem. It is
understood that cell geometry influences molecular movement
and patterning11,13,17–19. Here we present a general methodology
that enables a reduced-dimension model to take the system’s full
geometry into account, by using it to estimate the movement of
molecules through the focal plane. We go on to use this general
methodology to derive a simple numerical method (the 1D-
uFDM) that can be used to solve the 2D diffusion equation in a
1D reduced-dimension model.

Results
Within this manuscript, we will consider the full system to be a
2D surface, a membrane, and the reduced-dimension model to be
a 1D ring (Fig. 1a). Molecular movement will be diffusive.
Throughout the manuscript 2D and 1D solutions are compared
to analyse and illustrate the accuracy of the reduced-dimension

method being proposed. A user of this method would not gen-
erate the full dimension model, they would only generate the
simplified reduced-dimension model.

Reduced-dimension models have a zero-flux assumption. In
order to use a numerical method to calculate changes in mole-
cular concentrations over space and time, the space and time
must be discretised. For a 2D space, discretisation is achieved by
drawing a mesh over the space (Fig. 1a, d, e). The concentration
within each discretised space is represented by a single value and
this value is used in the numerical method. Discretisation of time
is analogous to collecting time course data, one defines a time
step, 4t seconds, and collects data at a number of time points 4t
seconds apart. The finite difference method is a commonly used
method for calculating molecular concentrations over discretised
space and time20,21.

To investigate any inbuilt assumptions of reduced-dimension
models we compared the finite difference solution to the diffusion
equation in 2D and 1D. For the 2D solution cover the 2D
membrane with a regular mesh (Fig. 1d). The mesh points along
the x-axis are labelled i ¼ 1; 2; ¼ ;N and are distance 4x μm
apart, the mesh points along the y-axis are labelled j ¼
1; 2; ¼ ;M and are distance 4y μm apart. Let uτi;j represent the

concentration of molecule u on the membrane at point i; j
� �

and
time point τ, τ ¼ 0; 1; 2; 3; ¼ ; time points are 4t seconds apart.
The change in concentration of uτi;j over time, as a result of
diffusive movement, is described by the solution to the 2D
diffusion equation. The explicit 2D finite difference scheme (2D-
FDM) used to solve the 2D diffusion equation on a regular mesh,
with diffusion coefficient D μm2s�1, is20,21

Explicit 2D-FDM:

uτþ1
i;j ¼ uτi;j þ

4t

4x2
D uτi�1;j � 2uτi;j þ uτiþ1;j

� �
þ 4t

4y2
D uτi;j�1 � 2uτi;j þ uτi;jþ1

� �

ð1Þ
The finite difference method is an iterative method. Thus, one

must know the concentrations of molecule u at all points of the

Fig. 1 Dimension reduction. a Dimension reduction example showing a polarity patch on a spherical cell and body of an elongated cell with their reduced-
dimension model representation, a stripe on a ring. White lines on 2D surfaces show the focal plane. bMolecules on a 2D surface moving through the focal
plane. The focal plane is shown as a white stripe. cMolecules in a reduced-dimension model are restricted to the focal plane (white stripe). d Regular mesh
over a polarity patch on the body of an elongated cell, the zero-flux assumption is not satisfied. e Spherical mesh over a polarity patch on a spherical cell.
The zero-flux assumption is satisfied, uτi;J�1 ¼ uτi;J ¼ uτi;Jþ1. f Regular mesh over a polarity patch on the body of an elongated cell. Distances from the centre
of the patch of each point in rows J± 1 found using Pythagoras (white triangles and text). Concentrations in circles are the same because of radial
symmetry. g Using interpolation (black line) on the concentrations in the focal plane (orange dots) to estimate euτi;J± 1 (black open circles).
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mesh at time point τ ¼ 0. We denote these initial concentrations
as u0i;j. The initial concentrations (u

0
i;j) are substituted into Eq. (1)

to calculate u1i;j. u
1
i;j are the concentrations at time point 1. The

time at time point 1 is Δt seconds. The concentrations u1i;j are
then substituted into Eq. (1) to calculate u2i;j, the concentrations at
time point 2, 2Δt seconds. This iterative process continues until
adequate time course data are calculated. The calculated time
course data are referred to as the solution to the finite difference
method.

Note that in order to calculate the concentrations uτþ1
i;j the 2D-

FDM calculates molecular movement along the x-axis and y-axis
separately. Molecular movement along the x-axis is calculated by
the term 4t

4x2 D
�
uτi�1;j � 2uτi;j þ uτiþ1;j

�
, molecular movement along

the y-axis is calculated by the term 4t
4y2 D

�
uτi;j�1 � 2uτi;j þ uτi;jþ1

�
.

To build a 1D reduced-dimension model describing the
diffusive movement of u on a 2D surface, the focal plane is set
to run through the axis of symmetry of u and the membrane
(Fig. 1a). Molecule movement through the focal plane is then
approximated by the solution to the 1D diffusion equation. Recall
the 2D mesh, assume that the focal plane is set along the x-axis at
row j ¼ J (Fig. 1d). The explicit 1D finite difference scheme (1D-
FDM) used to solve the 1D diffusion equation is20,21

Explicit 1D-FDM:

uτþ1
i;J ¼ uτi;J þ Δt

Δx2D
�
uτi�1;J � 2uτi;J þ uτiþ1;J

�
ð2Þ

As the 1D reduced-dimension model only contains informa-
tion about concentrations on row J the 1D-FDM contains no
terms for calculating the movement of u along the y-axis
(compare the 2D and 1D-FDMs, Eqs. 1 and 2). Thus, molecular
movement in the 1D reduced-dimension model is modelled as
though it is restricted to the focal plane (Fig. 1c). An inbuilt
assumption of the 1D reduced-dimension model is that�
uτi;J�1 � 2uτi;J þ uτi;Jþ1

� ¼ 0, the number of molecules leaving
the focal plane, �2uτi;J , is equal to the number of molecules
entering it, uτi;J�1 þ uτi;Jþ1, at all points in space, i, for all time, τ:
There is zero-flux through the focal plane.

Conditions under which the zero-flux assumption is valid. The
zero-flux assumption is valid for a subset of reduced-dimension
models, those for which a mesh can be drawn such that the zero-
flux assumption holds. For example, consider the formation of a
polarity patch on a spherical cell, one could construct a spherical
mesh with a pole located at the centre of the patch (Fig. 1a).
Because of the placing of the mesh concentrations uτi;J�1, u

τ
i;J and

uτi;Jþ1 are equal and the zero-flux assumption holds (Fig. 1e).
Thus, molecular movement in a 1D reduced-dimension model of
this system would be accurately described by the 1D diffusion
equation.

An example of a system for which the zero-flux assumption
does not hold is the formation of a polarity patch along the body
of an elongated cell (Fig. 1a). To solve the diffusion equation here
a square mesh is constructed on the cell surface. As a polarity
patch is radial and the mesh is square a focal plane cannot be
found such that a 1D reduced-dimension model would obey the
zero-flux assumption (Fig. 1d). Thus, the 1D diffusion equation
would give an inaccurate approximation of 2D molecular
movement through the focal plane.

For the modeller, the validity of the zero-flux assumption can
be ascertained without generating a solution for the full system
and calculating molecular movement through the focal plane. The
modeller can consider the symmetries in the full system and the
form of the full mesh using cartoons, as in Fig. 1. From the
cartoons one can estimate whether or not the zero-flux

assumption holds. This cartoon estimation of zero-flux is not
dissimilar to the estimation made by the modeller when deciding
whether or not it is appropriate to reduce a system’s dimension.

A general method for calculating molecular movement into
and out of the focal plane. Here we present a general metho-
dology which can be used to increase the accuracy of reduced-
dimension models that do not satisfy the zero-flux assumption: If
it is possible to estimate the concentrations either side of the focal
plane (for example, terms uτi;Jþ1 and uτi;J�1 in the explicit 2D-FDM
equation) using the concentrations on the focal plane (uτi;J in our
example), then we can estimate molecular movement into and
out of the focal plane. In order to reduce a system’s dimension,
the system must exhibit symmetry. Therefore, by definition, the
concentration profile in the focal plane (i.e. in the dimensionally
reduced model) represents the concentration profile of the full
system and thus holds information about the concentrations at
every point in the full system. As such, the information in the
focal plane can be used to calculate concentrations either side of
the focal plane in any system for which dimension reduction is
possible.

Below we provide a proof of principle for the general method.
We derive a mathematically robust numerical method which can
be used to improve the accuracy of a subset of reduced-dimension
models. Namely, diffusive movement in 1D reduced-dimension
models that do not satisfy the zero-flux assumption and exhibit
radial molecular dynamics. This proof of principle does not
represent the limits of the general method for estimating
molecular movement into and out of the focal plane. As discussed
above, the general method can be used for systems of any
dimension and concentration profiles that do not exhibit radial
symmetry. Furthermore, molecular movement need not be
governed by diffusion.

Solving the 2D diffusion equation in a 1D reduced-dimension
model. We will use the general methodology to construct a FDM
that solves the 2D diffusion equation in a 1D reduced-dimension
model. Consider again the polarity patch on the body of an
elongated cell (Fig. 1a, d, f). The 2D polarity patch has radial
symmetry. A property of radial symmetry is that the concentra-
tion profile along all lines running through the centre of the patch
is identical. When we reduce the dimension of this system to 1D,
we position the focal plane such that the 1D model calculates the
concentration profile along one line running through the centre
of the 2D patch (row J). As the concentration profile on all lines
running through the centre of the patch is identical, we can use
the concentration profile in the 1D model to calculate the con-
centrations at all points on the 2D surface. The explicit 2D-FDM
(Eq. 1) contains two concentrations that are not on the focal
plane, uτi;Jþ1 and uτi;J�1. Thus, to calculate molecular movement
into and out of the focal plane, row J , and solve the 2D diffusion
equation in a 1D reduced-dimension model, we need only esti-
mate concentrations on either side of the focal plane, rows J ± 1.

Let ~uτi;J ± 1 denote the estimated concentrations on rows J ± 1.
~uτi;J ± 1 can be estimated from the concentrations of molecule u
along the focal plane, uτi;J , using interpolation. The interpolation
mesh points are found using Pythagoras’ theorem (Fig. 1f, g,
“Methods: Generating the interpolation mesh in 1D”). In order to
use Pythagoras to calculate the interpolation mesh points, the
modeller has to set a value for Δy. In the illustrative examples
below, we have set Δy ¼ Δx. Analysis on the accuracy of
estimating concentrations either side of the focal plane and the
choice of Δx, Δy, can be found in Supplementary: Accuracy of
estimating concentrations at phantom points using interpolation.
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Further discussion on the derivation of the explicit 1D finite
difference diffusion equation with unrestricted movement
(explicit 1D-uFDM) can be found in “Methods: Explicit 1D-
uFDM derivation”. The 1D-uFDM is

Explicit 1D-uFDM:

uτþ1
i ¼ uτi þ Δt

Δx2D
�
uτi�1 � 2uτiþ1 þ uτiþ1

�
þ Δt

Δx2D
�
~uτi;J�1 � 2uτi þ ~uτi;Jþ1

�

ð3Þ
See “Methods: Explicit 1D-uFDM solution” for the solution to

the explicit 1D-uFDM. The explicit 1D-uFDM numerically
stability condition is derived in “Methods: Explicit 1D-uFDM
numerical stability condition” and tested numerically in Supple-
mentary: Numerical verification of stability Conditions. A fully
implicit 1D-uFDM is ill defined (Supplementary: An implicit 1D-
uFDM is ill defined); however, a semi-implicit 1D-uFDM and
numerical stability condition can be derived (“Methods: Semi-
implicit 1D-uFDM solution, Methods: Semi-implicit 1D-uFDM
numerical stability condition”). The explicit and semi-implicit
1D-uFDMs solve the 2D diffusion equation in a 1D reduced-
dimension model.

In all three illustrative examples below, we are testing the
ability of the explicit 1D-uFDM to solve the 2D diffusion
equation in a 1D reduced-dimension model. We will also
illustrate the accuracy gained by solving the 2D diffusion
equation in a 1D reduced-dimension model using the 1D-uFDM,
when compared to using the 1D diffusion equation. Thus, the
solutions of the 1D-uFDM and 1D-FDM will be compared to the
solution on a slice through the centre of the patch in the full
system. The 2D solution will be calculated using 2D-FDM.

Illustrative example 1: Diffusion. First, we considered the dif-
fusion of molecules, u, from a concentrated patch on the mem-
brane. The initial concentration profile in the reduced-dimension
models (Fig. 2a) was identical to the initial concentration along a
slice through the centre of the patch in the 2D system (Fig. 2a,
inset). The diffusion equation was solved using the explicit 2D-
FDM, 1D-FDM and 1D-uFDM (Eqs. 1–3), diffusion coefficient
D ¼ 0:1 μm2 s�1 (“Methods: Illustrative example 1: Parameters).
The solutions of u in both 1D reduced-dimension models were
compared with the solutions of u along a slice through the centre
of the initial patch (see Supplementary: Accuracy of the semi-
implicit 1D-uFDM when simulating diffusion for implicit 2D-
FDM, 1D-FDM and semi-implicit 1D-uFDM comparisons).
Results: The reduced-dimension model using the 1D diffusion
equation to describe diffusive movement (1D-FDM, Eq. 2) was
quantitatively inaccurate at estimating the concentration on a
slice through the centre of the 2D patch (Fig. 2b, c). This is
because on the 2D membrane molecules diffuse out of the focal
plane resulting in a reduction in the mean concentration of
molecules in the central slice (Fig. 2d). However, molecules in the
1D-FDM model are trapped in the focal plane and the mean
concentration of molecules remains constant, resulting in a
higher homogeneous steady state (Fig. 2b–d). The 1D-uFDM
estimates the movement of molecules out of the focal plane
producing a more accurate reduced-dimension representation of
the full system (Fig. 2b–e). While the 1D-uFDM represents the
2D system well it does contain error (Fig. 2e), in-depth error
analysis can be found in Supplementary: Steady state accuracy of
1D-uFDMs and Accuracy dynamics of 1D-uFDMs.

Illustrative example 2: Florescence recovery after photo-
bleaching. The 1D-uFDM was able to solve the 2D diffusion
equation in a 1D reduced-dimension model when calculating
molecules diffusing away from a central patch. We went on to
ask, how accurate is the 1D-uFDM when calculating the

movement of molecules into a central trough. To answer this
question we modelled a florescence recovery after photobleaching
(FRAP) experiment. FRAP experiments are used to estimate the
diffusion coefficient of a fluorescently tagged protein. In a FRAP
experiment fluorophores, attached to a protein of interest, are
bleached by a laser. The florescence recovery within the bleached
area is recorded and used to estimate a diffusion coefficient.

In our FRAP model the initial fluorophore concentrations were
set to reflect a uniformly covered membrane after bleaching with
a Gaussian laser22 (Fig. 3a). Diffusive movement of the
unbleached, fluorescently tagged, proteins was modelled using
the 2D-FDM, the 1D-FDM and the 1D-uFDM (Eqs. 1–3),
diffusion coefficient D ¼ 0:1 μm2 s�1. Results: In all FRAP
solutions fluorescently tagged proteins diffused into the bleached
area (Fig. 3b). The 1D-FDM solution had a low homogeneous
steady-state concentration when compared to the homogeneous
steady state along a slice through the centre of the bleached area
in the full system (Fig. 3b). The low steady-state concentration in
the 1D-FDM solution can be accounted for by the inability of
tagged proteins to move into the focal plane (Fig. 3c). The 1D-
uFDM estimated the movement of tagged proteins into the focal
plane to give a more accurate representation of the 2D system
(Fig. 3b, c). Further accuracy analysis can be found in
Supplementary: Accuracy of the 1D-FDM and 1D-uFDM when
simulating FRAP.

As FRAP is used to estimate diffusion coefficients we performed
FRAP analysis on our simulated FRAP data, “Methods: Illustrative
example 2: Parameters and FRAP analysis”. The FRAP recovery
curves (Fig. 3d) show the mean florescence recovery within the
region of interest (ROI, dotted lines Fig. 3a). The results of FRAP
analysis can be found in Table 1. The half time, t1=2 seconds, is the
time needed for the florescence intensity to reach half its
maximum recovery. For the 2D system we calculated the half
time and estimated the diffusion coefficient, eD μm2 s�1, using the
full 2D solution and the data along a slice through the centre of
the bleached area. Both methods provided comparable results,
estimating the diffusion coefficient accurately to one decimal place
(Table 1). FRAP analysis on the 1D-FDM estimated the diffusion
coefficient to be half its actual value. In order for a 1D-FDM
solution to estimate a diffusion coefficient eD ¼ 0:1 μm2 s�1, the
actual diffusion coefficient had to be increased to D ¼
0:22 μm2 s�1 (Table 1). FRAP analysis on the 1D-uFDM solution
resulted in an accurate estimation of the diffusion coefficient.
Thus, the 1D-uFDM is able to estimate 2D diffusive movement
into a trough. Furthermore, these results show that data obtained
from membrane FRAP experiments could be used to fit
parameters in 1D-uFDM reduced-dimension models.

Illustrative example 3: Reaction-diffusion dynamics. Spatial
models rarely focus solely on diffusion. We asked to what extent
could 1D-uFDM reaction-diffusion (RD) model capture 2D RD
dynamics along a slide through the full system’s symmetry. To
address this question, a two component, mass conserved, sub-
strate depletion model was used8 (Fig. 4a, Methods: Illustrative
example 3: RD parameters and simulations).

∂

∂t
u1 ¼ u21u2 � u1 þ 0:01ð Þ∇2u1 ð4Þ

∂

∂t
u2 ¼ � u21u2 � u1

� �þ ∇2u2 ð5Þ

∇2 denotes diffusion, the Laplacian, it is this part of the RD
equation which will be estimated by the finite difference methods
(Eqs. 1–3). Initial concentrations were set to represent a signalling
event which caused a pulse conversion of molecules to u1 from
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the u2 pool (Fig. 4b). After this initial signalling event the
dynamics of the system were described by the RD equations. As
in previous illustrative examples, the RD equations were solved in
the full 2D system and the two 1D reduced-dimension models.
Diffusion was solved using the 2D-FDM, the 1D-FDM and the
1D-uFDM. The RD model was used to explore the effect of a
progressively stronger initial signalling pulse on the dynamics of
each solution. Results: For all solutions, larger initial signalling
pulses deplete local u2 such that the RD positive feedback
becomes ineffective (u21u2 is very small) and a u1 trough is soon
formed at the location of the initial pulse (Fig. 4c, d). Similar to
the FRAP analysis results, u1 molecules were replenished more
slowly in the 1D-FDM RD solution than in the 2D-FDM and 1D-
uFDM RD solutions. Thus, in the 1D-FDM RD solution, as the
initial signalling pulse increases, creating a larger trough, move-
ment into the trough becomes insufficient to reach the centre and
two narrow peaks are formed (Fig. 4c, e). The 1D-FDM solution
is qualitatively different from the 2D-FDM solution for α≥ 1:5
(Fig. 4c–e). The 1D-uFDM reproduced all the 2D-FDM RD
molecular dynamics through the focal plane (Fig. 4c–e), showing
that it can be used to increase the accuracy of reduced-dimension
RD models. Further results and accuracy analysis can be found in
Supplementary: Reaction-diffusion comparisons and the effect of
geometry.

Methods
Generating the interpolation mesh in 1D. Consider a 1D reduced-dimension
model, reduced from a 2D uniform mesh (Fig. 1a). To solve the 1D-uFDM one
must use the concentrations on the 1D mesh, row J of the 2D mesh, to estimate
concentrations at mesh points in rows J ± 1 of the 2D mesh (Fig. 1d, f, g). The
reduced-dimension model is a ring and so has periodic boundary conditions.

Without loss of generality, we will assume the centre of the patch at i ¼ N=2. To
generate the mesh to be interpolated from re-index the 1D mesh using
n ¼ i� N=2. The transformed index, to be interpolated from is
n ¼ 1� N

2

� �
; 2� N

2

� �
; ¼ � 1; 0; 1; ¼ N

2 � 1
� �

; N2
� �

. To generate the mesh to be
interpolated to use the transformed index to calculate the distance of each point in

rows J ± 1 from the centre of the patch using the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4xð Þ2 þ4y2

q
for

n ¼ 1� N
2

� �
; 2� N

2

� �
; ¼ � 1; 0; 1; ¼ N

2 � 1
� �

; N2
� �

(Fig. 1g). Then interpolate.
For systems with radial symmetry one need only estimate concentrations at a
quarter of the phantom points to solve the 1D-uFDM, for example,
n ¼ 0; 1; ¼ N

2 � 1
� �

; N2
� �

. The accuracy of estimating concentrations in rows J ± 1
of the 2D mesh, using interpolation, is discussed in Supplementary: Accuracy of
estimating concentrations at phantom points using interpolation.

Explicit 1D-uFDM derivation. The explicit 2D-FDM is

uτþ1
i;j ¼ uτi;j þ dx uτi�1;j � 2uτi;j þ uτiþ1;j

� �
þ dy uτi;j�1 � 2uτi;j þ uτi;jþ1

� �
ð6Þ

where dx ¼ 4t
4x2

D and dy ¼ 4t
4y2

D. J is the row of mesh points through the centre of

the patch, the focal plane. When estimating 2D diffusion, through the centre of the
patch, in 1D space, we only have information about row J . Thus, we have to
estimate the concentrations uτi;J�1 and uτi;Jþ1. To achieve this we use the property of
radial symmetry exhibited by a patch of proteins. Transform the 4x mesh points
such that the centre of the patch is at mesh point n ¼ 0 (see section “Methods:
Generating the interpolation mesh in 1D”). The property of radial symmetry
dictates that, for k≥ 0, uτk;Jþ1 ¼ uτk;J�1 ¼ uτ�k;Jþ1 ¼ uτ�k;J�1 (Fig. 1d, f). Denote the

estimated concentration uτn;J ± 1 as uτ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4xð Þ2þ4y2

p 8n ¼ 1� N
2

� �
; ¼ N

2

� �
(Fig. 1g).

Substituting the interpolated values of uτn;J ± 1 into the 2D-FDM equations, and
removing the J subscript we get the 1D-uFDM,

uτþ1
n ¼ uτn þ dx uτn�1 � 2uτn þ uτnþ1

� �þ 2dy uτ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4xð Þ2þ4y2

p � uτn

	 

ð7Þ

Fig. 2 Illustrative example 1: Diffusion initial conditions and results. a Initial concentrations for diffusion solutions, u1D x;0ð Þ ¼ e�x2 and inset
u2D x; y;0ð Þ ¼ e� x2þy2ð Þ. The dotted line shows the threshold for colorplots (inset and b). The threshold was chosen to highlight differences in dynamics and
homogeneous steady states in kymographs. b Kymographs of the 2D solution along a slice through the centre of the initial patch, and the 1D solutions.
c Concentration at the centre of the initial patch plotted over time for each solution. In this illustrative example the central concentration is the maximum
concentration. d Mean concentration in the 1D solutions compared with the mean concentration of the 2D solution along a slice through the centre of the
initial patch. e Mean squared distance (MSD) between the concentrations along a slice through the centre of the initial patch in the 2D solution and the 1D
solutions. 1D-FDM comparison is shown in blue, and 1D-uFDM comparison in red.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02200-3 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:689 | https://doi.org/10.1038/s42003-021-02200-3 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


Explicit 1D-uFDM solution. To solve the explicit 1D-uFDM we write the 1D-
uFDM equation in matrix form

uτþ1 ¼ Auτ þ 2dy~u
τ
J ð8Þ

where uτ denotes the N × 1 vector of concentrations uτn on mesh points
n ¼ 1� N

2

� �
; ¼ N

2

� �
, ~uτJ denotes the N × 1 vector of interpolated concentrations

uτ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4xð Þ2þ4y2

p , n ¼ 1� N
2

� �
; ¼ ; N2

� �
, and

A ¼

1� 2 dx þ dy
� �

dx dx

dx 1� 2 dx þ dy
� �

dx

. .
.

dx 1� 2 dx þ dy
� �

dx

dx dx 1� 2 dx þ dy
� �

2
666666666664

3
777777777775

ð9Þ

a tridiagonal N ×N matrix, with periodic boundary conditions. Using interpolation

on the matrix form we derive the solution to the explicit 1D-uFDM,

uτ ¼ Aτu0 þ 2dy ∑
τ

k¼1
Aτ�k~uk�1

J ð9Þ

Explicit 1D-uFDM numerical stability condition. Let λ denote the vector of
eigenvalues for matrix A. To calculate the stability condition for 1D-uFDM
numerical stability recall that the values ~uτj are interpolated from uτ at time τ, thus,
as long as a stable interpolation method is used, the solution will be stable if
jλj ≤ 1 8 λ 2 λ. Gerschgorin’s circle theorem21 states that λ is bounded by the
inequality,

1� 2 dx þ dy
� �

� 2dx ≤ λ≤ 1� 2 dx þ dy
� �

þ 2dx ð10Þ

which can be simplified to,

1� 4dx � 2dy ≤ λ≤ 1� 2dy ð11Þ
Thus, the 1D-uFDM solution will be numerically stable if 1� 2dy ≤ 1 and

�1 ≤ 1� 4dx � 2dy . 1� 2dy ≤ 1 is always satisfied as dy > 0. The inequality
�1 ≤ 1� 4dx � 2dy leads to the explicit 1D-uFDM stability condition,

2dx þ dy ≤ 1 ð12Þ
The explicit 1D-uFDM stability condition is numerically verified in Supple-

mentary: Numerical verification of stability conditions.

Semi-implicit 1D-uFDM: derivation. A fully implicit 1D-uFDM is ill defined as
molecular movement through the focal plane is inferred using the concentrations
on the focal plane, Supplementary: An implicit 1D-uFDM is ill defined. A semi-
implicit numerical solver can be defined in which molecular movement through
the focal plane is solved explicitly and molecular movement on the focal plane is
solved implicitly. The semi-implicit 2D-FDM equation is

uτþ1
i;j ¼ uτi;j þ dx uτþ1

i�1;j � 2uτþ1
i;j þ uτþ1

iþ1;j

� �
þ dy uτi;j�1 � 2uτi;j þ uτi;jþ1

� �
ð13Þ

Using the same reasoning used for the derivation of the explicit 1D-uFDM, the

Fig. 3 Illustrative example 2: FRAP initial conditions and results. a Initial concentrations for FRAP simulations after bleaching with a Gaussian laser,
radius 0:55 μm22. u1D x;0ð Þ ¼ 1� e�x2 , inset u2D x; y;0ð Þ ¼ 1� e� x2þy2ð Þ. Dotted lines show the ROI. b Kymographs of the 2D solution along a slice through
the centre of the bleached area, and the 1D solutions. c Mean concentration in the 1D solutions compared with the mean concentration of the 2D solution
along a slice through the centre of the bleached area. d FRAP recovery curves. The 2D ROI is a circle diameter 1:1 μm, 1D ROI a line length 1:1 μm.

Table 1 Results of FRAP analysis on the 1D and 2D solutions.

D ¼ 0:1 μm2 s�1 ROI t1=2s
~D μm2 s�1

2D-FDM 2D 2:711 0:106
2D-FDM 1D 2:801 0:103
1D-FDM 1D 6:145 0:047
1D-uFDM 1D 2:678 0:108

D ¼ 0:22 μm2 s�1 ROI t1=2s
~D μm2 s�1

1D-FDM 1D 2:678 0:108

Half time, t1=2 seconds, actual diffusion coefficients, D μm2 s�1 , and estimated diffusion
coefficients, ~D μm2 s�1 . The 2D ROI is a circle diameter 1:1 μm, 1D ROI a line length 1:1 μm.
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semi-implicit 1D-uFDM is

uτþ1
n ¼ uτn þ dx uτþ1

n�1 � 2uτþ1
n þ uτþ1

nþ1

� �þ 2dy uτ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n4xð Þ2þ4y2

p � uτn

	 

ð14Þ

Note, the semi-implicit 1D-uFDM scheme mirrors the 1D Crank-Nicolson
method which converges and is unconditionally stable21. We will show that the
same is not true for the semi-implicit 1D-uFDM. However, the semi-implicit 1D-
uFDM has less strict numerical stability conditions than the explicit 1D-uFDM.

Semi-implicit 1D-uFDM: solution. To solve the semi-implicit 1D-uFDM we write
it in matrix form,

uτþ1 ¼ C�1
��

1� 2dy
�
uτ þ 2dy~u

τ
J

�
ð15Þ

where

C ¼

1þ 2dx �dx �dx
�dx 1þ 2dx �dx

. .
.

�dx 1þ 2dx �dx
�dx �dx 1þ 2dx

2
66666664

3
77777775

a tridiagonal N ×N matrix, with periodic boundary conditions. Again, using
interpolation on the matrix form of the equation we derive the solution to the
semi-implicit 1D-uFDM,

ukþ1 ¼ C�ðkþ1Þ
�
1� 2dy

�kþ1
u0 þ 2dy ∑

k

l¼1

�
1� 2dy

�l�1
C�1~uk�l

J ð16Þ

Semi-implicit 1D-uFDM: numerical stability condition. Let λ be the vector of
eigenvalues for C. For the solution of the semi-implicit 1D-uFDM to be stable two

inequalities must hold, 1=λ
�� ��≤ 1 and 1� 2dy

��� ���≤ 1. The first inequality 1≤ λj j can
be investigated using Gerschgorin’s circle theorem21. Gerschgorin’s circle theorem
states that

1þ 2dx � 2dx ≤ λ≤ 1þ 2dx þ 2dx ð17Þ
which can be simplified to

1≤ λ≤ 1þ 4dx ð18Þ
Thus, the inequality 1 ≤ jλj is always satisfied. The second inequality j1� 2dyj≤ 1
expands to �1 ≤ 1� 2dy ≤ 1. 1� 2dy ≤ 1 as dy ≥ 0. �1≤ 1� 2dy leads to the semi-
implicit 1D-uFDM stability condition,

dy ≤ 1 ð19Þ
The semi-implicit 1D-uFDM stability condition is numerically verified in

Supplementary: Numerical verification of stability conditions.

Illustrative example 1: Parameters. For results shown in Fig. 2b–e, to enable
comparisons between the different numerical method solutions, the explicit 2D-
FDM, 1D-FDM and 1D-uFDM were all solved using the same parameters:
D ¼ 0:1 μm2 s�1, Δx ¼ Δy ¼ 0:1 μm, Δt ¼ 0:01s. These values were chosen to
satisfy the numerical stability conditions of all three numerical methods. The
explicit 1D-uFDM accuracy analysis found in Supplementary: Steady state accuracy
of 1D-uFDMs and Accuracy dynamics of 1D-uFDMs was also taken into
consideration.

Illustrative Example 2: Parameters and FRAP analysis. For the comparative
FRAP analysis, D ¼ 0:1 μm2 s�1, Δx ¼ Δy ¼ 0:1 μm, Δt ¼ 0:01s for all solutions.
The 2D ROI used to calculate the FRAP recovery curve was a circle radius 0:55 μm
and the 1D ROI a line 1:1 μm in length (Fig. 3a). Both ROIs were placed in the
centre of the bleached region. t1=2 was calculated using linear interpolation on the

Fig. 4 Illustrative example 3: Reaction-diffusion initial conditions and results. a Cartoon of the RD model. Black arrows represent reactions and green
dashed arrows represent diffusion. Mass is conserved, molecules are only changed, never created or lost. b Initial concentrations of u1 and u2 for the RD
models. α ¼ ½0:5; 1; ¼ ; 3� is the maximum concentration of the u1 peak after the initial signalling pulse. u1 x; y;0ð Þ ¼ αe� x2þy2ð Þ, u1 x;0ð Þ ¼ αe�x2 and
u2 ¼ m� u1, where m is the mass of the system, see “Methods: Illustrative example 3: RD parameters and simulations”. c Kymographs of the u1
concentration in the 2D solution along a slice through the centre of the initial signalling pulse, and the 1D solutions. d u1 concentration dynamics at the
centre of the initial signalling pulse in the 1D and 2D solutions. e Steady-state colorplots of the 2D and 1D u1 solutions.
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FRAP recovery curve (Fig. 3d). To estimate the diffusion coefficient the equation,

~D ¼ r2n þ r2e
8t1

2

ð20Þ

was used22, where re represents the value of the effective radius and rn the laser
radius. For the FRAP simulations, re ¼ p2 and rn ¼ 0:55.

Illustrative example 3: RD parameters and simulations. Symmetry breaking
parameters, and a mass sufficient for the system to exhibit saturation due to
substrate depletion (m ¼ 3) were chosen8. The mass of the system was defined as
the mean concentration of molecules,

m ¼ u1
� þ u2

�  ð21Þ
where, for k ¼ 1; 2f g,

uk
�  ¼ 1

NM
∑
N

i¼1
∑
M

j¼1
uk i;jð Þ ð22Þ

for the 2D case, and,

uk
�  ¼ 1

N
∑
N

i¼1
uk ið Þ ð23Þ

for 1D.
Δx ¼ Δy ¼ 0:1 μm. Solving the RD equations was a done using a two-step

process: reactions were solved using Euler’s method at time steps ΔtR ¼ 1 ´ 10�5s
for all simulations, diffusion was solved using explicit 2D-FDM, 1D-FDM and 1D-
uFDM at time steps ΔtD ¼ 0:002s to ensure numerical stability of the explicit 2D-
FDM.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The underlying data are present in the manuscript itself and its supplementary
information file. Any other remaining information can be obtained from the
corresponding author upon reasonable request.

Code availability
All codes, plotters and raw figure files used in the generation of Illustrative Examples 1–3
are available through Zenodo23 and GitHub24.
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