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Abstract  13 

An efficient procedure is proposed to estimate the failure probability function (FPF) with 14 

respect to design variables, which correspond to distribution parameters of basic structural 15 

random variables. The proposed procedure is based on the concept of an augmented reliability 16 

problem, which assumes the design variables as uncertain by assigning a prior distribution, 17 

transforming the FPF into an expression that includes the posterior distribution of those design 18 

variables. The novel contribution of this work consists of expressing this target posterior 19 

distribution as an integral, allowing it to be estimated by means of sampling, and no distribution 20 

fitting is needed, leading to an efficient estimation of FPF. The proposed procedure is implemented 21 

within three different simulation strategies: Monte Carlo simulation, importance sampling and 22 

subset simulation; for each of these cases, expressions for the coefficient of variation of the FPF 23 

estimate are derived. Numerical examples illustrate performance of the proposed approaches.  24 
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 27 

1. Introduction 28 

Reliability and reliability-based design optimization (RBDO) provide useful tools for 29 

quantifying uncertainty and performing optimal design under uncertainty, respectively. The 30 

application of reliability methods has been widely accepted in structural design, since there are 31 

inherent sources of uncertainties affecting the performance of structural systems. RBDO attempts 32 

to determine optimal design solutions while explicitly taking into account the effects of uncertainty 33 

[1][2]. Note that the failure probability may be highly sensitive to the distribution parameters that 34 

characterize basic structural random variables, i.e., mean value or standard deviation. Thus, it is of 35 

paramount importance and of great interest to estimate the failure probability as a function of 36 

these parameters [3][4]. The latter is particularly true as in several cases, these distribution 37 

parameters can be actually interpreted as design variables, as they can represent, for example, the 38 

outcome of a fabrication process. Given that the failure probability becomes a function of these 39 

distribution parameters / design variables, it is termed within the context of this work as the Failure 40 

Probability Function (FPF). The FPF can be seen as “reliability sensitivity analysis” that indicates 41 

how the failure probability changes with respect to the design variables. Also, the FPF can be used 42 

within the context of RBDO, as it allows to decouple the problem into a traditional optimization 43 

task without implementing a nested double-loop [5][6].  44 
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In practice, it is difficult to obtain the FPF with regard to the design parameters, since it usually 45 

requires repeated reliability analyses executed at various design parameter values. Even though a 46 

variety of methods have been developed to estimate the failure probability of structural systems, 47 

performing repeated reliability analyses constitutes still a challenge. In this sense, well established 48 

methods for reliability based on approximate analytic representations (e.g., first/second order 49 

reliability method - FORM/SORM [7][8]) or simulation methods (such as Monte Carlo simulation 50 

[9], importance sampling [10], Subset simulation [11], and Line sampling [12] etc.) still demand 51 

computational and numerical efforts which may become remarkable for practical problems, 52 

especially when finite element models are involved. As a result, repeated reliability analyses render 53 

the direct estimation of FPF computationally intractable.  54 

There are many contributions addressing the estimation of the FPF, and a number of methods 55 

have been developed, which can be classified into three classes. One class comprises surrogate 56 

models. For example, one can build an approximation of the FPF based on design of experiments 57 

(DOE). That is, to construct an approximation by selecting some predefined interpolation points in 58 

the space of the design parameters. For example, Gasser [13] adopts a pre-defined quadratic 59 

function with respect to the design parameters to approximate the logarithm of FPF. Then, a 60 

number of reliability analyses are carried out over some interpolation grid points of design 61 

parameters, finally to determine the coefficients of the predefined function by a least squares 62 

approach. Jensen [14] adopted a linear function to approximate the logarithm of FPF; in this 63 

approach, the number of reliability analyses equals that of the design variables. Note that there is 64 

a considerable number of surrogate model methods, for example, Kriging method [15][16], 65 

Support vector machine [17][18], etc. These methods are widely applied to reliability analysis to 66 

approximate the limit state function [19][20], which can be also used to approximate the FPF. 67 

However, their practical application may become involved due to the necessity of repeated 68 

evaluation of the structural model for training the surrogate. Another variant of surrogate models 69 

was proposed by Wei [21][22], that adopted High-dimensional model representation (HDMR) to 70 

approximate the FPF within the framework of imprecise stochastic simulation. The second class of 71 

approaches for approximating the FPF consists of a post-processing step of a standard reliability 72 

analysis. This class of methods focuses on obtaining the FPF with respect to the distribution 73 

parameters. For example, Zou [5] expressed the FPF as a linear function of the distribution 74 

parameters by applying first-order Taylor series expansion based on the reliability sensitivity 75 

information. As the reliability sensitivity is a byproduct of reliability analysis, the FPF can be built 76 

by means of a single reliability analysis. Yuan [23] proposed a weighted approach to obtain the FPF. 77 

By introducing an instrumental sampling function, the estimate of FPF can be expressed as a 78 

function of a set of samples which are generated in a single reliability analysis. Its efficiency 79 

depends on the simulation method used, such as, Monte Carlo simulation, importance sampling, 80 

Subset simulation. Further, an advanced Line sampling approach is proposed to solve the FPF [24], 81 

which is similar with the weighted approach as it only needs one simulation run of line sampling. 82 

The third and last class of strategies for estimating the FPF involves the formulation of the reliability 83 

problem in an augmented space. Au [25] first consider the design variables as uncertain with an 84 

assigned probability distribution. This leads to a reliability problem in an augmented space, which 85 

is composed of the basic structural variables and the design parameters. Then, the Bayesian rule is 86 

applied to express the FPF as the product of three terms. The key term out of these three is the 87 

posterior distribution of the design variables. In this way, the FPF is estimated by performing a 88 

single augmented reliability analysis. Ching [26][27] follows the augmented reliability idea and 89 
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adopted the maximum entropy principle to estimate the posterior distribution of the design 90 

variables. Despite all these progresses, there is still a strong need to enhance our ability and 91 

efficiency for estimating the FPF for general problems.   92 

This contribution proposes an efficient procedure called ‘Augmented space integral’ (ASI) for 93 

estimating the structural FPF. In particular, the proposed procedure develops the augmented 94 

reliability idea further to handle the FPF with respect to distribution design parameters. The 95 

features of the proposed approach are: (1) It is based on the augmented reliability idea [25][26], 96 

allowing the FPF to be obtained in a single simulation run and thus, repeated reliability analyses 97 

can be avoided; (2) It casts the posterior distribution appearing in the expression of the FPF as an 98 

integral, which allows its estimation through simulation by averaging over samples, without need 99 

of fitting prescribed probability density functions [25][26]; (3) The work reported here solves the 100 

FPF in augmented space, while the weighted approach proposed in [23] is solved in the original 101 

random variable space. Thus, the proposed approach can be interpreted as an extended version of 102 

the weighted approach.  103 

This contribution is organized as follows. In Section 2, the FPF problem and the original 104 

augmented reliability method are first briefly given. Then, the mathematical formulation of the 105 

proposed procedure is derived, and the implementation with Monte Carlo simulation, importance 106 

sampling and Subset simulation are also developed in Section 3. At last, in Section 4, various 107 

examples are presented to show the performance of the proposed approach.  108 

 109 

2. Failure probability function and its estimation in augmented space 110 

2.1 Failure probability function definition 111 

In this contribution, we focus on the estimation of the FPF with respect to the distribution 112 

parameters of basic random variables, such as mean and standard deviation. These distribution 113 

parameters could be interpreted as design variables. Note that the failure probability can be highly 114 

sensitive to the distribution parameters and thus, it is of great interest to know the relationship of 115 

the failure probability with respect to the distribution parameters. This type of problems is 116 

encountered, for example, when the mean of the geometrical dimension of a structural member 117 

such as thickness, length, height, etc. corresponds to the design variables in reliability-based design 118 

optimization.  119 

The FPF considered in this contribution is given by 120 

 𝑃𝐹(𝜽) = ∫ 𝐼𝐹(𝒙)𝑓(𝒙|𝜽)𝑑𝒙   (1) 

where  𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇  is the vector of basic random variables of the structure/system; 121 

𝜽 = [𝜃1, 𝜃2, … , 𝜃𝑛𝜃
]𝑇 is the vector of distribution parameters related with 𝒙; 𝑓(𝒙|𝜽) represents 122 

the joint conditional Probability Distribution Function (PDF) of 𝒙 given 𝜽; 𝐼𝐹(𝒙) is the indicator 123 

function, 𝐼𝐹(𝒙) = 1  if 𝒙 ∈ 𝐹  and 𝐼𝐹(𝒙) = 0 , otherwise; 𝐹 = {𝒙: 𝑔(𝒙) ≤ 0}  is the failure 124 

region and 𝑔(∙) is the limit state function.  125 

Note that there are usually two different types of design variables in structural reliability-126 

based design. One type refers to the variables that affect the limit state function and the other type 127 

refers to variables that affect in the distribution parameters of basic random variables [4]. In this 128 

contribution, it is found that, when the design variable corresponds to the distribution parameters, 129 

the estimator of FPF can be obtained in an efficient way by the proposed procedure. For the sake 130 
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of simplicity and without loss of generality, it is also assumed that all the basic random variables 131 

are independent with respect to each other.  132 

2.2 Failure probability function transformation in augmented space 133 

The augmented reliability idea provides an efficient means for calculating FPF and was first 134 

proposed by Au [25]. In an augmented space, the design variable 𝜽 is no longer a deterministic 135 

quantity but it is modeled as a random variable vector with an instrumental probability distribution 136 

𝜑(𝜽). Then, applying the Bayesian theory, the sought failure probability function in Eq. (1) can be 137 

transformed as [25]:  138 

 𝑃𝐹(𝜽) =
𝜑(𝜽|𝐹)𝑃(𝐹)

𝜑(𝜽)
 (2) 

where 𝜑(𝜽|𝐹) is the posterior distribution of 𝜽 conditioned on the occurrence of the failure 139 

event; and 𝑃(𝐹) is the failure probability of the augmented reliability problem: 140 

 𝑃(𝐹) = ∬ 𝐼𝐹(𝒙)𝑓(𝒙|𝜽)𝜑(𝜽)d𝒙d𝜽 (3) 

By virtue of Eq. (2), the FPF is expressed in terms of three components, namely 𝜑(𝜽), 𝑃(𝐹) 141 

and 𝜑(𝜽|𝐹). Among them, 𝜑(𝜽) can be selected arbitrarily (due to its instrumental nature) and 142 

it is important to note that different distributions for 𝜽 do not affect the results of FPF from a 143 

theoretical viewpoint. For example, either Gaussian or Uniform distribution can be employed [26]. 144 

However, care should be taken whenever the Gaussian distribution is used, as it may associate 145 

negative values with quantities that are positive due to physical reasons. 𝑃(𝐹) can be estimated 146 

by performing reliability analysis in augmented space. The remaining part is to estimate 𝜑(𝜽|𝐹), 147 

which is the most important and challenging term for the estimation of FPF by means of Eq. (2). 148 

In [25], Au used histograms to represent this term, and latter Ching adopted the maximum entropy 149 

method to approximate the posterior distribution, leading to an estimator for the FPF which is an 150 

explicit expression of 𝜽  [26]-[27]. In this contribution, the proposed procedure develops the 151 

augmented reliability method further, such that there is no need to fit a density function to 152 

describe the posterior distribution 𝜑(𝜽|𝐹).  153 

3. Proposed approach for FPF estimation 154 

As the key for solving the FPF according to Eq. (2) is the assessment of the term 𝜑(𝜽|𝐹), the 155 

proposed procedure is further developed for handling a particular type of problem where the 156 

design variables are the distribution parameters of basic random variables. It is found that for this 157 

type of problem, the posterior distribution associated with the FPF can be expressed as an integral 158 

which can be estimated by means of samples. Thus, there is no need to fit a probability distribution. 159 

In the following, the proposed procedure, as well as the implementations with three different 160 

simulation approaches are presented.  161 

3.1 Basic formulation of the proposed approach  162 

The proposed procedure attempts to establish a relationship between the posterior 163 

distribution 𝜑(𝜽|𝐹) and the variable 𝒙. If such goal can be fulfilled, then there is no need to fit a 164 

probability distribution in order to estimate 𝜑(𝜽|𝐹).  165 

According to the formula of conditional probability, 𝜑(𝜽|𝐹) can be developed as: 166 

 𝜑(𝜽|𝐹) = ∫ 𝜑(𝜽|𝒙, 𝐹)𝑓(𝒙|𝐹)d𝒙 = 𝐸𝒙|𝑭[𝜑(𝜽|𝒙, 𝐹)] (4) 



5 

 

where 𝐸𝒙|𝑭[∙] means the expectation under 𝑓(𝒙|𝐹). Eq. (4) reveals the relationship between the 167 

two posterior distributions, 𝜑(𝜽|𝐹)  and 𝑓(𝒙|𝐹) . It provides an alternative way to obtain 168 

𝜑(𝜽|𝐹), instead of using density fitting methods. According to Eq. (4), if 𝜑(𝜽|𝒙, 𝐹) is obtained 169 

beforehand, then 𝜑(𝜽|𝐹) can be obtained using simulation, i.e., estimating expectation by the 170 

mean of samples.  171 

According to Bayesian theory, 𝜑(𝜽|𝒙, 𝐹) can be simplified to  172 

 𝜑(𝜽|𝒙, 𝐹) =
𝐼𝐹(𝒙)𝜑(𝜽|𝒙)

∫ 𝐼𝐹(𝒙)𝜑(𝜽|𝒙)d 𝜽
= 𝐼𝐹(𝒙)𝜑(𝜽|𝒙) (5) 

where the term 𝜑(𝜽|𝒙) can also be rewritten as follows by using Bayesian theory  173 

 𝜑(𝜽|𝒙) =
𝑓(𝒙|𝜽)𝜑(𝜽)

𝑓(𝒙)
 (6) 

where 𝑓(𝒙) is the marginal distribution of 𝒙 in augmented space (𝒙, 𝜽) which is given by:  174 

 𝑓(𝒙) = ∫ 𝑓(𝒙, 𝜽) d 𝜽 = ∫ 𝑓(𝒙|𝜽)𝜑(𝜽) d 𝜽 (7) 

It has already been stated in [25] that the role of the PDF 𝜑(𝜽) is not to reflect the uncertainty of 175 

𝜽. Rather, it is a device to yield information about 𝑃𝐹(𝜽) versus 𝜽. The choice of 𝜑(𝜽) depends 176 

on the region in the design parameter space where 𝑃𝐹(𝜽) is to be studied. Without particular 177 

preference for the region to be emphasized, a uniform distribution may be chosen for convenience 178 

[25], i.e., 𝜽~𝑼[𝜽̱, 𝜽̄]. In this context, 𝜑(𝜽) is a constant within 𝜽 ∈ [𝜽̱, 𝜽̄]. Then, the marginal 179 

distribution 𝑓(𝒙) can be rewritten as:  180 

 𝑓(𝒙) = ∫ 𝑓(𝒙|𝜽)𝜑(𝜽)d𝜽
𝜽̄

𝜽̱

= 𝜑(𝜽)Δ(𝒙) (8) 

where Δ(𝒙) = ∫ 𝑓(𝒙|𝜽)d𝜽
𝜽̄

𝜽̱
 is an integral over the design region. Further details on the 181 

calculation of Δ(𝒙) are presented in Appendix A. 182 

Substitution of Eq. (8) into (6) allows determining the sought the posterior distribution 183 

𝜑(𝜽|𝒙), which is equal to:  184 

 𝜑(𝜽|𝒙) =
𝑓(𝒙|𝜽)𝜑(𝜽)

𝑓(𝒙)
=

𝑓(𝒙|𝜽)

Δ(𝒙)
 (9) 

Replacing Eqs. (5) and (9) into Eq. (4) leads to: 185 

 𝜑(𝜽|𝐹) = ∫ 𝐼𝐹(𝒙)
𝑓(𝒙|𝜽)

Δ(𝒙)
𝑓(𝒙|𝐹)d𝒙 = 𝐸𝒙|𝑭 [

𝑓(𝒙|𝜽)

Δ(𝒙)
] (10) 

And 𝑓(𝒙|𝐹) is the PDF of  𝒙 conditional on 𝐹, which is given by: 186 

 𝑓(𝒙|𝐹) =
𝐼𝐹(𝒙)𝑓(𝒙)

∫ 𝐼𝐹(𝒙)𝑓(𝒙) d 𝒙
=

𝐼𝐹(𝒙)𝑓(𝒙)

∫ 𝐼𝐹(𝒙) ∫ 𝑓(𝒙, 𝜽) d 𝜽 d 𝒙
=

𝐼𝐹(𝒙)𝑓(𝒙)

𝑃(𝐹)
 (11) 

Substitution of Eq. (11) into Eq. (10) allows rewriting 𝜑(𝜽|𝐹) as: 187 

 𝜑(𝜽|𝐹) =
1

𝑃(𝐹)
∫

𝐼𝐹(𝒙)𝑓(𝒙|𝜽)

Δ(𝒙)
𝑓(𝒙)d𝒙 (12) 

Finally, substitution of Eq. (12) into Eq. (2) leads to the final expression for the FPF, which 188 

can be expressed as: 189 

 𝑃𝐹(𝜽) =
1

𝜑(𝜽)
∫

𝐼𝐹(𝒙)𝑓(𝒙|𝜽)

Δ(𝒙)
𝑓(𝒙)d𝒙 =

1

𝜑(𝜽)
𝐸𝒙 [

𝐼𝐹(𝒙)𝑓(𝒙|𝜽)

Δ(𝒙)
] (13) 

where 𝐸𝒙[∙] represents expectation under the marginal distribution 𝑓(𝒙).  190 
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 191 

3.2 Proposed procedure based on Monte Carlo simulation 192 

After a general formula for the FPF has been obtained above, it can be implemented by means 193 

of a simulation-based method. The most direct approach is using Monte Carlo simulation. In the 194 

following, the proposed procedure based on Monte Carlo simulation is presented, which is 195 

denoted as ‘ASI-MCS’ for compactness. 196 

Note that contrary to traditional reliability analysis, the augmented reliability problem must 197 

be solved in the augmented space (𝒙, 𝜽). According to Eq. (13), if 𝑃𝐹(𝜽) is solved by using 198 

Monte Carlo Simulation, the key is to generate samples from 𝒙  which follow the marginal 199 

distribution of 𝑓(𝒙). However, in a general case, one may not sample directly from 𝑓(𝒙), as it may 200 

not correspond to a known probability distribution. However, the following workaround can be 201 

implemented. First, generate samples {𝜽(𝑗), 𝑗 = 1, … , 𝑁} that follow 𝜑(𝜽). Then, for each of 202 

these samples, generate samples { 𝒙(𝑗), 𝑗 = 1, … , 𝑁} , each of them distributed according to 203 

𝑓(𝒙|𝜽(𝑗)) . Thus, the set of samples { (𝒙(𝑗), 𝜽(𝑗)), 𝑗 = 1, … , 𝑁}  follows 𝑓(𝒙, 𝜽) . Ignoring the 204 

samples associated with 𝜽, then {𝒙(𝑗), 𝑗 = 1, … , 𝑁} are distributed as 𝑓(𝒙).  205 

According to Eq. (10), the estimator for the posterior distribution is given by: 206 

 𝜑̂(𝜽|𝐹) =
1

𝑁𝐹
∑

𝑓(𝒙(𝑗)|𝜽)

𝛥(𝒙(𝑗))

𝑁𝐹

𝑗=1

  (14) 

This implies that, instead of using distribution fitting approach to estimate 𝜑(𝜽|𝐹)  (as 207 

performed in [26]), the proposed approach can estimate directly the 𝜑(𝜽|𝐹)  by means of 208 

sampling.  209 

According to Eq. (13), the FPF 𝑃𝐹(𝜽) is estimated as:  210 

 𝑃̂𝐹(𝜽) =
1

𝜑(𝜽)

1

𝑁
∑

𝐼𝐹(𝒙(𝑗))𝑓(𝒙(𝑗)|𝜽)

Δ(𝒙(𝑗))

𝑁

𝑗=1

 (15) 

 It is obvious that the estimator 𝑃̂𝐹(𝜽) is unbiased, and its variance can be readily obtained 211 

as:  212 

 𝑉𝑎𝑟[𝑃̂𝐹(𝜽)] ≈
1

𝑁 − 1
{

1

𝑁
∑ {

𝐼𝐹(𝒙(𝑗))𝑓(𝒙(𝑗)|𝜽)

𝜑(𝜽)[Δ(𝒙(𝑗))]
}

2𝑁

𝑗=1

− 𝑃̂𝐹
2(𝜽)}   (16) 

And the Coefficient of variation (C.o.v.) of 𝑃̂𝐹(𝜽) is given by:  213 

 
𝐶𝑜𝑣[𝑃̂𝐹(𝜽)] =

√𝑉𝑎𝑟[𝑃̂𝐹(𝜽)]

𝐸[𝑃̂𝐹(𝜽)]
≈

√𝑉𝑎𝑟[𝑃̂𝐹(𝜽)]

𝑃̂𝐹(𝜽)
   

(17) 

 214 

3.3 Proposed procedure based on importance sampling 215 

The proposed procedure can be also implemented with importance sampling, which is 216 

denoted as ‘ASI-IS’. Introducing an appropriate importance sampling function 𝐻(𝒙) in augmented 217 

space, the FPF in Eq. (13) can be rewritten as: 218 

 𝑃𝐹(𝜽) =
1

𝜑(𝜽)
∫

𝐼𝐹(𝒙)𝑓(𝒙|𝜽)

Δ(𝒙)

𝑓(𝒙)

𝐻(𝒙)
𝐻(𝒙)d𝒙 (18) 

Substitution of Eq. (8) into (18) allows rewriting 𝑃𝐹(𝜽) as:  219 
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 𝑃𝐹(𝜽) = ∫
𝐼𝐹(𝒙)𝑓(𝒙|𝜽)

𝐻(𝒙)
𝐻(𝒙)d𝒙 = 𝐸𝐻 [

𝐼𝐹(𝒙)𝑓(𝒙|𝜽)

𝐻(𝒙)
] (19) 

where 𝐸𝐻[∙] denotes the expectation under 𝐻(𝒙).    220 

It should be noted that the final expression in Eq. (19) is the same as the one associated with 221 

weighted importance sampling introduced in a previous work [23], but its meaning is quite 222 

different. In the previous work, everything is formulated in the space associated with 𝒙, but in the 223 

present contribution, it is solved in the augmented space (𝒙, 𝜽). Thus, in this sense, it can be seen 224 

as an extended version of the previous work.  225 

The importance sampling density 𝐻(𝒙) should be selected properly. There are plenty of 226 

contributions addressing the way of determining importance sampling density. However, few of 227 

them address how to determine such density in an augmented space. Here, we present some 228 

suggestions. There are two ways for determining 𝐻(𝒙) in augmented space. One is based on a 229 

design point 𝒙∗. The design point can be solved according to a nominal value of design parameter, 230 

say, 𝜽𝟎, which can be simply set as the center of the domain associated with 𝜽, i.e., 𝜽𝟎 = (𝜽̱ +231 

𝜽̄)/2. Alternatively, the design point can be obtained by searching the point 𝒙∗ in the augmented 232 

space which has the largest joint PDF value 𝑓(𝒙, 𝜽) and that belongs to the failure domain 𝐹. For 233 

this purpose, the random variables can be classified into two types, that is, 𝒙 = [𝒙𝜽, 𝒙𝒓], where 234 

𝒙𝜽 is the variable vector related with design parameters 𝜽 and 𝒙𝒓 is the vector of the rest of 235 

random variables (whose distribution is not affected by 𝜽). Then, based on the design point 𝒙∗ =236 

[𝒙𝜽
∗ , 𝒙𝒓

∗], 𝐻(𝒙) can be chosen as   237 

 𝐻(𝒙) = 𝑓(𝒙𝜽)𝐻(𝒙𝒓|𝒙𝒓
∗) (20) 

where 𝑓(𝒙𝜽) is the marginal distribution for 𝒙𝜽 given in Eq. (8).    238 

The other way to choose 𝐻(𝒙) is based on adaptive importance sampling density [29]. That 239 

is, to establish an approximate optimal density. For example, we can pre-sample in the failure 240 

region (in augmented space), and then, based on these samples, obtain an approximated sampling 241 

density.     242 

Suppose 𝐻(𝒙)  has been chosen, then samples can be generated according to 𝐻(𝒙) . 243 

Suppose a total of 𝑁  samples are generated, {𝒙(𝑗), 𝑗 = 1, … , 𝑁}. Then according to Eq. (19), 244 

𝑃𝐹(𝜽) is estimated as:  245 

 𝑃̂𝐹(𝜽) =
1

𝑁
∑

𝐼𝐹(𝒙(𝑗))𝑓(𝒙(𝑗)|𝜽)

𝐻(𝒙(𝑗))

𝑁

𝑗=1

 (21) 

 It is obvious that the estimator 𝑃̂𝐹(𝜽) is unbiased, and its variance is obtained as  246 

 𝑉𝑎𝑟[𝑃̂𝐹(𝜽)] ≈
1

𝑁 − 1
{

1

𝑁
∑ {

𝐼𝐹(𝒙(𝑗))𝑓(𝒙(𝑗)|𝜽)

𝐻(𝒙(𝑗))
}

2𝑁

𝑗=1

− 𝑃̂𝐹
2(𝜽)}   (22) 

And the C.o.v. of 𝑃̂𝐹(𝜽) is given by:  247 

 
𝐶𝑜𝑣[𝑃̂𝐹(𝜽)] =

√𝑉𝑎𝑟[𝑃̂𝐹(𝜽)]

𝐸[𝑃̂𝐹(𝜽)]
≈

√𝑉𝑎𝑟[𝑃̂𝐹(𝜽)]

𝑃̂𝐹(𝜽)
   

(23) 

 248 

3.4 Proposed procedure based on Subset simulation  249 

In this section, Subset simulation is adopted and integrated within the proposed procedure, 250 
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which is denoted as ‘ASI-SS’. Subset simulation is an efficient approach for evaluating the failure 251 

probability of general reliability problems, and is especially suitable for high dimensional, low 252 

failure probability reliability problems [11]. The basic idea of Subset simulation is that a low failure 253 

probability event is expressed as the product of a series of conditional, larger probabilities, whose 254 

estimation is straightforward. The proposed ASI procedure can be implemented by using Subset 255 

Simulation, as described in the following.  256 

Let 𝐹1 ⊃ 𝐹2 ⊃. . . ⊃ 𝐹𝑚 = 𝐹 be a nested sequence of failure events in subset simulation in 257 

augmented space (𝒙, 𝜽) where 𝐹𝑖 = {𝑔(𝒙) ≤ 𝑏𝑖}(𝑖 = 1,2, . . . , 𝑚); then the failure probability 258 

can be expressed by 259 

 𝑃(𝐹) = 𝑃(𝐹1) ∏ 𝑃(𝐹𝑖|𝐹𝑖−1)

𝑚

𝑖=2

 (24) 

Note that 𝑏1, 𝑏2, . . . , 𝑏𝑚−1 are the intermediate threshold values which are adaptively determined, 260 

so that the corresponding probabilities 𝑃(𝐹1), 𝑃(𝐹2|𝐹1),…, 𝑃(𝐹𝑚−1|𝐹𝑚−2) can be all set to be 261 

𝑝0, e.g., 𝑝0 = 0.1 for convenience. The final threshold 𝑏𝑚 = 0 is not chosen adaptively.  262 

Suppose there are 𝑁𝑠 samples generated at (m-1)th level. Moreover, it is considered that 263 

there are a number of 𝑁𝐹  failure samples located in the final level (target failure region 𝐹 ), 264 

{(𝒙(𝑗), 𝜽(𝑗)), 𝑗 = 1, … , 𝑁𝐹}, which are distributed as 𝑓(𝒙, 𝜽|𝐹). Ignoring the 𝜽 part, the samples 265 

{𝒙(𝑗), 𝑗 = 1, … , 𝑁𝐹 } are distributed as 𝑓(𝒙|𝐹) . Then according to Eq. (10), 𝜑(𝜽|𝐹)  can be 266 

estimated by 267 

 𝜑̂(𝜽|𝐹) =
1

𝑁𝐹
∑

𝑓(𝒙(𝑗)|𝜽)

Δ(𝒙(𝑗))

𝑁𝐹

𝑗=1

   (25) 

This means that the distribution 𝜑(𝜽|𝐹) can be estimated using simulation, and no distribution 268 

fitting is required. The failure probability in Eq. (24) can be estimated by  269 

 𝑃̂(𝐹) = 𝑝0
𝑚−1

𝑁𝐹

𝑁𝑠
 (26) 

Finally, substitution of Eqs. (25) and (26) into (2) leads to the following expression for FPF 270 

𝑃𝐹(𝜽): 271 

 𝑃̂𝐹(𝜽) =
𝑝0

𝑚−1

𝜑(𝜽)

1

𝑁𝑠
∑

𝐼𝐹(𝒙(𝑗))𝑓(𝒙(𝑗)|𝜽)

Δ(𝒙(𝑗))

𝑁𝑠

𝑗=1

=
𝑝0

𝑚−1𝑃̂𝑚(𝜽)

𝜑(𝜽)
 (27) 

where  272 

 𝑃̂𝑚(𝜽) =
1

𝑁𝑠
∑

𝐼𝐹(𝒙(𝑗))𝑓(𝒙(𝑗)|𝜽)

Δ(𝒙(𝑗))

𝑁𝑠

𝑗=1

 (28) 

And the C.o.v. of 𝑃̂𝐹(𝜽) can be approximated by:  273 

 𝐶𝑜𝑣[𝑃̂𝐹(𝜽)] = √∑
𝑉𝑎𝑟(𝑃̂𝑖)

𝑃𝑖
2

𝑚

𝑖=1

≈ √∑
𝑉𝑎𝑟(𝑃̂𝑖)

𝑃̂𝑖
2

𝑚

𝑖=1

 (29) 

A detailed derivation of Eq. (29) is given in Appendix B.  274 

 275 
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3.5 Comparison of different approaches 276 

Table 1 presents the comparison of different approaches that can produce an estimate of the 277 

FPF by means of a single reliability analysis.  278 

In Table 1, ‘ASI’ refers to the proposed procedure herein; ‘WA’ refers to the Weighted 279 

Approaches previously proposed by the author, which includes Weighted Monte Carlo Simulation 280 

(WMCS), Weighted importance sampling (WIS) and Weighted Subset simulation (WSS); ‘ALS’ refers 281 

to Advanced Line Sampling method. ‘Au’ refers to the augmented reliability idea proposed by Au; 282 

‘Ching’ refers to the advanced augmented reliability idea with maximum entropy; ‘Wei’ refers to 283 

non-intrusive imprecise stochastic simulation for uncertainty propagation.  284 

Table 1. Comparison of different approaches 285 

Methods Space Expression Simulation Design variable 

ASI Augmented 

space 

Integral MCS, IS, SS Distribution parameter 

WA[23] Original space Integral MCS, IS, SS Distribution parameter 

ALS[24] Original space Integral Line 

sampling 

Distribution parameter 

Au[25] Augmented 

space 

Histogram SS Distribution parameter or deterministic 

parameter  

Ching[26] Augmented 

space 

Maximum entropy SS Distribution parameter or deterministic 

parameter 

Wei[21] Augmented 

space 

Integral MCS, SS Distribution parameter 

 286 

Among these methods, WA and ALS are carried out in original space of basic random variables, 287 

while the other methods are all formulated in augmented space. In Au and Ching, the estimator of 288 

FPF is finally expressed by using histogram or by using maximum entropy estimation. However, 289 

they can handle both the distribution parameters and design variables affecting the limit state 290 

function, whereas other approaches only handle the former one. The proposed approach 291 

preserves the advantage of using only a single reliability simulation in augmented space. 292 

Furthermore, it does not need to estimate the conditional distribution 𝜑(𝜽|𝐹) by using density 293 

approximation (considering, e.g. maximum entropy principle) and in addition, there is no need to 294 

select the shape of the probability density function. 295 

Thus, in summary, the proposed procedure can be seen as a particular version of the 296 

augmented reliability idea (Au and Ching), which improves the efficiency when handling the FPF 297 

with respect to distribution parameters, resulting in better performance. Also, the proposed 298 

procedure can be seen as a further advanced version of the weighted approach (Yuan), which 299 

extends the original space to the augmented space, resulting in a better improvement on accuracy. 300 

These characteristics will be shown in the examples given in Section 4.  301 

 302 

3.6 Procedure of the proposed approach 303 

The procedure of the proposed approach is summarized as follows.  304 

1) Choose a distribution 𝜑(𝜽).  305 

For general cases, uniform distribution may be chosen. 306 

2) Carry out the simulation in augmented space.  307 

ASI-MCS, ASI-IS or ASI-SS can be selected to carry out reliability analysis in the augmented 308 
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space (𝒙, 𝜽), producing failure samples {(𝒙(𝑗), 𝜽(𝑗)): 𝑗 = 1, . . . , 𝑁𝐹}.  309 

3) Obtain the FPF estimator  310 

The FPF can be obtained according to Eq. (15) for ASI-MCS, Eq. (21) for ASI-IS or (27) for 311 

ASI-SS; their respective C.o.v.’s can be calculated as well according to Eq. (17) for ASI-MCS, Eq. 312 

(23) for ASI-IS or (29) for ASI-SS. 313 

 314 

4. Examples 315 

In order to verify the feasibility and accuracy of the proposed approaches (ASI-MCS, ASI-IS and 316 

ASI-SS), numerical and practical engineering examples are presented in this section. Meanwhile, 317 

different methods are also used for comparison purposes. ‘Direct MCS’ refers to the results 318 

obtained by Direct MCS, which can be seen as the reference results. ‘WMCS’ refers to 319 

the ’Weighted Monte Carlo simulation’ method [23]; ‘WIS’ refers to the ’Weighted Importance 320 

sampling’ method [23]. Note that in the proposed procedure, the prior distribution is selected as 321 

a uniform distribution for all the examples.   322 

4.1 Example 1: A test example  323 

The first example considers a simple limit state function, which is given by: 324 

 𝑔(𝒙) = 𝑒0.04𝑥1+7 − 𝑒0.3𝑥1
2+5 ∗ 𝑥2 (30) 

where 𝒙 = [𝑥1, 𝑥2], 𝑥1 and 𝑥2 are independent, Gaussian distributed random variables, such 325 

that 𝑥1~𝑁(𝜃, 0.5), 𝑥2~𝑁(0,0.5); the mean of 𝑥1  is taken as the design parameter, and the 326 

design domain is 𝜃 ∈ [−2,2].  327 

The proposed ASI approaches (ASI-MCS, ASI-IS and ASI-SS) are applied to this toy problem. 328 

For comparison, the weighted approaches (WMCS, WIS and WSS) [23] and GEMCS in [21] are also 329 

applied. The computational cost for these approaches is listed in Table 2. Note that for the 330 

application of all of these methods, a single reliability analysis is required to obtain the FPF and its 331 

corresponding C.o.v. In addition, the direct MCS is carried out in ten independent simulation runs 332 

to generate point wise failure probability estimates, which are regarded as the exact reference 333 

results. The obtained FPF results (according to Eq. (15) for ASI-MCS, Eq. (21) for ASI-IS or (27) 334 

for ASI-SS ) and C.o.v. of the estimate (according to Eq. (17) for ASI-MCS, Eq. (23) for ASI-IS or (29) 335 

for ASI-SS.) are given in Fig. 1 and Fig. 2, respectively.  336 

Note that for the implementation of ASI-MCS, a total of 105 samples are generated, and 143 337 

failure samples fall within the failure domain; whereas WMCS was implemented considering 109 338 

samples, with a nominal setting 𝜃0 = 0, and only 50 failure samples are obtained. This is due to 339 

the fact that the proposed ASI approaches are implemented in augmented space where it is 340 

assumed 𝜃~𝑈[−2,2], and the corresponding augmented failure probability is larger than the one 341 

where it is assumed that 𝜃0 = 0. It can be seen from Fig. 1 that both ASI-MCS and WMCS obtained 342 

quite accurate FPF results (consistent with the reference results provided by Direct MCS). However, 343 

the samples used for WMCS are 1000 (=109/105) times larger than that of ASI-MCS. In this sense, 344 

the proposed ASI-MCS overperforms the WMCS in terms of efficiency. Compared with GEMCS, the 345 

proposed approach is more accurate (see Fig. 1) and more robust, as the C.o.v. of estimate by 346 

GEMCS vary drastically (see Fig. 2).  347 
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Table 2. Comparisons of different methods for Example 1  348 

Methods No. of samples  No. of failure samples 

ASI-MCS 105 163 

ASI-IS 2000 61 

ASI-SS 200×4* 185 

WMCS 109 50 

WIS 2000 962 

WSS 500×9 258 

GEMCS 105 135 

Direct MCS 108×10  

*: “200×4” means 200 samples are used for each level and a total of 4 levels are used. 349 

 350 

ASI-IS is applied such that the sampling function is constructed based on the design point. The 351 

design point 𝒙∗ = [−2.35, 1.26] is found when assuming 𝜃0 = 0. Then, the sampling function 352 

setting for ASI-IS is 𝐻(𝒙) = 𝑓(𝑥1)𝐻(𝑥2|𝒙𝒓
∗ = 1.26). A number of N= 2000 samples are generated 353 

to estimate the FPF. Meanwhile, WIS is also applied. The instrumental sampling function for WIS is 354 

Gaussian distributed and centered on design point 𝒙∗ [23]. Note that, the difference between ASI-355 

IS and WIS is that they are carried out in different spaces, i.e., augmented space and original space, 356 

respectively, so they obtain different numbers of failure samples. From Fig. 1, it can be seen that 357 

the FPF obtained by ASI-IS matches quite well the reference values. However, the result by WIS 358 

possesses considerable error when 𝜃 ∈ [0.5,2]. The reason is illustrated in Fig. 3 which shows the 359 

failure samples generated by the different approaches. It is clearly seen that the failure samples 360 

generated by WIS are located in one important region, while the region corresponding to 𝑥1 ∈361 

[2, 3] contains no samples. Note that this region will be the importance failure region when  𝜃 ∈362 

[0.5,2]. Failure in exploring this region leads to underestimate the FPF over 𝜃 ∈ [0.5,2]. The 363 

proposed ASI-IS can overcome this disadvantage, as it can generate failure samples in both 364 

important regions (see Fig. 3). A similar phenomenon can be seen in the figures related with ASI-365 

SS and WSS. The reason behind this is that, the proposed approach can explore all the important 366 

failure regions (corresponding to different values of 𝜃 ∈ [𝜃̱, 𝜃̄]) by sampling in the augmented 367 

space, while the weighted approach may just concentrate in an important failure region 368 

corresponding to 𝜃 = 𝜃0 . Thus, the superiority of accuracy and robustness of the proposed 369 

approach over the weighted approach are well demonstrated through this example. 370 

 371 
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  372 
Fig. 1. FPF results obtained by different approaches for Example 1 373 

  374 
Fig. 2. The C.o.v.’s of FPF results obtained by different approaches for Example 1 375 

 376 

Also, the proposed ASI procedure is compared with the maximum entropy estimation which 377 

is used in [26]. Fig. 4 shows the posterior distribution 𝜑(𝜽|𝐹)  obtained by these methods. 378 

‘MaxEnt-MCS’ and ‘MaxEnt-SS’ refer to the approaches that use Maximum Entropy estimate to fit 379 

the target distribution based the failure samples generated from MCS and SS, respectively. Note 380 

that the same set of samples are used for different approaches, i.e., both ASI-MCS and MaxEnt-381 

MCS use the same set of 163 failure samples, while both ASI-SS and MaxEnt-SS use the same set 382 

of 183 failure samples. It can be seen that the results by the proposed ASI-MCS and ASI-SS are 383 

consistent with the reference result. However, the results by the maximum entropy estimation 384 

have remarkable errors in this example. Note that as there are less than 200 failure samples, 385 

methods based on distribution fitting may lead to considerable errors. On the contrary, the 386 

proposed procedure actually calculates an integral by means of sampling and accurate estimates 387 

can be obtained. Therefore, the advantages on accuracy and efficiency of the proposed procedure 388 

have been clearly shown.  389 
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 390 
Fig. 3. The failure samples generated by different approaches for Example 1 391 

 392 
Fig. 4. The distribution 𝜑(𝜽|𝐹) obtained by different approaches for Example 1 393 

 394 
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4.2 Example 2: Automobile front axle 395 

Front axle is an important component of automobile that bears heavy loads [31] (Fig. 5). An I-396 

beam is often used in the design of front axle due to its high bend strength and light weight. As 397 

shown in Fig. 5, a critical component of the axle is located in the I-beam part. To test the static 398 

strength of the front axle, the limit-state function can be expressed as 399 

 2 2( ) 3sg     x   (31) 400 

where 𝜎𝑠 is the limit-state stress associated with yielding. According to the material property of 401 

the front axle, the limit stress of yielding 𝜎𝑠 is 680 MPa. The maximum normal stress and shear 402 

stress are 𝜎 = 𝑀/𝑊𝑥  and 𝜏 = 𝑇/𝑊𝜌 , where 𝑀  and 𝑇  are bending moment and torque, 403 

respectively, 𝑊𝑥 and 𝑊𝜌 are section factor and polar section factor, respectively, which are given 404 

as [32]   405 

 
3

3 3( 2 )
= [ ( 2 ) ]

6 6
x

a h t b
W h h t

h h


     (32) 406 

 
2 3=0.8 0.4[ ( 2 ) / ]W bt a h t t     (33) 407 

The geometry variables of I-beam 𝑎, 𝑏,  𝑡, ℎ and the load 𝑀 and 𝑇 are independent variables 408 

with distribution parameters listed in Table 3. Note that all the variables are restricted to positive 409 

value due to physical reason, actually they are all truncated variables.  410 

 411 

 412 
Fig. 5. Diagram of automobile front axle  413 

 414 

Table 3. The distribution information of the random variables in Example 2 415 

Random variable 𝑎 (mm) 𝑡 (mm) 𝑏 (mm) ℎ (mm) 𝑀 (KN∙m) 𝑇 (KN∙m) 

Location parameter  𝜃1=𝜇𝑎 𝜃3=𝜇𝑡
 65 85 3.65 𝜃4=𝜇𝑇 

Scale parameter 𝜃2=𝜎𝑎 1.5 6.5 8.5 0.27 0.24 

Distribution Normal Normal Normal Normal Gumbel Gumbel 

 416 

The design parameters given in Table 3 include the mean value and standard deviation of the 417 

normal variable, and also the location parameter of the non-normal distributed variable. The 418 

design domains are 𝜃1 = 𝜇𝑎 ∈ [11, 15]mm, 𝜃2 = 𝜇𝑡 ∈ [0.8, 1.6]mm, 𝜃3 = 𝜇𝑡 ∈ [12, 18] mm 419 

and 𝜃4 = 𝜇𝑇 ∈ [2.8, 3.8] KN∙m, respectively.  420 

 421 
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Table 4. Comparisons of different methods for Example 2  422 

Methods No. of samples  No. of failure samples 

ASI-MCS 105 825 

ASI-IS 3000 107 

ASI-SS 1000×3 790 

WMCS 105 38 

WIS 3000 1371 

WSS 1000×4 310 

Direct MCS 106×10 - 

 423 

The FPF is estimated by means of the proposed approaches, ASI-MCS, AIS-IS and AIS-SS. For 424 

comparison, the weighted approaches, WMCS, WIS and WSS are also applied. In addition, direct 425 

MCS is carried out considering ten independent simulation runs to generate point wise failure 426 

probability estimates which are regarded as the reference results.  427 

Fig. 6 shows the FPF results obtained by different approaches. Note that the FPF is a four-428 

dimensional function, and in the figure, the FPF with respect to each dimension is shown (while 429 

others are fixed at the center values of the design intervals). Information on the implementation 430 

details for each approach is listed in Table 4. It is seen from the figure that the results by the 431 

proposed approaches are in good agreement with the reference results (denoted by dots).  432 

AIS-MCS is implemented considering a total of 𝑁 = 105 samples, and 𝑁𝐹 = 825 failure 433 

samples are obtained. Whereas WMCS also involves 105 samples and only 𝑁𝐹 =38 failure samples 434 

are obtained. The reason is that AIS-MCS is carried out in the augmented space which owns a bigger 435 

failure probability than that of WMCS. A similar situation happens when comparing AIS-SS and WSS. 436 

WSS is applied with  𝑁 =1000×4 samples (1000 for each of the 4 levels considered). While the 437 

proposed ASI-SS uses only 𝑁 = 1000×3 samples to obtain a satisfactory estimate of FPF. 438 

Computation can be saved when considering the formulation in the augmented space by AIS-MCS 439 

and AIS-SS. The results by the weighted approaches possess remarkable errors in this example. For 440 

instance, a large error exists when 𝜃2 ∈ [1, 1.6] and also 𝜃4 ∈ [3.6, 3.8]. The reason behind such 441 

error is that, since the sampling function of the weighted approach is centered in the midpoint of 442 

the design region, it cannot cover the important failure region in the original space sufficiently well 443 

as the proposed ASI approaches do. In conclusion, from the figure and table, the results obtained 444 

shows that the proposed approaches are applicable for multiply-dimension design parameters and 445 

for both the normal and non-normal variables, also showing more accuracy than other approaches.   446 

 447 
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 448 

Fig. 6. The FPF estimates obtained by the different methods for Example 2 449 

 450 

4.3 Example 3: Steel frame subject to stochastic acceleration  451 

4.3.1 General model introduction 452 

Consider a six-story steel frame as shown in Fig. 7, which has been previously investigated in 453 

[23]. This structure is assumed to have rigid floors and behave within the linear-elastic range, with 454 

classical damping. The damping ratio of the 𝑖 -th mode is denoted as 𝜁𝑖(𝑖 = 1, … ,6)  Linear 455 

viscous damping elements, called passive dampers, are installed as diagonal bracings. The damping 456 

coefficient of the damper in the 𝑖-th (𝑖 = 1, … ,6) story is denoted as 𝐶𝑑𝑖 and their values can 457 

be adjusted. In this example, the damping coefficient of each damper 𝐶𝑑𝑖(𝑖 = 1, … ,6), the original 458 

modal damping ratios of the building, 𝜁𝑖(𝑖 = 1, … ,6), the stiffness of each story, 𝑘𝑖(𝑖 = 1, … ,6), 459 

and the mass of each story, 𝑚𝑖(i = 1, … ,6), are considered as (truncated) Gaussian variables. The 460 

corresponding distribution information of these 24 structural random variables is given in Table 5.  461 

Stochastic ground acceleration 𝑎̈𝑔(𝑡) which is modeled as Gaussian white noise 𝑊(𝑡) is 462 

applied to this the structure. When the peak interstory drift ratio over any of the stories of the 463 

structure exceeds a threshold level 𝑏, structural failure occurs. The damage level 𝑏=1.5% (Life-464 

Safety) is considered herein. A duration of 𝑇 =10s and time interval of ∆𝑡 = 0.05s are assumed. 465 

The discrete approximation for 𝑊(𝑡)  is applied at time instants 𝑡𝑘 = 𝑘∆𝑡(𝑘 = 1,2, … , 𝑛𝑡) , 466 

i.e., 𝑊(𝑡𝑘) = 𝑍(𝑡𝑘)√2𝜋𝑆/∆𝑡  where 𝑆 = 0.05m2/s3  is the spectral intensity and 𝑍𝑘 = 𝑍(𝑡𝑘) 467 

are independent identical distributed Gaussian random variables, thus there are 𝑛𝑘 = 𝑘/∆𝑡 =468 

200 input random variables.  469 
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 470 
Fig. 7. Six-story steel frame structure with passive dampers 471 

 472 

Here, the mean values of the first story stiffness is taken as the design parameter, i.e., 𝜃 =473 

𝜇𝑘1
, and the design interval for 𝜃 is [100, 200] (kN/mm). The reason for considering the mean value 474 

of the first story is that in practical situations, it dominates the calculation of the failure probability 475 

(see, e.g. [34]).  476 

 477 

Table 5. Distribution information of structural random variables 478 

Variable Mean C.o.v. 

𝑘1 (kN/mm) 𝜃 = 𝜇𝑘1
∈ [100, 200]  0.1 

𝑘2 (kN/mm) 367 0.1 

𝑘3 (kN/mm) 246 0.1 

𝑘4 (kN/mm) 246 0.1 

𝑘5 (kN/mm) 175 0.1 

𝑘6 (kN/mm) 175 0.1 

𝑚1 (ton) 283 0.1 

𝑚2 (ton) 263 0.1 

𝑚3 (ton) 256 0.1 

𝑚4 (ton) 255 0.1 

𝑚5 (ton) 247 0.1 

𝑚6 (ton) 215 0.1 

𝐶𝑑𝑖  (𝑖 = 1, … ,6) (106Ns/m) 2 0.1 

𝜁𝑖 (𝑖 = 1, … ,6) (%) 0.05 0.1 

 479 

In the following, different approaches are applied to obtain the FPF of this frame structure 480 

with respect to 𝜃. The proposed procedure with MCS, IS and SS is carried out in augmented space, 481 

i.e., ASI-MCS, ASI-IS and ASI-SS, respectively. And also, the weighted approach with MCS, IS, and SS 482 

is applied for comparison, i.e., WMCS, WIS, WSS. And it is assumed that the steel frame structure 483 

remains linear when the case for 𝑏 =1.5% is considered in this example. 484 

 485 
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4.3.2 Results and discussion 486 

Table 6 lists the computational cost (number of the samples used) by each approach. For both 487 

the proposed ASI-procedure and weighted approach, their implementations involve the same 488 

number of samples, i.e., MCS comprises 104 samples, IS comprises 1000 samples, and SS comprises 489 

1000 for each level. These number of samples are selected as they provide a reasonable C.o.v. of 490 

FPF. Note that they are carried out in different spaces, i.e., the weighted approaches are carried 491 

out in the original random variable space whereas the proposed ASI procedure is implemented in 492 

the augmented space. Different number of failure samples are obtained. Note that for both ASI-IS 493 

and WIS, the importance sampling function is constructed based on the approach proposed in 494 

[33][35], and in this context, each of the generated sample will cause failure of system.  495 

Fig. 8 shows the FPF results obtained by different methods. In addition, the direct MCS is 496 

carried out in ten independent simulation runs to generate point wise failure probability estimates, 497 

which are regarded as the exact reference results. Mostly, all the results by different approaches 498 

are consistent with the exact results. However, for this problem, the FPF results by the weighted 499 

approach possess remarkable error in both sides of the design domain i.e., when 𝜃 ∈ [100, 110] 500 

and 𝜃 ∈ [190, 200]. The reason is similar as that illustrated in Example 1: the weighted approach 501 

may just concentrate in an important failure region corresponding to 𝜃 = 𝜃0, while the proposed 502 

approach can explore all the important failure regions. At this point, the proposed ASI-approaches 503 

perform better than weighted approach in accuracy, as they produce more accurate results.   504 

 505 

 506 
Fig. 8. The results of FPF obtained by the proposed approaches for Example 3 507 

 508 
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Table 6. Comparison of different methods for Example 3  509 

Methods No. of samples  No. of failure samples 

ASI-MCS 104 927 

ASI-IS 1000 1000 

ASI-SS 1000×2 932 

WMCS 104 442 

WIS 1000 1000 

WSS 1000×2 483 

Direct MCS 105×10 - 

 510 

5. Conclusions 511 

In this contribution, an efficient procedure has been presented for the estimation of the 512 

structural failure probability function (FPF). It utilizes the augmented idea to handle the problem, 513 

which transforms the FPF into an expression involving three terms. An algorithm is proposed to 514 

efficiently obtain the posterior distribution term, which is the key point of the estimation of the 515 

FPF. The proposed procedure comprises three different practical implementations to estimate the 516 

FPF, i.e., ASI-MCS, ASI-IS and ASI-SS.  517 

Numerical examples have been presented to show the advantages of the proposed 518 

approaches. The following conclusions summarize the most salient features of the proposed.    519 

(1) It demands a single reliability analysis in augmented space, and repeated evaluations of 520 

reliability are avoided.  521 

(2) There is no need to estimate the posterior distribution by using density fitting methods. In 522 

fact, in the proposed procedure, this posterior distribution is expressed as an integral, which allows 523 

it to be estimated directly through the failure samples.  524 

(3) There is no need to predict (or select beforehand) the shape of the posterior probability 525 

density function.  526 

While the results presented are encouraging, it should be note that the proposed approach 527 

also possesses some limitations. Specifically, the number of the design parameters that can be 528 

handled effectively cannot be that large, e.g. not beyond 10. This is due to the fact that estimating 529 

probability densities (as required in the proposed approach) becomes challenging in high 530 

dimensions, as documented in [25] and [36].  531 

Future research will involve application of the proposed procedure to other fields. For 532 

example, the proposed procedure can be easily applied for solving of reliability-based optimization 533 

problems combined with a decoupling strategy. Also, it can be used in reliability sensitivity analysis, 534 

which comprises the derivative of FPF and also in imprecise reliability problems [36], which involve 535 

the estimation of the extreme value of failure probability function over a certain region.  536 
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 548 

Appendix A 549 

This appendix further derives the expression for Δ(𝒙)=∫ 𝑓(𝒙|𝜽)d𝜽
𝜽̄

𝜽̱
. Note that since all 550 

variables 𝒙 are assumed independent, calculating this integral is straightforward. For example, it 551 

can be calculated using numerical algorithms. One alternative way is expressing Δ(𝒙) as: 552 

 Δ(𝒙) = ∫ 𝑓(𝒙|𝜽)d𝜽
𝜽̄

𝜽̱

= 𝐸𝜽 [
𝑓(𝒙|𝜽)

𝜑(𝜽)
] (34) 

where 𝐸𝜽[∙] is the expectation under 𝜑(𝜽). This means that it can be solved through sampling.   553 

For the particular case where 𝜽  corresponds to the mean values of Gaussian random 554 

variables, Δ(𝒙) can be derived further. Suppose 𝑥𝑖~𝑁(𝜃𝑖 , 𝜎𝑖
2), and 𝜃𝑖~𝑈[𝜃̱𝑖, 𝜃̄𝑖] then Δ(𝒙) 555 

can be obtained as:  556 

 Δ(𝒙) = ∏ [Φ (
𝜃̄𝑖 − 𝑥𝑖

𝜎𝑖
) − Φ (

𝜃̱𝑖 − 𝑥𝑖

𝜎𝑖
)]

𝑛𝜃

𝑖=1
 (35) 

where Φ(∙)  is the cumulative probability function associated with a standard Gaussian 557 

distribution.  558 

 559 

Appendix B 560 

 This appendix derives the C.o.v. of the estimator 𝑃̂𝐹(𝜽)  in Eq. (27) calculated by the 561 

proposed procedure with subset simulation.  562 

In the following and for simplicity in notation, let 𝑃𝑖 = 𝑃(𝐹𝑖|𝐹𝑖−1) , 𝑃̂𝑖 = 𝑃̂(𝐹𝑖|𝐹𝑖−1), 𝑖 =563 

1, … , 𝑚 − 1, (where 𝐹0 = Ω), 𝑃𝑚 = 𝑃(𝐹) and 𝐼𝑗𝑘
(𝑖)

= 𝐼𝐹𝑖
(𝒙𝑗𝑘

(𝑖−1)
) where 𝒙𝑗𝑘

(𝑖−1)
 denotes the 𝑘-564 

th sample in the 𝑗-th Markov chain at simulation level 𝑖. 565 

1) C.o.v. of 𝑃̂1 566 

 𝛿1 = 𝐶𝑜𝑣(𝑃̂1) = √
1 − 𝑃1

𝑃1𝑁
≈ √

1 − 𝑃̂1

𝑃̂1𝑁
 (36) 

2) C.o.v. of 𝑃̂𝑖(2 ≤ 𝑖 ≤ 𝑚 − 1) 567 

At (𝑖 − 1) th level, suppose the number of Markov chain is 𝑁𝐶  and 𝑁 ∕ 𝑁𝐶  samples are 568 

generated for each of these chains. It is assumed that the samples generated by different chains 569 

are uncorrelated.  570 

The variance of 𝑃̂𝑖 (𝑖 = 2, … , 𝑚 − 1) is given by [11]: 571 

 

𝑉𝑎𝑟(𝑃̂𝑖) = 𝐸[𝑃̂𝑖 − 𝑃𝑖]
2

= 𝐸 [
1

𝑁
∑ ∑ (𝐼𝑗𝑘

(𝑖)
− 𝑃𝑖)

𝑁∕𝑁𝐶

𝑘=1

𝑁𝐶

𝑗=1

]

2

=
1

𝑁2
∑ 𝐸 [ ∑ (𝐼𝑗𝑘

(𝑖)
− 𝑃𝑖)

𝑁∕𝑁𝐶

1⇐1

]

2𝑁𝐶

𝑗=1

 

(37) 

For the 𝑗-th Markov chain 572 
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 𝐸 [ ∑ (𝐼𝑗𝑘
(𝑖)

− 𝑃𝑖)

𝑁∕𝑁𝐶

1⇐1

]

2

=
𝑁

𝑁𝐶
[𝑅𝑖(0) + 2 ∑ (1 −

𝑘𝑁𝐶

𝑁
) 𝑅𝑖(𝑘)

𝑁∕𝑁𝐶−1

𝑘=1

] (38) 

Substituting Eq. (38) into (37) yields: 573 

 𝑉𝑎𝑟(𝑃̂𝑖) =
𝑅𝑖(0)

𝑁
[1 + 2 ∑ (1 −

𝑘𝑁𝐶

𝑁
)

𝑅𝑖(𝑘)

𝑅𝑖(0)

𝑁∕𝑁𝐶−1

𝑘=1

] (39) 

Based on the Markov chain samples {(𝒙, 𝜽)𝑗𝑘
(𝑖−1)

: 𝑗 = 1, … , 𝑁𝐶; 𝑘 = 1, … , 𝑁 ∕ 𝑁𝐶}  at the 574 

(𝑖 − 1)th conditional level, the covariance 𝑅𝑖(𝑘)(𝑘 = 0, … , 𝑁 𝑁𝐶⁄ − 1) can be estimated as:  575 

 𝑅̂𝑖(𝑘) = (
1

𝑁 − 𝑘𝑁𝐶
∑ ∑ 𝐼𝑗𝑙

(𝑖)
𝐼𝑗,𝑙+𝑘

(𝑖)

𝑁∕𝑁𝐶−𝑘

𝑙=1

𝑁𝐶

𝑗=1

) − 𝑃̂𝑖
2 (40) 

3) C.o.v. of 𝑃̂𝑚(𝜽) 576 

For the last level and for simplicity in notation, let 𝑉𝑗𝑘
(𝑚)

=
𝐼𝐹(𝒙(𝑗))𝑓(𝒙(𝑗)

|𝜽)

Δ(𝒙(𝑗))
 and 𝑃̂𝑚 = 𝑃̂𝑚(𝜽). 577 

Then the variance of 𝑃̂𝑚 is given by: 578 

 

𝑉𝑎𝑟(𝑃̂𝑚) = 𝐸[𝑃̂𝑚 − 𝑃𝑚]
2

= 𝐸 [
1

𝑁
∑ ∑ (𝑉𝑗𝑘

(𝑚)
− 𝑃𝑚)

𝑁∕𝑁𝐶

𝑘=1

𝑁𝐶

𝑗=1

]

2

=
1

𝑁2
∑ 𝐸 [ ∑ (𝑉𝑗𝑘

(𝑚)
− 𝑃𝑚)

𝑁∕𝑁𝐶

𝑘=1

]

2𝑁𝐶

𝑗=1

 

(41) 

For the j-th Markov chain, 579 

 𝐸 [ ∑ (𝑉𝑗𝑘
(𝑚)

− 𝑃𝑚)

𝑁∕𝑁𝐶

𝑘=1

]

2

=
𝑁

𝑁𝐶
[𝑅𝑚(0) + 2 ∑ (1 −

𝑘𝑁𝐶

𝑁
) 𝑅𝑚(𝑘)

𝑁∕𝑁𝐶−1

𝑘=1

] (42) 

Substituting Eq. (42) into (41) yields: 580 

 𝑉𝑎𝑟(𝑃̂𝑚) =
𝑅𝑚(0)

𝑁
[1 + 2 ∑ (1 −

𝑘𝑁𝐶

𝑁
)

𝑅𝑚(𝑘)

𝑅𝑚(0)

𝑁∕𝑁𝐶−1

𝑘=1

] (43) 

Based on the Markov chain samples {(𝒙, 𝜽)𝑗𝑘
(𝑚−1)

: 𝑗 = 1, … , 𝑁𝐶; 𝑘 = 1, … , 𝑁 ∕ 𝑁𝐶}  at the 581 

(𝑚 − 1)th conditional level, the covariance 𝑅𝑚(𝑘)(𝑘 = 0, … , 𝑁 𝑁𝐶⁄ − 1) is estimated as:  582 

 𝑅𝑚(𝑘) ≈ 𝑅̂𝑚(𝑘) = (
1

𝑁 − 𝑘𝑁𝐶
∑ ∑ 𝑉𝑗𝑙

(𝑚)
𝑉𝑗,𝑙+𝑘

(𝑚)

𝑁∕𝑁𝐶−𝑘

𝑙=1

𝑁𝐶

𝑗=1

) − 𝑃̂𝑚
2  (44) 

4) C.o.v. of 𝑃̂𝐹(𝜽) 583 

At last, suppose all 𝑃̂𝑖 (𝑖 = 1, … , 𝑚) are uncorrelated [11], then the C.o.v. of 𝑃̂𝐹(𝜽) is given 584 

by: 585 

 𝐶𝑜𝑣[𝑃̂𝐹(𝜽)] = √∑ 𝛿𝑖
2

𝑚

𝑖=1

= √∑
𝑉𝑎𝑟(𝑃̂𝑖)

𝑃𝑖
2

𝑚

𝑖=1

≈ √∑
𝑉𝑎𝑟(𝑃̂𝑖)

𝑃̂𝑖
2

𝑚

𝑖=1

 (45) 

where 𝑉𝑎𝑟(𝑃̂𝑖) can be calculated according to Eqs. (36), (39) and (43). 586 
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