
A possibilistic framework for interpreting
ensemble predictions in weather

forecasting and aggregate imperfect sources
of information

Thesis submitted in accordance with the requirements of the University of Liverpool for
the degree of

Doctor in Philosophy

by

Noémie Le Carrer

Supervised by
Prof. Scott Ferson and Dr. Peter L. Green

Department of Engineering, Institute for Risk and Uncertainty
University of Liverpool

1st April 2021





ABSTRACT

Until now, works in the �eld of tide routing (i.e., optimization of cargo loading and
ship scheduling decisions in tidal ports and shallow seas) have omitted the uncertainty
of sea level predictions. However, the widely used harmonic tide forecasts are not
perfectly reliable. Consequences for the maritime industry are signi�cant: current so-
lutions to tide routing may be made robust through the introduction of arbitrary slack,
but they are not optimal. Given the �nancial implications at stake for every additional
centimeter of draft and the catastrophic e�ects of a grounding, an investigation of tide
routing from the perspective of risk analysis is necessary, which we �rst develop in
this PhD thesis.

Predicting future sea level errors w.r.t. tide predictions can be achieved by statistical
modelling of these errors, based on historical archives, or by physics-based numerical
predictions of these deviations. In the latter option, ensemble forecasting has gained
popularity in the �eld of numerical weather prediction as a way of quantifying the
uncertainty on forecasts. Tide-surge ensemble forecasts are thus routinely produced,
combining hydrodynamic models with weather ensembles. This type of forecasts is
commonly interpreted in a probabilistic way. However, the latter is regularly criticized
for not being reliable, especially for predicting extreme events because of the chaotic
nature of the dynamics of the atmospheric-ocean system, model error, and the fact
that ensemble of forecasts are not, in reality, produced in a probabilistic manner.

In this PhD thesis, we consequently develop an alternative possibilistic framework
to interpret and use operationally such ensembles of predictions. In particular, we
show by numerical experiments on the Lorenz 96 system that probability theory is
not always (e.g. at large lead times and extreme events) the best way to extract the
valuable information contained in ensemble predictions. Besides, such a possibilistic
perspective eases the combination of di�erent imperfect sources of information about
the future state of the system at hand (e.g. dynamical information based on past time
series and the analog method), in addition to making more sense without the need of
post-processing.

Finally, combining both the scheduling problem and the ensemble interpretation
solution, we design a shipping decision model to compute optimal cargo loading and
scheduling decisions, given the time series of the fuzzy sea levels in these ports that we
derive from a possibilistic interpretation of surge ensemble forecasts. The under keel
clearance becomes a possibilistic constraint and the resulting shipping optimization
problem is solved by means of an optimisation routine adapted to possibilistic vari-
ables. Results obtained on a realistic case study with 7-day-ahead tide surge ensemble
predictions are discussed and compared with those given by a probabilistic approach,
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or by standard practices on ships. After our numerical case studies on the Lorenz 96
system, they illustrate the potential and limitations of a possibilistic interpretation of
the weather ensemble forecasts over its probabilistic counterpart in a realistic setting.

Keywords: Robust Optimization, Uncertainty modelling, Decision making, Uncertainty
propagation, Possibility theory, Ensemble predictions, Weather forecasting.
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Chapter 1

Introduction

Before getting into the substance of this thesis, I retrace in Section 1.1 its path, which
may help the reader to understand its structure as well as the reason why simulated,
toy data/systems have been given priority over real data. Elements of the PhD journey
are intertwined with the fundamental parts of the literature review devoted to each
topic and developed further in the associated chapters (i.e. proper publications). We
hope the reader will enjoy the journey as much as we did.

1.1 From big data ship routing to possibility theory : Outline of the
thesis

This doctoral work starts in September 2016 with a 4-year grant from the EPSRC1 and
ESRC2 Centre for Doctoral Training in Quanti�cation and Management of Risk and
Uncertainty in Complex Systems and Environments. This type of PhD combines one
year of full-time 1-year Master of Research (MRes) in Decision-Making under Risk and
Uncertainty at the University of Liverpool, followed by 3 years of classical doctoral
work at the Institute for Risk and Uncertainty, part of the Department of Engineering
of the same university. In such doctoral schemes, the PhD is tied to an industrial
partner. Namely, we started to work with Sea Level Research, a local start-up company
headed by Dr. Simon Holgate (previously working in the National Oceanography
Center, University of Liverpool). The company was developing solutions for maritime
companies wanting to optimise their ship scheduling, through improved modelling of
actual sea levels.

Thus started a doctoral cycle under the wide topic Big data adaptative dynamic
route planning for high-sea transportation. The idea was to address an issue of special
importance in the process of making the global economy more sustainable : how to
green the shipping industry by optimising the �eets’ routes ? (see body of work on the
topic – e.g. [Davarzani et al., 2016]) Maritime transportation is an activity particularly
subject to risk, i.e. the possibility of a loss, due to the complex dynamics and stochastic

1Engineering and Physical Sciences Research Council
2Economic and Social Research Council
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Channel
depth

Predicted 
tide 
height

UKC

Static draft in sea water

Squat allowance

Wave response allowance

Tidal residual allowance

Heel allowance

Static draft allowance and change in water density

Survey and siltation allowance

Figure 1.1 Overview of the under-keel clearance (UKC) bounding problem, where the
UKC is the actual water height between the bottom of the hull and the ground : to the
water height, we retrieve the ship’s nominal static draft and a number of allowances
accounting for variations in the actual draft or water height due to a range of factors
detailed in Figure 1.2.

nature of the multi-dimensional environment in which it takes place [Goerlandt and
Montewka, 2015, Song and Furman, 2013]. From the weather at sea to port variables
(berth availability, loading/unloading works), including the volatility of bunker fuel
prices or market demand, but also to the less mentioned sea levels in shallow waters,
a range of uncertain factors condition the outputs of a shipping operation. In spite of
its signi�cant impacts on shipping productivity, the issue of uncertainty has remained
marginal in the research on maritime transportation until the last decade. Indeed, as
stressed by Song and Furman [2013], due to the complexity and intractability of some
shipping problems, authors introduce simpli�cations (constant speed, single cargo
type, basic weather model, etc) that are di�erent from one study to another, making
comparison di�cult. The introduction of stochasticity in routing is often limited to
the modelling of a single or a very limited number of factors, most often the weather
[Azaron and Kianfar, 2003], but also market demand [Chuang et al., 2010], or berth
occupation and operations [Agra et al., 2015, Yu et al., 2017]. These routing solutions
are possibly suboptimal as there are a range of other factors constraining the ships’
movements, not taken into account in the problem de�nition or by means of �xed
allowances (see Figure 1.1).

As a result, the general idea of the PhD was to tackle the route-planning problem
from a broader viewpoint and �rst to focus on the analysis of the dependencies of actual
routing with environmental features such as the weather in a broader meaning than
wind and wave heights (i.e. incorporating sea levels, currents). Then, depending on the
amount of satellite vessel tracking data collected during the PhD from collaborations
that had to be established, the project would either focus on �nding the better way to
quantify the link between actual routes and weather features, or on the development

10



Figure 1.2 Factors in�uencing the UKC. The corresponding allowances are estimated
(cf. Figure 1.1) in order to assess a lower bound on the actual UKC at any time. In red,
the source of variation of the UKC that will be modelled in this work.

of near optimal, robust and dynamic route-planning algorithms allowing to fuse
constantly changing data sources, namely : ship movements, ocean currents, weather
data, port information as well as schedules of the shipping lines.

1.1.1 Robust maritime shipping optimisation in tidal areas

As a �rst step to this target, and following the birth of my daughter Shannon in April
2017, I consequently devoted the thesis of the MRes to the study of ship scheduling
optimisation subject to uncertain sea levels, with sea level predictions provided by
Sea Level Research. Indeed, knowing that an extra centimetre of draft (that is the
distance between the waterline and the lower point of the ship’s hull) corresponds
approximately to 50 tons of cargo for an average bulk carrier [Uslu et al., 2017], and
that a ton of freight has a value ranging from e.g. US$ 2196 (malting barley) to US$
223477 (tin), being able to predict accurately water levels in ports translates into
signi�cant economic bene�ts for both shipping operators (economies of scale) and
port authorities (vessel throughput).

Deterministic harmonic tide predictions are traditionally used to estimate the
future sea levels in shallow waters. From these ones, a shipper can estimate how
much freight to load in order to ensure a positive under-keel clearance (UKC; the
distance between the deepest underwater point of the ship and the seabed – see Figure
1.1), which includes a safety margin dictated from port authorities. Yet sea levels are
impacted by environmental factors (wind, pressure, currents) that locally increase or
decrease the actual sea levels w.r.t. the harmonic predictions. The di�erence, hereafter
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Figure 1.3 Understanding sea level residuals (in red), that is the di�erence between
tide observations (solid black line) and predictions (dashed line), here observed on
27-28th February 2010 at the La Pallice station, France. Source: http://tiga.sonel.org

residual (illustrated on Figure 1.3), can be signi�cant. For example, overall British tide
stations, residuals are typically 10 cm and rise to 29 cm for high tidal range stations
[Flowerdew et al., 2010]. Similarly, sea level residuals can amount to 30% of the total
measured sea level in Hillarys Boat Harbour, Western Australia [Makarynskyy et al.,
2004]. Whether to load more, depart earlier, or catch a tide window, recent works
have shown the economical value of modeling sea level residuals beyond a traditional
’rule-of-the-thumb’ safety margin on tide predictions [O’Brien et al., 2002].

Kelareva [2011], Kelareva et al. [2012] �rst developed the concept of dynamic
UKC to optimise ship scheduling and cargo loading decisions of multiple vessels at a
single port. To estimate the dynamic UKC, the authors deduct from the port depth and
predicted tide, not only the vessel’s draft, but also a number of allowances accounting
for the dynamical responses of the hull to its environment (squat, heeling, wave, water
density variation), the tidal prediction error and the variability of bathymetry [Galor,
2008]. Kelareva [2011] use short-term predictions of the dynamic under-keel clearance
provided by the DUKCr software (OMC International, 1993, described in Kelareva et al.
[2012], O’Brien et al. [2002]). Speci�cally, from real-time environmental measurements
(water depths, wind, waves, current) and ship information (trim, speed, acceleration),
the physical responses to the ship moving in a dynamic environment are computed
and the dynamic under-keel clearance is estimated. The optimal cargo loading and
short term ship scheduling decisions, given this estimation, are then calculated. Such
a solution is based on real-time measurement of the sea state and provides under-keel
clearance information for the upcoming tide-window only [Kelareva et al., 2012].
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The economic gains of such a dynamic modelling of the UKC are documented in a
range of case studies, for optimising cargo load and port throughput [O’Brien et al.,
2002] or berth-to-berth voyage scheduling optimisation [Hibbert et al., 2019].

Beyond these speci�c studies, in most of the shipping optimisation problems taking
into account tides, water depths are considered as perfectly predictable variables [Xu
et al., 2012, Du et al., 2015, Dadashi et al., 2017, Zhen et al., 2017, Yu et al., 2017, Lalla-
Ruiz et al., 2016]. When they are not (see [O’Brien et al., 2002] as well as studies on
the probabilistic risk assessment of ship grounding in ports [Gucma, 2004, Gucma and
Schoeneich, 2008, Abaei et al., 2018]), an allowance, accounting for tide (and possibly
bathymetry) prediction error, is introduced. In 2017, to the knowledge of the authors,
the modelling of this source of uncertainty was not discussed in the literature. It was
consequently worth investigating the robustness and optimality of such modelling,
as the introduction of safety margins and/or slack in schedules generally decreases
shipping bene�ts [Kelareva, 2014].

Our �rst investigations consequently aimed at �lling a gap in the �eld of ship
routing by explicitly considering and modelling the uncertainty in tide pre-
dictions on a several-day ahead basis3. A risk analysis of cargo loading and ship
scheduling decisions in tidal areas was developed through a realistic case study inves-
tigating the research question:

Q1 How can we optimise the cargo loading and ship scheduling decisions given
imperfect tide point forecasts without foregoing safety?

Life is however never short of surprises: our industrial partner Sea Level Research
went bankrupt in spring 2017 and consequently decided to put an end to his technical
support. The original primary supervisor of this PhD suggested me to change for a
topic connected to dynamic recognition and trajectory prediction of military devices,
for which he had access to military radar data. However, for ethical reasons (and
for e�ciency, given my new family responsibilities), I made the choice to continue
to investigate the question initiated during the MRes thesis. As a result, Prof. Scott
Ferson became my new primary supervisor, along with Dr. Peter L. Green who had
followed me as secondary supervisor during the MRes.

Thus, they accompanied me in the preparation and publication of the �rst jour-
nal article of this thesis, Optimising cargo loading and ship scheduling in tidal areas
[Le Carrer et al., 2020], which extended a conference paper presented at the 8th Inter-
national Workshop in Reliable Engineering Computing [Le Carrer et al., 2018] and

3The DUKCr’s short term UKC predictions are now informed by sea level predictions from two
distinct models: a global oceanic "weather" model (coastal currents, mesoscale eddies, etc) and a re�ned
sea level model at the port scale [Uslu et al., 2017]. Both are assimilated by means of a Bayesian
recursive approach, where residual are assumed Gaussian, allowing improved 7−day ahead predictions
for operational use. These advances were released after our initial investigations.
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whose extracts are presented in Appendix A as complement of Chapter 2. Both answer
the research question Q1 when the source of information at hand about future sea
levels is harmonic tide predictions, along with an archive of actual observations
and corresponding tide predictions.

In this article, reported in Chapter 2, through two realistic case studies we show
the potential of taking into account the stochastic dimension of sea levels in maritime
cargo loading and scheduling decisions, rather than setting a ’rule-of-the-thumb’ �xed
safety-margin on the ship’s draft as it is common use in the �eld4. Results show that
the subsequent decision is not only robust in real port and weather conditions, but also
closer to optimality. Furthermore, the designed technique remains more interesting in
non-stationary settings, namely when sea level variations are arti�cially increased
beyond the extremes of the current residual models.

Precisely, the sea level residuals were modelled very simply through a best-�t (pos-
sibly mixture of) parametric distribution(s) �tted to historical time-series of residuals
in each port of interest by maximum likelihood optimisation. One way to go would
have been to study in depth this probabilistic modelling and re�ne it by e.g. taking
into account the space-time dependence between residuals from di�erent locations
and/or time (e.g. by means of a random �eld approach), in particular its cyclic nature
(due to tides), or using alternative approach such as neural networks [Liang et al.,
2008, Pashova and Popova, 2011] or superstatistics [Rabassa and Beck, 2015]). Another
way would have been to work on the e�cient optimisation side of the problem and,
instead of a simple Monte-Carlo algorithm nested in a Particle Swarm Optimisation
routine, provide a faster optimisation procedure that scales well with the number of
ports at hand. A last route consisted in assessing the performance of the optimisation
model with another source of sea level information, namely the so-called ensemble
predictions.

1.1.2 Interpreting ensembles of weather predictions: From probability to possibility
theory

After a couple of readings on this last trend in the �eld of weather forecasting, and
given my exposure in the Institute of Risk and Uncertainty to alternative theories for
modelling uncertainty, I felt rather uncomfortable with the current all-probabilistic
paradigm [Palmer, 2012, 2017] in ensemble forecasting and especially the way these
probabilities were derived. Something did not match between the nature of the
dynamical system at hand (atmosphere-ocean), the design of ensembles and their
probabilistic interpretation.

4Personal correspondence with an o�cer of the French Merchant Navy
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Figure 1.4 Two EPSs with di�erent initial conditions in the context of the Lorenz 96
system, our experimental test-bed presented in Chapter 3, Section 3.4.1.

1.1.2.1 Ensemble Prediction Systems (EPSs) in weather forecasting

Predicting the weather through numerical models of the atmosphere is impeded by
the mere nature of the atmospheric dynamics, characterised by strong nonlineari-
ties and high sensitivity to initial conditions (ICs). Limited grid resolution for the
ICs, discrepancies introduced by measurement errors and incomplete description of
the system’s dynamics, contribute to error growth and limit the skill of short and
medium-range (typically 1 to 15 days) deterministic point predictions. A shift in
paradigm was introduced in parallel of the increase of computational resources at
the beginning of this century, when low-resolution ensemble predictions started to
replace, or complete, the traditional single high-resolution deterministic prediction.
The idea behind these ensemble forecasts had been developed earlier by Leith [1974],
who suggested to sampleM ICs around the actual best IC estimation, to run the model
forward for each of these sampled IC, and to interpret the M resulting predictions in
a Monte-Carlo like fashion. Ensemble forecasts (EPSs hereafter) are thus interpreted
in a probabilistic way, either to characterise the predictability of the associated
deterministic forecast (e.g. through the variance of the ensemble) of to directly provide
probabilities of observing a given event. See Figure 1.4 for an illustration of EPSs on
the Lorenz 96 system, our experimental test-bed introduced in Section 3.4.1.

1.1.2.2 Probabilistic interpretation of ensemble predictions

However, such a probabilistic interpretation poses conceptual issues. First, the ICs are
perturbed according to schemes designed to sample in a minimalist way particularly
high-dimensional systems like numerical weather global models (whose state vector’s
dimension is of the order 106). These schemes generally select the initial perturbations
leading to the fastest growing perturbations (e.g. singular vectors [Hartmann et al.,
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1995], bred vectors [Toth and Kalnay, 1997]). Although this way of proceeding is an
e�cient manner to detect the range of possible futures, one cannot consider that the
M perturbed ICs are random samples, and consequently cannot interpret the resulting
ensemble as a sample of the distribution characterising the future state of the system.
Besides, one of the core assumptions of Leith [1974] is that model error is negligible
w.r.t. the error resulting from the propagation of the uncertainty on the ICs. In practice,
the assumption of such near-perfect models is generally not true and after a few hours,
the convex hull of the ensemble trajectories is not guaranteed to contain the observed
trajectory, traducing structural bias [Toth and Kalnay, 1997, Orrell, 2005].

The above conceptual issues impede a probabilistic interpretation of EPSs in
practice: despite the introduction of stochastic parameterisation schemes to account
for model error [Buizza et al., 1999], the operational ensembles remain overcon�dent,
i.e. with a spread that is generally too small [Wilks and Hamill, 1995, Buizza, 2018].
In particular, the predictive probabilities derived from ensemble forecasts are not
reliable. In other words, on average, the probability derived for a given event does
not equal the frequency of veri�cation [Bröcker and Smith, 2007, Smith, 2016, Hamill
and Scheuerer, 2018]. Although such probabilistic predictions have higher forecast
skill than the climatology (that is an history-based probability density of the weather
variable at hand), most often they cannot be used as actionable probabilities. By
design (EPS size limited to ≈ 20− 50, targeted sampling of ICs) and by context (�ow-
dependent regime error, strongly nonlinear system) they do not represent the true
probabilities of the system at hand [Legg and Mylne, 2004, Bröcker and Smith, 2008,
Gneiting and Katzfuss, 2014]. This observation is all the more true for extreme events,
that result from nonlinear interactions at small scales. Such interactions cannot be
reproduced in number in a limited-size EPS [Legg and Mylne, 2004], which implies
that extreme events generally cannot be associated to a high density of ensemble
members.

Biases and dispersion errors in ensemble forecasts consequently call for statistical
postprocessing to improve the information content and calibration of probabilistic
predictions [Gneiting and Katzfuss, 2014, Buizza, 2018]. A range of methods have been
developed to address the above-mentioned limitations (see Vannitsem et al. [2020] for
an overview). The most classical ones �t an optimised parametric distribution either:
a) onto each ensemble member, and aggregate them all to provide a global probability
density function (PDF) (e.g. Bayesian model averaging, introduced by Raftery et al.
[2005]); or b) onto the whole ensemble, with parameters derived from linear combina-
tions of the ensemble’s characteristics (non-homogeneous regression, developed by
Gneiting et al. [2005]). More speci�c approaches target for instance the improvement
of reliability, e.g. rank histogram recalibration [Hamill and Colucci, 1997] which makes
use of the information content of the rank histogram to issue ensemble-based predic-
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tions that show better probabilistic calibration. More recently, calibration by means
of the probability integral transform was suggested by Graziani et al. [2019], while
Smith [2016] developed a user-oriented framework based on the actual probability of
success for a given probabilistic threshold, and Hamill and Scheuerer [2018] developed
a framework based on quantile mapping and rank-weighted best-member dressing
over single or multimodel EPSs.

Although generic postprocessing strategies do improve the predictive skill for
common events, they tend to deteriorate the results for extreme events [Mylne
et al., 2002], which consequently need separate and tailored treatment. Friederichs
et al. [2018] shows that when the tail of the climatology is short, a �exible skewed
distribution (e.g. a generalised extreme value distribution as suggested by Scheuerer
[2014]) for the complete sample space is a good solution for predicting extremes as
well. However, a separate description of the tail distribution by means of quantile
regression [Friederichs and Hense, 2007] or nonstationary Poisson process [Friederichs
et al., 2018] may be necessary in the case of heavy climatology tails.

1.1.2.3 Possibilistic interpretation of ensemble predictions

In view of all this, and especially considering the need to resort to (possibly multiple)
calibration steps to provide meaningful probabilistic outputs, we echoed Bröcker
and Smith [2008] who questioned the choice of probability distributions as the best
representation of the valuable information contained in an EPS.

Thus started a few application-orientated tentatives of alternative EPS interpre-
tation. First, and coming back to our shipping problem, the future sea level residual
became an interval bounded by the extremes of the corresponding residual EPS (un-
published yet presented at the 2018 Annual Meeting of the European Meteorological
Society under the title Robust optimisation of cargo loading and ship scheduling in
tidal areas [Le Carrer, 2018a]). The interval being overcon�dent (as noted in the
above literature review), we �tted a logistic regression by means of ’carefully chosen
predictors’ (namely mean amplitude of the surge and width of the EPS) to be able to
predict whether the observation would fall into or outside the interval (EPS) bounds.
The overall success rate being rather good (91%), we then turned the probability to
be in/above or below (the dreaded case) into a fuzzy safety margin, that we �nally
introduced into our shipping optimisation algorithm. The resulting decision model
was introduced in a wider port simulation and results were presented from the per-
spective of the port authorities (Can individual shipping optimisation improve port
tra�c or do we need central intervention?) on the occasion of the 2018 Conference
"Mathematics Applied in Transport and Tra�c Systems" [Le Carrer, 2018b].

Such modelling approaches were interesting and promising technically yet not
really satisfying when it came to their interpretation and to the question of "making
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sense". We criticized the probabilistic approach for not making sense and needing
postprocessing and we ended up building similar layers of modelling followed by error
correction.

That’s how possibility theory became quickly appealing for its intuitive ratio-
nale, its explanatory power w.r.t. our weather application and for its potential in
terms of uncertainty communication in the �eld of forecasting. We started to wonder
if this “weaker theory than probability [. . . ] also relevant in non-probabilistic settings
where additivity no longer makes sense” [Dubois et al., 2004] could provide an interest-
ing alternative, in a context where conceptual and practical limitations restrict the
applicability of a density-based (i.e. additive) interpretation of EPSs.

A �rst possibilistic ensemble dressing (for the parallel with the probabilistic ensem-
ble dressing of Roulston and Smith [2003], that consisted in "dressing" each ensemble
member with historical error statistics) was designed and, for lack of data or con-
nection with the weather forecasting research community, tested on a the Lorenz
96 toy system [Lorenz, 1996] (L96), commonly used for such studies on EPSs [Wilks,
2006, Williams et al., 2014]. Results were presented at the Annual Meeting of the
European Meteorological Society in September 2019, which led to the proceedings
[Le Carrer and Green, 2020] whose framework and results are reported in Appendix
B. Although novel and promising in the case of extreme event predictions, this model
was a �rst parametric try which su�ered from serious limitations: 1) its parametric
form introduced trade-o� in performances as well as the impossibility to propagate
the formal guarantees that possibility theory provides, and 2) the local dynamics of
the system was not explicitly taken into account.

We consequently extended it into a purely data-driven model which made more
sense. The model is introduced and studied in two journal articles: 1) Possibly Extreme,
Probably Not: Is possibility theory the route for risk-averse decision-making? (accepted
in Atmospheric Science Letters), reported in Chapter 3, where we investigate the
guarantees that can be derived from such a possibilistic interpretation of EPSs and
compare them to the traditional probabilistic postprocessing, thus focusing on the
continuous interpretation of possibility distributions ; and 2) Beyond probabilities: A
possibilistic framework to interpret ensemble predictions and fuse imperfect sources of in-
formation (in review at the Quarterly Journal of the Royal Meteorological Society after
minor revisions in May 2021), reported in Chapter 4, where we show how to combine
dynamical information extracted from a time series of the system, to the pure EPS
interpretation by means of possibility theory and we focus on the binary analysis of
the resulting possibility distributions, on the information content of possibilistic
and probabilistic interpretations respectively, as well as on the operationability of our
approach when it comes to weather forecasting. In both cases, given the nature of the
issue with the probabilistic treatment of EPSs, we pay a particular attention to the
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case of extreme event predictions.
In these two works we investigate the following research questions:

Q2a Can we draw an interpretation framework of EPS that would directly make sense
and provide outputs that are meaningful without having to resort to additional
layers of calibration?

Q2b Can we simultaneously maintain or improve the prediction skills compared to
those of standard probabilistic interpretations?

Q2c How can we combine such a possibilistic framework with insights about the
local dynamics of the system?

Q2d Can a possibilistic treatment of the EPS provide more formal guarantees than a
probabilistic interpretation? If yes, at what cost?

Q2e Can we operationally use the possibilistic outputs at their full potential, that is
more than simply deriving associated probabilities?

1.1.3 Application to shipping optimisation subject to uncertain sea levels

Results being promising, we closed the loop by applying our possibilistic framework
to the ship scheduling problem designed in Chapter 2, now investigating the research
questions:

Q3a How valuable is the information extracted from the storm-surge EPS, either via
a probabilistic approach or via a possibilistic approach, for an application such
as maritime shipping optimisation?

Q3b In particular, is this information more valuable for this speci�c application than
a classical Monte-Carlo-based optimisation using harmonic tide predictions and
historical best-�t modelling of sea level residuals in each port?

With the limitation of having at hand very few EPS data regarding sea levels (1 year
over 2 British ports), we adapted a procedure designed in Hose et al. [2018] to deal with
global optimisation when input parameters or constraints are possibilistic (here, sea
level predictions) and compared the practical performances of the various modelling
of sea level uncertainty, that is a) no modelling yet �xed "rule-of-the-thumb" safety
margin on the ship’s draft ; b) history-based, stationary best-�t probabilistic modelling
of tide residuals; and c) possibilistic and probabilistic interpretations of residual EPSs
in each port of call. We were thus able to draw conclusions as regards the relative
potential of each methodology when it comes to practical use in the shipping industry,
as well as to confront our EPS-based methodology with true data, although limited
in number – hence the limitation in our conclusions. This last study, A possibilistic
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interpretation of ensemble predictions: Application to shipping optimisation in tidal areas,
is reported in Chapter 5 and is presented at the 2021 edition of the European Safety
and Reliability Conference.

1.1.4 The closure problem

We are aware that this PhD work could be pursued in many directions, the most
important being:

(i) Pursuing the investigations on the information content (w.r.t. predictability)
and optimal use for prediction (e.g. depending on the attitude towards risk of
the end-user) of both necessity and possibility measures, started in Chapter 4 ;

(ii) Studying the potential of the possibilistic interpretation of EPSs in clearly non-
stationary systems ;

(iii) Gathering more data to analyse the asymptotic behavior (when the problem
dimension increases) of the possibility-based shipping optimisation procedure.

However, due to the pandemic situation and its impact on daily work schedules
(in particular nursery and university closure), we leave these to future works. This
PhD thesis can be seen as a �rst investigation of the potential of possibility theory
in the �eld of the prediction of nonlinear dynamical systems, with special interest in
weather forecasting and contribution in optimisation-based applications of possibilistic
predictions.

1.2 Structure of the thesis and summary of original contributions

In this section, we summarize the PhD structure developed and justi�ed in the previous
section, and we report the original contributions associated to each chapter.

We start with Chapter 2, namely the journal paper Optimising cargo loading and
ship scheduling in tidal areas [Le Carrer et al., 2020] accepted in 2019 in the European
Journal of Operational Research. In this publication, a shipping decision model is
created, which consists in the optimisation of the predicted net shipping bene�t given
information on the future sea levels of each port of call. By means of two realistic
case studies involving a small bulk carrier, 2 and 3 British ports respectively, a farm
commodity, and the harmonic tide predictions along with an history of residuals in
each port as sources of information on future sea levels, we show therein that:

• Trusting the harmonic tide predictions blindly leads to potentially dramatic loss;

• Adding an a priori �xed safety margin allows the method to become robust,
however it becomes potentially suboptimal. Besides, assessing the optimal
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safety margin is a problem-dependent task that requires a number of simulations
beforehand ;

• Taking into account the stochastic nature of the sea level residuals by means
of a best-�t modelling in each port of call allows to provide optimally robust
decisions, that is decisions that are robust yet closer to optimality (the latter
being de�ned as the decisions that would have been made in the presence of
perfect information on the future sea levels) ;

• The stochastic decision model is robust to unseen extreme sea level variations,
accounting for (limited) non-stationarity of the underlying residual distributions.

Overall, the novelty of this work is a risk analysis of cargo loading and ship sched-
uling decisions in tidal areas and a method to provide optimally robust decisions. It
aims at raising awareness of the economic potential of taking into account sea level
uncertainty in scheduling decisions more �nely than a ’rule-of-the-thumb’ safety
margin, not only for the more studied expensive freight and large ships (e.g. [O’Brien
et al., 2002]) but also for the masses of small vessels (mini-bulkers), cheap commodities
(grains) and small ports strongly a�ected by tidal e�ects (i.e. with limited dredging),
which in the current context of transportation greening may be a non-negligible lever
of progress.

The latter article is an extension of the conference paper Optimising cargo loading
and ship scheduling subject to uncertain sea levels Le Carrer et al. [2018], presented
at the 8th Workshop for Reliable Engineering Computing in 2019. We present it in
Annex A as it contains a comparison and discussion of the performances of a range of
classical objective functions (also said risk metric: ’mean regret’, ’mean risk’, ’chance
constrained’, ’worst case’) used in our decision model.

Chapter 3 follows by introducing the possibilistic interpretation of EPSs developed
during our thesis: Possibly Extreme, Probably Not: Is possibility theory the route for
risk-averse decision-making?, published in the journal Atmospheric Science Letters in
January 2021 [Le Carrer, 2021]. It follows a conference paper presenting an earlier
parametric possibilistic ensemble dressing, A possibilistic interpretation of ensemble
forecasts: Experiments on the imperfect Lorenz 96 system [Le Carrer and Green, 2020]
on the occasion of the 2019 Annual Meeting of the European Meteorological Society.

In this article, by means of numerical experiments on an imperfect version of the
Lorenz 96 system, we investigate the formal guarantees associated to our approach and
compare them empirically to those provided by a classical probabilistic interpretation
of EPSs, in the case of both extreme and non-extreme events. Our contributions are
the following:
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• To the knowledge of the author, the �rst interpretation of EPSs by means of
possibility theory;

• The analysis of the resulting predictive possibility distributions in the continuous
perspective, namely the analysis of the formal guarantees associated with the
con�dence intervals that could be derived on future predictions;

• Their empirical comparison to the reliability of a classical probability-based
interpretation. We show that the con�dence intervals based our methodology
overpass the latter in two cases: 1) at very small lead times for both common
and extreme events, where they are as reliable yet narrower; 2) more blatantly,
at intermediate and large lead times for extreme events, where they remain
guaranteed and can be brought close to perfect reliability even for particularly
rare events, yet at the expense of precision. In particular, we raise the potential
of such an interpretation for risk-averse end-users.

Chapter 3 su�ers from two limitations: 1) by focusing on the continuous reading
of predictive distributions, we do not exploit the full potential of the possibilistic
concepts of necessity, possibility and ignorance; and 2) we do not take into account
the local dynamics of the system (initial conditions), which makes EPS-based predic-
tive distributions rather conservative. Chapter 4, Beyond probabilities: A possibilistic
framework to interpret ensemble predictions and fuse imperfect sources of information,
submitted at the Quarterly Journal of the Royal Meteorological Society in July 2020
(minor revisions submitted in May 2021), addresses them both.

Our contributions therein are the following:

• The investigation of the bene�ts of using our possibilistic framework for inter-
preting EPSs, in the case of binary predictions. Predictive skills are assessed
by means of the ignorance score, PRC curves and reliability diagrams with the
credibility used in place of a classical probability, and compared to those of a
traditional probability-based interpretation. The possibilistic approach performs
at least as well as the probabilistic treatment, and overpasses it for large lead
times and extreme events.

• The introduction and comparison of alternative methodologies to use the dual
measures necessity/possibility at their full potential instead of the traditional
credibility, when it comes to make a binary prediction. We show the potential
for predictions better tailored to the end-user needs (e.g. risk-averse, risk-prone).

• The development of a methodology based on dynamical analogs to model in a
possibilistic way the information about the future state of the system extracted
from a time series recording of the system.
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• A discussion on the options for combining the EPS-based and dynamical-based
incomplete sources of information about the future state of the system.

• The physical interpretation of our framework: transfer and synergy of infor-
mation between the two incomplete sources of information at di�erent levels
according to the lead time, and a development around the concept of ignorance.

• An investigation of how and when to use the dual possibilistic measures to
derive a predictive probability and estimate a priori how much we can trust
them.

Finally, Chapter 5, combines the two major works of this PhD together by using
EPSs to make sea level residuals predictions in the shipping optimisation problem. A
possibilistic interpretation of ensemble predictions: Application to shipping optimisation
in tidal areas, that will be presented at the ESREL 2021 conference, thus gathers the
following contributions:

• The design of a methodology inspired from Hose et al. [2018] to run our shipping
decision model with possibilistic sea levels as inputs ;

• The application of the possibilistic treatment of EPSs to a small data set (1 year)
of residual predictions in two ports, and the assessment of their prediction skill
w.r.t. a classical probabilistic interpretation ;

• The comparison of the robustness and optimality of the shipping optimisation
procedures according to the source of sea level information (tides and archive
of residual, EPSs) and their treatment (deterministic, possibilistic, probabilistic).

Overall, given the small size of our dataset, we observe that the probabilistic best-�t
modelling of residuals in each port is the best way to go for shipping companies.
However, the possibilistic treatment may become competitive for small-size problems
(limited number of ports) and larger (sea levels observations+EPS) archives.

Finally, Chapter 6 provides a global conclusion and discussion of the results and
contributions of this PhD and draws the main directions for future works.

As a last note, we mention the existence of a side-PhD work about e�cient global
optimisation, not presented here for coherence, yet published as a short paper under
the title Robust e�cient global optimisation via adaptive surrogate re�nement in the
Proceedings in Applied Mathematics and Mechanics 2019 [Le Carrer et al., 2019].
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Chapter 2

Optimising cargo loading and ship scheduling in tidal areas

This chapter consists in the article published in 2019 in the European Journal of Op-
erational Research [Le Carrer et al., 2020]. The contributions of each author are the
following: NLC conceived the presented idea, found the data, designed and imple-
mented the research and then wrote the article, that SF and PLG reviewed.

Therein we aim at �lling a gap in the �eld of ship routing by explicitly considering
and modelling the uncertainty in tide predictions on a several-day ahead basis, and thus
addressing the question of the optimal draft allowance accounting for tide residuals
in tidal areas. That safety margin accounts for variations between harmonic tide
predictions and actual sea levels. It is generally �xed in a "rule-of-the-thumb" manner
(operationally) or barely considered (in research works). Our study was consequently,
to the knowledge of the authors in 2018 (see 2021 update in Section 1.1.1 of Chapter
1), the �rst to describe a stochastic methodology to model several days ahead sea
level residuals and take them into account in the global ship scheduling and cargo
loading optimisation process. We develop a "poor man’s" probabilistic approach to
account for the uncertainty on sea levels in each port, where the latter are considered
as stochastic variables and classical distributions are �tted to them by means of a
maximum-likelihood approach applied on archives of historical observations (cheap
to acquire, hence the "poor man" expression). This methodology is applied to two
realistic case studies of maritime shipping between British ports and allows to show the
potential of a stochastic-based perspective on sea level residuals in maritime shipping
problems in tidal areas.

We add in Appendix A extracts of the earlier conference paper [Le Carrer et al.,
2018] that complement this work with a more in-depth presentation of the objective
functions that one can design to evaluate the risk associated to a decision in a stochastic
context. Di�erent common objective functions are presented and their performance
are compared in a similar case study as the �rst one developed in the next article (see
Section 2.5.1).

Finally, we add to the original article the Figures 2.1 and 2.2 for easing the under-
standing of the concepts and procedures at hand.
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Abstract

This paper describes a framework that combines decision theory and stochastic
optimisation techniques to address tide routing (i.e. optimisation of cargo loading
and ship scheduling decisions in tidal ports and shallow seas). Unlike weather
routing, tidal routing has been little investigated so far, especially from the
perspective of risk analysis. Considering the journey of a bulk carrier between
N ports, a shipping decision model is designed to compute cargo loading and
scheduling decisions, given the time series of the sea level point forecasts in these
ports. Two procedures based on particle swarm optimisation and Monte Carlo
simulations are used to solve the shipping net bene�t constrained optimisation
problem. The outputs of probabilistic risk minimisation are compared with those
of net bene�t maximisation, the latter including the possibility of a ’rule-of-the-
thumb’ safety margin. Distributional robustness is discussed as well, with respect
to the modelling of sea level residuals. Our technique is assessed on two realistic
case studies in British ports. Results show that the decision taking into account
the stochastic dimension of sea levels is not only robust in real port and weather
conditions, but also closer to optimality than standard practices using a �xed
safety margin. Furthermore, it is shown that the proposed technique remains
more interesting when sea level variations are arti�cially increased beyond the
extremes of the current residual models.

2.1 Introduction and literature review

2.1.1 Ship scheduling in tidal areas

A ship’s draft is the distance between the waterline and the bottom of the hull. It
is a fundamental characteristic of a ship and forms a major constraint in terms of
scheduling or cargo loading decisions because a poor choice can lead to grounding
in tidal areas or shallow waters. Yet the research on ship loading has mostly focused
on operations safety and logistic aspects (see for instance a review in Christiansen
et al. [2007]). The question of scheduling with time-varying draft was not tackled
until recently, when Kelareva and colleagues developed a deterministic procedure to
optimise ship scheduling and cargo loading decisions of multiple vessels at a single
port [Kelareva, 2011, Kelareva et al., 2012]. Their procedure is based on the increasingly
popular concept of dynamic under-keel clearance.
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The under-keel clearance is the distance between the deepest underwater point of
the ship and the seabed. In the traditional static approach, the under-keel clearance is
computed as the di�erence between the water depth (combining channel depth and
tide prediction) and the nominal ship draft. The objective is then to maintain an under-
keel clearance at least equal to either a given minimum value or a given percentage
of the ship draft, depending on port policy. On the contrary, the dynamic approach
deducts from the channel depth and predicted tide, not only the nominal draft, but
also a number of allowances accounting for the dynamical responses of the hull to
its environment (squat, heeling, wave, water density variation), the tidal prediction
error and the variability of bathymetry [Galor, 2008]. Kelareva [2011] use short-term
predictions of the dynamic under-keel clearance provided by the DUKCr software
(OMC International, 1993, described in Kelareva et al. [2012], O’Brien et al. [2002]).
Speci�cally, from real-time environmental measurements (water depths, wind, waves,
current) and ship information (trim, speed, acceleration), the physical responses to the
ship moving in a dynamic environment are computed and the dynamic under-keel
clearance is estimated. The optimal cargo loading and short term ship scheduling
decisions, given this estimation, are then computed. [O’Brien et al., 2002] report two
case studies showing the added value of using such a dynamic under-keel clearance
approach in port operations, for both shippers (freight savings and increase in export
value) and port operators (reduced dredging costs in the long term, increased ship
departure/arrival windows and consequently reduced congestion, contribute scienti�c
knowledge to estimation of the minimal under-keel clearance).

Such a solution is based on real-time measurement of the sea state and provides
under keel clearance information for the upcoming tide-window only [Kelareva et al.,
2012]. Being deterministic, safety margins have to be introduced as the under-keel
clearance is only estimated a priori. One can ask whether taking into account the
stochastic nature of sea levels (and, consequently, the under-keel clearance) could
reduce this safety margin to some theoretical minimum - this is one of the aspects
investigated in the current paper. Besides, the plani�cation horizon allowed by the
procedure described above is relatively short (one tide) - the current work addresses
relatively longer time scales.

The work of Kelareva et al. [2012] was extended to a shipping cost optimisation
problem for a �eet considering time-varying draft restrictions at waypoints, variable
ship speed and cargo loads as well as �ow control through busy waterways [Kelareva,
2014]. The speci�c waterway ship scheduling problem was later formulated by Lalla-
Ruiz et al. [2016], who integrated tide as a constraint in their approach to optimally
schedule the �ow of incoming and outgoing ships through di�erent shipping channels
(so that the waiting times were globally minimised).

Similarly, researchers focusing on the berth allocation problem, which aims at
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scheduling berth and crane allocation to optimise port throughput, introduced tide as
a constraint only quite recently. While early works [Xu et al., 2012, Du et al., 2015]
were more concerned with the quanti�cation of the economic impact of tides on
port operations, recent studies developed practical models and solutions for berth
scheduling optimisation [Dadashi et al., 2017, Zhen et al., 2017] or quay crane allocation
[Yu et al., 2017] in tidal ports.

2.1.2 Shipping optimisation in stochastic environments

Maritime transportation is an activity particularly subject to risk, i.e. the possibility of
a loss, due to the complex dynamics and stochastic nature of the multi-dimensional
environment in which it takes place. From the weather at sea to port variables (berth
availability, loading/unloading works), including the volatility of bunker fuel prices, a
range of uncertain factors condition the outputs of a shipping operation. In spite of its
signi�cant impacts on shipping productivity, the issue of uncertainty has remained
marginal in the research on maritime transportation until recently. Indeed, as stressed
by Song and Furman [2013], due to the complexity and intractability of some shipping
problems, authors introduce simpli�cations (constant speed, single cargo type, basic
weather model, etc) that are di�erent from one study to another, making comparison
di�cult. The introduction of stochasticity is often limited to the modelling of a single
or a very limited number of factors (e.g. weather [Azaron and Kianfar, 2003], market
demand [Chuang et al., 2010], weather and berth occupation [Agra et al., 2015]).

Water depth is also an uncertain factor that should not be neglected. Although
tide forecasts used to predict the water depths in shallow seas are traditionally given
by harmonic analysis from past observations, a range of causes can modulate the
observed water levels. These encompass weather in�uence, river discharge, the
interaction between currents, shallow water seabed and ship tra�c [NOREL, 2014]
and lead to signi�cant deviations between astronomical tides and actual water level
observations (called residuals hereafter: the di�erence between observations and
predictions). Flowerdew et al. [2010] estimate that the root mean square error on the
high tide predictions in UK tide stations is typically 10 cm and rises to 29 cm for high
tidal range stations. Makarynskyy et al. [2004] note that sea level residuals can amount
to 30% of the total measured sea level in Hillarys Boat Harbour, Western Australia.

The uncertainty about future water depths has a signi�cant impact on shipping
optimisation. First, as shown in the case study presented in Section 2.2.1, even for a
small-sized carrier of horizontal dimensions 85 m ×15 m, one additional centimetre
of under-keel clearance can be turned into an extra freight of 13.05 metric tons (mt)
whose value ranges from US$ 2, 556 for a single hold of malting barley [Agriculture and
Horticulture Development Board, 2017] to US$ 223, 477 for a single hold of tin [Quandl,
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2017] with little increase of operational costs in short journeys1. Secondly, when it costs
thousands of dollars a day to operate the same vessel, missing a tide-window because
of a negative anomaly in the water depth is signi�cantly costly to the shipper, to say
nothing about the cost of grounding and its potential environmental consequences.
Another economic justi�cation is found in O’Brien et al. [2002], who shows how the
use of the DUKC software (deterministic dynamic under-keel clearance estimation)
allowed 123 vessels to load an additional 743,246 tonnes of coal (an average of 6,042
tonnes per vessel) in the Port of Hay Point, Australia, in the 1996/1997 �nancial year.
Resulting freight savings amounted to approximately US$7,500,000 and the increase
in export earnings summed up to US$30,000,000.

2.1.3 Robustness in shipping optimisation

In most of the approaches mentioned in Section 2.1.1, water depths are considered as
perfectly predictable variables. When they are not (see [O’Brien et al., 2002] as well as
studies on the probabilistic risk assessment of ship grounding in ports [Gucma, 2004,
Gucma and Schoeneich, 2008, Abaei et al., 2018]), an allowance, accounting for tide
(and possibly bathymetry) prediction error, is introduced. To the knowledge of the
authors, the modelling of this source of uncertainty is not discussed in the literature. It
is consequently worth investigating the robustness and optimality of such modelling,
as the introduction of safety margins always decreases shipping bene�t [Kelareva,
2014].

Although Kelareva et al. [2012] introduced a conservative 15-minute departure
window for each departure/arrival decision, the authors justi�ed the slack as a way to
take into account the inertia of large ships in port operations rather than to account for
sea level uncertainties. The large operational costs of ships tend to prevent the shippers
from adding signi�cant slack in their schedule [Christiansen et al., 2007], as a ship is
only productive when it is sailing. Again, it is worth investigating the robustness of a
dynamic under-keel clearance-based shipping optimisation with respect to real port
conditions, namely delays.

An original approach to robustness in ship routing and scheduling is �nally found
in Christiansen and Fagerholt [2002], who introduced the concept of risky arrival. A
penalty cost proportional to the risk of a given schedule is integrated in the optimisation
procedure of the transportation cost of a �eet. The work of Brown et al. [1997] should

1To paraphrase Kelareva [2014]: if the fuel consumption of the empty ship is 20% less than that of
the laden ship [Endresen et al., 2004] and if the increase in fuel consumption is linear in draft di�erence,
then if the vessel at hand shows a di�erence of 2.47m between laden and empty draft, 1 cm of extra
draft equals to 0.08% of fuel consumption increase. For short sea shipping journeys and small extra
load draft, this can be neglected. In bad weather, such an assumption might hold only for very small
extra loads as fuel consumption is sensitive to both weather and ship draft (both increasing the friction
resistance), i.e. load [Bertram, 2012]. Ship characteristics would then be needed to assess the actual
added-value of loading more in a rough sea.
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also be mentioned as it questions the applicability of mathematical optimisation in a
real port context. The authors especially highlight the situation where a small change
in the model inputs leads to a radically di�erent optimal solution. The concept of
persistence is introduced as a new feature of the optimisation model so that small
changes in the input values do not drastically change the nature of the optimal solution.

2.1.4 Objective and contribution

The present work aims at �lling a gap in the �eld of ship routing by explicitly con-
sidering and modelling the uncertainty in tide prediction. A robust analysis of cargo
loading and ship scheduling decisions in tidal areas is drawn through a realistic case
study. The question at hand is: how can we optimise the cargo loading and ship
scheduling decisions given imperfect sea level forecasts without foregoing safety?

To this purpose, a maritime shipping decision model is introduced. The model
assumes that an industrial operator has sea level forecasts at N ports, at a given time
t0, over a prediction horizon T . On this basis, the operator has to decide the total
amount of a given commodity to load at the �rst port, and the fraction of this cargo
that will be delivered in each of the remaining ports, as well as the estimated arrival
and departure times in each port. The deliveries all have to satisfy the constraints of
the inventory routing problem, namely to match a given demand in each port. We
assume that all ports have unlimited storage capacities.

Our model computes the ‘optimal’ solution to such a problem by taking into account
the uncertainty in actual sea levels w.r.t. tide predictions. However, the reader must
note that our framework does not address the uncertainty associated with the under-
keel clearance arising from dynamical responses to the sea state (heeling, heaving,
squat e�ect), nor from the bathymetry. We limit our approach to uncertainty about
still water levels resulting from deviations to the tide predictions. These additional
dynamical sources of uncertainty could still be integrated to a similar approach in
order to address the open water problem (see for instance Briggs et al. [2013] for
empirical methods to estimate the squat allowance, Quy et al. [2007] to quantify the
ship response to waves and Drwięga et al. [2017] to assess the heel components).

In the following, our model allows us to demonstrate the economic potential of a
robust under-keel clearance optimisation. Beyond the application to industrial ship-
ping, for which the bulk cargo load is quite �exible, this work wants to raise awareness
of the economic potential for small vessels (mini-bulkers), cheap commodities (grains)
and small ports strongly a�ected by tidal e�ects (i.e. limited dredging). In the current
context of transportation greening [Davarzani et al., 2016], we expect this to be an
important area for future applications.

The reader must keep in mind that, to clearly demonstrate the potential of the
proposed tide routing approach, we deliberately omit the uncertainties associated with
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weather, as well as berth availability and cargo handling capacity. With the increase
of slow steaming practices [Mallidis et al., 2018], weather does not currently represent
a serious limitation since generous journey times are planned and ships are no longer
expected to be at the maximum of their performance. The authors aim to further study
the limitation represented by berth congestion in future works. For many of the small
ports that the current work targets, neglecting the aforementioned uncertainties does
not represent a signi�cant issue, as the overall ship and cargo �ow is not at its full
capacity. For the larger and busier ports, this is indeed a question to ask: Is the added
value gained from pure tide routing lost in the variability associated with berthing and
cargo handling? Or does tide routing helps to smooth port tra�c? This is a subject of
future work.

Section 2.1 has introduced the motivations for the investigation of robust cargo
loading and scheduling optimisation in tidal areas and outlined the state of the art
around this issue. Section 2.2 presents the case studies and sets up the shipping de-
cision model. In Section 2.3, the uncertainty on port sea level forecasts is discussed
and a robust alternative to the deterministic decision-making process is presented.
Section 2.4 describes the implementation as well as the modelling of sea level un-
certainty. Section 2.5 discusses the results of our approach, compared to standard
techniques based on the results from two realistic case studies. Finally the �ndings
are summarised in Section 2.6 and perspectives are opened.

2.2 Shipping decision model

2.2.1 Case study

To illustrate the approach in this paper, a case study is presented, which gives the
reader context for the model development that is detailed later. We consider a farm
cooperative that owns a small-size bulk carrier. The company uses it to carry various
farm commodities between ports along the British coast, especially along the route:
Liverpool-Portsmouth-Lowestoft.

Given a freight unit value of US$ 195.61 per metric ton (for a malting barley freight
[Agriculture and Horticulture Development Board, 2017]), 1 cm of additional draft
equals an extra freight of 13.05 mt on the �rst vessel which conveys an extra pro�t of
US$ 2,556 (case study 1, cf. parameters in Table 2.1). As described before, although
a heavier ship will consume more fuel, for small vessels and short sea voyages, it
remains much more pro�table for the company to increase the overall cargo loading
if possible.

We assume that at time t0, given the demand constraints on commodity X in the
delivery ports, the cooperative has to decide the total amount of X to load in the
departure port, as well as departure scheduling in each port. To this purpose, the
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company uses the long term harmonic tide forecasts as sea level forecasts. Indeed, the
more recent and accurate models are not available in all ports. Besides, traditional
tide forecasts remain the main source of water level information for many shippers.
In the following, we use ‘decision’ to refer to this set of loading/scheduling decisions
and ‘bene�t’ to refer to the net bene�t resulting from the implementation of the said
decision in actual conditions.

Hence the problem of interest: given the economic, vessel and port parameters
(Table 2.1), given the information on available quays and maintained depths (Table 2.2),
given the tide predictions in all ports2:

1. What is the optimal decision, if the harmonic tide forecasts were considered as
perfect (from now on called the ‘standard approach’)?

2. Is this decision robust to actual port and sea level conditions?

3. What is an optimal and robust decision if the uncertainty on tide forecasts is
taken into account?

4. What shipping bene�t can be guaranteed, given a prede�ned level of acceptable
error, from the robust solution?

5. How do the robust solution and guaranteed bene�t depend on the model of the
tide residuals?

6. Is the procedure robust to unseen (i.e. extreme) sea level variations?

To answer these questions, a �rst case study is implemented for t0 = 13/01/2017−
07 : 30 : 00 and N = 2 ports. We compute the optimal solution according to our
approach and compare it w.r.t. the standard one. We assess its distributional robustness
as well. A second larger-scale analysis is then analysed: 175 di�erent t0 are considered,
from July 2016 to December 2016. We compare the performance of our model’s decision
with that of a standard approach, in terms of daily bene�t and robustness across this
range of t0 values.

2.2.2 Model overview

The model used here is a simpli�ed representation of the maritime inventory routing
problem. A material is produced at a given rate in a production site (called the loading
port) and consumed at other sites (called unloading ports), at speci�ed rates. Given
storage capacities in the production and consumption locations, what is the optimal
design of routes and �eet schedule that minimises the shipping costs (sailing and
port costs) without interrupting any of the production or the consumption in the

2Data provided by the UK Environmental Agency.
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Table 2.1 Model parameters

Type Param. Description Value Unit
Case study 1 Case study 2

Jo
ur

ne
y l

Mean distance between depar-
ture and arrival ports 440 {440 , 200} Nautical miles

ρ Mean sea water density 1,250 Kilogram per
cubic meter

Sh
ip

de
sig

n

v
Mean operational sailing
speed 13 Knot

S Ship horizontal surface 15 × 85 25 × 130 Meter×Meter
mmin Minimum cargo load (ballast) 1,870 3,000 Metric ton

mmax
Deadweight tonnage (carry-
ing capacity) 5,170 25,000 Metric ton

r50 Half-laden ship draft 5.2 8 Meter

fs
Fuel consumption rate of the
laden ship at sea 8 11 Ton per day

fp
Fuel consumption rate of the
ship at port 1 2 Ton per day

M
on

eta
ry

Cf Fuel cost 387 US$ per ton

Cu
Other operational costs (sta�,
maintenance) 2,500 US$ per day

Cc Average bulk cargo value 195.6 US$ per ton

Cbp∗

Berthing and loading/ unload-
ing operation cost within nor-
mal opening times

1,239 1,486 US$ per hour

Cbp∗

Berthing and loading/ unload-
ing operation cost outside of
normal opening times

1,548 1,858 US$ per hour

Cp Daily port fee 1,115 1,363 US$ per day

Po
rt

up Bulk material (un)loading rate 1,200 1,000 Ton per hour
Normal port opening time [7 : 00, 19 : 00] in all ports -

α
Minimum allowed under-keel
clearance to navigate in port
still waters

10% static draft -

Fo
re

ca
st ∆t Sea level forecast time step 15 Minute

T
Horizon of the sea level pre-
dictions 3 6 Day

In
du

str
ial

aj
Minimal delivery in port j >
1

- {4,000 , 2,000} Day

Table 2.2 Quay parameters.

Port Maintained quay depth (Meters)
Case study 1 Case study 2

Liverpool 12 12
Portsmouth 3 8
Lowestoft - 8
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aforementioned sites? The optimisation is made on an industrial shipping basis. In
other words, the shipper owns the material to be shipped and wants to maximise the net
bene�t of the shipment (the value of the cargo loaded minus the shipping costs). The
�eet consists of a single bulk carrier or general cargo ship and the study is restricted
to the N − 1 legs of length lj , j = {1, ..., N − 1} between the loading (departure, p1)
and unloading (arrival, pN ) ports with a constant ship speed, v, provided by the ship
speci�cations. From this, the goal is to optimise the decision vector d consisting of the
departure time tj and the cargo mj shipped from each port pj given the overall tide
predictions available at time t0 spanning the horizon T in the entrance channels of all
ports, given constraints on the demand aj in each port and given constraints from the
ship design (carrying capacity), safety at sea (minimum acceptable water under keel),
port management (opening times and price bands for port labour). For now, unlimited
storage capacities in all ports are assumed. The question of rate of production in the
departure port (i.e. o�er) is not taken into account.

The ship is assumed to be in the departure port at time t0 with empty tanks and the
most recent predictions X̂j(t) at the shipper’s disposal for the sea levels in all ports pj ,
over the horizon T . Time is discretized with the time step ∆t (following the precision
in the sea level prediction and observation time series). Here and in the following, in
order to simplify the notations, tj will be relative to the origin of our time axis t0.

2.2.3 Model description

The model takes time series of sea level point-forecasts in all ports of call as inputs.
Given contextual parameters regarding the journey, including ship characteristics,
freight and port management, generic constraints about acceptable under-keel clear-
ance, latest arrival time and cargo load, demand constraints in delivery ports and,
�nally, the net return computation rule for a journey, it computes the optimal cargo
loading and departure time by means of a particle swarm optimisation (PSO) solver.
Figure 2.1 provides a graphical overview of the model in the case N = 2 ports. This
generalises to N > 2.

2.2.3.1 Journey parameters

Table 2.1 de�nes the model’s input parameters. A few comments and justi�cations are
provided here.

The operational speed v is assumed to be �xed and constant over the journey (as
it is often the case in maritime shipping models). Operational port costs are subject
to price bands. Although most often docks and loading / unloading operations are
accessible 24 hours a day 7 days a week, the cost of such operations depends on the
local port schedule, e.g. midweek vs weekend periods for Liverpool port [Peel Ports
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Figure 2.1 Overview of the shipping decision model in the case N = 2 ports. The
methodology is similar for N > 2, as described in the text.

Group, 2017a,b]. The simple price band framework allows us to simulate a range
of situations: night vs days, week days vs weekends, bank holidays. Finally, the
safety margin coe�cient α in terms of legally required under-keel clearance to use
the con�ned navigation channel of port p is set to 10% of the laden ship draft as this
is usual practice at limited speeds [NOREL, 2014]. The open sea version would require
adding a 30% margin to the dynamical draft.

2.2.3.2 Sea level input variables

The sea level point predictions in each port are harmonic tide forecasts available online
through the British Oceanographic Data Center portal. The time step, ∆t = 15 minutes,
sets a minimum bound on the resolution of our departure time solution. In real port
conditions, cargo ships cannot be expected to be exactly on time. Reducing this lower
bound would consequently not be realistic. As the tide height can change quickly, and
because we are dealing with additional centimetres of under keel clearance, it would
also not be judicious to increase ∆t too much. Indeed, the sea level within 1 hour (or
even 30 minutes) could change signi�cantly with respect to the small variations we
are interested in. Consequently, a time step of 15 seems a suitable trade-o�.
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2.2.3.3 Model variables

The ship draft, a key element in shipping planning and realisation, is a function of the
cargo load as well as the fuel mass f(t) in tanks at the time t of interest. Considering
Archimedes’ principle and the equilibrium of forces in a gravitational �eld, the draft r
can be estimated from the equality between ship’s weight and water displacement. In
a simple approximation (barge ship), this leads to:

r(t) =
m+ f(t)− 0.5mmax

ρS
+ r50 (Equation 1)

where r50 is the half laden ship’s draft, S the ship’s horizontal area, mmax its carrying
capacity, ρ the water density. The function f(t) is computed by taking into account
the fuel consumption rates at sea fs and at port fp respectively, the time already spent
at sea and at port respectively at t, as well as the total fuel load necessary to move
the ship from one port to another and (un)load material. Dynamical e�ects such as
the squat e�ect or the heel due to the wind and the wave responses can reduce the
under-keel clearance temporarily. They are not taken into account here beyond the
safety margins αr(t) as, again, we consider the still water problem.

2.2.3.4 Constraints

The ship’s cargo and scheduling have to satisfy some constraints. First, at any stage, the
cargo loadmj cannot exceed the tank capacitymmax and must �t with the requirements
for safe structural behaviour of the hull (mj ≥ mmin), as well as with the demand
constraints in the next ports to visit (mj ≥

∑N
k=j+1 ak). In the following: mmin is

taken as the minimum of the structural constraint and the economic constraint.
The fuel load necessary to carry the ship and its cargo mj over the distance

l =
∑N−1

k=j lk at speed v and load/unload the freight at rate up in port p must be
subtracted from mmax: fsl + fp

∑N
p=j+1 Tp + mj ≤ mmax, where the minimal time

spent at port p is the time for (un)loading: Tp = |mp−1−mp|
up

(noting that we setm0 = 0).
Second, to enter/leave port pj at time t, the water depth must be greater than the

ship draft plus the safety margin:

X̂p(t)− (1 + α)r(t) > 0. (Equation 2)

Third, the ship cannot leave port pj before the cargo is (un)loaded and must arrive
before the horizon T is reached, so:

tj−1 +
lj−1

v
+
|mj −mj−1|

upj
≤ tj ≤ T −

∑N−1
k=j lk

v
. (Equation 3)
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2.2.3.5 Shipping return

The problem is to �nd the optimal combination of decisions d∗ = (t∗j ,m
∗
j), j =

{1, ..., N − 1} that maximises the net bene�t B, where:

B(d; X̂j(t), j = {1, ..., N}) =

V − (O + P + U) if delivered on time,

Z otherwise.
(Equation 4)

The gross value V is the merchant value of the cargo:

V = Cc.m1 (Equation 5)

with Cc the unit value of the freight. From there, we subtract the operational costs of
the journey, starting from t0 (time of decision) with an empty ship and �nishing at
ta + mN

uN
after unloading the material in port pN where ta is the arrival time in the last

port of call. These charges encompass the propulsion costs:

O = Cf

(
fsTs + fp

∑
p

(Tp + Tp∗)

)
(Equation 6)

where Ts is the total time spent at sea and and Tp, Tp∗ the total times spent at port
p within and outside normal work hours respectively and Cf is the fuel unit price.
Operational charges also include usage costs:

U = Cu

(
Ts +

∑
p

(Tp + Tp∗)

)
(Equation 7)

with Cu the hourly usage cost (sta�) of the ship. Finally, port costs have to be included:

P =
∑
p

(⌈
Tp + Tp∗

24

⌉
Cp + TpCbp + Tp∗Cbp∗

)
(Equation 8)

where d·e is a ceiling operator andCp,Cbp∗,Cbp∗, the daily port fee, hourly manutention
prices in normal hours and outside normal hours in port p respectively.

Z is the cost of not making the delivery in time (i.e within the horizon T ). De-
pending on the aim of the user, Z can also take into account the negative externalities
on the environment and society of a grounding (Z → −∞) or simply the loss for the
shipper (Z = −V − (O + P + U)).

43



2.3 A probabilistic approach to decision making

Using the model described above, one can choose an optimisation technique (e.g.
particle swarm optimisation or simulated annealing) to compute the optimal decision
to take at time t0, according to the sea level forecast time series X̂j(t), for the ports pj ,
j = {1, ..., N}. Such a calculation does not consider the actual stochastic behaviour of
the water depth. Local sea levels are in�uenced by a range of factors, including weather.
A residual ej(t) = Xj(t)− X̂j(t) between the predictions and the observations can
lead to either a regret (ej > 0: the shipper could have loaded more or departed earlier)
or a loss (ej < 0: in order to adjust to the actual water level the journey is delayed, or
a grounding can happen). In other words, the resulting solution is risky. It does not
tolerate a negative deviation to prediction nor port delays. In order to take account of
the uncertainty on the output of a given decision, we must introduce a risk measure.

Risk is a polysemous notion. This is re�ected in the many works that have been
published in order to identify and classify the variety of de�nitions (from Kaplan and
Garrick [1981] to Aven [2012] and Goerlandt and Montewka [2015]). In the �eld of
maritime transportation, an analysis of risk-related publications spanning over forty
years (1974-2014) led by Goerlandt and Montewka [2015] shows that the majority of
the works rely on four de�nitions:

(a) Risk is the expected value of the loss;

(b) Risk is a combination of scenarios, their probability and the extent of their
consequences, represented as a triplet;

(c) Risk is the possibility of a loss; or

(d) Risk is the probability of an undesired event.

Although simplistic, de�nition (a) has the advantage of easing comparisons between
two options as the information about the possible scenarios and their consequences is
synthesized into a single number.

In the present work, ’loss’ takes the meaning of the loss in pro�t due to the fact
that decision d ∈ D is taken at time t0 based on imperfect forecasts X̂j ∈ X of the
environment state Xj ∈ X . Let Fj be the cumulative distribution function over Xj ,
which is conditional on information on the prior values of Xj and possible other
information. Let F̂j be a predictive distribution of Xj (that is a distribution over X̂j)
provided by the forecaster at t0. Let X̂j(t) be a point forecast time series of Xj(t) over
time [t0, t0 + T ], B(., .) : D × X → < the utility function (namely the net bene�t
of the journey based on decision d) and y(·) : X → D an optimal action function
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de�ned by:

y(F̂j) = arg max
d∈D

(
E[B(d, X̂j)]F̂j

)
= arg max

d∈D

∫
X
B(d, X̂j)dF̂j (Equation 9)

The loss function L(., .) : D× [0, 1]→ < is then de�ned by Granger and Machina
[2006] as:

L
(
y(F̂j), Fj

)
= B

(
y(Xj), Xj

)
−B

(
y(F̂j), Xj

)
(Equation 10)

for all X̂j, Xj ∈ X . In other words, the utility of the decision made under uncertainty
B
(
y(F̂j), Xj

)
is compared to the utility resulting from the decision made under

perfect knowledge of the future B
(
y(Xj), Xj

)
.

The loss associated with a given decision can only be evaluated a posteriori as it
requires the knowledge of the exact future states of the environment, that are not
known at the time of the decision. Hence the recourse to the expected loss which
only requests the actual knowledge on the possible values of these future states. We
consequently de�ne the risk R of taking a shipping decision d as:

R(d) = E
[
L
(
d, Xj

)]
Fj

(Equation 11)

Looking more closely at the de�nition of the loss which we aim to minimise (the
expectation over the space of sea level residuals), one can notice that minimising
E
[
L
(
d, Xj

)]
Fj

is equivalent to �nding the decision d∗ that maximises the expected

bene�t B̄(d) = E
[
B
(
d, Xj

)]
Fj

.
The decision minimising R would be, from a frequentist viewpoint, the one that,

on average, over a large number of journeys, produces the maximal net bene�t. The
theoretical expectation addresses both the feasibility and the performance (high return)
of the candidate solution, since the cost −Z →∞ of a grounding would prevent any
solution with the least probability of grounding to be returned as optimal.

2.4 Implementation

The problem of deterministic shipping optimisation was de�ned in Section 2.2.3.5. It
consists of �nding the decision d∗ = (t∗j ,m

∗
j), j = 1, ..., N − 1 maximising the net

bene�t of the shipping given sea level forecasts X̂j , j = {1, ..., N}. Similarly, the
risk minimisation problem consists of �nding the decision maximising the objective
function (or risk function) de�ned in Section 2.3.

Both are constrained 2-dimensional optimisation tasks whose objective functions
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are not continuous nor di�erentiable. As a result, classical analytical optimisation
techniques cannot be used. Hence the call to derivative-free algorithms such as par-
ticle swarm optimisation to estimate d∗. A range of other computational methods
could have been implemented as well. However, PSO was chosen because it generally
demonstrates good convergence and execution speed properties in addition to its sim-
plicity of implementation. A review and comparison of the derivative-free approaches
is provided in Rios and Sahinidis [2013]. PSO is an iterative stochastic optimisation
technique that imitates the natural swarm behaviour of a bird �ock [Eberhart and
Kennedy, 1995]. At each iteration, the elements (particles) of the �ock explore the
search space in a semi-random way and evaluate the �tness (value of the function to
optimise) of their positions. They share the information so that their next move is
in�uenced by both their own �ndings and the �ndings of the other members of the
swarm. The algorithm stops when the desired number of iterations is reached and the
position with optimum �tness is returned. Algorithm 1 describes the procedure and
our implementation choices.

Because the risk function de�ned in Section 2.3 cannot be written in closed forms
due to the de�nition of the net bene�tB, it is natural to turn to Monte Carlo simulations
to estimate them, within the PSO procedure. Algorithm 2 shows the general approach,
now referred to as RPSO. BPSO refers to the “deterministic” optimisation of the
shipping bene�t (by means of Algorithm 1), that is without taking into account
any uncertainty on the sea level forecasts (although technically PSO is a stochastic
technique). Hereafter we name nominal state the forecasted sea-level state.

2.4.0.1 Sampling

Mathematically R is, within a constant, the expectation of the economic output of a
given decision when the sea levels in both departure and arrival ports vary around
their nominal state (the predicted one). Such a de�nition implies that R is model-
dependent: its accuracy depends on the quality of the modelling of sea level residual
distributions. In this section, we present the results of an analysis of these residuals
in both departure and arrival ports of our �rst case study, namely Portsmouth and
Liverpool.

The dataset used for the modelling and then the testing consists of sea level
residuals sampled every 15 minutes between 00:15-01/01/2006 and 23:45-31/12/2016
UTC, in each port. We split it into two parts: even years (dataset De) and uneven
years (Du). The former is used for modelling the sea level residuals by means of
best-�t distributions. It is then used for the shipping optimisation procedure per se.
Finally, Du is used as validation set, to perform simulations and gather statistics on
the performance of the optimisation outputs. The whole framework is summarized in
Figure 2.2.
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Algorithm 1 Particle Swarm Optimisation procedure

1. Initialise randomly the position di of each particle i in the search space D and
set their initial velocity vector to 0.

2. For each step j:

(a) For each particle i:
i. Compute the objective function f(di) (i.e. the net bene�t
B(di, {Xj(t), j = {1, ..., N}}) resulting from the shipping decision
di with actual sea levels Xj(t), or the expected bene�t B̄(di)). This is
the �tness of position di.

ii. Update the personal best bi(j) of each particle i.e its position with
optimal �tness among the set of previous iterations. Similarly, identify
and update the global best g(j), that is the best solution among the
positions visited by the whole swarm so far.

iii. Move each particle according to the following equation of motion:

di(j + 1) = di(j) + νi(j + 1), (Equation 12)

where the velocity is de�ned by:

νi(j + 1) = ω(j + 1)νi(j)+

c1R1

(
bi(j)− xi(j)

)
+ c2R2

(
g(j)− xi(j)

)
.

(Equation 13)
The cognitive c1 and social c2 coe�cients are set up so as to optimise
the ratio between individual exploitation and social interaction while
the linearly decreasing inertia weight ω(j) limits ’velocity explosion’.
The diagonal matrices R1 and R2 introduce stochasticity in the walk
of the particles.

3. Stop when the maximum number of steps is reached or when there is no change
in the global optimum for a given number of steps. Return the position with
optimal �tness.
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Algorithm 2 Procedure RPSO

1. Initialise randomly the position di of each particle i in the search space D and
set their initial velocity vector to 0.

2. For each step s:

(a) For each particle i:
i. Sample time series of tide residuals ej(t) in ports j = {1, ..., N} from

a distribution model. In this �rst study, we assume the residuals to
be independent from port to port at a given time, and between any
two given times at a given port. The spatial independence is not a
strong assumption as long as ports are not too close. On the other
side, the time independence can be discussed as on short durations
the residuals show correlation.

ii. Compute the net bene�t B(di, {Xj(t), j = {1, ..., N}} for the simu-
lated sea level conditions. These are given by the nominal state mod-
i�ed by the tide residuals, namely at port j: Xj(t) = X̂j(t) + ej(t).

iii. Repeat steps 2(a)i to 2(a)ii until the number Ns of simulated environ-
ments requested to compute the empirical risk function is reached.

iv. Estimate the latter from the Ns outputs of step 2(a)iii.
(b) Move particles according to the general PSO procedure described in Algo-

rithm 1, in the search space, step by step. Here the objective function to be
maximised are the risk functions computed in step 2(a)iv, e.g. the expected
bene�t or the expected loss.

(c) Stop when the maximal number of steps is reached or when there is no
change in the global optimum for a given number of steps and return the
position with optimal �tness.

48



Figure 2.2 Methodological framework for data use in residual prediction and assess-
ment of the resulting optimal decisions. The intertwining of the PSO algorithm with
the Monte-Carlo sampling is also represented.

Three distributions were tested: Gaussian, Logistic and Gaussian mixture model
(GMM). The number of components in the Gaussian mixture models were chosen so
as to minimise the Akaike Information Criterion [McLachlan and Peel, 2004]. This
criterion assesses the ’goodness of �t’ of a model to a data set while introducing a
penalty that increases with the number of free parameters requiring estimation. The
aim is to �nd the optimal trade-o� between model complexity and loss of information.

Kolmogorov-Smirnov statistics were computed to quantify the “goodness-of-�t”
of each model. They reject at the 1% signi�cance level the null hypothesis that the
residuals follow a Gaussian or Logistic distribution for both ports. A graphical analysis
of the three models shows that the Gaussian distribution signi�cantly under-represents
the small deviations of sea level observations with respect to tide predictions. Hence
the introduction of the Gaussian mixture model, that globally represents the original
residual distribution with greater �delity. Besides, the GMM is able to capture the long
tails that the single Gaussian or Logistic cannot. This could be important, as extreme
events are usually in the tails.

This analysis will �rst be used to assess the distributional robustness of the opti-
misation procedures in Section 2.5, by analysing the e�ect of the residual modelling
on the optimisation results. Besides, on a standard desktop computer running Linux,
sampling from a Logistic distribution is about 10 times quicker than from a Gaus-
sian distribution and 15 times quicker than from a 5 component mixture distribution.
Since feasibility is at stake in operational research, in the following sections we check
whether the di�erence in risk outputs and its implication in real-world decision making
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Figure 2.3 Probability distribution functions of sea level residuals in Portsmouth and
Liverpool ports over the period 01/01/2006-31/12/2016. Three models were �tted:
Gaussian, Logistic and Gaussian mixture models.

justify the added complexity of the GMM input model.

2.5 Results and Discussion

Initially, we present the result of a study between N = 2 ports, allowing us to assess
the distributional robustness of our probabilistic approach and justify implementation
choices for the second study, a larger performance analysis with N = 3 ports.

All the results in terms of bene�t B will be expressed as multiples of B0 = US$
363, 550 (resp. B0 = US$ 190, 530 for the second case study). We also set the cost
of not making the delivery in time to Z = −V − (O + P + U). Negative bene�ts
would thus imply a grounding or the impossibility to reach the arrival port within the
speci�ed time horizon.

2.5.1 Case-study 1: 2-port analysis

2.5.1.1 Deterministic approach

The BPSO procedure recommends the ship to leave Portsmouth Harbour at 11 : 45

UTC on January 13th 2017 with an overall barley freight of 4, 475 mt. The precision
on these recommendations is estimated to 3 mt in freight and 15 minutes in time as
standard deviations (from 1,000 independent runs).

Figure 2.4 presents a mapping of the �nal shipping bene�t over the decision search
space D, given the forecast a priori at hand and given perfect forecasts, i.e. the a
posteriori exact observations of the sea level depths. The optimal decisions according
to BPSO in each scenario di�er by one tide cycle in time and about 400 mt in cargo
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Figure 2.4 Mapping of the net bene�t B over all the decisions (t,m) of the search
space, given sea level forecasts at hand (a) or actual sea level (b). The optimal decisions
based on the deterministic forecasts and on the perfect forecasts (i.e. real state of the
sea) through the solver BPSO are also reported.

load. In other words, the deterministic solution under imperfect harmonic predictions
is far away from optimality in the real-world of non-zero residuals. Besides, it is
quite straightforward to see on these maps that both solutions are very sensitive to
perturbations. A 15mn departure/arrival shift or a negative error in the actual sea
levels both shift the expected bene�t from maximum to the negative area.

One way to get over the second limitation is to improve the accuracy of sea level
forecasts. This is currently achieved by means of storm surge models. To take into
account the local weather perturbations, these models use atmospheric forecasts as
forcing in shallow-water hydrodynamic simulations e.g. the CS3 storm surge model
covering the sea of the northwest European continental shelf [Flowerdew et al., 2010].
Nevertheless, whatever the accuracy reached, these forecasts cannot prevent the issue
of port perturbations and delays. Hence it seems reasonable to develop a robust
solution instead of a single deterministic optimisation.

2.5.1.2 Risk model

We now use RPSO to compute the optimal shipping decision under uncertain sea
levels. The risk metric presented in Section 2.3 is combined with one of the three sea
level residuals distribution models under consideration. Table 2.3 reports the statistical
results of each combination as regards the optimal cargo load, departure time and
the resulting guaranteed bene�t at the error rate of 2 %, that is the 2% percentile B.98.
The latter is estimated from 100,000 Monte Carlo simulations. In order to prevent a
methodological bias, these simulations sample the sea level by means of bootstrapping
(over dataset Du, c.f. Section 2.4.0.1).

As the purpose of theRPSO procedure is to support decision-making, it is necessary
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Table 2.3 Statistics over 50 runs of the outputs in terms of decision-making. The
optimal cargo load m, departure time t and guaranteed bene�t B.98 at the level of 2
% (over 100,000 simulations) are expressed in metric tons, UTC and fraction of B0

respectively. The uncertainty is computed as the standard deviation of the results.

Distribution GMM Logistic Gaussian
Variable

m (tons) 4, 210± 20 4, 200± 10 4, 225± 9
t (UTC) 11 : 45± 15mn 11 : 45± 15mn 11 : 45± 15mn
B.98 (B0) 2.069 2.064 2.077

to analyse the consequences of the above results as regards their translation in terms
of practical shipping decision. The overall majority of the computed departure times
are located within a 15 mn time slot centered on 00 : 15. Taking into account the
relative inertia of large vessels and generally slow port dynamics (from decision to
subsequent actions), this range of uncertainty can be seen as a bu�er to consider in the
decision-making schedule. Trying to increase the precision on t would be meaningless
considering the real world context of a maritime shipping problem.

As regards the distribution impact, Logistic sampling produces more conservative
loads than the GMM approach and further again, than the Gaussian one. The di�erence
between the maximal and minimal loads above-mentioned is in the range of 25 mt,
that is in our case study less than 2 centimetres of draft. This leads to close guaranteed
bene�ts B.98.

Figure 2.5 summarises most of the information discussed above: a Logistic sam-
pling will produce more stable (smaller variance) outcomes than the other residual
models. It also shows that the approach can be said distributionally robust. Indeed,
the ranges of the reduction in standard deviation and in guaranteed bene�t when the
underlying distribution varies are much smaller (close to 0.06 and 0.006 % respectively).
Three observations can be highlighted as well. First, in this particular case study,
the stochastic optimisation allows the owner to (in most of the con�gurations) save
money as the guaranteed bene�t is above the expected bene�t of the deterministic
decision in real conditions (B̄ = 0.164). Second, the spatial organisation of the points
underlines a general pattern in robust optimisation: the guaranteed bene�t increases
at the cost of the increase in variance [Gotoh et al., 2015]. Finally, as noted by Gotoh
et al. [2015], the variation in actual bene�t is about one order of magnitude smaller
than the reduction in its standard deviation.
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Figure 2.5 Performance of each optimisation approach (sea level residuals distribution)
from the perspective of the reduction of the guaranteed bene�t at the error level
of 2% and the standard deviation of the actual shipping bene�t, with respect to the
performances of the “deterministic” solution based on sea level forecasts alone. 100,000
Monte Carlo simulations are used to compute these statistics, with bootstrap sampling.

2.5.1.3 Summary of results

Figure 2.6 summarises all the above considerations in a 3-dimensional view of the
optimisation problem. A map of the expected bene�t (whose maximum corresponds to
the minimal risk de�ned in the previous sections) is estimated with bootstrap sampling
for each couple (t,m) of the search space, as well as a map of the actual bene�t variance
on a smaller area of the search space. On top of both maps, are reported the decision
suggested by the net bene�t optimisation from sea level forecasts, perfect forecasts (i.e.
perfect knowledge of the future) and our optimisation approach with a set of residual
modellings.

Concretely, as the owner of the company, you could use the bene�t optimisation
decision that is based on the deterministic harmonic forecasts, load 4, 475 mt of barley
and cast o� at 11 : 45. However the outcome of this decision, given the actual
observations of sea levels is −2.49B0. This is much less desirable than the bene�t
2.12B0 that you could make if you knew the future perfectly and left Portsmouth port
at 11:45 with 4, 705 mt on board. Using the stochastic optimisation method developed
in this paper, you could load cargo between 4, 200 and 4, 225 mt, raise anchor at 11:45
and get a net bene�t from 2.06B0 to 2.07B0.

If these decisions were reported in Figure 2.4(b) (mapping based on actual sea level
conditions), one could notice that a port re-scheduling of up to 1.5 hours (earlier or
delay) would not substantially change the bene�t, nor a variation (in standard limits) in
sea level conditions. Besides, Figure 2.6 reminds that the variance in the actual bene�t
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Figure 2.6 Three dimensional mapping of each decision (t,m) to the associated actual
bene�t standard deviation (top: zoom on the �rst high tide of the planning horizon)
and expected net bene�t (bottom, full planning horizon). Points of interest discussed in
the text are also reported. The mapping use Monte Carlo simulations of 1,000 journeys
by means of bootstrap re-sampling.
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Figure 2.7 (a) Results over 175 decision times, t0, and (b) a subset of 50 t0 for the
probabilistic and deterministic approaches, including the latter’s ’rule-of-the-thumb’
safe counterpart.

is substantially reduced for our solutions, contrary to the variance of the deterministic
proposition. In other words, the approach RPSO proposes a robust solution. This is
true for any sampling distribution although a Gaussian generally leads to solutions
with slightly less predictable economic outcomes. Recalling the questions raised in
the motivation of the problem (Section 2.1), in this case study, our stochastic approach
demonstrated to be economically valuable with respect to the standard (deterministic)
approach. Besides, a simple Logistic modelling of the residuals is enough to produce
quality results, similar to those gained by means of a GMM.

One can note that the cargo load output m can be turned into a safety margin
∆r to be deducted from the maximum draft that would have been allowed given the
sea level tide forecasts at hand at t0 (procedure BPSO). For future works, it would be
interesting to compare ∆r with what a “non-stochastic” commercial software would
suggest on a similar problem, so as to assess the quality and potential added value of
our model.

2.5.2 Case study 2: 3-port analysis

The �rst case study was a relatively simple example, chosen to show the potential of a
probabilistic approach of tide routing, especially for tide-sensitive ports (Portsmouth
in our illustration).

In the following, to provide a more representative analysis, the approach is applied
to 175 di�erent decision times t0 between July 2016 and December 2016, each spaced
by at least 24 hours. One additional port is also added to the analysis, with the
chosen route: Liverpool-Portsmouth-Lowestoft. Again, we �rst compute the perfect
decision, given a perfect knowledge of future sea level conditions in the three ports.
The deterministic and probabilistic optimal decisions given tide predictions are then
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computed. Note that the probabilistic decisions are, given the results in the previous
section, computed using logistic modelling of the sea level residuals. Besides, since this
approach is more time consuming than a standard deterministic approach, we restrict
the computations to 50 t0, randomly sampled to represent the various trends in the
whole set of 175 t0. In addition to the deterministic decision, we add a deterministic
decision taking into account a rule-of-the-thumb safety margin on the sea depth, as it
is common practice in the maritime shipping industry. Static safety margins of 1m
and 0.5m were both investigated in our experiments. We compare the performances
of the three di�erent approaches in terms of net bene�t in actual conditions.

Figure 2.7(a) shows that 17% of the journeys cannot be ful�lled in the given horizon
(i.e. cannot reach the �nal port, with the prescribed cargo load, because of low sea
levels) if the deterministic decision is used without a safety margin. This score is
lowered to zero by using the probabilistic approach or the deterministic one including
a safety margin of 1 or 0.5m, con�rming the robustness of our approach. Moreover, it is
clear from Figure 2.7(b) that the net bene�t in these ‘critical’ situations is signi�cantly
higher when using the probabilistic approach than the safe deterministic ones. This
shows that switching from a traditional rule-of-the-thumb static safety margin, often
too conservative, to a �exible safety margin provided by the probabilistic approach
and taking into account the port calls to come, facilitates time savings and/or increased
loading, improving the company’s overall net bene�t without foregoing safety. Such a
solution can be said both robust and near-optimal.

2.5.3 Robustness to extreme sea level variations

One could argue that, as the probabilistic approach is based on the modeling of sea
level residuals (itself �tted with archived observations), the results might be sensitive
to extreme residuals. To analyse a possible lack of robustness to unseen sea level
variations, we use the setting of case study 2. From the scheduling solutions for each
of the 50 tests, we arti�cially modify the residuals in a time-window of ±45 minutes
around the departure time in each port of transit. The perturbation procedure is the
following: instead of the observed residuals, we sample them from the actual residual
distribution (in each port of interest) whose mean is shifted to the 1) minimum residual
ever observed; 2) quantile 0.1 of the residual distribution; 3) median of residuals; 4)
quantile 0.9 of their distribution; 5) maximum residual ever observed. The impact on
the net bene�t of the journey is assessed and results are summarised in Figure 2.8.
For the probabilistic approach, we measure the variation in bene�t with respect to
the unperturbed actual net bene�t. For all deterministic approaches, the variation is
measured with respect to the net bene�t of the probabilistic approach resulting from
the same perturbed conditions. Figure 2.8 shows that the net bene�t resulting from the
probabilistic approach is not sensitive to the more extreme residuals, whether negative
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or positive. The approach remains, in all conditions, more attractive regarding the
actual bene�t than the deterministic approaches with safety margins. Clearly, as
a consequence of its conservative nature, the probabilistic approach cannot pro�t
from the windfall e�ect generated by extreme positive residuals as much as a 0-safety
margin approach.

2.5.4 Limitations

As stated in Section 2.3, the risk measure was chosen because its de�nition allowed us
to address both feasibility and performance in terms of robust optimisation. However
in practice, as detailed in the next section, R(d) is estimated from Monte Carlo
simulations of the shipping journey subject to various residual scenarios. These Monte
Carlo simulations investigate a smaller uncertainty set than a theoretical expectation.
The modelling of residuals is indeed based on historical data and potentially not
conservative enough. Besides, calling Monte Carlo techniques implies that the number
of sampled scenarios is limited, which is even more true if real-world applicability
(computation time) of the decision-support tool is at stake.

We would like to conclude this section by further justifying one of the assumptions
in our model. We chose not to consider the possible restrictions in terms of actual
water depth during the loading or unloading steps. For more operational decision-
making support, these additional constraints should be integrated. In our case study
and generally speaking for small vessels, results are not a�ected by this simpli�cation.
As long as (un)loading rates are high and the loads small, the loading/unloading stages
are very limited in time and the increasing ship draft matches the rising tide (which is
the only potentially problematical scenario).

2.6 Conclusion and future works

This study introduced a decision model for robust cargo loading and ship scheduling
in tidal areas. We associated a risk measure to each possible shipping decision. This
measure was de�ned as the expected economic loss of taking the decision in an
uncertain environment (sea levels), that is the loss with respect to the net bene�t that
could have been achieved if actual sea levels were perfectly known in advance. We
developed a stochastic approach based on particle swarm optimisation and Monte Carlo
simulations to estimate the decision that minimised risk. Results from a Portsmouth-
Liverpool case study showed that this solution was both robust and optimal with
regard to real port and sea level conditions. We also addressed the question of residual
modelling and the resultant issue of distributionally robust optimisation. Thereon, the
impact of a change of residual model on the optimisation outputs was negligible in
terms of decision-making. A �nal application to 3 ports con�rmed the added-value of
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our approach compared to standard practices.

While both the probabilistic and classical, ‘rule-of-thumb’, approaches can be con-
sidered robust (to, for example, port delays, forecasting errors etc.), the probabilistic
approach was shown to be closer to optimality. Both case studies show the relevance
of our approach for tide sensitive ports, small capacity carriers and cheap commodi-
ties. Finally, by analysing arti�cial extreme sea level variations, the robustness of
this approach to unseen residuals and its e�ciency over existing ’rule-of-the-thumb’
practices was demonstrated.

To address the computation time and underconservative historical modelling of
residual issues, it would be interesting to de�ne sounder uncertainty sets on which
the risk metric would then be applied.

Another avenue of research is �ner modelling of the sea level residuals, taking
into account the cyclic character of data as well as results in the relevant literature,
like those of Horsburgh and Wilson [2007] who noted patterns in the observation
of highest weather-based surges. Because positive and negative deviations in tide
prediction do not have the same e�ect on the end-user (that is the shipper), more
attention could be given to their respective modelling as well as to the way of treating
them through an appropriate asymetrical utility function, beyond what has already
been done by focusing on the net bene�t.

In practice, it will likely be necessary to make a more complex analysis. Shipping is
a multi-dimensional activity. Loading / unloading a ship and leaving / entering a port
require external support. We have analysed the robustness of shipping decisions under
uncertain sea levels. However from congestion in waterways to berth availability,
crane and tug allocation, a range of uncertain factors should also be included in the
analysis of a robust optimal shipping decision.

Similarly, the uncertainty on the exact local water depth was assumed to come
from the sea surface: the possibility of a weather-induced deviation to tides. Yet a
range of factors can also locally modify in space and time the water depth: currents,
sedimentation, vessel tra�c for instance. Including the uncertainty on the lower part
of the water column, at the sea �oor, would consequently be interesting.

We assumed that the total fuel costs did not change signi�cantly on a given journey
when the cargo load is slightly increased. Our study would bene�t from an analysis of
the increase in fuel costs with the added cargo value as a function of the weather and
ship characteristics (fuel consumption increasing with bad weather).

Finally, we intend to analyse our tide-routing problem from the perspective of
existing weather routing solutions. The speci�cities of tide routing could be introduced
in the dynamic criteria and constraints of such approaches.
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Chapter 3

Possibly Extreme, Probably Not: Is possibility theory the route
for risk-averse decision-making?

Given the simplicity of our initial sea level residual modelling and the existence of
proper, physics-based predictions for the same residuals, we decided to investigate how
to use the so-called ensemble predictions (EPSs) as input in our shipping optimisation
framework. As described in depth in Section 1.1.2 of the introductive Chapter 1,
we started to wonder about whether probability theory was the best way to extract
information from the EPSs. A few preliminary works, based on actual residual data
used in the shipping context, investigated non-probabilistic ways of modelling the
residuals’ EPSs.

Intervals bounded by the extremes of the EPS at hand in [Le Carrer, 2018a], as
represented in Figure 3.1 were �rst used. The performance on a one-journey case study
similar to the N = 2 -shipping optimisation problem developed in Chapter 2 were
promising (cf. Figure 3.2) : the interval-based approach is less conservative than the
probabilistic one and, in this setting, much quicker to compute. However, Figure 3.3
shows that if we run the same experiment over 64 di�erent starting days, we cannot
generalise these results. When successful, the EPS-interval-based approach is the
closer to optimality, however the failure rate is 34%, while the probabilistic approach
developed in Chapter 2 is more conservative but has no failure, i.e. do not suggest a
decision that will lead to unsu�cient under-keel-clearance at some point of the journey
(called failure due to its dramatic consequences). This is due to the overcon�dence,
and more generally lack of reliability, of the EPSs (i.e. their bound do not always
contain the true value of the observed residual), largely documented in the literature
[Buizza, 2018] (from model bias to too narrow EPS’ variance). Although presenting
the strongest potential w.r.t. predicting closest-to-optimal solution, such an interval
modelling of the EPS cannot become operational. We consequently investigated in
[Le Carrer, 2018b] (unpublished) the idea of combining to the EPS interval prediction
a fuzzy safety margin derived from the probability, computed from logistic regression
(with carefully chosen EPS or dynamical indicators), that a future residual will fall
below the lower bound of the EPS.

Although performances (cf. Figure 3.4) were interesting, we did not go further
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Figure 3.1 Ensemble predictions (EPSs) for the residuals over the next 7 days, from
July 1st 2017 6:00:00 GMT, at the port of Liverpool. An interval approach on residual
prediction consists in saying that the future residual is comprised between the lower
and upper bounds of the EPS at the time of interest.

in this direction as such a solution lacked of physical interpretability. It was more a
correcting tool than a proper interpretation, which did not solve the problem raised
by Bröcker and Smith [2008] and described in our Introduction (1.1.2.2). Rather, we
decided to focus on the speci�c problem of EPS interpretation and considered a toy
system regularly used in studies about ensemble forecasting strategies [Wilks, 2006,
Williams et al., 2014], namely the Lorenz 96 system.

The possibilistic interpretation of EPS that we present in this PhD is �rst developed
in the article Possibly Extreme, Probably Not: Is possibility theory the route for risk-
averse decision-making? [Le Carrer, 2021], accepted in January 2021 in the journal
Atmospheric Science Letters. It follows a �rst possibilistic tentative of interpreting EPSs,
published in the proceedings of the 2019 Annual meeting of the European Meteorology
Society [Le Carrer and Green, 2020]. We add in Appendix B extracts of this paper
corresponding to the framework, a possibilistic dressing of ensemble members in place
of the existing probabilistic ensemble dressing [Roulston and Smith, 2003]. Although
results were interesting, we did not go further with this approach due to its parametric
form, that implied a trade-o� in performances as well as the impossibility to propagate
the formal guarantees that possibility theory provides.

In this chapter, we investigate in particular the formal guarantees provided by our
new framework, that we compare empirically with those provided by a classical prob-
abilistic ensemble dressing of EPSs. The contribution of the authors is the following:
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Figure 3.2 Results from a case study with N = 2 (Liverpool-Southampton) ports,
with setting (journey parameters) similar to the case study presented in Chapter 2, for
which we try to optimise the best decision (cargo loading+departure time) to take on
February 9th 2017 at 6:00:00 GMT when the sea level residual predictions are released
by the MetO�ce/NOC CS3 storm surge model.
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Figure 3.3 Results of the experience described in Figure 3.2 over 64 successive days.
We present the actual bene�t depending on which optimisation method is used to
take a scheduling decision. The expected bene�ts (resp. actual ones) are represented
in dashed line (resp. solid points).

Figure 3.4Conceptual framework and performance of the logistic regression to predict
out-of-EPS-bounds future sea level residuals from mean surge amplitude and EPS
width and then turns the result into a fuzzy safety margin.
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NLC developed the idea, designed the research, performed the experiments and wrote
the article.
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Possibly Extreme, Probably Not: Is possibility theory the route
for risk-averse decision-making?

N. Le Carrer
Atmospheric Science Letters (accepted January 2021)

Abstract

Ensemble forecasting has become popular in weather prediction to re�ect the
uncertainty about high-dimensional, nonlinear systems with extreme sensitivity
to initial conditions. By means of small strategical perturbations of the initial
conditions, sometimes accompanied with stochastic parameterisation schemes
of the atmosphere-ocean dynamical equations, ensemble forecasting aims at
sampling possible future scenarii and ideally at interpreting them in a Monte-
Carlo-like approximation. Traditional probabilistic interpretations of ensemble
forecasts do not take epistemic uncertainty into account, nor the fact that ensemble
predictions cannot always be interpreted in a density-based manner due to the
strongly nonlinear dynamics of the atmospheric system. As a result, probabilistic
predictions are not always reliable, especially in the case of extreme events. In
this work, we investigate whether relying on possibility theory, an uncertainty
theory derived from fuzzy set theory and connected to imprecise probabilities, can
circumvent these limitations. We show how it can be used to compute con�dence
intervals with guaranteed reliability, when a classical probabilistic postprocessing
technique fails to do so in the case of extreme events. We illustrate our approach
with an imperfect version of the Lorenz 96 model, and demonstrate that it is
promising for risk-averse decision-making.

3.1 Introduction

In weather forecasting, it is acknowledged that by design (limited size of set of ensem-
ble predictions — EPS, targeted sampling of initial conditions — ICs) and by context
(�ow-dependent regime error, strongly nonlinear system), raw ensemble forecasts
generally do not provide reliable probabilistic predictions [Bröcker and Smith, 2008,
Gneiting and Katzfuss, 2014]. This is especially the case for extreme events [Legg
and Mylne, 2004]. The latter result from nonlinear interactions at small scales, which
implies that they generally cannot be associated with a high density of ensemble
members [Mylne et al., 2002]. Ensemble forecasts are made more reliable and opera-
tional via calibration [Buizza, 2018], whose aim can be summarized as "�nding the
transformation that, applied to the raw ensemble, leads to the probability distribution
that will maximise a performance metric on a training set". In spite of the diversity of
approaches developed in the literature [Buizza, 2018] and their technical success for
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Figure 3.5 Possibility distribution π(s) where for an event of interest A = “s ∈ SA”,
the possibility Π(A) and necessity N(A) = 1− Π(Ā) measures are represented.

improving the prediction skills when it comes to common events, the actionability
of probabilistic predictions often remains problematic [Smith, 2016]. In particular,
the probabilistic prediction of extreme events often needs a development on its own
[Friederichs and Hense, 2007, Friederichs et al., 2018].

Bröcker and Smith [2008] questioned whether probability distributions constitute
the best representation of the valuable information contained in an EPS. We advance
convincing arguments that possibility theory, “a weaker theory than probability [. . . ]
also relevant in non-probabilistic settings where additivity no longer makes sense”
[Dubois et al., 2004], is an interesting alternative. Our investigation is particularly
relevant since conceptual and practical limitations restrict the applicability of a density-
based (i.e. additive) interpretation of EPSs. We show how interpreting EPSs in a
possibilistic way brings useful formal guarantees on the derived con�dence intervals,
even in the case of extreme events.

Section 3.2 summarises the basics of possibility theory, Section 3.3 presents our
possibilistic framework and discusses the theoretical guarantees that can be associated
with its outputs. Section 3.4 introduces the synthetic experiments on the Lorenz
96 system [Lorenz, 1996] (L96) which allow us to assess these guarantees and their
operational cost for both common and extreme events. We compare them with the
outputs of a classical probabilistic interpretation of EPSs, and discuss our results in
Section 3.5.

3.2 Possibility theory

Possibility theory is an uncertainty theory developed from fuzzy set theory by Zadeh
[1978] and Dubois and Prade [2012]. It is designed to handle incomplete information
and represent ignorance. Considering a system whose state is described by a variable
x ∈ X , the possibility distribution π : X → [0, 1] represents the available information
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(or evidence) about the current state of the system. Given an event A = {x ∈
SA}, where SA is a subset of X , the possibility and necessity measures are de�ned
respectively as: Π(A) = supx∈SA π(x) and N(A) = 1 − Π(Ā) where Ā represents
the complementary event of A (see Figure 3.5 for a visual understanding of these
quantities). Both measures satisfy the following axioms and conventions [Cayrac et al.,
1994]:

1. Π(X ) = 1 and Π(∅) = 0

2. Π(A ∪B) = max
(
Π(A),Π(B)

)
3. N(A) = 1⇔ Π(Ā) = 0 indicates that A has to happen, it is necessary: Ā is

impossible;

4. 0 < N(A) < 1 is a tentative acceptance of A to a degree N(A);

5.
(
Π(A) = Π(Ā) = 1

)
⇔
(
N(A) = N(Ā) = 0

)
represents total ignorance: the

evidence doesn’t allow us to conclude whether A is rather true or false.

Possibility and probability distributions are interconnected through the concept
of imprecise probabilities [Dempster, 2008]. A probability measure P and possibility
measure Π are consistent i� [Dubois et al., 2004]:

P (A) ≤ Π(A), ∀ A (Equation 1)

The de�nition of necessity implies that in these conditions:

N(A) ≤ P (A) ≤ Π(A), ∀ A (Equation 2)

.

From data to possibility distribution Let x ∈ X be a stochastic variable for
which we try to make a prediction. The evidence about xt is a set S = {x1, . . . , xNs}
of Ns samples of x, which we assume has been randomly generated from an unknown
probability distribution P . To turn this information into a possibility distribution
describing the knowledge on the actual value of x, we use the technique developed by
Masson and Denœux [2006]. Their methodology is speci�cally designed to derive a
possibility distribution from scarce data. The idea is, after binning the x-axis into n
bins, to recover the simultaneous con�dence intervals at level β on the true probability
P (x ∈ bi) for each bin bi. From these con�dence intervals and considerations about
Equation (Equation 1), the procedure allows us to compute a possibility distribution
π(x) that dominates with con�dence β the true probability distribution (i.e. Equa-
tion (Equation 1) is veri�ed in 100β% of the cases). The simultaneous con�dence
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intervals for multinomial proportions are computed by means of Goodman’s formu-
lation [Goodman, 1965]. This procedure takes into account the uncertainty on the
multinomial proportions that is due to the limited size of S. This is fundamental for
our application, which is to seek guarantees on the possibility of observing a given
event.

As shown by Equation (Equation 2), a possibility distribution can be seen as a
complete and consistent framework to deal with imprecise probabilities. Although the
above procedure for computing a possibility distribution mostly relies on probabilities,
its result contains more information than a purely probabilistic distribution in the
situation of incompleteness (typically implied by a small dataset S). Indeed, the interval
on the true probability allows the incompleteness of data or knowledge to be accounted
for, while a point probability hides the fact that the said probability cannot be fully
trusted (e.g. due to epistemic uncertainty). Figure 3.6 illustrates the results of this
methodology applied to datasets sampled from a normal distribution, for various levels
of β and Ns. For a given Ns, the larger β is, the more conservative is the distribution:
γ such as π(x) ≥ γ ∀x is larger, which implies that for any event A ⊂ X : Π(Ā) ≥ γ.
This also reads: N(A) = 1 − Π(Ā) ≤ 1 − γ, meaning that the con�dence level
associated with any A cannot reach high values. Increasing Ns reduces the relative
e�ect of β and all distributions tend in shape towards the underlying probability
distribution, even if the tails remains more conservative for larger β.

3.3 Proposed framework

We are interested in the prediction of the state variable xt0+t of a dynamical system at
lead time t, starting from the IC xt0 . For simplicity, we omit the reference to t0 and
note xt the veri�cation. In the EPS context, given a numerical prediction modelM,
the elements of information at hand are:

1. An ensemble of M predictions at lead time t, the ensemble members or EPS,
obtained by means of M applied to slightly perturbed ICs around t0: x̃t =

{x̃1
t , . . . , x̃

M
t }.

2. An archive It containing the pairs
(
x̃t0+t, xt0+t

)
for the lead time t of interest

and NI di�erent instances of t0. These instances are chosen so that the initial
points of two successive trajectories are statistically independent from each
other.

3.3.1 Deriving possibility distributions from EPSs

The objective of our possibilistic interpretation of EPSs is to derive from an EPS x̃t
and the archive It a possibility distribution π(xt|x̃t, It), that encodes the knowledge
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Figure 3.6 Possibility distributions (solid lines) derived from datasets of Ns ele-
ments sampled from a standard normal distribution. This derivation requires the
computation of simultaneous con�dence intervals for multinomial proportions over
the x-axis binned into n = 10 bins. The e�ect of the con�dence level β =
{0.6, 0.75, 0.9, 0.95, 0.99, 1} of the Goodman’s formulation is shown (larger β are
plotted darker). Vertical red lines represent a frequency histogram of the same datasets
and the normalised underlying Gaussian distribution is represented as a dotted line.

74



π( x | XEPS ∩ b2 ≠ ø )

0

1

x

x

x

x

b1 b2                      ...                         b6        b7     

 

b2

π( x | XEPS) = Ui={2,4,5}  π( x | XEPS ∩ bi ≠ ø )

0

1

x

b4 b5

x | XEPS ∩ b2 ≠ ø

π( x | XEPS,X0) =   π( x | XEPS ) ∩ π( x | X0 )

EPS information
IC / Dynamical information
Aggregation

The axis is binned and 
EPS members are placed 
in the bins.

1

For each bin bi occupied by 
at least one member of the 
EPS XEPS, we collect the 
EPS members of the 
archive It that fell in the 
same bin at that same lead 
time t.

For each occupied bin bi, 
we collect the verifications 
associated with the above 
subset of archived EPS 
members and place them 
in the bins over the axis.

We compute from this set 
of Ns analogs the possibility 
distribution describing the 
system state x at lead time 
t, given that a member of 
XEPS has fallen in bin bi.

The possibility distribution 
for the system state at a 
given lead time, given the 
EPS,  is the union (i.e. 
envelope) of the possibility 
distributions associated to 
each occupied bin.

To take into account the 
initial conditions X0 (IC) and 
local dynamics of the 
system, we intersect this 
possibility distribution with a 
possibility distribution based 
only on ICs, possibly 
expanded through delay 
embedding if we dispose of 
a long enough record of the 
system.

2

3

4

5

6

0

1

x

Figure 3.7 Methodology of the possibilistic interpretation of EPSs developed in this
paper.
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derived from x̃t about the veri�cation xt. The procedure described in this section is
summarised and illustrated in the steps 1—5 of Figure 3.7.

Both system and model being (to a certain extent) deterministic and (close to)
stationary, the past behaviour of the couple {system, model} is representative of
its future behaviour. Consequently, if we are able to enumerate the possible values
(already seen in It or not) for the veri�cation xt associated with a small range Sxt of the
values taken by ensemble members, then a future observation xt should belong to that
set of possible values when an ensemble member x̃mt falls within Sxt . Beyond that, we
would like to know which ones of these values are more possible than others for xt. In
other words, we want to estimate the possibility distribution π(xt|x̃mt ∈ Sxt). Because
there is no notion of ‘density’ of the evidence in the possibilistic perspective (at least in
our rationale for choosing this framework), the number of ensemble members falling
in Sxt will not a�ect the resulting possibility distribution for xt.

To make use of the full set of ensemble members, we �rst partition the x-axis into
n bins bi, take the subset B of bins occupied by at least one ensemble member of the
EPS, and compute |B| possibility distributions π(xt|x̃mt ∈ bj) where bj ∈ B. Namely,
for each bin bj ∈ B occupied by at least one ensemble member x̃mt ∈ x̃t, we retrieve
the Ns ensemble members x̃mt ∈ bj in the archive It and build a histogram of the set
of corresponding veri�cations (so-called analogs) over the same binned x-axis. We
then derive π(xt|x̃mt ∈ bj) following the methodology presented in Section 3.2.

We obtain |B| possibility distributions π(xt|x̃mt ∈ bj), each dominating with con�-
dence β the true probability distribution P (xt|x̃mt ∈ bj). Each possibility distribution
provides the possibilities for the veri�cation xt given the presence of one or more
ensemble members in bin bj and is thus a partial view on the state xt. Since there is
only one truth for xt and several incomplete views on the veri�cation, we can merge
them through a disjunctive pooling [Dubois and Prade, 1992, Sentz et al., 2002]. Fuzzy
set theory o�ers several de�nitions for computing the distribution resulting from the
union of two fuzzy distributions. We adopt here the standard de�nition for its intuitive
rationale: πA∪C(x) = max

(
πA(x), πC(x)

)
.

We construct the resulting possibility distribution as:

πEPS (xt ∈ bi|x̃t) =
⋃

j|bj∈B

π(xt|x̃mt ∈ bj) = sup
j|bj∈B

π(xt ∈ bi|x̃mt ∈ bj), i = 1, . . . , n.

(Equation 3)

3.3.2 From possibility distribution to prediction

We focus on the continuous interpretation of πEPS and now turn to our approach for
producing con�dence intervals for the future value xt, and on the associated formal
guarantees.
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As can be easily derived from Equation (Equation 2), a possibility density π is
consistent with the associated probability measure P i� its α−cuts Cα

π = {x, π(x) ≥
α} satisfy:

P (x ∈ Cα
π ) = P (Cα

π ) ≥ 1− α , ∀ α ∈ [0, 1]. (Equation 4)

This constitutes an easily veri�able consistency criterion [Hose and Hanss, 2019].

The possibility distribution satisfying this criterion is not unique. Beyond con-
sistency, the choice of a possibility distribution to model the knowledge at hand is
driven by the principle of maximum speci�city [Dubois et al., 2004]. If π1 and π2 are
two possibility distributions such that π1(x) ≤ π2(x) ∀x ∈ X , then π1 is said more
speci�c than π2 and is more informative (i.e. less conservative). Maximum speci�city
w.r.t. the probabilistic information (a priori unknown) is achieved when the possibility
distribution is probabilistically calibrated1:

P (Cα
π ) = 1− α , ∀α ∈ [0, 1]. (Equation 5)

This means that each α−cut represents a frequentist con�dence interval at level 1−α
for the variable of interest and π is a consonant con�dence structure [Balch, 2020].

By construction, the individual possibility distributions π(xt|x̃mt ∈ bj) verify
Equation (Equation 1) with a guaranteed con�dence level β. πEPS being made of their
envelope, it cannot be more speci�c than any single one of them and consequently
the same guarantee applies. In the case of its α−cuts, this reads:

P
(
P (xt ∈ Cα

π ) ≥ 1− α
)
≥ β. (Equation 6)

Masson and Denœux [2006] show empirically that their data-to-possibility transfor-
mation is rather conservative and provides a possibility distribution that actually
dominates the true probability distribution with a rate much higher than the guaran-
teed β. Even for small sample sizes, the choice of β is not critical and quasi perfect
coverage rate is obtained: β ≥ 0.8, ensures that P

(
P (x ∈ Cα

π ) ≥ 1−α
)
→ 1. Under

this assumption, the (1 − α)-cuts can be used as candidate con�dence intervals of
guaranteed level α. Ideally, we are looking for (1− α)-cuts verifying Equation (Equa-
tion 5), which ensures optimal speci�city of πEPS and thus maximally informative
con�dence intervals.

1Indeed, any conservative statement such as ∃ γ | π(x) ≥ γ, ∀x implies that P (Cαπ ) = 1 ∀α ≤ γ.
Equation (Equation 5) ensures that a possibility distribution showing such conservative properties is
discarded when compared to a possibility distribution that does not show them.
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3.4 Experiments

3.4.1 Experimental setting

We reproduce the experiment designed by Williams et al. [2014], who used an im-
perfect L96 model to investigate the performances of ensemble postprocessing for
the prediction of extreme events. The system dynamics is governed by the following
system of coupled equations, where the X variables represent slow-moving, large-
scale processes, while Y variables represent small-scale, possibly unresolved, physical
processes:

dXj

dt
= Xj−1(Xj+1 −Xj−2)−Xj + F − hc

b

K∑
k=1

Yj,k (Equation 7)

dYj,k
dt

= cbYj,k+1(Yj,k−1 − Yj,k+2)− cYj,k +
hc

b
Xj (Equation 8)

where j = 1, . . . , J and k = 1, . . . , K . The parameters are set to: J = 8, K = 32,
h = 1, b = 10, c = 10 and F = 20. This perfect model is randomly initialised and then
integrated forward in time by means of a Runge-Kutta 4th-order method with time
step dt = 0.002 (model time units) until enough trajectories of duration 1.4, starting
every 1.5 time units, are recorded for our analysis. A lead time t = 1 corresponds to
0.2 model time units after initialisation and can be associated with approximately 1
day in the real world [Lorenz, 1996]. We are interested in predicting the variable X1.

An imperfect version of the L96 system is implemented to generate predictions for
the Xj variables. In Equation (Equation 7), −hc

b

∑K
k=1 Yj,k is replaced with:

0.262− 1.262Xj + 0.004608X2
j + 0.007496X3

j − 0.0003226X4
j (Equation 9)

To reproduce the perturbation of the ICs, M perturbed members X̃j are sampled inde-
pendently around the true value of each variable Xj following a normal distribution
X̃j ∼ N (Xj, 0.1

2). These ensemble sets are initialised each time a new trajectory
record starts, and integrated forward in time up to lead time 1.4 by means of a Runge-
Kutta 4th-order method with lower time resolution (d̃t = 0.02 model time units). The
size of the ensemble is set to M = 24, a value comparable to operational weather
forecasting schemes (e.g. M = 17 for the Met O�ce Global and Regional Ensemble
Prediction System [MetO�ce]).

3.4.2 Reference model: Gaussian ensemble dressing

We compare the performances of our approach (POSS hereafter) to those of a classical
probabilistic framework for interpreting EPSs, namely a Gaussian ensemble dressing
(GEB hereafter). Its predictive probability distribution reads [Roulston and Smith,
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2003]:

p(xt|x̃t)θ =
1

M

M∑
i=1

N (ax̃it + ω, σ2) (Equation 10)

We infer the parameters θ = {a, ω, σ} through the optimisation of the ignorance
score [Roulston and Smith, 2002] over the archive It used in the possibilistic framework.
To that end, we use the nonlinear programming solver provided by MATLAB R© and
apply the guidance developed in Bröcker and Smith [2008] to provide robust solutions.

Con�dence intervals at level α on xt are obtained from p by a method that provides
the desired intervals associated with the highest-density regions [Hyndman, 1996]. We
also report in the next section the performances of the con�dence intervals similarly
extracted from the unprocessed probability density (hereafter RAW) associated with
the EPS (a histogram of the EPS normalised to represent a probability density).

3.4.3 Evaluation criteria

We aim at answering the questions:

(a) Can a possibilistic treatment of the EPS provide more guarantees than a proba-
bilistic interpretation?

(b) If yes, at what cost?

To that end, we compare the performances of the con�dence intervals at level α,
noted Iα, extracted from the methodologies POSS, GEB and RAW as described in
the previous sections. We say that a con�dence interval is guaranteed at level α if
the coverage probability veri�es P (x ∈ Iα) ≥ α. We use the term guaranteed in
the sense that such an interval is associated with a lower bound on the (frequentist)
probability that the veri�cation falls within it. Such guarantees are sought e.g. in
risk-averse decision-making. We say that it is reliable, or probabilistically calibrated,
when P (x ∈ Iα) ≈ α. We call it all the more conservative than P (x ∈ Iα)−α is large,
which is associated with non optimal interval precision.

3.4.4 Experiments

All results presented here use n = 30 bins of similar width to partition the x−axis2.
The test set consists in 40,000 independent trajectories of length t = 7 days
and the corresponding EPS predictions. All EPSs have beforehand been prepro-
cessed to remove the constant bias. We consider a range of archive size NI ∈

2This choice is based on the range covered by the climatology of x and the fact that x can be
associated to a physical quantity of the atmosphere, e.g. temperature, which leads to bins of width
≈ 2 degrees. For other systems and applications, the bins can be for instance partitioned so that the
distribution of the climatology is homogeneous over the bins.
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Figure 3.8 Climatic distribution of the L96’s variable of interest X1 (x for simplicity)
where the ’extreme’ event "x ≤ q5” (EE) and ’common’ event "q50 < x ≤ q55” (NEE)
are reported.

{156, 1560, 5× 103, 15× 103, 30× 103}. In particular, NI = 156 corresponds to 3
years of model archive, whereas NI = 1560 amounts to 30 years, which corresponds
to the standard length of a historical re-forecast dataset [Hamill et al., 2004, Hagedorn,
2008]. The two latter NI are operational �gures, unlike larger values that we present
to study the asymptotic properties of our framework.

We de�ne two types of events: an extreme event, ”x ≤ q5” (EE), and a common
event, ”q50 < x ≤ q55” (NEE) where qi represents the percentile of level i of the
climatic distribution of x (i.e. global distribution), plotted in Figure 3.8 along with
both events. This will allow us to use test sets of similar sizes3 in order to position our
approach against the generic probabilistic postprocessing techniques that are known
to weakly address such extreme events.

A preliminary assessment (Figure 3.9) of the e�ect of the parameter β of Goodman’s
model on the probabilistic reliability of the (1−α)-cuts derived from πEPS shows that
varying β from 0.6 to 1 does not impact guarantees at any given NI for the events
of interest. It only impacts precision and its e�ect is only visible for small archives
(NI ≤ 156) or large lead times, especially in the EE case. We consequently use β = 0.9

in our experiments, which allows to improve speci�city while maintaining guarantees
on con�dence intervals.

3.5 Results

3.5.1 Empirical assessment of formal guarantees

Figure 3.10 reports the coverage probability of the con�dence intervals Iα extracted for
α ∈ {0, 0.05, 0.1, . . . , 1} for all evaluated methodologies at lead times t ∈ {1, 3, 5, 7}

3About 2× 103 elements.
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Figure 3.9 Coverage probability of the α−cuts of πEPS at lead time t ∈ {1, 3, 5, 7}
days (left to right), in the case of the NEE (top) and EE (bottom). Goodman models
with parameter β ∈ {0.6, 0.75, 0.9, 0.95, 0.99} (the darker the line, the larger β) are
compared in the case of three archives of respective size NI ∈ {156, 1560, 15× 103}
(grey, blue and red color scales respectively).
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Figure 3.10 Coverage probability of the (1 − α)-cuts of πEPS used as con�-
dence intervals of level α at lead time t ∈ {1, 3, 5, 7} days (left to right), in
the case of the NEE (top) and EE (bottom). The EPS archive size is NI ∈
{156, 1560, 5× 103, 15× 103, 30× 103} (the larger the darker the line). The cov-
erage probability of the con�dence intervals of level α derived from the raw EPS’s
probability density and from the postprocessed density (with the same training set of
size NI as used in the possibilistic framework) is reported as well. The dotted diagonal
represents perfect calibration.
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Figure 3.11 Average density of the analog datasets used to derive πEPS , for sizes
NI ∈ {156, 1560, 5× 103, 15× 103, 30× 103} (the larger NI the darker the line) and
lead time t ∈ {1, 3, 5, 7} days (left to right), in the case of the NEE (top) and the
EE (bottom). Only densities above 0 are represented. Vertical dotted lines allow to
visualise the events of interest (note that the EE is only de�ned by its upper bound).

days. We �rst note that using RAW leads to con�dence intervals that are not guaranteed
for t > 1 day for both EE and NEE. Postprocessing (here GEB) allows to make
them guaranteed at all lead times for the NEE and for t ≤ 3 days for the EE. The
e�ect of the training set size for the probabilistic treatment does not appear to be
signi�cant. Conversely, the con�dence intervals derived using POSS are globally
guaranteed for both events and at all lead times for operational archives (NI < 5× 103).
Interestingly, when the archive grows signi�cantly, con�dence intervals with large
α are not guaranteed anymore for the larger lead times in the EE case. The e�ect
appears all the earlier (in terms of lead time) than NI is large.

We observe here a limitation of possibility theory: its strength lies in incomplete
information. As shown in Figure 3.6, the larger the datasets used to derive possibility
distributions, the closer the possibility distribution is in shape to the underlying
probability distribution. In particular, the level γ such as π(x) ≥ γ ∀x tends towards
zero. In other words, such possibility distributions tend to conceal the possibility of
rare events.

We illustrate this phenomenon in Figure 3.11, where we represent the average
density of analogs used to compute the individual π(xt|x̃mt ∈ bj) (see step 3, Figure 3.7).
In the EE case, as the lead time increases, this average density decreases by several
orders of magnitude for the more extreme bins (x→ inf X ). This drop is all the more
signi�cant than NI is large. For small NI ≤ 1560, the more extreme bins are, as
expected, not represented but the intermediary bins are and their density remains
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Figure 3.12 Coverage probability of the (1 − α)-cuts of πEPS at lead time t = 7
days, in the case of events belonging to a partition of subsets of EE (from left to
right: x ≤ q1, q1 < x ≤ q3 and q3 < x ≤ q5). The EPS archive size varies:
NI ∈ {156, 1560, 5× 103, 15× 103, 30× 103} (the larger the darker the line). The
probabilistic calibration of the con�dence intervals of level α derived from the raw
EPS’s probability density and from the postprocessed density (with the same training
set of size NI as the possibilistic framework) is also reported. See Figure 3.10 for
legend.

above 1
100

. For very large NI ≥ 5× 103, the more extreme bins are represented
however their density drops below 1

1000
. In other words, the rarest events part of EE

are represented only for extremely large archives, where they will be part of large
analog sets, which implies, given the asymptotic behaviour illustrated in Figure 3.6,
that they will be concealed from the associated possibility distributions. More precisely,
the level γ such as πEPS(x) ≥ γ ∀x ∈ X remains strictly positive so P (x ∈ Iα) = 1

remains valid for α ≈ 1 (that is the large scale (1 − α)-cuts where 1 − α → 0).
However for intermediate α, the (1−α)-cuts may not extend enough towards extreme
bins, which negatively impacts the coverage rate. This trend is only observed for
su�ciently large α, as possibility distributions remain globally more conservative
than the EPS-based probability distributions (see next Section), and consequently
provide Iα that encompass more observations than the frequentist calibration requires
in the case of smaller α (i.e. for the upper part of the distribution). The "su�ciently
large α" decreases with increasing lead times and archive sizes, following the e�ect
described in Figure 3.11. Figure 3.12 illustrates our point by breaking down the
coverage probability for three subsets of the EE: large archives lead to POSS-based
con�dence intervals that are all the more guaranteed as the event of interest is not too
extreme. Probabilistic calibration for the more extreme part of EE can be improved by
increasing the parameter β, however this has no e�ect in the case of large archives
(see Figure 3.13).

The NEE case study does not su�er from this limitation as the density of analogs
falling in the NEE bins remains around 1

10
at all lead times. In comparison to GEB,

POSS improves the reliability of con�dence intervals for very short lead times while
they remain more conservative for large lead times.
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Figure 3.13 Coverage probability (left) and associated width distributions (right) of
the con�dence intervals of level α at lead time t = 7 days, in the EE case, for two
archive sizes NI ∈ {1560, 15× 103} (blue and red color scale respectively). POSS
results (solid line) for increasing Goodman’s parameter β ∈ {0.6, 0.9, 0.95, 0.99}
(the larger the darker the line) are compared to GEB results (dotted line). The width
distribution is represented through its mean and one standard deviation above and
below.

Provided that NI is not too large (which we assume is always the case for opera-
tional archives), Figures 3.10 and 3.12 clearly show the added value of treating the EPS
in a possibilistic manner in terms of guarantees for the EE at large lead times, or in
terms of reliability for the NEE at very small lead times. However, we can wonder what
is the cost of such improvements. How do the possibility-based con�dence intervals
compare to their probability-based counterparts, in terms of precision?

3.5.2 Interval precision

Figure 3.14 compares the average width of the con�dence intervals derived from the
three methodologies. For both EE and NEE, NI a�ects the width of the possibilistic Iα

signi�cantly, making them narrower with larger NI , all the more than the lead time
increases. Their probabilistic counterparts are generally much smaller, except when
NI ≈ 30× 103.

For NEE and level α < 0.9, POSS brings more information at very short lead times
(t = 1 day) than the probabilistic approaches: intervals are smaller or equal in size
and remain guaranteed. This is all the more true that the archive is of intermediate
size (NI = 1560). Increasing the lead time beyond t = 3 days favors the probabilistic
approach, which is more reliable with narrower intervals.

For EE, the added value of POSS over GEB is observed on two occasions: 1) intervals
are as reliable yet narrower for very small lead times and α < 0.9, whatever the archive
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Figure 3.14 Distribution (mean ± standard deviation) of the width of the possibility
and probability-based con�dence intervals described in the legend of Figure 3.10 for
lead time t ∈ {1, 3, 5, 7} days (left to right), in the case of the NEE (top) and EE
(bottom). Only the cases NI ∈ {156, 1560, 5× 103, 30× 103} are represented (the
larger NI , the darker the line).

size ; 2) for large lead times and intermediary-sized archives (NI ∈ {1560, 5× 103}),
possibility-based con�dence intervals are both guaranteed, reliable and operational
(i.e. not too wide compared to GEB’s results, contrary to what NI = 156 produces),
while the probabilistic intervals are narrower yet not guaranteed at all. In the case of
particularly rare events, as represented in Figure 3.12, an intermediary archive such
as NI = 1560 is able to produce con�dence intervals close to perfect reliability even
for large lead times, as long as the parameter β is increased towards 1. Such reliability
is reached at the expense of the interval width, which is signi�cantly increased (w.r.t.
smaller β) for the largest α ≥ 0.85.

3.6 Conclusion

We introduced a novel framework to interpret EPSs where a possibility distribution
πEPS is derived from the EPS at hand and an archive of

(
EPS; veri�cation

)
. We

showed how to use the (1−α)-cuts of a continuous interpretation of πEPS to produce
con�dence intervals at level α about the future value of the variable of interest. Our
possibility-based con�dence intervals come with formal guarantees, and experimental
results show that they overpass probability-based ones in two situations: 1) at very
small lead times for both common and extreme events, where they are as reliable yet
narrower; 2) more blatantly, at intermediate and large lead times for extreme events,
where they remain guaranteed and can be brought close to perfect reliability even for
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particularly rare events, yet at the expense of precision. These results can be reached
with operational archive like the 20− 30-year reforecast datasets. The guarantees are
retained for smaller archives, which however lead to more conservative intervals and
thereby impede operationality.

As raised by one of the reviewers of this study, in practice the veri�cation (as
observation) is a random variable itself [Tsyplakov, 2011, Lerch et al., 2017]. The
use of con�dence intervals rather than a Bayesian formalism and the derivation of
credible intervals may consequently be discussed. Since our approach is taking such
impreciseness into account (limited volume Sxt around xt, Masson and Denoeux’s
transformation – cf. Section 3.3.1), even without explicitly tackling this problem, our
framework accounts for (reasonable) randomness in the so-called veri�cation.

Possibility theory is a promising tool for the prediction of extreme events, given a
limited and imperfect amount of information on the system’s dynamics. Beyond the
results presented in this article, further developments by the author [Le Carrer and
Ferson, 2020] show how πEPS can be combined with additional possibility distributions
constructed from alternative sources of information such as the IC or dynamical
information (see step 6 of Figure 3.7). Therein, the concept of ignorance brie�y
introduced in Section 3.2 is developed and presented as an interesting tool for risk
communication.
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Chapter 4

Beyond probabilities: A possibilistic framework to interpret
ensemble predictions and fuse imperfect sources of

information

The previous Chapter introduced a possibilistic framework to interpret EPS in a
di�erent way than the traditional probabilistic interpretations. It showed that when
we are looking for reliable predictions (typically in the case of risk-averse decision-
making), possibility theory o�ers guarantees, experimentally veri�ed in the case
of extreme events in particular, that a standard probabilistic interpretation do not.
However, this has a cost when we deal with intermediate to large lead times (i.e. ≥ 3

days), namely resolution. One solution is to take into account a so-far unused source of
information, namely the initial conditions of the dynamical system (at the time where
the predictive model is run). This is the point of this second paper on the possibilistic
interpretation of EPSs: �rst, we show how to use a time series/monitoring of the
dynamical (and to a large extent deterministic) system to derive a predictive possibility
distribution on the future state of the system at a time of interest, by means of a
similarity-based (or analog) method. Second, we show how combining this possibility
distribution to the EPS-based possibility distribution by means of existing fuzzy rules,
creates a synergy of information: from two conservative distributions, we manage to
extract more information about the actual future state of the system.

Besides, contrary to Chapter 3 where we only focused on the continuous analysis of
a possibility distribution, we now address the binary perspective (i.e. the case of binary
predictions: A versus Ā). We thus investigate, when it comes to providing operational
and user-friendly predictions, how to use at their full potential the possibilistic concepts
of the dual necessity and possibility measures as well as the ignorance.

In this Chapter, we consequently report the article Beyond probabilities: A possibilis-
tic framework to interpret ensemble predictions and fuse imperfect sources of information,
submitted in July 2020 at the Quarterly Journal of the Royal Meteorological Society
(minor revisions resubmitted in May 2021). The respective contributions of the authors
are the following: NLD came with the research idea, designed the framework, the
experiments and implemented them, analysed the results and wrote the article. SF
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reviewed the �rst version of the manuscript.

Before going further, we also add to this chapter the graphs summarising the
performance in terms of coverage probability and width of the con�dence intervals
extracted from the possibility distribution fusing both EPS and dynamical information
(COMB hereafter), according to the same experiments as presented in Chapter 3. This
allows to assess the value of adding dynamical information, as well as the e�ect of the
aggregation method (namely Zadeh’s aggregation and the so-called general method,
described in the article to come), on the continuous interpretation of possibility
distributions presented in the previous Chapter 3.

On Figure 4.1, we can see that such an addition can signi�cantly improve the
reliability (by lowering conservatism) of predictive intervals for non extreme events
(NEE) at intermediate and large lead times in the case of Zadeh’s aggregation, all the
more than the archive size NIA is lower, yet to a certain extent (NIA ≈ 6 months). The
general aggregation method on the contrary make the intervals more conservative,
again with the same dependence on the archive size.

When it comes to the extreme events (EE), we again observe that adding dynamical
information to the EPS information by means of the general aggregation method does
not lead to any improvement when it comes to the reliability of con�dence intervals.
The latter become generally more conservative. However, this is not true for larger
lead times, where adding dynamical through such aggregation method for small α, i.e
large (1−α)-cuts (the peaks of the distribution) leads to an improvement in reliability
of the associated con�dence intervals. This is all the more true than the dynamical
archive is small. On the contrary, Zadeh’s aggregation of dynamical information
allows to improve signi�cantly the reliability of EPS-based con�dence intervals for
t > 1 day. However, the larger the lead time, the longer the dynamical archive needs
to be (typically above 5 years) to avoid unguaranteed con�dence intervals at small α.

What are the consequences in terms of con�dence interval width? As shown on
Figure 4.2, overall for both EE and NEE, adding dynamical information by means of
Zadeh’s aggregation tends to lower or maintain the interval’s width while using the
general aggregation will increase it. This is all the more true than the lead time is
large and α small (i.e. that we are interested in the peaks of the distribution). This can
be explained by the form of Zadeh’s aggregation (min-envelope of two distributions),
which implies that if one distribution is very conservative (e.g. EPS at large lead times)
and the other (e.g. DYN) more peaked, as long as the latter peak matches with an area
of high possibility for the former, only the information from the peaked distribution is
kept in the aggregated distribution. That is how the interval width can decrease for
small α, at the expense of guarantees as noted on Figure 4.1.

Overall, we consequently advise to use in practice Zadeh’s aggregation, which
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appears to be a reasonable trade-o� between interval width (precision) and reliability
(guarantees), in particular in the case of long dynamical archives (a few years). The
general aggregation method tends to be over-conservative and do not facilitate synergy
of information.

Figure 4.1 Coverage probability of the (1 − α)-cuts of πEPS used as con�dence
intervals of level α at lead time t ∈ {1, 3, 5, 7} days (left to right), in the case of the NEE
(top) and EE (bottom). The EPS archive size isNI = 1560 while the time series’ size, for
dynamical information extraction, is NIA ∈ {2× 103, 2× 104, 2× 105, 2× 106} (the
larger the darker the line), corresponding respectively to system records of real-world
equivalent duration of about 3 weeks, 6 months, 5.5 years 55 years. We compare the
e�ect of two aggregation methods: Zadeh and the so-called general one. The coverage
probability of the con�dence intervals of level α derived from the postprocessed
density (with the same training set of size NI ) is reported as well. The dotted diagonal
represents perfect calibration.

Figure 4.2 Distribution (mean ± standard deviation) of the width of the possibility
and probability-based con�dence intervals for the approaches described in the legend
of Figure 4.1 for lead time t ∈ {1, 3, 5, 7} days (left to right), in the case of the NEE
(top) and EE (bottom).
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semble predictions and fuse imperfect sources of information

N. Le Carrer and S. Ferson
Quarterly Journal of the Royal Meteorological Society (2nd revision submitted March

2021)

Abstract

Ensemble forecasting is widely used in medium-range weather predictions to
account for the uncertainty that is inherent to the numerical prediction of high-
dimensional, nonlinear systems with high sensitivity to initial conditions. Ensem-
ble forecasting allows one to sample possible future scenarii in a Monte-Carlo-like
approximation through small strategical perturbations of the initial conditions,
and in some cases stochastic parameterisation schemes of the atmosphere-ocean
dynamical equations. Results are generally interpreted in a probabilistic manner
by turning the ensemble into a predictive probability distribution. Yet, due to
model bias and dispersion errors, this interpretation is often not reliable and
statistical postprocessing is needed to reach probabilistic calibration. This is all
the more true for extreme events that for dynamical reasons, cannot generally be
associated with a signi�cant density of ensemble members.
In this work we propose a novel approach: a possibilistic interpretation of ensem-
ble predictions, taking inspiration from possibility theory. This framework allows
us to integrate in a consistent manner other imperfect sources of information,
such as the insight about the system dynamics provided by the analog method.
We thereby show that probability distributions may not be the best way to extract
the valuable information contained in ensemble prediction systems, especially for
large lead times. Indeed, shifting to possibility theory provides more meaningful
results without the need to resort to additional calibration, while maintaining or
improving skills. Our approach is tested on an imperfect version of the Lorenz
96 model, and results for extreme event prediction are compared against those
given by a standard probabilistic ensemble dressing.

Key-words: Ensemble prediction, Probabilistic weather forecasting, Recalibration,
Statistical post-processing, Extreme event, Weather regimes, Possibility theory, Imprecise
probabilities

4.1 Introduction

Predicting the weather through numerical models of the atmosphere is impeded by the
mere nature of the atmospheric dynamics, characterised by strong nonlinearities and
high sensitivity to initial conditions. Limited grid resolution in the initial conditions
(ICs), discrepancies introduced by measurement errors and incomplete description
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of the system’s dynamics, contribute to error growth and limit the skill of short and
medium-range point predictions. A shift in paradigm was introduced in parallel to
the increase of computational resources at the beginning of this century, when low-
resolution ensemble predictions started to replace, or complete, the traditional single
high-resolution deterministic prediction. The idea behind these ensemble forecasts
had been developed earlier by Leith [1974], who suggested to sample M ICs around
the actual best ICs estimation, to run the model forward for each IC, and to interpret
the M resulting predictions in a Monte-Carlo like fashion. Ensemble forecasts are
thus interpreted in a probabilistic way, either to characterise the predictability of the
associated deterministic forecast (e.g. through the variance of the ensemble) or to
directly provide probabilities of observing a given event.

Probabilistic interpretation of ensemble predictions However, such a proba-
bilistic interpretation poses conceptual issues. First, the ICs are perturbed according
to schemes designed to sample in a minimalist way particularly high-dimensional
systems like numerical weather global models. These schemes generally select the
initial perturbations leading to the fastest growing perturbations (e.g. singular vectors
[Hartmann et al., 1995], bred vectors [Toth and Kalnay, 1997]). Although this way of
proceeding is an e�cient manner to detect the range of possible futures, one cannot
consider that the M perturbed ICs are random samples, and consequently cannot
interpret the resulting ensemble as a sample of the distribution characterising the
future state of the system. Besides, one of the core assumptions of Leith [1974] is
that model error is negligible w.r.t. the error resulting from the propagation of the
uncertainty on the ICs. In practice, the assumption of such near-perfect models is
not always true and after a few hours, the convex hull of the ensemble trajectories is
not guaranteed to contain the observed trajectory, traducing structural bias [Toth and
Kalnay, 1997, Orrell, 2005].

The above conceptual issues impede a probabilistic interpretation of ensembles
prediction systems (EPSs) in practice: despite the introduction of stochastic parame-
terisation schemes to account for model error [Buizza et al., 1999], the operational
ensembles remain overcon�dent, i.e. with a spread that is generally too small [Wilks
and Hamill, 1995, Buizza, 2018]. In particular, the predictive probabilities derived from
ensemble forecasts are not reliable. On average, the probability derived for a given
event does not equal the frequency of veri�cation [Bröcker and Smith, 2007, Hamill
and Scheuerer, 2018]. Although such probabilistic predictions have higher forecast
skill than the climatology, most often they cannot be used as actionable probabilities.
By design (limited EPS size, targeted sampling of ICs) and by context (�ow-dependent
regime error, strongly nonlinear system) they do not represent the true probabilities of
the system at hand [Legg and Mylne, 2004, Bröcker and Smith, 2008]. This veri�cation
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is all the more true for extreme events, that result from nonlinear interactions at
every and between scales. Such interactions cannot be reproduced in number in a
limited-size ensemble prediction system [Legg and Mylne, 2004], which implies that
extreme events generally cannot be associated to a high density of ensemble members.

Biases and dispersion errors in ensemble forecasts consequently call for statistical
postprocessing to improve the information content and calibration of probabilistic
predictions [Gneiting and Katzfuss, 2014, Buizza, 2018]. A range of methods have
been developed to address the above-mentioned limitations. The most classical ones
�t an optimised parametric distribution either: a) onto each ensemble member, and
aggregate them all to provide a global probability density function (PDF) (e.g. Bayesian
model averaging, introduced by Raftery et al. [2005]); or b) onto the whole ensemble,
with parameters derived from linear combinations of the ensemble’s characteristics
(non-homogeneous regression, developed by Gneiting et al. [2005]). More speci�c
approaches target for instance the improvement of reliability, e.g. rank histogram
recalibration [Hamill and Colucci, 1997] which makes use of the information content of
the rank histogram to issue ensemble-based predictions that show better probabilistic
calibration. More recently, calibration by means of the probability integral transform
was suggested by Graziani et al. [2019], while Smith [2016] developed a user-oriented
framework based on the actual probability of success for a given probabilistic threshold,
and Hamill and Scheuerer [2018] developed a framework based on quantile mapping
and rank-weighted best-member dressing over single or multimodel EPSs.

Although generic postprocessing strategies do improve the predictive skill for
common events, they tend to deteriorate the results for extreme events [Mylne et al.,
2002], which consequently need separate and tailored treatment. Friederichs et al.
[2018] shows that when the tail of the climatology is short, a �exible skewed distribu-
tion (e.g. a generalised extreme value distribution as suggested by Scheuerer [2014])
for the complete sample space is a good solution for predicting extremes as well.
However, a separate description of the tail distribution by means of quantile regression
[Friederichs and Hense, 2007] or nonstationary Poisson process [Friederichs et al.,
2018] may be necessary in the case of heavy climatology tails.

Possibility theory and EPSs In view of all this, and especially considering the need
to resort to (possibly multiple) calibration steps to provide meaningful probabilistic
outputs, we echo Bröcker and Smith [2008] who question the choice of probability
distributions as the best representation of the valuable information contained in an EPS.
Rather, we wonder whether possibility theory, “a weaker theory than probability [. . . ]
also relevant in non-probabilistic settings where additivity no longer makes sense”
[Dubois et al., 2004], provides an interesting alternative, in a context where conceptual
and practical limitations restrict the applicability of a density-based (i.e. additive)
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interpretation of EPSs.

This is what we investigate in this work. We have shown in a previous study
[Le Carrer and Green, 2020], that using a possibilistic ensemble dressing to calibrate the
predictive probabilities instead of its probabilistic counterpart incurred two important
limitations: 1) its parametric form introduced trade-o� in performances as well as
the impossibility to propagate the formal guarantees that possibility theory provides,
and 2) the local dynamics of the system was not explicitly taken into account. In this
article, we go further and address these two main limitations.

Regarding point 2), just like a global probabilistic interpretation of EPSs misses
the introduction of state-dependent re�nement that allows parameters to adapt to
di�erent regimes of model error [Orrell, 2005, Allen et al., 2019], a purely ensemble-
based framework may be too conservative due to a lack of information about the
dynamics of the system (noted S hereafter) at the time of interest. We consequently
combine our possibilistic interpretation of EPSs to a method providing dynamical
analogs, in our case the empirical dynamic modeling of S . The underlying assumption
of resorting to analogs is the existence of a deterministic structure governing the co-
evolution of the coupled variables of S . The underlying structure of such a system is
revealed by the state dependent dynamics occurring on a strange attractor manifoldA.
Takens’ delay embedding theorem [Takens, 1981] and its generalisation by Deyle and
Sugihara [2011], describe how lagged variables of a single time series, or combinations
of several coupled time series, can be used to reconstruct a shadow attractor A′ of A,
that is a smooth and smoothly invertible 1:1 mapping withA. Making predictions from
the shadow attractor consists in �nding the closest neighbors of the ICs of interest in
the attractor, following their trajectories up to the desired lead time, and retrieving
the corresponding so-called analog predictions. These are then used to construct, e.g.
a probabilistic prediction for the target day. In practice, �nding true analogs in a time
series for high-dimensional systems such as the atmosphere-ocean is a di�cult task
[Lorenz, 1969, Van den Dool, 1994]. Similarity-based methods (also coined as analog
methods) were developed, applying the same philosophy yet on a reduced number
of variables characterising the system, that is without taking into account its full
dimensionality. Thus statistical downscaling, based on the hypothesis that two close
synoptic situations may produce close local e�ects [Lorenz, 1956, 1969], is used for
operational precipitation forecasting [Hamill and Whitaker, 2006, Daoud et al., 2016].
Common analog forecasting operators are presented in Platzer et al. [2021] and their
respective properties and performances are analysed from a theoretical point of view,
connecting analog forecasting error to local approximations of the system’s dynamics.
Empirical dynamical modelling, locating analogs in the shadow attractor space or in
one of its sub-spaces, is still used to perform model-free predictions [Ma et al., 2017]
or to give insight on predictability [Trevisan, 1995, Ramesh and Cane, 2019].
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Generally speaking, making predictions from analogs performs all the more as the
record of one or more variable(s) describing S is long, and as S is of small dimension.
Still, we posit that using possibility theory to interpret analogs allows us to extract
more dynamical information from the incomplete shadow attractor reconstruction
than a PDF or a weighted mean of analogs. Besides, such a choice allows us to combine
this additional source of information to the EPS information in a consistent language
of reference, particularly well suited to the fusion of information.

Summary of contributions and outline In this work, we investigate the bene�ts
of: (i) using a framework based on possibility theory for extracting the information
contained in an EPS; and (ii) combining it with the insight about the local dynamics of
the system gained from the analog method. Our investigation is particularly driven
by the following three questions:

• Can we draw an interpretation framework of EPS that would directly make sense
and provide outputs that are meaningful without having to resort to additional
layers of calibration?

• Can we simultaneously maintain or improve the prediction skills compared to
those of standard probabilistic interpretations?

• Can we operationally use the possibilistic outputs at their full potential, that is
more than simply deriving associated probabilities?

We support our study with numerical experiments on a commonly used surrogate
model of atmospheric dynamics, namely the L96 system [Lorenz, 1996] that we present
in Section 4.4. Section 4.2 introduces the basics of possibility theory, that we then use
in Section 4.3 to develop our novel possibilistic framework for the interpretation of
EPSs. Therein, we also explains how to extract and combine the dynamical information
gained via the analog method. We present the modalities of assessment in Section 4.4.
Our novel methodology is tested in the context of extreme event prediction on an
imperfect version of the L96 and results are discussed in Section 4.5. A conclusion
follows.

4.2 Possibility theory

4.2.1 Basic principles

Possibility theory is an uncertainty theory developed from fuzzy set theory by Zadeh
[1978], and Dubois and Prade [2012]. It is designed to handle incomplete information
and represent ignorance. Considering a system whose state is described by a variable
x ∈ X , the possibility distribution π is a function π : X → [0, 1] that represents the
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Figure 4.3 N − Π diagram, depicting the dual measures of possibility theory. A is
the event of interest and Ā its complement. The hatched area represents the area of
inconsistent combinations for N and Π.

state of knowledge about the current state of the system. Given an event A ⊆ X , the
possibility and necessity measures are de�ned respectively as: Π(A) = supx∈A π(x)

and N(A) = 1− Π(Ā) where Ā represents the complementary event of A. Π and N
satisfy the following axioms:

1. Π(X ) = 1 and Π(∅) = 0 , where ∅ represents the empty set;

2. Π(A ∪B) = max
(
Π(A),Π(B)

)
(similar to N(A ∩B) = min

(
N(A), N(B)

)
),

where B ⊆ X .

The measures can be interpreted in the following way [Dubois and Prade, 2015]:

a. N(A) = 1⇔ Π(Ā) = 0 indicates that A is necessary so it has to happen and Ā
is impossible;

b. 0 < N(A) < 1 is a tentative acceptance of A to a degree N(A), since
min

(
N(A), N(Ā)

)
= 0 from axiom 2 (Ā is not necessary at all);

c.
(
Π(A) = Π(Ā) = 1

)
⇔
(
N(A) = N(Ā) = 0

)
represents total ignorance as

the evidence doesn’t allow us to conclude whether A is true or false.

The N − Π diagram summarises the knowledge about an event A based on the pair
of measures

(
N(A),Π(A)

)
, as shown in Figure 4.3. Points are only allowed on the

axes N = 0 (tentative acceptance of Ā) and Π = 1 (tentative acceptance of A), and
other areas correspond to inconsistent possibility distributions (that is functions π(x)

de�ned in a manner that does not respect the axioms 1 and 2 or their consequences).
Three points are particularly of interest: the more N(A)→ 1, the more certain event
A is; the more Π(A) → 0, the more certain Ā is; and the closer to (N = 0,Π = 1),
the more uncertain we are. We call the latter the ignorance point.
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Possibility and probability have often been characterised as complementary theo-
ries that address di�erent issues, but Dubois and Prade [2012] suggest that possibility
measures can be viewed as bounds on imprecise probability measures. There can be
multiple de�nitions of consistency [Delgado and Moral, 1987], but we follow Dubois
et al. [2004] who held that a probability measure P and possibility measure Π are
consistent if the probability of all events A satis�es P (A) ≤ Π(A). The de�nition of
necessity implies that the probability P (A) is likewise bounded from below by the
necessity measure:

N(A) ≤ P (A) ≤ Π(A). (Equation 1)

Necessity and possibility measures can consequently be viewed as upper and lower
bounds on the probability of a given event. Finally, we say that a possibility distribution
π is at least as speci�c as another π′ when π(s) ≤ π′(s) ∀s ∈ X , in which case π′ is
more conservative (or less informative) than π. Generally speaking, possibility theory
is driven by the principle of minimal speci�city, which states that we cannot rule out
an hypothesis not known to be impossible [Dubois and Prade, 2012].

4.2.2 From data to possibility distribution

Let us consider a stochastic variable x ∈ X for which we try to make a prediction.
The available evidence about x is a set S = {x1, . . . , xNs} of Ns samples of x. To turn
this information into a possibility distribution describing the knowledge on the actual
value of x, we use the technique described by Masson and Denœux [2006]. Their
methodology is speci�cally designed to derive a possibility distribution from scarce raw
data, and assumes that the data in S have been randomly generated from an unknown
probability distribution P . The idea is, after binning the x-axis into n bins, to recover
the simultaneous con�dence intervals at level 1− β on the true probability P (x ∈ bi)
for each bin bi. From these con�dence intervals and considerations about Equation 1,
the procedure allows us to compute a possibility distribution π(x) that dominates
with con�dence β the true probability distribution (i.e. Π(A) ≥ P (A) ∀A in 100β%
of the cases). The simultaneous con�dence intervals for multinomial proportions are
computed by means of the formulation of Goodman [1965] (presented in Appendix 4.8).
Other formulations such as the imprecise Dirichlet model of Walley [1996] exist.
However both models do not provide the same guarantees: Goodman’s formulation
provides multinomial con�dence intervals at level β for the physical ’true’ multinomial
probabilities {pi, i = 1, . . . , n}—according to the classi�cation of probabilities by
Good [1966]. The imprecise Dirichlet model, characterised by a parameter s, provides
intuitive, logical probabilities [Walley, 1996] instead: namely, the upper and lower
bounds on the probability of a given event A represent rational beliefs and rational
betting rates that are justi�ed by the evidence at hand. In this work, we only consider
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the Goodman’s formulation. Appendix 4.7 presents Masson and Denoeux’s technique
step by step.

The above stage is essential for our application, especially in the case of a sys-
tem with a limited sample set S. Indeed, the classical approach for the probability-
possibility transformation proposed by Dubois et al. [1993] directly uses the vector of
frequencies {ni/Ns, i = 1, . . . , n} as the true vector of probabilities {pi, i = 1, . . . , n}.
The uncertainty on the pi that is due to the limited size of S is therefore not taken
into account. For our application, seeking guarantees on the possibility of observing
an event of interest, it is necessary to account for such uncertainty.

One could observe that the above computations of possibility distributions mostly
rely on probabilities. So why should we withdraw from the qualifying term ’proba-
bilistic’? Since the principle according to which what is probable must �rst be possible
was stated by Zadeh [1978], quantitative interpretations of possibility distributions
have been connected to probability theory and transformations from one to the other
have been developed. Thus, possibility distributions, as fuzzy membership functions,
can be seen as encoding a family of nested con�dence intervals [Dubois and Prade,
1982]. More generally, De Cooman and Aeyels [1999] have shown that possibility
measures encode families of probability distributions. As shown by Equation 1, a
possibility distribution can be seen as a complete and consistent framework to deal
with imprecise probabilities. It contains more information than a purely probabilistic
distribution in the situation of incompleteness (typically implied by a small dataset
S). Indeed, the interval on the true probability allows incompleteness of data to be
accounted for, while a point probability hides the fact that the said probability cannot
be fully trusted. Although possibility distributions are connected to probabilities, they
consequently provide a very di�erent representation of the knowledge at hand, that
belongs to the �eld of imprecise probabilities.

4.2.3 From possibility distribution to prediction

In this study, we focus on the binary interpretation of π, while the continuous in-
terpretation is developed in Le Carrer [2021]. We are consequently interested in the
prediction of an event A of interest.

According to Section 4.2.1, we can extract from π the possibility Π(A) and necessity
N(A). Such measures provides coordinates to locate the corresponding point P in the
N − Π diagram sketched in Figure 4.3. Recall that the closer P is to the point (1, 1),
the more necessary A becomes. The closer P is to the point (0, 0), the less possible it
becomes. WhenP is around (0, 1), the user is in situation of ignorance: the information
at hand does not justify a conclusion about A. One way of making predictions is
consequently to use a threshold on either Π, N , or a function of both. However, using
Π or N only would loose information. The credibility C(A) = N+Π

2
was introduced
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by Liu [2006] to address this issue. Thresholds pt ∈ [0, 1] can thus be used to make
predictions: C(A) ≥ pt ⇒ A predicted. Similarly to the probabilistic approach,
such thresholds can be selected by means of a Relative Operating Characteristic or a
Precision-Recall Curve, in order to �t the constraints provided by the user (e.g. relative
level of false alarms). More generally, any functional Pα = αN + (1− α)Π, α ∈ [0, 1]

allows to reduce the interval on P (A) (cf. (Equation 1)) into a point-prediction Pα(A).
Although information is lost, this may be more convenient for decision-making. α
is then chosen so as to optimise a performance metric designed for probabilistic
predictions, over a test set.

Finally, we propose another interpretation, following directly the axioms of pos-
sibility theory and their consequences (cf. Section 4.2.1). Since N(A) > 0 means
tentative acceptance of A with con�dence N(A) (lower bound on P (A), bounded
on top by Π(A)), and conversely Π(A) < 1 means tentative acceptance of Ā with
con�dence 1− Π(A), we can develop the following logic:

• N(A) > 0 implies A is predicted, with associated probability N(A) (risk prone
and risk neutral) or Π(A) (risk averse) ;

• Π(A) < 1 implies Ā is predicted, with associated probability N(Ā) = 1−Π(A)

(risk averse and risk neutral) or Π(Ā) = 1−N(A) (risk prone) ;

•
(
N(A) = 0,Π(A) = 1

)
implies that either A (risk averse) or Ā (risk prone) is

predicted with associated probability PIGN . In practice, PIGN = 0.5 (typically
in the situation of no prior information) or PIGN is de�ned with the observed
frequency of A among points falling in the ignorance area.

In the so-called risk neutral case, the lower bound on P (A) (resp. P (Ā), that is the
con�dence level on observing A (resp. Ā), is used as associated probability. More
generally, the risk-prone and risk-averse predictions outside of ignorance can be
encoded as such:

• N(A) > 0 implies A is predicted, with associated probability Pα(A) ;

• Π(A) < 1 implies Ā is predicted, with associated probability Pα(Ā) = 1 −
Pα(A),

where α→ 0 (risk averse), α→ 1 (risk prone).
Thereafter, we name pred-CRED the credibility approach, pred-ALPHA-α the Pα

approach (note that pred-CRED is in practice equals to pred-ALPHA-0.5) and pred-
TENT-AV (resp. pred-TENT-PR and pred-TENT-NEU) for the risk-averse tentative
approach (resp. risk-prone and risk-neutral tentative approaches). Other ways to turn
the dual Π and N into a probability P includes the pignistic transformation [Dubois
et al., 2008]. However here we restrict the discussion to the options described above.
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4.3 Framework

4.3.1 Notations and information at hand

We are interested in the prediction of the state variable xt0+t of a dynamical system S
at lead time t, starting from the IC xt0 . x ∈ R refers to the component of interest of
S (if directly accessible), or to a function of the inaccessible component of interest,
measured in the model space. We call veri�cation the actual value of xt0+t.

In the EPS context, given a numerical prediction modelM, the elements of infor-
mation at hand are:

1. An ensemble of M predictions at lead time t, the ensemble members or EPS,
obtained by means ofM applied to slightly perturbed ICs around t0: x̃t0+t =

{x̃1
t0+t, . . . , x̃

M
t0+t}.

2. An archive It containing the pairs
(
x̃tk+t, xtk+t

)
for the lead time t of interest

and NI di�erent starting time tk , k = 1, . . . , NI . These instances are chosen so
that the initial points xtk and xtk+1

of two successive trajectories are statistically
independent from each other (namely, in our model example, they are spaced of
3 time units, that is about 15 days, well above ≈ 1 day, the �rst minimum of the
mutual information between xt and xt+τ ).

3. A time series of (preferably continuous) NIA past observations of x, that we
denote IA, containing the IC xt0 of interest.

4.3.2 Deriving possibility distributions from EPSs

The objective of our possibilistic interpretation of EPSs is to derive from an EPS x̃t0+t

and the archive It a possibility distribution π(xt0+t|x̃t0+t, It), that would encode the
knowledge derived from the EPS about the veri�cation xt0+t at a given lead time t. For
readibility, we omit to indicate It in the upcoming equations, however the possibility
distributions are derived from this source of information combined with the EPS at
hand. The procedure described in this section is summarised and illustrated in the
steps 1—5 of Figure 4.4.

Both system and model being (to a certain extent) deterministic and stationary or
close to stationary, the past behaviour of the couple {system, model} is representative
of its future behaviour. Consequently, if we are able to enumerate the possible values
(already seen in It or not) for the veri�cation xt0+t associated with a small range
Sx of the values taken by ensemble members, then a future veri�cation xt0+t should
belong to that set of possible values when an ensemble member x̃mt0+t falls within Sx.
Beyond that, we would like to know which one of these values are more possible than
others for xt0+t. In other words, we would like to estimate the possibility distribution
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Figure 4.4 Step by step illustration of our framework.
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π(xt0+t|x̃mt0+t ∈ Sx). Because there is no notion of ’density’ of the evidence in the
possibilistic perspective (at least in our rationale for choosing this framework), the
number of ensemble members falling in Sx will not a�ect the resulting possibility
distribution for xt0+t.

To make use of the full set of ensemble members, we �rst partition the x-axis
into n bins bi, take the subset B of bins occupied by at least one ensemble member
of the EPS, and compute the |B| possibility distributions π(xt0+t|x̃mt0+t ∈ bj) where
bj ∈ B. Namely, following the methodology presented in Section 4.2.2, for each bin
bj ∈ B occupied by at least one ensemble member x̃mt0+t ∈ x̃t0+t, we retrieve all the
ensemble members from the archive It with index k such that x̃mtk+t ∈ bj , and build
an histogram of the set of corresponding veri�cations xtk+t (called analogs) over the
same partitioning of the x-axis, {bi, i = 1, . . . , n}.

The procedure above computes |B| possibility distributions π(xt0+t|x̃mt0+t ∈
bj), each dominating with a con�dence 1 − β the true probability distribution
P (xt0+t|x̃mt0+t ∈ bj) (i.e. verifying Equation 1 with con�dence β). Each possibil-
ity distribution provides the possibilities for the veri�cation xt0+t given the presence
of one or more ensemble members in bin bj . Each one is thus a partial view on the state
xt0+t. Since there is only one truth for xt0+t (the system’s actual state), we can merge
them through a union operator (OR). Fuzzy set theory o�ers several de�nitions for com-
puting the distribution resulting of the union of two fuzzy distributions. We adopt here
the standard de�nition for its intuitive rationale: πA∪B(x) = max

(
πA(x), πB(x)

)
.

We construct the resulting possibility distribution as:

πEPS (xt0+t ∈ bi|x̃t0+t) =
⋃

j|bj∈B

π(xt0+t ∈ bi|x̃mt0+t ∈ bj)

= sup
j|bj∈B

π(xt0+t ∈ bi|x̃mt0+t ∈ bj), i = 1, . . . , n.
(Equation 2)

Observe that at this stage, we have not yet taken the ICs xt0 into consideration in
the selection of the analogs. In other words, πEPS is too conservative due to a lack of
information about the dynamics of S at the time of interest. To alleviate this issue, we
consequently combine our framework to the empirical dynamic modelling of S , that
is to the reconstruction of its shadow attractor. More generally, any method providing
dynamical analogs can be used.

4.3.3 Taking dynamical information into account

4.3.3.1 Attractor reconstruction

The procedure of attractor reconstruction consists for a dynamical system characterised
by a variable xt in �nding the time delay τ and embedding dimension m such that
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Figure 4.5 EPS- and attractor-based possibility distributions and their combination at
lead times t = {1, 3, 5, 7} days (left to right).

the time delay vectors xt =
(
xt, xt−τ , . . . , xt−(m−1)τ

)
allow to reconstruct the fully

unfolded shadow attractorA′ in the embedding space (that is such that no two distinct
trajectories cross). We use the simplex projection method [Sugihara and May, 1990,
Deyle and Sugihara, 2011, Sugihara et al., 2012], speci�cally designed when the attractor
is used for prediction purposes. The idea is to �nd the couple (m, τ) that maximises
the correlation between veri�cation and prediction, where the prediction of the future
state of the system is given by a weighted mean of nA analog trajectories. In other
words, given the IC of interest xt0 in the phase space, we �nd the nA closest neighbors
(in the sense of the Euclidean L2 norm), and follow their trajectories up to lead time t.
This provides us with the desired nA analogs.

Again, any similarity-based method providing dynamical analogs (that is taking
into account information on the ICs, where IC is understood as the point IC xt0 or as
a longer vector containing dynamical information) can be used to provided the nA
analogs.

4.3.3.2 Converting dynamical analogs into a predictive possibility distribution

Depending on the archive IA at hand and the embedding dimension selected for the
reconstruction, the attractor can be more or less dense, especially in the areas of rare
events. We consequently avoid analog-based point predictions, and again resort to
possibility distributions to extract the information given by the analogs. This allows
us to account for sparse analog datasets and ensure that non-homogeneous density
in the phase space does not blur results. Thus, we follow the procedure described in
Section 4.2.2 to draw the possibility distribution πDYN (xt0+t) = π(xt0+t|xt0 , IA) for
the veri�cation xt0+t associated with the IC xt0 in the phase space.

4.3.3.3 Combining EPS and dynamical information

πEPS and πDYN are two views on the actual system state xt0+t that are both supposed
to be complete, although possibly too conservative, due to their limited and imperfect
source of information about the state of the system. We consequently combine them in
an AND manner: π(xt0+t|x̃t0+t,xt0) = πEPS ∩πDYN , which we posit should alleviate

106



their respective over-conservatism. The intersection of two possibility distributions
is classically given by their fuzzy intersection [Zadeh, 1978, Hose and Hanss, 2019]
(hereafter Zadeh’s aggregation):

πA∩B(x) = inf
(
πA(x), πB(x)

)
. (Equation 3)

The �nal (a.k.a. combined) possibility distribution is consequently:

πCOMB(xt0+t ∈ bi|x̃t0+t,xt0) =

inf
(
πEPS (xt0+t ∈ bi), πDYN (xt0+t ∈ bi)

)
, i = 1, . . . , n. (Equation 4)

The resulting distribution is �nally normalized to one, to verify axiom 1 from Sec-
tion 4.2.1. This consists in using the following transformation, for a generic possibility
distribution π(x):

π(x)←


π(x)

maxx (π(x))
if maxx (π(x)) > 0

1 ∀x, otherwise
. (Equation 5)

In practice, if the min-envelope de�ned by Equation 4 is null everywhere (typically
when both EPS- and IC-based distributions are peaked with non-overlapping support),
we turn it into a uniform distribution. The philosophy behind is that independent
sources of information are contradictory so we are in a situation of ignorance (ev-
erything is possible). This choice can be discussed, for instance in the situation of
dependence between the sources of information (see Hose and Hanss [2019] and
discussion in Section 4.5.3.1. One may also decide based on additional information
(e.g. physics-based, expert opinion, etc), if the two distributions do not overlap at
all, to favor one distribution and dismiss the second, making the �nal distribution
less conservative than pure ignorance (but possibly not consistent). Otherwise, we
divide the min-envelope by its maximum, to get a distribution satisfying the axioms
of possibility theory (see axioms 1 and 2, namely: something must be possible within
the universe of the variable of interest). The philosophy behind is that the maximum
of the min-envelop corresponds to area(s) with the highest joint support of EPS- and
IC-based sources of information. Since at least something must be possible (cf. above-
mentioned axioms of de�nition), these areas are associated to a possibility measure of
1 and other events scaled accordingly. An illustrative example is provided Figure 4.5.

4.3.3.4 Guarantees

We conclude this section with a focus on the formal guarantees that our methodology
provides. By construction, the possibility distributions πEPS and πDYN dominate with
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a given con�dence level β (in the case of Goodman’s formulation) the true probability
distribution of the future xt. Their joint aggregation is designed to make the resulting
possibility distribution more speci�c. Although such a step cannot in general maintain
the same level of con�dence regarding the property P (A) ≤ Π(A) ∀A 1, πCOMB

still provides guarantees when it comes to the lower bound of Π(A). Indeed, from
axiom a. of Section 4.2.1, if xt = x∗ is actually observed, we have: πEPS (x∗) > 0 and
πDYN (x∗) > 0. Consequently, by de�nition of the combined possibility distribution
(Equation 4), πCOMB(x∗) > 0 as well. Thus, the guarantee Π(A) > 0 when x∗ ∈ A
is maintained. This allows risk-averse decision-makers to get a guarantee about the
possibility of observing A: all observations of A are associated to a non-null Π(A).
However, taking precautionary action whenever Π(A) > 0 is not always feasible
for economical reasons. In such a case, the AND-fusion of πEPS and πDYN allows to
reduce the basis level γ such as πCOMB(x) ≥ γ, ∀x, and consequently to increase the
upper bound on the necessity, N(A) ≤ 1 − γ, ∀A, that is the minimal con�dence
level in favor of A. The decision maker can then use it to judge whether the possible
event A is actually more or less probable. The evaluation of the formal guarantees
associated to our framework is developed in Le Carrer [2021].

4.4 Experimental setting

4.4.1 Test bed: the imperfect L96 system

We reproduce the experiment designed by Williams et al. [2014], who used an imperfect
L96 model to investigate the performances of ensemble postprocessing methods for
the prediction of extreme events. The system dynamics is governed by the following
system of coupled equations, where the X variables represent slow-moving, large-
scale processes, while Y variables represent small-scale, possibly unresolved, physical
processes:

dXj

dt
= Xj−1(Xj+1 −Xj−2)−Xj + F − hc

b

K∑
k=1

Yj,k (Equation 6)

dYj,k
dt

= cbYj,k+1(Yj,k−1 − Yj,k+2)− cYj,k +
hc

b
Xj (Equation 7)

where j = 1, . . . J and k = 1, . . . K . The parameters are set to: J = 8, K = 32, h = 1,
b = 10, c = 10 and F = 20. This perfect model is randomly initialised and then
integrated forward in time by means of a Runge-Kutta 4th-order method with time
step dt = 0.002 (model time units) until enough trajectories of duration 1.4, starting

1Hose and Hanss [2019] discusses this point and shows how using the so-called general aggregation
ensures that the consistency between probability and possibility measures is maintained, whatever the
level of interaction, or dependence, between the variables at hand.
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every 1.5 time units, are recorded for our analysis. An imperfect version of the L96
system is implemented to generate predictions for the variables Xj . In Equation 6,
−hc

b

∑K
k=1 Yj,k is replaced with a quartic polynomial in Xj :

0.262− 1.262Xj + 0.004608X2
j + 0.007496X3

j − 0.0003226X4
j (Equation 8)

To reproduce the perturbation of the ICs, each perturbed variable X̃j is randomly and
independently drawn fromN (Xj, 0.1

2). M members are thus sampled independently
around the true value of Xj . The ensemble predictions are initialised each time a
new trajectory record starts, and integrated forward in time up to the lead time 1.4

by means of a Runge-Kutta 4th-order method with lower time resolution (d̃t = 0.02

model time units). The size of the ensemble is set to M = 24, a value comparable
to operational weather forecasting schemes (e.g. M = 17 for the Met O�ce Global
and Regional Ensemble Prediction System). A lead time of 0.2 model time units after
initialisation is noted t = 1 and can be associated with approximately 1 day in the real
world [Lorenz, 1996].

In the following, we adopt a monovariate perspective, that is we consider each
dimension of the model space independently. More speci�cally, we illustrate our
methodology with predictions of the variable X1.

4.4.2 Reference models: Gaussian ensemble dressing and raw EPS distribution

In many cases, the statistical postprocessing of EPSs generates forecasts in the form of
predictive probability distributions p(xt0+t|x̃t0+t, θ), where x̃t0+t = {x̃1

t0+t, . . . , x̃
m
t0+t}

is the ensemble, θ a vector of parameters and p a (sum of) parametric distribution(s).
Bayesian model averaging distributions (BMA; Raftery et al. [2005]) are weighted
sums of M parametric probability distributions, each one centered around a linearly
corrected ensemble member. In this work, the members are exchangeable, so the
mixture coe�cients and parametric distributions do not vary between members and
the BMA boils down to an ensemble dressing procedure. We compare our method
(referred to as EPS, DYN−m or COMB−m whether we use πEPS , πDYN or πCOMB ,
with−m specifying the number of dimensions taken into account for the IC) against a
Gaussian ensemble dressing, whose predictive probability distribution reads [Roulston
and Smith, 2003]:

p(xt0+t|x̃t0+t)θ =
1

M

M∑
i=1

N (ax̃it0+t + ω, σ2) (Equation 9)

where N (µ, v) is the normal distribution of mean µ and variance v. We infer the
parameters θ = {a, ω, σ} through the optimisation of a performance metric, here
the ignorance score [Roulston and Smith, 2002], or negative log-likelihood, a strictly
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proper and local logarithmic score. To that end, we use the nonlinear programming
solver provided by the software MATLAB R© and apply the guidance developed in
Bröcker and Smith [2008] to initialise the optimisation algorithm and provide robust
solutions. Our training set contains NI pairs {EPS,veri�cation} for each lead time of
interest t = {1, 3, 5, 7} days, that is the same information as the archive I used in
our framework. To account for the variability of results from one testing set to the
other, in the same line as Williams et al. [2014], we repeat the optimisation procedure
20 times on di�erent samples. We then use the resulting 20 sets of parameters to
compute the performance metrics relative to the probabilistic approach. Finally, we
take the average of these 20 scores, that we report on the graphs as representative of
the performances of the probabilistic approach.

In addition to the performances of the Gaussian ensemble dressing (hereafter GEB),
we report the performance of probability distribution directly derived from the raw
EPS (namely, an histogram normalised into a probability distribution). We refer to it
as the RAW method.

4.4.3 Evaluation of performances

In this work, we have developed the binary interpretation of a predictive possibility
distribution π(x). Further work on the continuous interpretation and guarantees is
presented in [Le Carrer, 2021] by the authors. We consequently assess the predictive
performance of our framework in the case of an extreme event: A = {x ≤ q5}, where
q5 is the quantile of order 5% of the climatic distribution of x. Such a choice allows us
to target the issues of probabilistic interpretation of EPSs raised in introduction. To
that end, we use two indicators commonly used for evaluating binary probabilistic
predictions: the ignorance score and the precision-recall curves. We �nally discuss re-
liability by means of reliability diagrams. These modalities of evaluation are presented
below, along with the concept of U-uncertainty.

4.4.3.1 U-uncertainty

The U-uncertainty, also known as the generalized Hartley measure for graded possi-
bilities [Klir, 2006], allows to measure the nonspeci�city of the possibility distribution
π(x) at hand. In a continuous setting, it reads:

U(π) =

∫ 1

0

log2 |Cα
π |dα (Equation 10)

where |Cα
π | is the L1 norm of the α-cut Cα

π = {x ∈ X | π(x) ≥ α}. Another way to
compute it in a discretised setting is to order the possibility pro�le π in such a way
that 1 = π1 ≥ π2 ≥ . . . ≥ πn with πn+1 = 0 by de�nition. The following relationship
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then applies [Klir, 2006]:

U(π) =
n∑
i=2

πi log2

i

i− 1
(Equation 11)

0 ≤ U(π) ≤ | log2X| de�nes the upper and lower bounds for a pro�le π over domain
X , obtained respectively for a Dirac-like pro�le and a uniform pro�le. Given two
possibility pro�les π and π′, U(π) ≤ U(π′) is equivalent to say that π is more speci�c
(i.e. more informative) than π′.

This is not an indicator of prediction performance per se, however we will use it to
discuss the information content of πEPS , πDYN and πCOMB .

4.4.3.2 Ignorance score

The ignorance score is designed to measure the skill of probabilistic predictions. It can
be interpreted from an information-theory point of view in terms of the di�erence in
expected returns that one would get by placing bets proportional to their probabilistic
forecasts compared to bets that someone with perfect knowledge of the future would
place. The empirical assessment of the ignorance score is the average over a test set
of size N of the ignorance of each probabilistic prediction:

SN(G) =
1

N

N∑
i=1

− log2G(Oi) (Equation 12)

whereOi is the event actually observed for sample i andG(Oi) its predictive probability.
In the probabilistic framework, SN takes positive values only and each unit indicates
an additional bit of ignorance on the forecaster’s side.

The possibilistic framework do not provide a single probability G(Oi) but a cou-
ple
(
N(Oi),Π(Oi)

)
such that N(Oi) ≤ P (0i) ≤ Π(Oi) where P (Oi) is the actual

probability of event O for sample i. As described in Section 4.2.1, N(A) > 0 implies
Π(A) = 1 and similarly N(A) = 0 (that is Π(Ā) = 1) implies Π(A) ≤ 1. In other
words, whatever the veri�cation O, a good possibility distribution π must derive into:

(A) Π(O) = 1

(B) N(O) ≥ 0, with N(O) → 1 preferred since it means that O is all the more
necessary which makes the prediction less uncertain

An interesting way to extend the ignorance score to our possibilistic framework is
to extract the credibility of the actual outcome from the couple possibility/necessity
and use it as probability:

SNπ(π) =
1

N

N∑
i=1

− log2(
N(Oi) + Π(Oi)

2
) (Equation 13)
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The score takes only positive values. Condition (A) is satis�ed in average when
SNπ ≤ 1 with condition (B) satis�ed when SNπ → 0.

Both N(O) and Π(O) can be interpreted as predictive probabilities of the event O.
One is (generally) an under-estimation and the second (generally) an over-estimation.
The quantity N(Oi)+Π(Oi)

2
is consequently homogeneous to a probability and the score

SNπ has the same interpretation in terms of information theory as the classical igno-
rance score applied to the predictive probability N+Π

2
. The choice of such a functional

can be discussed, as there exist many other possible transformations to reduce the cou-
ple
(
N,Π

)
to a probability G. Beyond the classical G(O) = αN(O) + (1−α)Π(O) =

Pα(O), where α can be optimised based on a performance metric, we do not discuss
it in this work. We solely use this transformation with α = 0.5 in order to get an
ignorance score allowing to check easily whether properties (A) and (B) are veri�ed
in average, in addition to assess the information content of the derived predictive
probability.

4.4.3.3 Precision recall curves

Traditionally, relative operating characteristics (ROCs) are used to estimate the ability
of a predictive model to discriminate between event and non-event. Given a binary
prediction (yes/no w.r.t. event A), the ROC plots the hit rate (fraction of correctly
predicted A over all A observed) versus the false alarm rate (fraction of wrongly
predicted A over all Ā observed).

However, when the dataset used to plot such characteristic is signi�cantly imbal-
anced (the frequency of veri�cation of A is signi�cantly smaller than the frequency of
veri�cation of Ā), the false alarm rate is biased towards lower values. Recent works,
e.g. Saito and Rehmsmeier [2015], suggest to use instead precision-recall curves (PRCs).
The precision (rate of correctly predictedA over allA predicted) is plotted as a function
of the hit rate (a.k.a. recall, the terminology used in the machine learning research
community). In other words, the false alarm rate is replaced with the precision. This
removes any reference to the class that is not of interest (Ā), which, when being the
majority in an imbalanced dataset, biases the false alarm rate and consequently the
conclusions that one could draw about prediction performances. Conversely, PRCs pro-
vide a more reliable prediction of the future classi�er’s performances. Our focus being
on rare events, in this study characterised by a climatological frequency c(A) = 0.05,
we consequently use PRCs to assess the predictive skills of our framework.

In both probabilistic and possibilistic cases, we use increasing thresholds pt ∈
[0, 1] for making the decision (A predicted if P (A) ≥ pt (resp. C(A) ≥ pt) in the
probabilistic (resp. possibilistic) framework) and report the associated precision and
recall in the graph, forming a PRC. This allows us to compare the discrimination skill
of both approaches.
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4.4.3.4 Reliability diagram

This presentation of reliability diagrams draws on our previous work [Le Carrer and
Green, 2020], where we �rst introduced our fuzzy and 3-dimensional versions of the
metric. Reliability diagrams plot the observed conditional frequencies against the
corresponding forecast probabilities for a given lead time. They illustrate how well the
predicted probabilities of an event correspond to its observed conditional frequencies.
The predictive model is all the more reliable (i.e. actionable) when the associated
curve is close to the diagonal, which represents perfect reliability. The distance to
the diagonal indicates underforecasting (curves above) or overforecasting (curves
below). Distance above the horizontal climatology line (frequency of A over the whole
archive I) indicates the resolution of the system, i.e. how well it discriminates between
events and non-events. The cones de�ned by the no-skill line (half-way between the
climatology and perfect reliability) and the vertical climatology line allow us to de�ne
areas where the forecast system is skilled.

This metric is obviously designed for probabilistic predictions. However, the possi-
bility-probability equivalence (Equation 1) allows us to use it as well for possibilistic
outputs and compare their actionability with purely probabilistic prediction schemes.
To draw a standard reliability diagram from possibilistic predictions, we use the
functional Pα(A), where α is discretized on [0, 1]. For a given set of Ns predictions
(N(A),Π(A)), for each αi ∈ [0, 1], the Ns Pαi(A) are computed and a traditional
reliability plot is drawn. Each αi-plot indicates how using Pαi(A) as a probability for
A is reliable and actionable on the long term. Seen as a whole, this bounded set of
reliability plots allows to characterise the reliability of the probabilities given through
N(A) ≤ P (A) ≤ Π(A).

4.5 Results and Discussion

We now characterise the predictive performances of our possibilistic framework and
discuss them in comparison with the skill of the probabilistic reference approach. If not
mentioned otherwise, all results presented in this Section use n = 30 bins to partition
the x−axis 2, an archive of EPS/veri�cation containing NI = 1560 independent trajec-
tories of length t = 7 days, and a continuous time series of x of length NIA = 2.106

sampled at the same frequency as the EPS trajectories. These are operational �gures:
an EPS-archive of such size NI corresponds to 30 years of data, which corresponds to
the standard length of a historical re-forecast dataset [Hamill et al., 2004, Hagedorn
et al., 2008]. The time series of length NIA above-mentioned roughly equals 55 years

2This choice is based on the range covered by the climatology of x and the fact that x can be
associated to a physical quantity of the atmosphere, e.g. temperature, which leads to bins of width
≈ 2 degrees. For other systems and applications, the bins can be for instance partitioned so that the
distribution of the climatology is homogeneous over the bins.
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Figure 4.6 Results of the simplex method applied to the L96 system. The Pearson
correlation coe�cient between veri�cation at lead time t = 1 day and the prediction
computed by means of a weighted mean of the m+ 1 closest analogues in the recon-
structed phase space of embedding dimension m and time-delay τ . Each dashed curve
corresponds to a di�erent m, varying on [4, 15]. Larger m are darker. We top the plots
with the solid red curve corresponding to the optimal or close to optimal m overall τ :
m = 9.

of system record, which for geophysical variables is reasonable. We will conclude by
discussing the e�ect of NIA on performances. The calibration set (for parameter nA)
and test sets each consist in N = 40.103 independent trajectories of length t = 7 days
and the corresponding EPS predictions. All EPSs have beforehand been preprocessed
to remove the constant bias.

Finally, when it comes to the parameter β of the Goodman formulation, Masson
and Denœux [2006] show empirically that their data-to-possibility transformation is
rather conservative and provides a possibility distribution that actually dominates the
true probability distribution with a rate much higher than the guaranteed β. Even
for small sample sizes, the choice of β is not critical and quasi perfect coverage rate
is obtained: β ≥ 0.8, ensures that P

(
P (A) ≤ Π(A)

)
→ 1 ∀A. We consequently

use β = 0.9 which, without impairing guarantees, tends to provide less conservative
distributions as shown for the same case study in Le Carrer [2021].

4.5.1 Attractor reconstruction

The simplex method introduced in Section 4.3.3 is applied to the lead time t = 1 day
from the continuous archive xt1 , . . . , xtNIA of lengthNIA = 2.106 and time step similar
to the EPS’s time resolution. A clear optimum is found for the couple (m = 9, τ = 37)

(cf. Figure 4.6). Herafter, when m is not explicitly mentioned for methodologies
COMB-m or DYN-m, the reader will understand that m = 9.
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Figure 4.7 E�ect of varying the number of analogs nA ∈ {10, 50, 100, 500, 1000}
(darker lines for larger nA) for lead times t ∈ {1, 5} days (from left to right) on πDYN .
The distribution is highlighted with dots and color for nA = 1000. The smaller nA,
the more conservative the distribution. Associated EPS members are marked as blue
dots and the veri�cation as a red star.

Figure 4.8 E�ect of varying the number of analogs nA = {10, 50, 100, 250, 500, 1000}
on the precision-recall curves at lead times 1 and 5 days. The darker the line, the
higher nA.

4.5.2 Setting the number of analogs nA

As illustrated in Figure 4.7, the parameter nA plays an important part in the shape
of πDYN and a careful calibration is consequently recommended. Figure 4.7 shows
the e�ect of increasing the number of analogs nA ∈ {10, 50, 100, 500, 1000} on πDYN .
We observe that increasing nA produces a more and more speci�c distribution by
increasing the minimum con�dence levelN(A) = 1−maxx/∈A π(x) about an eventA in
the peak area. Globally, nA = 100 already provides interesting predictive information,
however nA = 500 may provide a better decision tool due to higher con�dence levels
in the peaks. We can wonder whether this higher con�dence, arti�cially induced by a
larger analog set, will prevent the detection of small tendencies (typical of rare events).
In particular, we consider the nA closest neighbours around the IC xt0 , which does not
imply that they are actually close, if the attractor is not dense in the area of interest.
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Figure 4.8 shows the e�ect of varying nA over {10, 50, 100, 250, 500, 1000} on the
PRC, for lead times t = {1, 5} days.

We observe that the performances in terms of PRC improve with growing nA,
yet they quickly converge to a maximum (nA ≥ 250). The sensitivity to nA is more
pronounced when the lead time increases. Such a convergence means that even though
we integrate more distant analogs, the possibilistic methodology does not use this
additional information in terms of density (which would dilute the information given
by the closest analogs). Instead, the possibilistic interpretation of the analog set is
preserved. Globally nA = 250 allows to get the best performances over the whole
range of recalls, con�rming the preliminary observations in Figure 4.7. We continue
our experiments with this value for nA.

4.5.3 Predictive performances

4.5.3.1 Information content

Figure 4.9 represents the empirical ignorance score for lead times varying from 1 to 7
days of the methods GEB, RAW, EPS, DYN-9, COMB-1 and COMB-9, broken down
between its extreme event (EE) and non-extreme event (NEE) components, that is
the average empirical ignorance for observed EE (resp. NEE) only. Note that due to
the very small proportion of EE compared to NEE, the global empirical ignorance
score is similar to the NEE’s. For explanatory purposes, we represent as well the
e�ect on the COMB possibility distributions of the aggregation method. Namely, we
compare COMB-Z, using Zadeh’s aggregation, de�ned in Section 4.3.3.3, to COMB-A,
using the general aggregation de�ned in Hose and Hanss [2019] 3 and supposed to
ensure the validity of the consistency principle (Equation 1) whether there is stochastic
dependence or not between variables to be fused. Finally, we compare the results
for the possibility-based probabilities derived from the methodology pred-CRED and
pred-TENT-NEU, and pred-TENT-AV and pred-TENT-PR with varying α. Note that
the risk-averse and risk-prone versions of the latter cannot be directly used with
the absolute ignorance score as for the risk-averse approach (resp. risk-prone) the
NEE (resp. EE) component gets an in�nite score. Indeed, if we take the risk-averse
case (resp. risk-prone case), null probabilities are attributed to Ā (resp. A) whenever
Π(A) = 1 (resp. N(A) = 0), which leads to in�nite negative log-likelihood items.
Conversely, using 0 < α < 1 ensures �nite log-likelihood scores. Procedures such as
climate blending [Bröcker and Smith, 2008] could be used to make these predictive

3For N marginal possibility distributions πXk , k = 1, . . . , N about the variable x ∈ X , the joint
possibility distribution is de�ned as:

πX1,...,XN (x) = min
k=1,...,N

min
(
1, NπXk(x)

)
∀x ∈ X . (Equation 14)
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Figure 4.9 Empirical ignorance score of the methods described in the text. The upper
plots use the pred-CRED approach to derive probabilities from possibility distributions.
The middle plots use the pred-TENT-NEU and the lower plots use the pred-TENT-α
with α ∈ {0.1, 0.25, 0.5, 0.9} from left to right. A dotted horizontal red line is plotted
at 1 bit to visualise how guarantees are veri�ed by possibilistic methodologies. In
both cases (top and below), the left-most panels use the COMB-Z aggregation method
while the right-most panels use the COMB-A approach for aggregation.
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Figure 4.10 Average U-uncertainty of the possibility distributions described in the
text for both NEE (left) and EE (right). The upper bound given the domain of de�nition
of the variable at hand is log2 |X | = 5.08, which would be obtained for a uniform
possibility distribution.

probabilities more robust to such pitfall, however this is not the point of this paper
hence the description of the ignorance score limited to the risk neutral pred-TENT
approach.

We �rst describe the results for possibility-based probabilities derived by means of
the pred-CRED methodology. The NEE ignorance is slightly lower for probabilistic
methods (GEB, RAW) than it is for the possibilistic approaches (EPS, COMB-1, COMB-
9). However, when it comes to the case of interest, namely EE, the ignorance is
signi�cantly lower for the possibilistic approaches than for the probabilistic ones
(where GEB shows that postprocessing improves the RAW result). The di�erences
grows with the lead time.

If we analyse more in detail the possibilistic approaches, we note that in the NEE
case, for lead times above 3 days, the aggregation of information (EPS and DYN) allows
to lower the level of ignorance, all the more than the information about dynamics is
re�ned (i.e. that the number of dimensions m taken into account to characterise the
ICs is high). However, in the EE case, the aggregation of information slightly increases
the ignorance, even for small lead times. This is all the more true than the dynamical
information is partial (i.e. m low), at least for lead times below 7 days.

Figure 4.10 allows to shed some light on this counter-intuitive observation. It
shows that fusing the dynamical and EPS-based possibility distributions provides
distributions that are more speci�c than both initial distributions at lead times above
1 day. Whether for NEE or for EE only, the e�ect is all the more marked than the
lead time increases and the dynamical (and consequently the combined) possibility
distributions are all the more speci�c than the information characterizing the ICs is
complete (large m). If COMB distributions are more speci�c than EPS’s and yet their
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information content is lower (their ignorance score is higher), it means that, in plain
words, ’they missed their target’ and led to situations such as

(
N(A) = 0,Π(A) < 1

)
which means tentative acceptance of the complementary event Ā at level 1− Π(A).
And indeed, we note that the condition (A) is not veri�ed in average for lead times
above 3 days, since the empirical ignorance overpass 1 bit.

Using a di�erent kind of aggregation, namely the general aggregation, allows to
have COMB distributions more informative than the EPS ones in the case of EE, but
not in the NEE case. This type of aggregation is indeed much more conservative as
shown on Figure 4.10, which for EE is interesting but is less for more common events.

The pred-TENT-NEU methodology leads to EE results improved at larger lead
times (below or closer to the 1-bit guarantee), especially in the EPS and COMB cases.
However, results are signi�cantly deteriorated for NEE, especially at large lead times.
It shows the potential of the methodology for risk-averse users, as conditions (A) and
(B) are almost perfectly satis�ed for both EE and NEE.

Finally, the last row of Figure 4.9 shows the e�ect of varying α in the pred-TENT-
AV / pred-TENT-PR methodology. A small α ≈ 0.1 guarantees that the conditions
(A) and (B) are met for EE, with best results for the distribution COMB-A. However
only methodology COMB-Z, less conservative, allows to verify conditions (A) and
(B) for both EE and NEE. As could be expected, increasing α leads to predictions
less risk-averse, which increase the performances for NEE yet at the expense of EE’s.
One can however note that it exists a trade-o� α where the ignorance score of such
possibility-based predictions remains equal or better to the ignorance score of the
probability-based predictions for NEE and EE simultaneously.

4.5.3.2 Ability to discriminate

Figure 4.11 gathers the PRCs of both predictive frameworks for lead times {1, 3, 5, 7}
days. To gain insight, we report the PRCs obtained from the EPS, DYN and COMB-Z-9
possibility distributions. The PRCs are computed for Pα=0 = Π, Pα=1 = N and
Pα=0.5 = 0.5(N + Π). We observe that using N as decision tool allows only small
hit rates, especially when the lead time grows. Conversely, using Π doesn’t allow
small hit rates. Intermediate pooling such as Pα=0.5 allows to cover the whole range
of hit rates. Overall, πEPS performs similarly to the probabilistic frameworks (points
overlay) for t ≥ 3 days, and even signi�cantly better in the case of small recalls for
t = 7 days. For smaller lead times, it performs slightly less well than the probabilistic
approaches. In all three cases, πDYN is signi�cantly less successful than the latter for
small and medium lead times. It becomes as interesting as them only from t = 5 days.
The combined possibility distribution is consequently slightly below the probabilistic
approach in terms of discrimination ability for small lead times, and becomes more
interesting than the latter for t ≥ 5 days.
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Figure 4.11 Precision-recall curves showing the predictive skills of possibility distrib-
utions EPS, DYN and COMB-Z-9 and probability distributions RAW and GEB for lead
times t = {1, 3, 5, 7} days (left to right). For the curves associated with the possibilistic
approaches, we use N(A), the credibility 0.5

(
N(A) + Π(A)

)
and Π(A) (from top to

bottom) as input probabilities.
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Figure 4.12 3-dimensional histograms of the possibilistic predictions associated to
veri�cation of A for lead times t = {1, 3, 5, 7} days (left to right). Predictions are
based on πEPS (blue), πDYN (yellow) or their Z-combination (black).

We note than the performance of πCOMB is di�erent than the performance of
its best component (either πEPS or πDYN ). At small lead times, it remains close to
πEPS performance, while at larger lead times, it goes beyond both. Combining both
distributions in an AND manner consequently provides more predictive information
than any single one of them contains.

These results can be explained by means of Figure 4.5. For short lead times, πEPS
is generally quite narrow (model error is low) and peaks around the true veri�cation.
Using it for prediction leads to results similar to the probabilistic approach (since model
error had no time to bias EPS predictions) and signi�cantly better than attractor-based
predictions. Indeed, due to generally wider πDYN , the latter are often close to the
ignorance point as shown by the histogram of the predictions associated with observed
events A in Figure 4.12. For all lead times, the histogram associated with attractor-
based predictions presents a single peak located on the ignorance point. On the
contrary, the EPS-based predictions do not show such a behaviour before t = 5 days.
Till that lead time, a large part of the observed events A are associated with a point
on the (Π = 1, N > 0) axis, meaning tentative acceptance of A. For large lead times,
πEPS becomes larger due to the e�ect of the initial sampling and sensitivity of the
model dynamics, both driving ensemble members away from the actual veri�cation
with enough time. Combining this distribution to πDYN through the AND operator
allows for a narrower �nal distribution (the peak at the ignorance point of πCOMB is
smaller in amplitude than the peaks of its components πEPS and πDYN ) and provides
predictions that discriminate more between A and Ā. As shown through the PRC
curves, they are also more powerful at large lead times than the predictions given
by the probabilistic approach alone, for the same dynamical reasons (model drift,
sensibility to ICs).

Using the general aggregation method instead of Zadeh’s, do not change signi�-
cantly the above results. The most notable di�erence, in favor of the Z-aggregation, is
that using the general aggregation restricts even more towards the two extremes (0
and 1) the range of possible recalls.

Practically, using our possibilistic predictor at large lead times and for a given
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Figure 4.13 Spearman correlation coe�cient between the a posteriori propabilistic
ignorance score and the level of a priori possibilistic ignorance. Results are broken
down for EE and NEE, observed (top left) or predicted (others). From left to right
and top to bottom, methodologies used are pred-CRED with breakdown of observed
EE/NEE, pred-CRED with risk-prone breakdown EE/NEE, pred-CRED with risk-averse
breakdown EE/NEE and pred-TENT-AV with risk-averse breakdown EE/NEE.

recall, increases the precision by 0.05 for medium recalls and up to 0.3 for small recalls.
In other words, for a given hit rate, our framework emits less false alarms, a trend that
is all the more marked for small hit rates.

4.5.3.3 Operational use of the possibilistic concept of ignorance

The information content of a probabilistic prediction G(Oi) of the actual future Oi is
evaluated through the ignorance score Si = − log2G(Oi). The latter characterizes the
level of ignorance of the user of such prediction w.r.t. the actual future outcome. On
their side, possibilistic frameworks provide predictions in the form of dual measures,
the necessity and the possibility of an event, that can be used altogether to characterize
the level of ignorance regarding the future outcome to predict, given the evidence
at hand. Namely W = Π(A)−N(A) is a positive quantity that takes its minimum
when Π(A) = N(A) = 0 (Ā is predicted, A being considered impossible) or Π(A) =

N(A) = 1 (A is predicted, Ā being considered impossible) and its maximum when(
Π(A) = 1, N(A) = 0

)
(both A and Ā are possible, none of them is necessary, no
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tentative acceptance of A or Ā is dictated by the information at hand).
We can consequently wonder: is the probabilistic ignorance Si (a posteriori mea-

sured) correlated to the possibilistic level of ignorance W (a priori measured)? If so, a
priori observation of the possibilistic level of ignorance could guide for a better use of
the probabilistic predictions. Figure 4.13 aims at answering this question. We compare
the Spearman correlation coe�cient between the a posteriori assessed probabilistic
ignorance (for each method, RAW and GEB) and the a priori measurable level of possi-
bilistic ignorance (for each possibility distribution, πEPS , πDYN and πCOMB ). Besides,
to highlight results, we compare the correlation for observations that belong to the
category EE, rede�ned as "x ≤ q0.5 ∪ x ≥ q0.95" with the correlation for observations
that do not belong to category EE (called NEE).

Figure 4.13 reports the correlation between Si associated with the probabilities
derived from possibilistic methodologies and the associated W . It would not make
sense to directly compare probabilities from GEB or RAW and the possibilistic W as
the latter are issued from di�erent methodologies.

If we break down results between EE and NEE, we observe that possibilistic (W )
and probabilistic (Si) ignorance (reported here in the pred-CRED case) are extremely
correlated for NEE, at all lead times and for all possibility distributions. However, in
the case of EE, if the correlation is strong and positive at very small lead time (1 day)
for COMB-Z, COMB-A and EPS, it becomes strongly negative for lead times above 3

days and all methods. In other words, the level of possibilistic ignorance can be used
as a predictor of the information content (i.e. quality) of the pred-CRED prediction
only for very small lead times. For larger lead times, the correlation is strong in both
EE and NEE case, however of opposite signs which makes it not usable in practice.
This pitfall comes from the fact that we break down the correlation results based on
the a priori unknown future state of the system (EE vs NEE).

What may be more interesting is to break them down w.r.t. the a priori known
possibilistic prediction, namely: tentative acceptance of EE/A if N(A) > 0 (including(
N(A) = 0,Π(A) = 1

)
for the risk-averse option), and tentative acceptance of NEE/Ā

if Π(A) < 1 (including
(
N(A) = 0,Π(A) = 1

)
for the risk-prone option).

In the risk-prone version, for tentative acceptance of NEE, the correlation is close
to 1 for all possibilistic methods and all lead times, although slightly decreasing with
increasing lead times. In other words, when we predict that Ā happens (i.e. Π(A) < 1

or
(
N(A) = 0,Π(A) = 1

)
) and associate to it the probability P (Ā = 1−Π(A)+1−N(A)

2
,

we get an a posteriori probabilistic ignorance that is strongly correlated to the a priori
possibilistic ignorance W . The latter can consequently be used as predictor of the
information-content of the possibility-based probability P (Ā). The same applies for
EE predicted (tentative acceptance ofAwith associated probability P (A) = N(A)+Π(A)

2
,

when N(A) > 0) at lead times t ≤ 5 days for EPS, and lead times t ≤ 3 days for
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COMB-Z and COMB-A or lead time t = 1 for DYN, all the more than the lead time is
small. However, for larger lead times, the correlation coe�cient becomes too small to
suggest an operational relationship between both types of ignorance. In other words,
the possibilistic ignorance for predicted EE is an indicator of the related probabilistic
ignorance only for reasonably small lead times, reasonably depending on the method
(EPS vs COMB) used. It is interesting to note the case of COMB-A, which provides a
strong negative correlation at large lead times. In this case, the larger W , the better
the information content of probabilities derived from the possibilistic pred-CRED for
predicted EE. This makes sense since larger W generates pred-CRED probabilities
that tend towards 0.5 and are consequently less risky that extreme ones.

In the risk-averse option, results do not change for NEE predicted: the correlation
is still very strong and W can be used as a predictor of Si. When it comes to EE,
results are slightly less interesting: beyond 3 days, no possibilistic method shows good
positive correlation between W and Si. The former can consequently be used as a
predictor of the former only for small lead times, with similar results whatever the
possibilistic approach (EPS, DYN, COMB-A, COMB-Z). We observe the same negative
correlation for the largest lead time and COMB-A, which has the same interpretation
as above.

Finally, we present the correlation observed for probabilities derived, not any-
more from pred-CRED but from pred-TENT-AV, in the risk-averse breakdown of
predicted EE and NEE. Operationally, results show that only EPS and COMB-Z-9 based
methodologies provide W and Si positively correlated at all lead times when NEE are
predicted. For predicted EE, a correlation relatively strong (above 0.6) exists for EPS
and COMB-A for small lead times, allowing to use to a certain extent W as predictor
of the information content of Si. However beyond 3 days, the correlation is too weak
to be useful operationally, apart from in the COMB-A case at largest lead time, where
we observe again a strong negative correlation.

These results show how and to what extent we can use the full potential of
possibilistic measures operationally, that is by deriving equivalent probabilities and
by quantifying how informative these are.

4.5.3.4 Reliability

Figure 4.14 represents the fuzzy reliability diagram associated with the possibilistic
and probabilistic predictions, where lines that are closest to the diagonal show best
reliability. For the possibilistic methods, upper and lower bounds of the individual
reliability plots obtained by varying αi ∈ [0, 1] in Pαi(A) are reported (cf. Section
4.4.3.4). Both axis are partitioned in 10 bins and we only report the results for bins on
the ’Prediction’ axis that count at least 10 observations.

For all lead times, the envelop of the fuzzy reliability plots covers almost the whole
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Figure 4.14 Reliability diagram at lead times t = {1, 3, 5, 7} days (left to right). The
probabilistic results GEB and RAW are reported in cross-red and dashed grey lines
respectively, while the upper and lower bounds of the possibilistic methodologies
are in solid-circled lines. Standards elements of comparison are reported in the dia-
gram, namely the diagonal (perfect reliability), the climatological reference (horizontal
dotted) and the cone of skill (inside the dashed-dotted secants).

Figure 4.15 See legend of Figure 4.14. For possibilistic methodologies, we now extract
the credibility and use it as a probability to draw the associated reliability diagrams.

range of probability [0, 1] while the traditional GEB do not for medium and large lead
times. The probabilistic RAW does at all lead times, however the associated reliability
diagram falls below the cone of skill beyond lead time 3 days, indicating no resolution.
Our approach is consequently capable of providing large probabilities, even for a rare
event, without any a posteriori recalibration step. Among the di�erent possibilistic
approaches, bounds are tighter at small lead times for EPS, however COMB-Z-9 quickly
becomes the more interesting methodology for larger lead times. In particular, we
note that COMB-A-9 looses resolution beyond 3 days, being not speci�c enough. For
all lead times, at least half of the envelope of the fuzzy reliability plots is contained
in the cones of skill, which indicates resolution of the possibility-based probabilities.
The perfect reliability line is surrounded by the bounds, apart for probabilities above
0.65 above 5 days.

For a more operational perspective, we analyse the reliability of the possibility-
based probabilities derived by means of pred-CRED, that is when we use the credibility
as the probabilistic product associated to a possibility distribution. We �rst note on
Figure 4.15 that the reliability plot is sparse for the EPS method. The latter produces
probabilistic predictions focused on the extremes or middle probabilities. The interme-
diate ones correspond to points falling in the ignorance area, while the upper/lower
correspond to peaked distributions towards A or Ā. This is all the more visible for
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Figure 4.16 See legend of Figure 4.9. The method used is pred-CRED. The left two
diagrams are based on a time series of length about 6 months and the right two ones
on a time series of length about 55 years. Within each block of two, we increase from
left to right the EPS archive size from 3 years to 30 years.

short lead times, and experiments show that increasing the archive size NI allows
to reduce the discontinuities. Combining EPS to the more continuous DYN brings
continuity in the probabilistic predictions issued from COMB-Z-9. As seen before, we
again note that COMB-Z-9 is more informative than both EPS and DYN alone, as it is
overall closer to the perfect reliability line than the latter. Finally, in comparison to the
GEB approach, COMB-Z-9 is signi�cantly more reliable at small lead times. For larger
lead times, it becomes less reliable (namely, overpredictive) than GEB for probabilities
below 0.5, however for the upper part of predictive probabilities (0.5 − 0.75), it is
close to perfect reliability while GEB does not output this range of probability at all.
COMB-A-9 and RAW produce results similar in essence to the above description of
Figure 4.14.

4.5.3.5 E�ect of the archive size

We conclude the discussion with a focus on the impact of the archive sizes NI and
NIA on the predictive performances of our framework. An extended discussion can
be found in Le Carrer [2021], where we present as well the impact of the size of the
archives on the formal guarantees that can be derived. Here, we plot the ignorance
score for the following combinations:

• NI = 1560 and NIA = 2.106 (the case studied so far: an EPS archive of 30 years
and a time series monitoring of the variable of interest of about 55 years) ;

• NI = 1560 and NIA = 2.104, that is we lower the time series of the system to
less than 6 months ;

• NI = 156 and NIA = 2.106, that is we lower the EPS archive to 3 years instead
of 30 ;

• NI = 156 and NIA = 2.104.
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Figure 4.16 presents the empirical ignorance score similarly to Figure 4.9, for the
possibilistic methodologies EPS, COMB-Z, COMB-A (all in the case of pred-CRED)
and the probabilistic GEB and RAW. We observe that increasing the size of the archive
IA signi�cantly improves beyond 3 days of lead time the information content of the
credibility for combined methodologies COMB-Z and COMB-A when it comes to
EE. However, again for EE, in both cases the information content of the possibilistic
methodologies is above the information content of the probabilistic ones apart for very
small lead times for COMB-Z/A, where it is slightly above GEB’s. For NEE we observe
the opposite e�ect: increasing the size of the system time series tends to deteriorate
slightly performances. Increasing the EPS archive has the opposite e�ect: it improves
the NEE however tends to deteriorate slightly performances and guarantees for EE. In
Le Carrer [2021], we develop this counter-intuitive observation and explain how this is
due to the limit behaviour of the possibilistic transformation presented in Section 4.2.1.
More points tend to lower the level γ such that π(x) ≥ γ : ∀x, that is the minimal
possibility degree for any event of interest A: Π(A) ≥ γ, in particular the EE we are
interested in. Consequently, for possibility pro�les that do not show a peak in the area
of de�nition of A (e.g. Π(Ā) = 1 ⇒ N(A) = 0), the credibility C(A) = N(A)+Π(A)

2

is pulled towards lower values, which provides less informative credibility if A is a
posteriori observed. This phenomenon plays in favor of NEE who have here a large
area of de�nition. On the contrary, when the time series used for dynamical modelling
is increased in size, we observe a signi�cant improvement of the information content
of DYN for the prediction of EE at all lead times, while the performance is slightly
deteriorated for NEE at larger lead times. DYN possibility distributions are built from
a set of analogs, nA that is �xed in size. Increasing the length of the time series will
consequently not impact πDYN the same way it does for πEPS . It will increase the
density of analogs among which nA are extracted. This plays in favor of the EE, which
were located in scarce areas of the attractor (with a �xed nA, potentially less distant
analogs will be associated). However when it comes to NEE, we can assume that the
same applies against them: close to EE areas, EE analogs are taken into account as
analogs and consequently lower N(Ā) in the associated possibility distribution. The
increase (EE) or decrease (NEE) in information content observed on DYN when the
size of the archive increases passes on COMB distributions.

Operationally, we conclude that indeed, and as could be expected, the performance
of our possibilistic framework depends on the size of the archives at hand. In any case,
when it comes to EE prediction, possibility-based information remain globally much
more interesting than the purely probabilistic one, especially at large lead times. The
EPS archive does not need to be particularly large, while results signi�cantly improve
with a longer system monitoring.
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4.6 Conclusions

In this paper, we have investigated the bene�ts of using a framework based on pos-
sibility theory for interpreting EPSs, and compared it to the standard probabilistic
paradigm in the context of extreme event forecasting. In parallel, we have developed a
methodology based on dynamical analogs that integrates dynamical information from
a time series of the system to the EPS-based possibilistic framework. The possibilistic
framework allows us to combine several incomplete sources of knowledge in a con-
sistent manner, and thus to reduce their respective conservatism. Our framework is
more direct than the probabilistic one: we do not try to correct misleading EPS-based
probabilities. A possibilistic interpretation directly makes sense, without resorting to
additional layers of calibration. Moreover, we are able to reproduce the probabilistic
predictive skills (PRC at small lead times) and improve them (PRC to a small extent
at large lead times, reliability), especially when it comes to EE without deteriorating
signi�cantly the performances for NEE (information content). Di�erent methodologies
were introduced and compared (although not exhaustively for shortness of space),
showing how risk-averse and risk-prone users could seize the potential of the dual
measures to extract predictive probabilities di�erently from the traditional credibility.
However, it turns out that the latter remains globally the best trade-o� when it comes
to the quality of predictive performances for EE and NEE simultaneously.

Our framework also reveals the strengths and weaknesses of EPSs: at small lead
times, the EPS-based information alone is enough to reproduce probabilistic per-
formances, due to low aggregated model error. At larger lead times, however the
latter becomes signi�cant, and makes the EPS-based information not su�cient to
provide predictions with resolution. That is where the synergy between EPS-based
and dynamical-analog-based information allows us to go beyond standard probabilis-
tic performances. However, it would be interesting to see whether the conclusions
obtained on the L96 toy system apply to real-world weather EPS.

We also discussed how to use the full potential of the dual possibilistic measures:
to derive predictive probabilities and to estimate a priori the trust we can have in their
informativeness.

Let us now come back to our initial question: echoing Bröcker and Smith [2008],
we wondered whether the probability distribution is the best representation of the
valuable information contained in an EPS. Our answer would be that it can be at short
lead times, when aggregated model error is low; however there is more predictive
information and explanatory power to be gained when switching to an imprecise-
probability framework at large lead times. Even at short lead times, our framework
showed that it could improve e.g. probabilistic reliability and provide an indicator
of how informative is the associated credibility. Among the imprecise-probability
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settings (e.g. credal sets) we chose possibility theory. Conceptually, especially for
end-users and predictions, it indeed seems the most intuitive and adapted in this
context.

4.7 Masson and Denœux [2006]’s methodology to infer a possibility dis-
tribution from empirical data

The methodology of Masson and Denœux [2006] to infer a possibility distribution
π(x) on the stochastic variable x ∈ X for which we have a set S of Ns samples, can
be summarized as such:

1. First, bin the x-axis in n bins (or classes) bi centered in xi: B = {bi, i = 1, . . . , n}
and note ni their respective population size.

2. Based on the former histogram, compute the simultaneous con�dence intervals
for multinomial proportions by means of the Goodman’s formulation [Goodman,
1965]. The latter, reported in Appendix 4.8, provides multinomial con�dence
intervals at level 1− β for the physical ’true’ multinomial probabilities. The for-
mulation being based on asymptotic approximations (see full proof reproduced
in Appendix A of Masson and Denœux [2006]), a comparative study by May and
Johnson [1997] showed that it requires n > 2 and minimal class populations
ni > 5, i = 1, . . . , n to be reliable. The same authors suggest Sison and Glaz
[1995] in the contrary case. Other methodologies like the imprecise Dirichlet
model of Walley [1996] can be used however they do not o�er the same formal
guarantees.

We obtain the set of con�dence intervals [p−i , p
+
i ] associated to each true proba-

bility pi of observing the variable x in bin bi. In the Goodman case, this set of
simultaneous con�dence intervals guarantees the overall joint con�dence level
1− β.

3. If we denote P the partial order induced by the intervals [p−i , p
+
i ], then (bi, bj) ∈

P ⇔ p+
i < p−j . Find the set of the compatible permutations {σl, l = 1, . . . , L},

where σl is the permutation of the indices {1, . . . , n} associated to P such
that p+

σl(1) < p−σl(2), p
+
σl(2) < p−σl(3), . . . , p

+
σl(n−1) < p−σl(n) or equivalently σl(i) <

σl(j)⇔
(
bσ(i), bσ(j)

)
∈ P . σ is a bijection and the reverse transformation σ−1

gives the rank of each class bi in the list of the probabilities sorted according to
the partial order P .

4. For each possible permutation σl and each class bi, solve the following linear
program:

πσli = max
p1,...,pn

∑
j|σ−1

l (j)≤σ−1
l (i)

pj (Equation 15)
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under the constraints
∑K

k=1 pk = 1

p−k ≤ pk ≤ p+
k ∀k ∈ {1, . . . , n}

pσl(1) ≤ pσl(2) ≤ . . . ≤ pσl(n) .

(Equation 16)

5. Finally, take the distribution dominating all the distributions πσl :

πi = max
l=1,...,L

πσli ∀i ∈ {1, . . . , n}. (Equation 17)

Such a procedure allows to compute a possibility distribution π(x) that dominates
with con�dence 1 − β the true probability distribution (i.e. in 100(1 − β)% of the
cases). We present it in its principle and brute-force implementation so that the reader
understands the concepts behind it. Yet, this program is limited to small values of
n (n < 10), mostly due to the complexity of the algorithm providing the list of of
permutations following a partial order (which is O(L), where L is the total number
of permutations, with worst-case value L = n!). Masson and Denœux [2006] derive
a simpler computational algorithm, whose solution is shown to be equivalent to the
�rst one. We refer the interested reader to their paper for a full presentation of the
tractable version of the algorithm, that we have implemented in this study.

4.8 Goodman [1965]’s formulation

Following the problem and notation introduced in Appendix 4.7, if we note:

A = χ2(1− β/n, 1) +Ns , (Equation 18)

where χ2(1− β/n, 1) is the quantile of order 1− β/n of the chi-square distribution
with one degree of freedom, and Ns =

∑n
i=1 ni the size of the sample set,

Bi = χ2(1− β/n, 1) + 2ni , (Equation 19)

Ci = B2
i − 4ACi , (Equation 20)

∆i =
n2
i

Ns

, (Equation 21)

then the bounds of the con�dence intervals [p−i , p
+
i ] associated to the true probabilities

pi of observing the variable x in bin bi, i = 1, . . . , n are given by:

[p−i , p
+
i ] =

[Bi −
√

∆i

2A
,
Bi +

√
∆i

2A

]
. (Equation 22)
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Chapter 5

A possibilistic interpretation of ensemble predictions:
Application to shipping optimisation in tidal areas

In this last chapter, we apply the predictive framework developed in Chapters 3 and 4
to a real-world problem. Namely, we go back to the initial problem of tidal ship routing
developed in Chapter 2 and study the respective values of the following di�erent
sources of sea level information in the optimisation process:

(a) Deterministic tide predictions associated with a safety margin;

(b) Probabilistic modelling of the residuals as performed in Chapter 2;

(c) Ensemble predictions of residuals interpreted according to the possibilistic
framework developed in the two previous chapters or according to a classical
probabilistic ensemble dressing.

In the possibilistic case, we cannot use the same optimisation algorithm as developed
for classical probabilistic residual predictions. Consequently we adapt to our problem a
methodology developed by Hose et al. [2018] for global optimisation with possibilistic
variables.

Due to the limitation in available data (we had at hand 6 months of 6-days ahead
EPS predictions for two ports: Liverpool and Southampton), we restrict our study to
a simple N = 2 -port case study similar to the one presented in Chapter 2, Section
2.2.1. Beyond its limitations, such an analysis already allows us to draw some trends
of results and to draw the possible advantages and drawbacks of our data-driven
possibilistic approach in a real-world application, in particular in the case of limited
datasets. Beyond that, it is another application of possibility-based global optimisation,
which is interesting for highlighting the potential bene�ts and limitations of such an
approach w.r.t. more classical probability-based methodologies.

The contributions of the authors is the following: NLC found the research idea,
designed the methodology, the experiments and implemented them, as well as analysed
the results. She wrote the paper.
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Abstract

Until now, works in the �eld of tide routing (i.e., optimization of cargo loading
and ship scheduling decisions in tidal ports and shallow seas) have omitted the
uncertainty of sea level predictions. However, the widely used harmonic tide
forecasts are not perfectly reliable. Consequences for the maritime industry are
signi�cant: current solutions to tide routing may be made robust through the
introduction of arbitrary slack, but they are not optimal [Le Carrer et al., 2020].
Given the �nancial implications at stake for every additional centimeter of draft
and the catastrophic e�ects of a grounding, an investigation of tide routing from
the perspective of risk analysis is necessary.

Ensemble forecasting has gained popularity in the �eld of numerical weather
prediction as a way of quantifying the uncertainty on forecasts. Tide-surge
ensemble forecasts are routinely produced as well, combining hydrodynamic
models with weather ensembles. This type of forecasts is commonly interpreted
in a probabilistic way. However, the latter is regularly criticized for not being
reliable, especially for predicting extreme events because of the chaotic nature
of the dynamics of the atmospheric-ocean system, model error, and the fact that
ensemble of forecasts are not, in reality, produced in a probabilistic manner. In
this work, we develop a possibilistic framework to interpret and use operationally
such ensembles of predictions.

Considering the journey of a bulk carrier between a set of ports, a shipping
decision model is designed to compute optimal cargo loading and scheduling
decisions, given the time series of the fuzzy sea levels in these ports. The under-
keel clearance becomes a fuzzy constraint and the resulting shipping optimization
problem is solved by means of the possibilistic approach developed by Hose
et al. [2018]. Results obtained on a realistic case study with 6-day-ahead tide
surge ensemble predictions are discussed and compared with those given by a
probabilistic approach, or by standard practices on ships. They illustrate the
potential and limitations of a possibilistic interpretation of the weather ensemble
forecasts over its probabilistic counterpart in a realistic setting.

Keywords — Robust Optimization, OR in maritime industry, Uncertainty model-
ing, Decision making, Uncertainty propagation, Possibility theory
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5.1 Introduction

5.1.1 Robust maritime shipping optimisation in tidal areas

In spite of its signi�cance for global trade, maritime shipping remains an activity
constrained by a range of uncertain factors [Goerlandt and Montewka, 2015, Song
and Furman, 2013]. Beyond the well-known weather at sea (e.g. [Azaron and Kianfar,
2003]), berth occupation (e.g. [Agra et al., 2015]), dockers availability, bunker fuel
prices or market demand (e.g. [Chuang et al., 2010]), sea levels in shallow waters can
impact signi�cantly the outputs of a maritime shipping operation. Knowing that an
extra centimetre of draft corresponds approximately to 50 tons of cargo for an average
bulk carrier [Uslu et al., 2017], being able to predict accurately water levels in ports
translates into economic bene�ts for both shipping operators (economies of scale)
and port authorities (vessel throughput). Deterministic harmonic tide predictions are
traditionally used to estimate the future sea levels in shallow waters. From these ones, a
shipper can estimate how much freight to load in order to ensure a positive under-keel
clearance (UKC; the distance between the deepest underwater point of the ship and the
seabed), which includes a safety margin dictated from authorities. Yet sea levels are
impacted by environmental factors (wind, pressure, currents) that locally increase or
decrease the actual sea levels w.r.t. the harmonic predictions. The di�erence, hereafter
residual, can be signi�cant. Thus, overall British tide stations, residuals are typically
10 cm and rise to 29 cm for high tidal range stations [Flowerdew et al., 2010]. Similarly,
sea level residuals can amount to 30% of the total measured sea level in Hillarys Boat
Harbour, Western Australia Makarynskyy et al. [2004]. Whether to load more, depart
earlier, or catch a tide window, recent works have shown the economical value of
modeling sea level residuals beyond a traditional ’rule-of-the-thumb’ safety margin
on tide predictions.

This trend started with the work of Kelareva [2011], Kelareva et al. [2012], who
developed the concept of dynamic UKC to optimise ship scheduling and cargo loading
decisions of multiple vessels at a single port. To estimate the dynamic UKC, the
authors deduct from the port depth and predicted tide, not only the vessel’s draft, but
also a number of allowances accounting for the dynamical responses of the hull to
its environment (squat, heeling, wave, water density variation), the tidal prediction
error and the variability of bathymetry [Galor, 2008]. Kelareva [2011] use short-term
predictions of the dynamic under-keel clearance provided by the DUKCr software
(OMC International, 1993, described in Kelareva et al. [2012], O’Brien et al. [2002]).
Speci�cally, from real-time environmental measurements (water depths, wind, waves,
current) and ship information (trim, speed, acceleration), the physical responses to the
ship moving in a dynamic environment are computed and the dynamic under-keel
clearance is estimated. The optimal cargo loading and short term ship scheduling
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decisions, given this estimation, are then computed. Such a solution is based on
real-time measurement of the sea state and provides under-keel clearance information
for the upcoming tide-window only [Kelareva et al., 2012]. The economic gains of
such a dynamic modelling the UKC are documented in a range of case studies, for
optimising cargo load and port throughput [O’Brien et al., 2002] or berth-to-berth
voyage scheduling optimisation [Hibbert et al., 2019]. The DUKCr’s short term UKC
predictions are now informed by sea level predictions from two distinct models: a
global oceanic "weather" model (coastal currents, mesoscale eddies, etc) and a re�ned
sea level model at the port scale [Uslu et al., 2017]. Both are assimilated by means
of a Bayesian recursive approach, where residual are assumed Gaussian, allowing
improved 7−day ahead predictions for operational use. In parallel, [Le Carrer et al.,
2020] showed on a numerical case study how a simple best-�t stochastic modelling of
the tide residuals in each port of call allowed to improve the robustness of loading
and scheduling decisions and the corresponding net bene�ts for planning horizons of
a week.

5.1.2 Tidal residual ensemble predictions

In the early 2000s, the �eld of weather forecasting saw an important shift in paradigm.
While for the past �fty years, improving forecast skills translated into improving the
numerical, deterministic model resolution, ensembles of lower resolution predictions
became the new norm to forecast the future weather and assess in terms of probabilities
the uncertainty on such predictions [Palmer, 2019]. This came from the realisation that
weather forecasts are limited, in addition to the numerical representation of physical
processes and resolution of the simulations, by the sensitivity of the solutions to the
initial conditions and sub-grid parameterisation [Buizza, 2018]. Given su�cient com-
putational resources, it became interesting to sample a limited number (typically 10-50)
of initial conditions and then run the numerical weather model, possibly stochastically
parameterised, for each of them. The corresponding set of predictions for a given
place and lead time, can, after post-processing, be interpreted in probabilistic ways, as
the probability distribution of the future state of the atmosphere [Gneiting et al., 2005,
Gneiting and Katzfuss, 2014].

To mitigate the possibly high impact damages from hydrodynamic processes such
as storm surges [Gerritsen, 2005, De Zolt et al., 2006], operational forecasting and
warning systems have been set up in the regions a�ected by such events (e.g. the
coastal �ood warnings from the Environment Agency in Wales and England). They
aim both at driving the improvement of storm surge forecast skills as well as their
interpretation, in order to emit early warnings and take the adequate level of protective
measures when necessary. The uncertainty associated with the prediction of storm
surge is assumed to be dominated by the driving atmospheric forecast of conditions at
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the sea surface [Flowerdew et al., 2010]. Operational storm surge forecasting systems
consequently now consider the M members of regional weather EPS as input for their
storm surge prediction model. The hydrodynamic tide-surge model is run for each
member of the weather EPS, namely each one of the M �elds of sea-level pressure
and 10-metre wind speed, which provides an ensemble of M storm surge predictions
at a given coastal place and time. The United Kingdom dispose of its medium-range
storm surge ensemble [Flowerdew et al., 2013] with weather ensemble inputs from the
Met O�ce Global and Regional Ensemble Prediction System (MOGREPS). Similarly,
the Dutch Meteorological Institute runs an operational storm surge ensemble for
the Netherlands with weather ensemble inputs provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF) [de Vries, 2009]. Mel and Lionello
[2014a,b] present and analyse the performances of a storm surge EPS over the northern
Adriatic Sea, with input from the ECMWF as well. New York City disposes as well
of two storm surge ensembles, described and gathered in a multi-model ensemble in
Di Liberto et al. [2011].

Ensemble predictions are particularly attractive as they are designed to issue
probabilistic predictions about a given event. This is typically of interest in the case of
�ood management. From the probability that the water overtops coastal defences, the
authorities can proceed with e.g. a cost-loss analysis and assess whether protective
measure must be taken or not [Richardson, 2000, Flowerdew et al., 2013]. Flowerdew
et al. [2010, 2013] and Mel and Lionello [2014b, 2016] uses the fraction of members
that are above the threshold of interest for at least one time step over a given time
window (e.g. 12 hours) as an estimate of the probability that the surge crosses this
threshold around a given lead time. They both show that such a probability forecast
performs better than a deterministic forecast dressed (e.g. by means of the root mean
square error) as a probability distribution and has clear predictive skills.

In weather ensemble forecasting, it is acknowledged that by design ensemble
forecasts do not provide actionable ’probabilities’, especially for extreme events [Mylne
et al., 2002, Gneiting and Katzfuss, 2014], and post-processing is needed to make them
reliable and thus operational. Recalibration of ensemble forecasts became a �eld
of research on its own [Buizza, 2018], whose aim can be summarized as "�nd the
transformation that, applied to the raw ensemble, leads to the probability distribution
that will maximise a performance metric on the long term, in particular improve their
reliability". In previous works [Le Carrer and Green, 2020, Le Carrer, 2021, Le Carrer
and Ferson, 2020], the authors questioned the probabilistic interpretation of an EPS
and instead considered that the EPS should be seen in a possibilistic way. They used
possibility theory [Zadeh, 1978, Dubois and Prade, 2012] to build a framework allowing
to interpret more directly EPS and to provide guaranteed bounds on probabilities.
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5.1.3 Summary of contributions and outline

In this work, we wonder what is the value of storm surge ensemble predictions
for maritime shipping optimisation. To that end, we use the ship scheduling and
loading problem developed in previous work by the authors [Le Carrer et al., 2020].
The objective was to �nd the optimal loading/unloading and scheduling decision
in each port of call, which leads to the maximal and robust shipping net bene�t,
given parameters of the journey and harmonic tide predictions as well as best-�t
distribution of residuals in each port of call. In this work, we design two procedures to
use the ensemble predictions as source of information on the future residuals. One is
based on their probabilistic interpretation, and the other comes from their possibilistic
interpretation. We compare their respective performances when it comes to the
shipping optimisation problem. These are as well assessed against the performance
of our previous methodology, based on tide predictions and best-�t modelling of the
residuals [Le Carrer et al., 2020]. This allows us to discuss the value of EPS information
and of its varied interpretations. Besides, as noted in Le Carrer [2021], Le Carrer and
Ferson [2020] and as generally stressed for analog-based methods, the performance
of our methodology depends on the size of the archives (EPS and past time series of
the variable of interest) at hand. Since we have very small datasets (1 year) for each
port, this study also allows us to test the performance of our approach in a real-world
problem with limited archives available.

In this work, we discuss the bene�ts of (i) using a framework based on possibility
theory for extracting the information contained in a storm-surge EPS; (ii) combining it
with the insight about the local dynamics of the system gained from the analog method;
and (iii) using this possibilistic information in a simple maritime shipping optimisation
problem. Our investigation is particularly driven by the following questions:

1. How valuable is the information extracted from the storm-surge EPS, either via
a probabilistic approach or via a possibilistic approach, for an application such
as maritime shipping optimisation?

2. In particular, is this information more valuable for this speci�c application than
a classical Monte-Carlo-based optimisation using harmonic tide predictions and
historical best-�t modelling of sea level residuals in each port?

Section 5.2 presents the case study with the data at hand. Section 5.3 summarises
the possibilistic framework for EPS interpretation and compares the predictive perfor-
mances of this framework on the storm-surge data at hand for our case study w.r.t.
the predictive performances of a classical probabilistic ensemble dressing. Section 5.4
develops the fuzzy-constrained interpretation of the maritime shipping optimisation
problem and shows how to solve it by means of the outputs of the possibilistic inter-
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pretation of storm-surge EPSs. Section 5.5 �nally presents the experiments and their
results, while Section 5.6 recapitulates the main conclusions of this study.

5.2 Case study

We consider a simpli�ed version of the maritime inventory routing problem, where
a material is produced at a given rate in a production site (the loading port) and
consumed at other sites (unloading ports), at speci�ed rates. Given storage capacities
in the production and consumption locations, the general inventory routing problem
consists in �nding the optimal design of routes and �eet schedule that minimises the
shipping costs (sailing and port costs) without interrupting any of the production
or the consumption in the aforementioned sites. In our case study, we assume that
an industrial operator has sea level forecasts at N ports, at a given time t0 and over
a prediction horizon T . On this basis, the operator has to decide the total amount
m1 of a given commodity to load on a general cargo ship at departure port p1, and
the fraction of this cargo mj−1 −mj that will be delivered in each of the remaining
ports pj , j = {2, . . . , N}, as well as the estimated departure times tj in each port. The
deliveries all have to satisfy the constraints of the inventory routing problem, namely
to match a given demand aj in each port. We assume that all ports have unlimited
storage capacities. The optimisation is made on an industrial shipping basis. In other
words, the shipper owns the material to be shipped and wants to maximise the net
bene�t B of the shipment (the value of the cargo loaded minus the shipping costs).
We assume a constant ship speed v, provided by the ship speci�cations, along the
N − 1 legs of length lj , j = 1, . . . , N − 1 between the departure and arrival ports.

5.2.1 Objective function

The goal of the optimisation problem is to �nd the decision vector d =(
m1, t1, . . . ,mN−1, tN−1

)
that optimises the net bene�t B(d), given the vectors X̂j

of sea level predictions X̂j(t) available at decision time t0 spanning the horizon
t ∈ [t0, t0 +T ] in the entrance channels of each port pj , given the constraints aj on the
demand and given constraints from the ship design (carrying capacity), safety at sea
(minimum acceptable water under keel), port management (opening times and price
bands for port labour), that depend on a range of a priori �xed parameters gathered in
vector Θ. The shipping return is given by:

B(d; Θ, {X̂j}j=1,...,N) =

V − (O + P + U) if delivered on time,

Z otherwise.
(Equation 1)

143



V = Cc.m1 is the merchant value of the cargo, where Cc is the unit value of the
freight. From there, we subtract the operational costs of the journey, starting from t0

with an empty ship and �nishing at ta + mN
uN

after unloading the material in port pN
where the ship arrived at time ta and unloaded the residual freight at speed uN . These
charges encompass the propulsion costs:

O = Cf

(
fsTs + fp

∑
p

(Tp + Tp∗)

)
(Equation 2)

where Ts is the total time spent at sea and and Tp, Tp∗ the total times spent at port
p within and outside normal work hours respectively and Cf is the fuel unit price.
Operational charges also include usage costs:

U = Cu

(
Ts +

∑
p

(Tp + Tp∗)

)
(Equation 3)

with Cu the hourly usage cost (sta�) of the ship. Finally, port costs have to be included:

P =
∑
p

(⌈
Tp + Tp∗

24

⌉
Cp + TpCbp + Tp∗Cbp∗

)
(Equation 4)

where d·e is a ceiling operator andCp,Cbp∗,Cbp∗, the daily port fee, hourly manutention
prices in normal hours and outside normal hours in port p respectively.

Z is the cost of not making the delivery in time (i.e within the horizon T ). De-
pending on the aim of the user, Z can also take into account the negative externalities
on the environment and society of a grounding (Z → −∞) or simply the loss for the
shipper (Z = −V − (O + P + U)).

5.2.2 Constraints

The ship’s cargo and scheduling have to satisfy some constraints, that we recall here.

1. At any stage, the cargo load mj cannot exceed the tank capacity mmax and
must �t with the requirements for safe structural behaviour of the hull (mj ≥
mmin), as well as with the demand constraints in the next ports to visit (mj ≥∑N

k=j+1 ak). In the following: mmin is taken as the minimum of the structural
constraint and the economic constraint. The fuel load necessary to carry the ship
and its cargo mj over the distance l =

∑N−1
k=j lk at speed v and load/unload the

freight at rate up in port p must be subtracted from mmax: fsl+ fp
∑N

p=j+1 Tp +

mj ≤ mmax, where the minimal time spent at port p is the time for (un)loading:
Tp = |mp−1−mp|

up
(noting that we set m0 = 0).

2. To enter/leave port pj at time t, the water depth must be greater than the ship
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draft r(t) plus the safety margin αr(t):

X̂j(t)− (1 + α)r(t) > 0. (Equation 5)

The ship draft is a function of the cargo load as well as the fuel mass f(t) in tanks
at the time t of interest. Following Archimedes’ principle and the equilibrium
of forces in a gravitational �eld, r can be estimated from the equality between
the ship’s weight and the water displacement. In a simple approximation (barge
ship), we can write:

r(t) =
m+ f(t)− 0.5mmax

ρS
+ r50 (Equation 6)

where r50 is the half laden ship’s draft, S the ship’s horizontal area, mmax its
carrying capacity, ρ the water density. The function f(t) is computed by taking
into account the fuel consumption rates at sea fs and at port fp respectively, the
time already spent at sea and at port respectively at t, as well as the total fuel
load necessary to move the ship from one port to another and (un)load material.
Dynamical e�ects such as the squat e�ect or the heel due to the wind and the
wave responses can reduce the under-keel clearance temporarily. They are not
taken into account here beyond the safety margins αr(t) as, again, we consider
the still water problem.

3. The ship cannot leave port pj before the cargo is (un)loaded and must arrive
before the horizon T is reached, so:

tj−1 +
lj−1

v
+
|mj −mj−1|

upj
≤ tj ≤ T −

∑N−1
k=j lk

v
. (Equation 7)

5.2.3 Sea level predictions

In practice, the time vectors of sea level predictions at a port pj are decomposed as
X̂j = hj + x̂j where hj is the time series of harmonic tide predictions and x̂j is
the time series of sea-level residual predictions, that is the predictions for the error
between observed sea levelsXj and tide predictions hj .

In this paper, we use two sources of information for x̂j :

(A) A best-�t probabilistic/maximum likelihood modelling of x̂j given joint archives
of observationsXj and tide predictions hj at port pj . Residuals in each port and
between successive times are considered independent (a reasonable assumption
for British ports not too close, as shown in Rabassa and Beck [2015]) and sampled
from the above-mentioned best-�t distributions.
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Because in X̂j(t) = hj(t) + x̂j(t), sea level residuals x̂j(t) are not deterministic
predictions but samples from probabilistic predictions, rather than directly
optimising the net shipping return, we want to maximise a statistic

A[B(d; Θ, {X̂j}j=1,...,N)]{x̂j}j=1,...,N

such as the expected bene�t or the worst-case bene�t.

(B) Storm-surge ensemble predictions, that provide M time series x̂mj , m =

1, . . . ,M corresponding to the implementation of M slightly perturbed initial
conditions and/or forcing in the hydrological numerical model used to com-
pute storm-surge predictions. These ensemble predictions, synthetically noted
{x̂j}M , are typically interpreted by means of standard probabilistic approaches
(e.g. Bayesian model averaging [Raftery et al., 2005], non-homogeneous re-
gression [Gneiting et al., 2005], kernel dressing [Roulston and Smith, 2003]) to
provide probabilistic predictions of the form P (x̂j(t) > c) or more generally an
estimate of the probability distribution function p(x̂j(t)). From this distribution,
residuals in each port can be sampled, similarly to (A) and the optimisation
problem consists as well in optimising a statistic A{x̂j}j=1,...,N

of the bene�t.

In this work, we use the possibilistic framework developed by the authors
in Le Carrer and Ferson [2020] to interpret {x̂j}M and derive a possibility
distribution π(x̂j(t)), as will be presented in Sec. 5.3. From there, we need to
reformulate the optimisation problem in a fuzzy context, which is introduced in
Section 5.4.

5.3 A possibilistic framework to interpret ensemble predictions

5.3.1 Possibility theory

Possibility theory was developed from fuzzy set theory by Zadeh [1978], Dubois and
Prade [2012] as a framework to handle imprecise probabilities. The possibility distrib-
ution π : X → [0, 1] represents a state of knowledge about the state of the system of
interest, described by the variable x ∈ X . When it comes to assess the possibility of
observing an event A = {x ∈ SA}, where SA ⊂ X , two dual measures are computed.
The possibility Π(A) = supx∈SA π(x) indicates how much A is supported by the
evidence at hand, encoded in π. The necessity N(A) = 1−Π(Ā) = 1− supx/∈SA π(x)

indicates how much A is necessary given the evidence at hand (i.e. given the impos-
sibility of observing the complementary event Ā). These dual measures satisfy the
following axioms (a, b) and conventions (c, d, e) [Cayrac et al., 1994]:

(a) Π(X ) = 1 and Π(∅) = 0
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(b) Π(A ∪B) = max
(
Π(A), π(B)

)
(c) N(A) = 1↔ Π(Ā) = 0 : A has to happen, it is necessary

(d) 0 < N(A) < 1 is a tentative acceptance of A to a degree N(A)

(e)
(
Π(A) = Π(Ā) = 1

)
↔
(
N(A) = N(Ā) = 0

)
represents total ignorance: the

evidence at hand doesn’t allow to conclude whether A is rather true or false.

Probability measure P and possibility measure Π are connected through the concept
of imprecise probabilities. Several de�nitions of consistency have been proposed
[Delgado and Moral, 1987] and we retain here the view of Dubois et al. [2004]: P and
Π are consistent if the probability of any possible event A satis�es P (A) ≤ Π(A). It
implies, given the de�nition of necessity:

N(A) ≤ P (A) ≤ Π(A) (Equation 8)

A possibility distribution π is at least as speci�c as another π′ when π(x) ≤
π′(x)∀x ∈ X . The principle of minimum speci�city is the guiding principle in possi-
bility theory [Dubois et al., 2004], aiming at drawing the least possible conservative
distributions with a given amount of information.

Finally, we call α−cut of the fuzzy number x described by the possibility member-
ship function π the set Cα(x) = {x | π(x) ≥ α}.

5.3.2 Possibilistic framework for EPS interpretation

In this section, we summarize the possibilistic framework to interpret EPS and fuse
dynamical information introduced and fully developed in Le Carrer and Ferson [2020]
by the authors. Figure 5.1 provides a global overview of the framework, explained
below.

Considering a dynamical system S described by a variable x ∈ R, we assume that
we have at our disposal the following elements of information for a prediction at lead
time t from t0:

1. A set of M ensemble predictions for lead time t, noted x̃(t0 + t) = {x̃1(t0 +

t), . . . , x̃M(t0 + t)} ;

2. An archive I containing all the pairs EPS-observations {x̃(ti + t), x(ti + t)} for
similar lead time t and NI di�erent starting times ti, i = 1, . . . , NI .

3. A time series of (preferably continuous) past observations of x, denoted IA,
containing the initial condition (IC) x(t0) of interest.
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Time series IA
{ x(t-N), …, x(t0) }

Archive I
{EPS,Observations}

EPS 

x(t)={ x1(t), …, xM(t) }

Initial condition xA(0)
(in reconstructed    

phase space)

Possibility distribution 
πEPS = π( x(t) | x(t),I )

Possibility distribution 
πA’ = π( x(t) | xA(0),IA  )

Analog method
+ 

Scarce data to 
possibilities 

transformation 
(Masson, 2006)

Fuzzy intersection

π(x) = πEPS ∩  πA’

Possibilistic measures for the 
prediction of a binary event A

N(A), Π(A)

Possibility-Probability 
equivalence (Dubois, 2004):

N(A) ≤ P(A)  ≤ Π(A)

Credibility (Liu, 2006):

C(A) = 0.5.( N(A)+Π(A) )

Validation scores;
 Comparison to 
probabilistic or 
deterministic 

predictive models

Predictions

- Reliability diagram
- Log-likelihood score

- ROC, PRC
- Correlation coefficient,   
  mutual information

Numerical weather 
model predictions

System dynamics: 
Time series 

Figure 5.1 General possibilistic framework, from data-driven derivation of possibil-
ity distributions to evaluation metrics of predictive skills and the connection with
probabilistic predictions.
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Ensemble predictions

The x−axis is �rst binned in n bins (e.g. uniformly or so that the distribution of
the climatology of x over the x−axis is uniform). To each bin bi containing at least
an EPS member x̃m, we associate a possibility distribution π(x|x̃m(t0 + t) ∈ bi). This
possibility distribution is constructed using the transformation presented in Masson
and Denœux [2006] over the analog set formed by the observations x(tj+t) associated
with ensemble members that fell in bin bi for predictions of x(tj + t) for all the ICs tj
contained in the archive I . Each of these possibility distributions represents a partial
view on the future system state, given that only the knowledge on one bin �lled by
one or more EPS member is used. We consequently take the union of these possibility
distributions, to compute the �nal possibility distribution describing the future system
state: πEPS = π(x(t0 + t)|x(t0 + t), I) = ∪i π(x|x̃m(t0 + t) ∈ bi).

System dynamics

πEPS encodes the knowledge of the future state of the system gained from the EPS
x̃(t0 + t). However, it lacks information on the IC and local dynamics of the system.
We can consequently make it more speci�c (i.e. less conservative) by combining it to
the possibility distribution gained from the analog method applied to time series IA.
Namely, we use the Taken’s delay-embedding theorem (or another similarity-based
method, e.g. statistical downscaling) to reconstruct the shadow attractor governing the
dynamics of the system from vectors xA(t) =

(
x(t), x(t− τ), . . . , x(t− (m+ 1)τ)

)
where the embedding dimension m and the time-delay τ are determined by means
e.g. of the simplex method [Sugihara et al., 2012]. From there, for each prediction
of interest, we locate the IC xA(t0) in the reconstructed shadow attractor, �nd the
nA closest neighbors in terms of Euclidean distance and follow their trajectory up
to lead time t, which provides us with a set of nA analogs of the future state of the
atmosphere. Again, we use the transformation developed in Masson and Denœux
[2006] to derive the corresponding possibility distribution πA′ .

We �nally combine πEPS and πDYN by taking their fuzzy intersection πCOMB =

πEPS ∩ πDYN , given by the min-envelope πCOMB(x) = min
(
πEPS(x), πDYN(x)

)
[Zadeh, 1975]. This allows to reduce their respective over-conservatism due to the
incomplete knowledge encoded in each one.

Note that the data-to-possibility transformation that we use is designed to account
for the uncertainty due to limited datasets (here, the archives I and IA).

From possibility distribution to prediction

From the resulting predictive possibility distribution πCOMB (or π for short), and
an event of interestA, one can extract the possibility and necessity measures Π(A) and
N(A) as described in Sec. 5.3.1. These can be used to make an imprecise probabilistic
prediction of A by means of Equation 8. Or, we can deduce from them the credibility
indicator C(A) = N(A)+Π(A)

2
, aggregating both measures [Liu, 2006]. Associated to rel-
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ative operating characteristics or precision-recall curves, the credibility allows to make
deterministic predictions (yes/no). Associated to actual frequencies of observations,
they can be used to propagate frequentist probabilities in subsequent applications
[Le Carrer and Green, 2020].

5.4 Fuzzy-constrained optimisation problem

In Section 5.2, we described the maritime shipping optimisation problem at hand.
Namely, given a set of deterministic tide predictions h(t) and sea level residual predic-
tions x̂j(t), t ∈ [t0, t0+T ] for the entrance channel of each port of call pj , j = 1, . . . , N

as well as a range of a priori �xed journey parameters Θ, we want to �nd at t0 the
decision d =

(
m1, t1, . . . ,mN−1, tN−1

)
that maximises a statistic A{x̂j}j=1,...,N

of the
shipping return B(d; Θ, {X̂j}j=1,...,N) where X̂j(t) = hj(t) + x̂j(t).

We now describe an approach to solve this problem in the case when x̂j(t) is
given through ensemble predictions interpreted in a possibilistic way, as described in
Section 5.3. The subsequent possibilistic nature of the time series X̂j(t) (given that
hj(t) is deterministic and acts as an additive constant), impacts the problem at two
levels: (i) veri�cation of the constraints (Equation 5) in each port pj , that we generically
note gj(d, X̂j) > 0; and (ii) the computation of the net bene�t B(d; Θ, {X̂j}j=1,...,N).

To address the optimisation problem in a framework adapted to the possibilistic
nature of some of its parameters, we follow the procedure described in Hose et al.
[2018, 2019], that we recall here:

1. Con�uence of constraints For a decision d, the joint necessity of verifying
all constraints gj, j = 1, . . . , N is provided by the intersection of their marginal
necessities:

σ(d) = min
j=1,...,N

N
(
gj(d, X̂j) � 0

)
(Equation 9)

where � indicates ’above or equal’ in a fuzzy context.

2. Maximum compliance with constraints A global optimiser (in our case
particle swarm optimisation, as recommended by Hose et al. [2018]) is used to
�nd the highest achievable value of the combined necessities:

σ∗ = max
d∈D

σ(d) (Equation 10)

where D de�nes the search space for decisions d, de�ned by other crisp con-
straints or upper/lower bounds on elements of d.

3. Feasible set The feasible setR of decisions that achieve maximum robustness
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is consequently:

R = {d ∈ D | σ(d) = σ∗} (Equation 11)

Note that the feasible set can also be chosen wider by including all decision
variables that attain a minimal necessity β:

R = {d ∈ D | σ(d) ≥ β} (Equation 12)

This means that the probability that the constraints are jointly ful�lled is at least
β (cf. Equation 8).

4. Minimisation of the maximum possible error Following Hose et al. [2019],
Jamison and Lodwick [1999], worst-case optimality is achieved by �nding:

d∗ = arg min
d∈R

max
X∈C1−σ∗ (X̃)

[B(d; Θ,X)− inf
y∈R

B(y; Θ,X)] (Equation 13)

where X̃ represent the joint fuzzy variables {Xj}j=1,...,N andX a sample from
X̃ . These realisations of the fuzzy sea levels can be drawn from their respective
1− σ∗ cuts only since realisations with lower degrees of memberships are not
guaranteed to verify the constraints.

Because we deal with high-dimensional time series of fuzzy parameters (the
sea levels in each port j), directly applying this formula is not computationally
workable. We consequently intertwine the overall procedure described above
with the possibilities of Particle Swarm Optimisation (PSO) to estimate d∗.

Namely, we use a two-level PSO, whose �rst level drive particles in the search
space D towards the areas of maximal compliance σ(d). The secondary level
consists, at each step of the algorithm, in computing, for the particles reaching
or exceeding their personal best in terms of maximal compliance, the statistic A
on the net bene�t from samples of the corresponding 1− σ∗ cut:

A[B(d; Θ,X)]X∈C1−σ∗ (X̃) (Equation 14)

where σ∗ is the particle’s best compliance. This statistics is stored for each
particle as their second-level personal best. This allows the algorithm to progress
towards areas of maximal compliance and within them, to favour positions
maximising the statistic (Equation 14) on the bene�t.

Overall, the algorithm, with the limits of a heuristic in terms of guarantees,
converges towards the decision d that maximises the compliance to constraints
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and within this maximum, optimises the statistic A on B. On this basis, it is
also possible to �nd with a similar procedure the decision that optimises A[B]

and only ensures that σ(d) ≥ β.

To compute the statistics A on the bene�t B, for each candidate decision d, we
retrieve the 1− σ cuts (where σ is the global level of constraint compliance for
d) of the corresponding sea levels in each port. The idea behind this choice is
that realizations of the fuzzy sea levels with lower memberships than 1− σ are
not guaranteed to ful�ll the fuzzy-valued set of constraints and consequently
sea levels need only to be drawn from their respective 1 − σ cuts. Following
the idea of the transformation method [Hanss, 2005], we discretise them into
nb = 25 bins of uniform width. Then, we compute the bene�t for all possible
combination of the discretised sea levels. The number of calculations amounts
to nNb , hence nb is clearly a trade-o� between precision and computational cost.
Finally, from this set of ’sampled’ bene�ts, we evaluate A.

5.5 Experimentation and Results

Although the model is developed for a N -port maritime inventory routing problem,
this case study addresses the case N = 2 ports (due the the limited database of storm
surge ensemble predictions at our disposal). Namely, we consider a farm cooperative
that owns a small-size bulk carrier and carries regularly malting barley freights from
Liverpool to Southampton. Table 5.1 gathers the contextual parameters regarding the
shipping problem, including ship characteristics, freight and port management, generic
constraints about acceptable under-keel clearance, latest arrival time and cargo load,
demand constraints in delivery ports. The minimal depth guaranteed in each port is
assumed to be 12 (Liverpool) and 7 m (Southampton). We have at our disposal one year
(2017) of tide predictions and associated observations, sampled every ∆t = 15 minutes
in both ports, provided by the British National Tidal and Sea Level Facility (British
Oceanographic Data Centre, Environment Agency). In addition, we have access to
6 months (July-December 2017) of the storm surge ensemble predictions produced
by the British Oceanographic Data Centre [Flowerdew et al., 2010, 2013]. Ensembles
of M = 23 members are produced by running the CS3X storm surge model [Flather,
2000] with M perturbed forcing conditions, provided by the ensemble members from
the Met O�ce Global and Regional Ensemble Prediction System [Bowler et al., 2008].
They are sampled with the same time step ∆t.

5.5.1 Value of EPS possibility-based predictions

Before analysing the value of the possibilistic interpretation of EPSs in the optimi-
sation problem, we brie�y compare the predictive performances of our possibilistic
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Table 5.1 Model parameters

Type Param. Description Value Unit

Jo
ur

ne
y l

Mean distance between depar-
ture and arrival ports 440 Nautical miles

ρ Mean sea water density 1,250 Kilogram per
cubic meter

Sh
ip

de
sig

n

v Mean operational sailing speed 13 Knot
S Ship horizontal surface 25 × 130 Meter×Meter

mmin Minimum cargo load (ballast) 3,000 Metric ton

mmax
Deadweight tonnage (carrying
capacity) 25,000 Metric ton

r50 Half-laden ship draft 8 Meter

fs
Fuel consumption rate of the
laden ship at sea 11 Ton per day

fp
Fuel consumption rate of the
ship at port 2 Ton per day

M
on

eta
ry

Cf Fuel cost 387 US$ per ton

Cu
Other operational costs (sta�,
maintenance) 2,500 US$ per day

Cc Average bulk cargo value 195.6 US$ per ton

Cbp∗

Berthing and loading/ unload-
ing operation cost within normal
opening times

{1, 2391, 486} US$ per hour

Cbp∗

Berthing and loading/ unloading
operation cost outside of normal
opening times

{1, 5481, 858} US$ per hour

Cp Daily port fee {1, 1151, 363} US$ per day

Po
rt

up Bulk material (un)loading rate {1, 2001, 000} Ton per hour
Normal port opening time [7 : 00, 19 : 00] in all ports -

α
Minimum allowed under-keel
clearance to navigate in port still
waters

10% static draft -

Fo
re

ca
st ∆t Sea level forecast time step 15 Minute

T
Horizon of the sea level predic-
tions 6 Day

In
du

str
ial

aj Minimal delivery in port j > 1 4,000 Metric ton
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Figure 5.2 For a given EPS (blue dots) and the actual observation (red square) in
Liverpool port, we represent the predictive possibility distributions (EPS in solid blue
line, DYN in solid yellow line and COMB in dotted black line) as well as the probabilistic
prediction (right, in red line). From top to bottom, lead times are 2, 3 and 4 days.
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Figure 5.3 PRC plots for the prediction of the three events A, B, C (top to bottom)
over 52 days in Southampton port.

framework with respect to a standard Gaussian ensemble dressing. This probabilistic
interpretation, assuming that the members are exchangeable, consists in �tting a
parametric probability distribution around each linearly corrected ensemble member
and summing them all to provide the global density function. It reads [Roulston and
Smith, 2003]:

p(x|x̃)θ =
1

M

M∑
i=1

N (ax̃i + ω, σ2) (Equation 15)

where N (µ, v) is the normal distribution of mean µ and variance v. We infer the
parameters θ = {a, ω, σ} through the optimisation of a performance metric, here
the ignorance score [Roulston and Smith, 2002], or negative log-likelihood, a strictly
proper and local logarithmic score. To that end, we use the nonlinear programming
solver provided by the software MATLAB R© and apply the guidance developed in
Bröcker and Smith [2008] to initialise the optimisation algorithm and provide robust
solutions. Our training set contains 100 pairs {EPS,observations} for each lead time
of interest t = {1, 2, 3, 4} days (starting times are separated of two days). To account
for the variability of results from one set to the other, we repeat the optimisation
procedure 10 times on di�erent subsets of size 90 of the whole training set. We then
use the resulting 10 sets of parameters to compute the performance metrics relative to
the probabilistic approach on a test set of size 52. Finally, we take the average of these
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10 scores, that we report on the graphs as representative of the performances of the
probabilistic approach. Figure 5.2 illustrates the resulting probabilistic and possibilistic
distributions for various lead times in Liverpool port.

We now present the precision-recall curves (PRC) associated to the predictions
of the events A = {x(t) ≤ 0} cm, B = {x(t) ≥ 25} cm and C = {x(t) ≥ 50} cm
for the port of Southampton, where we omit the reference to the IC t0 and simply
consider the lead time t. PRC are used to estimate the ability of a predictive model to
discriminate between event and non-event in the case of imbalanced data sets. The
precision (rate of correctly predicted A over all A predicted) is plotted as a function of
the recall rate (a.k.a. hit rate, fraction of correctly predicted A over all A observed). In
both probabilistic and possibilistic cases, we use increasing thresholds pl ∈ [0, 1] for
making the decision (A predicted if P (A) ≥ pl (resp. C(A) ≥ pl) in the probabilistic
(resp. possibilistic) framework) and report the associated precision and recall in the
graph, forming a PRC. This allows us to compare the discrimination skill of both
approaches.

Figure 5.3 presents the corresponding results for lead times 1 to 4 days in Southamp-
ton port. Conclusions hold for Liverpool sea level time series at hand. The �gure
reports the PRC associated to the probabilistic approach de�ned above, as well as to
the possibilistic approach based on the EPS only (πEPS) and the EPS combined to the
dynamical information (πEPS∩DYN ). Due to the small size of the test set (52 samples
for each lead time of interest), these results are qualitative mostly. Yet, we can note
that:

• Overall, the probabilistic approach tends to perform equivalently or better in
terms of discrimination. Performances of the possibilistic and probabilistic
approaches are globally close, however in some cases the probabilistic approach
allows to reach higher levels of precision (at the cost of a lower recall) while the
possibilistic does not.

• Generally, πEPS performs better than πDYN and yet it can be slightly improved
by their combination πCOMB .

• Prediction skill (here discrimination), for such a small archive, tends to decrease
with more extreme events for both probabilistic and possibilistic methodologies.

These observations are due to the fact that the possibilistic approach is similarity-
based, for both EPS and dynamical sources of information, hence it performs all
the more that the size of the archive is large (to a certain extent when it comes to
extreme events, as discussed in our previous work [Le Carrer, 2021]). Here the size
of the archive is of 100 elements, which is very small for analog-based methods. The
possibilistic approach consequently classi�es most of the predictions in the ignorance
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Lead time (days) 1 2 3 4
πEPS 0.40 0.49 0.64 0.81
πCOMB 0.01 0.11 0.12 0.16

Table 5.2 Proportion of possibilistic predictions falling in the ignorance area for the
event B = {x(t) ≥ 25} cm in Southampton port.
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Figure 5.4 Ignorance score of the possibilistic predictive methods EPS, DYN and
COMB and of the probabilistic prediction in both Southampton (top) and Liverpool
(bottom).

area (see ratios in Table 5.2), which leads to high recall with very low discrimination
skills. However, especially for medium and large recalls, the possibilistic approach
performs quite similarly to the probabilistic one.

Another way of comparing predictive performances of probabilistic predictions
is to use the ignorance score. The score can be interpreted from an information-
theory point of view in terms of the di�erence in expected returns that one would
get by placing bets proportional to their probabilistic forecasts compared to bets that
someone with perfect knowledge of the future would place. The empirical assessment
of the ignorance score is the average over a test set of size N of the ignorance of each
probabilistic prediction:

SN(G) =
1

N

N∑
i=1

− log2G(Oi) (Equation 16)

whereOi is the event actually observed for sample i andG(Oi) its predictive probability.
In the probabilistic framework, SN takes positive values only and each unit indicates
an additional bit of ignorance on the forecaster’s side. We use the credibility C(Oi) in
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place of G in the possibilistic case. The larger the ignorance, the less interesting the
prediction methodology.

Figure 5.4 presents the metric for lead time 1 to 4 days, for both ports and the
three events of interest. These plots con�rm what we observed with the PRC plots: 1)
Globally, the probabilistic method performs similarly or better than our possibilistic
approaches, apart from the extreme event C case in Liverpool; 2) Using the combination
with the dynamical source of information does add little information to the EPS-based
prediction.

The next section will allow us to see if used in an optimisation problem the possi-
bilistic predictions can yet lead to advantages (e.g. worst-case guarantees, robustness)
with respect to the probabilistic approach.

5.5.2 Experience 1

As detailed in Section 5.2.3, for each port j, in addition to the deterministic tide
predictions hj , we have at hand two sources of information:

(A) A best-�t probabilistic/maximum likelihood modelling of the residual time series
x̂j , given joint archives of observations and tide predictions;

(B) The ensemble predictions for residuals, {x̂j}M .

This leads to �ve di�erent methodologies, allowing to assess the respective value
of each source of information when it comes to the shipping optimisation problem:

(a) A probabilistic optimisation of the decision vector d based on the best-�t proba-
bilistic modelling of the residuals x̂j . It consists in �nding the decision d that op-
timises a statisticA[]{x̂j}j=1,...,N

of the net shipping returnB(d; Θ, {X̂j}j=1,...,N).
For each point d in the search space, the statistic A[]{x̂j}j=1,...,N

is computed
by means of Monte-Carlo sampling, where NMC residuals are sampled inde-
pendently for each time step and between ports, from their respective best-�t
distributions. The corresponding net bene�ts are computed and the resulting
statistic is estimated from them. A particle swarm optimisation (PSO) algo-
rithm is used to to �nd the optimal decision d. This method was developed and
described in Le Carrer et al. [2020] and is refered to in the Figures as Prob. tides.

(b) A similar procedure of probabilistic optimisation of d, this time based on the
probabilistic modelling of the residuals x̂j derived from the EPS. We refer to it
as Prob. EPS.

(c) The fuzzy-constrained optimisation procedure developed in Section 5.4, that
uses the possibilistic interpretation of the ensemble predictions {x̂j}M . The
algorithm, with the limits of a heuristic in terms of guarantees, converges
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towards the decision d that maximises the compliance to constraints σ (or
ensure that σ is above a given level β) and within this maximum, optimises the
statistic A on the net shipping return B. We refer to this method as Poss. EPS.

(d) A deterministic optimisation using the tide predictions only, without con-
sidering residuals. It provides the decision d that optimises the net bene�t
B(d; Θ, {hj}j=1,...,N). We use again a PSO algorithm for global optimisation.

(e) The same deterministic optimisation based on tide predictions only, yet incorpo-
rating systematically a rule-of-thumb safety margin of s m, as most often done
in practice. In other words sea level predictions read hj − s. We refer to it as
Det. SM= s.

The last two methodologies are here to 1) help identify the limitation of using tide
predictions only in terms of shipping optimisation, and 2) assess the potential added
value of rather computationally intensive probabilistic or possibilistic approaches over
the simple rule-of-thumb safety margin approach used on the �eld.

We sample randomly 30 days between 01/07/2017 and 31/12/2017. On each
of these days, we get at 6 : 30 GMT the time series over the next 7 days for tide
predictions and ensembles of residual predictions. We compute the optimal decision
d provided by each methodology, for the shipping problem developed in Section 5.2
and the corresponding actual bene�t B(d; Θ,Xj, j = 1 . . . N). We compare these
result to the respective expected bene�ts B(d; Θ, X̂j, j = 1 . . . N) and to the optimal
bene�t that an user would get if he knew perfectly the future sea levels, that is the
bene�t corresponding to the decision maximising B(d; Θ, X̂j, j = 1 . . . N).

We consider two statistics A: the expected bene�t and the worst case, following
previous work in [Le Carrer et al., 2018] and their respective advantages (the expected
bene�t performs better in average, however the worst case is expected to be more
robust and avoids rare but potentially catastrophic situations).

Figure 5.5 shows the median and standard deviation of the relative di�erence
between actual bene�t of a journey given a predictive methodology and the bene�t
obtained with perfect knowledge of future sea levels. In other words, we assess the
relative loss (of bene�t) induced by imperfect predictions.

We �rst observe that the purely deterministic option (SM=0) leads to the average
best actual bene�ts, very close to perfect-information based ones. However the method
occasionally leads to dramatic decisions. Using a safety margin as low as 25 cm allows
to remove this limitation. Naturally, the larger the safety margin, the lower the average
subsequent bene�t. As noted in [Le Carrer et al., 2020], the probabilistic modeling of
residuals leads to actual bene�ts similar in distribution to those provided by a �xed
deterministic safety margin, in this problem of 0.75 m. One could consequently argue
that it may be cheaper to set a �xed margin instead of running more complex and costly

159



Det. S
M=0

Det. S
M=0.25

Det. S
M=0.5

Det. S
M=0.75

Det. S
M=1

Pro
b. ti

des

Pro
b. E

PS

Poss. E
PS (b

eta=0.75)

Poss. E
PS (b

eta=0.90)

Poss. E
PS (b

eta=0.95)

Poss. E
PS (b

eta=0.99)

Poss. E
PS (b

eta=1)

Poss. c
omb (b

eta=0.99)
<< -0.3

-0.2

-0.1

0
(B

-B
p

e
rf

.)/
B

p
e
rf

.

Figure 5.5 Statistics (median plus/minus standard deviation over 30 journeys) of the
relative di�erence between actual bene�t of a journey given a predictive methodology
and the bene�t obtained with perfect knowledge of future sea levels. For readability,
we only show the range [−0.3, 0] however the lower bound of the ’Det. SM=0’ method
is −2.1, just like the average of ’Prob. EPS’. Upper bound are 0 by de�nition of the
perfect decision hence we truncate the upper branch of each plot when necessary. For
the methodologies taking into account the stochasticity of tide residuals we report
results when the expected bene�t (solid line, left) or the worst-case bene�t (dotted
line, right) are used as objective function.

optimisation algorithms doubled with Monte-Carlo sampling. This is true a posteriori,
once simulations are run for a given problem (set of ports) and that we can estimate the
optimal safety margin. however the safety-margin is problem dependent (see di�erent
results on our slightly di�erent case study [Le Carrer et al., 2020]) and less robust
than the probability-based method to extreme variations of the residuals (compared to
their distributions, initially considered as stationary), as shown in our previous work
[Le Carrer et al., 2020]. The probabilistic approach remains consequently more
attractive and optimal in practice.

When it comes to the ensemble forecasts, treating them in a probabilistic way
leads to almost sure losses (i.e. very poor decisions) while the possibilistic approach,
although in all its forms is less performing and more variable than (d), (e) and (a),
maintains a reasonable bene�t compared to the perfect situation. On our test set,
we cannot really detect any impact of the con�dence level β in the constraints to be
satis�ed, nor of the addition of dynamical information. The latter is in agreement with
our previous observations on Figures 5.3 and 5.4.

Using as operator A the expected bene�t or the worst case has very little impact on
the probabilistic approach apart from lowering slightly the average bene�t and limiting
variations in the second case. When it comes to the possibilistic approaches, a small
impact can be found on both mean and variance but without clear trend according to
β.

Figure 5.5 shows how robust is a methodology, namely: what is the distribution
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Figure 5.6 Statistics (median plus/minus standard deviation over 30 journeys) of the
relative di�erence between actual bene�t of a journey given a predictive methodology
and the bene�t predicted by the same methodology. For readability, we only show
the range [−0.06, 0.06] however the lower bound of the ’Det. SM=0’ method is −2,
just like the average of ’Prob. EPS’. For the methodologies taking into account the
stochasticity of tide residuals we report results when the expected bene�t (solid line,
left) or the worst-case bene�t (dotted line, right) are used as objective function.

of the di�erence between the bene�t a priori predicted from the methodology and
the a posteriori, actual bene�t. We note that all deterministic approaches with safety
margins are very stable. The relative di�erence, if existing, is slightly in favor of the
actual bene�t. Similarly, the probabilistic modelling of residuals leads to unsurprising
actual bene�ts. These results are in agreement with our previous developments in
Le Carrer et al. [2020]. As suggested in Figure 5.5, using the EPS in a probabilistic
manner leads to surprising and dramatic outcomes most often. Using the worst-case
A statistics allows occasionally to get rather acceptable, decisions, however in general
trusting its outcomes leads to serious loss compared to the expected bene�t. The
possibilistic approach shows in average unsurprising bene�ts, however the variance
is not negligible compared to the former methodologies. We note the impact of the
operator A: using the expected bene�t as objective function (rather than the worst-
case bene�t) tends to lead to more predictable actual bene�ts for β ≥ 0.95 and the
reverse is observed for smaller β. In the latter case, the variance of the di�erence
between predicted and actual bene�t is much bigger which explains why a conservative
worst-case objective function allows to stabilize a bit more results. It also shows
that sacrifying the con�dence level on constraint satisfaction (β < 1) has a
cost: the bene�t predictions are (on a one-case basis) less robust, although in
average the actual bene�t is little modi�ed with varying β.

Overall, the possibilistic methodology as implemented in this work is more con-
servative than using a simple and static probabilistic modelling of sea level residuals.
The level of con�dence β does impact little the average net bene�t of induced deci-
sions. However it does impact the robustness of these decisions. Yet, because of the
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conservatism of the method, decisions are never dramatic as they can be in the purely
deterministic approach or with the probabilistic treatment of the EPS information.
Our study is based on a very small set of simulations, hence cautious extrapolations.
Nevertheless we can note a trend according to which β ≈ 0.95 would be an optimal
choice: average actual bene�ts are the higher, sometimes better than the PROB ap-
proach, while robustness of predicted bene�ts is the best. This is noted with both
tested statistics A, however it is all the more true with when we use the expected
bene�t as objective function. For lower β, the average bene�t decreases as well as
the robustness of decisions. For lower β, both the robustness and average bene�t are
slightly lower.

5.6 Conclusion

Following promising results presented in Le Carrer and Green [2020], Le Carrer
[2021] and Le Carrer and Ferson [2020], we tested in this paper an application of the
possibilistic interpretation of weather forecasts, namely on sea level residuals and
their use in the optimisation of ship routing decisions. To that purpose, we adapted a
methodology developed for possibilistic optimisation [Hose et al., 2018] to the problem
of ship routing under possibilistic sea levels.

The results presented here con�rm, when it comes to the predictive performance
of the possibilistic interpretation of EPS, that the size of the archive (EPS-observation)
at hand matters for such a similarity-based approach. For very small archives, a
probabilistic interpretation will generally work equally well or better, at the exception
of extreme events. This �nding con�rms what we found in the above-mentioned
previous works, although it is not as marked in this study due to the very small test
dataset at hand (100 versus 40.103 in Le Carrer [2021]).

When it comes to the application however, we found that, when it comes to using
EPS as source of information on sea levels, only a possibilistic interpretation led to
reasonable decisions w.r.t. ship routing. The probabilistic approach, due to its lack of
conservatism (contrary to the frequent classi�cation of predictions in the ’ignorance’
area in the possibilistic case), tends to lead to biased predictions and decisions that are
consequently sure fails.

Beyond that and to answer our initial question, this small experiment shows that
the most optimal way of taking ship routing decisions among our propositions is a
simple optimisation based on static, historical best-�t modelling of sea level residuals.
This equals to adding a rule-of-the-thumb safety margin to the ship’s draft, without
the need to �nd out this problem-dependent, and less robust to non-stationarity of
sea level distributions, safety margin. Our possibilistic approach, in these particular
conditions of extremely limited archive, is too conservative (ignorance prevails) to
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compete with the probabilistic modelling above-mentioned. However, the analysis
of the e�ect of parameter β, namely the con�dence level in constraint satisfaction,
suggests that a careful choice (here β = 0.95) already allows to achieve decisions
sometimes challenging those given by the probabilistic method.

Repeating the experiment with a larger archive of EPS predictions (typically 2-3
years instead of 6 months, cf. experiments presented in Le Carrer [2021]) would
consequently be an interesting future work. We expect an improvement of the average
possibility-based results, which means that those with well-chosen β could challenge
more seriously the probabilistic results.

Beyond that, another interesting work would be to compare the e�ect of the
number of ports in the decision-making problem on these comparative performances.
Taking into account several ports at a time increases the conservatism of the possibility
distribution accounting for the satisfaction of all constraints Hose [2020]. This could
be a serious limitation with respect to the probabilistic approach who su�ers less of
this asymptotic behaviour.
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Chapter 6

Conclusion and Future works

6.1 Conclusions

We now summarize the �ndings of this PhD from the perspective of the research
questions developed in the introductory Chapter 1, starting with:

Q1 How can we optimise the cargo loading and ship scheduling decisions given
imperfect sea level harmonic tide forecasts, without foregoing safety?

In Chapter 2, we have shown from realistic case studies between British ports that
modelling the uncertainty on sea level residuals rather than using a rule-of-the-thumb
safety margin was indeed promising in tidal areas. Fitting a classical distribution (e.g.
logistic or mixture of Gaussian) to model the residuals in each port of call, and then
combining a global optimisation algorithm (e.g. PSO) to Monte-Carlo sampling of
these residuals altogether with a risk metric allows to improve the net bene�t for the
shipping company. Predictions are both robust and optimal, w.r.t. a standard safety
margin. Besides, while the arbitrary safety margin can become close to optimality,
achieving this requires (long) experience and remains problem dependent. On the
contrary, such a stochastic modelling of the sea level residuals provides an optimal
and robust solution from the �rst call. On top of that, we showed that even such a
stationary modelling of sea-level residuals was robust to unseen extreme sea levels
and remained in the latter case more optimal than a �xed safety margin.

Could we do better with actual, physical-model based sea level residual predic-
tions? To that purpose, we started to investigate the concept of weather ensemble
predictions. More precisely, we wondered whether, generally speaking, their proba-
bilistic interpretation is the best way to extract the valuable predictive information
they contain. Hence the following research questions, that we tried to answer in
Chapters 3 and 4 by means of conceptual developments and associated numerical
experiments on the Lorenz 96 system.

In these two works we investigate the following research questions:

Q2a Can we draw an interpretation framework of EPS that would directly make sense
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and provide outputs that are meaningful without having to resort to additional
layers of calibration?

Q2b Can we simultaneously maintain or improve the prediction skills compared to
those of standard probabilistic interpretations?

Q2c How can we combine such a possibilistic framework with insights about the
local dynamics of the system?

Q2d Can a possibilistic treatment of the EPS provide more formal guarantees than a
probabilistic interpretation? If yes, at what cost?

Q2e Can we operationally use the possibilistic outputs at their full potential, that is
more than simply deriving associated probabilities?

Chapter 3 develops a possibilistic interpretation of the EPS alone. It derives its
properties in the case of a continuous reading of the resulting predictive possibility
distribution, that is in terms of con�dence intervals on the future value of the variable
of interest. We compare the performances of these con�dence intervals to the perfor-
mances obtained by means of a classical probabilistic interpretation of EPSs. Therein,
we show that our methodology provides con�dence intervals associated with formal
guarantees. The latter are veri�ed experimentally also for extreme events, except for
the asymptotic case of extremely large (EPS+observation) archives (which corresponds
to the probability-like limit behaviour of possibility theory). In practice, such archives
do not exist in the fast-changing �eld of ensemble forecasting models. We show that
the con�dence intervals based on our methodology overpass the probability-based
ones in two cases: 1) at very small lead times for both common and extreme events,
where they are as reliable yet narrower; 2) more blatantly, at intermediate and large
lead times for extreme events, where they remain guaranteed and can be brought close
to perfect reliability even for particularly rare events, yet at the expense of precision.
These results can be reached with operational archive like the 20–30-year reforecast
datasets. The guarantees are retained for smaller archives, which however lead to
more conservative intervals and thereby impede operationality.

Chapter 4 continues the presentation of this approach by addressing two limitations
of this �rst study, which 1) focused on the continuous reading of predictive distributions
and consequently did not exploit at its full potential the possibilistic concepts of
necessity, possibility and ignorance; and 2) did not take into account the local dynamics
of the system (initial conditions), making EPS-based predictive distributions rather
conservative.

In this chapter, we consequently investigated the bene�ts of aggregating two
predictive possibility distributions, one from the EPS interpretation and one exploiting
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a past time series of the variable of interest including the initial conditions (i.e. time
at which the prediction is made) by means of the analog method. We thus showed
how the possibilistic framework allowed us to combine several incomplete sources of
knowledge in a consistent manner, and thus to reduce their respective conservatism.
Importantly, our framework is more direct than the probabilistic one: we do not try to
correct misleading EPS-based probabilities, our outputs directly make sense without a
posteriori calibration. Moreover, by using the credibility derived from our possibilistic
framework as a probabilistic prediction, we are able to reproduce the classical proba-
bilistic predictive skills (PRC at small lead times) and improve them (PRC to a small
extent at large lead times, reliability), especially when it comes to extreme events
without deteriorating signi�cantly the performances for other events (information
content). Operationally, as could be expected, the performances of our possibilistic
framework depend on the size of the archives at hand. In any case, when it comes
to extreme event prediction, possibility-based information remain globally much more
interesting than the purely probabilistic one, especially at large lead times. The EPS
archive does not need to be particularly large, while results signi�cantly improve with
a longer system monitoring (the so-called "dynamical archive").

Our framework also reveals the strengths and weaknesses of EPSs: at small lead
times, the EPS-based information alone is enough to reproduce probabilistic per-
formances, due to low aggregated model error. At larger lead times, however the
latter becomes signi�cant, and makes the EPS-based information not su�cient to
provide predictions with resolution. That is where the synergy between EPS-based
and dynamical-analog-based information lies and allows us to go beyond standard
probabilistic performances. In particular, we compared the e�ects of two aggrega-
tion methods, namely Zadeh’s and the general aggregation method, and concluded
that Zadeh’s was the most interesting trade-o� between speci�city and reliability of the
resulting possibility distribution. In the case of extreme events and large lead times,
the risk-averse decision-maker may however prefer to use the general aggregation
method if the dynamical archive at hand is not long enough to ensure the reliability
of possibilistic outputs.

Di�erent methodologies for emitting predictions from the possibilistic measures
N and Π were introduced and compared (although not exhaustively for shortness
of space), showing how risk-averse and risk-prone users could seize the potential of
the dual measures to extract predictive probabilities di�erently from the traditional
credibility. However, it turns out that the latter remains globally the best trade-o�
when it comes to the quality of predictive performances for both extreme and non
extreme events simultaneously. We also discussed how to use at their full potential
the couple (N,Π): to derive predictive probabilities (e.g. by means of the credibility)
and to estimate a priori, via the interval length [N,Π] the trust we can have in their
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informativeness. The discussion on results and methodologies was again limited for
shortness of space and time, however it opens the way for further investigation about
how to best use these measures in an operational context.

If we come back to our initial question: echoing Bröcker and Smith [2008], we
wondered whether the probability distribution is the best representation of the valuable
information contained in an EPS. Our answer would be that it can be at short lead times,
when aggregated model error is low ; however there is more predictive information and
explanatory power to be gained when switching to an imprecise-probability framework at
large lead times. Besides, even at short lead times, our framework showed that it could
improve e.g. probabilistic reliability and provide an indicator of how informative is
the associated credibility when interpreted as a probability. Possibility theory seems
consequently an interesting alternative to the classical probabilistic interpretations
of EPSs, given the same sources of information (EPS archives). Other imprecise
probability frameworks such as credal sets could have been investigated, however we
believe possibility theory is more interesting for its intuitive rationale (especially in a
phenomenological context like the weather system where explanatory power, "making
sense" is important) and potential for communication to the end-users, as well as for its
simplicity and power when it comes to fusing information from various sources.

To summarize, these results show that such a possibilistic framework allows to
extract globally as much information from the EPSs as a classical probabilistic treatment
would do and sometimes more (large lead times and extreme event prediction). This
formulation can seem counter-intuitive, given that the possibilistic representation
is known as weaker [Dubois et al., 1993] than the probabilistic one. However this
weakness comes from the fact that imprecision is taken into account in the possibilistic
modelling. In situations of incomplete information, typically like the EPSs given the
limitations raised in Section 1.1.2 about the way they are produced, possibility theory
allows to extract more information than probability theory.

We consequently tried to apply it in a real-world situation, namely the shipping
optimisation problem introduced in Chapter 2. Thus the �nal Chapter 5 studies the
research questions:

Q3a How valuable is the information extracted from the storm-surge EPS, either via
a probabilistic approach or via a possibilistic approach, for an application such
as maritime shipping optimisation?

Q3b In particular, is this information more valuable for this speci�c application than
a classical Monte-Carlo-based optimisation using harmonic tide predictions and
historical best-�t modelling of sea level residuals in each port?

The results presented in that chapter con�rm, when it comes to the predictive
performance of the possibilistic interpretation of EPS, that the size of the archive
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(EPS-observation) at hand matters for such a similarity-based approach. For very small
archives, a probabilistic interpretation will generally work equally well or better, at
the exception of extreme events. This �nding con�rms what we found in the above-
mentioned previous works, although it is not as marked in this study due to the very
small test dataset at hand (52 versus 40.103 in Le Carrer [2021]).

Regarding the application however, we found that, when it comes to using EPS as
source of information on sea levels, only a possibilistic interpretation led to reasonable
decisions w.r.t. ship routing. The probabilistic approach, due to its lack of conservatism
(contrary to the frequent classi�cation of predictions in the ’ignorance’ area in the pos-
sibilistic case), tends to lead to biased predictions and decisions that are consequently
almost sure fails, as our initial experiments revealed in the introduction of Chapter 3.

Beyond that and to answer our initial question, this small experiment shows that
the most optimal way of taking scheduling decisions among our propositions is a
simple optimisation based on static, historical best-�t modelling of sea level residuals.
This equals to adding a rule-of-the-thumb safety margin to the ship’s draft, without
the need to �nd out this problem-dependent safety margin (also less robust to the non-
stationarity of sea level distributions). Our possibilistic approach, in these particular
conditions of extremely limited archive, is too conservative (ignorance prevails) to
compete with the probabilistic modelling above-mentioned. However, the analysis
of the e�ect of parameter β, namely the con�dence level in constraint satisfaction,
suggests that a careful choice (here β = 0.95) already allows to achieve decisions
sometimes challenging those given by the probabilistic method. This is promising for
similar works with larger EPS archives.

6.2 Overall contribution and future works

At a very high level, the novelty and major contributions of this PhD are :

(i) A risk analysis of cargo loading and ship scheduling decisions in tidal areas
and two methodologies to provide robust and optimal decisions given either
purely deterministic tide predictions (with an archive of the observed residuals)
or numerical surge ensemble predictions in each port of call (with EPS archives
in the same ports of call and possibly long past time-series of the surges) ;

(ii) A data-driven possibilistic framework to interpret weather ensemble predictions
(the �rst to the knowledge of the authors) instead of the classical probabilistic
approach and its analysis and justi�cation, in particular for the prediction of
extreme events ;

(iii) An application of possibility theory in practical �elds ( (shipping) global op-
timisation and weather forecasting), which is interesting for highlighting the
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potential advantages and drawbacks of such an alternative approach w.r.t. more
classical, mainstream probability-based methodologies.

The practical implications of our work are:

(a) Raising awareness of the economic potential of taking into account sea level
uncertainty in scheduling decisions more �nely than a ’rule-of-the-thumb’ safety
margin, not only for the more studied expensive freight and large ships but also
for the masses of small vessels (mini-bulkers), cheap commodities (grains) and
small ports strongly a�ected by tidal e�ects (i.e. limited dredging), which in
the current context of transportation greening may be a non-negligible lever of
progress;

(b) Contributing to the di�usion and application of possibility theory to applied
�elds, here weather forecasting, to show the interest of going beyond "classical
probabilities" when the latter do not always make sense or are not the most
adapted, e.g. for extreme events predictions in the ensemble forecasting context.

These two investigations could be completed in many ways, including:

When it comes to the shipping optimisation problem:

1. One way to go would have been to study in depth the probabilistic modelling
and re�ne it by e.g. taking into account the space-time dependence between
residuals from di�erent locations and/or time, in particular its cyclic nature (due
to tides), or modeling tide residuals di�erently (e.g. neural networks [Pashova
and Popova, 2011], superstatistics [Rabassa and Beck, 2015]).

2. Another way would have been to work on the e�cient optimisation side of
the problem and, instead of a simple double-loop Particle-Swarm-Optimisation
where a Monte-Carlo sampling is nested, provide a faster optimisation algorithm
that scales well with the number of ports at hand.

When it comes to possibility theory for interpreting EPSs:

1. It would be interesting to see whether the conclusions obtained on the Lorenz
96 toy system apply to real-world weather EPS.

2. As raised by one of the reviewers of the study presented in Chapter 3, in prac-
tice the veri�cation (as observation) is a random variable itself . The use of
con�dence intervals rather than a Bayesian formalism and the derivation of
credible intervals may consequently be discussed. Since our approach is taking
such impreciseness into account (limited volume Sxt around xt, Masson and
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Denoeux’s transformation – cf. Section 3.3.1), even without explicitly tackling
this problem, our framework accounts for (reasonable) randomness in the so-
called veri�cation. However, it could be interesting to take this explicitely into
account.

3. We assumed that the dynamical system at hand was close to stationarity. It would
be worth running similar experiments with other non-stationary toy systems, to
assess if possibilistic framework is more robust than a purely probabilistic one.

4. The analysis of how to use best the dual possibility and necessity measures de-
pending on prediction strategies (risk-averse, risk-prone, etc) that we presented
here was a preliminary result. There is much room for extension and presenting
proper examples of applications.

5. Finally, to assess the skills of the our possibilistic predictions, we often issued
derived probabilities and used the standard metrics to assess the predictive
performances of probabilistic predictions. It would be worth investigating how
to develop scores �tted to possibilistic outputs directly, which would also allow
to make more sense of these outputs (without turning back to probabilities) and
improve the spread and communication around possibility theory in applied
�elds.

When it comes to the use of surge EPSs in shipping optimisation:

1. Given the lack of real data characterizing this work, repeating the experiment
with a larger archive of EPS predictions (typically 2-3 years instead of 6 months,
cf. experiments presented in Le Carrer [2021]) would consequently be an inter-
esting future work. We expect an improvement of the average possibility-based
results, which means that those with well-chosen level of constraint satisfaction
β could challenge more seriously the probabilistic outputs.

2. Beyond that, another interesting work would be to compare the e�ect of the
number of ports in the decision-making problem on these comparative perfor-
mances. Taking into account several ports at a time increases the conservatism
of the possibility distribution accounting for the satisfaction of all constraints
[Hose, 2020]. This could be a serious limitation with respect to the probabilistic
approach who su�ers less of this asymptotic behaviour.
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Appendix A

Optimising cargo loading and ship scheduling subject to
uncertain sea levels - Risk models

We report here an extract of the conference paper Le Carrer et al. [2018], that was
later extended into the journal article presented in Chapter 2. In this conference paper,
we developed more the question of risk models (i.e. how to model risk through an
objective function to be optimised during the optimisation procedure) and presented
their performances and robustness in a case study similar to the N = 2 - ports case
study presented in Chapter 2, Section 2.2.1. The context, type of ship and commodity
are the same, as well as mathematical notations. Only ports di�er. On November 19th
2016 at 16:30 UTC, we assume that the shipper has to decide how much barley will be
freighted and when the vessel will depart from Lowestoft Port to Portsmouth Harbour,
both on the British coast. To this purpose, they use the long term harmonic tide
forecasts as sea level predictions as well as the decision model described in Sections
2.2.2 and 2.2.3.

A.1 A probabilistic approach to decision making

Using the model described above, one can choose an optimisation technique (e.g.
particle swarm optimisation or simulated annealing) to compute the optimal decision
to take at time t0, according to the sea level forecast time series X̂p(t) for the two ports
p = {p1, p2}. Such a calculation does not consider the actual stochastic behaviour
of the water depth. Mean sea levels are locally in�uenced by a range of factors,
including weather. A residual ep(t) = Xp(t) − X̂p(t) between the predictions and
the observations can lead to either a regret (ep > 0: the shipper could have loaded
more or departed earlier) or a loss (ep < 0: in order to adjust to the actual water level
the journey is delayed, or a grounding can happen). In other words, the resulting
solution is risky as it does not tolerate a negative deviation to prediction nor port
delays. In order to account for the uncertainty on the outcome of a given decision and
its potentially dramatic consequences for the shipping company, it is sensible to work
in the frame of risk averse optimisation.

From the classical mean-risk [Markowitz, 1952] and chance-constrained perspec-
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tives [Charnes et al., 1958] to the more recent so-called robust optimisation models
(e.g. worst-case, minimax regret, uncertainty sets, see Greenberg and Morrison [2008]
for an historical overview and Shapiro et al. [2009] for an extensive presentation),
operational research has developed a range of approaches to address the notion of
uncertain decision-making. In these problems, the questions at stake are: a) Are all
the scenarios acceptable, or feasible, whatever their probability of occurence? (e.g.
is a ship grounding acceptable?) b) How much does the decision-maker give way
to objective optimality in order to guarantee feasibility? Any solution to stochastic
optimisation is a trade-o� between feasibility and performance, or said otherwise,
between variance and guaranteed value of the objective function.

A (robust) optimisation approach must thus de�ne the attitude of the decision-
maker towards risk and the speci�cities of her optimisation problem before computing
any solution. Between the two extreme approaches that are worst-case (always
feasible) and deterministic optimisation (best performance e.g. for the most probable
scenario, no uncertainty taken into account), lie a range of models depending on the
decision-maker’s requests as regards performance and feasibility. We introduce in
the following a representative selection of them, before comparing their outputs in
Section A.2.

A.1.1 Risk models

A.1.1.1 Regret

In decision-making under uncertainty, it is common to adopt the gain shortfall per-
spective. In this case, risk takes the meaning of the loss in pro�t due to the fact
that decision d ∈ D is taken at time t0 based on imperfect forecasts X̂p ∈ X of the
environment state Xp ∈ X . Let Fp be the cumulative distribution function over Xp,
which is conditional on information on the prior values of Xp and possible other
information. Let F̂p be a predictive distribution of Xp (that is a distribution over X̂p)
provided by the forecaster at t0. Let X̂p(t) be a point forecast time series of Xp(t) over
time [t0, t0 + T ], B(., .) : D × X → < the utility function (namely the net bene�t
of the journey based on decision d) and y(·) : X → D an optimal action function
de�ned by:

y(F̂p) = arg max
d∈D

(
E[B(d, X̂p)]F̂p

)
= arg max

d∈D

∫
X
B(d, X̂p)dF̂p (Equation 1)

The loss function L(., .) : D× [0, 1]→ < is then de�ned by Granger and Machina
[2006] as:

L
(
y(F̂p), Fp

)
= B

(
y(Xp), Xp

)
−B

(
y(F̂p), Xp

)
(Equation 2)
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for all X̂p, Xp ∈ X . In other words, the utility of the decision made under uncertainty
B
(
y(F̂p), Xp

)
is compared to the utility resulting from the decision made under

perfect knowledge of the future B
(
y(Xp), Xp

)
.

With an absolute robust approach, each possible shipping decision d is mapped to
the maximum loss it can generate, whatever its probability of occurrence. The optimal
decision minimises:

d∗ = min
d∈D

{
max
Fp

{
L
(
d, Xp

)}}
(Equation 3)

Its less conservative counterpart involves mapping each decision d to the regret it
generates in average:

d∗ = min
d∈D

{
E
[
L
(
d, Xp

)]
Fp

}
(Equation 4)

Looking more closely at the de�nition of the loss which we aim to minimise (the
expectation over the space of sea level residuals), one can notice that minimising
E
[
L
(
d, Xp

)]
Fp

is equivalent to �nding the decision d∗ that maximises the expected

bene�t E
[
B
(
d, Xp

)]
Fp

.

A.1.1.2 Mean-risk

What appears to be the �rst risk model developed in operational research involves
adding a penalty known as the risk functional to the expected objective outcome of a
given decision, and thus setting:

d∗ = max
d∈D

{
E
[
B
(
d, Xp

)]
Fp
− βD[B]Fp

}
(Equation 5)

where the parameter β ≥ 0 allows to quantify the price of risk.
In the simplest case, the risk functional is proportional to the standard deviation

of the objective:
D[B] =

(
E
[
(B − E[B])2

]
Fp

)1/2

(Equation 6)

Negative and positive deviations to the mean do not have the same implications in
terms of risk. In the case of maximising the shipping bene�t, positive deviations to
the expected bene�t are welcome, contrary to negative ones. The standard deviation
cannot fully describe such assymetrical behaviour of the utility function. The lower
semi-deviation of order γ is consequently introduced as:

D[B] =
(
E [(B − E[B])γ−]Fp

)1/γ

(Equation 7)

Note that, in the following, we use γ = 2 and β = 1.
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A.1.1.3 Worst-case

The absolute robust way of optimising the shipping net bene�t is to prevent any
unfeasible scenario and maximise the outcome in the worst possible scenario. In other
words, �nding the decision:

d∗ = max
d∈D

{
min
Fp

{
B
(
d, Xp

)}}
(Equation 8)

A.1.1.4 Chance-constrained

Although strictly speaking robust in terms of feasibility, the worst-case approach is
often criticised for being too conservative in practical implementations.

The chance-constrained perspective allows more �exibility. Given a level of guar-
antee ζ , it computes the decision maximising the ensured bene�t at this level, in other
words:

d∗ = max
d∈D

{
inf
b

{
P
(
B
(
d, Xp

)
≤ b
)
≤ 1− ζ

}}
(Equation 9)

In our experiments, we use ζ = 0.98, that is we look for the maximal bene�t allowing
an error rate less than or equal to 1%.

A.2 Results and Discussion

All the results in terms of bene�t B will be expressed as multiples of the value of
the minimum cargo load, B0 = US$ 363, 550. We also set the cost of not making the
delivery in time to (Z = −V − (O + P + U)). Negative bene�ts would thus imply
a grounding or the impossibility to reach the arrival port within the speci�ed time
horizon.

A.2.1 Deterministic case

The BPSO procedure recommends the ship to leave Lowestoft Harbour at 23:00 UTC
on November 19th 2016 with an overall barley freight of 3, 835.0 mt. The standard
deviations of these recommendations are estimated to be 0.5 mt in freight and less
than 15 minutes in time (from 1,000 independent runs).

Figure A.1 presents a mapping of the �nal shipping bene�t over the decision search
space D, given the forecast a priori at hand and given perfect forecasts, i.e. the a
posteriori exact observations of the sea level depths. The optimal decision according
to BPSO in each scenario di�er by 1 hour and 30 minutes in time and 527 mt in cargo
load. In other words, the deterministic solution under imperfect harmonic predictions
is far away from optimality in the real-world of non-zero residuals. Besides, it is
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Figure A.1 Mapping of the net bene�t B over all the decisions (td,m) of the search
space, given sea level forecasts at hand (a) or actual sea level (b). The optimal decisions
based on the deterministic forecasts and on the perfect forecasts (i.e. real state of the
sea) through the solver BPSO are also reported.
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Table A.1 Statistics over 50 runs of the outputs in terms of decision-making. The
optimal cargo load m, departure time td and guaranteed bene�t B.98 at the level of
2 % (over 100,000 simulations) are expressed in metric tons, UTC and fraction of B0

respectively. The uncertainty is computed as the standard deviation of the results.

Distribution GMM Logistic Gaussian
Risk metric

Mean-Regret
m = 3, 947± 20 m = 3, 940± 10 m = 3, 957± 9
td = 00 : 45± 30mn td = 01 : 00± 15mn td = 00 : 30± 15mn
B.98 = 1.901 B.98 = 1.894 B.98 = 1.909

Worst-Case
m = 3, 943± 15 m = 3, 935± 10 m = 3, 961± 11
td = 00 : 45± 15mn td = 01 : 00± 30mn td = 00 : 45± 30mn
B.98 = 1.899 B.98 = 1.891 B.98 = 1.908

Mean-Risk
m = 3, 946± 18 m = 3, 933± 15 m = 3, 963± 16
td = 00 : 45± 30mn td = 00 : 45± 15mn td = 01 : 00± 30mn
B.98 = 1.901 B.98 = 1.895 B.98 = 1.905

Chance-Constrained
m = 3, 959± 11 m = 3, 956± 9 m = 3, 976± 6
td = 00 : 30± 15mn td = 00 : 45± 15mn td = 00 : 45± 15mn
B.98 = −2.239 B.98 = 1.905 B.98 = −2.253

quite straightforward to see on these maps that both solutions are very sensitive to
perturbations. A 15 mn departure/arrival shift or a negative error in the actual sea
levels both shift the expected bene�t from its maximum to the negative area.

One way to get over the second limitation is to improve the accuracy of sea level
forecasts. This is currently achieved by means of storm surge models. To take into
account the local weather perturbations, these models use atmospheric forecasts as
forcing in shallow-water hydrodynamic simulations e.g. the CS3 storm surge model
covering the sea of the northwest European continental shelf [Flowerdew et al., 2010].
Nevertheless, whatever the accuracy reached, these forecasts cannot prevent the issue
of port perturbations and delays. Hence it seems reasonable to develop a robust
solution instead of a single deterministic optimisation.

A.2.2 Risk models

We now use RPSO to compute the optimal shipping decision under uncertain sea
levels. Each of the four risk metrics presented in Section A.1.1 is combined with one
of the three sea level residuals distribution models under consideration. Table A.1
reports the statistical results of each combination as regards the optimal cargo load,
departure time and the resulting guaranteed bene�t at the error rate of 2 %, that is
the 2% percentile B.98. The latter is estimated from 100,000 Monte Carlo simulations.
In order to prevent a methodological bias, these simulations sample the sea level by
means of bootstrapping (over dataset Du, c.f. Section 2.4.0.1).

As the purpose of theRPSO procedure is to support decision-making, it is necessary
to analyse the consequences of the above results as regards their translation in terms
of practical shipping decision. The overall majority of the computed departure times
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are located within a 30 mn time slot centered on 00:45. Taking into account the
relative inertia of large vessels and generally slow port dynamics (from decision to
subsequent actions), this range of uncertainty can be seen as a bu�er to consider
in the decision-making schedule. Trying to increase the precision on td would be
meaningless considering the real world context of a maritime shipping problem.

As expected, the worst-case approach is the more conservative and generally
computes the lowest loads (m ≈ 3, 945 mt overall). The mean-risk model with a
penalty equal to one standard lower deviation behaves very similarly. The chance-
constrained approach returns the highest loads (m ≈ 3, 966 mt overall) and the
mean-regret (or expected-bene�t) approach is intermediary. This is a quite general
observation, whatever the sampling distribution. As regards the distribution impact,
Logistic sampling produces more conservative loads than the GMM approach and
further again, than the Gaussian one. The di�erence between the maximal and minimal
loads abovementioned is in the range of 30 mt, that is in our case study less than 3
centimetres of draft. This invariably leads to quite similar guaranteed bene�ts B.98

between the worst-case, mean-risk and mean-regret for a given distribution. On
the contrary, the guaranteed bene�t of the chance-constrained solution is much less
stable: either maximum or minimum (and) negative. This illustrates the concept of
distributional (non-) robustness: according to the sea level modelling (Logistic versus
Gaussian and GMM), the solution computed by RPSO leads to either very satisfying
outcomes overall or to a very likely failure.

Figure A.2 summarises most of the information discussed above: whatever the risk
metric, a Logistic sampling will produce more stable (smaller variance) outcomes than
the other models. It also shows that, strictly speaking, only the mean-risk approach
could be said to be distributionally robust. Indeed, the ranges of the reduction in
standard deviation and in guaranteed bene�t when the underlying distribution varies
(2 and 0.6 % respectively) are much smaller than for the other metrics (closer to 8 and
0.9 % respectively). Considering the money at stake, even variations of 0.1% B.98 are
worth a few thousand dollars, so should not be neglected. Three observations can
be highlighted as well. First, in this particular case study, the stochastic optimisation
based on risk metrics allows the owner to (in most of the con�gurations) save money
as the guaranteed bene�t is above the expected bene�t of the deterministic decision
in real conditions. Second, the spatial organisation of the points underlines a general
pattern in robust optimisation: the guaranteed bene�t increases at the cost of the
increase in variance [Gotoh et al., 2015]. Finally, as noted by Gotoh et al. [2015], the
variation in actual bene�t is about one order of magnitude smaller than the reduction
in its standard deviation.
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Figure A.2 Performance of each optimisation approach (a risk metric combined with a
sea level residuals distribution) from the perspective of the reduction of the guaranteed
bene�t at the error level of 2% and the standard deviation of the actual shipping bene�t,
with respect to the performances of the “deterministic” solution based on sea level
forecasts alone. 100,000 Monte Carlo simulations are used to compute these statistics,
with bootstrap sampling. The chance constrained and GMM or Gaussian sampling are
not represented here as the reduction in guaranteed bene�t is out of scope, reaching
200%.

A.3 Conclusion

Figure A.3 summarises some of the above considerations in a 3-dimensional view of
the optimisation problem. A map of the standard deviation is estimated with bootstrap
sampling for each couple (td,m) of the search space. On top of the map, we report
the decision suggested by the net bene�t optimisation from sea level forecasts, perfect
forecasts (i.e. perfect knowledge of the future) and by four optimisation approaches.
Figure A.3 gives a good overview of the set of solutions returned by all the approaches
and presented above.

As the owner of the company, you could use the bene�t optimisation decision
that is based on the deterministic harmonic forecasts, load 3, 835 mt of barley and
cast o� at 23:00. However the outcome of this decision, given the actual observations
of sea levels is −2.15B0. This is much less desirable than the bene�t 2.12B0 that
you could make if you knew the future perfectly and left Lowestoft port at 00:30
with 4, 362 mt on board. Using the stochastic optimisation method developed in
this paper, you could load cargo between 3, 935 and 3, 959 mt, raise anchor between
00:30 and 01:00 and get a net bene�t from 1.89B0 to 1.91B0. If these decisions were
reported in Figure A.1(b) (mapping based on actual sea level conditions), one could
notice that a port re-scheduling of up to 2 hours (earlier) or 4 hours (delay) would
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Figure A.3 Three dimensional mapping of each decision (td,m) to the associated
actual bene�t standard deviation. Points of interest discussed in the text are also
reported. The mapping use Monte Carlo simulations of 1,000 journeys by means of
bootstrap re-sampling.

not substantially change the bene�t, nor a variation (in standard limits) in sea level
conditions. Besides, Figure A.3 reminds that the variance in the actual bene�t is
substancially reduced for our solutions, contrary to the variance of the deterministic
proposition. In other words, the approach RPSO proposes a robust solution. This is
true for any risk metric introduced here apart from the chance-constrained, and true
for any sampling distribution although a Gaussian generally leads to solutions with
less predictible economic outcomes. Recalling the questions raised in the motivation
of the problem (Section 2.1), in this case study, our stochastic approach demonstrated
to be economically valuable with respect to the standard (deterministic) approach.
Besides, a simple Logistic modelling of the residuals is enough to produce quality
results, similar to those gained by means of a GMM.

One can note that the cargo load output m∗ can be turned into a safety margin
∆r to be deducted from the maximum draft that would have been allowed given the
sea level tide forecasts at hand at t0 (procedure BPSO). For future works, it would be
interesting to compare ∆r with what “non-stochastic” commercial softwares would
suggest on a similar problem, so as to assess the quality and potential added value of
our model.

Avenues of research on the problem raised in this paper include de�ning sounder
uncertainty sets on which the risk metrics would then be applied. A �ner modelling of
the sea level residuals would also be judicious, exploiting the cyclic character of data.
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Appendix B

A (parametric) possibilistic framework for EPS interpretation

In this Appendix, we report our �rst tentative of possibilistic framework to interpret
weather ensemble forecasts. It was published in the proceedings of the 2019 Annual
Meeting of the European Meteorological Society [Le Carrer and Green, 2020]. For
conciseness, we only report the framework and the empirical evaluation of its per-
formances. The contributions of the authors are the following: NLC conceived of
the presented idea, designed and implemented the research and wrote the article. PG
contributed to the analysis of the results and reviewed the article.

B.1 Possibilistic framework for EPS interpretation

The statistical post-processing of EPS generates forecasts in the form of predictive
probability distributions p(x|x̃, θ), noted p(x|x̃)θ, where x̃ = {x̃1, . . . , x̃M} is the
ensemble, θ a vector of parameters and p a (sum of) parametric distribution(s). BMA
distributions are weighted sums of M parametric probability distributions, each one
centered around a linearly corrected ensemble member. In this work, the members
are exchangeable, so the mixture coe�cients and parametric distributions do not vary
between members and the BMA comes down to an ensemble dressing procedure.
We compare our method against a Gaussian ensemble dressing, whose predictive
probability distribution reads:

p(x|x̃)θ =
1

M

M∑
i=1

N (ax̃i + ω, σ2) (Equation 1)

where N (µ, v) is the normal distribution of mean µ and variance v. The parameters
θ = {a, ω, σ} are inferred through the optimization of a performance metric, e.g.
the ignorance score [Roulston and Smith, 2002], or negative log-likelihood, a strictly
proper1 and local2 logarithmic score.

1i.e. it takes its optimal value only when the forecast probability is equal to the true distribution of
the system.

2i.e. it does not depend on the full forecast distribution, but only on the predictive probability
associated to the true system’s state.
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Here, instead of performing a probabilistic ensemble dressing, we can perform a
possibilistic ensemble dressing: a possibilistic membership function is dressed around
each ensemble member �rst shifted and scaled. Similarly to its probabilistic twin, the
ith possibility kernel is assumed to represent the possibility distribution of the true
state of the system, given the observation of x̃i. Because we have several member
observations i = {1, . . . ,M} and there is only one truth (the actual system’s state),
we can interpret it as a union (OR) of possibilities. Fuzzy set theory o�ers several
de�nitions for computing the distribution resulting of the union of two fuzzy dis-
tributions. We adopt here the max-sum de�nition: πA∪B(x) = max

(
πA(x), πB(x)

)
,

although some of our tests, not presented here, show that alternative de�nitions do
not signi�cantly change results.

Gaussian kernels exp−
1
2
u2i are thus �tted to each member x̃i, with ui = x−(ax̃i+ω)

σ
,

a the scaling factor, ω the shifting of the kernels’ peaks from the individual member
x̃i and σ a parameter accounting for the width of the individual kernels. The resulting
possibilistic distribution is given by the sum, in a possibilistic manner, of all the
individual kernels:

π(x) =
⋃

i=1...M

exp−
(x−(ax̃i+ω))

2

2σ2 = sup
i=1...M

exp−
(x−(ax̃i+ω))

2

2σ2 (Equation 2)

For any event of interest A = {x ∈ SA}, we can extract the possibility and necessity
measures Π(A, θ) and N(A, θ) (noted Πθ(A) and Nθ(A)), given the knowledge en-
coded in π(x, θ) (noted πθ). Πθ(A) evaluates to what extent A is logically consistent
with πθ whereas Nθ(A) evaluates to what extent A is certainly implied by πθ. Ideally,
this pair falls in an area of the possibilistic diagram (N,Π) that is close to one of the
three notable points: (1, 1) for A certain; (0, 0) for Ā certain; (0, 1) for total ignorance,
i.e. both A and Ā are possible but none is necessary given π. Points on the line N = 0

are in favor of Ā, the more favorable the closer to (0, 0); points on the line Π = 1 are
in favor of A, the more favorable the closer to (1, 1). Other areas of the diagram are
inconsistent with the axioms de�ning Π and N .

From the geometric interpretation given by the possibilistic diagram, several
options are available for scoring each point

(
Nθ(A),Πθ(A)

)
that is, for assessing the

quality of the prediction given by the pair
(
Nθ(A),Πθ(A)

)
. A brute-force method is to

minimize the distance to the correct pole (e.g. (1, 1) for A true). Yet, such an approach
would try and push events towards (1, 1) or (0, 0) on the possibilistic diagram, thus
ignoring the ignorance pole and, as a result, the idea that some events are impossible
to predict from a particular EPS set. A more complete method could, for instance,
also consider the rank r of the EPS w.r.t. A. Namely, if the actual observation x∗ is
in SA, the associated point should belong to the line Π = 1 but the distance to the
ignorance pole (1, 0) should be proportional to r. The same applies for x∗ /∈ SA; the
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associated point should belong to line N = 0 with the distance to (1, 0) proportional
to rĀ = M − rA. Thus, an observation x∗ ∈ SA associated to an erroneous EPS
(r → 0) will fall close to the ignorance pole, suggesting that we cannot trust the raw
ensemble. A score verifying these requirements is:

Si(θ) =

|Nθ(A)− r
M
|+ |Πθ(A)− 1|, x∗ ∈ SA

Nθ(A) + |Πθ(A)− r
M
|, x∗ /∈ SA

Given a training set containing n pairs (x̃i, x
∗
i ), the �nal empirical score is: S(θ) =

1
n

∑n
i=1 Si(θ) and training consists of �nding the θ that minimizes S.

B.2 Application to the imperfect Lorenz 96 system

To test our framework, we reproduce the experiment designed by Williams et al. [2014],
who used an imperfect L96 model [Lorenz, 1996] to generate ensemble predictions and
investigate the performance of ensemble post-processing methods for the prediction
of extreme events. The training sets consist of 4000 independent pairs of EPS of size
M = 12 and the associated observations, for each lead time τ = {1, 3, 5, 7} days3.
The EPS have beforehand been pre-processed to remove the constant bias. The testing
set consists of another 10, 000 independent pairs of bias-corrected EPS and associated
observations, for each lead time. We consider the prediction of an extreme event:
Ae = {x ≤ q0.05}, where q0.05 is the 0.05 quantile of the climatic distribution of x and
a common event Ac = {q0.5 ≤ x ≤ q0.6} . Results are compared against those given
by a probabilistic post-processing, namely a Gaussian ensemble dressing.

We �rst assess the performance of each interpretation in terms of the empirical
ignorance score relative to the climatology:

Sn(pθ, c) =
1

n

n∑
i=1

(
IGN(rθ, x

∗
i )− IGN(c, x∗i )

)
= − 1

n

n∑
i=1

log2

(rθ(x∗i )
c(x∗i )

)
(Equation 3)

where, following the work of Bröcker and Smith [2008], in the probabilistic frame-
work, the predictive probability pθ(x∗|x̃) is blended with the climatology c(x∗) of the
veri�cation x∗: rθ(x∗) = αpθ(x

∗) + (1 − α)c(x∗). Our possibilistic framework is a
mapping RM 7→ [0, 1]× [0, 1], while the ignorance applies to a probabilistic prediction
RM 7→ [0, 1]. We consequently need to �nd a mapping from the dual measures N
and Π to an equivalent probability. Since possibility and necessity measures can be
seen as upper and lower bounds of a consistent probability measure, we can write
P (A) = αN(A) + (1−α)Π(A) with α ∈ [0, 1] for any event A of interest. Varying α

3τ = 1 corresponds to 0.2 model time units after initialization and can be associated with approxi-
mately 1 day in the real world [Lorenz, 1996].
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Figure B.1 Ignorance relative to the climatology computed for the possibilistic (colored
lines) and probabilistic (black lines) frameworks, in the case of the prediction of an
extreme (EE; solid line) and a common (NEE; dashed line) event of interest, as de�ned in
Sec. B.2. The upper and lower bounds, as well as the median, obtained by considering
that N(A) ≤ P (A) ≤ Π(A) in the possibilistic framework are reported.

allows one to browse across the range of associated probabilities, consistent with the
possibility distribution π. We use this technique to compute the ignorance score of the
possibilistic framework and compare its range to the performance of a probabilistic
Gaussian ensemble dressing. Both frameworks are characterized by negative relative
ignorance, con�rming that they have a predictive added-value over climatology. The
di�erence in ignorance equals the di�erence in expected returns that one would get
by placing bets proportional to their probabilistic forecasts.

As shown in Figure B.1, for both types of events, the possibilistic framework
performs as well or slightly better than the probabilistic, for all α ∈ [0, 1]. The slight
increase in performance remains relatively constant or even improve (extreme event
case) with lead time. The relative ignorance of the possibilistic framework has a
variance (due to the range of α) that grows with the lead time, as expected.

To understand better the operational consequences of such results, we report in
Figure B.2 the relative operating characteristic (ROC) of both frameworks at lead times
of 3 and 7 days. Given a binary prediction (yes/no w.r.t. event A), the ROC plots
the hit rate (HR; fraction of correctly predicted A over all A observed) versus the
false alarm rate (FA; fraction of wrongly predicted A over all Ā observed). We use
increasing thresholds pt ∈ [0, 1] for making the decision (yes if P (A) ≥ pt) and report
the associated HR and FA in the graph. Again, we vary α to see the range of HR and
FA covered for each pt by the possibilistic prediction (N,Π). The resulting points
form a curve (probabilistic approach) or a cloud (possibilistic method), which are a
visual way to assess the ability of a forecast system to discriminate between events
and non events.
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Figure B.2 ROC curves for the extreme event (left side) and common event (right side)
at lead time 3 days (top) and 7 days (bottom). The probabilistic results are reported by
means of black circles and the possibilistic results by means of colored crosses. The
larger the symbol, the larger the threshold probability used to compute HR and FA.

The possibilistic curves all �t or are very close to the probabilistic curves, for
both extreme and common events and for all lead times. The main di�erence is their
extension: the possibilistic framework remains located in areas of relatively small
FA, compared to the results of the probabilistic approach for similar thresholds pt.
This results indicates that the HR remains smaller than what can be achieved by the
probabilistic framework, showing lower skill. The fact that the possibilistic curves yet
lies on the probabilistic ROC curves shows that the reason behind this discrepancy
is not a lack of discrimination between events and non-events; for a given FA, both
methods provide the same HR. The reason is connected to a bias in probabilities for
the possibilistic approach towards zero and towards 1: the possibilistic framework is
very sharp, as shown on the diagrams in Figure B.3. Because they are not blended
with climatology, a large part of the predictions have zero probability associated to the
event of interest, instead of a minimal one, which prevents the current implementation
of the possibilistic framework from reaching higher HR. Side experimentation not
reproduced here has shown that weighting the scores attributed to observed event A
in the global empirical training score allows to reproduce fully the probabilistic curve
for each lead time.

Reliability diagrams presented on Figure B.4 plot the observed conditional fre-
quencies against the corresponding forecast probabilities for lead time 3 and 7 days.
They illustrate how well the predicted probabilities of an event correspond to their
observed conditional frequencies. The predictive model is all the more reliable (i.e.
actionable) when the associated curve is close to the diagonal. Noting that the diagonal
represents perfect reliability, the distance to the diagonal indicates underforecasting
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Figure B.3 Normalized histograms of the equivalent forecast probabilities in the pos-
sibilistic framework for the observations of the extreme event (left) and common event
(right) at lead time 3 days. The corresponding distributions of predictive probabilities
in the probabilistic framework come on top as a thick black lines.

(curves above) or overforecasting (curves below). Distance above the horizontal clima-
tology line indicates a system with resolution, a system that does discriminate between
events and non-events. The cones de�ned by the no-skill line (half-way between the
climatology and perfect reliability) and the vertical climatology line allow us to de�ne
areas where the forecast system is skilled.

The probabilistic curves are globally aligned with the perfect reliability line, yet
with growing lead time, they are restricted to small probabilities only (because of
wider EPS or pure predictability issues such as mentioned for extreme events). On the
contrary, the reliability plots associated with the possibilistic approach cover all range
of probabilities. This approach tends to be underforecasting (resp. overforecasting) for
small (resp. large) probabilities, especially for the common event. A large part of the
area covered by the possibilistic solutions is contained in the skill cones for the rare
event, denoting a skilled predictive system for all but very low predictive probabilities.
Results are less interesting for the common event, where the possibilistic framework
leads to a �atter diagram, indicating less resolution, especially with larger lead times.

B.3 Conclusions

In this work, we have presented a possibilistic framework which allows us to interpret
ensemble predictions without the notion of member density, or additivity that proved
to be incoherent with the conditions in which EPS were built. Preliminary results show
that such a framework can be used to reproduce the probabilistic performances (ROC
curves, resolution) and even slightly improve some of them (ignorance, sharpness,
reliability). Moreover, the proposed approach addresses some of the well-known
limitations of the probabilistic framework (reliability, for example). The added-value
of this framework is particularly tangible for extreme events. Further work is needed to
improve the design of the possibilistic distributions, by means of dynamical information
or statistical priors. Besides, developments regarding the understanding and the
operational use of such ’fuzzy’ results are necessary.
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Figure B.4 Reliability diagrams for the extreme event (left side) and common event
(right side) at lead time 3 (top) and 7 days (bottom). The probabilistic results are
reported in black line, while the upper, median and lower bounds of the possibilistic
ones are in thinner red lines. Standards elements of comparison are reported in
the diagram, as described in Sec. B.2, namely the diagonal (perfect reliability), the
climatological reference (horizontal dotted) and the cones of skill (inside the dashed-
dotted secants).
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