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This work presents an extended sequential Monte Carlo sampling algorithm embedded with a Variational Bayes step.
The algorithm is applied to estimate the distribution of time-varying parameters in a Bayesian filtering procedure.
This algorithm seeks to address the case whereby the state-evolution model does not have an inverse function. In
the proposed approach, a Gaussian mixture model is adopted whose covariance matrix is determined via principle
component analysis.
As a form of verification, a numerical example involving the identification of inter-storey stiffness within a 2-DOF
shear building model is presented whereby the stiffness parameters degrade according to a simple State-evolution
model whose inverse function can be derived. The Variational Bayes - sequential ensemble Monte Carlo sampler is
implemented alongside the Sequential Monte Carlo sampler and the results compared on the basis of the accuracy
and precision of the estimates as well computational time. A non-linear time-series model whose state-evolution
model does not yield an inverse function is also analysed to show the applicability of the proposed approach.

Keywords: Variational Bayes, Bayesian Model Updating, Sequential Monte Carlo, Uncertainty Quantification,
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1. Introduction
In recent years, on-line Bayesian inference has
garnered significant interest to perform real-time
identification of epistemic structural parameters
in the field of engineering, especially so for
structural health monitoring (Chang et al. (2003),
Rocchetta et al. (2018)). A popular tool adapted
for such purpose is the Sequential Monte Carlo
(SMC) sampler. The SMC sampler is endowed
with 2 key benefits over other sampling techniques
such as Markov-Chain Monte Carlo (MCMC) and
Transitional Markov-Chain Monte Carlo (TM-
CMC): 1) the SMC sampler is able to sample from
time-varying posteriors; and 2) it can infer time-
varying model parameters (Doucet et al. (2011)).

Current SMC algorithms face the following
limitations: 1) it is computationally inefficient; 2)
requires knowledge of the inverse Markov model
to compute the predictive PDF which reflects the
prediction of the time-varying parameter in the
next time-step prior to observing the next data;
and 3) it does not have any mechanism to con-
trol the sample acceptance-rates within accept-
able bounds (Roberts and Rosenthal (2001)). To
address these limitations, this paper proposes a

new sampler named Variational Bayes-Sequential
Ensemble Monte Carlo (VB-SEMC). The sampler
presents 3 key features: 1) the use of the Affine-
invariant Ensemble Sampler (AIES) in place of
the Metropolis-Hastings (MH) algorithm; 2) a
Variational Bayes step to approximate the required
distribution via the use of a Gaussian Mixture
Model (Ormerod and Wand (2012)); and 3) adopt
an adaptive step-size tuning algorithm to moderate
the acceptance-rate of the sampler automatically.
The proposed VB-SEMC sampler seeks to be: 1)
computationally efficient; and 2) provide reason-
able approximations to the predictive PDF.

To highlight the advantages and strengths of
the proposed VB-SEMC, the sampler is com-
pared against the traditional SMC sampler by
Chopin (2002) for structural parameter identi-
fication. In particular, a 2-DOF shear building
model is analysed where the objective is to iden-
tify the time-invariant floor masses and the time-
varying inter-storey stiffness parameters. Follow-
ing which, the VB-SEMC sampler is adopted for
solving a benchmark filtering problem by Cappe
et al. (2007) in the form of a non-linear time-
series set-up from where the Markov model has
no closed-form inverse function.
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1.1. On-line Bayesian Inference
Bayesian inference is a statistical inferential
technique whose mathematical formulation is
based on the Bayes’ rule (Beck and Katafygiotis
(1998)):

P (θ|D) =
P (D|θ) · P (θ)

P (D)
(1)

for which θ is the vector of model parameters to
be inferred, while D is the vector of observations
obtained from measurements or experiments. The
main terms in Eq. (1) are:

• P (θ) is the prior distribution;
• P (D|θ) is the likelihood function;
• P (θ|D) is the posterior distribution;
• P (D) is the normalizing constant.

Detailed descriptions to the above terms can be
found in Lye et al. (2019) and Lye et al. (2021).

For on-line Bayesian inference, a Markov
model M̃(θt+1|θt) is used to model the time-
evolution of θ between successive time-steps t
and t + 1. Hence, the Markov model relating θt

and θt+1 can be expressed as:

θt+1 = Γ(θt) + νθ (2)

where Γ(•) is the nominal evolution function,
and νθ ∼ N(0, σν) is the process “noise” with
σν assumed to be a constant. Defining D1:t =
{D1, . . . , Dt}, and assuming independence be-
tween observations obtained between difference
time-steps t, the on-line Bayesian procedure is
summarized as such: At time-step t = 1,
the posterior P (θt|D1:t,M) is defined (see Eq.
(1)). Following which, the predictive distribution
P (θt+1|D1:t,M) is computed:

P (θt+1|D1:t,M) =

∫
M̃(θt+1|θt)·

P (θt|D1:t,M) · dθt (3)

The predictive distribution P (θt+1|D1:t,M) is
then set as the new prior to be updated and the
process is repeated for time-step t = t + 1 until
the final time-step t = tend. A useful sampling
technique for such set-up would be the SMC sam-
pler whose details can be found in Chopin (2002).

2. Proposed sampler: VB-SEMC
The workings of the VB-SEMC sampler to gen-
erate N samples from P (θt|D1:t,M) follows: At
iteration j = 0, the sampler is initiated by gen-
erating samples θj+1

i (for i = 1, . . . , N ). Next,

at iteration j = 1, the normalized weights of the
samples ŵji are computed:

ŵji =
P (Dj |θji )∑N
i=1 P (Dj |θji )

(4)

From which the Effective sample size Neff is
computed:

Neff =
1∑N

i=1

(
ŵji

)2 (5)

If Neff > N
2 , the algorithm proceeds to the

MCMC step. Otherwise, resampling is executed
where the samples θti are sampled according to
their weights ŵji and then resets ŵji = 1

N . After
which, the algorithm proceeds to the MCMC step.

In the MCMC step, N single-step Markov
Chains are initiated from starting samples θji
which are randomly sampled according to ŵji .
TheseN starting samples form the starting ensem-
ble ~θstart = {θj1, . . . ,θ

j
N} which will be updated

with a 1 iteration of the AIES sampler to yield the
updated ensemble ~θupdated whose samples corre-
spond to the Posterior P (θj |D1:j ,M). Details to
the AIES algorithm can be found in Goodman and
Weare (2010).

Next, the algorithm proceeds to generate
θj+1
i by passing the samples of P (θj |D1:j ,M)

through the M̃(θt+1|θt). Simultaneously, the al-
gorithm executes the VB step to approximate the
predictive PDF. This is done using a Gaussian
Mixture Model whose covariance matrix ΣGMM
is computed via the following steps (Patelli et al.
(2014)):

• Step 1: The covariance matrix of θj+1
i is

computed and defined as Σpred;
• Step 2: Spectral decomposition is per-

formed on Σpred to obtain the matrix of
eigen-vectorsR;

• Step 3: Transform the sample vector
θj+1 in the basis of Σpred following:
Θj+1 = θj+1R;

• Step 4: For each column entry of R (i.e.
R(:, k)), obtain a bandwidth estimate vk
(for k = 1, . . . , Ndim, whereNdim is the
dimensionality of θj+1) via MATLAB
ksdensity function;

• Step 5: Define an empirical scaling fac-
tor: Ω = 1 + 3 · (1 − 0.05

1
N ), and

compute the column entry of matrix P :
P (:, k) = R(:, k) · vk · Ω;

• Step 6: Compute Σpred = P TP .
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From there, the approximated predictive PDF is
set as the new prior PDF, while the samples θj+1

i
are set as the new prior samples.

Following which, the algorithm proceeds to
tune the step-size uj+1 for the AIES sampler
based on the current acceptance rate of the sam-
ples αj . With reference to the target accep-
tance rate αtr defined as (Roberts and Rosenthal
(2001)):

αtr =
0.21

Ndim
+ 0.23 (6)

The nominal step-size is computed:

unom = uj · exp
(
αj − αtr

)
(7)

If unom < 1, uj+1 is set to 1.01, otherwise,
uj+1 = unom. uj=1 is set at 2.

Finally, the algorithm proceeds to iteration j =
j + 1 and repeats the procedure from the re-
computation of sample weights.

2.1. Advantages of Proposed Work
For the SMC samplers, one way to approximate
the predictive PDF would be through the convo-
lution of P (θj |D1:j ,M) and the inverse Markov
model M̃−1:

P (θj+1|D1:j ,M) ≈ G ◦ M̃−1(θj+1) (8)

whereby G(•) is the analytical function of the
Posterior PDF while M̃−1 is defined as:

M̃−1 : θt = Γ−1
(
θt+1 − νθ

)
(9)

However, not all Γ−1(•) have a defined inverse
function which would make such approximate not
feasible. The VB step in the proposed algorithm
solves this problem using Gaussian Mixture Mod-
els as approximations based on information from
the predictive samples θj+1.

Another benefit of the VB-SEMC sampler is
the adaptive tuning algorithm which automatizes
the tuning of the step-size of the AIES sampler.
This helps to control the acceptance rates of the
sampler in an automatised fashion, ensuring the
acceptance rates fall within [0.15, 0.50].

Finally, through the use of the AIES sampler,
there is no need to define a proposal distribution
unlike MH sampler. This removes the need of the
algorithm to compute the covariance matrix of the
proposal distribution at each iteration which can
be computationally costly under high-dimensions.
This also helps to improve the computational ef-
ficiency of the VB-SEMC sampler given it only
needs to compute the step-size uj for each itera-
tion which is independent of the dimensionality of
the problem.

3. Numerical Example: 2-DOF shear
building structure

Fig. 1. Schematic diagram of 2-DOF Shear Building.
Image adapted from Betz et al. (2016).

Figure 1 presents the schematic diagram of the
2-DOF shear building set-up based on Beck and
Au (2002). The masses of the first and second
floors are m1 and m2 respectively while the total
inter-storey stiffness between the ground and first
storey is k1 and that between the first and second
storey is k2. The dynamics of the structure can be
described by the following:

Mẍ+ Kx = 0 (10)

where M and K are the mass and stiffness matrix
which are defined as:

M =

[
m1 0
0 m2

]
(11)

K =

[
k1 + k2 −k2
−k2 k2

]
(12)

The floor masses take fixed values such that:
{m1,m2} = {1.65, 1.64}× 104 kg. The stiffness
parameters k1 and k2 are time-varying such that
they degrade with time according to the following
Markov model respectively:

k1
t+1 = exp (−1.3) ·

[
k1
t − (2.97× 104)

]
+

(2.97× 104) + νk1 (13)

k2
t+1 = exp (−0.6) ·

[
k2
t − (2.85× 104)

]
+

(2.85× 104) + νk2 (14)
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where νk1 ∼ N(0, σk1), νk2 ∼ N(0, σk2), and
t ∈ [1, 6]. Here, {σk1 , σk2} = {800, 500} N/m.

The true values of k1t and k2
t for t ∈ [1, 6]

are presented in Table 1 while the graphical plots
of their true values, with their respective nominal
evolution models, are presented in Figures 2 and
3.

Table 1. True values of k1
t and k2

t

across different selected times.

t k1
t k2

t

(N/m) (N/m)

1 4.397× 104 3.464× 104

2 3.390× 104 3.246× 104

3 2.944× 104 2.971× 104

4 3.021× 104 3.034× 104

5 2.942× 104 2.933× 104

6 2.975× 104 2.952× 104

1 2 3 4 5 6

3

3.5

4

4.5
10

4

True values

Evolution model

Fig. 2. True values of k1t and the corresponding nom-
inal evolution model.

From the structure, measurements are obtained
in the form of response frequencies under reso-
nance. Let the 2 response frequencies correspond-
ing to the eigenfrequencies for a given k1t and k2t

be: {f1t, f2t}. At each t, 15 sets of synthetic data
for {f1t, f2t} are generated following:

fl
t = f̃ tl + εl (15)

where l = {1, 2}, f̃ tl is the model used to predict
f tl
t which is obtained by solving for the eigenval-

ues of Eq. (10), εl ∼ N(0, σl) is the measurement
“noise”. Here, {σ1, σ2} = {0.925, 0.153} Hz.
The graphical plots of the obtained synthetic data
across all t are presented in Figure 4.

1 2 3 4 5 6
2.8

3

3.2

3.4

3.6
10

4

True values

Evolution model

Fig. 3. True values of k2t and the corresponding nom-
inal evolution model.

3.1. Bayesian Inference Set-up

The objective is to infer θt = {m1,m2, k1
t, k2

t}
based on the data obtained from the measured
response frequencies {f1t, f2t} for t ∈ [1, 6]. The
time-invariant mass parameters m1 and m2 are
included in the Bayesian inference procedure to
demonstrate the capability of the VB-SEMC sam-
pler in estimating both time-invariant and time-
varying parameters simultaneously.

The prior distribution for all inferred parame-
ters are set to be non-informative uniform distri-
bution whose respective bounds are stated in Table
2.

Table 2. Bounds of the uniform prior distribu-
tion for the respective inferred parameters.

Parameter Bounds Units

m1 [1.0, 1.0× 105] kg

m1 [1.0, 1.0× 105] kg

k1 [1.0, 1.0× 105] N/m

k2 [1.0, 1.0× 105] N/m

The likelihood function takes on an approxi-
mate Normal distribution following (Beck and Au
(2002)):

P (Dt|θt) = exp

−
2∑
l=1

15∑
m=1

[(
f̃t
l

fl,mt

)2
− 1

]2
2 · σl2


(16)

where the argument is the Modal-of-Fit function
defined in Beck and Au (2002).
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Fig. 4. Graphical plots of the synthetic data for f1t and f1
t across all t. The black cross denote the model

prediction.

3.2. Results and Discussions
A total of N = 1000 samples are obtained from
the posterior at each iteration j ∈ [1, 6] by the
SMC and VB-SEMC samplers. The SMC sampler
took 46.35 s while the VB-SEMC sampler took
29.78 s. This indicates that the proposed VB-
SEMC sampler is computationally efficient com-
pared to the SMC sampler.

The resulting estimates by the respective sam-
plers for the inferred parameters are illustrated in
the form of graphical plots shown in Figures 5 to
8. The error bars denote the 90 % credible interval
of the estimates where the lower and upper bounds
are the 5th and 95th-percentile of the Posterior es-
timates respectively. As seen in the figures, the re-
sulting estimates of the inferred parameters show
a good degree of agreement between the SMC
and VB-SEMC samplers which indicates that the
proposed sampler is well-verified against the SMC
sampler. In addition, it can be seen in Figure 6 that
the 90 % credible interval is significantly smaller
for the case of VB-SEMC sampler compared to
SMC sampler which indicates the higher-degree
of precision of the estimate by the proposed sam-
pler.

It can be noticed however, that not only is the
uncertainty relatively large for m1 and m2, but
that the Posterior mean also deviates significantly
from the true values. This could be attributed to
the poor sensitivity of the parameters m1 and m2

to the data of {f1t, f2t} given the model used for
the Bayesian inference procedure. This results in
the Posteriors of m1 and m2 to not deviate much
from their prior in terms of the credible intervals
defined by those distributions.

1 2 3 4 5 6
0

5

10

15
10

4

True value (m
1
 = 16500 kg)

SMC estimates

VB-SEMC estimates

Fig. 5. Estimates for m1 by the SMC and VB-SEMC
samplers across iterations j.

1 2 3 4 5 6
0

5

10

15
10

4

True value (m
2
 = 16100 kg)

SMC estimates

VB-SEMC estimates

Fig. 6. Estimates for m2 by the SMC and VB-SEMC
samplers across iterations j.

Finally, the statistics of the acceptance-rates
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Fig. 7. Estimates for k1t by the SMC and VB-SEMC
samplers across iterations j.
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Fig. 8. Estimates for k2t by the SMC and VB-SEMC
samplers across iterations j.

of the respective samplers across iterations j are
presented as graphical plots in Figure 9. As seen
in the figure, both samplers are able to achieve ac-
ceptable acceptance-rates such that most of which
fall within the optimum bounds as suggested by
Roberts and Rosenthal (2001). This illustrates the
effectiveness of the proposed adaptive tuning al-
gorithm in controlling the acceptance-rates of the
VB-SEMC sampler.

4. Application: Non-linear Time-series
Model

This section presents a non-linear time-series set-
up adapted from the benchmark filtering problem
in Cappe et al. (2007). Consider a hypothetical
sub-system whose dynamical response signal δt
for t ∈ [0, 100] is modelled by:

δt =
(vt)

2

20
+ εδ (17)

where εδ ∼ N(0, σδ) for σδ = 1, while vt is the
time-varying parameter whose Markov model is
defined as:

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

A
c
c
e
p
ta

n
c
e
 r

a
te

Target acceptance rate

Optimum acceptance limits

VB-SEMC

SMC

Fig. 9. Evolution of acceptance-rates across iterations
j for the SMC and VB-SEMC samplers. Target accep-
tance rate is 0.283.

vt+1 =
vt

2
+ 25 · vt

1 + vt2
+

8 · cos [1.2(t+ 1)] + νv (18)

where νv ∼ N(0, σv) for σv =
√

10, and
vt=0 ∼ N(0, σv). A graphical plot of vt and δt
for t ∈ [0, 100] is presented in Figures 10 and 11,
respectively.
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Fig. 10. Plots of vt across all t.
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20

30
Measured values

Fig. 11. Plots of δt across all t.
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4.1. Bayesian Inference Set-up

The objective is to infer θt = {vt, σδ} based on
the data of δt obtained for t ∈ [0, 100].

The prior distribution for all inferred parame-
ters are set to be non-informative Uniform dis-
tribution whose respective bounds are: vt ∈
[−30, 30] and σδ ∈ [0.01, 10]. The likelihood
function takes on a Normal distribution defined as
follows:

P (Dt|θt) =
1

σδ ·
√

2π
· exp

−
(
δt − δ̃t

)2
2σδ2


(19)

where δ̃t = (vt)2

20 denotes the model prediction of
the observed δt.

4.2. Results and Discussions
A total of N = 1000 samples are obtained from
the psosterior at each iteration j ∈ [1, 101] by the
VB-SEMC sampler over a duration of 752.97 s.

The resulting estimates of vt and σδ by the VB-
SEMC sampler is presented in Figures 12 and 13
respectively. As seen from the figure, the credible
interval of the estimates for vt generally encloses
its true values and its mean estimates are in good
agreement with the true values as well. This high-
lights the effectiveness of the proposed VB-SEMC
sampler in inferring time-varying parameters with
approximations to the predictive PDF using the
Gaussian Mixture Model in the VB step.

On the other hand, the estimates for σδ did
not converge to the true value of 1. Instead, the
convergence occurred about the value of 2.151
which corresponds to the Mean Absolute Devia-
tion (MAD) between the observed δt and the most
probable observed measurements δ̂t which can be
computed following:

MAD =
1

101
·
100∑
t=0

|δ̂t − δt| (20)

The reason for this deviation is due to the fact that
the observed values of δt incorporates the process
“noise” carried by vt at each t which adds to the
existing measurement “noise” in δt. This accumu-
lation of “noise” results in a larger deviation from
nominal values predicted by the updated model
δ̃t resulting in the error being closer to the MAD
value.

The model update for δ̃t with the inferred val-
ues of vt is generated to verify the results against
the observed values of δt. The resulting plot is
presented in Figure 14. As seen in the figure,

20 40 60 80 100

-20

-10
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10

20

30 True values VB-SEMC estimates 90% Credible interval

Fig. 12. Estimates of vt by the VB-SEMC sampler
across iterations j.

20 40 60 80 100
0

2

4

6

8

10
True value (  = 1)

MAD = 2.151

VB-SEMC estimates

Fig. 13. Estimates of σδ by the VB-SEMC sampler
across iterations j.

the resulting updated model has credible interval
which encloses the actual measured vales. This
provides verification of the model updating results
by the VB-SEMC sampler.

20 40 60 80 100

0

10

20

30

40
Measured values

VB-SEMC estimates

90% Credible interval

Fig. 14. Model update for δ̃t by the VB-SEMC sam-
pler across iterations j which is verified against the
measured δt.

Finally, the statistics of the acceptance-rates
by the VB-SEMC sampler is presented in Figure
15. As seen in the figure, the acceptance-rates
manage to converge to the target value of 0.335
with increased iterations j which demonstrates
the effectiveness of the proposed adaptive tuning
algorithm.
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Fig. 15. Evolution of acceptance-rates across itera-
tions j for the VB-SEMC sampler. Target acceptance
rate is 0.335.

5. Conclusion
This paper has presented an efficient Monte Carlo
sampler based on the Variational Bayes and im-
plements the Affine-invariant Ensemble Sampler
in place of the Metropolis-Hastings sampler as
well as an adaptive tuning algorithm to control
the acceptance rates. To illustrate the strength
and to verify the results obtained by the pro-
posed algorithm, the algorithm has been adopted
to estimate the time-variant parameters of a 2-
DOF shear building structure where the nominal
evolution functions of the respective time-varying
parameters have closed-form inverse functions.
The results show a very good degree of agreement
between the proposed approach and traditional
Sequential Monte Carlo sampler. However, the
Variational Bayes - Sequential Ensemble Monte
Carlo sampler is able to perform the computation
in nearly half the time required by the Sequential
Monte Carlo sampler. In addition, the proposed
sampler is able to control the acceptance-rates
such that they converge within the optimal bounds
of [0.15, 0.50]. Finally, the Variational Bayes -
Sequential Ensemble Monte Carlo sampler is then
adopted for parameter identification of a non-
linear time-series problem where the time-varying
parameter has a nominal evolution function which
does not yield a closed-form inverse function.
Again, the proposed sampler has provided an es-
timation of the value of the parameter close to the
true values for the considered time of interest.

In summary, the proposed Variational Bayes -
Sequential Ensemble Monte Carlo sampler pro-
vides a computationally-efficient approach with
acceptable approximations of the predictive distri-
bution via Variational Bayes step and has a well-
controlled acceptance-rates.
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