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Abstract

The COVID-19 pandemic has demonstrated the serious potential for novel zoonotic corona-

viruses to emerge and cause major outbreaks. The immediate animal origin of the causative

virus, SARS-CoV-2, remains unknown, a notoriously challenging task for emerging disease

investigations. Coevolution with hosts leads to specific evolutionary signatures within viral

genomes that can inform likely animal origins. We obtained a set of 650 spike protein and

511 whole genome nucleotide sequences from 222 and 185 viruses belonging to the family

Coronaviridae, respectively. We then trained random forest models independently on

genome composition biases of spike protein and whole genome sequences, including dinu-

cleotide and codon usage biases in order to predict animal host (of nine possible categories,

including human). In hold-one-out cross-validation, predictive accuracy on unseen coronavi-

ruses consistently reached ~73%, indicating evolutionary signal in spike proteins to be just

as informative as whole genome sequences. However, different composition biases were

informative in each case. Applying optimised random forest models to classify human

sequences of MERS-CoV and SARS-CoV revealed evolutionary signatures consistent with

their recognised intermediate hosts (camelids, carnivores), while human sequences of

SARS-CoV-2 were predicted as having bat hosts (suborder Yinpterochiroptera), supporting

bats as the suspected origins of the current pandemic. In addition to phylogeny, variation in

genome composition can act as an informative approach to predict emerging virus traits as

soon as sequences are available. More widely, this work demonstrates the potential in com-

bining genetic resources with machine learning algorithms to address long-standing chal-

lenges in emerging infectious diseases.

Author summary

New zoonotic viruses remain a major threat to global health and the COVID-19 pandemic

has shown the specific potential of coronaviruses to cause widespread disease burden and

economic damage. Tracing the origins of these zoonotic viruses is extremely challenging
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and usually requires substantial effort. However, there is potential to uncover which ani-

mals may be the host origin of viruses by using ‘signatures’ within viral genomes gener-

ated by long-term coevolution. We investigated this by calculating 116 genomic features

of spike protein sequences and whole genome sequences from approximately 200 corona-

viruses. We used a machine learning approach in random forests, training separate mod-

els to predict broad host type using genomic information from spike proteins or whole

genomes. Models trained on spike proteins achieved similar performance to that of whole

genomes, reiterating the importance of this protein for host-virus interactions and likeli-

hood of cross-species transmission. When applied to SARS-CoV-2, the causative virus of

COVID-19, model predictions suggested a bat origin, consistent with estimations else-

where using more traditional phylogenetic analyses. This work demonstrates the potential

of machine learning to infer the ecology of new zoonotic viruses directly from genetic

sequences, giving a rapid methodology to assist in tracing the origins of outbreaks.

Introduction

The ongoing COVID-19 pandemic remains a significant public health emergency. Since the

first identified cases in China in December 2019, this outbreak of respiratory disease has devel-

oped into a global crisis, with over 100 million cases worldwide to date [1]. The causative virus

was termed ‘severe acute respiratory syndrome-related coronavirus 2’ (SARS-CoV-2) [2] and

is a previously unknown betacoronavirus that likely emerged through zoonotic transmission

from contact with non-human animals [3,4]. However, the precise origins of the current pan-

demic remain inconclusive at present [5].

Two other betacoronaviruses have zoonotically emerged to cause significant human epi-

demics. Severe acute respiratory syndrome-related coronavirus (SARS-CoV) emerged in

China in 2002 via an intermediate host of masked palm civets (Paguma larvata) in live animal

markets [6,7], and Middle East respiratory syndrome related coronavirus (MERS-CoV)

emerged in Saudi Arabia in 2012 via an intermediate host of dromedary camels [8,9], with

considerable evidence that both originated in bats [10–13]. Four additional coronaviruses are

known to be endemic within humans, causing mild common cold-like illness (Alphacorona-
virus: Human coronaviruses 229E and NL63; Betacoronavirus: Human coronaviruses HKU1

and OC43).

All viruses in the family Coronaviridae feature similar structural proteins, including a spike

glycoprotein on the outer viral surface. This protein allows entry to host cells via attachment to

cell receptors at the receptor binding domain (RBD) region and subsequent fusion with cell

membranes. As such, this protein exhibits high variation even between closely related corona-

viruses that may correspond to profound differences in receptor usage and/or different tissue

and host preferences [14]. While SARS-CoV-2 shows high genetic similarity to bat coronavi-

ruses, particularly bat coronavirus RaTG13 (matching 96% sequence identity) [4], its spike

protein instead exhibits differences among key amino acid residues of the RBD [3,15]. Based

on this, SARS-CoV-2 is predicted through structural [15,16] and in vitro experimental models

[17,18] to have highly efficient binding to the human angiotensin-converting enzyme 2

(ACE2) receptor, a feature that has likely contributed to its efficient human-to-human trans-

missibility. Several methods, e.g., ENC analysis of codon usage for SARS-CoV-2 [19] and posi-

tive selection analysis for MERS-CoV [20,21] have demonstrated that the spike proteins of

these coronaviruses experienced substantial selection pressure during emergence compared to

other genomic regions. Therefore, as a key molecular determinant of host range [14,22],
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evolutionary adaptation of coronavirus spike proteins represent a key opportunity to further

understand their host range constraints.

Beyond selection acting at specific loci, viral adaptation can also manifest through broad-

scale genomic signatures. Viruses exhibit biased genome composition, for example, in non-

uniform use of synonymous codons [23]. Furthermore, coevolution within different hosts may

indirectly lead to selection for particular compositions, as reported for nucleotide and dinucle-

otide usage within avian and human influenzaviruses [24,25] and codon pair usage of arbovi-

ruses within their insect vectors and mammalian hosts [26]. The Coronaviridae are no

exception—different coronaviruses (including SARS-CoV-2) vary in their genome composi-

tion, with particularly complex patterns of codon usage in spike protein coding sequences

[27], which could potentially contain important evolutionary signal regarding host origin.

Machine learning has recently gained substantial attention as a methodology in compara-

tive modelling of emerging diseases. These methods are capable of decomposing signal in

high-dimensional genomic information (a limitation of regression frameworks) without the

need for sequence alignment. Genomic machine learning analyses have demonstrated the abil-

ity to not only classify viruses from recurring viral genome motifs [28], but also classify their

broad host origins [29–32]. Specifically considering coronaviruses, support vector machines

and random forests have been trained on various genomic features to predict host group,

including nucleotide and dinucleotide biases [33], amino acid composition [34] or sequence

k-mers [35]. However, previous model predictions are mostly concentrated upon bats or

humans, and few analyses explicitly address the spike protein (but see [35]). The exact poten-

tial of genome composition to predict host origin therefore remains unclear.

We aimed to use machine learning to understand how the complex genomic signatures of

coronaviruses might predict their hosts and determine the importance of such signature in the

spike protein. Specifically, we trained random forest models on compositional biases for spike

protein and whole genome nucleotide sequences and compared their performance. A limita-

tion of these approaches is that model predictions can be a) strongly influenced by the inherent

viral sampling biases in available data [36] and b) reflect evolutionary relatedness of viral line-

ages rather than true host-associated signal [37]. Therefore, we conduct data thinning of over-

represented viruses before training models and control for similarity between related

sequences by holding out entire species during cross-validation. We demonstrate the use of

machine learning as a reliable method to estimate host origins of future novel coronaviruses in

humans and livestock.

Materials and methods

Data extraction and processing

Spike protein or whole genome sequence data for coronaviruses were identified within Gen-

Bank, using search terms

txid###½Organism : noexp� AND ðspike½Title� OR }S gene}½Title� OR }S protein}½Title� OR}S

glycoprotein}½Title� OR }S1 gene}½Title� OR }S1 protein}½Title� OR}S1 glycoprotein}½Title� OR

peplomer½Title� OR peplomeric½Title� OR peplomers½Title� OR}complete genome}½Title�Þ NOT

ðpatent½Title� OR vaccine OR artificial OR construct OR recombinant½Title�Þ

where successive searches were conducted replacing ### with taxonomic identifiers for each

species and unranked sub-species belonging to the family Coronaviridae within the NCBI tax-

onomy database [38] (n = 1585 taxonomic ids total). Matching sequences were then extracted

and further filtered to exclude incomplete or truncated sequences based on a) metadata labels
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and b) length restrictions, discarding any spike protein sequences < 2 kilobases (kb) and any

whole genome sequences outside a range of 20kb– 32kb. We accepted both spike protein cod-

ing sequences within whole genome sequences and standalone complete spike protein

sequences, excluding those only covering individual S1 or S2 subunits. All sequence data

searching, filtering and extraction was conducted with R package ‘rentrez‘v1.2.2 [39] (see also

[40]).

Host classification

For each spike protein or whole genome sequence, host names were extracted from the host

organism metadata field before being resolved to the standard NCBI taxonomy using the R

package ‘taxizedb‘v0.1.9.93 [41] (see also [40]). Host names were automatically resolved to the

highest taxonomic resolution possible and any unmatched host names were resolved manu-

ally, discarding sequences with missing/unresolvable names.

We then constructed a new variable broadly describing host category of each sequence,

defined at various taxonomic levels: human (speciesHomo sapiens), camelid (family Cameli-
dae), swine (family Suidae), carnivore (order Carnivora), rodent (order Rodentia), and bird

(class Aves). Following a previous analysis [29], we included two categories to represent bats

(order Chiroptera): suborder Yinpterochiroptera (families Craseonycteridae,Hipposideridae,
Megadermatidae, Pteropodidae, Rhinolophidae, and Rhinopomatidae) and suborder Yango-

chiroptera (all other families), based on their evolutionary divergence [42] and differences in

ecology and host-virus relationships [43,44]. Sequences not conforming to any of the above

host categories were excluded from further analysis.

Genomic feature calculation

We then calculated several features describing genome composition biases of each spike pro-

tein and whole genome coding sequence at nucleotide, dinucleotide or codon level. Firstly,

nucleotide biases were calculated as simple proportion of A, C, G or U content. Dinucleotide

biases were calculated as the ratio of observed dinucleotide frequency to expected based on

nucleotide frequency, following [29]:

dxy
D

nx
N :

ny
N

� �

where dxy denotes frequency of dinucleotide xy, nx and ny denote frequency of individual

nucleotides x and y, and D denotes total dinucleotides and N total nucleotides for length of the

given sequence. Biases were calculated separately for each dinucleotide at each position within

codon reading frames (i.e., at positions 1–2, 2–3 or 3–1) as dinucleotides spanning adjacent

codons may be subject to more extreme biases [45,46]. Finally, Relative Synonymous Codon

Usage (RSCU) was also calculated for each codon including stop codons, following [47]:

cij
1

ni
:
Pni

j cij

where ni denotes number of codons synonymous for amino acid i and cij denotes frequency of

jth codon encoding for such amino acid. In total, this gave 116 genomic features for use in pre-

dictive models (4 nucleotide biases, 16 � 3 dinucleotide biases, 64 codon biases). The Effective

Number of codons (ENc) [48] was also calculated for each sequence as a summative metric of

magnitude of codon bias. All calculations for whole genomes considered nucleotide sequences

as-is rather than as-read; sequence strings duplicated by frameshifting among the ORF1a and
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ORF1b replicase protein were discarded to avoid disproportionate weighting in modelling

analyses. Nucleotide and dinucleotide frequencies were obtained using R package ‘Biostrings‘,

v2.56.0 [49], and codon frequencies and ENC values were obtained using R package ‘cordon‘,

v.1.6.0 [50].

To assess over- or underrepresentation of codons among spike protein and whole genome

datasets, we conducted one-sample t-tests comparing RSCU for each codon to a null value of 1

(excluding stop codons and codons with no other synonymous codons), applying Bonferroni

corrections for multiple testing. Clustering of RSCU within-genus was assessed by construct-

ing heatmaps using package ‘gplots‘, v3.0.3 [51] before extracting associated dendrogram clus-

ters and calculating Normalised Mutual Information (NMI) with genus, a measure of co-

occurrence scaled between 0 (no mutual information) and 1 (perfect information) (see [52]).

NMI was calculated using function ‘NMI()‘in package ‘aricode‘, v.1.0.0 [53], cutting dendro-

grams into k = 10 clusters and excluding viruses unclassified into a genus.

Machine learning analysis

To quantify the potential for genome composition biases to predict coronavirus host category,

we used random forests, an ensemble machine learning approach that aggregates over a large

number of individual classification tree models [54]. We selected random forests as a method

that natively handles multiclass classification problems, intuitively handles interactions

between predictor features, and can provide interpretability in feature-outcome explanatory

relationships (see below) [55].

These predictive modelling methods are often sensitive to training data composition, a

potential problem given the heavily biased patterns of viral sampling [36]. Several viruses

appeared highly overrepresented in extracted data, for example, 1802 spike protein and 555

whole genome sequences were available for porcine epidemic diarrhea virus (S1 Table), com-

pared to the overall median of 1 sequence per virus in both cases. As viral sequences (and

therefore, genome composition) are expected to be highly similar within-species or subspecies,

we therefore conducted a heuristic data thinning procedure prior to modelling, sampling a

maximum of twenty sequences per host category per virus, thinning for approximately 5% of

viruses (S1 and S2 Tables).

Machine learning methods can also be sensitive to class imbalances in outcomes [56] and

slight imbalances between host categories remained after data thinning (S2 Table). Preliminary

models suggested predictive performance was robust to this imbalance, being comparable or

decreasing when alternative resampling methods were applied (S1 Methods and S3 and S4

Tables).

Zoonotic and epizootic coronaviruses are unlikely to have experienced substantial coevolu-

tion within the novel host following cross-species transmission. Instead, their evolutionary sig-

nature in genome composition is much more likely to reflect the original or donor host.

Therefore, zoonotic or epizootic coronavirus sequences sampled from novel hosts (i.e., SARS--

CoV, SARS-CoV-2, MERS-CoV in humans, totaling m = 9 taxonomic identifiers, full list in

S1–S4 Data; swine acute diarrhea syndrome coronavirus in swine) were held out from model

training. Of these, we retained the zoonotic sequences as a prediction set of interest. By gener-

ating predictions for zoonotic viruses from sequences alone, we aimed to investigate model

utility when presented with the scenario of a newly identified emerging coronavirus. We

excluded human enteric coronavirus from all analyses as the zoonotic potential of this virus

remains unclear.

As genome composition is highly homogenous for closely related virus sequences, we estab-

lished training data for random forest models using an outer loop of hold-one-out validation
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applied to coronaviruses (S1A Fig), i.e., rather than exclude randomly sampled sequences as a

test set, we constructed and validated random forests excluding all sequences from a given

virus species or unranked subspecies in each instance. This allows host predictions for unseen

(i.e., novel) viruses based on values of compositional features, rather than indirectly predicting

host by the proxy of viral similarity. For each outer loop, model parameters were then opti-

mized within an inner loop of 10-fold cross-validation, dividing the data into ten folds, train-

ing models using a grid search of parameter combinations on nine and identifying the best

parameters when applied to the tenth fold in each case (S1B Fig). The parameter set yielding

the highest prediction accuracy on validation folds was retained (S2 Fig).

Model performance was then assessed by applying each random forest to its respective

held-out coronavirus sequences as a test set. Probabilities of host categories were obtained by

dropping sequences down each individual tree model within the random forest and averaging

host category prevalence of resulting terminal nodes [57]. Similar predictions were generated

for each zoonotic coronavirus sequence by averaging probabilities across all random forests to

generate grand mean probabilities (S1A Fig). To investigate explanatory relationships between

genomic biases and hosts of coronaviruses, variable importance (calculated as relative mean

decrease in Gini impurity) and partial dependence (calculated as marginal probability of each

host category) associated with each genomic feature were averaged across all random forests.

All random forests were constructed using 1000 trees and implemented using R package

‘ranger‘, v0.12.1 [58]. All analyses were initiated from a fixed random seed chosen a priori.

Model performance was insensitive to choice of random seed (S5 Table). All data processing

and modelling were conducted within R v4.0.0 [59]. Supporting data and code are available at

https://github.com/lbrierley/cov_genome.

Results

Genome composition across the Coronaviridae
In total, we identified n = 3595 nucleotide sequences for coronavirus spike proteins and

n = 1815 whole genome sequences that met inclusion criteria. These were thinned to n = 650

spike protein sequences from m = 222 coronaviruses and n = 511 whole genome sequences

from m = 185 coronaviruses for use in further analysis (S1 Fig and S2 Table), spanning 40

identified host genera and 58 identified host species (S1 and S2 Data).

Broadly consistent genome composition biases were observed across the diversity of all coro-

navirus sequences examined. For both spike protein and whole genome sequences, all A- and U-

ending codons were significantly overrepresented (one-sample t-tests of RSCU, Bonferroni-cor-

rected p< 0.001) except AUA, GCA, CUA, GGA, and GUA, and all C- and G-ending codons

were underrepresented (Bonferroni-corrected p< 0.001) except UUG (and AGG in the case of

spike proteins only) (Figs 1 and 2). Hierarchical clustering based on RSCU values suggested

codon usage was less distinct between genera within spike protein sequences (Normalised Mutual

Information value = 0.268; Fig 1) than within whole genomes (NMI = 0.428; Fig 2). However,

clear separation of deltacoronaviruses was observed for both cases, as these appeared to have less

extreme biases in codon usage. This was confirmed by ENc calculation; deltacoronaviruses had

higher ENc values than other coronavirus genera (Table 1). Considering dinucleotide biases,

compositional bias was typically more extreme for dinucleotides spanning adjacent codons, i.e.,

position 3–1 (S3 Fig), and the characteristic coronavirus CpG suppression was also observed.

Host predictions of random forest models

Random forest models trained on nucleotide, dinucleotide and codon bias features of spike

protein sequences predicted coronavirus hosts with 73.5% accuracy during hold-one-out
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cross-validation (Table 2). Genome composition of spike proteins appeared just as informative

as whole genomes despite being much smaller in sequence length, as both models achieved

very similar performance in all diagnostic measures (Table 2).

Patterns of host-specific predictive performance were evident during hold-one-out cross-

validation. Random forests trained on both spike protein and whole genome sequence compo-

sitional features most easily distinguished bird, carnivore and rodent host categories (Fig 3

and S6 and S7 Tables). Less powerful predictive performance was obtained for livestock (i.e.,

swine and camelid) host categories with these sequences often predicted as having bat (subor-

der Yangochiroptera) hosts, including all MERS-CoV sequences sampled from camels.

Human host origins appeared particularly difficult to characterise, with model-predicted

hosts appearing more uncertain using spike protein features than whole genome features (Fig

3); while human coronaviruses HKU1 and NL63 were more confidently correctly classified

based on whole genomes, human coronaviruses OC43 and 229E were more confidently

Fig 1. Codon biases (RSCU) across coronavirus spike protein sequences examined. Heatmaps of coronavirus codon usage bias (RSCU) associated with each codon in

each spike protein sequence (n = 650). Main colour scale denotes RSCU value, a null value of 1 (black) indicating no difference in codon usage from expectation, with blue

and red representing under- or overrepresentation respectively. Dendrogram colour bar denotes taxonomic genus.

https://doi.org/10.1371/journal.ppat.1009149.g001
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Fig 2. Codon biases (RSCU) across coronavirus whole genome sequences examined. Heatmaps of coronavirus codon usage bias (RSCU) associated with each codon in

each whole genome sequence (n = 511). Main colour scale denotes RSCU value, a null value of 1 (black) indicating no difference in codon usage from expectation, with

blue and red representing under- or overrepresentation respectively. Dendrogram colour bar denotes taxonomic genus.

https://doi.org/10.1371/journal.ppat.1009149.g002

Table 1. ENc values across coronavirus genera. Effective Number of Codons (ENc) for coronaviruses, stratified by genus and genome sequence type. ENc values are cal-

culated as grand means, i.e., mean ENc was calculated per coronavirus by averaging sequences before means of means were calculated per genus by averaging coronavi-

ruses. SD denotes standard deviation.

Spike protein sequences Whole genome sequences

Genus Mean SD Mean SD

Alphacoronavirus 48.65 3.12 45.02 3.00

Betacoronavirus 47.77 5.04 47.03 4.79

Gammacoronavirus 46.36 1.83 46.11 0.74

Deltacoronavirus 54.79 3.43 51.75 3.22

(unclassified) 47.89 3.41 48.56 3.04

total 48.77 4.36 46.81 4.22

https://doi.org/10.1371/journal.ppat.1009149.t001
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misclassified as having camelid or Yinpterochiroptera hosts. The reciprocal also only occurred

using whole genomes, i.e., several camel coronaviruses were predicted to have human hosts.

We then applied random forests to those sequences of zoonotic viruses sampled from

humans and excluded from model training: SARS-CoV, SARS-CoV-2, and MERS-CoV (S1

Fig and S3 and S4 Data). As these viruses have experienced little coevolution following zoo-

notic spillover, their genome composition signal likely gives indications about their ultimate

or proximate animal host origins. MERS-CoV was overwhelmingly predicted to have camelid

hosts (Fig 4) and SARS-CoV was predicted with less certainty as having carnivore hosts, con-

sistent with the respective known intermediate hosts of camels and palm civets (order Carniv-
ora). Contrastingly, SARS-CoV-2 was predicted mostly strongly to have a bat (suborder

Table 2. Predictive performance of random forest models. Model diagnostics describing overall performance when applied to predict host category of held-out corona-

viruses not used for model training. CI denotes confidence interval, Kappa denotes Cohen’s Kappa statistic, mAUC denotes multiclass area-under-curve statistic, and

F1macro denotes F1 score calculated using macro-averaging (performance on each host category weighted equally).

Predictor features Accuracy (95% CI) Kappa mAUC F1macro

Spike protein 0.735 (0.700, 0.769) 0.696 0.898 0.757

Whole genome 0.728 (0.687, 0.766) 0.688 0.902 0.758

https://doi.org/10.1371/journal.ppat.1009149.t002

Fig 3. Random forest host predictions based on coronavirus genome composition. Stacked bar plots of predicted probabilities of each host category for coronavirus

sequences. Predictions were obtained from ensemble random forest models trained on A) spike protein and B) whole genome composition features. Panels depict

sequences from each metadata-derived host category and colour coding denotes model-predicted host category. Stacks represent individual coronavirus sequences,

ordered from largest to smallest probability of the correct host, i.e., greater panel area matching the correct host category indicates better overall model performance.

Non-zoonotic coronavirus sequences originating from humans (human coronaviruses HKU1, NL63, OC43, 229E) are labelled for clarity. Versions stratified by genera

and species are provided as S4 and S5 Figs.

https://doi.org/10.1371/journal.ppat.1009149.g003
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Yinpterochiroptera) host. Host predictions for zoonotic viruses were consistent between mod-

els using spike protein and whole genome features (Fig 4).

Variable importance of random forest models

The most informative genomic features towards predicting coronavirus hosts were a mixture

of dinucleotide and codon biases (Fig 5), with dinucleotide biases appearing slightly more

informative for spike protein sequences and codon biases appearing slightly more informative

for whole genome sequences. However, predictive power of individual genomic features did

not hold between spike protein and whole genome sequences; only weak correlation was

observed between ranked variable importance from both analyses (Spearman’s rank, ρ =

0.191, p = 0.042) (Figs 5, S6 and S7). Partial dependence plots suggested the strongest individ-

ual discriminating feature to be GG dinucleotides at positions 1–2; an overrepresentation of

this dinucleotide within the spike protein sequence clearly distinguished bird hosts from mam-

malian hosts (S6 Fig), consistent with the greatest predictive performance for bird coronavi-

ruses (S6 Table).

Discussion

We observe biased dinucleotide and nucleotide usage across the family Coronaviridae, and

demonstrate that these genome composition biases contain sufficient evolutionary signal such

that they can predict animal host origin. We show that training random forests on these fea-

tures of spike proteins is equally as informative as using whole genome sequences in predicting

hosts of novel (i.e., unseen during model training) coronaviruses, with bird, carnivore and

rodent viruses having the highest prediction accuracy. When applied to human coronavirus

sequences from previous epidemics (SARS-CoV, MERS-CoV), random forest model

Fig 4. Random forest predictions based on zoonotic coronavirus genome composition. Stacked bar plots of predicted probabilities of each host category for

zoonotic coronavirus sequences sampled from humans. Predictions were obtained from ensemble random forest models trained on A) spike protein and B) whole

genome composition features. Colour coding denotes model-predicted host category. Stacks represent individual coronavirus sequences.

https://doi.org/10.1371/journal.ppat.1009149.g004
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predictions consistently represented the intermediate hosts. In the case of SARS-CoV-2, where

the exact transmission pathway remains unknown, models predicted sequences to have a bat

host (suborder Yinpterochiroptera).

Variability in genome composition

Among our dataset of 222 coronaviruses, we observed A- and U-ending codons to be overrep-

resented and C- and G-ending codons to be underrepresented (Figs 1 and 2), a commonly

noted trait in other studies [19,60]. Elsewhere, CpG dinucleotide bias has been proposed as a

specific determinant of host (and tissue) range of coronaviruses [61], on the basis that CpG

dinucleotides are targeted by zinc finger antiviral proteins and their suppression is therefore

Fig 5. Variable importance of genomic features. Variable importance of genome composition features in ensemble random forest

models predicting coronavirus host category from whole genome sequences (x axis) and spike protein sequences (y axis), with

labelling of top ten most informative features from both analyses. Points denote mean values of relative decrease in Gini impurity

associated with each feature across A) m = 222 and B) m = 185 random forests during hold-one-out cross-validation. Colour key

denotes genomic feature type.

https://doi.org/10.1371/journal.ppat.1009149.g005
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linked to immune evasion. We observed consistent CpG suppression (S3 Fig) and CG dinucle-

otides (positions 1–2) ranked 6th and 8th in feature importance for spike proteins and whole

genomes (Fig 5), respectively.

However, spike proteins display different patterns of codon usage from other viral proteins

[27], reflected in the lack of correlation between genome composition feature importance in

random forests trained on spike proteins versus whole genomes (Figs 5, S6 and S7). This indi-

cates spike proteins contain complex evolutionary signatures reflecting their distinct role in

host-virus coevolution, supporting our approach in using many features beyond single dinu-

cleotides [62]. The same evolutionary signatures would not be expected of proteins not

involved in direct molecular interactions with hosts; in a comparative model trained on

genome composition of the envelope protein (which has codon usage consistent with muta-

tional bias rather than selective pressure [19]) predictive performance was reduced (S8 Table).

Further work is needed to address the individual products of the ORF1ab polyprotein as an

additional area of the genome under selective pressure for codon usage [19].

Model predictions of human coronaviruses

During model validation, human hosts appeared more challenging to correctly predict than

other host types. Although the endemic human coronaviruses are common, they are also

thought to have their ultimate evolutionary origins within non-human animals [11], which

may explain this difficulty. In particular, human coronaviruses NL63 and HKU1 were more

consistently predicted as having human hosts than human coronaviruses OC43 and 229E,

especially when using whole genome sequences (Fig 3). Human coronavirus NL63 is estimated

to have a more ancient common ancestor with bat coronaviruses than 229E [63,64], implying

longer coevolutionary history within human hosts has resulted in a more consistently identifi-

able genomic signature.

Although several mutations of SARS-CoV-2 are becoming fixed in the population, e.g.

D614G in the spike protein [65], the virus has experienced only weak purifying selection [66]

and sequences remain extremely similar over the course of the pandemic. As such, our

approach cannot identify host adaptation “in real-time”; rather, we examine variation gener-

ated over much longer macroevolutionary histories.

Instead, we would expect viruses that have transmitted cross-species more recently to retain

the genome composition signature of their previous hosts, having experienced little coevolu-

tion within the novel host. Applying our finalised models to zoonotic human virus sequences

may therefore give an indication of their proximate or ultimate animal host origin (Fig 4).

Human sequences of SARS-CoV were predicted to have a carnivore host, consistent with

the known intermediate host of palm civets (Paguma larvata). Much previous work has shown

human and civet SARS-CoV sequences to have high similarity, with adaptive mutations con-

centrated within the spike protein (specifically, the receptor binding domain) [6,7,22], which

may explain the stronger prediction of carnivore hosts when using spike proteins than whole

genome sequences (mean (SD) predicted probabilities: 0.902 (0.007) vs 0.688 (0.024)). Simi-

larly, human sequences of MERS-CoV were strongly predicted as having camelid hosts, consis-

tent with the intermediate host of dromedary camels. The detection of evolutionary signatures

corresponding to these intermediate hosts implies that these coronaviruses circulated in those

hosts for sufficient time for coevolution to shape genome composition before cross-species

transmission to humans. For MERS-CoV, camel infections have been recognised as far back as

at least the 1980s [67,68].

The origins of SARS-CoV-2 have been heavily speculated upon since its discovery, though

there remains no compelling evidence towards the animal source of the first human infections.

PLOS PATHOGENS Predicting hosts of coronaviruses from compositional biases of spike protein and whole genomes

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009149 April 20, 2021 12 / 21

https://doi.org/10.1371/journal.ppat.1009149


Our random forest models trained on genome composition of both spike protein and whole

genome sequences predicted SARS-CoV-2 as having a bat host (suborder Yinpterochiroptera).

Alignment-based and phylogenetic approaches showed the most closely related virus to be bat

coronavirus RaTG13, a virus sampled from a horseshoe bat (Rhinolophus affinis) belonging to

this suborder [4], and more widely, the Rhinolophidae family are the most likely ancestral

hosts of the Sarbecovirus genus [69].

While our model predictions support bats as the ultimate origin of SARS-CoV-2, the

involvement of intermediate hosts remains unclear. Although the Malayan pangolin (Manis
javanica) was proposed early in the pandemic [70,71], recent analyses have argued there is

absence of evidence for this [72,73]. The methods used here are unable to identify intermediate

hosts without sufficient sequence availability, and lack of such from pangolins (order Pholi-
dota) preclude us from directly testing this hypothesis. However, selection analyses indicate

SARS-CoV-2 could reasonably have exhibited efficient human infectivity and human-to-

human transmissibility following direct transmission from bats [66,73], i.e., without strict

need for prolonged selection within an intermediate host.

Future directions

A natural comparison to these methods is phylogenetic analyses, which can estimate traits

such as host type from reconstructing viral ancestry based on sequence similarity. There is

challenging confounding between molecular characteristics and sequence similarity, i.e., varia-

tion in genome composition may actually be predictive of viral lineage rather than host type

[37], essentially acting as a proxy for phylogenetic relatedness. To separate these signals, viral

similarity needs to be considered in model construction [31]; by using a cross-validation pro-

cedure holding out entire coronavirus species or sub-species, we attempt to distinguish geno-

mic signatures arising from convergent evolution within specific hosts, rather than from viral

similarity. A more generalised scope of study across multiple viral families would allow hold-

out of entire families during cross-validation [31], removing any further phylogenetic proxy

effects.

Additional challenges are created by the unavoidable, systematic gaps in sampling coverage.

For example, disproportionate sampling to identify viruses in wildlife similar to those already

known to affect humans or livestock may introduce bias to predictive models [36]. Although

we address this by data thinning, our model predictions, particularly for zoonotic coronavi-

ruses, are likely influenced by the range of known viruses with available sequence data. These

issues highlight the need for a careful choice of training dataset in modelling studies, but also

for wider sampling and surveillance of coronaviruses among the wild virome [74], especially

considering their high public health risks.

Although we focus on compositional features, predictive approaches using other sequence

properties may improve more mechanistic understanding of host range. For example, amino

acid composition and physicochemical similarity between contiguous amino acid residues can

predict human origin of coronavirus spike sequences [34]. Similarly, Young et al. have recently

demonstrated the use of multiple types of genomic features in combination to predict infected

hosts and found physicochemical classification of amino acid k-mers to achieve similar predic-

tive power to nucleotide k-mers [31]. More widely, hydrophobic and hydrophilic composition

of host receptors shows some predictive signal towards virus sharing [75], hydropathy being of

mechanistic importance during virus-receptor binding, e.g. for murine coronavirus [76].

These properties could be used as additional features and improve machine learning model-

derived predictions.
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This emphasises an additional key question for future modelling studies distinct from host

origin—whether genomic traits can predict the zoonotic potential of newly discovered animal

coronaviruses [77]. As this is strongly determined by molecular mechanisms of virus-host

receptor interactions [22], these predictions may be best inferred by model frameworks com-

bining genomic features of both spike proteins and host receptors.

Conclusion

By training machine learning models on genome composition across the Coronaviridae, we

demonstrate a detectable evolutionary signature predictive of host type rooted in a region of

the genome that is key to host shifts. Our random forest predictions add to the growing evi-

dence COVID-19 ultimately originated within bats, though further work is needed to under-

stand the potential for intermediate hosts. Characterising spike proteins (and by extension,

their interaction with host receptors) may provide a fruitful path to further understanding zoo-

nosis risk among coronaviruses.
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tic, mAUC denotes multiclass area-under-curve statistic, and F1macro denotes F1 score calcu-

lated using macro-averaging (performance on each host category weighted equally).
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S1 Fig. Structured data partitioning and machine learning procedure. Data partitioning

diagram indicating the machine learning procedure used, distinguishing A) the outer loop

using hold-one-out cross-validation applied to coronavirus species or unranked subspecies

(with the aim of validating model performance) from B) the inner loop using 10-fold cross-val-

idation (with the aim of optimising model parameters). Distribution of outcome classes (host

category) were preserved when sampling data folds during each inner loop. Zoonotic corona-

virus sequences sampled from humans that were not used for model training are also distin-

guished. RF denotes a random forest model, while ‘spike’ and ‘wgs’ refer to spike protein

feature dataset and whole genome feature dataset, respectively.

(TIF)

S2 Fig. Performance of random forests during parameter optimisation. Performance of

random forest models during inner loop of 10-fold cross-validation for parameter optimisa-

tion during A) spike protein and B) whole genome analysis. Y axis denotes prediction accuracy

on test fold, X axis denotes minimum number of genome sequences in nodes at which tree

algorithm continues to split, and colour denotes number of genomic features randomly con-

sidered at each splitting point. Boxes denote median and upper/lower quartiles, with whiskers

extending to 1.5�IQR.

(TIF)

S3 Fig. Dinucleotide biases by position within codon reading frames. Calculated dinucleo-

tide biases for coronavirus A) spike protein and B) whole genome sequences. Boxes denote

median and upper/lower quartiles, with whiskers extending to 1.5�IQR. Colour denotes posi-

tion of dinucleotide within codon reading frames, i.e., blue boxes denote dinucleotides span-

ning adjacent codons (position 3–1). Dashed grey line denotes null value of 1, indicating no

difference in dinucleotide usage from expectation.

(TIF)

S4 Fig. Random forest host predictions based on coronavirus genome composition,

blocked by genus. Stacked bar plots of predicted probabilities of each host category obtained

from random forest models trained on A) spike protein and B) whole genome composition

features as in Fig 3 when separated and ordered by genus (either Alphacoronavirus, Betacoro-
navirus, Gammacoronavirus, Deltacoronavirus, or “U” to indicated unassigned), with
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secondary ordering of largest to smallest probability of the correct host.

(TIF)

S5 Fig. Random forest host predictions based on coronavirus genome composition,

blocked by species or subspecies. Stacked bar plots of predicted probabilities of each host cat-

egory obtained from random forest models trained on A) spike protein and B) whole genome

composition features as in Fig 3 when separated and ordered by species or unranked subspe-

cies (i.e., unique taxonomic ids), with secondary ordering of largest to smallest probability of

the correct host. See S1 Text for species key.

(TIF)

S6 Fig. Partial dependence plots for most informative genomic features of spike proteins.

Model-predicted marginal probability of each coronavirus host category as functions of the

four most informative genome composition bias features of spike protein sequences. A)–D)

depict random forests trained on spike protein sequences and E)–H) depict probabilities as

functions of the same features within random forests trained on whole genome sequences for

comparison. Lines denote median values across A)–D) m = 225 and E)–H) m = 187 random

forests during hold-one-out cross-validation. Shaded areas denote 2.5th and 97.5th percentiles.

Colour key denotes host category.

(TIF)

S7 Fig. Partial dependence plots for most informative genomic features of whole genome

sequences. Model-predicted marginal probability of each coronavirus host category as func-

tions of the four most informative genome composition bias features of whole genome

sequences. A)–D) depict random forests trained on whole genome sequences and E)–H)

depict probabilities as functions of the same features within random forests trained on spike

protein sequences for comparison. Lines denote median values across A)–D) m = 187 and E)–

H) m = 225 random forests during hold-one-out cross-validation. Shaded areas denote 2.5th

and 97.5th percentiles. Colour key denotes host category.

(TIF)

S1 Text. Number key for coronavirus species or unranked subspecies as depicted in S5 Fig.

(DOCX)
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