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Abstract  

Understanding those factors most important to maintain stability when walking 

is critical in the prevention of age-related falls. As we age, intrinsic factors (traits 

affecting the individual) deteriorate and are associated with increased gait instability. 

Separately, extrinsic factors (environmental traits) are also known to affect stability; 

gait becomes more unstable when environments are more challenging. However, the 

existing literature has predominately focused on how these factors affect stability 

based in laboratory settings. These conditions are unlike those experienced in 

everyday life, and thus we do not know how ecologically valid such studies are.  

In this thesis, I focus on how both intrinsic and extrinsic factors affect stability 

in real-world settings. I do so by assessing gaze and gait behavioural responses to 

surface complexity (extrinsic factors), visual field loss and reduced cognitive function 

(both intrinsic factors) when walking. The studies showed that surface complexity in 

particular, impacted behaviour indicative of stability, whereas young people coped 

well with intrinsic factors. These findings suggests that either surface complexity has 

a greater effect than the intrinsic factors tested here on gait stability or that the 

simulations of intrinsic factors may be inappropriate to simulate age-related conditions 

when walking outdoors. Furthermore, as no existing measure compares walking 

surface complexity, I proposed a new metric that included both physical and 

perceptual measures of the surfaces, acting as a proxy for behavioural change. Our 

results showed that perceptual measures, in particular, act as a simple metric for 

surface complexity. I further tested whether perceptual measures may differ based on 

age of the participant or from first-hand experience compared to images, however this 

was found to not be the case. As such, surface complexity perception may act a simple 
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metric to determine behavioural changes which can be determined as effectively when 

done so remotely and with increased age, despite the well documented age-related 

behavioural changes. In summary, in this thesis, I show that gaze and gait behaviours 

are indicative of stability when traversing surfaces of different complexity and 

perception measures are a good proxy for behavioural change. However, I suggest that 

outdoor research should be population specific to accurately determine the likelihood 

of heightened fall risk.  
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Chapter One: Introduction   

 

1.1 Introduction: Chapter Overview 

Chapter One of this thesis encompasses a review of the relationship between 

stability and changes in gaze and gait behaviour. These behavioural changes will be 

discussed in relation to falls and the ways in which intrinsic (individual) and extrinsic 

(environmental) factors can affect behaviour. It will also discuss how, through modern 

wearable technology, we have begun to accurately measure behaviours for a wide 

range of external environmental settings. It will then review the extent and limitations 

of the current literature and how, from these, I set the aims for this thesis. The 

introduction concludes with a summary of how each chapter addresses these aims, and 

the respective outcomes.  

 

1.2 Stability and falls  

Moving freely and with ease in the environment requires the brain rapidly 

processing perceived visual, auditory and tactile information, and setting the 

appropriate movement response. For young healthy individuals, everyday movements, 

including gait, are mostly performed semi-automatically, and maintained without 

cognitive processing or conscious awareness. However, with aging, visual, auditory 

and tactile acuity decrease (Kenshalo Sr, 1986; Li, Simonsick, Ferrucci, & Lin, 2013; 

Popescu, et al., 2011). In turn, our ability to achieve “normal” gait is compromised 

and gait becomes unstable, increasing the risk of a fall. Indeed, the likelihood of a fall 

increases with age: 30% of people aged 65 and above fall at least once a year, rising 
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to 50% in people aged 80+ (NICE, 2013). Falls are particularly problematic for the 

elderly, given that bone and muscle degradation imply loss of body strength (Cook, 

Exton-Smith, Brocklehurst, & Lempert-Barber, 1982; Goodpaster, et al., 2006), 

leading to a higher risk of injury or even death. If an individual does recover, they are 

often more frail and more susceptible to subsequent falls (Sri-On, Tirrell, Bean, 

Lipsitz, & Liu, 2017; Tinetti, Speechley, & Ginter, 1988). Moreover, falls are not only 

detrimental toward the individual’s physical health but also their psychological health 

(Scheffer, Schuurmans, Van Dijk, Van Der Hooft, & De Rooij, 2008), as well as 

incurring public healthcare, social, and economic costs (Burns, Stevens, & Lee, 2016; 

Carroll, Slattum, & Cox, 2005; Katsumata, Arai, & Tamashiro, 2007). The cost of falls 

to the NHS alone is more than £2.3 billion each year (NICE, 2013). Thus, being able 

to measure the main determining behaviours of those most at risk of a fall is crucial to 

provide appropriate preventative interventions.   

To identify those most at risk of a fall, we need to assess the stability of 

individuals whilst walking under normal and challenging conditions. A stable gait can 

be defined as one that is resilient to perturbations whilst walking and thus does not 

lead to falls. A number of stability metrics have been proposed; however, no measure 

has been accepted as a gold standard (as reviewed in Bruijn, Meijer, Beek, & Van 

Dieën, 2013). One well-studied measure, used as an estimate of stability, is the 

maximum lyapunov exponent. This measure assesses how much a kinematic signal 

(body motion at a set point in a gait cycle) diverges from a given intrinsic or extrinsic 

standard affecting gait. The advantage of this measure is that it can assess kinematic 

data anywhere in the body, differences being apparent between the young and the 

elderly during walking at the trunk, ankle and hip (for example; Buzzi, Stergiou, Kurz, 

Hageman, & Heidel, 2003; Kyvelidou, Kurz, Ehlers, & Stergiou, 2008; Terrier & 
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Reynard, 2015). However, this measure is best used when assessing short term 

(localised) changes (e.g. stepping over an obstacle), and may not be suitable for longer 

term comparisons of gait (Chang, Sejdić, Wright, & Chau, 2010), such as differences 

when walking on different surface types. An alternative approach, which avoids this 

measurement’s weakness, is to estimate stability from the assessment of multiple 

sources of behavioural change. In doing so, the researcher can build up a portfolio of 

the behavioural changes caused by any given intrinsic or extrinsic factors affecting the 

individual’s gait. These behaviours may be assessed in the short term, long term or a 

combination of the two. To do so, one should consider those behaviours which are 

considered risky, and thus likely to cause a fall, and also those behaviours which are 

a response to an individual feeling unstable, described as a “cautious gait” (Pirker & 

Katzenschlager, 2017). A “cautious gait” is defined by these authors as changes to 

behaviour in response to heightened perceived risk of a fall. For example, the 

individual may take shortened, widened steps and walk at a slower gait speed, all as a 

precaution to a heightened perceived fall risk (Pirker & Katzenschlager, 2017). 

Crucially, some of these “cautious gait” behavioural changes may have other 

consequences that increase fall risk. For example, increased leg muscle coactivation 

(simultaneous contraction of an agonist and antagonist muscle) helps to stabilise the 

leg when walking (Thompson, Plummer, & Franz, 2018). However, the stiffened leg 

that results has a reduced range of motion, which in itself is a known risk factor for 

falls (Chiacchiero, Dresely, Silva, DeLosReyes, & Vorik, 2010; Reddy & Alahmari, 

2016). Similarly, there are disagreements between researchers whether behavioural 

changes are indeed example of a “cautious gait”. For instance, an increase in 

mediolateral (side-to-side) variation of the body when walking is usually considered 

risky behaviour that increases fall risk (as reviewed in Osoba, Rao, Agrawal, & 
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Lalwani, 2019), but some researchers have stated that an increased mediolateral 

variation in steps widens the range of underfoot proprioceptive information (Kent, 

Sommerfeld, Mukherjee, Takahashi, & Stergiou, 2019; Wurdeman, Huben, & 

Stergiou, 2012). Thus, such behaviour may be considered a “cautious gait” response. 

Regardless of whether the behavioural response is an intentional one or not, these 

behaviours do indicate a deviation from “normal” gait and can help to identify 

instability when walking.  

 A “normal” gait for young individuals involves the position of the centre of 

mass (CoM), the point in the body where there is an equal distribution of weight, 

fluctuating like an inverted pendulum as the individual walks. In this analogy, the 

stance leg behaves as the inverted pendulum, moving the CoM in an arc, while the 

swing leg moves forward before the heel contacts the ground, and the legs then switch 

roles. In turn, the CoM path shifts towards the leg in contact with the ground at the 

single-support phase. This movement is shown for one gait cycle (between adjacent 

double support phases of the same leg) in Figure 1. In doing this, the body is propelled 

forward and the work load of leg muscles is reduced. However, with age, the normal 

movements of the CoM are disrupted, affecting the gait cycle. For example, older 

individuals have a decreased mediolateral CoM acceleration throughout the gait cycle 

and rely less on the trailing limb to propel the body forward during the double support 

phase of gait, compared to young individuals (Hernández, Silder, Heiderscheit, & 

Thelen, 2009). Other studies have similarly shown adaptation to gait, including 

reduced joint motion at the ankles and decreased step lengths (Hageman & Blanke, 

1986; JudgeRoy, Davis III, & Õunpuu, 1996). These adaptations increase the time 

spent in the double support phase of walking, thought to be a response adopted to 

increase feelings of stability. Despite this, these adaptations are less effective at 
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moving the body forward, which in turn disrupts the normal movement of the CoM. 

Thus, overall stability decreases which in turn may increase fall risk.  

 

Figure 1: (A) A schematic showing the inverted pendulum centre of mass (CoM) 

movement for one gait cycle (between adjacent double support phases for the same 

leg). The CoM (blue circle) fluctuates like an inverted pendulum, reaching a maximum 

vertical position at the single support phase and a minimum position during the double 

support phases. (B) A diagram of the CoM path during one gait cycle. The CoM path 

remains within the foot boundaries for a normal gait cycle, reaching a maximum lateral 

position at the single support phases and crossing the midline during the double 

support phases of gait.   

1.2.1 Extrinsic factors affecting stability and fall risk 

 Determining stability using the inverted pendulum analogy of walking is 

useful, but as it only explains passive movements, it is unlikely to be fully accurate 

over complex surfaces. Complex surfaces (e.g. ramps, irregular surfaces, compliant 

surfaces etc.) are likely to require additional responses (e.g. increased muscle or 
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cognitive input) to maintain stability whilst walking. These surface types are most 

commonly found outdoors, where the majority of falls occur (Li, et al., 2006). Despite 

this, most research is conducted indoors and guidelines on fall prevention are limited 

to indoor environments (Panel on Prevention of Falls in Older Persons & Society, 

2011). This is perhaps unsurprising given the complexities of conducting experiments 

outdoors compared to laboratory conditions. Furthermore, laboratory experiments 

allow for greater experimental control and, until recently, fixed laboratory equipment 

had greater accuracy of measured behaviours compared to those obtainable using 

portable, wearable sensors. More recent laboratory studies have begun to bridge the 

gap in outdoor fall research, conducting studies under more accurate representations 

of outdoor settings. This has included analysis of gait over artificial irregular surfaces, 

compliant surfaces and mixed surface types (Curtze, Hof, Postema, & Otten, 2011; 

MacLellan & Patla, 2006; Merryweather, Yoo, & Bloswick, 2011). Replicating 

outdoor settings in laboratory conditions has revealed additional differences in gait 

behaviour between the young and elderly that were not apparent over smooth surfaces. 

For instance: irregular surfaces were associated with increased step width variability, 

reduced speed and decreased step length in older people when compared to the young 

(Hylton B Menz, Stephen R Lord, & Richard C Fitzpatrick, 2003; Thies, Richardson, 

& Ashton-Miller, 2005). Such studies are particularly beneficial given that the 

heightened fall risk of older populations over more complex surfaces can be minimised 

in simulated outdoor settings using protective clothing and safety harnesses. However, 

it should be noted that simulations of more complex surfaces in a laboratory rarely test 

all other environmental factors that we contend with then walking outside, including 

the weather, traffic and changeable lighting.    
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 One other difficultly in simulating walking akin to that outdoors is replicating 

the vast variety of walking surfaces. For more complex surfaces, previous studies have 

typically focused on one type of complex surface, including uneven, compliant or 

sloped surfaces (Merryweather, et al., 2011; Morgan, Hafner, & Kelly, 2017; Thies, 

et al., 2005), with few studies comparing multiple surface types in the same study 

(Marigold & Patla, 2007, 2008a). However, this is unlikely to replicate conditions 

most people encounter in their daily lives; pedestrians possibly walking over several 

different surface conditions within the space of a few minutes. An important factor 

currently missing in the literature is a metric to compare different surface conditions. 

The existing literature mostly relies on characterising surfaces from descriptions or 

from differing behaviours assessed from a relatively small sample size of their tested 

population group (e.g. Marigold & Patla, 2007; Matthis & Fajen, 2014). As such, 

comparisons between different studies is not possible. A potential solution to this 

would be to determine the physical measures of surfaces. A similar metric does exist 

for determining road surface complexity (Sayers, 1984), however, given that a large 

component of the metric is based on assessment of the vehicle, this metric is not 

suitable for walking surfaces. Moreover, any such metric for walking surfaces should 

consider how surfaces may be perceived as more complex for certain population 

groups. For example, given that injury risk from a fall for older individuals is higher 

than that of the young, (Sterling, O’connor, & Bonadies, 2001), surfaces that constitute 

as “complex surfaces” for some population groups may differ to others.  

 As well as complex surfaces, falls are particularly common when changing 

level, including over stairs, steps and curbs (Nevitt, Cummings, & Hudes, 1991). Level 

changes require an increased range of motion as well as muscle activity to safely 

traverse (Nadeau, McFadyen, & Malouin, 2003), both of which are known to be 
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adversely affected with age (Grimmer, Riener, Walsh, & Seyfarth, 2019; Reeves, 

Spanjaard, Mohagheghi, Baltzopoulos, & Maganaris, 2008). Given these age-related 

behavioural changes, several studies have determined how the behaviour of older 

individuals differs to that of the young in respect to traversing stairs. For example, 

when traversing stairs, older individuals exhibit: an increased mediolateral CoM 

velocity, greater swaying at the hips and more erroneous foot clearances of stairs 

(Begg & Sparrow, 2000; Bosse, et al., 2012; Novak & Brouwer, 2011). As these 

behavioural changes increase fall risk, it is important to consider whether certain 

interventions could lower the chances of a fall. A study by Hamel, Okita, Higginson, 

and Cavanagh (2005) investigated stair negotiation under different lighting conditions. 

Their study showed that under low lighting levels, older individuals, unlike the young, 

do not increase foot clearance as a precautionary measure. However, Foster, 

Hotchkiss, Buckley, and Elliott (2014) demonstrated that highlighting stair edges 

increases foot clearance, even for those with simulated age-associated visual decline. 

Therefore, stairs undoubtedly cause gait behavioural changes associated with 

heightened fall risk, but vision-associated interventions (including lighting and 

contrast enhancement from highlighting stair edges) may be vital in diminishing this 

risk. 

1.2.2 Intrinsic factors affecting stability and fall risk 

As well as changes in the musculoskeletal system shown to affect gait 

behaviour, gait is also affected by changes in sensory inputs, including those from 

visual health decline. Indeed, visual health deteriorates with age, with one in five 

people aged above 75 suffering from either full or partial sight loss (Sinclair, Ryan, & 

Hill, 2014). Furthermore, visual acuity, field size and contrast sensitivity deteriorate, 

all of which are associated with an increased fall risk (Black, Wood, & Lovie-Kitchin, 
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2011; de Boer, et al., 2004; Lord & Dayhew, 2001). To investigate how age-associated 

visual impairments impact stability, studies have assessed how older individuals with 

impairments differ in their gait behaviours to young individuals (for example see, 

Kunimune & Okada, 2019; Saucedo & Yang, 2017). Alternatively, studies have 

inferred stability in these individuals from changes in gaze behaviour. For example, 

high fall-risk older individuals are more likely to prioritise future steps when walking, 

shifting gaze sooner from ongoing movements and thus are more likely to misplace 

their feet in more proximal steps (Chapman & Hollands, 2006). However, given that 

older individuals may have co-morbidities which affect movement, findings from 

these studies may not be due to the visual impairments alone. To address this 

possibility, researchers have simulated visual impairments in otherwise healthy young 

individuals. For instance, simulated visual acuity loss (blurred vision) in the young 

was associated with reduced gait speed, higher foot clearance and prolongation of gaze 

toward the floor when walking (Freedman, Achtemeier, Baek, & Legge, 2019; 

Heasley, Buckley, Scally, Twigg, & Elliott, 2004; Novak & Deshpande, 2014; Zult, 

Allsop, Timmis, & Pardhan, 2019). Similarly, simulated vision loss (blocked vision) 

was associated with reduced gait speed, shorter steps and a greater proportion of gait 

spent in the double support phase (Hallemans & Aerts, 2009). Peripheral vision from 

the lower visual field is likely to be particularly important, aiding information from 

surfaces underfoot. Indeed, older individuals with a loss of their lower visual field tend 

to suffer from an increase in falls (Black, et al., 2011). Notably, simulations of blocked 

lower visual field in the young have produced similar gaze patterns whilst walking to 

that of individuals with age-related vision loss (Krishnan, Cho, & Mohamed, 2017). 

Therefore, diminished vision health unquestionably contributes to fall risk and gaze 

behaviour is a useful measure of stability whilst walking.  
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Visual health is particularly important for stability when navigating more 

complex environments. Qualitative research has identified different environmental 

factors that increase fall risk, including more complex environments such as uneven 

surfaces, tripping hazards and slippery surfaces (Nyman, Ballinger, Phillips, & 

Newton, 2013). Experimental studies have supported these findings. For example, 

uneven surfaces were associated with young people increasing their number of eye 

fixations on planned future foot placements as well as on transitional areas between 

different surface types (Marigold & Patla, 2007). Fixating towards underfoot surfaces 

is likely to aid stability, allowing appropriate adaptations of the body to occur with 

each step. However, high-risk older individuals shift their gaze from future foot 

placements sooner, and are more likely to miss step targets (Chapman & Hollands, 

2006). These erroneous behaviours can be corrected; interventions of gaze training 

techniques have been shown to be effective at reducing stepping error (Young & 

Hollands, 2010). Other studies that have “corrected” risky behaviour under complex 

conditions have used virtual reality (VR) to improve gait performances (Mirelman, et 

al., 2011). VR is particularly beneficial for older individuals as studies can be done 

using safety harnesses in laboratory conditions whilst allowing natural walking akin 

to that in everyday life (Borrego, Latorre, Llorens, Alcañiz, & Noé, 2016).  

As well as complex surfaces underfoot, “cluttered” environments may pose 

similar problems. These environments, typically outside, often have visual and 

auditory distractions that are often moving in the environment, such as pedestrians, 

vehicles and fixed distractions such as street furniture. These may impose visual 

difficulties for the elderly due to their inability to contrast objects effectively against 

one another given age-associated visual decline (as reviewed in Harwood, 2001). 

Moreover, visually complex environments (e.g. supermarkets and shopping malls) and 
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moving visual environments have a greater effect on older individuals with vestibular 

and anxiety disorders compared to young individuals (as reviewed in Redfern, 

Yardley, & Bronstein, 2001). One common example of an often visually complex 

environment is pedestrianised crossings. At crossings, the gaze and gait behaviours of 

older individuals differs to that of the young. Older individuals cross more slowly with 

gaze focused downwards for longer, thus paying less attention to surrounding traffic 

(Avineri, Shinar, & Susilo, 2012; Zito, et al., 2015). Given that older individuals 

typically walk more slowly than the young, the time given by traffic signals for 

crossing may be insufficient. Studies have shown that older individuals are less likely 

to cross safely during the pedestrianised signal time (Asher, Aresu, Falaschetti, & 

Mindell, 2012; Hoxie & Rubenstein, 1994). Moreover, the oldest individuals are twice 

as likely to be unable to cross whilst completing a cognitive task (Eggenberger, 

Tomovic, Münzer, & de Bruin, 2017). Thus, given that older individuals are at greater 

risk of a fall in general, imposing an additional task (e.g. walking within a sufficient 

time duration), places older individuals at greater fall risk in these visually complex 

locations.   

 As walking is generally more difficult with age, as evidenced for example by  

the adoption of a cautious gait (as reviewed in Li, Bherer, Mirelman, Maidan, & 

Hausdorff, 2018), it is likely that those processes that ensure stable walking will need 

additional cognitive input. Indeed, older individuals with cognitive impairments walk 

with a more cautious gait and are at greater risk of a fall compared to those without 

such impairments (Hausdorff, Edelberg, Mitchell, Goldberger, & Wei, 1997; Holtzer, 

Verghese, Xue, & Lipton, 2006). Furthermore, given that in everyday life we walk 

whilst completing simultaneous tasks that require cognition, including navigating to 

destinations, talking to others or listening to music, the ability to complete both a 
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secondary task and to walk safely is likely to be compromised in older individuals. 

The effect of completing a secondary task on gaze and gait performance can be 

determined from the dual-task cost (for example see; Beauchet, Dubost, Aminian, 

Gonthier, & Kressig, 2005; Ellmers, Cocks, Doumas, Williams, & Young, 2016). Dual 

task costs are defined by the following equation: 

 𝐷𝑢𝑎𝑙 𝑡𝑎𝑠𝑘 𝐶𝑜𝑠𝑡(%) = 100 ×
𝑑𝑢𝑎𝑙 𝑡𝑎𝑠𝑘 𝑝𝑒𝑟𝑓𝑜𝑚𝑎𝑛𝑐𝑒−𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑎𝑠𝑘 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
 

This calculation can either assess the cost for the performance of the secondary task 

itself (mobile phone texting accuracy, reaction time etc.) or assess the performance of 

behaviour metrics (gait speed, stride time etc.). For instance, when walking outside, 

older individuals have greater dual-task costs (i.e. worse performances) on texting 

speed and accuracy, but also gait speed, acceleration magnitude and gait variability 

(Krasovsky, Weiss, & Kizony, 2018; Takeuchi, Mori, Suzukamo, Tanaka, & Izumi, 

2016). When determining the dual task cost on the secondary task, the performance 

may depend on the task itself. Previous research has assessed numerous types of 

cognitive tasks including memory tasks (Lindenberger, Marsiske, & Baltes, 2000; 

Springer, et al., 2006), numerical tasks (Agner, Bernet, Brülhart, Radlinger, & Rogan, 

2015; Montero-Odasso, et al., 2009) or motor control tasks (Beurskens & Bock, 2013; 

Hunter, Divine, Frengopoulos, & Odasso, 2018). Indeed, studies have shown different 

gait responses dependent on the task given, (see for example Nordin, Moe-Nilssen, 

Ramnemark, & Lundin-Olsson, 2010). Thus, given the age-related decline of both 

cognitive and motor abilities, the completion of a secondary task and/or the stability 

of walking are likely to deteriorate with age, depending on the type of task and the 

environment given.   
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1.3 Wearable technology   

This section looks at how the advances in wearable technology have influenced 

the assessment of gaze and gait behaviour. Specific detail will be given on how 

different behaviours are assessed and the reliability of these technologies.  

Understanding our environment visually may prove beneficial for 

interventions aimed at reducing fall risk, not only as vision is known to deteriorate 

with age but as more visually complex environments are known to change gait 

behaviour (as reviewed above). To understand this, we can assess how the 

environment brings about changes to our gaze behaviour. Gaze behaviour can either 

be assessed from eye movements, head movements or a combination of the two. Eye 

movements may be recorded using eye trackers which track pupillary movement (via 

infrared cameras directed towards the eyes) and project this in relation to the world 

view (recorded from a camera directed toward the environment). An example frame 

taken from an eye tracker output is shown in Figure 2A. Using both cameras, eye 

trackers can indicate where in the environment the person is looking. Eye tracking has 

been used in a wide array of studies, including whilst driving, in cognitive 

development and even determining differences between professionals’ and trainees’ 

observational assessments of gait abnormalities (Aslin, 2012; Hayashi, Aono, 

Fujiwara, Shiro, & Ushida, 2020; Kunishige, et al., 2019). The use of eye trackers can 

highlight the key aspects of the environment that are used to maintain gait stability 

and how this may change as we age. Head movements have been recorded using 

several different methods, including from sensors recording inertia data at the head, 

(Matthis, Yates, & Hayhoe, 2018), movements recorded from head mounted video 

footage ('t Hart & Einhauser, 2012) and simply through observation (Avineri, et al., 
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2012). An example experimental set-up using kinematic markers attached to the head 

potentially used to calculate head movement is shown in Figure 2B. Understanding 

head movement is useful for gaze analysis, providing a simple method by which to 

determine where the person is looking. Here, following Tomasi, Pundlik, Bowers, 

Peli, and Luo (2016), I define gaze from the combined eye and head movements. A 

diagram showing how I defined vertical gaze angle is shown in Figure 2C. This 

approach of combining eye and head movement provides a more accurate measure of 

understanding where the person is looking, especially given that when walking outside 

less than 60% of gaze is brought about by eye movements, the rest resulting from 

movements of the head (Tomasi, et al., 2016).  

 

Figure 2: (A) A frame from the Pupils eye tracker (Kassner, Patera, & Bulling, 2014), 

showing how input from the eye and environment camera are used to calculate eye 

movements. (B) One method used to measure head movements: here, head movement 

is calculated from infra-red camera recordings of the movement of kinematic markers 

attached to the participant’s head. (C) A diagram showing how vertical gaze angle is 

calculated from combined eye and head movements. In this example, gaze angle is 

made up of the combination of vertical eye angle (α) and head pitch angle (θ).      
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Another major progression in the analysis of gaze and gait behaviours has 

come from wearable devices assessing body movements through the placement of 

different sensors on the body. Inertia measurement unit sensors (IMUs) incorporate 

accelerometers, gyroscopes and magnetometers to measure the acceleration, velocity, 

orientation and gravitational forces at particular locations on the body. At different 

locations, different gait parameters can be measured. For example, at the ankle IMUs 

can be used to measure gait events, gait speed and joint angles (Seel, Raisch, & 

Schauer, 2014; Storm, Buckley, & Mazza, 2016; Storm, Nair, Clarke, Van der Meulen, 

& Mazza, 2018), at the back IMUs can measure CoM movements, gait symmetry and 

step times (Johnston, Patterson, O’Mahony, & Caulfield, 2017; Li, Xu, & Cheung, 

2016; Zhang, et al., 2018), while at the head we can measure head angles, head 

acceleration and gait speed (Matthis, Barton, & Fajen, 2017; H. B. Menz, S. R. Lord, 

& R. C. Fitzpatrick, 2003; Zihajehzadeh & Park, 2017).  

The advancement of sensor technologies has allowed gaze and gait analysis, 

traditionally assessed through wall and floor mounted eye trackers, motion capture 

cameras and force plates, to be accurately measured by far smaller, wearable devices. 

Many of these devices have the potential to be used outside in motion, however, before 

extensive utilisation, sensors should be validated against fixed sensors to ensure 

reliability. Few studies have determined the accuracy of gaze behaviour from eye 

trackers when walking, likely due to the difficulties in testing accuracy of gaze in a 

moving environment. However, one recent study showed eye trackers to accurately 

interpret eye fixations regardless of gait speed (Serchi, Peruzzi, Cereatti, & Della 

Croce, 2016). In contrast, more studies have established the feasibility of using body-

mounted IMUs to determine gait parameters. IMUs have been tested for accuracy at 

several places on the body, including at the head and at the hips (Jasiewicz, Treleaven, 
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Condie, & Jull, 2007; Saber-Sheikh, Bryant, Glazzard, Hamel, & Lee, 2010), with 

errors being generally low. Similarly, gait speed and gait events can be accurately 

measured from IMUs at the ankle when compared to pressure insole data and treadmill 

data, including when walking over slopes or over ground surfaces (Li, Young, Naing, 

& Donelan, 2010; Storm, et al., 2016). Validating these sensors over a wide range of 

conditions (surface type, lighting etc.) should be conducted before mass utilisation. 

However, every effort should be made to encourage sensor use outside of traditional 

laboratory-based settings to further our understanding of gait in real-world settings.  

 

1.4 Summary and thesis aims 

Whilst the extant literature has improved our understanding of gaze and gait 

behaviour associated with decreased stability when walking, more research is required 

for elucidation of the associations in those environments that are identified as high 

fall-risk. Improvement in the capability of, as well as reductions in the size of wearable 

technologies has the potential for major developments in this field, however most 

studies have not assessed eye and head movements simultaneously when walking in 

more complex settings. Commonly, measures of gaze do not incorporate an accurate 

assessment of gaze and only a limited number of publications have assessed gaze or 

gait behaviour in high fall-risk settings (for example see 't Hart & Einhauser, 2012; 

Matthis, et al., 2017), however, environmental settings have varied substantially 

between studies. Moreover, there are no existing metrics to compare different surface 

settings, studies relying on author descriptions of surface types only. These 

descriptions may change based on each individual’s perception.  
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Peripheral vision and cognition, likely to play an essential role in the successful 

navigation of more complex environments, are known to deteriorate with age. 

However, no study to date has obtained detailed information on the behavioural 

changes occurring during more complex walking conditions when the lower peripheral 

visual field and cognition are impaired. Furthermore, it remains unknown whether 

these impairments affect behaviours differently dependent on the character of the 

environment. Studies which simulate lower peripheral visual field loss and cognition 

decline in young, healthy individuals are beneficial in that they can exclude the effects 

of age-associated co-morbidities (for example see Marigold & Patla, 2008b; Nordin, 

et al., 2010), but researchers have yet to test these results in more ecologically valid 

settings. If simulations could be validated across different environmental settings, 

future studies could use these to help develop appropriate preventative interventions, 

potentially reducing the risk and prevalence of falls.   

On the basis of these identified gaps within the literature, I set out the below 

aims to be investigated in the thesis: 

 To assesses head movements independently from eye movements to understand 

how surface complexity influences gaze, and to see how this relates to changes in 

gait (Chapter 2).  

 To measure objective properties of walking surfaces, using a variety of both 

physical and perceptual metrics to try to categorise surfaces with respect to 

assessed walking behavioural change (Chapter 3). 

 To assess how a blocked lower visual field would impact gaze and gait behaviour 

and assess whether there is an over-additive interaction between a blocked lower 

visual filed and an increase in surface complexity on behaviour (Chapter 4). 
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 To assess how a blocked lower visual field and a cognitive task, independently and 

in combination, affect gaze and gait behaviour over surfaces of different 

complexity (Chapter 5).  

  To assess how age and experience may affect perception of different surfaces 

(Chapter 6).   

In conducting studies to address these aims, we can further our understanding 

of locomotion when outdoors and determine the key determinants that lead to 

increased fall risk.  
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Chapter Two: Assessing how gaze and gait speed 

are influenced by surface complexity  

 

In this chapter, I address how an improved measure of gaze, calculated from 

combined eye and head pitch angle, as well as gait speed, differed when walking over 

surfaces of different complexity, both in the laboratory and outdoors. Previous 

research has determined how surfaces of increased complexity change eye and gait 

behaviours. However, the aim in this chapter was to include movements at the head 

when calculating gaze and to then elucidate how eye and head pitch angles contribute 

to overall gaze. Furthermore, I wanted to determine whether the contributions to gaze, 

from eye and head pitch, and gait speed change over surfaces of different complexity.  

 

This chapter has been published as: 

Thomas, N.D.A., Gardiner, J.D., Crompton, R.H. & Lawson, R. (2020). 

Look out: an exploratory study assessing how gaze (eye angle and head angle) 

and gait speed are influenced by surface complexity. PeerJ, 8, e8838. DOI: 

10.7717/peerj.8838 

The primary author conceived and designed the experiments, conducted the 

experiments, analysed the data, prepared the figures and tables, authored and approved 

the final draft. 
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2.1 Abstract  

Background: Most research investigating the connection between walking and visual 

behaviour has assessed only eye movements (not head orientation) in respect to 

locomotion over smooth surfaces in a laboratory. This is unlikely to reflect gaze 

changes found over the complex surfaces experienced in the real world, especially 

given that eye and head movements have rarely been assessed simultaneously. 

Research question: How does gaze (eye and head) angle and gait speed change when 

walking over surfaces of different complexity? 

Methods: In this exploratory study, we used a mobile eye tracker to monitor eye 

movements and inertial motion sensors (IMUs) to measure head angle whilst subjects 

(n=11) walked over surfaces with different complexities both indoors and outdoors. 

Gait speed was recorded from ankle IMUs.  

Results: Overall, mean gaze angle was lowest over the most complex surface and this 

surface also elicited the slowest mean gait speed. The head contributed increasingly to 

the lowering of gaze with increased surface complexity. Less complex surfaces 

showed no significant difference between gaze and gait behaviour.  

Significance: This study supports previous research showing that increased surface 

complexity is an important factor in determining gaze and gait behaviour. Moreover, 

it provides the novel finding that head movements provide important contributions to 

gaze location. Our future research aims are to further assess the role of the head in 

determining gaze location during locomotion across a greater range of complex 

surfaces to determine the key surface characteristics that influence gaze during gait. 
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2.2 Introduction  

Our ability to understand how people walk through their environment should 

be informed not only by assessment of their gait but by understanding the visual 

information available to them. Visual information is particularly important when 

environments are more complex, requiring increased planning to maintain stability 

whilst walking. For example, spatial and temporal visual information has been shown 

to be essential for correct foot positioning over complex surfaces, both inside and 

outside of the laboratory (Matthis, Barton, & Fajen, 2017; Matthis & Fajen, 2014; 

Matthis, Yates, & Hayhoe, 2018). Complex surfaces increase fall risk for all age 

groups as a result of poor stability (Nyman, Ballinger, Phillips, & Newton, 2013; 

Talbot, Musiol, Witham, & Metter, 2005). Therefore, an increased understanding of 

how vision and gait are impacted by different surfaces is important to help to 

understand and prevent falls.  

 Research investigating gait and gaze often uses terminology inconsistently. 

Here, we will use ‘complex’ to refer to all non-smooth surfaces. These include surfaces 

with slope changes (Merryweather, Yoo, & Bloswick, 2011), inconsistently spaced 

foot targets (Matthis & Fajen, 2014; Patla & Vickers, 2003), uneven surfaces (Thies, 

Richardson, & Ashton-Miller, 2005) and combinations of these features (Marigold & 

Patla, 2007, 2008). Smooth surfaces here are taken to include even, horizontal surfaces 

in laboratories (Marigold & Patla, 2007), on walkways (Graci, Elliott, & Buckley, 

2010) and outside (Storm, Buckley, & Mazza, 2016). Lastly, while gaze is often used 

by researchers to refer only to eye movements, here we define gaze as the orientation 

of the eye in a world reference frame. Gaze thus combines eye-in-head movements 

and head-in-world movements, which we measured using an eye tracker and an inertia 

measurement unit sensor (IMU) respectively. 
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Most gait research uses a smooth, horizontal, hard laboratory floor. However, 

some laboratory-based studies have started to address how conditions more 

representative of real-world surfaces may impact our behaviour. These studies have 

not, though, produced consistent findings. For example, Menant, Steele, Menz, 

Munro, and Lord (2009) found that gait speed decreased over complex surfaces, but 

this finding was not supported by the work of Thies, Richardson (Thies, et al., 2005).  

These differences may have arisen because there are no standards for defining 

complex surfaces in terms of roughness, slope, etc. In contrast to studies of gait, 

studies investigating gaze during walking have shown a clearer consensus. Compared 

to smooth surfaces, complex surfaces have been shown to cause eye movements to be 

increasingly directed to the ground, to lead to increased numbers of fixations, and to 

require visual information from at least two steps ahead for safe and efficient 

locomotion (Marigold & Patla, 2007; Matthis, Barton, & Fajen, 2015; Matthis & 

Fajen, 2014; Matthis, et al., 2018). 

Crucially, it is not known whether laboratory simulations accurately represent 

the surfaces over which we typically walk in everyday life. An alternative, and more 

ecologically valid, approach to using mixed surface conditions inside the laboratory is 

to conduct experiments outside. 't Hart and Einhauser (2012) assessed gaze for 

individuals walking outdoors on irregularly placed steps and a smooth road. They 

reported that their complex surfaces caused individuals to lower both their eyes and 

head. The eyes lowered more than the head, suggesting that the eyes served more 

immediate demands when walking. Note, though, that this study only indirectly 

measured head movements by inferring them from the output of the scene view camera 

attached to the eye-tracker. Thus, we do not yet have an accurate understanding of 

how the head affects overall gaze. 
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Although the results of 't Hart and Einhauser (2012) suggest that the head plays 

an important role in altering gaze when traversing complex surfaces, few other studies 

have investigated the importance of head movements, independent of eye movements, 

in contributing to overall gaze. For example, Matthis and Fajen (2014) & Marigold 

and Patla (2007) only considered eye movements during walking over complex 

surfaces. Other studies have inferred head movement from movements of the world 

camera attached to the eye tracker ('t Hart & Einhauser, 2012; Elloumi, Treuillet, & 

Leconge, 2013). In the present study we follow Matthis, et al. (2018) using an 

alternative approach that allowed us to measure head movements independent of the 

eye tracker whilst walking over complex surfaces. This methodology to calculate gaze 

has been previously used for tasks other than walking over complex surfaces, for 

example see (Fang, Nakashima, Matsumiya, Kuriki, & Shioiri, 2015; Land, 1992). 

Head movements are particularly important to consider given that weakened 

musculoskeletal health, including age associated declines, might limit head 

movement, and this, in turn, could impact gaze. Tomasi, Pundlik, Bowers, Peli, and 

Luo (2016) assessed head movements, using IMUs, whilst also tracking eye 

movements. They found that over 40% of gaze movement was due to head movements 

when walking outdoors. This study did not, though, measure other behaviour changes 

which are also likely to be important to understanding the relation between locomotion 

and gaze behaviour, such as speed of locomotion and changes in stride length or 

timing. Moreover, Tomasi, et al. (2016) only analysed head yaw (left to right, 

horizontal movement), whereas head pitch (up and down, vertical movement) is likely 

to be more important when traversing non-smooth surfaces ('t Hart & Einhauser, 

2012). Common sense would dictate that movement of the eyes to change vertical gaze 

orientation are more energy efficient than movement of the head, which requires the 
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activation of more and larger, muscles for the same effect on gaze location. However, 

to the authors’ knowledge, no study has accurately assessed eye angle and head angle 

when walking over complex surfaces. Thus, it remains unclear how eye and head angle 

contribute to gaze when walking over different surfaces.  

On the basis of the above we believe it is important to independently assess 

head as well as eye movements to understand how surface complexity influences gaze, 

and to see how this relates to changes in gait. As an initial step, in this exploratory 

study, people walked in a straight line on four horizontal surfaces at self-paced speeds. 

We measured changes in vertical eye angle and head pitch angle, as well as the gait 

speed of participants. Here, we focus on presenting results for mean values across a 

trial walk for eye angles, head pitch angles, gaze (combined eye and head pitch) angles 

and gait speed, as our aim was to compare overall performances across different 

surface complexities. In future work we aim to conduct more fine-grained analyses of 

short term, step by step changes in the relation between eye and head pitch angles and 

gait. For eye and head angle, only vertical change was assessed as horizontal 

movements are unlikely to be associated with maintaining stability during straight line 

walking. Thus, in summary, we assessed how eye and head movements independently 

contribute to gaze, and how this relates to changes in gait speed during locomotion 

over surfaces of different complexity.    

 

2.3 Methodology  

2.3.1 Participants 

 11 healthy adults (7 male, mean ± SD; age = 24.6 ± 3.5 years; height = 173 ± 

6.5cm) were recruited for this exploratory study. Data from 9 more participants was 
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collected but was not used due to a malfunction of the inertia sensors (both the 

gyroscopic and accelerometric data recorded for these participants produced extreme 

values, far exceeding the normal range in all trials). For ease of recording data with 

the eye tracker, only participants who did not require glasses for everyday walking 

were selected. No participant had an injury or impairment that affected their gait or 

vision.   

2.3.2 Data Collection 

 Ethical approval for the study was obtained from the University of Liverpool’s 

Ethics Committee (REF: 1900). Two IMU sensors (Delsys TRIGNO™ IM, Boston, 

MA, USA) were positioned on the participant. Each sensor consisted of a 3-axis 

accelerometer, gyroscope and magnetometer, recording at 148Hz. One IMU was 

positioned close to the midline of the forehead to calculate head pitch angle using 

gyroscopic data. The second IMU was positioned above the lateral malleoli on the left 

shank and was used to calculate gait events. Participants wore an Arrington Research 

ViewPoint (Scottsdale, Arizona, USA) eye tracker that recorded pupil movement at 

60 Hz and a scene camera that recorded the participant's view of the environment that 

recorded at 30Hz. Eye angles in the vertical direction were calculated in order to 

calculate how far ahead on the ground participants were looking as they walked.   

2.3.3 Protocol 

The eye-tracker was calibrated prior to each data collection session. Eye 

movements were calculated based on the dimensions on the screen used in the 

calibration, see supplementary material (2.7.1). Participants then walked ten times 

over four different surfaces so they each completed 40 trials in total. The surfaces 

comprised an uneven, indoor, and a flat, indoor surface, both in a gait laboratory, and 

then a paved, outdoor, and a cobbled, outdoor surface, both on the university campus 
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(Figure 1A-D). The indoor, flat surface (13.20m long) consisted of eleven 18mm thick 

medium density fibreboards (MDF) panels. The indoor, uneven surface was identical 

except that each panel had an array of blocks of 9mm thick MDF on top of the base 

layer to give an uneven surface with a maximum height range of 27mm. Each panel 

had the same block design, with blocks spaced to prevent participants from easily 

targeting footfalls whilst walking. The outdoor, paved surface (16.60m long) 

comprised paving stones (60 x 60cm) whilst the outdoor, cobbled surface (15.70m 

long) comprised of setts. All surfaces were long enough to ensure participants could 

achieve a steady state of walking (Najjar, Iman-Eini, & Moeini, 2017).  

Participants walked over a wooden obstacle (61cm wide x 29.5cm deep x 10cm 

high) placed at either the start or end of each surface. This obstacle was intended to 

increase surface complexity and thus to influence behaviour. However, the location of 

this obstacle (start versus end) did not show a strong or clear relationship with either 

gaze angle or speed across any of the four surfaces so this manipulation was not 

included in the analysis presented here.  

On each trial participants were instructed to begin by looking straight ahead 

whilst standing still in front of each surface for three seconds, then to walk at a self-

determined, comfortable speed along the surface before looking straight ahead whilst 

standing still at the end of the surface for three seconds. No instructions were given 

regarding head or eye movement when walking.  
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Figure 1: Images showing the four surfaces: (A) indoor, flat, (B) outdoor, paved (C) 

outdoor, cobbled and (D) indoor, uneven. To estimate surface roughness, we used a 

clinometer to take 20 measurements of the height change between a pair of points that 

were 15cm apart. This was done at 30cm intervals along each surface. The mean (± 

SD) height change was 1.8° (±0.5°) for the indoor, flat surface, 1.9° (±0.5°) for the 

outdoor, paved surface, 2.5° (±1.9°) for the outdoor, cobbled surface and 7.5° (±2.6°) 

for the indoor, uneven surface. 

2.3.4. Data Analysis 

Mean eye angle and head pitch angle were calculated for each trial of each 

surface for all participants.  For the raw vertical gyroscopic data used to determine 

head pitch angle, a low pass, 10Hz fourth-order Butterworth filter was used to reduce 

noise. The effect of drift was removed using gyroscopic data taken from the period 

when the participant remained still at the start and end of each trial (following Takeda, 

et al. (2014)). The gyroscopic data (in degrees per second) was then numerically 

integrated over the trial to give head pitch angle. The supplementary material (2.7.2) 

describes a check of the accuracy of this method. The vertical eye movements were 

converted into angular data. A head pitch angle of 0° was defined as the average head 

orientation at the beginning and end of each trial when the participant remained still 
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whilst looking straight ahead. To avoid the influence of starting and stopping, the 

walking data was trimmed to remove the first two and last two strides from each trial. 

Every 1/60s during each trial the eye angle and head angle were summed and these 

sums were then averaged across the trial to calculate gaze (combined eye and head 

pitch) angle for that trial. The relative frequency distribution of eye, head pitch and 

gaze angles for each surface were also calculated. This measurement follows 

Foulsham, Walker, and Kingstone (2011) in calculating the frequency of recorded 

angles for each surface in bins of 5° relative to zero. In effect this distribution shows 

the variance of eye and head movement during the trial. Only eye angles that were 

within the normal range expected based on previous reports (Lee, Kim, Shin, Hwang, 

& Lim, 2019) and from our own validation study, see supplementary material (2.7.3), 

were included.  

Gait speed was calculated using the shank IMU to estimate the shank ankle and 

then combining this with integrated accelerometery data (following Li, Young, Naing, 

and Donelan (2010)). As this method has only been tested over smooth surfaces, we 

checked its accuracy over the most complex surface, the indoor, uneven surface, as 

detailed in the supplementary material (2.7.2).  

Repeated-measures ANOVAs were conducted on the participant's mean eye 

angles, head pitch angles and gaze angles. The factor of surface had four levels: flat, 

paved, cobbled and uneven. Correlations were calculated between eye angle and head 

pitch angle every 1/60s of the trial for all participants. We then conducted t-tests for 

each surface to compare the mean correlation across participants to a no correlation 

value (zero). Zero correlation would suggest that there was no relation between eye 

angle and head pitch angle for that surface. A repeated-measures ANOVA was 

conducted for the participant’s mean gait speed with a factor of surface. Finally, 
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correlations were calculated between mean speed and mean eye angle, mean head 

pitch angle, and mean gaze, followed by t-tests for each surface to compare the mean 

correlation across participants to a no correlation value (zero). These correlations were 

calculated between mean values over a whole trial since speed was calculated across 

step duration whereas eye, head pitch and gaze angles were calculated every 1/60s.  

 

2.4 Results  

2.4.1 Analysis of the orientation of eye, head pitch and gaze (combined eye and head 

pitch) angles  

Comparisons were made between all four surfaces. Mean (± SE) eye (α/red), 

head pitch (θ/blue) and gaze (grey) angles (°) are shown in Figure 2. Surface had a 

significant effect on gaze angle, F(3, 30) = 28.34, p
= 0.81, p=0.003. Post-hoc 

Newman Keuls tests (p <0.05) showed gaze to be significantly lower for the indoor, 

uneven surface compared to the other three surfaces. The contribution to mean gaze 

angle from head pitch (θ) angle changes were 17% for indoor, flat surfaces; 25% for 

outdoor, paved surfaces; 35% for outdoor, cobbled surfaces; and 54% for indoor, 

uneven surfaces. This contribution was calculated as the percentage of the head pitch 

angle compared with gaze (combined eye and head pitch) angle taken every 1/60s over 

the course of every trial and then averaged. The average frequency distribution of eye, 

head pitch and gaze angles over the trial was calculated for each surface, see Figure 

3. The indoor, uneven surface had a different distribution to the other three surfaces. 

These other surfaces all had peak head pitch angles close to zero, whereas the indoor 

uneven surface showed a greater range of head pitch angles. For this surface, head 

pitch angle was often lowered, with a similar range distribution to that for eye angle. 
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Gaze (combined eye and head pitch) angle showed a similar distribution to eye angle 

for all but the indoor, uneven surface where it was generally lower.     

 

Figure 2: Mean (± SE) eye, head pitch and gaze (combined eye and head pitch) angles 

(°) for the four surfaces tested: indoor, flat; outdoor, paved; outdoor, cobbled; and 

indoor, uneven. The inset shows how eye (α/red) and head pitch (θ/blue) angles were 

measured. Mean gaze (combined eye and head pitch) angle is the mean value of the 

sum of eye angle and head pitch angle calculated every 1/60s (and not the sum of the 

mean eye angle and mean head pitch angle). 

A one sample t test showed that the correlation between eye and head pitch 

angle for the indoor, flat (M ± SD = +0.13 ± 0.17), and outdoor, paved surface, (+0.24 

±0.15) were significantly greater than zero (t (10) = 2.46, p=0.034 and t(10) = 5.63, 

p<0.01 respectively). These correlations, albeit weak, suggest that eye and head 

movements are co-ordinated when walking over these surfaces. The correlations for 

the indoor, uneven (+0.01 ± 0.17; t(10) = 0.26, p=0.801) and outdoor, cobbled (+0.15 

± 0.23; t(10) = 2.12, p=0.060) surfaces were not significantly different to zero. As all 
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four correlations were all relatively low, this suggests that eye angle and head pitch 

angle both contribute distinct information about gaze angle.    

 

Figure 3: Relative frequency distributions of eye, head pitch and gaze (combined eye 

and head pitch) angles (°), within a trial for the (A) indoor, flat, (B) outdoor, paved, 

(C) outdoor, cobbled and (D) indoor, uneven surfaces. Negative angles correspond to 

lowering of the eyes and head toward the ground. An angle of zero (indicated by the 

black dashed line) represents the mean angle as the participant looked ahead at the 

start and end of each trial. 
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2.4.2 Gait speed analyses 

 Speeds were significantly different across surfaces, F(3, 30) = 38.40, p
= 0.89  

p<0.001, as shown in Figure. 4. A post-hoc Newman Keuls test (p <0.05) showed 

participants walked more slowly on the indoor, uneven surface (M ± SE = 1.19 

metres/second ± 0.05) than the indoor, flat (1.35 ± 0.04), outdoor, paved (1.43 ± 0.04) 

and outdoor, cobbled (1.44 ± 0.04) surfaces.   

 

Figure 4: Mean (± SE) gait speed (metres/second) for the four surfaces (indoor, flat, 

outdoor, paved, outdoor, cobbled and indoor, uneven). 

Correlations of speed were calculated between mean speed and mean eye, head 

pitch and gaze angle over the trial. One sample t-tests revealed that no correlations 

with speed were significantly different from zero, see Table 1.  
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Table 1: Correlations between mean gait speed and mean eye, head pitch and gaze 

angles (°).  

  Indoor, flat 
Outdoor, 

paved 

Outdoor, 

cobbled 

Indoor, 

uneven 

Eye 

angle (°) 

Mean 

(±SD) 

+0.01 

(±0.29) 

-0.14 

(±0.37) 

-0.04 

(±0.39) 

+0.09 

(±0.28) 

t value 0.08 -1.21 -0.32 1.07 

p value 0.936 0.255 0.755 0.311 

Head 

pitch 

angle (°) 

Mean 

(±SD) 

-0.08 

(±0.37) 

+0.09 

(±0.36) 

-0.06 

(±0.41) 

-0.11 

(±0.35) 

t value -0.69 0.83 -0.52 -1.07 

p value 0.508 0.428 0.613 0.310 

Gaze 

angle (°) 

Mean 

(±SD) 

+0.03 

(±0.33) 

+0.06 

(±0.35) 

+0.06 

(±0.41) 

+0.07 

(±0.32) 

t value 0.28 0.54 0.46 0.67 

p value 0.789 0.601 0.654 0.516 

 

We estimated how long it would take participants to walk to the location that they 

were fixating for each surface. To do this, we used the average participant eye height 

and their mean gaze (combined eye and head pitch) angle to calculate the mean 

distance that participants were looking ahead for each surface. We then divided this 

distance by the average participant gait speed for that surface to estimate how long it 

would take for participants to walk to their fixation location, see Table 2. This was 

shortest for the indoor uneven surface. Similarly, using the average step length for 

each surface, we calculated how many steps people looked ahead. People looked fewer 

steps ahead on the indoor uneven surfaces, see Table 2. 
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Table 2: Mean (± SD) time (seconds) and mean number of steps to reach the location 

that participants were looking ahead to.  

 Indoor, flat 
Outdoor, 

paved 

Outdoor, 

cobbled 

Indoor, 

uneven 

Look ahead 

time (sec) (± 

SD) 

6.37 

(±0.12) 

7.88 

(±0.12) 

6.82 

(±0.12) 

2.23 

(±0.15) 

Look ahead 

step number 

(± SD) 

6.12 

(±0.22) 

7.75 

(±0.29) 

6.66 

(±0.25) 

2.00 

(±0.07) 

 

2.5 Discussion 

The aim of this exploratory study was to understand how eye angle and head 

pitch angle contribute to gaze behaviour and how this alters with gait speed when 

walking over surfaces of different complexity. When traversing the most complex 

surface (indoor, uneven; mean height change= 7.46°, see Figure 1), participants 

significantly lowered their gaze (combined eye and head pitch) angle and reduced their 

gait speed. Head pitch angle was lowered towards the ground for a greater duration of 

the trial over this surface (as shown by the relative frequency distribution, see Figure 

3), and a greater proportion of gaze angle was attributed to head pitch angle than for 

any other surface (54%). Our results suggest that more complex surfaces require 

greater visual information to traverse, with a stronger contribution to overall gaze 

angle being made by head pitch angle in such circumstances.  

The results in our study are consistent with previous research in showing that 

complex surfaces exert increased visual demands ('t Hart & Einhauser, 2012; Marigold 

& Patla, 2007; Matthis, et al., 2018) as it becomes harder to maintain stability. Using 

mean values of gaze (combined eye and head pitch) angle and speed, we showed that 
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participants walking over the indoor, uneven surface looked just two steps ahead (see 

Table 1). This finding is in line with that previously reported when walking on 

inconsistently spaced foot holds (Matthis, et al., 2017; Matthis & Fajen, 2014). Further 

research is required to test how different characteristics of irregular surfaces (slope, 

unevenness, appearance, texture, etc.) influence eye and head pitch behaviour. The 

present study only measured surfaces by changes in their mean height. An important 

future goal will be to characterise surfaces using comprehensive, objective and 

replicable measures. 

A relatively novel aspect of the current study was analysing eye and head pitch 

angle independently when walking over different surfaces. Our results found no strong 

relation between eye and head pitch angle (note, though, that our analyses could not 

detect short-term correlations). Only two surfaces (indoor, flat and outdoor, paved) 

produced a significant correlation between eye and head pitch angles and these 

correlations were weak. For these simpler surfaces there was some evidence that eye 

and head movements were co-ordinated. This might reflect participants spending more 

time gazing around the scene rather than having to fixate near to their upcoming foot 

placements on these less challenging surfaces. The relative frequency plots (see 

Figure 3) showed differences between eye and head pitch angles. The eyes were 

typically lowered more than the head except when walking over the most complex 

indoor, uneven surface. This suggests that the energetically costly movement of the 

head to shift gaze is only implemented when necessary, i.e. when surfaces are more 

complex to traverse, compromising stability. This supports findings from 't Hart and 

Einhauser (2012), showing eye movements are usually greater than head movements. 

Furthermore, these results strengthens the rationale of Tomasi, et al. (2016) for 

calculating gaze from both eye and head movements. The lack of contribution from 
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the head to overall gaze when walking over smooth surfaces may suggest that our 

peripheral vision is sufficient in these settings. Indeed, peripheral vision has been 

shown to be sufficient even when traversing an obstacles (Graci, et al., 2010). Future 

research is therefore required to determine how complex surfaces must be in order to 

elicit lowering of the head.  

In our study, changes in eye angle, head pitch angle and gait speed were 

assessed from mean values across the entire length of the surface traversed on a given 

trial. We found significant differences between surfaces using this approach (see 

Figure 2), and we believe that this summary measure provides a convenient and 

meaningful summary of gaze behaviour over different surfaces. Surface lengths 

changed slightly between surfaces, but given that we excluded data from the start and 

end of the surface, differences of surface complexity are likely to be the main cause 

of behavioural change.  

A more detailed approach to determine gaze behaviour can come from time 

series data, for example as used by Matthis, et al. (2018). The supplementary material 

(2.7.4) shows an example of time series data from our study, plotting raw gaze angle 

for ten trials of one participant walking over the outdoor, cobbled and the indoor, 

uneven surfaces. For this participant, gaze was consistently lower for the indoor, 

uneven surface compared to the outdoor, paved surface, whilst overall gaze angles 

were generally lower.   

 

2.6. Conclusions 

In summary, we found gaze and gait behaviour to be most affected when 

participants walked on a complex, uneven surface. In this situation both head and eye 
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movements played a substantial role in determining gaze angle, supporting the 

argument (Tomasi, et al., 2016) that we should not assess gaze solely by considering 

eye movements. This research should act as a foundation for future work to tease apart 

what surface characteristics drive behavioural changes in gaze and gait when we walk 

over the types of surfaces that we commonly encounter in our everyday lives (e.g. 

slopes, cobbles, steps).   
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2.7 Supplementary material  

2.7.1. Eye tracker calibration 

Before commencing walking, participants completed an eye calibration. The 

calibration tracked eye movements whilst the participants remained still at a distance 

of 320cm from a screen (173cm x 265cm), following recommendations made using 

the Arrington ViewPoint® manual (Arrington ViewPoint, 2010). The eye height of 

participants whilst standing was also measured.  

2.7.2 Accuracy of inertia measurement unit sensors (IMUs) 

Previous research has shown that IMUs can be used to calculate head yaw 

whilst walking outdoors (Tomasi, et al., 2016). However, the accuracy of IMUs to 

calculate head movement has not been tested. Furthermore, despite previous research 

showing IMUs to be accurate at calculating gait speed (Li, et al., 2010), this has not 

been tested for walking over irregular surfaces. We therefore tested the accuracy of 

IMU measures of head pitch angle and gait speed for flat and uneven surfaces. To 

achieve this, we compared data from IMUs to the gold standard assessment of 

spatiotemporal gait parameters, motion capture cameras (MOCAP).  

2.7.2.1 Method 

The test involved one individual walking over the two indoor surfaces tested 

in the study (Figure 1A & 1D). Two IMUs (Delsys TRIGNO™ IM, Boston, MA, 

USA) were placed on the body, positioned at the midline of the forehead and the lateral 

left shank. The lateral shank was selected following the methodology described by Li, 

et al. (2010), and this protocol was used for the gait speed calculation. MOCAP 

cameras (Qualisys Oqus 7 cameras) were used to record head pitch angle and gait 

speed using Qualisys Track Manager (version 2.15). Four reflective markers were 
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placed on a headband strapped to the head and four markers were attached to a marker 

plate, placed at the lumbar region. Head pitch angle was calculated from the average 

vertical gyroscopic movement at the head and gait speed was calculated from the 

average acceleration and positional data of the four lumbar markers. .  

The participant walked ten times over the indoor, smooth surface and the 

indoor uneven surface. To check the IMUs accuracy for gait speed calculation, the 

participant walked at a comfortable walking speed as well as a range between the 

fastest and slowest possible walking speeds.  

2.7.2.2 Accuracy of the IMUs to calculate head pitch angle and gait speed 

Both head pitch angle and gait speed correlated highly between the MOCAP 

and the IMU data (0.98 and 0.89 respectively). For gait speed, the discrepancy between 

MOCAP and IMU results was greatest when walking fast over uneven surfaces. These 

speeds were faster than the fastest speeds of participants in the main study. For all 

other gait speeds, errors were similar to those obtained by Li, et al. (2010).  

2.7.3. Validation of eye movement 

 We completed a validation study of the possible eye movement range in the 

vertical direction. 10 healthy adults (5 male, mean ± SD; age = 27.4 ± 1.1 years; height 

= 175 ± 9.2cm) were asked to rate their visual comfort across a range of eye angles 

(+40° to -70°) on a Likert scale between 1 and 5 (1 = “very fresh” 5 = “severe strain”. 

This scale was taken from Shibata, Kim, Hoffman, and Banks (2011). Participants 

were instructed to keep their head still, whilst fixating at targets set incrementally (in 

steps of 10°) from their eye height (defined as 0°). Only eye movements between +30° 

and -50° were, on average, rated at a comfort rating of 4 (moderate strain) or below. 

Any recorded eye movements outside of this range were excluded from the analysis 
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because participants were deemed unlikely to move their eyes to cause them severe 

strain.   

2.7.4. Examples of time series data  

 

Figure 2.7.4: Sample gaze (combined eye and head pitch) angles (°) over the course 

of ten individual trials for one participant walking over the (A) outdoor, cobbled 

surface and (B) indoor, uneven surface. Different colours represent each of the ten 

trials in each of these two conditions.
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Chapter Three: Physical and perceptual 

measures of walking surface complexity strongly 

predict gait and gaze behaviour  

 

In establishing that surface complexity is an important factor to determine gaze 

and gait speed behaviour (Chapter 2), I now need to establish a more objective measure 

for surface complexity. Previous research has predominately used descriptions to 

characterise different surfaces. The aim in this chapter was to develop a multimethod 

approach to more objectively define different surfaces. Two different forms of surface 

measures (physical and perceptual measures) were used to assess surface complexity. 

Firstly, I compared a number of physical and perceptual measures to one another, and 

secondly, determined whether these measures were indicative of changes to stability 

as assessed from a range of gaze and gait behaviours. In doing so, multiple surface 

types can be compared and certain conditions can be identified as more complex. 

Moreover, this approach may lead to a potential simple and easy measure for surface 

complexity using surface perception measurements.  

 

This chapter has been published as: 

Thomas, N.D.A., Gardiner, J.D., Crompton, R.H. & Lawson, R. (2020). 

Physical and perceptual measures of walking surface complexity strongly predict 

gait and gaze behaviour. Human Movement Science, 71, 102615. DOI: 

10.1016/j.humov.2020.102615 
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3.1 Abstract  

Background: Walking surfaces vary in complexity and are known to affect stability 

and fall risk whilst walking. However, existing studies define surfaces through 

descriptions only.  

Objective: This study used a multimethod approach to measure surface complexity in 

order to try to characterise surfaces with respect to locomotor stability. 

Methods: We assessed how physical measurements of walking surface complexity 

compared to participant’s perceptual ratings of the effect of complexity on stability. 

Physical measurements included local slope measures from the surfaces themselves 

and shape complexity measured using generated surface models. Perceptual 

measurements assessed participants’ perceived stability and surface roughness using 

Likert scales. We then determined whether these measurements were indicative of 

changes to stability as assessed by behavioural changes including eye angle, head pitch 

angle, muscle coactivation, walking speed and walking smoothness.  

Results: Physical and perceptual measures were highly correlated, with more complex 

surfaces being perceived as more challenging to stability. Furthermore, complex 

surfaces, as defined from both these measurements, were associated with lowered head 

pitch, increased muscle coactivation and reduced walking smoothness.  

Significance: Our findings show that walking surfaces defined as complex, based on 

physical measurements, are perceived as more challenging to our stability. 

Furthermore, certain behavioural measures relate better to these perceptual and 

physical measures than others. Crucially, for the first time this study defined walking 

surfaces objectively rather than just based on subjective descriptions. This approach 
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could enable future researchers to compare results across walking surface studies. 

Moreover, perceptual measurements, which can be collected easily and efficiently, 

could be used as a proxy for estimating behavioural responses to different surfaces. 

This could be particularly valuable when determining risk of instability when walking 

for individuals with compromised stability.  
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3.2 Introduction  

Walking surfaces are hugely diverse, differing in size, materials and 

environmental setting. Together these factors influence how we walk, with some 

surfaces being more challenging to maintain stability than others. Self-reported 

questionnaires have shown that more complex surfaces cause an increase in falls when 

walking (Chippendale & Boltz, 2015; Nyman, Ballinger, Phillips, & Newton, 2013; 

Talbot, Musiol, Witham, & Metter, 2005). One common method to determine fall risk, 

including when walking over complex surfaces, is from assessing stability. However, 

there is currently no universally accepted measure for stability; rather, a variety of 

stability metrics have been proposed (as reviewed in Bruijn, Meijer, Beek, & Van 

Dieën, 2013), each with their own advantages and limitations.  

To assess stability whilst walking over different surfaces, we first need to 

clarify what constitutes a complex surface. Here we take complexity to include uneven 

surfaces, slope changes and inconsistently spaced foot targets (Cham & Redfern, 

2002; Graci, Elliott, & Buckley, 2010; Marigold & Patla, 2007; Matthis & Fajen, 

2014; Merryweather, Yoo, & Bloswick, 2011; Patla & Vickers, 2003; Thies, 

Richardson, & Ashton-Miller, 2005) but not slippery or compliant surfaces or 

obstacles (Cham & Redfern, 2002; Graci, et al., 2010; Morgan, Hafner, & Kelly, 

2017). Stairs are also challenging to our stability (Bosse, et al., 2012; Wang, et al., 

2017) though they are rarely classified as complex surfaces.  

Although previous research has described a broad range of surfaces as 

complex, few studies have tried to objectively quantify surface complexity by 

measuring physical characteristics such as mechanical properties and micro and macro 

structure (e.g. topography, shape, size and location). Physical complexity of surfaces 
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has previously been assessed through the international roughness index (Sayers, 

1984), however this measurement is mostly used for roads and also requires vehicle 

characteristics. Assessment of surfaces has been attempted using the sidewalk 

condition index (Corazza, Di Mascio, & Moretti, 2016), but this method focuses 

exclusively on pedestrianised surfaces and the number of surface distresses (potholes, 

deformation from roots, etc.). Other studies that have analysed physical differences 

between surfaces have only assessed tactile perception using handheld materials 

(Skedung, et al., 2011; Tiest & Kappers, 2006). There is as yet no widely accepted, 

objective means of measuring the physical characteristics of surfaces relevant to 

predicting walking stability.   

In addition to quantifying walking surfaces complexity we also needed to 

assess people’s stability whilst walking over each surface. Complex surfaces are likely 

to cause behavioural changes indicative of the person’s stability, since it may 

reasonably be assumed that complex surfaces increase fall risk. Whilst no single 

measure of stability has been universally accepted, assessing several behavioural 

measures simultaneously might provide a proxy for stability. For example, people 

lower their gaze to look closer to their feet when they walk over complex surfaces, 

and they increase the number of fixations to the walking surface ('t Hart & Einhauser, 

2012; Marigold & Patla, 2007; Matthis, Yates, & Hayhoe, 2018; Thomas, Gardiner, 

Crompton, & Lawson, 2020b). Similarly complex surfaces cause people to shorten 

their step length, lower their walking speed, increase leg muscle coactivation and walk 

more asymmetrically (Dixon, et al., 2018; Marigold & Patla, 2008; Menant, Steele, 

Menz, Munro, & Lord, 2009; Voloshina, Kuo, Daley, & Ferris, 2013). Such 

behavioural measures could help us to understand stability but they are often time-



71 
 

consuming and difficult to record. Finding alternative metrics of stability that are 

easier to assess could be useful.  

One potential measure of the effect of complexity on stability could be from 

assessing people’s perception. No research, to the authors’ knowledge, has assessed 

whether people’s perception of their stability on complex surfaces is accurate. 

However, research assessing the perception of walking up stairs has shown that people 

can accurately identify when stairs are too high for safe walking (Konczak, Meeuwsen, 

& Cress, 1992; Warren, 1984). The use of perceptual ratings to assess stability over 

complex surfaces may be more effective than focussing on separate physical measures 

given that people find it easier to categorise by combining multiple aspects, rather than 

a single dimensions (Ramscar & Hahn, 2001). For example, people may readily be 

able to take into account surface gradient, regularity and slipperiness when assessing 

perceived stability. If perceptual measures provide a sensitive measure of physical 

surface complexity, and if they also predict behavioural measures of stability, then it 

would be far easier, quicker and cheaper to use perceptual measures in future research 

rather than assessing complexity or stability.   

In summary, surface complexity is known to influence stability whilst walking 

but few studies measure objective properties of the walking surfaces, with most relying 

on qualitative and subjective descriptions (e.g. rough vs smooth). Here, we attempt to 

rigorously quantify the complexity of walking surfaces using a variety of both physical 

and perceptual metrics to try to categorise surfaces with respect to walking stability. 

We assessed how surface complexity, specified using physical measures, may alter 

walking stability as reflected by changes in eye and head pitch angle, gait speed, 

harmonic ratios and muscle co-activation. These behavioural measures have all been 

previously assessed in relation to walking stability. We also investigated how physical 
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measures of surface complexity correlated to perceptual measures of the effect of 

complexity on stability, in the hope of providing a quick and easy alternative to these 

behavioural measures. We aim to develop a simple, meaningful and convenient 

measure for the effect of surface complexity on stability whilst walking over surfaces 

of different complexity. 

  

3.3 Methodology 

The University of Liverpool’s Ethics Committee granted ethical approval for 

the study in November 2017 (REF: 2672). We discuss the methodology for the 

physical, perceptual and behavioural measurements in separate sections. We assessed 

17 surfaces for all three classes of measurements. As surfaces are multidimensional, 

we selected a wide range of typical urban surfaces in the study and included multiple 

examples of each broad class to allow an assessment of generalisability. The 17 

surfaces were all located on the University of Liverpool campus, see Figure 1, and 

Table 1. Surfaces are numbered in the order they were encountered for the perception 

and behaviour measurement tasks for half of the participants, the remaining 

participants encountering the surfaces in the reverse order. The surfaces were at least 

10m long to ensure that participants walked far enough to achieve a steady state of 

walking (Najafi, Miller, Jarrett, & Wrobel, 2010).  
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Figure 1: Images showing the 17 surfaces used in the study. Two images (S17A & 

S17B) are shown for surface 17 as it included both a corridor section and stairs.   

Table 1: Descriptions and approximate surface lengths (to the nearest metre) for the 

17 surfaces. Three surfaces were split into two parts, listed as part A and B.  

Surface label Description of the surface 
Approximate length 

(metres) 

S1 Flagstone paving  29 

S2 Oblique paved slope 29 

S3 
11 outdoor concrete stairs including two 

landings  
13 
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S4 Flagstone paving 31 

S5(A & B) 
Three concrete stairs (A) and flagstone 

paving (B) 
28 

S6 Loose stones 30 

S7 Brick slope 35 

S8 Brick paving  31 

S9 Fine gravel  30 

S10 Small, loose pebbles 19 

S11 Rough grass 34 

S12 13 concrete stairs including two landings  10 

S13 13 concrete stairs including two landings 10 

S14(A & B) Fine gravel (A), and level grass (B) 35 

S15 Stones set in concrete 31 

S16 
38 indoor, polished stairs including three 

landings 
15 

S17(A & B) 
Indoor corridor (A) and 18 polished stairs 

including one landing (B)   
29 

 

3.3.1 Physical measurements  

Creating 3D models of the surface structure 

In order to compare physical measures of surface complexity, we created 3D 

models using photogrammetry. This technique creates models through a series of 

overlapping photographs of a surface taken from different angles. For each of the 17 

surfaces, an area of 1m2 (2m along the direction of walking x 0.5m perpendicular to 

that direction) was used to create the models. Two separate models were created for 

each of the three surfaces with two distinct parts (S5, S14, S17). At least 35 pictures 

were taken to create each model, with photographs covering the maximum possible 

angle range of the surface. A Nikon D7200, 24 megapixel, camera was used, with an 

image resolution of 4000 x 6000 pixels. The 3D models were created using AgiSoft 
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PhotoScan Standard (Version 1.4.4) software. To create the models, we only used high 

quality images, as determined by the “Estimated image quality” function in the 

software. Once created, we used Meshlab software (Cignoni, et al., 2008) to simplify 

each model to 20,000 triangular faces.   

1st physical measure: Relief index derived from the 3D models 

From each of the 3D models we calculated the relief index as a proxy for the 

surface’s complexity. The relief index is defined as the ratio between the 3D surface 

area of the 3D model and its 2D planar area. This technique has been used as a metric 

for teeth morphology (Boyer, 2008; M'kirera & Ungar, 2003), and has since been 

implemented for quantifying large land surface areas (Szypula, 2017). To the authors' 

knowledge, it has not previously been used as a metric for smaller surface areas.   

 As this technique has not been used before for localised surfaces like ours, we 

completed a pilot study to check the replicability of the relief index measure. We 

created models from two 1 metre x 0.5 metre surfaces not used in the main study, flat 

paving slabs and a cobbled road comprised of setts. Three models were produced for 

each of these surfaces, with the photographs for each model taken on different days 

(A, B and C). We then calculated the relief index for each model as detailed above. 

The relief indexes are shown in Table 2. 

Table 2: The relief indexes calculated from the three photogrammetry 3D models of 

each of the surfaces.  

 Set A model Set B model Set C model 

Paved 1.012 1.012 1.011 

Cobbled 1.036 1.036 1.037 
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 The three relief indexes for both surfaces were similar, see Table 2. Thus, the 

models created using this method did not appear sensitive to changes due to lighting 

or the angle of the photograph used to create them, with the difference in relief index 

between the paved and cobbled models substantially greater than the differences 

between the relief indices for each surface (around 0.024 versus 0.001).  

 The 17 surface models originally consisted of varying numbers of faces (from 

30,000 to 260,000 faces). We calculated the percentage change in the relief index 

calculated using the simplified model with 20,000 faces that we report here compared 

to the relief index calculated using the model with the original number of faces. The 

mean (±standard deviation) percentage change in the relief index was just 0.27% 

(±0.61%) so standardising face number to 20,000 had little influence on the relief 

index.  

2nd physical measure: Dirichlet Normal Energy (DNE) derived from the 3D models 

 The 3D models of the surfaces were also used to calculate the Dirichlet Normal 

Energy (DNE) which reflects the local curvatures across the 3D model surface (see 

Bunn, et al., 2011). Like the relief index, the DNE can be used as a proxy for surface 

complexity. However, it differs from the relief index in that the calculation can be 

weighted toward reflecting either finer or broader changes rather than providing a 

single measure for the entire surface. This method has been used as a complexity 

metric for teeth (e.g. Pampush, et al., 2016) and bone morphology (Gardiner, Behnsen, 

& Brassey, 2018; Wallace, Winchester, Su, Boyer, & Konow, 2017).  

We used the method described by (Shan, Kovalsky, Winchester, Boyer, & 

Daubechies, 2019), to calculate DNE using their improved algorithm “ariaDNE”. We 

weighted the calculation towards reflecting localised changes that would be detectable 
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by the feet when walking, relative to more general surface changes such as the level 

change between different stairs. For further details, see the supplementary material 

(3.7.1).  

3rd physical measure: Local slope angle 

 A final, simpler physical measure was used based on the local slope of each 

surface. This measure of slope angle did not require surface modelling, but rather used 

a clinometer to measure the mean local slope angle (°) of a flat, 12cm long extent 

placed onto the surface. This was done at 20 locations along each surface, with each 

location separated by approximately 30cm.   

 

3.3.2 Perception measurements   

Participants  

Only participants that had no impairments or injuries that might affect their 

gait or vision were tested. The study consisted of 32 participants, 14 male, mean ± SD; 

age = 22.2 ± 5.0 years; height = 172.6 ± 8.5cm. Twelve of these participants (10 male, 

age = 27.3 ± 4.3 years; height = 178.0 ± 6.9cm) had already completed the behavioural 

part of the study, but there were no significant differences between their mean 

responses across the three different ratings and those of the remaining 20 participants, 

(F(1, 32) = 0.22, ηp
2=0.01, p=0.643) so responses were pooled in the analyses reported 

here. 

Data Collection, Protocol & Analysis  

Participants rated their perception of the 17 different surfaces using a Likert 

scale between 1 and 10 (Likert, 1932). For surfaces with two components (i.e. S5, S14 
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& S17), participants were asked to consider both parts and to provide an overall rating. 

Participants rated each surface from vision alone for, first, surface roughness (1 = 

“completely smooth” to 10 = “extremely rough”) and second, stability (1 = “no 

problem with stability” to 10 = “I think I might fall over”) if they were to walk on the 

surface. They then walked over the surface, and re-rated stability after having walked 

on it. Finally, they described each surface in a maximum of three words. 

 

3.3.3 Behavioural measurements  

Participants  

Twenty healthy adults (14 male, age = 26.6 ± 4.2 years; height = 176.1 ± 

9.1cm) were recruited for the study. All participants had no impairments or injuries 

that might affect their gait or vision.  

Data Collection 

We used multiple gaze and gait measures to provide converging evidence 

about stability because, as discussed in the introduction, there is no single, agreed 

measure of stability during locomotion. Eye movements were recorded using a Pupil 

Labs eye-tracking headset (Kassner, Patera, & Bulling, 2014) that recorded pupil 

movement at 30Hz and a world view at 60Hz. We were interested in how the stability 

of walking on surfaces influenced vertical gaze so we only analysed pupil movement 

in the vertical direction. Six Delsys TRIGNO™ sensors (IMUs, Boston, MA, USA) 

were placed on the participant. Four of these sensors were used to collect inertia data, 

recorded at 148Hz. A sensor on the forehead collected gyroscopic data which was used 

to calculate head pitch. Another sensor was positioned on the lower lumbar region. 
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This provided accelerometery data that was used to calculate harmonic ratios to 

measure gait symmetry, following Bellanca, Lowry, VanSwearingen, Brach, and 

Redfern (2013). We determined the accuracy of this algorithm to detect symmetrical 

data (see Additional Material). Two sensors were positioned above the malleoli on 

each leg which were used to calculate gait events. The remaining two sensors were 

used to collect surface electromyography (sEMG) data, recorded at 1111 Hz. These 

sensors were positioned on the antagonistic muscles of the right lower limb, the 

Tibialis Anterior muscle and the medial head of the Gastrocnemius muscle.  

The eye-tracker was calibrated then participants walked at a self-selected speed 

over the 17 surfaces (see Figure 1 and Table 1), from S1 to S17 for half of the 

participants and in the reverse order (from S17 to S1) for the remaining participants. 

We also collected data that we report in a companion paper (Thomas, Gardiner, 

Crompton, & Lawson, 2020a) when people walked over the same 17 surfaces but with 

their lower vision blocked. The order of this factor (full versus partial vision) was 

counterbalanced across participants. There was no significant difference for any of the 

measures depending on the different orders of completion of the study, F(1, 18) = 0.38, 

ηp
2=0.02, p=0.544. Participants stood still in front of each surface for three seconds 

before walking at a self-selected speed to the end of the surface and then stood still for 

a further three seconds.  

Analysis  

Mean eye and head pitch angles were calculated for each participant for each 

surface. During calibration of the eye tracker, participants fixated a target set at the 

participant’s own eye height and this angle was used to define an eye angle of 0°. All 

vertical eye movements were converted into angular deviations from 0°, with lower 
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gaze, towards the feet, producing more negative eye angles. A head pitch angle of 0° 

was defined as the average head position at the static period at the start and end of 

each surface trial, following Thomas, et al. (2020b). Head pitch angles were calculated 

using the gyroscopic data from the forehead sensor. The gyroscopic data were filtered 

using a low pass, 10Hz fourth-order Butterworth filter to reduce noise. Similar to 

Takeda, et al. (2014), signal drift was then removed using the period when the 

participant remained still at the start and end of each trial to provide a baseline. The 

gyroscopic data (rotational velocity in deg/s) were numerically integrated for each 

surface to give head pitch angle. 

   Mean gait speed was calculated from the approximate length of the surfaces 

(see Table 1) and from gait events timings, calculated from gyroscopic data at the 

ankles (Li, Young, Naing, & Donelan, 2010)1.  

 Mean harmonic ratios were calculated from anteroposterior accelerometery 

data from the lumbar IMU. Harmonic ratios were calculated by taking a Fourier 

transform of the data for each stride. The harmonic ratio is the ratio between the sum 

of the amplitudes of the even harmonics (representative of symmetrical gait) and the 

sum of the amplitudes of the odd harmonics (representative of asymmetrical gait) 

(Gage, 1964; Smidt, Arora, & Johnston, 1971). A higher ratio represents more 

symmetrical, smoother gait. We only considered harmonic ratios in the anteroposterior 

direction since this direction has previously been found to show the greatest changes 

when walking (Brach, et al., 2010; Lowry, VanSwearingen, Perera, Studenski, & 

Brach, 2013). 
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 Surface EMG signals were calculated between adjacent ipsilateral gait events. 

Muscle co-activation was then calculated following Winter (2005) defined by the 

following equation:  

%𝐶𝑂𝐶𝑂𝑁 = 2 × 
𝑐𝑜𝑚𝑚𝑜𝑛 𝑎𝑟𝑒𝑎 𝐴 & 𝐵

𝑎𝑟𝑒𝑎 𝐴 + 𝑎𝑟𝑒𝑎 𝐵
 × 100% 

where %COCAN is the percentage of muscle coactivation between the two muscles, 

area A is the area below the EMG curve of muscle A (Tibialis Anterior), area B is the 

area below the EMG curve of muscle B (medial head of the Gastrocnemius) and the 

common area A & B is the common area between both muscles.  

For eye angle, head pitch angle, harmonic ratios and muscle coactivation, the 

first two and last two strides for each surface were removed from the mean calculation 

to avoid the influence of starting and stopping walking1. Z-scores of means were then 

calculated using the mean and standard deviation value from each measure. The z-

scores for the physical, perceptual and muscle co-activation measures were multiplied 

by -1 so that, for all measures, higher z-scores were always associated with more stable 

walking or less complex surfaces.  

For the results, we focused on correlations between different measures. This 

was due to our large range of measures in addition to the range of walking surfaces, 

allowing us to investigate the relation between these factors depending on surface 

characteristics. Large correlations (abs(r) > 0.5) as determined by Cohen (2013), are 

highlighted in each correlation table. To reduce the risk of making Type 1 errors all 

statistical tests reported used an alpha level of 0.05 that was then adjusted for each 

correlation table using the Bonferroni correction, based on the number of correlations 

executed. These calculated p-values are reported with each table.  
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3.4 Results 

The results are split into two sections. Firstly, we assessed how the three 

physical measures of surface complexity related to the three perceptual measures on 

the effects of complexity on stability. Secondly, we assessed how these six measures 

correlated to the five behavioural measures of stability. Mean values for all measures 

are provided in the supplementary material (3.7.2).  

3.4.1. Assessing the relation between physical and perceptual measures of surface 

complexity 

 Pearson’s correlations were calculated across the mean z-scores for the 17 

surfaces between all three physical and all three perceptual measures, see Table 3.   

Table 3: Correlations between the mean z-scores for all 17 surfaces for every pair of 

physical and perceptual measures. Shaded correlation values are between physical and 

perceptual measures. Bold values represent large effect sizes (abs(r) > 0.5) as 

determined by Cohen (2013). * signifies p < 0.003 (calculated using the Bonferroni 

adjustment).  

 

DNE 
Relief 

index 

Roughness 

rating 

Pre-walk 

stability 

rating 

Post-walk 

stability 

rating 

Mean local 

slope angle 
0.89* 0.13 0.78* 0.63* 0.72* 

DNE - 0.50 0.67* 0.54 0.63* 

Relief 

index 
- - 0.15 0.14 0.15 

Roughness 

rating 
- - - 0.94* 0.94* 
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Pre-walk 

stability 

rating 

- - - - 0.98* 

 

Correlations were generally low for the relief index (the ratio of the surface to 

planar area). We realised that this could have been caused by the high relief indexes 

occurring for surfaces with stairs. Since we do not normally step on the vertical 

surfaces of stairs this may have produced a misleading ratio. We therefore repeated 

the Pearson’s correlations between relief index and the other measures for only the 11 

surfaces without stairs, see Table 4.  

Table 4: Correlations between the mean z-scores for the 11 surfaces (excluding the 

six surfaces with stairs) for every pair of physical and perceptual measures. Shaded 

correlation values are between physical and perceptual measures. Bold values 

represent large effect sizes (abs(r) > 0.5), as determined by Cohen (2013). * signifies 

p < 0.003 (calculated using the Bonferroni adjustment). 

 

DNE 
Relief 

index 

Roughness 

rating 

Pre-walk 

stability 

rating 

Post-walk 

stability 

rating 

Mean local 

slope angle 
0.95* 0.92* 0.79* 0.63 0.71* 

DNE - 0.98* 0.69 0.55 0.65 

Relief 

index 
- - 0.68 0.55 0.66 

Roughness 

rating 
- - - 0.95* 0.96* 

Pre-walk 

stability 

rating 

- - - - 0.99* 
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Removal of the six surfaces containing stairs increased correlations for the 

relief index, as well as for most other measures. The largest correlation values were 

found within the three physical measures and within the three perceptual measures, all 

of which were significant.  

 To investigate further the relationship between physical and perceptual 

measures we conducted a principal component analysis (PCA). Two components were 

established based on a criterion of the component accounting for at least 10% of the 

variance, see Figure 2.  

 

Figure 2: A plot of the first two components of the PCA including the three physical 

and three perceptual measures. Component 1 (variance = 66.4%) consisted of the 

roughness rating, pre-walk stability rating, post-walk stability rating, mean local slope 

angle and DNE. Component 2 (variance = 21.3%) consisted of DNE and the relief 

index. Two distinct groups were established based on their values; positive for both 

components (red circles, n = 8) and positive for component 1 only (blue squares, n = 

6). The remaining surfaces (orange triangles) were less well grouped together but did 

all score negatively for component 1. 
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The shared surface features within groups of surfaces may explain why they 

generally cluster together. The two most common verbal descriptions given by 

participants to each group of surfaces represented by the different colours were smooth 

and paving for the red circles, stairs and steps for the blue squares and pebbles and 

uneven for the orange triangles. For further details please see the supplementary 

material (3.7.3). These three groups of surfaces will henceforth be described as smooth 

(red circles), stairs (blue squares) and uneven (orange triangles).     

 

3.4.2 Assessing the relation between behavioural measures and physical and 

perceptual measures   

 For this section we excluded the three surfaces that had two distinct 

components (S5, S14 and S17). These surfaces caused technical challenges when 

calculating behavioural means and behaviour may differ in anticipation of the 

transition from one component to the other. For further details see the supplementary 

material (3.7.4). 

Pearson’s correlations were calculated across the mean z-scores for the 

remaining 14 surfaces between all five behavioural measures, see Table 5. We 

compared these correlations to those obtained by calculating within-participant 

correlations for the 12 participants that completed both the behaviour and perception 

task. Correlations were lower, but showed a similar pattern, see the supplementary 

material (3.7.5).  
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Table 5: Correlations between the mean z-scores for the 14 surfaces (excluding the 

three surfaces with two components) for every pair of the five behavioural measures. 

Bold values represent large effect sizes (abs(r) > 0.5), as determined by Cohen (2013). 

* signifies p < 0.005 (calculated using the Bonferroni adjustment). 

 Head angle Gait speed 
Harmonic 

ratios 

Muscle 

coactivation 

Eye angle 0.43 0.23 0.46 0.60 

Head angle - 0.62 0.85* 0.80* 

Gait speed - - 0.78* 0.57 

Harmonic 

ratios 
- - - 0.68 

 

Next, we analysed how perceptual and physical measures compared to 

behavioural measures indicative of stability. Pearson’s correlations were calculated 

across the mean z-scores between all five of the behavioural measures and all six of 

the physical and perceptual measures, see Table 6. As surfaces containing stairs were 

shown to reduce perceptual and physical correlations, we also analysed surfaces when 

excluding stairs, see Table 7. Perceptual measures produced better estimates of 

behavioural stability measures than physical measures. Head angle and harmonic 

ratios were particularly strongly correlated. In contrast, eye angle did not correlate 

significantly with any measure.   
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Table 6: Correlations between the mean z-scores for 14 surfaces (excluding the three 

surfaces with two components) for the six physical and perceptual measures and the 

five behavioural measures. Bold values represent large effect sizes (abs(r) > 0.5), as 

determined by Cohen (2013). * signifies p < 0.0017 (calculated using the Bonferroni 

adjustment). 

 

Eye Angle Head Angle 
Gait 

speed 

Harmonic 

ratios 

Muscle 

coactivatio

n 

Mean 

absolute 

slope angle 

0.37 

 

0.39 

 

0.14 

 

0.33 

 

0.32 

 

DNE  
0.04 

 
0.52 

 

0.12 

 
0.52 

 

0.45 

 

Relief index  
0.16 

 
0.50 

 

0.81* 

 

0.76* 

 

0.49 

 

Roughness 

rating 

0.33 

 

0.71 

 

0.15 

 

0.61 

 

0.48 

 

Pre-walk 

stability 

rating 

0.49 

 
0.82* 

 

0.28 

 
0.69 

 

0.62 

 

Post-walk 

Stability 

rating 

0.44 

 

0.82* 

 

0.23 

 

0.65 

 

0.63 

 

 

Table 7: Correlations between the mean z-scores for 10 surfaces (excluding both stairs 

and surfaces with two components) for the six physical and perceptual measures and 

the five behavioural measures. Bold values represent large effect sizes (abs(r) > 0.5), 

as determined by Cohen (2013). * signifies p < 0.0017 (calculated using the 

Bonferroni adjustment). 

 

Eye Angle 
Head 

Angle 

Gait 

speed 

Harmonic 

ratios 

Muscle 

coactivati

on 
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Mean 

absolute slope 

angle 

0.15 0.60 0.54 0.73 0.63 

DNE 0.10 0.61 0.48 0.68 0.66 

Relief index  0.11 0.64 0.55 0.68 0.68 

Roughness 

rating 
0.48 0.89* 0.80 0.92* 0.81* 

Pre-walk 

stability 

rating 

0.68 0.93* 0.86* 0.93* 0.86* 

Post-walk 

stability 

rating 
0.63 0.95* 0.88* 0.94* 0.90* 

 

We conducted a further PCA to investigate the relationship between the 

physical, perceptual and behavioural measures. Three components were established 

based on the same criteria as the previous PCA, see Figure 3.  
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Figure 3: A plot of the first two components of a Principal Component Analysis 

(PCA) between the 5 behavioural, 3 perceptual and 3 physical measurements. Surfaces 

are coloured based on the three groups established in Figure 2. Component 1 (variance 

= 55.3%) consisted of mean local slope angle, DNE, roughness rating, harmonic ratios, 

pre-walk stability rating, post-walk stability rating and head angle. Component 2 

(variance = 20.6%) consisted of relief index, speed, harmonic ratios, head angle, 

muscle coactivation and DNE.  

To determine an overall stability score for each individual surface, we 

calculated mean z-scores for each of the 14 single part surfaces across all the 11 

measures (3 physical, 3 perceptual and 5 behavioural). These mean z-scores are shown 

ranked from smallest to largest in Figure 4.   
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Figure 4: Ranked mean (± SE) z-scores for each of the 14 single part surfaces across 

all the 11 measures. Lower z-scores are indicative of more difficult surfaces, i.e. more 

complex and less stable for walking over. Surfaces are coloured according to the same 

smooth (red), stairs (blue) and uneven (orange) groups used in Figures 2 and 3.  

 

3.5 Discussion 

The aim of this study was twofold. Firstly, we wanted to see whether more 

complex surfaces (as assessed from physical measurements) were perceived as more 

challenging to our stability, and secondly whether this perception translated to 

reductions in stability, as assessed from a range of behavioural measures. Complex 

surfaces were, indeed, perceived as more challenging, with increases in physical 

roughness being correlated with a perception of greater roughness and greater 

predicted unsteadiness when walking over them. Furthermore, perceptual and physical 

measures predicted a subset of our behavioural measures.  
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Comparisons between physical and perceptual measurements also established 

three general types of surfaces as shown in Figure 2. These groups were labelled 

smooth, stairs and uneven based on common verbal descriptions of the surfaces that 

were provided as part of the perception study. Uneven surfaces were less well grouped 

and spanned a range of materials, topographies and perceptions of walking stability. 

In previous research, smooth and uneven or irregular surfaces were not objectively 

defined, but rather relied on subjective descriptors (Marigold & Patla, 2007; Menz, 

Lord, & Fitzpatrick, 2003; Merryweather, et al., 2011; Storm, Buckley, & Mazza, 

2016; Tamburini, et al., 2018; Thies, et al., 2005). We believe that this is the first time 

that different walking surfaces have been more thoroughly characterised using 

objective, physical measures and perceptual ratings. This result strengthens the 

argument for the use of more consistent terminology for studies using “uneven” or 

“irregular” surfaces. Additional or more precise descriptions (i.e. sloped, rocky, 

irregularly spaced targets etc.) are essential to prevent misleading comparisons.  

The multimethod approach used in this study may encourage future studies to 

compare surfaces of different complexity. By using a range of different measures of 

surface complexity, we have been able to provide converging evidence about how the 

physical characteristics of surfaces influence stability and how these characteristics 

can be readily perceived. This method can be used to predict behavioural responses 

reflecting instability due to surface structure. Importantly, this study showed that 

simple, perceptual measures can predict changes in behaviour as effectively as 

physical measures. This may provide researchers with an efficient and effective tool 

to anticipate the effect of complexity on stability before conducting behavioural 

studies on vulnerable populations. Researchers could use the method discussed here, 

determining surface characteristics from both physical and perceptual measures, 
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before assessing behavioural changes. An improved understanding of surface 

complexity should allow future research to focus more precisely on behavioural 

changes due to stability fluctuating during locomotion.  

This study found that perceptual and physical measures of surfaces are well 

correlated, as evidenced by generally large effect sizes, and, further, that both 

measures also correlate with a range of behavioural measures that have been proposed 

as proxy measures of stability during walking. All measures assessed smooth surfaces 

as providing high stability or as being less complex (see Figure 4). How surface 

complexity impacted behaviour varied depending on the behaviour being assessed. 

Eye angle, in particular, was only weakly correlated with other behavioural measures 

(Table 6 and 7) as well as with the perceptual and physical measures (Table 5). This 

is consistent with our recent finding that eye angle, unlike head pitch angle, remained 

relatively constant, fixed downward, regardless of the complexity of the surface type 

(Thomas, et al., 2020b). As lowering of the eyes when walking is likely to require far 

less energy than lowering of the head, assessing more energetically costly behaviour 

may provide a better indicator of instability whilst walking. Indeed, our study showed 

muscle co-activation, walking smoothness assessed using harmonic ratios and head 

angle (all of which are likely to be more costly to vary than eye angle) all correlated 

more strongly with physical and perceptual measures than eye angle. An interesting 

opportunity for future research could be to determine how energetically costly 

different surfaces are for walking, and which components of locomotion contribute to 

this increase in energetic expenditure. Also, in this study we assessed average 

behaviour whilst walking over a given surface. Future research could compare changes 

in behavioural measures over much shorter time periods. This approach may show 

stronger associations between gaze and gait behaviour, similar to that reported recently 
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by Matthis, et al. (2018). Our next step will be to analyse how individual perceptual 

and behavioural measures vary in relation to surface complexity, and to compare the 

data collected in the present study to when participants’ lower vision is blocked 

(Thomas, et al., 2020a).  

One common surface type that is often not considered complex, but which does 

impose challenges to our stability, is a flight of stairs. Stairs had a distinct effect on 

our perceived and behavioural measures of stability relative to irregular surfaces 

(Figure 2 & 3). This may in part be due to stairs being uniform and so they permit 

repetitive, predictable gait. Indeed, walking on stairs does produce differences in gaze, 

muscle activation and in biomechanics when compared to flat level walking 

(Cromwell & Wellmon, 2001; McFadyen & Winter, 1988; Miyasike-DaSilva, Allard, 

& McIlroy, 2011; Shin & Yoo, 2016; Zietz & Hollands, 2009). These changes are 

associated with decreased stability and increased fall risk so stairs are important to 

consider. In this study, our behavioural measures suggested that people were relatively 

unstable when walking on stairs, and they also rated stairs as being relatively difficult 

to walk on. Due to the differences that we found for stairs compared to smooth and 

uneven surfaces, we conclude that stairs are best considered as their own distinct class 

of surface when analysing complexity.   

3.6 Conclusions 

In summary, we found that more complex surfaces (defined based on physical 

measurements) are perceived as more challenging to our stability during locomotion. 

Furthermore, perceptual and physical measures of surfaces predicted behavioural 

measures of stability, especially head angle, walking smoothness and muscle co-

activation. Additionally, extra consideration should be taken when including surfaces 

with stairs into a study. We propose that perceptual measures may provide an easy and 
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effective method to predict people's locomotor stability on different surfaces. This may 

be particularly useful for determining stability for those at greater risk of falls, where 

researchers may want to minimise directly testing walking but where it is important to 

test for individual differences in which surfaces may lead to instability.  
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3.7 Supplementary material 

3.7.1 Dirichlet Normal Energy (DNE) bandwidth 

Methodology of ariaDNE bandwidth selection to calculate DNE   

 To assess the features influencing walking on surfaces, we needed to consider 

which bandwidth would be most appropriate for the ariaDNE calculation of DNE. The 

bandwidth of the model is changed through the parameter ε in the Gaussian kernel 

function (𝑓(𝑋) = 𝑒−𝑥2/𝜀2
). Here, we compared how ε affected the DNE for models of 

three different surfaces (S1, flagstone paving; S3, concrete stairs; and S6, loose 

stones).  

DNE results dependent on the weight selection for the ariaDNE calculation  

The DNE values based on different weights of ε are shown in Figure 3.7.1.1. 

S1 was a smooth surface so the DNE values were much smaller than that of S3 and 

S6, and were not clearly visible on this graph.  

Of the remaining two surfaces, using a larger bandwidth included a larger 

localised area, which, for S3, meant that changes in stair level were considered in the 

measure. This is not what we aimed to assess with DNE, given that we wanted to look 

at surface features that affect our walking, i.e. those features affecting stability 

underfoot. Figure 3.7.1.2 illustrates what features influenced the DNE calculation at 

different bandwidths. 

Increased bandwidth values of ε for S6 removed some of the localised changes 

(i.e. between stones). The S3 surface showed that localised changes were 

overshadowed by changes in stair height at higher bandwidth which was not relevant 



96 
 

for our purposes given that a foot cannot stand on two different steps at once. We 

therefore chose a low bandwidth of 0.02 in our calculation of DNE in our study.    

 

Figure 3.7.1.1: DNE values calculated at bandwidths of ε = 0.02, 0.04, 0.08 and 0.12 

for three surfaces (S1, flagstone paving; S3, concrete stairs; and S6, loose stones). 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

S1 S3 S6

D
N

E

Surfaces

 0.02 bandwidth

 0.04 bandwidth

 0.08 bandwidth

 0.12 bandwidth



97 
 

 

Figure 3.7.1.2: Plotted energy values (blue areas) at different bandwidths (ε) for 

surfaces (A) S3 (concrete stairs) and (B) S6 (loose stones). An outline of a foot (UK 

male size = 10) is shown for scale for each model
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3.7.2 Mean values (±SE) for all eleven of our measures across surfaces (S1 – S17). 

Table 3.7.2: Mean values (±SE) for each of the 3 physical, 3 perceptual and 5 behavioural measures calculated for each of the 17 surfaces (S1 – 

S17). For the perception measures, surface roughness was rated from 1 = “completely smooth” to 10 = “extremely rough” and stability was rated 

from 1 = “no problem with stability” to 10 = “I think I might fall over” if they were to walk on the surface. 

 Physical measures Perception measures Behaviour measures 

Surfaces 
Relief 

index 

DNE 

(x1000) 

Mean 

local 

slope 

angle (°) 

Roughness 

rating 

Pre-

walk 

stability 

rating 

Post-

walk 

stability 

rating 

Eye 

angle 

(°) 

Head 

angle 

(°) 

Gait 

speed 

(m/s) 

Harmonic 

ratio 

Muscle 

coactivation 

(%) 

S1 1.027 0.18 0.47 2.2 1.6 1.3 -17.07 -3.12 1.36 3.95 13.93 

   (0.11) (0.16) (0.13) (0.11) (2.17) (1.09) (0.04) (0.31) (0.89) 

S2 1.039 4.79 2.05 6.2 7.3 6.6 -23.65 -17.11 1.06 1.86 16.85 

   (0.49) (0.22) (0.21) (0.30) (3.62) (3.31) (0.03) (0.18) (1.39) 

S3 1.309 18.86 0.92 3.8 2.9 2.4 -16.70 -9.96 0.93 2.13 13.59 

   (0.22) (0.19) (0.22) (0.23) (2.95) (1.24) (0.05) (0.17) (1.08) 

S4 1.010 0.15 0.74 1.4 1.1 1.3 -20.20 -3.51 1.47 3.76 13.00 
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   (0.12) (0.11) (0.06) (0.11) (2.90) (0.87) (0.03) (0.27) (0.97) 

S5A 1.193 7.55 1.00 2.6 2.3 1.9 N/A N/A N/A N/A N/A 

   (0.16) (0.13) (0.16) (0.19)      

S5B 1.008 0.17 0.47 - - - N/A N/A N/A N/A N/A 

   (0.15)         

S6 1.306 73.35 10.45 7.1 5.8 6.3 -19.01 -19.27 1.09 1.87 17.05 

   (2.05) (0.28) (0.28) (0.31) (2.28) (1.92) (0.04) (0.13) (0.99) 

S7 1.040 5.01 2.74 5.3 4.4 3.8 -18.56 -12.04 1.30 2.78 13.25 

   (0.56) (0.27) (0.27) (0.32) (3.49) (1.84) (0.06) (0.18) (1.16) 

S8 1.010 0.62 0.53 2.0 1.6 1.7 -16.13 -4.86 1.50 3.89 13.26 

   (0.09) (0.11) (0.18) (0.19) (1.81) (1.26) (0.03) (0.23) (0.96) 

S9 1.003 0.79 0.71 3.1 2.1 1.8 -17.59 -5.43 1.51 3.81 13.76 

   (0.11) (0.22) (0.24) (0.17) (2.11) (0.56) (0.03) (0.21) (1.06) 

S10 1.115 30.95 8.53 6.4 4.9 4.8 -18.89 -8.67 1.19 2.60 14.95 

   (1.30) (0.29) (0.28) (0.32) (2.36) (1.43) (0.07) (0.14) (1.15) 
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S11 1.142 38.62 6.58 3.5 2.7 2.5 -18.93 -6.33 1.47 2.66 14.07 

   (0.95) (0.20) (0.23) (0.21) (2.82) (1.01) (0.04) (0.14) (1.18) 

S12 1.332 14.85 0.68 4.0 3.1 2.6 -20.27 -8.98 0.92 2.00 13.95 

   (0.10) (0.29) (0.27) (0.23) (2.59) (1.08) (0.06) (0.13) (1.20) 

S13 1.332 14.85 0.68 3.4 3.0 2.5 -23.48 -12.41 0.94 2.17 17.41 

   (0.10) (0.24) (0.22) (0.22) (1.72) (1.01) (0.05) (0.14) (1.20) 

S14A 1.022 0.23 1.21 3.4 2.4 2.3 N/A N/A N/A N/A N/A 

   (0.21) (0.20) (0.27) (0.20)      

S14B 1.042 8.64 2.11 - - - N/A N/A N/A N/A N/A 

   (0.42)         

S15 1.097 34.79 6.37 6.0 5.0 4.6 -19.40 -11.99 1.40 2.41 15.20 

   (1.02) (0.24) (0.31) (0.28) (3.19) (1.51) (0.04) (0.12) (1.09) 

S16 1.303 10.65 0.58 2.4 2.9 2.6 -17.54 -14.55 0.59 1.91 16.24 

   (0.12) (0.25) (0.24) (0.22) (2.86) (1.69) (0.03) (0.13) (1.20) 

S17A 1.007 0.16 0.53 2.1 1.6 1.7 N/A N/A N/A N/A N/A 
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   (0.09) (0.19) (0.12) (0.13)      

S17B 1.323 12.68 0.68 - - - N/A N/A N/A N/A N/A 

   (0.15)         

NB. S12 and S13 are the same surface (stairs) but ascending and descending respectively, thus physical measures are the same. As the relief index 

and DNE values are computed from a single 3D model, no standard error values are given. Only one perceptual measure is shown for surfaces 

with two components (S5, S14, and S17), since participants were asked to consider both parts and give an overall rating. Surfaces with two 

components did not have behavioural measures calculated and therefore no data (N/A) is reported.   
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3.7.3 The most common verbal descriptions for each of the three groups of surfaces.  

Table 3.7.3: The count of the five most common verbal descriptions provided by 

participants for each of the three groups of surfaces 

Most common 

descriptions 
Red group Blue group Orange group 

1 
Smoot

h 
44 Pebbles 43 Stairs 70 

2 Paving 38 Uneven 35 Steps 40 

3 Gravel 36 Stones 29 Smooth 18 

4 Flat 34 Sloped 26 Steep 16 

5 Grass 27 Grass 25 Paving 12 

Total words 

provided  
 329  399  253 

NB: Total words shows the overall number of words given by all participants for 

each group of surfaces. 

3.7.4 Rationale for removing the three surfaces with two distinct components 

For our study, behavioural changes were assessed from mean values across the 

surface length. Although surfaces length did differ between surfaces, as we assessed 

mean values and most data was not collected from walking over the start or end of 

each surface, differences of surface complexity are likely to be the main cause of 

behavioural changes. Due to using mean values, surfaces with two distinct 

components (S5, S14 and S17) were excluded from this part of the analysis. This is 

due to previous studies having shown that a transition between different surfaces 

changed gaze and gait behaviour (Chang, Chang, Lesch, & Matz, 2017; Miyasike-

DaSilva, et al., 2011; Miyasike-daSilva & McIlroy, 2012). Behaviour for these 
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surfaces would have to be assessed over time. This has recently been demonstrated for 

gaze behaviour over complex surfaces by Matthis, et al. (2018). 

3.7.5 Mean correlations between every pair of perceptual and behavioural measures 

for the 12 individuals that completed both studies. 

Means of the twelve correlations between the mean z-scores for the 14 surfaces 

(excluding the three surfaces with two components) for every pair of perceptual and 

behavioural measures. Each of the twelve individuals that completed both the 

perception and the behavioural tasks contributed one set of correlations to this mean. 

All these mean correlations were significantly different from zero (p < 0.01), as 

determined by t-tests.  

Table 3.7.5: Mean correlations between perceptual and behavioural measures  

 
Pre-walk 

stability 

rating 

Post-

walk 

stability 

rating 

Eye 

angle 

Hea

d 

angl

e 

Gait 

speed 

Harmoni

c ratio 

Muscle 

coactivatio

n 

Roughness 

rating 
0.78 0.76 0.17 0.49 0.17 0.43 0.22 

Pre-walk 

stability 

rating 

- 
0.86 

 
0.31 0.59 0.18 0.58 0.24 

Post-walk 

stability 

rating 

- - 0.28 0.58 0.33 0.50 0.29 

Eye angle  - - - 0.28 0.20 0.20 0.18 

Head angle - - - - 0.20 0.65 0.43 

Gait speed  - - - - - 0.64 0.27 

Harmonic 

ratio 
- - - - - - 0.37 
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Footnote 

1 We had intended speed to be calculated from gait events and accelerometric data 

recorded from IMUs on the legs, however the accelerometric data did not record 

properly due to a fault with these IMUs. The gyroscopic data used to calculate gait 

events was not affected. Thus, a simpler measure was used to calculate gait speed, 

namely taking the time between the two stationary periods at the start and end of each 

trial, and dividing this by the approximate length of the surface
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Additional material  

Please note that this section contains details not included in the published paper 

Harmonic Ratio algorithm accuracy  

Harmonic ratios of a stride have previously been described as a good measure 

of walking smoothness (Bellanca, et al., 2013; Gage, 1964; Menz, et al., 2003). 

However, we needed to ensure the accuracy and suitability of this measure for the 

current study. The harmonic ratio algorithm, used in this study, was written in 

MATLAB (v R2018B) code, using the fast Fourier transform functions. The first ten 

odd and first ten even harmonic coefficients were used in the calculation of harmonic 

ratio. This method has been used by others when analysing accelerometric walking 

data (Bellanca, et al., 2013; Smidt, et al., 1971).   

Methodology  

 To test the algorithm, we completed two tests. Firstly, to ensure that the 

algorithm was accurately calculating harmonic ratios, we produced artificial data of 

known harmonic ratios to then test our algorithm (Test A). The artificial data was 

created within MATLAB using values from a random number generator (a, phi) and 

inputted into the following equation:  

 

This was done for an N value of 10 at a sampling rate of 50Hz for x values that 

are factors of pi. 

Secondly, to ensure that the algorithm worked on accelerometric data when 

walking, we compared normal walking to that when walking with an asymmetric gait 

(Test B). An asymmetric gait was achieved by a walk that consisted of one step being 
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smaller than the other (limping). As the harmonic ratio measures walking smoothness 

by the symmetry of gait, walking with a limp should produce smaller harmonic 

coefficients. One participant (male, age = 25, height = 176cm, weight = 67kg) 

completed five walking trials for each walking type (normal and limping), on a smooth 

wooden surface see indoor surface in (Thomas, et al., 2020b) for details. 

Accelerometric data was collected from a singular IMU placed at the pelvis.  

Results 

 Test A showed that the algorithm was accurate based on the artificial data 

showing over 98% accuracy. The small differences are likely due to the noise 

purposely added to the artificial data. We can therefore be very confident that 

algorithm is accurately measuring harmonics ratios. Test B showed that a lower 

harmonic ratio was found for all three directions of accelerometric data when walking 

with a limp, see Figure AM. Therefore, we can be confident that the created harmonic 

ratio algorithm was used accurately to detect walking symmetry.  
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Figure AM: Mean harmonic ratios produced for the mediolateral (ML), vertical (VL) 

and anteroposterior (AP) accelerometric data for a normal (blue) and limping (grey) 

gait.  
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Chapter Four: Maintaining gait stability in 

challenging conditions  

 

I have now shown that a number of behavioural changes, indicative of stability, 

occur when the surface complexity is increased, and that both physical and perceptual 

measures of the surfaces are a good, objective proxy for these changes (Chapter 3). 

Whilst more complex surfaces are a common extrinsic cause for a fall, it is also 

important to determine how intrinsic factors affect stability. In particular, lower visual 

field loss has been shown to be important for stability with age (Black, Wood, & 

Lovie-Kitchin, 2011), whilst simulations of lower visual field loss have proven to elicit 

similar behaviours to those with age-associated vision loss (Krishnan, Cho, & 

Mohamed, 2017). The aim in this chapter was to assess the impact of simulated lower 

visual filed loss when walking over a range of surfaces outside. Using perceptual 

measures as a metric for surface complexity, gaze and gait behaviour was assessed for 

participants that walked with and without a blocked lower visual field. In simulating 

one intrinsic factor, associated with heightened fall risk, the importance of the lower 

visual field for stability whilst walking, and whether this changes dependent on the 

environment, can be assessed 
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4.1 Abstract 

Background: Peripheral vision often deteriorates with age, disrupting our ability to 

maintain normal locomotion. Laboratory-based studies have shown that lower visual 

field loss, in particular, is associated with changes in gaze and gait behaviour whilst 

walking and this, in turn, increases the risk of falling in the elderly. Separately, gaze 

and gait behaviours change and fall risk increases when walking over complex 

surfaces. It seems probable, but has not yet been established, that these challenges to 

stability interact.  

Research Question: How does loss of the lower visual field affect gaze and gait 

behaviour whilst walking on a variety of complex surfaces outside of the laboratory? 

Specifically, is there a synergistic interaction between the effects on behaviour of 

blocking the lower visual field and increased surface complexity?   

Methods: We compared how full vision versus simulated lower visual field loss 

affected a diverse range of behavioural measures (head pitch angle, eye angle, muscle 

coactivation, gait speed and walking smoothness as measured by harmonic ratios) in 

young participants. Participants walked over a range of surfaces of different 

complexity, including pavements, grass, steps and pebbles.  

Results: In both full vision and blocked lower visual field conditions, surface 

complexity influenced gaze and gait behaviour. For example, more complex surfaces 

were shown to be associated with lowered head pitch angles, increased leg muscle 

coactivation, reduced gait speed and decreased walking smoothness. Relative to full 

vision, blocking the lower visual field caused a lowering of head pitch, especially for 

more complex surfaces. However, crucially, muscle coactivation, gait speed and 

walking smoothness did not show a significant change between full vision and blocked 
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lower visual field conditions. Finally, head pitch angle, muscle coactivation, gait speed 

and walking smoothness were all correlated highly with each other.   

Significance: Our study showed that blocking the lower visual field did not 

significantly change muscle coactivation, gait speed or walking smoothness. This 

suggests that young people cope well when walking with a blocked lower visual field, 

making minimal behavioural changes. Surface complexity had a greater effect on gaze 

and gait behaviour than blocking the lower visual field. Finally, head pitch angle was 

the only measure that showed a significant synergistic interaction between surface 

complexity and blocking the lower visual field. Together our results indicate that, first, 

a range of changes occur across the body when people walk over more complex 

surfaces and, second, that a relatively simple behavioural change (to gaze) suffices to 

maintain normal gait when the lower visual field is blocked, even in more challenging 

environments. Future research should assess whether young people cope as effectively 

when several impairments are simulated, representative of the comorbidities found 

with age.  
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4.2 Introduction 

Maintenance of our stability when walking depends heavily on processing 

visual information from the environment. Visual information is particularly important 

for stability when the environment is more complex, leading to people modifying 

locomotion in real-time for safe navigation (Marigold & Patla, 2007; Matthis, Barton, 

& Fajen, 2017; Matthis, Yates, & Hayhoe, 2018; Patla & Greig, 2006). We can assess 

how different environments (and other factors) affect stability by measuring gaze and 

gait behaviour. Although no stability measure has been accepted as a gold standard (as 

reviewed in Bruijn, Meijer, Beek, & Van Dieën, 2013), assessing a range of gaze and 

gait behavioural changes allows the researcher to build up a portfolio of how the body 

adapts to a given manipulation, such as increasing surface complexity, providing 

converging evidence about its effect on stability when walking. Such changes may 

include “dangerous” behaviours that increase fall risk as well as “cautious” behaviours 

that occur to try to reduce fall risk. For example, when the perceived risk of a fall 

increases, people have been found to adopt a more cautious gait, characterised by a 

slower gait with shorter and wider steps (Pirker & Katzenschlager, 2017). 

Unfortunately, some of these cautious behavioural changes that are intended to reduce 

fall risk may be dangerous in that they can lead to increased fall risk. For example, 

increased leg muscle coactivation (simultaneous contraction of an agonist and 

antagonist muscle) helps to stabilise the leg when walking (Thompson, Plummer, & 

Franz, 2018). However, a stiff leg is less flexible and therefore has a reduced range of 

motion which, in itself, is a known risk factor for falls (Chiacchiero, Dresely, Silva, 

DeLosReyes, & Vorik, 2010; Reddy & Alahmari, 2016). Regardless of whether the 

behavioural response is intentional, these behavioural changes indicate deviations 
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from normal, stable gait, and thus can help to identify the factors that influence 

stability and perceived fall risk in a given situation. 

When people walk over more complex surfaces several different behavioural 

changes occur. Here we define complex surfaces as any non-smooth surface including 

slope changes, uneven surfaces, stairs and inconsistently spaced foot targets (Thomas, 

Gardiner, Crompton, & Lawson, 2020a, 2020b). Compared to smooth, level walking, 

complex surfaces are associated with reduced step length, increased step width 

variability, increased leg muscle coactivation and reduced gait speed (Marigold & 

Patla, 2008a; Menant, Steele, Menz, Munro, & Lord, 2009; Thomas, et al., 2020a; 

Voloshina, Kuo, Daley, & Ferris, 2013). Walking on stairs compared to smooth 

surfaces is associated with increased anteroposterior sway at the lower back and 

increased step variability (Wang, et al., 2017; Wang, et al., 2014). Gaze (combined 

eye and head movements) alters when walking over more complex surfaces, with 

increased fixations and gaze directed closer towards the person’s feet ('t Hart & 

Einhauser, 2012; Marigold & Patla, 2007; Matthis, et al., 2018; Thomas, et al., 2020a). 

We have developed a multimethod approach to measure surface complexity in order 

to try to characterise surfaces in terms of behaviour indicative of stability for walking 

(Thomas, et al., 2020b). We assessed how physical and perceptual measures of surface 

complexity across a wide range of surfaces influenced gait and gaze. Using these 

measures, we found that head pitch lowered, muscle coactivation increased and 

walking symmetry reduced when walking over more complex surfaces.  

In young healthy individuals, environmental information can be obtained from 

peripheral vision (vision outside the centre of gaze fixation). For example, young, 

healthy individuals can walk over unexpected objects even when they are fixating well 

above the ground plane such that the obstacles are only visible in the periphery of their 
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lower visual field (Franchak & Adolph, 2010; Marigold & Patla, 2007). However, as 

people age, both the rate of comorbidities associated with vision loss increase and 

healthy peripheral vision is known to deteriorate (Beurskens & Bock, 2012; Collins, 

Brown, & Bowman, 1989; Crassini, Brown, & Bowman, 1988). Given the loss of 

peripheral vision, visual perception may be disrupted, thus increasing the challenges 

to the elderly in maintaining stable locomotion, especially over more complex 

surfaces. For example, lower visual field loss is a symptom of glaucoma, an eye 

condition that is particularly common in the elderly. Lower visual field loss due to 

glaucoma is associated with an increased rate of falls (Black, et al., 2011) and people 

with glaucoma exhibit increased step to step variability in step length, make more 

erroneous steps, have a slower gait, and fixate closer to their feet (Friedman, Freeman, 

Munoz, Jampel, & West, 2007; Lajoie, Miller, Strath, Neima, & Marigold, 2018; 

Mihailovic, et al., 2017; Miller, Lajoie, Strath, Neima, & Marigold, 2018). Another 

eye condition associated with lower visual field loss, retinitis pigmentosa, results in 

individuals fixating at the ground for longer when level walking compared to those 

with normal vision (Timmis, et al., 2017). Studies conducted outside have shown that 

those with peripheral visual field loss from glaucoma or retinitis pigmentosa make 

more errors when judging gaps in traffic at pedestrianised crossings compared to those 

with normal vision (Cheong, Geruschat, & Congdon, 2008). In contrast, eye diseases 

associated with central visual field loss (e.g. macular degeneration) appear to have less 

effect on gait, with only a reduction in speed shown when negotiating a curb compared 

to those with normal vision (Alexander, et al., 2014).  

A complicating factor in interpreting these results is that many of these eye 

diseases are more prevalent with age, and thus study participants are typically older 

and are likely to have other perceptual, cognitive and musculoskeletal deficits. One 
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alternative, to assessing peripheral visual field loss is to simulate its loss in young 

individuals who do not suffer from these confounding factors. For young individuals, 

simulation of lower visual field loss by wearing goggles with the lower area blocked, 

has been shown to lead to the adoption of a more cautious, slower gait and reduced 

foot placement accuracy (Graci, Elliott, & Buckley, 2010; Marigold & Patla, 2008b; 

Rietdyk & Drifmeyer, 2009), all of which are suggestive of a less stable gait. This use 

of goggles to simulate lower visual field loss, due to eye disease and ageing, has the 

advantage of being a relatively easy manipulation, however, goggles do not have an 

identical effect to the eye diseases experienced commonly in the elderly. This is due 

to the fact that the goggles move with the head, not the eyes, and thus they block a 

variable amount of the lower visual field. In contrast lower visual field loss due to eye 

disease blocks information from a constant area of the visual field. Nevertheless, 

importantly, lower visual field loss from either wearing goggles or eye diseases will 

typically lead to less information being available from the lower portions of the scene 

and, in particular, the area around the feet, unless compensatory movements are made, 

including tilting the head downwards.  

In summary, there is undoubtedly a lack of understanding about how peripheral 

visual field loss affects behaviour whilst walking. Loss of the lower visual field, in 

particular, appears to increase fall risk whilst walking (Black, et al., 2011; Graci, et 

al., 2010; Marigold & Patla, 2008b; Rietdyk & Drifmeyer, 2009). However, it remains 

unclear how the lower visual field influences walking over surfaces representative of 

those typically encountered outside of the gait laboratory. Here we investigate how 

combining a simulated lower visual field loss with walking over more complex 

surfaces changes gaze and gait behaviour. This is critical given that populations who 

are most vulnerable to falling, such as the elderly, often suffer from multiple 



122 
 

challenges simultaneously. These challenges are both intrinsic, due to deteriorating 

perception, cognition or musculoskeletal function, and extrinsic, due to testing 

everyday situations such as uneven or slippery surfaces, poor lighting and crowded, 

fast-changing environments. To isolate the effects of visual field loss and surface 

complexity on walking behaviour, in the present study, we tested young, healthy 

individuals who were not suffering from comorbidities. Young people walked over a 

wide variety of outside surfaces with full vision and whilst wearing goggles which 

blocked their lower visual field. The surfaces included those that have previously been 

categorised as smooth, irregular and stairs (Thomas, et al., 2020b). We measured gaze 

behaviour (head pitch angle, eye angle) and gait behaviour (muscle coactivation, gait 

speed and walking smoothness as measured by harmonic ratios). We determined how 

these measures responded to a perceptual measure of surface complexity (see Thomas, 

et al., 2020b). In combination, these gaze and gait measures allowed us to investigate 

how people respond when challenged by walking over diverse surfaces when the lower 

visual field is blocked.  

 

4.3 Methodology 

4.3.1 Participants  

Twenty healthy adults (13 male, mean ± SD; age = 26.42 ± 4.27 years; height 

= 176.1 ± 9.33cm) were recruited for the study. No participant had any known 

impairment or injury which might affect their gait or vision. All the inertia data that 

was used to identify gait behaviours did not record properly for one participant, so that 

gait data was only analysed in 19 participants. Furthermore, the inertia data that was 

collected at the lower back (used to calculate harmonic ratios to provide a measure of 
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walking smoothness) did not record properly for two further participants, and for one 

of those participants the inertia data collected at the ankle (used to calculate gait speed) 

did not record properly, thus only 17 participants and 18 participants respectively are 

included in these analyses. 

4.3.2 Data Collection 

Ethical approval was granted for the study in November 2017 by the University 

of Liverpool’s Ethics Committee (REF: 2672). Five behavioural measures were 

assessed: head pitch angle, eye angle, muscle coactivation, gait speed and walking 

smoothness as measured by harmonic ratios. We also measured the duration and 

number of eye fixations to provide a check of whether eye movements were influenced 

by wearing the goggles. Eye angle, calculated from vertical pupil movements, and the 

duration and number of eye fixations, were recorded using a Pupil Labs eye-tracker 

(Kassner, Patera, & Bulling, 2014). Head pitch, muscle coactivation, gait speed and 

harmonic ratios were recorded from six Delsys TRIGNO™ Inertia Measurement Unit 

(IMU) sensors (Boston, MA, USA) placed on participants. Four of these sensors 

collected inertial data (148Hz) at the head, lower back and superior to both ankles, 

whilst two sensors collected surface electromyography (sEMG) data (1111Hz) from 

the Tibialis Anterior and medial head of the Gastrocnemius muscle of the left leg. 

Further details of data collection are given in the supplementary material (4.7.1). The 

lower visual field was blocked using basketball goggles, following the same technique 

as Rietdyk and Drifmeyer (2009). Figure 1A shows an example of the experimental 

set-up of the head for both full vision and blocked lower visual field conditions. Figure 

1B shows the approximate extent to which the goggles blocked the participants’ view 

of lower areas of the scene. Compared to full vision (no goggles), the goggles blocked 
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approximately the lowest 20° of vision when the head was level (see supplementary 

material 4.7.2 for details). 

Figure 1: (A) Images showing the experimental set-up at the head for the full vision 

(top) and blocked lower visual field conditions (bottom). Participants wore an eye 

tracker (used to record eye movements), a head IMU sensor (used to calculate head 

pitch), basketball goggles (used to block the lower visual field) and a baseball cap 

(used to shade the eye-tracker during outdoor testing). (B) A diagram showing the 

approximate ranges of negative eye angles from which information about the 

upcoming surface could be extracted when the head was level. For full vision 

conditions, negative eye angle ranged from 0° to -70°, (regions striped grey and red), 

whilst for blocked lower visual field conditions, negative eye angles ranged from 0° 

to -50° (regions striped red only), see 4.7.2 for details).   

 

4.3.3 Protocol 

Participants walked over all of the surfaces with full vision and with a blocked 

lower visual field. For each of the two vision conditions, participants walked over 14 

different surfaces at a self-selected speed. Assignment to the initial vision condition 
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was alternated across participants2. As such participants completed either the blocked 

lower visual field condition first (and, here, completed surfaces in order from A to N), 

whilst the remaining participants completed the blocked lower visual field condition 

second (and thus completed surfaces in order from N to A), (see supplementary 

materials 4.7.3). The surfaces were located across the University of Liverpool campus 

and are shown in Figure 2. The total duration of the study (including debriefing, 

marker placements, calibrations and the trials themselves) for each participant was 

approximately 150 minutes of which over 80 minutes was data collection.   

For each surface, participants were instructed to look straight ahead whilst 

standing still in front of the surface for three seconds, then they walked at a 

comfortable speed across the surface. At the end of the surface, participants again 

looked straight ahead whilst standing still for a further three seconds. The periods 

spent looking straight ahead at the start and end of the trial were used to remove drift 

from the gyroscopic data recorded at the head IMU, vertical gyroscopic data used to 

calculate head pitch angle. Other than at the start and end of each surface, participants 

were told that they should move their eyes and head as normal whilst walking.  

We tried to ensure that all participant completed the study under similar 

conditions. Specifically, all participants were tested in the summer, when the 

University campus was relatively quiet (mid-morning or mid-afternoon), and on dry 

days. Nevertheless, compared to laboratory-based testing, testing conditions were 

more variable such that our findings should be relatively robust and relevant to 

walking outdoors.  

Surface complexity for each surface was measured using perceptual ratings of 

roughness and two ratings of perceived stability as detailed in Thomas, et al. (2020b). 
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Participants1 rated surfaces on a Likert scale (Likert, 1932) between 1 (smooth / stable) 

and 10 (rough / unstable) with participants rating surfaces from vision alone, for 

perceived roughness and perceived stability, and then participants re-rated perceived 

stability after having walked on the surface. Surface complexity was taken as the 

average of the three ratings, given that the ratings were highly correlated (r from 0.94 

- 0.98). Figure 2 shows surfaces ranked from the easiest (S1) to most complex (S14). 

Perceptual ratings were used as a measure of surface complexity, rather than grouping 

surfaces together based on similar physical features (smooth, irregular, stairs etc.) due 

to the inconsistent terminology in the literature using such descriptors (Marigold & 

Patla, 2007; Matthis & Fajen, 2014; Merryweather, Yoo, & Bloswick, 2011; Patla & 

Vickers, 2003; Thies, Richardson, & Ashton-Miller, 2005), see Thomas, et al. (2020b) 

for further discussion. In the present approach, surface complexity is based solely on 

the participants’ evaluations and not on our own.  
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4.3.4 Analysis 

For each surface, mean head pitch angle, eye angle, muscle coactivation, gait 

speed and walking smoothness as measured by harmonic ratios were calculated3. Head 

pitch angles were calculated from gyroscopic data from the head IMU with 0° defined 

as the average position during the three seconds that the participant was static at the 

start and end of each surface trial. Eye angles of 0° were defined from participant’s 

fixating at a target set at their eye height during calibration of the eye tracker. 

Deviations from 0° eye angle due to vertical eye movements were converted into 

angles with eye movements down taken as negative angles. Only eye angles within 

the normal range expected were analysed (Lee, Kim, Shin, Hwang, & Lim, 2019), for 

further details see SM2. In addition, eye fixation duration and number of eye fixations 

Figure 2: Images showing the 14 surfaces used in the study. Surfaces were ranked based 

on participants’ average perceptual ratings of surface complexity from S1 (smoothest / 

most stable) to S14 (most complex / hardest to walk over). Average (±SE) perceptual 

ratings are shown for each surface. See supplementary materials (Table 4.7.3) for more 

information. 
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were recorded, with fixations defined as stabilised eye movement for at least 100 

milliseconds following that of previous research (Marigold & Patla, 2007; Patla & 

Vickers, 1997, 2003). The average number of eye fixations per metre walked was used 

to avoid differences caused by the surfaces being different lengths. We also calculated 

mean relative frequency distributions of head pitch and eye angles for each surface 

under full vision and blocked lower visual field conditions. Frequencies of head pitch 

and eye angles were recorded in bins of 5° for each surface. This method follows that 

of Foulsham, Walker, and Kingstone (2011); Thomas, et al. (2020a). Muscle 

coactivation was calculated following Winter (2005) for the Tibialis anterior and 

medial head of the gastrocnemius muscles across each gait cycle. Gait speed was 

calculated from gyroscopic data at the ankle following the method from Li, Young, 

Naing, and Donelan (2010) and known surface lengths, see supplementary material 

(4.7.3). Walking smoothness was measured in terms of harmonic ratios which were 

calculated from anteroposterior accelerometery data from the IMU placed at the lower 

back. A higher ratio was interpreted as a more symmetrical, smoother gait following 

Bellanca, Lowry, VanSwearingen, Brach, and Redfern (2013).  

In order to show how behavioural metrics related to surface complexity, 

regression analyses were conducted on the participants’ mean head pitch angle, eye 

angle, muscle coactivation, gait speed and walking smoothness. This was done 

separately for full vision and blocked lower visual field conditions with the 

independent variable of surface complexity perceptual rating. To compare behavioural 

changes between the two vision conditions, we conducted t-tests between the 

regressions’ intercepts and slopes. Significant differences were taken as p<0.05. 

Finally, we conducted Pearson’s correlations on the mean z-scores of the different 

measures for each surface. The z-scores for muscle coactivation measures were 
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multiplied by -1 so that, for all five measures, higher z-scores were associated with 

more stable walking. Large correlations (r > 0.5, as determined by Cohen (2013)) are 

shown in bold for each correlation table. A conservative alpha level of 0.001 was used 

for correlations, calculated using the Bonferroni correction.   

 

4.4 Results 

 The behavioural data first reported in Thomas, et al. (2020b) is presented here 

again as data for full vision conditions. In our previous work these data was used in 

conjunction with physical and perceptual metrics to analyse different aspects of 

surface complexity. In the present paper the full vision data was used in combination 

with previously unpublished data, namely that obtained in the blocked lower visual 

field condition, to investigate the effect on gait and gaze behaviour of both the 

availability of visual information and different walking surfaces. Initial analyses 

revealed that gaze and gait behaviour for the four surfaces with stairs (S5, S7, S8, and 

S9) differed markedly from that of other surfaces. Despite stairs being typical surfaces 

found in everyday environments, stairs differ in terms of biomechanics and muscle 

activation relative to walking over other surface (Cromwell & Wellmon, 2001; Wang, 

et al., 2017; Zietz & Hollands, 2009). Our results presented here are consistent with 

that of the previous literature. Due to the distinct patterns shown for stairs, the analysis 

presented here excluded those four surfaces. We return to address the issue of stairs in 

the general discussion. To aid comparisons, surfaces with stairs are still plotted on the 

figures and, for the interested reader, full analyses including stairs are given in the 

supplementary material (4.7.4).     



130 
 

4.4.1 Head pitch angle  

Mean head pitch angles for full vision and blocked lower visual field 

conditions are shown in Figure 3A. A linear regression revealed a significant relation 

between head pitch and surface complexity for both full vision and blocked lower 

visual field conditions (R2 = 0.881; F,(1,8) = 59.43, p < 0.001 and R2 = 0.939; F,(1,8) 

= 122.16, p < 0.001) respectively. A t-test between the regression intercepts was not 

significant, (t(19) = 1.43, p = 0.173), however, there was a significant difference 

between regression slopes t(19) = -2.88, p = 0.010). Head pitch angle for blocked 

lower visual field conditions showed a greater decrease than that for full vision 

conditions as surface complexity increased. On the simplest surfaces, head pitch for 

both conditions was around -5°. However, on the most complex surfaces, head pitch 

for blocked lower visual field conditions (-22.8°) was around 6° lower than for full 

vision (-16.8°). Thus, with a blocked lower visual field, participants lowered their head 

more when surfaces were more complex, compared to with full vision.   

4.4.2 Eye angle 

 Mean eye angle for full vision and blocked lower visual field conditions are 

shown in Figure 3B. A linear regression showed no significant relation between eye 

angle and surface complexity for full vision (R2 = 0.33; F,(1,8) = 3.91, p = 0.083), 

however, the equivalent regression for blocked lower visual field conditions was 

significant (R2 = 0.43; F,(1,8) = 6.05, p = 0.039). A t-test between the regression 

intercepts was also significant, (t(19) = 2.34, p = 0.033), but there was no significant 

difference between regression slopes (t(19) = 0.11, p = 0.916. On average eye angle 

for full vision (-19.4°) was 4° lower than with blocked lower visual field conditions (-

15.4°). However, importantly, this behavioural change occurred irrespective of surface 

complexity, see Figure 3B.  
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4.4.3 Duration and number of eye fixations 

We completed additional analysis to assess the duration and number of eye 

fixations to check whether these were influenced by blocking the lower visual field. 

Mean eye fixation duration and the number of eye fixations per metre walked for full 

vision and blocked lower visual field conditions are shown in Figures 3C & 3D. A 

linear regression showed no significant relation between the duration of eye fixations 

and surface complexity for either full vision or blocked lower visual field conditions 

(R2 = 0.13; F,(1,8) = 1.24, p = 0.299 & R2 = 0.11; F,(1,8) = 0.97, p = 0.354 

respectively). There were also no significant differences between the regression 

intercepts (t(19) = -1.14, p = 0.273) or between regression slopes (t(19) = 0.21, p = 

0.833. Similarly, a linear regression showed no significant relation between the 

number of eye fixations and surface complexity for either full vision or blocked lower 

visual field conditions (R2 = 0.37; F,(1,8) = 4.69, p = 0.062 & R2 = 0.35; F,(1,8) = 

4.346, p = 0.071 respectively). There was also no significant differences between the 

regression intercepts (t(19) = 0.58, p = 0.569) or between regression slopes (t(19) = 

0.20, p = 0.846). Thus, increasing surface complexity did not change eye fixation 

duration or number for either full vision or blocked lower visual field conditions. 

Frequencies of eye and head pitch angles were recorded in bins of 5° for each 

surface following the method of Foulsham, et al. (2011); Thomas, et al. (2020a). The 

mean frequency distribution for these 5° bins for head pitch and eye angles for both 

full vision and blocked lower visual field conditions are shown in Figure 4 for the 

smoothest surface (S1, top left) to the most complex (S14, bottom right). 
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Figure 3: Mean (±SE) (A) head pitch angles, (B) eye angles, (C) eye fixation 

duration, and (D) number of eye fixations per metre walked for surfaces S1 – S14 for 

full vision (black circles) and blocked lower visual field (red diamonds) conditions. 

Surfaces with stairs are represented separately (grey open circles and light red open 

diamonds for full vision and blocked lower visual field respectively). Dotted lines 

represent the regression lines (when excluding stairs) for full vision and blocked 

lower visual field conditions.   
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Figure 4:  Mean relative frequency distributions of head pitch (dashed line) and eye (solid line) angle for surfaces S1 to S14 under full vision 

(black) and blocked lower visual field (red) conditions. On the y-axis, results are plotted for 5° bins relative to 0° (looking straight ahead). Negative 

angles correspond to lowering of the eyes or head toward the ground. 
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4.4.4 Muscle coactivation  

Mean muscle coactivations are shown in Figure 5A. A linear regression 

showed a significant relation between surface complexity and muscle coactivation for 

both full vision and blocked lower visual field conditions, (R2 = 0.735; F,(1,8) = 22.18, 

p = 0.002 and R2 = 0.596; F,(1,8) = 11.82, p = 0.009 respectively). However, there 

was no significant difference between the regressions intercepts or slopes (t(19) = 

1.39, p = 0.183 and t(19) = 0.58, p = 0.573 respectively). Thus, increasing surface 

complexity increased muscle coactivation to a similar extent for full vision and 

blocked lower visual field conditions.  

4.4.5 Gait speed  

Mean gait speeds are shown in Figure 5B. A linear regression showed a 

significant relation between surface complexity and mean gait speed for both full 

vision and blocked lower visual field conditions, (R2 = 0.761; F,(1,8) = 25.524, p = 

0.001 and  R2 = 0.688; F,(1,8) = 17.606, p = 0.003 respectively). However, there was 

no significant difference between the two regression intercepts or slopes, (t(19) = 0.41, 

p = 0.686 and t(19) = 0.09, p = 0.926 respectively). Thus increasing surface 

complexity reduced gait speed to a similar extent for full vision and blocked lower 

visual field conditions. 

4.4.6 Walking smoothness as measured by mean harmonic ratios 

Mean anteroposterior harmonic ratios are shown in Figure 5C. A linear 

regression showed a significant relation between surface complexity and walking 

smoothness from mean harmonic ratios for both full vision and blocked lower visual 

field conditions (R2 = 0.888; F,(1,8) = 63.29, p < 0.001 and R2 = 0.813; F,(1,8) = 

34.71, p < 0.001 respectively). However, there was no significant difference between 
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the two regression intercepts or slopes, (t(19) = -0.68, p = 0.507 & t(19) = 0.48, p = 

0.638 respectively).  Thus, increasing surface complexity reduced harmonic ratios to 

a similar extent for full vision and blocked lower visual field conditions. 
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Figure 5: Mean (±SE) (A) muscle coactivation, (B) gait speed and (C) 

anteroposterior harmonic ratio used to measure walking smoothness for surfaces S1 

– S14 for full vision (black circles) and blocked lower visual field (red diamonds) 

conditions. Surfaces with stairs are represented separately (grey open circles and light 

red open diamonds respectively). Dotted lines represent the regression lines (when 

excluding stairs) for full vision and blocked lower visual field conditions.    
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We also conducted a regression on the z-scores for each surface averaged over 

multiple measures to check if this provided a less noisy and more sensitive measure 

of the influence of blocking the lower visual field than the separate analyses of 

individual measures reported above. This was not found to be the case, see the 

supplementary material (4.7.5), with no significant difference between either the 

regression intercepts or slopes for full vision versus blocked lower visual field. Finally, 

Pearson’s correlations were conducted on the mean z-scores of the different gaze and 

gait measures for each surface, first comparing full vision to blocked lower visual 

field, (see supplementary materials Table 4.7.6.1), then comparing the different 

measures for full vision (see supplementary materials Table 4.7.6.2), and for blocked 

lower visual field (see supplementary materials Table 4.7.6.3). For both visual 

conditions, head pitch and gait measures (muscle coactivation, gait speed and walking 

smoothness as measured by harmonic ratios) were more strongly correlated with each 

other than eye angle, fixation duration and number of fixations.  

 

4.5 Discussion 

 Surfaces that were rated as rougher and less stable to walk on were associated 

with significant changes for both visual conditions (full vision and blocked lower 

visual field conditions). On more complex surfaces head pitch lowered, muscle 

coactivation increased, gait slowed and walking smoothness as measured by harmonic 

ratios was reduced. Thus, surface complexity had wide-ranging effects on both gaze 

and gait. However, head pitch angle was the only measure that showed a significant 

synergistic interaction from the effect of blocking the lower visual field. The head 

lowered more when both the lower visual field was blocked and people walked over 
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more complex surfaces compared to the sum of the individual effects of both factors, 

see Fig 3A. 

 Gaze and gait behaviour showed clear differences when walking over more 

complex surfaces for both visual conditions. These results are in line with those 

reported in previous studies which have assessed gaze and gait across more 

challenging conditions ('t Hart & Einhauser, 2012; Marigold & Patla, 2007, 2008a; 

Matthis, et al., 2018). In conjunction, these behavioural changes provide converging 

evidence that stability decreases when walking over more complex surfaces. As 

discussed in the introduction, given the current lack of a gold standard metric for 

stability (see Bruijn, et al., 2013), using a diverse range and number of measures, as 

shown here, may provide a robust and sensitive indication of stability and therefore 

fall risk when walking.  

Surface type had a greater impact on gaze and gait behaviour than blocking the 

lower visual field. Extrinsic factors, including the environment, are likely to be the 

predominant risk of falling in young healthy individuals (Berg & Cassells, 1990). In 

contrast, the elderly have intrinsic factors, affecting body functions, that increase their 

risk of falls (as reviewed in Pynoos, Steinman, & Nguyen, 2010). Understanding how 

vision affects stability is essential, given that elderly people with visual impairments 

report additional perceived risks of falling relative to elderly people without visual 

impairments (Brundle, et al., 2015). In the present study the lack of behavioural 

changes when blocking the lower visual field, other than to head pitch and eye angle, 

suggests that young people are relatively robust to challenges to their locomotion. 

However, unlike in our study, Marigold and Patla (2008b) reported that gait speed 

reduced when the lower visual field was blocked. This discrepancy in findings may be 

because the surfaces used by Marigold and Patla (2008b) were more challenging given 
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their multi-surface type composition. As such, this may indicate that young people 

need highly challenging conditions to reduce their stability. In support of this, studies 

that have included simulations of multiple intrinsic factors related to falling (e.g. both 

physical and cognitive impairments) have shown that young people adopt a cautious 

gait (Granacher, Wolf, Wehrle, Bridenbaugh, & Kressig, 2010; Hollman, Kovash, 

Kubik, & Linbo, 2007). Therefore, future studies investigating the factors influencing 

fall risk and walking stability in the elderly should either assess how young people 

cope with simulations of several concurrent impairments, representative of age-related 

co-morbidities, or directly assess behaviour indicative of stability in elderly 

populations.  

Blocking the lower visual field only produced effects that interacted with 

surface complexity for one of our five measures, namely head pitch angle. This may 

indicate that we prioritise a relatively easy change (tilting the head down) over more 

energetically costly changes elsewhere in the body when walking on more complex 

surfaces. This would suggest that our initial tactic, when confronted with the challenge 

of walking on complex surfaces, is to improve the visual information available about 

the surfaces rather than altering our gait. Interestingly, previous research that has used 

goggles to block the lower visual field has not shown a lowering of head pitch in the 

young when stepping over obstacles (Muir, Haddad, Heijnen, & Rietdyk, 2015). 

Similarly multifocal spectacle wearers do not alter head pitch based on different lenses 

worn (Timmis, Johnson, Elliott, & Buckley, 2010). However, we assessed walking 

outside across complex surfaces, whereas this previous research focused on time-

locked, short duration responses, including obstacle or step negotiation, performed 

predominately in laboratory-based settings. Other research has found different 

responses to simulated visual deficits. For example, Zult, Allsop, Timmis, and Pardhan 
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(2019) found that, when stepping over an obstacle with blurred vision, single stance 

support time as well as eye fixations increased compared to normal vision. Similarly, 

studies simulating monocular vision found that gait slowed and toe clearance 

increased when stepping over an obstacle, indicating a more cautious gait (Hayhoe, 

Gillam, Chajka, & Vecellio, 2009; Patla, Niechwiej, Racco, & Goodale, 2002). These 

differing results could indicate that lower visual field loss, as tested in the present 

study, has less effect on gait than other visual factors (e.g. blurred or monocular 

vision). However, alternatively, it may be that gait changes are more pronounced when 

people step over an obstacle rather than when they walk along a complex surface. 

Obstacle avoidance requires one-off adjustments to gait and, here, visual deficits may 

be more disruptive (Friedman, et al., 2007; Jansen, Toet, & Werkhoven, 2010; Lajoie, 

et al., 2018; Timmis & Buckley, 2012). As an example of this, Patla (1998) 

demonstrated that, when stepping over an obstacle, toe clearance increased and 

participants positioned their feet further from the obstacle when their lower visual field 

was blocked. In combination with findings at the head from Muir, et al. (2015); 

Timmis, et al. (2010), this suggests that when vision from the lower visual field is 

unavailable, eye and gait behaviour suffice to cope with immediate gait demands 

(obstacle negotiation), whereas head position is used to cope with long term challenges 

(e.g. uneven surfaces).  

Changes in head pitch angle per se may influence the chance of falling in more 

challenging outside environments. This is because normally, with a flexed head 

position, people’s gaze will centre on the ground plane surrounding their upcoming 

footsteps. This, in turn, means that people are less able to extract visual information 

from their wider surroundings, including street furniture, pedestrians and vehicles. A 

lowered head (typical of a flexed posture) is known to be associated with lower 
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functional status (ability to perform normal daily activities) in elderly women (Balzini, 

et al., 2003). Our test surfaces were located away from roads, crowds and static 

obstacles so this did not cause a problem for our participants. Nevertheless, such 

challenges are commonplace in everyday situations. The relative frequency plots 

(Figure 4) in effect show the variance of eye and head pitch angles throughout the 

trial. Head pitch was nearly horizontal for much of the time spent walking on less 

complex, smoother surfaces under both full vision and blocked lower visual field. 

Here, participants could readily scan their surroundings. However, for the most 

complex surfaces, head pitch angle was both more variable and generally lower. In 

comparison, eye angle remained relatively constant under the two conditions 

regardless of surface complexity (see supplementary material 4.7.7). Together these 

results suggest that participants were moving their head more when coping with more 

complex surfaces. Though not traditionally interpreted as a measure of stability, these 

changes to head pitch support the hypothesis that gaze angle (especially due to head 

movements) can be used to assess the complexity of a surface when walking (Thomas, 

et al., 2020a).  

One notable finding of the study was that stairs skewed most of our behavioural 

measures. Only for eye angle and eye fixation duration did the four surfaces with stairs 

(S5, S7, S8 and S9) produce behaviour similar to that of the other surfaces. The distinct 

behaviour for stairs was not surprising given previous research comparing walking up 

stairs to level walking (Cromwell & Wellmon, 2001; Wang, et al., 2017; Zietz & 

Hollands, 2009). Stair walking has been researched with respect to gaze behaviour, 

biomechanics and muscle activity (e.g. Hinman, Cowan, Crossley, & Bennell, 2005; 

Miyasike-DaSilva, Allard, & McIlroy, 2011; Reeves, Spanjaard, Mohagheghi, 

Baltzopoulos, & Maganaris, 2008). Our results suggest that our surface complexity 



142 
 

metric based on perceptual ratings may be inappropriate for stairs and that, instead, 

stairs might be better characterised based on physical measurements (Thomas, et al., 

2020b). We have, nevertheless, shown the results for stairs in both our figures and in 

the analyses reported in the supplementary materials, given that our aim was to test a 

broad range of surfaces typically encountered in everyday life. Furthermore it is 

important to understand the interaction between gaze and gait on stairs given that they 

are a common cause for falls, including for those with visual impairments (Pan, Liu, 

Sun, & Xu, 2015). 

 

4.6 Conclusion  

In summary, we found that many aspects of gaze and gait altered as surface 

complexity increased. In general, for our young, healthy participants the effects of 

surface complexity were not exacerbated by blocking the lower visual field. The only 

exception was for head pitch angle whereby the head lowered more on more complex 

surfaces if, in addition, the lower visual field was blocked. This finding illustrates the 

complexity of considering the effects of both extrinsic factors (e.g. surface 

complexity) and intrinsic factors (e.g. limiting visual information) on fall risk. Our 

study suggests that young people cope well with a reduction in information from their 

lower visual field even when walking over challenging surfaces. However, only one 

intrinsic factor was simulated here. Future research should see whether alternative or 

additional manipulations, representative of the comorbidities experienced by the 

elderly, change walking over surfaces of varying complexity. This would allow us to 

build up a more accurate understanding of how our gait responds to both extrinsic and 

intrinsic challenges. 
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4.7 Supplementary materials  

4.7.1 Detailed description of methodology 

This description is based on that originally given in (Thomas, et al., 2020b) 

Additional data collection information  

The eye-tracker was calibrated prior to the participants walking over the 14 

surfaces used in this study. Eye movements and eye fixations were recorded using a 

Pupil Labs eye-tracking headset (Kassner, et al., 2014) that recorded pupil movement 

at 30Hz and a world view at 60Hz. We were interested in how the stability of walking 

on surfaces influenced vertical gaze so we only analysed pupil movement in the 

vertical direction. Only eye angles between +40° to -70° were included based on 

previous research by Lee, et al. (2019). Six Delsys TRIGNO™ sensors (IMUs, Boston, 

MA, USA) were placed on the participant. Four of these sensors were used to collect 

inertia data, recorded at 148Hz. A sensor on the forehead collected gyroscopic data 

which was used to calculate head pitch. Another sensor was positioned on the lower 

lumbar region. This provided accelerometery data that was used to calculate harmonic 

ratios to measure gait symmetry, following Bellanca, et al. (2013). Two sensors were 

positioned above the malleoli on each legs which were used to calculate gait events. 

The remaining two sensors were used to collect surface electromyography (sEMG) 

data, recorded at 1111 Hz. These sensors were positioned on the antagonistic muscles 

of the right lower limb, the Tibialis Anterior muscle and the medial head of the 

Gastrocnemius muscle.  
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Additional analysis information   

A head pitch angle of 0° was defined as the average head position at the static 

period at the start and end of each surface trial, following Thomas, et al. (2020a). Head 

pitch angles were calculated using the gyroscopic data from the forehead sensor. The 

gyroscopic data were filtered using a low pass, 10Hz fourth-order Butterworth filter 

to reduce noise. Similar to Takeda, et al. (2014), signal drift was then removed using 

the period when the participant remained still at the start and end of each trial to 

provide a baseline. The gyroscopic data (rotational velocity in deg/s) were numerically 

integrated for each surface to give head pitch angle.  

   Mean harmonic ratios were calculated from anteroposterior accelerometery 

data from the lumbar IMU. Harmonic ratios were calculated by taking a Fourier 

transform of the data for each stride. The harmonic ratio is the ratio between the sum 

of the amplitudes of the even harmonics (representative of symmetrical gait) and the 

sum of the amplitudes of the odd harmonics (representative of asymmetrical gait) 

(Gage, 1964; Smidt, Arora, & Johnston, 1971). A higher ratio represents more 

symmetrical, smoother gait. We only considered harmonic ratios in the anteroposterior 

direction since this direction has previously been found to show the greatest changes 

when walking (Brach, et al., 2010; Lowry, VanSwearingen, Perera, Studenski, & 

Brach, 2013). 

 Surface EMG signals were calculated between adjacent ipsilateral gait events. 

Muscle co-activation was then calculated following Winter (2005) defined by the 

following equation:  

%𝐶𝑂𝐶𝑂𝑁 = 2 × 
𝑐𝑜𝑚𝑚𝑜𝑛 𝑎𝑟𝑒𝑎 𝐴 & 𝐵

𝑎𝑟𝑒𝑎 𝐴 + 𝑎𝑟𝑒𝑎 𝐵
 × 100% 
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where %COCAN is the percentage of muscle coactivation between the two muscles, 

area A is the area below the EMG curve of muscle A (Tibialis Anterior), area B is the 

area below the EMG curve of muscle B (medial head of the Gastrocnemius) and the 

common area A & B is the common area between both muscles.   

For all behavioural measures the first two and last two strides for each surface 

were removed from the mean calculation to avoid the influence of starting and 

stopping walking. Z-scores of means were then calculated using the mean and standard 

deviation value from each measure.  

 

4.7.2 Eye angle blocked from goggles  

We completed a small study to determine the extent to which the goggles 

blocked visual inputs relative to full vision. Ten healthy adults (5 male, mean ± SD; 

age = 27.4 ± 1.1 years; height = 175 ± 9.2cm) were told to fixate targets across a range 

of eye angles (from looking directly ahead, 0°, to looking down at -70°). Participants 

kept their head still and level, whilst fixating at targets set incrementally (every 10°) 

starting from a target set at their eye height (defined as 0°). Participants were asked to 

report if they were unable to fixate at a target without moving their head. All 10 

participants were able to fixate all the targets under full vision conditions. However, 

when wearing the goggles only 7 participants were able fixate at the target at -30°, 6 

participants at -40° target, 1 participant at -50° target and none at the -60° or -70° 

targets. Thus, the goggles blocked around 20° to 40° of the visual scene compared to 

full vision conditions.    
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4.7.3 Surface descriptions, order completed and lengths  

Table 4.7.3: Descriptions, order in which the surfaces were tested and surface lengths 

(to the nearest metre) for the 14 surfaces. See Figure 2 for images of each surface. 

Surface 

label Description of the surface 

Order of 

completion (A 

to N/N to A) 

Approximate 

length (metres) 

S1 Flagstone paving D 31 

S2 Flagstone paving A 29 

S3 Brick paving G 31 

S4 Fine gravel H 30 

S5 
38 indoor, polished stairs 

including three landings 
N 15 

S6 Rough grass J 34 

S7 
13 concrete stairs including two 

landings (descending) 
L 10 

S8 
11 outdoor concrete stairs 

including two landings 
C 13 

S9 
13 concrete stairs including two 

landings (ascending) 
K 10 

S10 Brick slope F 35 

S11 Stones set in concrete M 31 

S12 Small, loose pebbles I 19 

S13 Loose stones E 30 

S14 Oblique paved slope B 29 
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4.7.4 Results including stairs  

Head pitch angle  

Mean head pitch angles were calculated for full vision and blocked lower 

visual field conditions on surfaces S1 – S14. A linear regression revealed a significant 

relation between surface complexity and head pitch angle for both full vision (R2 = 

0.638; F,(1,12) = 21.12, p = 0.001) and blocked lower visual field conditions (R2 = 

0.564; F,(1,12) = 15.54, p = 0.002). However, there were no significant differences 

between the two regression intercepts or slopes, (t(27) = 1.11, p = 0.279 and t(27) = 

0.09, p = 0.926).  

Eye angle  

Mean eye angles were calculated for full vision and blocked lower visual field 

conditions on surfaces S1 – S14. A linear regression showed no significant relation 

between eye angle and surface complexity for full vision (R2 = 0.148; F,(1,12) = 2.087, 

p = 0.174), however the equivalent regression for blocked lower visual field 

conditions was significant (R2 = 0.373; F,(1,12) = 7.13, p = 0.020).  

Duration and number of eye fixations  

Mean eye fixation number and fixation duration were calculated for full vision 

and blocked lower visual field conditions on surfaces S1 – S14. A linear regression 

showed no significant relation between the duration of eye fixations and surface 

complexity for either full vision (R2 = 0.10; F,(1,12) = 1.37, p = 0.265) or blocked 

lower visual field conditions (R2 = 0.14; F,(1,12) = 2.02, p = 0.181). Similarly, a linear 

regression showed no significant relation between the number of eye fixations and 



148 
 

surface complexity for either full vision ((R2 = 0.0004; F,(1,12) = 0.004, p = 0.950) 

or blocked lower visual field conditions (R2 = 0.0006; F,(1,12) = 0.007, p = 0.935).  

Muscle coactivation 

Mean muscle coactivations were calculated for full vision and blocked lower 

visual field conditions on surfaces S1 – S14. A linear regression revealed a significant 

relation between muscle coactivation and surface complexity under full vision (R2 = 

0.372; F,(1,12) = 7.10, p = 0.021), however, the equivalent regression for blocked 

lower visual field conditions was not significant (R2 = 0.180; F,(1,12) = 2.638, p = 

0.130).  

Gait speed 

Mean gait speed was calculated for full vision and blocked lower visual field 

conditions on surfaces S1 – S14. A linear regression revealed no significant relation 

between gait speed and surface complexity for either full vision (R2 = 0.049; F,(1,12) 

= 0.617, p = 0.447) or blocked lower visual field (R2 = 0.038; F,(1,12) = 0.469, p = 

0.506).  

Walking smoothness as measured by harmonic ratios  

Mean anteroposterior harmonic ratios were calculated in order to provide an 

estimate of walking smoothness. Ratios were calculated for full vision and blocked 

lower visual field conditions on surfaces S1 – S14. A linear regression revealed a 

significant relation between harmonic ratios and surface complexity for both full 

vision (R2 = 0.428; F,(1,12) = 8.98, p = 0.011) and blocked lower visual field 

conditions (R2 = 0.394; F,(1,12) = 7.79, p = 0.016). However, there were no significant 
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differences between the two regression intercepts or slopes, (t (27) = 0.22, p = 0.832 

and t(27) = 0.30, p = 0.766 respectively).   

 

4.7.5 Comparing average z-scores 

We conducted a regression on the z-scores averaged across four behavioural 

measures (head pitch angle, gait speed, walking smoothness as measured by harmonic 

ratios and muscle coactivation) for each surface. We did not include eye angle, eye 

fixation duration or eye fixation number in this analysis due to their weak correlations 

with the other measures (see Supplementary Materials 4.7.6). As noted in the 

methodology section, z-scores were multiplied by -1 for muscle coactivation so that 

higher z-scores were always associated with more stable walking. The average (± SE) 

z-scores for the different surfaces are shown in Figure 4.7.5. When including all 14 

surfaces there was no significant difference between regression intercepts or slopes for 

full vision versus blocked lower visual field conditions, (, t(27) = -0.37, p = 0.715 and 

t(27) = 0.28, p = 0.780) respectively. This was also the case when excluding stairs, 

(t(19) = 0.53, p = 0.604 and t(19) = -0.97, p = 0.345 respectively). 
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Figure 4.7.5: Mean (±SE) average z-scores across four of the behavioural measures 

(head pitch angle, gait speed, walking smoothness as measured by harmonic ratios and 

muscle coactivation) for ten of the fourteen surfaces for full vision (black circles) and 

blocked lower visual field (red diamonds) conditions. The four surfaces with stairs are 

represented separately (grey open circles and light red open diamonds). Dotted lines 

represent the regression lines (when excluding stairs) for full vision and blocked lower 

visual field. The linear regression equations are as follows: full vision = R2 = 0.93 (y = 

-0.39x + 1.77) and blocked lower visual field conditions = R2 = 0.93 (y = -0.44x + 

1.90). 
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4.7.6 Pearson’s correlations between mean z-scores across the 14 surfaces for the 

seven gaze and gait behavioural measures. 

Table 4.7.6.1: Pearson’s correlations between mean z-scores for full vision versus 

blocked lower visual field conditions. * signifies a significant correlation of p <0.001 

(as determined by the Bonferroni correction) , bold values signify large correlations (r 

> 0.5) as determined by Cohen (2013).  

Head 

pitch 

angle 

Eye angle 

Eye 

fixation 

duration 

Number 

of eye 

fixations 

Muscle 

coactivation 

Gait 

speed 

AP 

harmonic 

ratio 

0.97* 0.05 0.76 0.97* 0.97* 0.99* 0.91* 

 

Table 4.7.6.2: Pearson’s correlations between mean z-scores for the seven behavioural 

measures for full vision conditions only. * signifies a significant correlation of p <0.001 

(as determined by the Bonferroni correction) , bold values signify large correlations (r 

> 0.5) as determined by Cohen (2013) 

 Eye angle 

Eye 

fixation 

duration 

Number of 

eye 

fixations 

Muscle 

coactivatio

n 

Gait 

speed 

AP 

harmonic 

ratio 

Head pitch 

angle 
0.43 0.39 -0.24 0.80* 0.62 0.85* 

Eye angle - 0.61 0.21 0.60 0.23 0.46 

Eye 

fixation 

duration 

- - 0.01 0.32 0.12 0.42 

Number of 

eye 

fixations 

- - - -0.05 0.38 0.19 

Muscle 

coactivatio

n 

- - - - 0.57 0.68 

Gait speed - - - - - 0.78* 

Table 4.7.6.3: Pearson’s correlations between mean z-scores for the seven behavioural 

measures for blocked lower visual field conditions only. * signifies a significant 
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correlation of p <0.001 (as determined by the Bonferroni correction) , bold values 

signify large correlations (r > 0.5) as determined by Cohen (2013) 

 
Eye 

angle 

Eye 

fixation 

duration 

Number of 

eye 

fixations 

Muscle 

coactivatio

n 

Gait 

speed 

AP 

harmonic 

ratio 

Head pitch 

angle 
0.21 0.18 -0.29 0.77 0.72 0.87* 

Eye angle - 0.32 0.19 0.16 -0.11 0.17 

Eye fixation 

duration 
- - -0.21 0.22 -0.24 0.22 

Number of eye 

fixations 
- - - -0.14 0.31 0.15 

Muscle 

coactivation 
- - - - 0.65 0.73 

Gait speed - - - - - 0.74 

 

4.7.7. Overall relative frequency plot  

 Figure 4.7.7 shows the overall mean relative frequency plots, averaging across 

the 14 different surfaces.  
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Figure 4.7.7: Overall mean relative frequency distributions of head pitch (dashed line) 

and eye (solid line) angle across the 14 surfaces under full vision (black) and blocked 

lower visual field (red) conditions. On the y-axis, results are plotted for 5° bins relative 

to 0° (looking straight ahead). Negative angles correspond to lowering of the eyes or 

head toward the ground. 
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Footnote:  

1 Full details of the perceptual rating study are provided in Thomas, et al. (2020b). In 

brief, 32 participants (14 male, mean ± SD; age = 22.2 ± 5.0 years; height = 172.6 ± 

8.5cm), completed the perception rating study. Twelve of these participants had been 

participants in the present study (10 male, age = 27.3 ± 4.3 years; height = 178.0 ± 

6.9cm). There were no significant differences between the mean responses for the 

participants who completed both studies and the remaining 20 participants, (F(1, 32) 

= 0.22, ηp
2 = 0.01, p = 0.643) so responses were pooled together.  

2 As the attachment and removal of sensors and initial eye calibration had to be 

completed in the gait laboratory, for practical reasons of locations and sensor battery 

life, all participants started by completing surfaces from A through to N and then they 

completed surfaces N though to A.   

3 One limitation of the study was that we were only able to collect data for participants 

walking once over a given surface for each of the two visual conditions. This was due 

to the time taken to complete the study and the limited battery life for the IMU sensors 

used in the study. However, for each condition and for all surfaces we collected eye, 

inertia and EMG data at high frequencies (between 30Hz and 1111Hz) for our five 

behavioural measures, for each condition and for all surfaces. We collected over 80 

minutes of data per participant and mean values per trial were based on averages over 

hundreds of values.   
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Chapter Five: The influence of cognitive load 

and lower visual field loss on gaze and gait 

 

In the previous chapters I have shown how surface complexity affects both 

gaze and gait behaviour (chapters 2 – 4). However, young people have been shown to 

be relatively robust to a singular intrinsic factor of simulated loss of their lower visual 

field (chapter 4). One possible reason for the difference between our results and the 

known fall risk associated with age is that only one age-related deficit was simulated. 

Older people typically have numerous comorbidities, so simulations of multiple 

deficits are more likely to cause behavioural changes indicative of that found with age. 

As well as visual field loss, a common deficit found in the elderly is a reduced 

cognitive capacity. This is known to reduce stability when walking (Woollacott & 

Shumway-Cook, 2002). Simulated cognitive deficits are often used to mimic age-

related impairments in young people (Bahureksa, et al., 2017). The aim in this chapter 

was to simulate reduced cognitive capacity on its own and in combination with 

simulated lower visual field loss. This was done to investigate whether simultaneously 

simulating two age-related deficits produced deficits in gait and gaze behaviour similar 

to those observed for older adults with multiple comorbidities.  
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This chapter is in preparation for publication as: 

Thomas, N.D.A., Gardiner, J.D., Crompton, R.H. & Lawson, R. (2021). 

Challenging walking: the influence of cognitive load and lower visual field loss on 

gaze and gait.  

The primary author conceived and designed the experiments, conducted the 

experiments, analysed the data, prepared the figures and tables and authored the draft 
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5.1 Abstract 

Background: Age-related health deficits affect gaze and gait behaviour whilst 

walking, especially over challenging surfaces. Simulating deficits in cognitive 

capacity and visual fields can reveal how cognitive and visual factors influence gaze 

and gait. However, simulating one deficit alone may not provide a good model of the 

multiple comorbidities typically experienced by older people. In the present study we 

simulated both cognitive and visual deficits simultaneously in young, healthy adults 

whilst also varying an environmental factor. 

Methods: Participants walked over 20 surfaces that varied in complexity whilst 

wearing a mobile eye-tracker and inertia measurement unit sensors. We assessed how 

an increased cognitive load and reduced information from the lower visual field 

influenced eye angle, the number and duration of fixations, head pitch angle, gait 

speed and walking smoothness.  

Results: Surface complexity had substantial effect on behaviour: more complex 

surfaces caused behavioural changes in all measures except for eye angle. In contrast, 

combining the two intrinsic factors produced few functionally significant effects on 

gaze and gait behaviour regardless of surface complexity. Individually, the two 

deficits did have some effects. A blocked lower visual field changed gaze behaviour 

and produced a more asymmetric gait but these changes were modest relative to the 

effects of surface complexity. An increased cognitive load had only marginal effects 

on gait speed.  

Significance:  Surface complexity had a greater effect on behaviour than blocking the 

lower visual field or increasing cognitive load and there were few meaningful 

interactions between different deficits. This suggests that, when walking outdoors, 
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young people may be relatively robust to multiple simulated deficits whereas the gaze 

and gait of older people deteriorates with multiple comorbidities. Thus, simulating 

deficits common in older people should be used with caution. 
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5.2 Introduction 

At all ages, most falls occur outdoors and when people walk over complex 

surfaces (Li, et al., 2006; Talbot, Musiol, Witham, & Metter, 2005), so we can assume 

that gait is more unstable here. Outdoors, we typically encounter more challenging 

and varied conditions, often including different surface types. Studies have shown that, 

when walking over more complex outdoor surfaces, gaze is lowered toward the body, 

steps are shorter and gait is slower and less symmetrical ('t Hart & Einhauser, 2012; 

Matthis, Yates, & Hayhoe, 2018; Thomas, Gardiner, Crompton, & Lawson, 2020a, 

2020b). These behavioural changes are all either associated with increased perceived 

fall risk or are indicative of more risky behaviour associated with falls (Doi, et al., 

2013; Marigold & Patla, 2007, 2008a; Menz, Lord, & Fitzpatrick, 2003; Peterson & 

Martin, 2010; Voloshina, Kuo, Daley, & Ferris, 2013). In our previous work we have 

focussed on the challenges presented to the walker due to complex, outdoor surfaces 

such as uneven ground, slopes and steps, and the influence on walking of a single, 

simulated, age-related deficit, namely lower visual field loss. Our results showed that 

walking over more complex surfaces was associated with changes in gaze (for 

example, lowering the head) and gait (for example, slower and more asymmetric gait) 

(Thomas, et al., 2020b; Thomas, Gardiner, Crompton, & Lawson, 2020c). However, 

young, healthy people appeared to adapt well to occlusions of their lower visual field, 

making minimal changes to their gaze and gait (Thomas, et al., 2020a). We reasoned 

that our young, healthy participants may not have been sufficiently challenged by our 

experimental manipulations. In our previous studies the combination of challenges 

that were intrinsic (blocking the lower visual field) and extrinsic (walking over 

complex surfaces) still did not match the severity of the combined deficits that are 

commonly encountered as we age.  
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Building on our previous work, in the present paper we assessed the effects of 

a distinct, non-environmental, yet ubiquitous challenge to gait over complex surfaces, 

namely the increased cognitive load arising from performing a concurrent load task. 

In doing so, we can simulate two common, age-related deficits, namely cognitive 

decline and reduced peripheral vision (Beurskens & Bock, 2012; Brayne, 2007; 

Collins, Brown, & Bowman, 1989; Crassini, Brown, & Bowman, 1988; Jorm & Jolley, 

1998). Both deficits are intrinsic factors (i.e. related to the individual) that are known 

to affect gait stability (Black, Wood, & Lovie-Kitchin, 2011; Hausdorff, Schweiger, 

Herman, Yogev-Seligmann, & Giladi, 2008; Laessoe, Hoeck, Simonsen, & Voigt, 

2008; Woollacott & Shumway-Cook, 2002) and which may interact in an 

unpredictable fashion. Below, we will review what is known about how these two 

intrinsic factors impact gaze and gait behaviour and, in turn, fall risk, and the influence 

of the extrinsic factor of surface complexity on those impacts.   

5.2.1 Reduced Peripheral Vision and Surface Complexity 

Deterioration in peripheral vision is a well-studied, age-related, disorder that 

is associated with an increased fall risk (Black, et al., 2011; Collins, et al., 1989). 

Furthermore, loss of peripheral vision is a common symptom of age-related diseases 

such as glaucoma. Several studies have investigated how simulated loss of the lower 

peripheral visual field affects gait stability in otherwise healthy young people. For 

example, simulated lower visual field loss caused young individuals to adopt a more 

cautious gait, including a lowered head pitch angle, slower walking speed and reduced 

accuracy of foot placement, when walking on more complex surfaces (Graci, Elliott, 

& Buckley, 2010; Marigold & Patla, 2008b; Rietdyk & Drifmeyer, 2009). These 

studies tested walking in a laboratory and over a limited variety of surfaces. In 

contrast, in our own research (Thomas, et al., 2020a) participants walked over a wide 
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range of outdoor, everyday surfaces, thus increasing experimental ecological validity. 

We found that gait remained relatively unchanged when blocking the lower visual 

field of young people, but that head pitch angle lowered, especially over more complex 

surfaces. 

5.2.2 Cognitive Decline and Surface Complexity 

Every day walking is often paired whilst concurrently performing various 

secondary tasks such as route-finding, talking, using a mobile phone or listening to 

music. However, as we get older, our ability to execute concurrent tasks whilst 

walking is compromised. This has been shown to result in both worse performance for 

the concurrent task and a more unstable gait (Hausdorff, et al., 2008; Laessoe, et al., 

2008; Woollacott & Shumway-Cook, 2002). For example, when completing a 

concurrent task, older people walk slower, have more variability in stride velocity, and 

the gaze behaviour of older fallers is considered riskier, with an earlier transfer of gaze 

away from an obstacle, compared to that of non-fallers (Hollman, Kovash, Kubik, & 

Linbo, 2007; Plummer-D'Amato, et al., 2012; Timmermans, Roerdink, Janssen, 

Meskers, & Beek, 2018; Yamada, et al., 2011). The ability to perform concurrent tasks 

whilst walking has important real-world implications which have also been 

demonstrated experimentally. For example, when completing concurrent tasks, older 

people are less likely to safely cross a pedestrian crossing compared to young people 

(Eggenberger, Tomovic, Münzer, & de Bruin, 2017). We therefore would expect 

greater difficulty when negotiating more challenging environments when a concurrent 

task is being performed. However, studies using cognitive load tasks in young people 

have shown wide-ranging results. For example, gaze fixations toward the floor 

increase under more cognitively demanding environmental conditions (low lighting, 

rougher surfaces), when participants complete a concurrent task that requires a timed 



171 
 

response (Fotios, Uttley, Cheal, & Hara, 2015). Furthermore, Beurskens and Bock 

(2013) showed that age-related dual-task costs on step duration and shank angles were 

greater when walking in more complex environments (obstacles or narrow paths). In 

contrast, Forte, et al. (2019) found no additional effect on gait stability of completing 

a concurrent memory task whilst walking over a more complex surface relative to a 

flat surface. Forte, et al. (2019) suggested that the difficulty of walking over the 

complex surface may have increased gait instability to a ceiling level such that no extra 

effect of the secondary task could be detected. 

5.2.3 Research aims 

In summary, it is well established that reduced cognitive ability has a 

detrimental effect on the gait stability of older people (as reviewed in Amboni, Barone, 

& Hausdorff, 2013; Parihar, Mahoney, & Verghese, 2013). Similarly, loss of 

peripheral vision, particularly the lower visual field, when walking is associated with 

an increased fall risk for older people (Black, et al., 2011). However, simulations of 

single, age-associated deficits (including blocked lower visual field and increased 

cognitive load) produce inconsistent effects on walking in the young (Beurskens & 

Bock, 2013; Forte, et al., 2019; Graci, et al., 2010; Marigold & Patla, 2008b; Rietdyk 

& Drifmeyer, 2009; Thomas, et al., 2020a). 

One possible reason for the inconsistencies between the effects on gait for 

older people with various morbidities and on younger people with simulated 

morbidities is that the simulation studies have only tested one deficit at a time. As we 

age, the number of comorbidities increases: 30% of people aged 45-64 have at least 

two comorbidities, increasing to 65% in those aged 65+ (Barnett, et al., 2012). 

Therefore, previous research that simulated only one deficit would not emulate the 
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conditions affecting many older walkers. This may help to explain why simulations 

have produced inconsistent findings. 

No study, to the authors’ knowledge, has simulated two simultaneous deficits 

to determine whether this will more accurately model the gait problems observed in 

older people. We did this in order to try to understand why comorbidities increase the 

rate of falls in older people (Tinetti & Kumar, 2010). In the present study, we 

investigated the combination of visual deficits and cognitive decline given the high 

association between them with age (Anstey, Luszcz, & Sanchez, 2001; Clemons, 

Rankin, & McBee, 2006; Lin, et al., 2004). Individually, both deficits (blocking the 

lower visual field and performing a cognitive load task) have often been used to 

simulate age related conditions. This study extended our previous research to 

investigate whether simultaneously simulating two age-related deficits produced 

deficits in gait and gaze behaviour similar to those observed for older adults with 

multiple comorbidities.  

 

5.3 Methodology 

5.3.1 Perceptual rating study 

We conducted an initial rating study to provide objective measures of the 

surfaces used for this study. Ten participants (6 male, mean ± SD; age = 28.4 ± 3.1 

years; height = 176.6 ± 8.8cm, weight = 72.8 ± 10.8kg) rated their perception of the 

surface roughness and perceived walking stability of the 20 experimental surfaces 

using a Likert scale (Likert, 1932) between 1 (smooth / stable) and 10 (rough / 

unstable). The perceptual rating study followed the same procedure as that of Thomas, 

et al. (2020c). The 20 surfaces were located in the University of Liverpool campus, 
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and represent a range of surface types typical of an urban environment (see Figure 1). 

Each surface was rated three times: for roughness and then for perceived stability from 

vision alone, and finally for perceived stability again after the participants had walked 

on the surface. All three measures have been shown to be highly correlated with 

surface complexity based on physical and behavioural measures (Thomas, et al., 

2020c). In the present study, the three perceptual ratings were highly correlated (r = 

0.86 roughness and perceived stability before; r = 0.85 roughness and perceived 

stability after; r = 0.97 perceived stability before and perceived stability after) and 

scores were therefore averaged into a single surface complexity metric. This metric 

was used to rank surfaces by complexity, see Figure 1.  
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Figure 1: Images showing the 20 surfaces (S1 – S20) used for this study. Surfaces are 

ordered by the average rating of surface complexity produced from the perceptual 

rating study from S1 = least complex to S20 = most complex. Surfaces were rated 

using a scale from 1 (smooth / stable) to 10 (rough / unstable). Average (±SD) 

perceptual ratings are shown for each surface. Further details about the surfaces are 

given in the supplementary material (5.7.1). 
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5.3.2 Participants  

Twenty participants (9 male, mean ± SD; age = 27.7 ± 3.3 years; height = 173.7 

± 8.8cm, weight = 71.2 ± 9.6kg) were tested across eight counterbalancing conditions 

(see supplementary material 5.7.2 for details). Nine of these participants had already 

completed the perceptual rating study. No participant required glasses for walking or 

had any known impairment or injury which might affect their gait or vision. 

Unfortunately, as is commonplace when collecting data outside the laboratory, 

technical and environmental factors meant that some data was missing for some 

measures. See the supplementary materials for details (5.7.3).  

 

5.3.3 Data collection 

 The University of Liverpool’s Ethics Committee granted approval for the study 

in May 2019 (REF: 4803). Gaze and gait behavioural metrics were assessed during 

the study. The gaze measurements were head pitch angle, eye angle and the duration 

and number of fixations. The gait measurements were gait speed and walking 

smoothness (as measured by anteroposterior harmonic ratios). Eye angles were 

calculated using eye movements recorded in the vertical direction using a Pupil Labs 

eye-tracker (Kassner, Patera, & Bulling, 2014) recording pupil movements at 30Hz 

and a world view at 60Hz. Calibration of the eye-tracker was completed prior to data 

collection. We also recorded the number and duration of fixations. Fixations were 

recorded as stabilised eye movement for a minimum of 100 milliseconds following 

Marigold and Patla (2007); Patla and Vickers (1997, 2003). To enhance the 

performance of the eye tracker’s infrared cameras in sunlight, participants wore an 
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infrared-blocking face shield following Matthis, et al. (2018). Three Delsys 

TRIGNO™ Inertial Measurement Unit sensors (IMUs) (Boston, MA, USA), were 

used to record inertial data (148Hz). The IMUs were positioned on the face shield, on 

the lower back and on the right ankle. The face shield IMU was attached close to the 

participant’s forehead and was used to calculate head pitch angle from the gyroscopic 

data. Previous research has found differences in head movement when wearing 

headgear (McKnight & McKnight, 1995). We found that head pitch angle seemed to 

lower by around 4° due to wearing the face shield, see supplementary material (5.7.4) 

but note that the face shield was worn in all conditions. Gait speed was calculated from 

accelerometric data and gait events calculated from the ankle IMU following Li, 

Young, Naing, and Donelan (2010). Walking smoothness (from anteroposterior 

harmonic ratios) was calculated from accelerometric data collected from the lower 

back IMU following Bellanca, Lowry, VanSwearingen, Brach, and Redfern (2013). 

Harmonic ratios were calculated within a single stride (adjacent gait events), with 

higher ratios interpreted as a more symmetric, and thus smoother, gait. 

We also collected surface electromyography (sEMG) data, using two 

additional sensors placed on the Tibialis Anterior muscle and medial head of the 

Gastrocnemius muscle on the left leg, to calculate leg muscle coactivation whilst 

walking. However, one of the sensors failed to record properly due to insufficient 

battery life throughout the experiment and we were unable to analyse this data. 

We simulated two intrinsic deficits - blocking the lower visual field and 

performing a cognitive load task. In order to block the lower visual field, similar to 

previous research (Rietdyk & Drifmeyer, 2009; Thomas, et al., 2020a), participants 

wore basketball goggle. These goggles blocked at least the lowest 20° of the visual 

field (see Thomas, et al., 2020a). 
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For the cognitive load task, participants pressed a button on a hand-held device 

as soon as they detected a vibration. This task was similar to that used by Fotios, et al. 

(2015) who also assessed behavioural changes to gait whilst walking outside. The 

hand-held device consisted of an Arduino microcontroller which generated the 

vibration, a DELSYS Trigno Trigger adapter (Boston, MA, USA), which recorded the 

response time, and a portable power bank. These components were housed in a small, 

plastic container that could easily be held in one hand. Vibrations occurred randomly 

between 1 and 3 seconds after the offset of the previous vibration and participants 

were told to respond rapidly to this task. Participants held the device in their right hand 

and were advised to rest their thumb on the response button between vibrations. The 

vibration stopped as soon as they responded or after 5 seconds of continuous vibration, 

whichever occurred first. Participants were reminded throughout the study to prioritise 

the cognitive load task to try to restrict any costs from performing the task to gaze and 

gait behaviours. Participants practised doing the cognitive load task whilst walking 

indoors before starting the study. Figure 2 shows an example of the experimental set-

up.  
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Figure 2: Images showing a participant wearing the face shield (used to enhance 

performance of the eye tracker’s infrared cameras by blocking infrared light), head 

IMU (used to calculate head pitch angle), eye tracker (used to record eye movements), 

ankle IMU (used to record inertial data) and the hand-held cognitive load device (used 

to generate a vibration and record reaction times). Participants also wore an IMU on 

their lower back (not shown). 

 

5.3.4 Protocol 

 Participants walked four times across each of twenty surfaces (S1 – S20) 

located across the University of Liverpool campus (see Figure 1). Surface 

descriptions, the order surfaces were walked upon during data collection and surface 

lengths are given in the supplementary material (5.7.1). Participants walked on the 

surfaces in four conditions that comprised every combination of two vision and two 

cognitive conditions. The vision conditions consisted of either normal, full vision (V+) 
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or blocked lower visual field (V-). The cognitive conditions consisted of either full 

cognitive capacity being available to control and monitor their walking (normal 

walking conditions) (C+) or a reduced cognitive capacity due to performing a 

concurrent, cognitive load, speeded button press task (C-). The four conditions were 

thus: full vision and full cognitive capacity (V+C+), full vision and cognitive load task 

(V+C-), blocked lower visual field and full cognitive capacity (V-C+), and blocked 

lower visual field and cognitive load task (V-C-). 

 The two full vision (V+) conditions, and the two blocked lower visual field (V-

) conditions were always paired (i.e. completed one immediately after another on each 

surface) so that the basketball goggles did not have to be removed between paired 

walks, minimising disruptions to the eye tracker. Participants walked across all twenty 

surfaces completing one pair of conditions before taking a short break (approximately 

5 minutes) and then completing the remaining pair of conditions. The surfaces were 

initially completed in a fixed order from A to T. After the short break the surfaces 

were completed again but in the reverse order (due to the experimental set-up), from 

T to A (see supplementary material 5.7.1). For example, a participant might complete 

the V+C- then V+C+ conditions for surface A, then for surface B, and so on to surface 

T, take a break, and then complete the V-C- then V-C+ conditions for surface T, then 

for surface S, and so on to surface A. The order of conditions within each pair was 

counterbalanced across participants, as was the assignment of which pair of conditions 

was completed first (see supplementary material 5.7.2 for the eight possible 

combinations). Counterbalancing was done to minimise the impact of fatigue on the 

results. Furthermore, no significant effects were found for gait speed or reaction time 

(for C- conditions) between the first (A to T surface order) and second (T to A surface 

order) pair of conditions.  
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 For each surface trial, participants started by looking straight ahead whilst 

standing still in front of each surface for three seconds, then they walked at a self-

determined, comfortable speed across the surface length. At the end of the surface, 

participants again looked straight ahead whilst standing still for a further three 

seconds. Participants could move their eyes and head as normal whilst walking and 

were only told to look straight ahead whilst standing still at the start and end of each 

surface. For C- trials, participants began using the cognitive device for a minimum of 

30 seconds before the surface trial. We tried to ensure that participants completed the 

study under comparable conditions by avoiding gross changes in extrinsic factors such 

as weather, lighting, surface friction, time of day and attentional distractions. The total 

study duration (including debriefing, sensor placements, calibrations, indoor practice 

trials and the experimental trials themselves) for each participant was approximately 

180 minutes of which over 120 minutes was data collection.  

 

5.3.5 Analysis 

We analysed gaze and gait measures for each of the four walking conditions. 

Data from the first and last two steps of walking were excluded from the analysis to 

ensure that the impact of starting and stopping did not influence the results. Gait 

measures comprised the mean gait speed and mean walking smoothness as measured 

by anteroposterior harmonic ratios for each surface. Head pitch angle was calculated 

using the gyroscopic data recorded from the head IMU, noise reduced using a 10Hz 

low pass, fourth-order Butterworth filter. Head pitch angles were calculated using 

numerical integration of the gyroscopic data (collected as °/s). Following Takeda, et 

al. (2014), signal drift was removed using the periods when the participant remained 
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stationary for three seconds at the beginning and end of each trial. These periods were 

also used to define a head pitch angle of 0°, calculated from the average head position 

following Thomas, et al. (2020b). An eye angle of 0° was defined from the eye 

calibration completed prior to the study, when participants fixated a target set at their 

eye height. Eye movements away from 0° were converted into eye angles, with 

negative eye angles defined as downward eye movements. Eye angles outside the 

normal range expected for V+ (+40 to -70°) and V- (+40 to -50°) conditions were 

excluded from the analysis based on previous findings (Lee, Kim, Shin, Hwang, & 

Lim, 2019; Thomas, et al., 2020a). We also calculated mean relative frequency 

distributions for eye and head pitch angles. Here, for each surface, the angles recorded 

were separated into bins of 5° following Foulsham, Walker, and Kingstone (2011). 

To assess time-locked gaze responses to performance on the cognitive load 

task (the V+C- and V-C- conditions), we compared gaze in a baseline period before 

the vibration to gaze during the period that a response was being prepared to the 

vibration. To do this we calculated average eye and head pitch angle changes across 

100 ms intervals from -500ms to +500ms relative to the vibration onset. Mean reaction 

times were 0.57s (± 0.04 SE) across different surfaces and V+ and V- conditions. 

Cognitive load is likely to be at its largest during this period of response preparation. 

We also calculated the multiple deficit cost on the cognitive load task response 

times, i.e. the extra burden to responding to the vibration due to lower vision also being 

blocked. This was calculated using the following equation: 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 𝑐𝑜𝑠𝑡 (%)

= 100 ×
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 V − C − 𝑝𝑒𝑟𝑓𝑜𝑚𝑎𝑛𝑐𝑒 − 𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 V + C − 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 V + C − 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
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We ran mixed-effects models for each of the gaze and gait measures, with 

surface complexity ratings (see Figure 1), vision condition (V+, full vision or V-, 

blocked lower visual field) and cognition condition (C+, full cognition or C-, cognitive 

load task) as fixed effects and participants as random effects. Significant differences 

were determined as those with a p value of less than 0.05.   

Finally, we conducted Pearson’s correlations on the mean z-scores of the 

different measures for each surface. The z-scores for the number of fixations were 

multiplied by -1 so that, for all measures, higher z-scores were always associated with 

more stable walking. Large correlations (r > 0.5, as determined by Cohen (2013)) are 

shown in bold for each correlation table. A conservative alpha level of 0.001 was used 

for correlations, calculated using the Bonferroni correction. 

 

5.4 Results 

5.4.1 Head pitch and eye angles  

Mean head pitch and eye angles for the four conditions are shown in Figures 

3A and 3B respectively. The mean frequency distribution for head pitch and eye angles 

for all four conditions are shown in the supplementary material (5.7.5). 

Surface complexity and vision condition both had a significant effect on head 

angle, F(14,691) = 47.63, p < 0.001 and F(1,691) = 13.31, p < 0.001 respectively. 

The head lowered as surface complexity increased and was lower under V- (M ± SE 

= -20.0° ± 0.6) compared to V+ (M ± SE = -19.1° ± 0.7) conditions. There was also a 

significant interaction between surface complexity and vision, F(14, 691) = 1.97, p = 

0.018. A t-test comparing the V+ and V- conditions showed no significant difference 
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between regression intercepts (t(3) = -1.56, p = 0.121), however, there was a 

significant difference between regression slopes (t(3) = -5.59, p < 0.001), with the 

head lowering more under V- than V+ conditions as surface complexity increased. For 

the least complex surfaces, head pitch angle for both visual conditions were similar 

(~-15°) whereas for the most complex surfaces, head pitch angle was ~5° lower for 

the V- (~-30) compared to the V+ (~-25°) conditions. There were no other significant 

main effects or interactions. 

Vision condition had a significant effect on eye angle, F(1,652) = 7.83, p = 

0.005, with a lower eye angle under V+ (M ± SE = -15.6 ± 0.7) compared to V- (M ± 

SE = -13.2 ± 0.7) conditions. There were no significant main effects of surface 

complexity or cognition and no significant interactions.  

5.4.2 Duration and number of eye fixations  

The mean duration and number of fixations for the four conditions are shown 

in Figures 3C and 3D respectively. Surface complexity had a significant effect on 

fixation duration, F(14,652) = 2.83, p < 0.001, with shorter fixations as surface 

complexity increased. There was also a significant interaction between surface 

perception and vision, F(14,652) = 2.24, p = 0.006. A t-test comparing the V+ and V- 

conditions showed no significant difference between regression slopes (t(3) = 1.32, p 

= 0.187), but a significant difference between regression intercepts (t(3) = -3.35, p = 

0.001). Fixations were shorter under V- than V+ conditions regardless of surface 

complexity. There were no main effects of vision or cognition and no other significant 

interactions. Both surface complexity and vision had a significant effect on number of 

fixations, F(14,652) = 4.17, p < 0.010 and F(1,652) = 32.02, p < 0.001 respectively. 

There were more fixation as surface complexity increased and more fixations for V+ 



184 
 

(M ± SE = 21.3 ± 0.3) compared to V- (M ± SE = 19.2 ± 0.4) conditions. There were 

no significant main effects of cognition and no significant interactions. 
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Figure 3: Mean (A) head pitch angles, (B) eye angles, (C) fixation duration and (D) 

number of fixations for the V+C+ (black, filled circles), V+C- (black, outlined 

diamonds), V-C+ (red, filled circles) and V-C- (red, outlined diamonds) conditions for 

each of the 20 surfaces. Surfaces were rated from the easiest and simplest to traverse 

(S1) to the hardest and most complex (S20) using a surface perception scale from 1 

(smooth / stable) to 10 (rough / unstable). Dotted lines represent the regression lines 

for each condition. 

5.4.3 Gait speed 

 Mean gait speeds for the four conditions are shown in Figure 4A. Both surface 

complexity and cognitive condition had significant effects, F(14,1521) = 73.63, p < 

0.001 and F(1,1521) = 5.24, p = 0.022 respectively. Gait slowed as surface complexity 

increased and was slower under C- (M ± SE = 1.38 m/s ± 0.01) compared to C+ (M ± 

SE = 1.36 m/s ± 0.01) conditions. There were no main effects of vision condition and 

no significant interactions.  

5.4.4 Walking smoothness as measured by mean harmonic ratios 

Mean anteroposterior harmonic ratio for the four conditions are shown in 

Figure 4B. Both surface complexity and vision condition had a significant effect on 

harmonic ratios, F(14,1521) = 108.73, p < 0.001 and F(1,1521) = 10.84, p = 0.001 

respectively. Harmonic ratios were reduced as surface complexity increased and were 

reduced for V- (M ± SE = 3.03 ± 0.04) compared to V+ (M ± SE = 3.12 ± 0.03) 

conditions. There were no main effects of cognitive condition and no significant 

interactions.  
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Figure 4: Mean (A) gait speed (metres/second) and (B) anteroposterior harmonic 

ratios used to measure walking smoothness for V+C+ (black, filled circles), V+C- 

(black, outlined diamonds), V-C+ (red, filled circles) and V-C- (red, outlined 

diamonds) conditions for each of the 20 surfaces. Surfaces were rated from the easiest 

and simplest to traverse (S1) to the hardest and most complex (S20) using a surface 

perception scale from 1 (smooth / stable) to 10 (rough / unstable). Dotted lines 

represent the regression lines for each condition. 
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5.4.5 Cognitive load task reaction times 

Reaction times were calculated for the button press response relative to the 

onset of the vibrations. Only one vibration was missed. On average, participants 

responded to five vibrations per surface (M ±SE = 5.1 ±0.4) for both the V+C- and V-

C- conditions. Mean number of vibrations per surface and condition are shown in the 

supplementary material (Table 5.7.6). Mean reaction times to the onset of the 

vibrations and multiple deficit reaction time costs are shown in Figure 5A and 5B 

respectively. A mixed-effects model found no main effects of surface complexity or 

vision condition and no significant interaction. The lack of an effect of surface 

complexity indicated that people did not slow their responses to the cognitive load task 

when they walked over the more complex surfaces. This suggests that participants 

followed their instructions and prioritised the cognitive load task. 
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Figure 5: Mean (A) reaction times (seconds) for V+C- (black, outlined diamonds) and 

V-C- (red, outlined diamonds) conditions and (B) multiple deficit reaction time cost 

(i.e. enhanced cost for V-C- relative to V+C- conditions, calculated as: 100 x (reaction 

times V-C- conditions - reaction times V+C- conditions) ÷ reaction times V+C- 

conditions) for each of the 20 surfaces. Surfaces were rated from the easiest and 

simplest to traverse (S1) to the hardest and most complex (S20) using a surface 

perception scale from 1 (smooth / stable) to 10 (rough / unstable).  Dotted lines 

represent the regression lines for each condition. 
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5.4.6 Cognitive load effect on head pitch and eye angles 

We assessed whether there were any short-term effects on gaze due to 

responding to the vibration onset. Mean head pitch and eye angles, averaged across all 

20 surfaces, were calculated at five 100 millisecond intervals prior to and subsequent 

to the vibration onset. The onset of the vibration did not have a significant effect on 

either head pitch or eye angles and there were no significant differences between V+C- 

and V-C- conditions (see supplementary material, 5.7.7). This suggests that neither 

eye or head movement changed due to responding to the cognitive load task.  

5.4.7 Pearson’s correlations 

Pearson’s correlations were conducted on the mean z-scores (see 

supplementary material, 5.7.8) for the four conditions for each of the behavioural 

measures in turn (see Table 5.7.8.1) and for the different behavioural measures for 

each of the four conditions in turn (see Tables 5.7.8.2 - 5.7.8.5). Head pitch angle, gait 

speed and walking smoothness, as measured by harmonic ratios, were all highly 

correlated across the vision and cognitive load conditions relative to correlations for 

eye angle, fixation durations and number of fixations. There were no significant 

correlations between eye angle and any other behavioural measure for a given vision 

and cognitive load condition. This suggests that eye movements behaved less 

consistently than movements of other parts of the body. 

5.4.8 Combined behavioural z-scores 

We conducted a mixed-effects model on the z-scores for a combination of 

behavioural measures for each surface and condition. Eye angle, fixation duration and 

number of eye fixations were excluded from this analysis given that they correlated 

poorly with other measures (see supplementary material, 5.7.8). An average z-score 
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was calculated for the remaining three behavioural measures (head pitch angle, gait 

speed and walking smoothness as measured by harmonic ratios) to check if this 

combined measure provided a more sensitive measure to the influence of the 

concurrent task or blocking the lower visual field. This was not found to be the case, 

see supplementary material (5.7.9). Surface complexity and vision condition had a 

significant effect on the combined z-scores, with lower z-scores as surface complexity 

increased and under V- conditions. There was no effect of cognitive conditions and no 

significant interactions.  

 

5.5 Discussion 

The aim of this study was to address how simulating two age-related deficits, 

cognitive decline and lower visual field loss, affected gaze and gait behaviour across 

a range of outdoor surfaces of different complexities. Contrary to our predictions, 

combining extrinsic and intrinsic deficits did not, in general, enhance their individual 

effects and there were few interactions between the effects of surface complexity, 

vision and cognitive load. This contrasts to studies with older people that have shown 

an increased fall risk arising from an increased number of comorbidities, particularly 

in more complex environments (Bao, et al., 2019; Sotimehin, et al., 2018; Vu, Finch, 

& Day, 2011). Our present results suggest that simulations of multiple age-related 

deficits associated with an increased fall risk may not provide an informative model 

for how such conditions affect older people. Thus, we suggest that future research 

investigating gait stability should, where possible, directly study the affected 

population group rather than simulating conditions in young, healthy participants.  
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Individually surface complexity and the two intrinsic factors did alter 

behaviour: 

5.5.1 Surface complexity 

Increased surface complexity had a significant effect on all our behavioural 

measures except for eye angle. The surfaces tested here spanned a wide range of 

surfaces typically found in outdoor environments. More complex surfaces were 

associated with lower head pitch angles, more and briefer fixations, and slower, more 

asymmetric gait, supporting findings from previous studies ('t Hart & Einhauser, 2012; 

Matthis, et al., 2018; Thomas, et al., 2020a, 2020c). These results, are consistent with 

the finding that both the young and the old (who are more likely to also have intrinsic 

factors affecting their mobility), generally fall due to extrinsic rather than intrinsic 

factors (Berg & Cassells, 1990; Bueno-Cavanillas, Padilla-Ruiz, Jimenez-Moleon, 

Peinado-Alonso, & Galvez-Vargas, 2000).  

5.5.2 Lower visual field loss 

Blocking the lower visual field also caused behavioural change. Not 

surprisingly, blocking the lower visual field altered gaze, with the head lowering and 

eye angle rising as well as the number of fixations reducing. It also reduced walking 

smoothness as measured by anteroposterior harmonic ratios. However, the 

behavioural changes due to blocking vision conditions were less than those caused 

from increasing surface complexity. For example, anteroposterior harmonic ratios 

were decreased by 0.14 in V- conditions compared to V+ conditions, whereas 

harmonic ratios decreased by 1.72 from the smoothest to most complex surface. 

Similarly, head pitch only lowered by ~1° with blocked vision compared to ~12° for 

the most complex surface. 
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5.5.3 Cognitive decline 

Inducing an increased cognitive load in the form of a speeded vibration 

detection task had little effect on any of the gaze or gait behaviours assessed. This 

suggests that young people are robust to challenges to their walking from an increased 

cognitive load when walking outside. This was the case even when the cognitive load 

was combined with reduced visual input or high surface complexity. Forte, et al. 

(2019) suggested for their study that more challenging extrinsic factors may introduce 

a ceiling effect and thus effects of a concurrent task may not be detected. This could 

explain our findings for the more complex surfaces in the present study. However, 

unlike Forte, et al. (2019), we did not find any effect of the concurrent task on 

behaviour even for the easiest, least complex surfaces. The lack of an effect may be 

because participants completed a simple response task. We chose a simple, speeded 

button press task so that performance could be easily monitored when walking and as 

this type of cognitive load task has been used previously when walking outdoors 

(Fotios, et al., 2015). However, more cognitively challenging tasks are known to be 

associated with greater behavioural change (Forte, et al., 2019; Muir, et al., 2012).  

Numerical tasks (e.g. counting backwards in set intervals) are a more common means 

of applying a cognitive load, however, such tasks may influence participant’s 

rhythmicity rather than their attention (Beauchet, Dubost, Aminian, Gonthier, & 

Kressig, 2005). As such, future studies in the young, may need to use more powerful 

simulations (e.g. using more challenging tasks) to elicit a more substantial behavioural 

cost. 

Another explanation as to why the current study showed few behavioural 

changes under cognitive load conditions may be due to most previous studies testing 

under laboratory conditions (e.g. Hollman, et al., 2007; Plummer-D'Amato, et al., 
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2012; Yamada, et al., 2011). Our study was conducted outside, in relatively 

uncontrolled conditions. Here, the baseline cognitive load was likely much higher than 

in a laboratory, with many and varying visual and auditory distractions from 

pedestrians and traffic as well as from walking at many different locations. This 

background distraction may have made it difficult to detect the addition of a simple 

cognitive load task on behaviour. The difficulty for future studies is to balance control 

of experimental factors but also to emulate real world conditions. Testing outside, with 

high uncontrolled variability, may mask behavioural changes arising from an 

increased cognitive load task, as shown here. However, conclusions from studies in 

laboratories may not generalise to conditions found in the real world where most falls 

occur. For example, Hillel, et al. (2019) showed that the spatiotemporal parameters of 

gait in older people in daily living were more like those obtained when walking in the 

laboratory whilst doing a concurrent task rather than when only walking in the 

laboratory.  

One limitation of the study, was that participants only walked across each 

surface once in each of the four conditions. This was due to the total duration of the 

study (approximately 180 minutes) and the limited battery life for the IMU sensors 

used in the study. However, note that our behavioural measures were averaged across 

several steps to minimise the effect of outliers. For this study, we focused on assessing 

average behaviour. Future research could assess coupling of gaze and gait behaviours 

similar to the analyses reported recently by (Matthis, et al., 2018). Another limitation 

of the study was that we had two separate, serious equipment failures so our data set 

was incomplete making it difficult to draw strong conclusions based on the results. 

Future advancements in wearable technology storage, hardware and software should 

prevent this from happening in future studies. 
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5.6 Conclusion  

 The present study furthers our understanding of how simulated, age-related 

deficits affect gait and gaze behaviour whilst walking across the types of surfaces that 

are typically encountered outside. This study is the first to assess how two intrinsic 

factors, namely lower visual field loss and increased cognitive load, affect behaviour 

both individually and in combination. Our young participants seemed to be quite 

robust to a blocked lower visual field and to performing a concurrent, simple reaction 

time task. Our finding contrasts with the well-documented deficits found for older 

people with cognitive decline when walking outside. We therefore conclude that we 

should be cautious about drawing conclusions based on simulated deficits. Instead, 

future studies should focus on trying to understand fall risks in groups that are directly 

affected by these deficits (i.e. those with dementia, glaucoma, etc.), rather than trying 

to simulate the deficits in the young.  
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5.7 Supplementary Materials 

5.7.1 Order of completion  

Figure 5.7.1 & Table 5.7.1 show the order of completion of the different 

surfaces. Table 5.7.1 also gives surface descriptions and surface lengths  

Table 5.7.1 Descriptions of the 20 experimental surfaces used in the study together 

with the order of completion and approximate surface length (to the nearest metre). 

Surface  Description 

Order of 

completion (A to 

T/T to A) Length (metres) 

S1 Flat flagstone paving E  21 

S2 Tarmac pavement N  22 

S3 Flat flagstone slabs S 21 

S4 Brick paving H  20 

S5 Flagstone slabs C  19 

S6 Fine gravel J  19 

S7 Flat grass M  19 

S8 Incline slope Q 21 

S9 Fine gravel L  18 

S10 Ridged paving slabs G  18 

S11 Decline slope P 21 

S12 Setts A  20 

S13 Rough gravel R 21 

S14 Woodchip path I  22 

S15 Uneven dirt path O  20 

S16 Loose pebbles D  22 

S17 Small loose pebbles K  19 

S18 Embedded stones in concrete T 21 

S19 Oblique paved slope B  19 

S20 Loose stones F  23 
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Figure 5.7.1: Order of surface completion (A to T or T to A) shown using a Google 

Map satellite image of the University of Liverpool campus. The two asterisks denote 

the laboratories used for the experimental set-up.    
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5.7.2 Counterbalancing combinations 

Table 5.7.2: The eight combinations of conditions that participants could be assigned 

to. The first pair of conditions were completed successively at each surface in turn for 

all twenty surfaces. Participants then took a short break before completing the second 

pair of conditions for the twenty surfaces in the reverse order. Full vision (V+C+ and 

V+C-) conditions were always paired together, as were blocked lower visual field 

conditions (V-C+ and V-C-). 

First pair Second pair  Number of 

participants 

V+C+ & V+C- V-C+ & V-C- 3 

V+C- & V+C+ V-C+ & V-C- 3 

V+C- & V+C+ V-C- & V-C+ 3 

V+C+ & V+C- V-C- & V-C+ 3 

V-C+ & V-C- V+C+ & V+C- 2 

V-C+ & V-C- V+C- & V+C+ 2 

V-C- & V-C+ V+C- & V+C+ 2 

V-C- & V-C+ V+C+ & V+C- 2 

  

5.7.3 Missing data 

Table 5.7.3: A list of the behavioural measures for which fewer than the total number 

of participants (n = 20) contributed to the analysis and an explanation of why data was 

missing  

Factors 
Affected 

participants 
Reason 
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Eye angle, fixation 

duration and 

number of fixations 

9** Eye tracker hardware issues 

Head pitch angle* 10** Head IMU software issues 

Surface 13* 8 
Surface was not available for testing 

partway through the study 

*8 of the 10 participants that walked over surface 13 had erroneous head pitch angle 

data so this surface was removed from the head pitch angle analysis.  

** Of the included participants, less than 2% of eye data and less than 1% of head 

pitch data was out of the expected range and had to be replaced by the mean for the 

condition.  

 

5.7.4 Effect of the infrared face shield on head pitch angle 

We conducted a validation study to assess the effect of wearing the infrared 

face shield. A single participant walked five times over an indoor smooth surface and 

five times over an uneven surface with and without wearing the infrared face shield. 

The results for the twenty trials are shown in Figure 5.7.4. Head pitch angle was 

around 4° lower whilst wearing the face shield for both the smooth and the uneven 

surfaces. 
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Figure 5.7.4: Mean head pitch angle (degrees) + SE for the smooth and uneven 

conditions, with and without a face shield.  

We had intended to collect data from more participants but testing was 

interrupted due to the 2020 coronavirus pandemic. As an alternative, we assessed how 

mean head pitch angle in the present study (when wearing the face shield) compared 

to that of our previous study (Thomas, et al., 2020a) (when no face shield was worn) 

for the five surfaces (S4, S6, S17, S18, S19) that were common to both studies. For 

these five surfaces, head pitch angle was, on average (±SD), 3.2° (±3.86) and 5.1° 

(±4.61) lower under the full and blocked lower peripheral visual field conditions 

respectively in the present study when a face shield was worn. Taking the single 

participant validation study (see Figure 5.7.4) with this cross-study comparison, it 

appears that head pitch angle was somewhat lower (by around 4°) when a face shield 

was worn. 
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5.7.5 Relative frequency plot  

Figure 5.7.5.1 shows the relative frequency plots for (A) eye and (B) head 

pitch angle averaged over all 20 surfaces whilst Figure 5.7.5.2 and Figure 5.7.5.3 

show relative frequency for each individual surface, in order of surface complexity. 

Figure 5.7.5.1: Overall mean relative frequency distributions of eye (A) and head 

pitch (B) angle across the 20 surfaces for V+C+ (black, solid line), V+C- (black dashed 

line), V-C+ (red solid line) and V-C- (red dashed line) conditions. On the y-axis, 

results are plotted for 5° bins relative to 0° (looking straight ahead). Negative angles 

correspond to lowering of the eyes (A) or head (B) toward the ground. 
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Figure 5.7.5.2: Mean relative frequency distributions of head pitch angle (°) for surfaces S1 (top left) to S20 (bottom right) for V+C+ (black, solid 

line), V+C- (black dashed line), V-C+ (red solid line) and V-C- (red dashed line) conditions. On the y-axis, results are plotted for 5° bins relative 

to 0° (looking straight ahead). Negative angles correspond to lowering of the head toward the ground. 
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Figure 5.7.5.3: Mean relative frequency distributions of eye angle (°) for surfaces S1 (top left) to S20 (bottom right) for V+C+ (black, solid 

line), V+C- (black dashed line), V-C+ (red solid line) and V-C- (red dashed line) conditions. On the y-axis, results are plotted for 5° bins relative 

to 0° (looking straight ahead). Negative angles correspond to lowering of the eyes (A) or head (B) toward the ground.
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Table 5.7.6 Mean (±SE) number of vibrations per surface and condition. Note that the 

surfaces differed in length, see supplementary material (Table 5.7.1), which accounts 

for some of the variation between surfaces. 

Surface 

V+C- V-C- 

Mean SE Mean SE 

S1 5.3 0.4 5.2 0.4 

S2 4.8 0.3 5.0 0.4 

S3 4.9 0.3 5.1 0.4 

S4 4.9 0.4 5.2 0.4 

S5 5.1 0.3 5.0 0.4 

S6 5.3 0.6 5.2 0.6 

S7 4.6 0.3 4.5 0.4 

S8 5.2 0.4 5.3 0.4 

S9 4.6 0.3 4.5 0.3 

S10 4.4 0.3 4.9 0.4 

S11 5.1 0.4 5.1 0.4 

S12 5.3 0.4 5.1 0.4 

S13 4.1 0.5 4.6 0.6 

S14 5.1 0.3 5.4 0.4 

S15 5.2 0.4 5.6 0.5 

S16 5.5 0.4 5.6 0.4 

S17 4.8 0.3 4.9 0.4 

S18 4.8 0.4 5.0 0.4 

S19 5.4 0.5 5.0 0.5 

S20 6.5 0.5 6.2 0.5 

 

5.7.7 Cognitive load effect   

Figure 5.7.7 shows mean head pitch angles calculated at 100 millisecond 

intervals prior to and subsequent to the vibration onset and averaged across surfaces.  

We conducted a within-subjects ANOVA for the head pitch angle data with two 
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within-subject factors of vision (V+, full vision versus V-, blocked lower visual field) 

and time (100ms intervals between -500 and +500 relative to vibration onset). Head 

pitch angle was significantly lower in V- compared to V+ conditions, F(1,19) = 16.4, 

ηp
2 = 0.46, p = 0.001. There was no significant effect of time and no interaction 

between vision and time. We were unable to run an analogous ANOVA for eye angle 

data as there was insufficient data within the expected range of angles for these narrow 

time bins.  

 

Figure 5.7.7: Mean (±SE) head pitch angle averaged across surfaces (S1-S20), at 

100ms intervals from -500ms to +500ms relative to the vibration onset for the 

cognitive load task (blue arrow) for the V+C- (black, diamonds) and V-C- (red, 

diamonds) conditions. 
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5.7.8 Pearson’s correlations  

Pearson’s correlations between mean z-scores across the 20 surfaces for the 

six gaze and gait behavioural measures. Z-scores were multiplied by -1 for number of 

fixations so that for all measures higher z-scores were always associated with more 

stable walking. 

Table 5.7.8.1: Pearson’s correlations between behavioural measures for the four 

different conditions (V+C+, V+C-, V-C+, V-C-). * signifies a significant correlation 

of p <0.001 (as determined by the Bonferroni correction) and bold values signify large 

correlations (r > 0.5) as determined by Cohen (2013). 

 Eye 

angle 

Fixation 

duration 

Number 

of 

fixations 

Head pitch 

angle 

Gait 

speed 

AP 

harmonic 

ratio 

V+C+  

x  
V+C- 

0.56 0.67 0.34 0.90* 0.93* 0.97* 

V+C+ 

 x  

V-C+ 

0.03 -0.28 0.57 0.75* 0.84* 0.95* 

V+C+  

x  
V-C- 

-0.41 0.14 0.37 0.79* 0.91* 0.94* 

V+C-  

x  

V-C+ 

-0.07 -0.05 0.28 0.89* 0.88* 0.95* 

V+C-  

x  
V-C- 

-0.24 0.52 0.41 0.89* 0.96* 0.97* 

V-C+  

x  

V-C- 

0.41 0.63 0.79* 0.95* 0.94* 0.94* 

 

 

Table 5.7.8.2: Pearson’s correlations between mean z-scores for V+C+ conditions. * 

signifies a significant correlation of p <0.001 (as determined by the Bonferroni 
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correction) and bold values signify large correlations (r > 0.5) as determined by Cohen 

(2013). 

 Fixation 

duration 

Number of 

fixations 

Head pitch 

angle 
Gait speed 

AP 

harmonic 

ratio 

Eye angle 0.42 0.23 0.42 0.39 0.33 

Fixation 

duration 
 0.04 0.74* 0.52 0.59 

Number of 

fixations 
  0.29 0.66 0.08 

Head pitch 

angle 
   0.66 0.79* 

Gait speed     0.50 

 

Table 5.7.8.3: Pearson’s correlations between mean z-scores for V+C- conditions. * 

signifies a significant correlation of p <0.001 (as determined by the Bonferroni 

correction) and bold values signify large correlations (r > 0.5) as determined by Cohen 

(2013). 

 Fixation 

duration 

Number of 

fixations 

Head pitch 

angle 
Gait speed 

AP 

harmonic 

ratio 

Eye angle 0.59 0.19 0.64 0.56 0.60 

Fixation 

duration 
 0.10 0.72* 0.51 0.46 

Number of 

fixations 
  0.29 0.52 0.20 

Head pitch 

angle 
   0.61 0.82* 

Gait speed     0.38 

 

Table 5.7.8.4: Pearson’s correlations between mean z-scores for V-C+ conditions. * 

signifies a significant correlation of p <0.001 (as determined by the Bonferroni 
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correction) and bold values signify large correlations (r > 0.5) as determined by Cohen 

(2013). 

 Fixation 

duration 

Number of 

fixations 

Head pitch 

angle 
Gait speed 

AP 

harmonic 

ratio 

Eye angle -0.22 0.01 -0.12 0.19 0.21 

Fixation 

duration 
 -0.49 0.23 -0.21 -0.06 

Number of 

fixations 
  0.11 0.77* 0.03 

Head pitch 

angle 
   0.33 0.72* 

Gait speed     0.22 

 

Table 5.7.8.5: Pearson’s correlations between mean z-scores for V-C- conditions. * 

signifies a significant correlation of p <0.001 (as determined by the Bonferroni 

correction) and bold values signify large correlations (r > 0.5) as determined by Cohen 

(2013). 

 Fixation 

duration 

Number of 

fixations 

Head pitch 

angle 
Gait speed 

AP 

harmonic 

ratio 

Eye angle -0.17 -0.47 -0.18 -0.06 0.01 

Fixation 

duration 
 0.04 0.56 0.23 0.11 

Number of 

fixations 
  0.36 0.65 0.25 

Head pitch 

angle 
   0.45 0.72* 

Gait speed     0.24 

 

5.7.9 Combined behavioural z-scores 

We calculated combined behavioural z-scores averaged across head pitch angle, gait 

speed and walking smoothness as measured by harmonic ratios, for each surface and 
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condition. As head angles were excluded for surface s13 (see supplementary material, 

5.7.3), z-scores for that surface were calculated across gait speed and walking 

smoothness only. Eye angle, fixation duration and number of fixations were excluded 

from this combined z-score due to weak correlations with other measures (see 

supplementary material, 5.7.8). The combined z-scores for the different surfaces are 

shown in Figure 5.7.9. Surface complexity and vision had a significant effect, 

F(14,20) = 61.91, p < 0.001 and F(1,20) = 7.34, p = 0.014 respectively. Z-scores were 

lower as surface complexity increased and were lower under V- (M ± SE = 0.16 ± 

0.19) compared to V+ (M ± SE = 0.10° ± 0.20) conditions. There were no main effects 

of cognitive load condition and no significant interactions. 

  

 

Figure 5.7.9: Mean combined z-scores (averaged across head pitch angle, gait speed 

and walking smoothness) for V+C+ (black, filled circles), V+C- (black, outlined 

diamonds), V-C+ (red, filled circles) and V-C- (red, outlined diamonds) conditions. 

Surfaces were rated from the easiest and simplest to traverse (S1) to the hardest and 

most complex (S20) using a surface perception scale from 1 (smooth / stable) to 10 

(rough / unstable). 
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Chapter Six: Surface complexity perception: 

does age or first-hand experience matter?  

 

From our previous chapters, I have shown that perceptual measures of surface 

complexity offer an easy and simple proxy for behavioural changes. Perceptual 

measures are highly correlated to physical measures of the surface (see Chapter 3) and 

have consistently predicted gaze and gait behavioural changes (Chapters 3, 4 and 5). 

However, thus far, I have only assessed the perception of surface complexity from 

young people, whilst older people are more at risk of an injurious fall. In this chapter, 

the aim was to determine whether surface complexity was perceived similarly in 

young people to older people. I also wanted to determine whether first-hand 

experience of the surface was important for perception ratings given. As public 

walkway surfaces are typically repaired and replaced by the perception of the surface 

from a single individual, infrequently and first-hand, could a photo of the surface 

produce comparable perception results? I also, therefore, aimed to compare the 

perception ratings of surfaces given from first-hand experience to the same surfaces 

viewed from a single image.  
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6.1 Abstract 

Background: In an attempt to reduce fall risk and ensure gait stability, we typically 

adopt a more cautious gait as we age, especially over more complex, outdoor surfaces. 

However, it is not known whether these age-related behavioural changes influence 

how walking surfaces are perceived. Surface perception is particularly important given 

that decisions regarding complex surface repairs are typically determined by a single 

individual who assesses surfaces, first-hand. Inevitably this is done infrequently. We 

may therefore ask, does the age of the person making the assessment affect any such 

decision? Similarly, is first-hand experience necessary for such decisions, or would a 

less costly and time saving approach, namely determining surfaces complexity from a 

single image of the same surface produce comparable results? Therefore, to determine 

potential confounding factors affecting surface perception, this study considered both 

age (young vs older participants) and experience (first-hand vs viewing images) of 

individuals assessing surfaces of different complexities.  

Research Question: How does perceived surface complexity, assessed from surface 

roughness and stability, change as we age, and secondly, do images of surfaces 

produce similar responses to first-hand experience? 

Methods: We compared the perception ratings of surface roughness and stability 

across 17 surfaces for different groups of participants. We compared how young 

participants (aged 18 – 40) who rated online images of surfaces first-hand compared 

to, firstly, older (aged 65 - 93) participants who also rated online images of surfaces 

and secondly, to young participants (aged 18 – 38) who rated surfaces first-hand. 

Additionally, all participants were asked to describe surfaces in a maximum of three 

words.  
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Results: Neither the age of participants (young vs older) nor experience of surfaces 

(first-hand vs images) had a large effect on perceived ratings. Only a small number of 

surfaces showed significant differences between the three groups, and ratings were 

significantly correlated between different participant groups. Likewise, overall surface 

descriptions were similar between groups and different surfaces were described in 

similar descriptions.  

Significance: Our study showed that neither age nor experience significantly changed 

the perception of surface complexity. This suggests that, with age, surfaces are 

perceived similarly despite the increased risk of an injurious fall. Separately, our 

finding suggests surface complexity assessment may be completed as effectively when 

done remotely, using a single image. Together these findings increase the potential for 

walking surfaces to be assessed more easily and frequently to help prevent incidences 

of injury from falls when walking outdoors.   
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6.2 Introduction 

 Falls are one of the leading causes for injury with age, over 7 million injuries 

from falls being reported each year for those over 65 in the USA alone (Bergen, 

Stevens, & Burns, 2016). Increased injury risk from falls with age is likely caused as 

a result of increased prevalence of a fall, due to age-related comorbidities (including 

vision and cognitive decline), as well as increased injury rate due to loss of 

musculoskeletal strength. In a supposed response to reduce fall risk, researchers have 

identified certain behavioural changes, found when walking with age, collectively 

termed “cautious gait” (Herman, Giladi, Gurevich, & Hausdorff, 2005; Nutt, 2001). 

These responses suggest that, even with age-related deteriorations, older individuals 

can perceive when conditions are more challenging with respects to their abilities and 

change behaviour accordingly. Despite this finding, falls are still commonplace for 

this population group. For both older and young individuals, falls are common when 

outdoors and when surfaces are non-level. Uneven surfaces and steps are regularly 

reported as the most common environmental factor for a fall (Gazibara, et al., 2017; 

Nyman, Ballinger, Phillips, & Newton, 2013; Talbot, Musiol, Witham, & Metter, 

2005) with both older and young individuals having to adapt their behaviour under 

these more challenging conditions ('t Hart & Einhauser, 2012; Marigold & Patla, 2008; 

Matthis, Yates, & Hayhoe, 2018; Voloshina, Kuo, Daley, & Ferris, 2013). However, 

given that older individuals already show a more cautious gait in general, do older 

individuals perceive these more complex surfaces differently to the young? 

Alternatively, does the adoption of an existing cautious gait help them feel more stable 

and thus perceive surfaces similarly to the young? Understanding the perception of 

surfaces, and potential differences between the young and the older individuals, may 

help us understand why there is a greater risk of a fall as we age. Furthermore, surface 
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perception for either both, or one age group, may prove to be a useful metric in 

determining overall surface complexity.  

 Surface complexity is an important parameter to evaluate the risk of a fall in a 

given setting. However, there are few existing studies that have been conducted to 

assess the perceived measure of surface complexity and how this may relate to fall 

risk. In the UK, individual councils are responsible for pavement maintenance; 

decisions towards resurfacing or pavement repair made entirely by one individual’s 

perception of conditions (for example see Surrey County Council, 2008). However, 

pavements do not represent all surfaces on which we may walk and, as mentioned 

above, perception of conditions may be affected by the individual’s age. As such, 

using the existing approach, the decision to replace or resurface a pavement may be 

affected according to the individuals’ age. A recently developed metric for pavement 

surface complexity, the Sidewalk Condition Index (Corazza, Di Mascio, & Moretti, 

2016), assesses walking surfaces based on the presence of set features (e.g. roots, 

cracks and potholes). However, similarly this measurement relies, in part, on the 

individual’s perception of surface conditions. We contend that a more formally 

validated approach is required. The approach taken by the current authors, presented 

here and in our previous research, assessed the perception of surface complexity from 

multiple individuals of a similarly aged population (Thomas, Gardiner, Crompton, & 

Lawson, 2020a, 2020b). As such, the current study procedure can identify surfaces 

that are consistently considered of greater fall risk for populations of similar age.  

One research area where surface perception has been formally related to fall 

risk is the effect of floor slipperiness. For example, Cohen and Cohen (1994) assessed 

the perception of outdoor surfaces under dry and wet conditions, both from 

observation and after having walked on the surface. Most surfaces tested were 
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perceived as more slippery when they were wet, and observation ratings were highly 

correlated with experience of walking over the surface. This finding suggests that 

perceptions of surface slipperiness from observation are as accurate as those resulting 

from having walked over it. Other studies have determined differences in perceived 

slipperiness for surfaces of different complexities. For example, although assessments 

of floor tiles of different roughness showed no differences in perceived slipperiness 

(Li, Chang, Leamon, & Chen, 2004), longer stretches of walkways showed smooth 

surfaces to be perceived as more slippery than rough surfaces (Yu & Li, 2015). 

However, these studies tested healthy younger individuals. One large-cohort study has 

suggested that the perception of older individuals is as good as that of the young; the 

perception of balance in older individuals being highly associated with levels of 

walking activity, unlike actual balance performance (Talkowski, Brach, Studenski, & 

Newman, 2008). Similarly, both older and young adults were able to identify stairs 

that were too high to safely traverse (Konczak, Meeuwsen, & Cress, 1992). However, 

in contrast, a study from Lockhart, Woldstad, Smith, and Ramsey (2002) showed a 

greater discrepancy between the perceptual ratings of surface slipperiness between 

observation and experience in older participants compared to the young. Therefore, 

further research is required for elucidation of the relationship between age and surface 

perception. 

Another factor that may affect how complex a surface is perceived comes from 

how the surface is viewed. In the present study, we compared perceived surface 

complexity under real life (“first-hand”) conditions to a single image of the same 

surfaces. To the authors’ knowledge, no study has contrasted subjects’ assessments of 

walking surface complexity between first-hand experience and images. However, 

previous research has shown no differences between the perceived steepness of stairs 
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for first-hand experience compared to images of the same surfaces (Taylor-Covill & 

Eves, 2013). Furthermore, we might expect that differences between surface 

complexity can be shown from images given that previous research was able to 

demonstrate differences for assessment of floor slipperiness using surface images 

alone (Zamora, Alcántara, Artacho, & Cloquell, 2008). In the present study we tested 

whether surface perception differed when assessed from surface images compared 

with first-hand experience. This might be expected, given that, in viewing the surface 

first-hand, the individual can use stereoscopic information and use a larger field of 

view to assess the complexity of the surface. This information, not available from 

images, may change the perspective of the surface. On the other hand, if images (taken 

under settings to that of first-hand conditions) show comparable results to direct 

observation, this may allow for an easier and more automated method to determine 

surface complexity perception. This would be of particular interest for council-made 

decisions for pavement maintenance, the public being potentially able to submit 

images of surfaces that are deemed to be of increased fall risk, or records being made 

at intervals via automated camera systems. 

To determine the importance of experience and age for surface perception, we 

investigated surface perception for two age groups (young and older individuals) and, 

for young individuals, for two experiences (first-hand and online images). Older 

individual perception first-hand was not assessed due to the increased risk of a fall and 

injury to these participants when walking. For all conditions, we assessed surface 

complexity using Likert scales (Likert, 1932) of perceived surface roughness and 

perceived stability. By assessing both measures, we can interpret and compare how 

different participants perceived surface roughness (e.g. “completely smooth”, 

“extremely rough”) and how different participants perceive their likely locomotion if 
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they were to walk over the surface (e.g. “no problem with stability”, “I think I might 

fall over”). In addressing the above questions, we can better understand how to assess 

surface complexity in relation to fall risk. This is particularly meaningful given our 

previous findings that showed that perception of surfaces was strongly correlated with 

both physical and behavioural changes in the young (Thomas, et al., 2020b).   

 

6.3 Methodology 

 We assessed the perceived surface complexity from three groups of 

participants based on age (young vs older individuals) and experience (first-hand vs 

online image).  

6.3.1 Participants 

Participants were grouped as: young online image (YOI), older online-image 

(OOI) and young first-hand participants (YFH). The YOI group consisted of 41 

participants, aged 18 – 40, (4 male, mean ± SD; age = 23.3 ± 5.7; height = 166.0 ± 7.8; 

weight = 68.1 ± 24.3). Participants were predominately undergraduate university 

students recruited from a psychology experimental participation group. The OOI 

group consisted of 37 participants, aged 65 – 93, (14 male, mean ± SD; age = 74.6 ± 

7.1; height = 169.0 ± 8.7; weight = 67.2 ± 12.0). Participants were recruited from local 

U3A (University of the Third Age) groups. The YFH group consisted of 32 

participants, aged 18 – 38 (14 male, mean ± SD; age = 22.2 ± 5.0; height = 172.6 ± 

8.5). Participants were predominately University students. The perception data for 

these participants has been previously reported (Thomas, et al., 2020b), and is 

presented here again in order to compare this group to the other two groups. We tried 

to ensure that participants completed the study under similar conditions both to each 
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other and to the images used for online image participants. Specifically, all participants 

were tested on dry and overcast days either mid-morning or mid-afternoon. 

6.3.2 Data collection & Protocol  

 The data collection procedure was similar for all participants. Participants from 

all three groups rated 17 surfaces (Figure 1) on Likert scales (Likert, 1932) for 

perceived surface complexity. Surfaces were chosen to cover a wide range of those 

encountered in daily-life, all surfaces being located within The University of Liverpool 

campus. In selecting 17 surfaces, this study assessed a larger number of surfaces than 

that had been previously assessed using perceptual ratings (Cohen & Cohen, 1994; Li, 

et al., 2004; Yu & Li, 2015). Surface complexity was determined from two separate 

measures, participants rating the perceived surface roughness (1 = “Completely 

smooth” to 10 = “Extremely rough”) and perceived stability (1 = “No problem with 

stability” to 10 = “I would probably fall over”) if they were to walk on the surface. 

Participants were also asked to describe each surface in a maximum of three words. 

Similar descriptions were pooled together (e.g. paved and paving), for details see 

supplementary material Table 6.7.1. For both YOI and OOI participants, the study 

was completed using Qualtrics software (Qualtrics, Provo, UT). Participants were 

shown a single image and written description for each surface. Descriptions of the 

surfaces (see supplementary material 6.7.2) and a dashed red arrow on the image 

denoted the start- and end for each surface (see Figure 1). Any features that were of 

note, but that could not be easily seen due to the angle of the image (e.g. steps), were 

highlighted in the description and in the picture using a red star. Ratings were recorded 

using Likert scales provided and descriptions could be typed into a text box. For the 

YFH participants, the research investigator informed the participant of the start- and 

end-point for each surface, pointing out any notable features or requirements (e.g. 
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“walk down the steps” etc.). Participants would then give ratings and descriptions for 

each surface vocally, recorded by the research investigator. All participants rated 

surfaces in order from S1 to S17. 

Figure 1: Images showing the 17 surfaces, shown in the order presented to all 

participants (S1 – S17). YOI and OOI participants were shown the above pictures, 

accompanied by a description which denoted the start and end for each surface. For 

surfaces that included features not easily shown on the image, additional information 

was given in the description, highlighted in the image using red stars.  

 

6.3.3 Analysis  

 We conducted linear regression for both roughness and stability mean ratings, 

comparing YOI participants to OOI and then YFH participants. To compare 

differences in ratings between participant groups, we conducted t-tests between the 
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regression line intercepts and slopes. We also conducted a one-way ANOVA for 

ratings given at the surface level. Finally, we pooled common descriptions for surfaces 

and compared the frequency of these words for different surfaces. Significant 

differences were determined as those with a p value of less than 0.05 and effect sizes 

were categorised as small (d > 0.2) , medium (d > 0.5) or large (d > 0.8) following 

Cohen (2013). 

 

6.4 Results 

 Mean roughness and stability ratings for YOI and OOI participants are shown 

in Figure 2A. A linear regression showed a significant relation between young online 

image participants and older online image participants for both roughness and stability 

ratings, (R2 = 0.91; F,(1,16) = 169.81, p < 0.001 and R2 = 0.95; F,(1,16) = 316.86, p 

< 0.001 respectively). However, there were no significant differences between the 

roughness and stability regression intercepts (t(33) = 0.46, p = 0.01) or between 

regression slopes (t(33) = 1.05, p = 0.003). Thus, surfaces perceived as rougher and 

less stable for YOI participants, were similarly rated by OOI participants. Comparison 

between groups at the surface level showed significant differences in perceived 

roughness (Figure 2B) for two surfaces (S2 and S4), (t(75) = -2.66, d = 0.63, p = 

0.01; t(72) = -2.70, d = 0.07, p = 0.009 respectively). For both surfaces, the OOI 

participants perceived surfaces to be significantly rougher than YOI participants. 

However, there were no other significant differences for surface roughness and no 

significant for perceived stability (Figure 2C), see supplementary material (Table 

6.7.3) for details.  
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 Mean roughness and stability ratings for YOI and YFH participants are shown 

in Figures 2D. A linear regression showed a significant relation between YOI 

participants and YFH participants for both roughness and stability ratings, (R2 = 0.96; 

F,(1,16) = 378.06, p < 0.001 and R2 = 0.91; F,(1,16) = 167.00, p < 0.001 respectively). 

However, there were no significant differences between the roughness and stability 

regression intercepts (t(33) = -0.74, p = 0.465) or between regression slopes (t(33) = 

0.80, p = 0.431. Thus, surfaces perceived as rougher and less stable for YOI 

participants, were similarly rated by YFH participants. Comparison between groups at 

the surface level showed significant differences in perceived stability (Figure 2F) for 

surfaces S2, (t(67) = -2.63, d = 0.70, p = 0.011. The YFH participants perceived this 

surface to be significantly more unstable. However, there were no other significant 

differences for stability and no significant differences for perceived roughness (Figure 

2E), see supplementary material (Table 6.7.3) for details. 
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Figure 2: Mean roughness and stability ratings between YOI participants and (A) OOI participants and (D) YFH participants. The black lines 

represents a correlation of R = 1 and dotted lines represent the regression lines for roughness (red) and stability (blue). The linear regression 

equations are as follows: (A) roughness = R2 = 0.91 (y = 0.96x + 0.34) and stability = R2 = 0.95 (y = 0.86x + 0.50), (D) roughness = R2 = 0.96 (y 
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= 1.04x – 0.11) and stability = R2 = 0.92 (y = 1.12x - 0.39). Surface mean (± SE) roughness ratings and stability ratings for YOI participants are 

shown when compared to (B, C) OOI image participants and (E, F) YFH participants. Surfaces are ranked from least rough/most stable to most 

rough/least stable according to ratings from YOI participants. Significant differences (*) between YOI participants and each other respective 

participant group are shown for each surface and are considered significant at p < 0.05. 
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Participants for each group were also asked to give a maximum of three 

descriptions for each surface. The five most common descriptions for each group, and 

shared amongst all groups, are shown in Table 1. Descriptions were generally similar 

between groups, however the older online image group commonly referred to a 

“handrail” (either present or lacking, n = 45), which was not commonly reported by 

either the young first-hand (n = 0) or young online image group (n = 6). The most 

common descriptions that were shared amongst groups were “smooth”, “steps”, 

“stairs”, “uneven” and “paved.” The frequency for these descriptions used at each 

surface for each group is shown in Figure 3. Descriptions at each surface were 

generally similar between groups. “Smooth” was more frequently used for surfaces 

that had lower surface complexity ratings, whilst the description “uneven” was more 

frequently used for surfaces will higher surface complexity ratings.  Notably, some of 

the older online image participants described S1 and S4 as “uneven”, despite a low 

roughness and unstable rating. Furthermore, this description was not used by other 

participant groups. Across all participants, the descriptions “steps” and “stairs” were 

used similarly between surfaces and “paved” was used more frequently for surfaces 

that had lower surface complexity ratings. 

Table 1: The frequency of the five most common verbal descriptions provided by 

participants in each of the three groups. Descriptions are listed in order, shown as 

percentages (actual number) of the total number of words given.  

Young first-hand  
Young online 

image 

Older online 

image 
All participants 

stairs 
8.8% 

(97) 
smooth 

15.2% 

(178) 
smooth 

11.4% 

(131) 
smooth 

11.6% 

(396)  

smooth 
7.6% 

(84) 
uneven 

6.7% 

(78) 
steps 

7.4% 

(85) 
steps 

6.0% 

(206) 
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paved 
6.1% 

(67) 
stairs 

6.5% 

(76) 
uneven 

6.3% 

73 
stairs 

5.7% 

(194) 

steps 
5.9% 

(65) 
old 

6.0% 

(70) 
paved 

4.2% 

(48) 
uneven 

5.6% 

(192) 

grassy 
4.7% 

(52) 
steps 

4.6% 

(54) 

handrai

l 

3.9% 

(45) 
paved 

4.9% 

(167) 

 
100% 

(1107) 
 

100% 

(1168) 
 

100% 

(1151) 
 

100%  

(3426) 

 

 

Figure 3: A heat map showing the frequency of each of the five most common 

descriptions given for each participant group; young first-hand participants (YFH), 

young online image participants (YOI) and older online image participants (OOI). 

Surfaces are ordered from the least (S4) to most (S6) complex, as calculated from the 

average rating between the roughness and stability ratings for YOI participants. Heat 

maps were calculated based on the frequency of the description being used across 
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surfaces for each participant group, from no incidence (darkest green) to the highest 

frequency of the word-use (darkest red). 

 

6.5 Discussion 

 The aim of this study was to determine whether perceptual measures of surface 

complexity, measured from perceived surface roughness and stability, differed 

depending on the age of the participant and how the surfaces were viewed. The results 

showed that neither age nor experience had a large effect on perception ratings. 

Compared to young participants viewing surfaces from online images, there were only 

three incidences of significant differences at the surface level between ratings, two for 

older participant’s roughness ratings (S4 and S2) and one for young first-hand 

participant’s stability ratings (S2). Moreover, for both groups, roughness and stability 

ratings were closely correlated with young online image participants, correlations over 

R = 0.9. Thus, surface complexity perception does not seem to change dependent on 

age nor experience. 

The perception of surface conditions is one of the factors that dictates whether 

improvements to pavements and public walkways are required. Currently, in the UK, 

only one or a small number of individuals are included in this decision, made first-

hand at the location. This procedure may be problematic given the changeable nature 

of walking surfaces from different environmental factors, such as slipperiness, known 

to impact perceived fall risk (Cohen & Cohen, 1994; Yu & Li, 2015). Furthermore, 

there are currently inconsistent findings regarding the perception of fall risk associated 

with walking surfaces as we age (Lockhart, et al., 2002; Talkowski, et al., 2008). The 

results of the present study suggest that neither age nor experience significantly 
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changes the perception of surfaces. This finding suggests that the age of the individual 

or researcher assessing fall risk from a surface should not influence their assessment. 

This is particularly of note given that this finding was consistent across the clear 

majority of surfaces in the present study, including surfaces described as smooth, 

uneven, paved and grassy as well as for stairs. Furthermore, the study showed no 

differences from the perceived complexity from first-hand experience to that when 

looking at an online image. This supports previous research that showed images of 

stairs to exhibit a similar perceived steepness to the same stairs in situ (Taylor-Covill 

& Eves, 2013). The results presented here may have implications towards the future 

assessment for surface replacement or repairs, individuals potentially able to view 

surfaces from online images only. This procedure could be beneficial toward reducing 

the time taken to replace potentially dangerous surfaces, given that images could be 

taken more easily by pedestrians, rather than be ascertained by council workers in situ. 

Furthermore, this procedure could allow surfaces to be assessed more regularly, 

including across numerous weather conditions, and thus be implemented as a similar 

procedure to that used for UK road repair, assessed using the TRAffic-speed Condition 

Survey (TRACS), (see Scott, et al., 2008). The use of online images to assess surface 

complexity would also allow surface assessment to be done more quickly, meaning 

the potential for multiple individuals to assess the same surfaces at the same time to 

prevent anomalies, as performed here. In doing so, surfaces that are of higher risk of 

a fall, including uneven surfaces and steps, could be assessed more frequently in the 

hope to prevent the number of falls.  

 Across all participant groups, surfaces were largely described similarly in 

relation to perceived complexity ratings. For example, surfaces S6 and S2 were 

perceived as the most rough, and the least stable respectively and were both commonly 
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referred to as “uneven”. Individually the surfaces consisted of a stony surface and a 

sloped surface respectively, as shown in Figure 1. Notably, similar surface types have 

been used in previous research when wanting to assess behaviour over complex and 

uneven conditions (Marigold & Patla, 2007; Merryweather, Yoo, & Bloswick, 2011). 

Equally, surface S4 was rated as the least rough and most stable and commonly 

described as “smooth” by all groups. This surface consisted of paving slabs, previous 

research using paving slabs to represent smooth surfaces (Thies, et al., 2011). As 

participants from all groups commonly described these two types of surfaces as 

“smooth” and “uneven”, this suggests that previous researchers were correct in 

defining those surfaces as such and using them as representations for more simple and 

more complex surfaces respectively. Our other research has supported these findings; 

the surfaces perceived as more rough and described commonly as “uneven” here 

shown to exhibit behaviour indicative of a more cautious gait, as expected under more 

challenging conditions  (Thomas, et al., 2020b).  

In this study we pooled participants into one of two age categories (young or 

older). However, increasing age is known to be associated with an increased number 

of comorbidities, which in turn increase the risk of falls (Barnett, et al., 2012). To 

determine whether the age of participants within age groups affected ratings, we 

calculated overall roughness and stability ratings (averaged across all surface) for each 

individual (see supplementary material 6.7.4) and regressed these against their age. 

Age within each of our three group was not shown to be a significant predictor of 

roughness or stability ratings. However, for OOI participants, a slight trend does 

appear to exist such that increased age led to higher (more unstable) stability scores. 

Thus, future research could evaluate this further, testing a greater balance of 

participants at each age compared to that found here, to see whether age or other 
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confounding factors (e.g. activity levels or number of existing health conditions) may 

more accurately predict perceived surface complexity.   

 

6.6 Conclusion 

 In summary we found that perception was not affected by participant age or 

whether participants only saw surface images. Perceptual ratings of surface roughness 

and stability were highly correlated between different conditions and descriptions 

were largely similar. The study did not include first-hand assessment for older 

participants, and thus we do not know whether surfaces are perceived differently for 

this population group. Although there were few differences between surface ratings 

for the older and young group when viewing surface from a single image, the older 

individuals did describe less complex surfaces (S4 and S1) as uneven and did often 

describe surfaces in relation to handrails. Future research should test a range of 

surfaces of different complexities under additional conditions, indicative of those 

likely to impact outdoor surface perception, including other environmental factors 

including presence of others, slipperiness and under different lighting conditions. In 

combination with the results of the current study, this would aid in the assessment of 

potentially high-risk surfaces and thus help to prevent and reduce injurious falls.  
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6.7 Supplementary Material  

 

Table 6.7.1: Words entered into the analysis when similar, alternative descriptions 

were given. This was determined by one of the research investigators and was only 

used to collate words with the same or similar roots but different suffixes. All words 

belonging to the same root counted toward the same description count.   

Word used in analysis Alternative descriptions given 

bricked brick, bricks 

bumpy bumps 

carpeted carpet 

cobbled cobble, cobbles 

downward down, downhill 

flagged flag, flags 

handrail hand-railing, rail, rails 

no handrail (handrail) missing, no (handrail) 

paved pavement, paving 

pebbled pebble, pebbles 

rough roughened 

slabbed slab, slabs 

slanted slant, slants, slanting,  

slippery slippy 

squishy squidgy  

stony stoned, stone, stones 

tiled tile, tiling 



240 
 

trip-hazard hazard, trip 

upward up, uphill 

varied variable, variation 

 

6.7.2 Descriptions for each surface 

Below are descriptions that accompanied each image of the 17 different 

surfaces shown to young and older online image participants. Description of surfaces 

were shown below the image of the same surface. Note that, for surfaces S16 and S17, 

an additional description was given above the picture that read, “Note! This surface 

includes some areas not shown in the picture. Please ensure to read the description 

before answering the questions!”    

 S1. “Imagine walking in a straight line from where the photograph was taken 

to the end of the red arrow.”  

 S2. “Imagine walking from start of the red arrows (at the lower left corner of 

the photograph), then following the red arrows ending at the lamppost.”  

 S3. “Imagine walking from where the photograph was taken, and following 

the red arrow, ending at the top of the stairs.” 

 S4. “Imagine walking from where the photograph was taken, and following 

the red arrow, ending at the start of the crossing area.” 

 S5. “Imagine walking from where the photograph was taken, then going down 

one step (located at the lower star) and then following the red arrow, 

down three stairs (located at the upper star), ending at the corner of the dark 

bricked wall.”  
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 S6.  “Imagine walking from where the photograph was taken, then following 

the red arrows, ending at the bush at the far side.”  

 S7. “Imagine walking from where the photograph was taken, then following 

the red arrows down the ramp, before turning around and ending at the start 

location.”  

 S8. “Imagine walking from where the photograph was taken, then following 

the red arrow and ending where the star is located.”  

 S9. “Imagine walking from where the photograph was taken, then following 

the red arrow, ending at the end of the arrow.”  

 S10. “Imagine walking from where the photograph was taken, then following 

the red arrow, ending at the end of the arrow.”  

 S11. “Imagine walking from where the photograph was taken, then following 

the red arrow, ending in front of the tree.”  

 S12. “Imagine walking from the start of the red arrows (on the ground level), 

then following the red arrows up, ending at the end of arrows.”  

 S13. “Imagine walking from the start of the arrows (on the lower left side of 

the photograph), then following the red arrows, ending at the end of the 

arrows.”  

 S14. “Imagine walking from where the photograph was taken, then following 

the red arrow, ending in front of the tree.”  

 S15. “Imagine walking from where the photograph was taken, then following 

the red arrow, ending at the end of the arrow next to the white bins.”  

 S16. “You are now inside a building that has 3 floors (ground, first and 

second). Imagine walking from the ground floor (start of the red arrows) and 

then following the red arrows to the first floor (the top of the picture). You then 
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need to keep walking to the top of the stairs on the second floor (not shown in 

the picture). The steps are the same size all the way up.”  

 S17. “You are now inside a building that has 3 floors (ground, first and 

second). You are currently on the second floor. Imagine walking from where 

the picture was taken (the start of the red arrow) and then following the red 

arrow along the corridor and through the door. You then need to turn through 

another door on your right (not shown in the picture), and down the stairs to 

the first floor. We are in the same building as the previous surface (surface 

16), so the stairs are similar in size and number. Please include both parts of 

the surface described when giving your ratings.”  

 

Table 6.7.3: Mean perceived roughness and stability ratings for each surface for young 

online image, young first-hand and older online image participants. A one-way 

ANOVA was conducted between the three groups. Significant difference between 

young online image participants (in bold) and either older online image participants 

or young first-hand participants are considered as p < 0.05 (denoted in red).     

 
Roughness rating Perceived stability rating 

Young 

first-

hand 

Young 

online 

image 

Older 

online 

image 

Young 

first-

hand 

Young 

online 

image 

Older 

online 

image 

Surface 

1 

Mean (± 

SD) 

2.2 (± 

0.9) 
2.2 (± 

0.9) 

2.5 (± 

1.9) 

1.6 (± 

0.7) 
1.4 (± 

0.8) 

1.5 (± 

1.6) 

Surface 

2 

Mean (± 

SD) 

5.9 (± 

1.6) 
5.5 (± 

1.8) 

6.6 (± 

1.7) 

7.3 (± 

1.2) 
6.1 (± 

2.1) 

6.1 (± 

2.3) 

p value   0.010* 0.011*   

 Cohen’s d   0.63 0.70   

Surface 

3 

Mean (± 

SD) 

3.5 (± 

1.2) 
3.2 (± 

1.1) 

3.1 (± 

1.6) 

2.8 (± 

1.3) 
2.5 (± 

1.6) 

2.3 (± 

1.6) 

Surface 

4 

Mean (± 
SD) 

1.6 (± 
0.7) 

1.5 (± 

0.7) 

2.3 (± 
1.7) 

1.1 (± 
0.3) 

1.4 (± 

1.3) 

1.8 (± 
1.6) 

p value   0.009*  
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 Cohen’s d   0.62  

Surface 

5 

Mean (± 

SD) 

2.8 (± 

0.8) 
2.8 (± 

1.0) 

2.9 (± 

1.6) 

2.3 (± 

0.9) 
2.6 (± 

1.7) 

2.9 (± 

2.1) 

Surface 

6 

Mean (± 

SD) 

 7.4 (± 

1.4) 
7.2 (± 

1.5) 

7.7 (± 

1.9) 

5.9 (± 

1.6) 
6.0 (± 

2.1) 

5.8 (± 

2.8) 

Surface 

7 

Mean (± 
SD) 

5.2 (± 
1.5) 

4.8 (± 

1.6) 

4.8 (± 
2.1) 

4.4 (± 
1.5) 

3.9 (± 

1.9) 

3.5 (± 
2.3) 

Surface 

8 

Mean (± 

SD) 

2.2 (± 

1.1) 
2.2 (± 

1.1) 

2.8 (± 

1.7) 

1.6 (± 

1.0) 
1.5 (± 

1.2) 

2.1 (± 

1.8) 

Surface 

9 

Mean (± 
SD) 

3.2 (± 
1.3) 

3.5 (± 

1.4) 

4.0 (± 
2.0) 

2.1 (± 
1.4) 

2.8 (± 

1.8) 

2.9 (± 
2.1) 

Surface 

10 

Mean (± 

SD) 

6.3 (± 

1.4) 
5.8 (± 

1.7) 

5.1 (± 

2.3) 

4.9 (± 

1.6) 
4.2 (± 

2.2) 

4.2 (± 

2.8) 

Surface 

11 

Mean (± 

SD) 

3.7 (± 

1.2) 
3.2 (± 

1.7) 

3.7 (± 

1.9) 

2.7 (± 

1.2) 
2.2 (± 

1.4) 

3.0 (± 

2.4) 

Surface 

12 

Mean (± 
SD) 

 3.8 (± 
1.5) 

3.7 (± 

1.9) 

3.6 (± 
2.1) 

 3.1 (± 
1.5) 

3.4 (± 

1.9) 

3.6 (± 
3.0) 

Surface 

13 

Mean (± 

SD) 

3.4 (± 

1.4) 
3.4 (± 

1.7) 

2.9 (± 

1.9) 

3.0 (± 

1.2) 
3.7 (± 

2.1) 

3.3 (± 

2.9) 

Surface 

14 

Mean (± 
SD) 

 3.2 (± 
1.1) 

3.4 (± 

1.5) 

3.7 (± 
2.1) 

2.4 (± 
1.5) 

2.5 (± 

1.4) 

2.8 (± 
2.4) 

Surface 

15 

Mean (± 

SD) 

6.0 (± 

1.5) 
6.6 (± 

2.0) 

6.5 (± 

2.4) 

5.0 (± 

1.7) 
5.0 (± 

2.3) 

4.7 (± 

2.8) 

Surface 

16 

Mean (± 

SD) 

2.3 (± 

1.2) 
2.3 (± 

1.4) 

2.5 (± 

1.8) 

 2.9 (± 

1.4) 
3.1 (± 

2.0) 

2.8 (± 

2.7) 

Surface 

17 

Mean (± 

SD) 

2.0 (± 

1.1) 
2.7 (± 

1.5) 

2.4 (± 

2.0) 

1.6 (± 

0.7) 
2.2 (± 

1.4) 

2.3 (± 

2.5) 

 

6.7.4 Individual’s age effect on ratings  

 The overall surface ratings (average rating regardless of surface type) were 

calculated for roughness and stability ratings for each individual. The overall surface 

ratings within each age group (YFH, YOI, OOI) are shown in Figures 6.7.4.1, 6.7.4.2 

and 6.7.4.3 respectively. A linear regression showed no significant relation between 

YFH age and roughness or between age and stability (R2 = 0.001; F,(1,31) = 0.02,  p 

= 0.897  and R2 = 0.01; F,(1,31) = 0.29, p = 0.597 respectively). This was similarly 

the case for YOI (R2 = 0.04; F,(1,40) = 1.64, p = 0.209 and R2 = 0.001; F,(1,41) = 

0.03, p = 0.868) and OOI participants (R2 = 0.03; F,(1,36) = 0.94, p = 0.339 and R2 = 

0.08; F,(1,36) = 3.13, p = 0.086). It should be noted that, although not significant, for 
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OOI participants, a slight trend exists such that increasing age did produce higher 

overall surface rating scores. 

 

Figure 6.7.4.1: Overall surface ratings for roughness (red circles) and stability (pink 

crosses) for each YFH individual based on their age. The red dotted and pink solid 

lines represent the regression lines for roughness and stability respectively. The linear 

regression equations are: roughness = R2 = 0.001 (y = 0.003x + 3.74) and stability = 

R2 = 0.01 (y = 0.002x + 2.84). 
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Figure 6.7.4.2: Overall surface ratings for roughness (blue circles) and stability (light 

blue crosses) for each YOI individual based on their age. The blue dotted and light 

blue solid lines represent the regression lines for roughness and stability respectively. 

The linear regression equations are: roughness = R2 = 0.04 (y = 0.03x + 4.51) and 

stability = R2 = 0.001 (y = 0.01x + 3.37). 
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Figure 6.7.4.3: Overall surface ratings for roughness (black circles) and stability (grey 

crosses) for each OOI individual based on their age. The black dotted and grey solid 

lines represent the regression lines for roughness and stability respectively. The linear 

regression equations are: roughness = R2 = 0.03 (y = 0.03x + 1.55) and stability = R2 

= 0.08 (y = 0.07x - 2.06). 
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Chapter Seven: General Discussion    

 

 The final chapter of this thesis provides a general discussion of the findings 

presented herein and considers how they may be used to direct future research.  

 

7.1 Thesis Summary  

 The goal of the research conducted for this thesis was to advance the 

understanding of natural human locomotion (i.e. outside laboratory conditions), and 

to explore further how locomotion may change under different conditions. I wished to 

determine how specific intrinsic and extrinsic factors affected gait stability in order to 

recognise why there is a heightened fall risk with both increasing age and in certain 

environmental settings. 

I believe that the findings of this thesis can be separated into two main 

conclusions, which are listed as 7.1.1 and 7.1.2:  

7.1.1 Extrinsic factors had a substantial effect on gaze and gait behaviour.  

7.1.2 Perception measures of surface complexity may provide a simple measure 

indicative of instability. 

7.1.1 Extrinsic factors effect gaze and gait behaviour 

 The first main conclusion from this thesis was that extrinsic factors had a 

substantial effect on behaviour. Increased surface complexity was associated with 

changes in gaze and gait behaviour, found consistently across individual experiments 

(see Chapters 2, 4 and 5).  
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 Head pitch was a clear indicator of behavioural change in response to substrate 

complexity: a lowered head pitch directed closer to the person’s feet consistently 

found when traversing more complex surfaces. Furthermore, more complex surfaces 

were associated with a reduced walking speed, reduced walking smoothness (as 

measured from harmonic ratios) and increased muscle coactivation (see Chapters 4 

and 5). All these responses are indicative of either an increased perceived fall risk or 

of more hazardous behaviour associated with heightened fall risk (Doi, et al., 2013; 

Menz, Lord, & Fitzpatrick, 2003; Peterson & Martin, 2010; Voloshina, Kuo, Daley, 

& Ferris, 2013). Although not traditionally determined as a measure of perceived or 

actual fall risk, the measures assessed here may act as an alternative indicator of gait 

stability being compromised. This approach, namely determining instability from 

numerous sources of behavioural change, avoids any possible bias from assessing 

instability from single stability measures (reviewed in Bruijn, Meijer, Beek, & Van 

Dieën, 2013).  

In our research, gaze behaviour was determined from both eye and head pitch 

angle. In doing so, we showed that head pitch made a significant contribution to 

overall gaze, particularly when walking over the most complex of surfaces (Chapter 

2). Gaze has typically not been determined from both eye and head pitch movements, 

although our findings suggest there are only weak relationships between mean angles 

of the eyes and head. Moreover, our studies showed that eye angle, fixation duration 

and the number of fixations, all common variables used in studies of behavioural 

changes and fall risk when walking, did not reveal consistent patterns of behavioural 

change across studies (Chapters 4 and 5). We speculated that since eye movements are 

likely to be more variable than head movements, which is likely to change more based 

on environment-specific factors (particularly when walking outdoors), assessing eye 
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movements alone may lead to misleading interpretation of results. Therefore, future 

research should consider both eye and head movements in order to more fully 

comprehend those factors associated with changes in gaze behaviour. Furthermore,  of 

the two, head movements may be more informative, particularly when studying 

stability or if testing studies in more challenging conditions outside the laboratory. 

 Unlike surface complexity, intrinsic factors (simulated lower visual field loss 

and, to a greater extent, simulated reduced cognitive capacity) were not associated 

with substantial changes to behaviour (see Chapters 4 and 5). Simulated lower visual 

field loss was associated with lowered head pitch angles, raised eye angles (see 

Chapters 4 and 5) as well as a reduced number of fixations and a more asymmetric 

gait (Chapter 5 only). However, effect sizes and the scales of change were general 

smaller than environmental factors. Moreover, simulated reduced cognitive capacity 

did not produce any meaningful changes in gaze or gait. This may suggest that surface 

complexity (or extrinsic factors in general) are of greater fall risk than the intrinsic 

factors tested here. More likely, the young participants tested were able to cope well 

with the additional simulated deficits, both separately and in combination. Our 

findings are in contrast to those that have simulated these deficits in young people for 

laboratory conditions (Graci, Elliott, & Buckley, 2010; Marigold & Patla, 2008; 

Plummer-D'Amato, et al., 2012; Yamada, et al., 2011). However, as our studies were 

primarily conducted outdoors, we speculate that environmental factors associated with 

this more complex and varied setting might explain our different findings. Testing 

outdoors is often accompanied by uncontrollable variance-inducing influences from 

pedestrians and traffic, producing visual and auditory distractions. The effect of these 

environmental challenges may mask any behavioural changes shown from our 

relatively limited simulations of intrinsic factors. This would explain other 
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inconsistencies in the literature in comparing gait and cognitive load between 

laboratory and real-world testing (for example see Ellmers, Cocks, Doumas, Williams, 

& Young, 2016; Feld & Plummer, 2019). If this is indeed the case, the results of 

previous studies that have simulated intrinsic factors indoors may be invalid outdoors 

because of environmental differences. In this case, conclusions from such studies 

should be limited to their environmental settings only. Furthermore, when assessing 

the impact of intrinsic factors, we recommend that research should be carried out on 

directly affected populations, not by simulating the factors in the young. Experiments 

should also be carried out in the appropriate environmental context.     

7.1.2 Perception as a measure for surface complexity 

 The second main conclusion from the thesis was the development of a potential 

metric for surface complexity in the form of perceptual ratings. We showed that 

perception ratings are an effective, simple measure that can predict behavioural change 

(Chapter 3) and further showed that surface perception does not differ with age or 

experience (Chapter 6).  

 From conducting our first study (Chapter 2), we found that it was difficult to 

make predictions related to stability for surfaces used within our study based on those 

used by others. As there were no suitable existing metrics whereby to compare such 

different surface conditions, we proposed a new method. This method consisted of 

using a combination of several physical and perceptual measures of surfaces (Chapter 

3). In doing so, to our knowledge, we are the only researchers who have objectively 

defined surfaces based on their complexity. This method showed perceptual and most 

physical measures to be highly correlated and, crucially, found that these measures 

could act as a proxy for behavioural change indicative of stability. In particular, we 

were interested in comparing surfaces on the basis of perceptual measures, given the 
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simplicity and ease of collecting this data. This measure would be of interest to 

researchers who wanted to test environmental settings for potential fall risk before 

collecting behavioural data. For our other studies (Chapters 4 and 5) we used 

perceptual measures to compare the complexity of different surfaces used. This 

measure proved insightful given that surfaces perceived as more complex consistently 

caused greater behavioural changes, indicative of instability, across both studies.  

 As well as the efficacy of perception as a measure of surface complexity, we 

were interested in whether surface complexity perception changed depending on age 

and experience. Changing perception with ageing was of interest given the higher 

incidence of injurious falls in older people when walking over more complex surfaces 

(Li, et al., 2006). Despite the possibility that a difference in perception of more 

complex surfaces in older people increases fall risk, we found that older people 

perceived surfaces similarly to the young consistently across all surface types. This 

may suggest that older people, unfortunately, do not take into consideration their 

relative capabilities compared to the young when rating surface complexity. This error 

might well itself explain the greater fall risk with age. Alternatively, similar surface 

perception ratings between older and young people may result from older people 

adopting a more cautious gait across all settings. Given the existing methods deployed 

for public walkway maintenance by councils, we also wished to determine whether 

experience of surface perception was a pertinent factor. Current procedures in the UK 

for gathering data relevant to the decisions on the need for surface repair or 

replacement typically rely on a single individual’s perception of the surface, 

completed irregularly and in person (for example see Surrey County Council, 2008). 

We showed that tests of the efficacy of viewing single surface images online gave 

comparable results to those given first-hand. Given these findings, decisions in respect 
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to pavement maintenance may be completed by councils more easily, performed 

remotely and by multiple people. If this result was taken into consideration by 

councils, more complex surfaces could be replaced and repaired more frequently, 

which should reduce incidences of falls from these locations.  

 

7.2 Limitations and future research  

 The research carried out in this thesis furthers our understanding of gaze and 

gait behaviour when outdoors, specifically in relation to how extrinsic and intrinsic 

factors affect stability. However, this body of work does include some limitations 

which should be addressed in future research.  

 From our research, we showed that extrinsic and, to a lesser extent, intrinsic 

factors changed gaze and gait behaviour. Behavioural changes were primarily 

determined from differences in mean values between different conditions. However, 

we did not determine precisely how different conditions affect behaviours on a step to 

step basis. We did manage to determine such behavioural changes for one study (see 

Chapter 5), but, high variability in the recorded data only allowed for a small number 

of meaningful comparisons. Outdoor studies are known to show greater variance in 

behavioural measures of gait than those in the laboratory (Tamburini, et al., 2018; 

Toda, Maruyama, & Tada, 2020). Although we controlled for gross variability within 

our studies (including lighting, time of day, weather and surface friction), given that 

we primarily used public walkways we could not control for all variability found 

outdoors. Furthermore, participants typically walked only once for each condition on 

each surface. Therefore, less data was available for each condition, so that 

unpredictable attentional factors (e.g. police sirens, sudden slips) would likely cause 
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increased variance. The reason for only one walk per condition was due to the practical 

issues brought about by the limited battery life of the sensors, whilst participants were 

required to traverse multiple surfaces for many conditions. Indeed, limited sensor 

battery life caused a notable proportion of the data for one study (see Chapter 5) to 

have to remain unused. In determining conditions for a large range of surfaces and 

completing studies under relatively uncontrolled settings, our approach was 

efficacious in emulating those conditions experienced when walking in everyday life. 

However, future research should aim to assess behaviour over a smaller number of 

surfaces numerous times to show whether extrinsic or intrinsic factors cause any step 

to step behavioural responses.   

 For our studies, we primarily focused on assessing behavioural changes for 

young participants. Young participants were used given the limited number of any 

other studies assessing gaze and gait behaviour when walking outdoors (for example 

't Hart & Einhauser, 2012; Matthis, Yates, & Hayhoe, 2018; Tomasi, Pundlik, Bowers, 

Peli, & Luo, 2016) and to prevent confounding factors from age-related comorbidities. 

Furthermore, one aim of the study was to show how a single and, later, a second 

intrinsic factor affected behaviour when walking. It would be implausible to conduct 

such studies on older participants given that existing age-related comorbidities may 

affect such results. Moreover, some of the surfaces to be traversed were considered to 

be very complex by young participants and therefore would likely have led to high 

risk of an injurious fall if walked over by older participants. Our own study showed 

that older participants perceived surfaces similarly to the young (Chapter 6), which 

may indicate that older people underestimate their risk of a fall. However, our research 

(Chapters 4 and 5) also showed that simulating age-related intrinsic factors in the 

young is potentially impractical as they were still able to cope with such deficits. As 
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such, future studies should aim to determine how older people’s behaviour changes 

under the conditions tested here in order to determine fall risk factors consistently. The 

difficulties in conducting any such study would be in balancing the assessment of 

behaviour outdoors (under conditions deemed to be of high fall risk and thus of high 

validity), whilst also ensuring older participants were safe when undertaking the 

procedures required of them.   

 Within almost all chapters, we assessed multiple behavioural measures as an 

indicator for stability and predictor for fall risk. Whilst it is reasonable to assume that 

behavioural measures related to stability are associated with the occurrence of falls, it 

must be acknowledged that falls have a multi-factorial aetiology and a comprehensive, 

prospective falls study is needed to explore their merit in predicting falls. Conducting 

any such study would have multiple challenges, one being the difficulty to measure 

falls longitudinally, i.e. the accuracy of self-reported falls are typically low due to 

difficulties with accurate recall in older adults (Freiberger & de Vreede, 2011), and 

that sensor-based approaches have high false-positive rates (see for example 

(Broadley, Klenk, Thies, Kenney, & Granat, 2018). Furthermore, falls occur relatively 

rarely and as such, determining behaviour change associated with falls is complex 

without longitudinal data. One potential method to determine accurate fall numbers 

and location settings within a set time could be through the utilisation of CCTV, 

although any such study would likely be limited to more public spaces. Alternatively, 

advancements in wearable technology could allow for more accurate assessments of 

falls in future studies whilst also being used to determine which behavioural changes 

over time are most associated with fall risk.    
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7.3  Conclusion  

In conclusion, I have shown in this thesis that gaze and gait behaviours can be 

used to indicate stability whilst walking outdoors. In particular, I have shown that 

extrinsic factors (especially when more challenging) affect behaviour, whilst young 

participants can cope well with simulations of common age-related intrinsic factors. 

These findings suggest that environmental factors are a common fall risk. However, 

separating age-related intrinsic factors and attempting to simulate them are both 

ineffective and should be avoided outdoors. In the second major component, I 

developed a stability metric that is an effective proxy for behaviour. This measure 

could be used to predict behavioural responses over a wide range of surface conditions. 

In combination, the findings of these two components serve as a foundation 

for future research seeking to determine stability outdoors. I recommend that outdoor 

research should be population-specific, but note that perceptual measures may act as 

a simple measure whereby to predict expected behavioural changes. If these 

recommendations are adopted in future research, I can further tease apart those factors 

most important in destabilising behaviour, and ultimately use this knowledge to reduce 

fall risk.  
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