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Abstract
Background: Among breast carcinoma patients with metastatic disease, 15-30% will eventually develop brain metastases. We examined the genomic landscape of a large cohort of breast carcinoma brain metastases (BCBMs) and compared them to a cohort of primary breast carcinomas (BCs).
Material and Methods: We retrospectively analyzed 733 BCBMs tested with comprehensive genomic profiling (CGP) and compared them to 10,772 primary breast carcinomas (not-paired) specimens. For a subset of 16 triple-negative breast carcinoma (TNBC)-brain metastasis (BM) samples, PD-L1 immunohistochemistry was performed concurrently.
Results: A total of 733 consecutive BCBMs were analyzed. Compared to primary BCs, BCBMs were enriched for genomic alterations in TP53 (72.0%, 528/733), ERBB2 (25.6%. 188/733), RAD21 (14.1%, 103/733), NF1 (9.0%, 66/733), BRCA1 (7.8%, 57/733), and ESR1 (6.3%,46/733) (p < 0.05 for all comparisons). Immune checkpoint inhibitor (ICPI) biomarkers such as tumor mutational burden (TMB)-High (16.2%, 119/733), microsatellite instability (MSI)-High (1.9%, 14/733), CD274 amplification (3.6%, 27/733), and APOBEC mutational signature (5.9%, 43/733) were significantly higher in the BCBM cohort compared to the primary BC cohort (p < 0.05 for all comparisons). When using both CGP and PD-L1 IHC, 37.5% (6/16) of the TNBC brain metastasis patients were eligible for atezolizumab based on PD-L1 IHC, and 18.8% (3/16) were eligible for pembrolizumab based on TMB-High status.
Conclusion
We found a high prevalence of clinically relevant genomic alterations in BCBM patients, suggesting that tissue acquisition (surgery) and or cerebrospinal fluid (CSF) for CGP in addition to CGP of the primary tumor may be clinically warranted. 
Implications for Practice
We found a high prevalence of clinically relevant genomic alterations in BCBM patients, suggesting that tissue acquisition (surgery) and or cerebrospinal fluid (CSF) for CGP in addition to CGP of the primary tumor may be clinically warranted. In addition, we identified higher positive rates for FDA-approved immunotherapy biomarkers detected by CGP in BCBM patients, opening the possibility for new on-label treatments. Last, we noted limited correlation between TMB and PD-L1 IHC which exemplifies the importance to test with both PD-L1 IHC and CGP for ICPI eligibility of TNBC patients with brain metastases.












Introduction
Breast cancer remains a leading cause of morbidity and mortality for women globally. Despite therapeutic advances, 30% of women with early disease will relapse with incurable metastatic breast cancer.  A growing clinical problem in patients with metastatic disease is the development of brain metastasis, and breast cancer brain metastasis (BCBM) which occurs in 15-30% of patients.[1] In particular, triple negative breast cancer (TNBC) and HER2-positive breast cancer have a propensity for metastasizing to the CNS.[2, 3] 

Sequential advances in targeted systemic therapies for metastatic breast cancer have largely been predicated on assessing control of extracranial disease, with predictive biomarkers typically assessed on primary tumor or an extracranial metastasis. Recent advances include the United States Food and Drug Administration (FDA) approval of alpelisib plus fulvestrant for PIK3CA mutated disease in estrogen receptor-positive, HER2-negative breast cancer based on the SOLAR-1 clinical trial.[4] While olaparib and talazoparib are now available for patients with  metastatic breast cancer (MBC) and germline BRCA1/2 mutation, the TBCRC-048 trial also demonstrated benefit from olaparib in somatic BRCA1/2 mutant breast cancer.[5-7] 

With regard to immunotherapy, the FDA has recently approved two immune checkpoint inhibitors (ICPIs) for patients with metastatic, triple-negative breast carcinoma (TNBC).[8, 9] First, atezolizumab plus nab-paclitaxel was approved by the FDA in 2019 for TNBC with PD-L1 positivity (immune cell (IC) ≥1) as defined by the Ventana SP142 immunohistochemistry (IHC) assay.[10] The second ICPI, pembrolizumab, was approved for all solid tumor types in patients that are tumor mutational burden (TMB)-High or microsatellite instability-High (MSI-H).[11, 12] In addition, based on the KEYNOTE-355 trial, TNBC patients with PD-L1 positivity utilizing the DAKO 22C3 IHC assay with combined positive score (CPS) ≥10 may benefit from pembrolizumab in combination with chemotherapy.[13] Furthermore, the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) mutational signature has been associated with ICPI response in tumor types such as non-small cell lung cancer (NSCLC) and breast carcinoma.[14, 15]

In contrast to these advances for the control of extracranial disease only tucatinib has been specifically licensed for the treatment of BCBM and only in the context of HER2-positive disease, as patients with active BCBM have been excluded from the vast majority of registration trials in breast cancer.[16] However, limited evidence of potential CNS activity of targeted agents including alpelisib and olaparib is available from case reports.[17, 18] Additionally, in the NALA trial, neratinib in combination with capecitabine has been shown good efficacy in HER2-positive BCBM patients.[19]  Studies have previously examined the genomic landscape of BCBM and reported genomically distinct features from primary breast cancer as well as extracranial metastasis.[20]  Given the limited systemic options for the treatment of BCBM, identifying the prevalence of biomarkers that may select for patients who may benefit from targeted therapies warrants further study.  Here, we examine the genomic landscape of BCBM samples with comprehensive genomic profiling (CGP) in a large cohort of patients to define the potential applicability of recent therapeutic advances.

Material & Methods
Patient Cohort
This study was approved by the Western Institutional Review Board Protocol No. 20152817. We performed a retrospective analysis of 733 consecutive breast carcinoma samples that metastasized to the brain and were tested with FoundationOne®/FoundationOneCDx® between August 2014 and June 2020 as part of routine clinical care. In addition, 10,772 primary breast carcinoma specimens were used as a comparison group. Age, sex, and site of specimen of patient were extracted from accompanying pathology reports. TNBC status was confirmed in a subset of patients that received PD-L1 IHC testing by reviewing the accompanying pathology report for hormone receptor status and ERBB2 (HER2) status from CGP.

Comprehensive Genomic Profiling of Breast Carcinoma Samples
CGP was performed using FoundationOne®/FoundationOneCDx® in a Clinical Laboratory Improvement Amendments (CLIA)-certified and College of American Pathologists (CAP)-accredited laboratory (Foundation Medicine, Cambridge, MA) using previously described methods.[21] FoundationOne®/FoundationOneCDx® uses a next generation sequencing platform and a hybrid capture methodology that detects base substitutions, insertions/deletions, and copy number alterations in up to 324 genes and select gene rearrangements, as well as tumor mutational burden (TMB) and microsatellite instability (MSI). Hematoxylin and eosin (H&E) stained slides from each sample were reviewed by a board-certified pathologist for presence of adequate tumor (≥20% of nucleated cells are tumor cells) before sequencing. ERBB2 amplification was determined by CGP and defined as ≥ ploidy + 3 (copy number 5 in a diploid sample) in accordance with the FDA-approved companion diagnostics (CDx) claim for the FoundationOneCDx® assay. TMB was determined on up to 1.14 megabases (Mb) of sequenced DNA and TMB ≥10 mutations/Mb was considered TMB-High per CDx approval.[12, 22] MSI analysis was performed from DNA sequencing across 114 loci and MSI-High was considered positive.[11, 23] APOBEC mutational signatures were called as described by Zehir et al.[24] Genomic ancestry of patients was determined using a principle component analysis of genomic single nucleotide polymorphisms trained on data from the 1000 Genomes Project and each patient was classified as belonging to one of the following super populations: African, Central and South American, East Asian, European, and South Asian.[25, 26] Somatic/germline status for BRCA1/2 short variant mutations was computationally predicted using previously described methods.[27] 

PD-L1 SP142 CDx Immunohistochemistry Testing
For a subset of cases, PD-L1 IHC was performed using the Ventana SP142 CDx assay per manufacturer’s instructions in a CLIA-certified and CAP-accredited reference laboratory (Foundation Medicine, Morrisville, NC).[28] PD-L1 IHC slides were interpreted by board-certified pathologists using the tumor-infiltrating immune cell (IC) scoring method where IC = proportion of tumor area that is occupied by PD-L1 staining IC of any intensity per interpretation guide.[29] The CDx cut-off for atezolizumab plus nab-paclitaxel for TNBC is an IC score of ≥1%.[8]

Statistical Analysis
Clinicopathologic differences between different breast cancer cohorts were analyzed using ANOVA, Chi-Squared Contingency Test, or Fisher’s Exact Test.  To examine the differences in the genomic landscape of the different cohorts, we identified the top 25 genes that have genomic alterations (GA) and compared these same genes with a Fisher’s Exact Test.  P values were adjusted for multiple comparisons using the Bonferroni method and adjusted p-values of  < 0.05 were considered significant.[30]

Results
Breast Cancer Brain Metastasis Patient Cohort
A total of 733 BCBM samples were included in this study. Median patient age was significantly higher in primary BC compared to BCBM cohort patients (55 and 53, respectively, p < 0.001) (Table 1). Predominant genetic ancestry of patients was not significantly different between brain metastasis and primary breast carcinoma samples (p = 0.22) (Table 1). 

In a subset of samples with PD-L1 IHC testing (n=188), 16 TNBC-BM samples and 172 primary TNBC had CGP performed concurrent with the PD-L1 IHC testing. In this cohort, the age and the predominant genetic ancestry were not significantly different between the TNBC-BM and primary TNBC disease subsets (p = 0.45 and p = 0.81, respectively) (Table 2).

Genomic Landscape of Breast Carcinoma Brain Metastases
CGP analysis of 733 BCBMs revealed the following top 10 most altered genes: TP53 (72.0%, 528/733), PIK3CA (28.7%, 218/733), ERBB2 (25.6%, 188/733), MYC (25.5%, 187/733), PTEN (16.8%, 123/733), CCND1 (14.9%, 109/733), RAD21 (14.1%, 103/733), FGF3 (13.5%, 99/733), FGF19 (13.5%, 99/733), and FGF4 (13.4%, 98/733) (Figure 1A). BCBMs enriched for GA in TP53 (72.0% [528/733] vs 59.7% [6405/10772], p < 0.001), ERBB2 (25.6% [188/733] vs 11.8% [1268/10772], p <0.001), RAD21 (14.1% [103/733] vs 10.3% [1108/10772], p = 0.046), NF1 (9.0% [66/733] vs 5.7% [615/10772], p = 0.016), BRCA1 (7.8% [57/733] vs 4.5% [486/10772], p = 0.005), and ESR1 (6.5% [46/733] vs 3.7% [397/10772], p = 0.024) compared to the primary BC cohort (Figure 1B, Supplemental Table 1). In addition, we identified 2.2% (16/733) of BCBM patients with a fusion, including 3 patients with a NOTCH1-SEC16A fusion and 1 patient with a RFX6-ROS1 fusion (Supplemental Table 2).

In this BCBM cohort, 51.7% (379/733) of the patients were positive for at least one CDx biomarker as determined by CGP (Figure 2). In terms of specific FDA-approved therapies with an associated biomarker, 24.3% (178/733) had ERBB2 amplifications, 26.7% (196/733) had PIK3CA mutations, 0% (0/733) had NTRK1/2/3 fusions, 11.9% (87/733) had BRCA1/2 mutations. Based on the somatic/germline status bioinformatic predictions, 28.6% (22/87) were germline mutations, 27.3% (21/87) were somatic mutations, and the algorithm wasn’t able to make a prediction in 57.1% (44/87) of the mutations. In the BCBM cohort, 26.2% (192/733) had at least one GA in one of the 14 genes involved in the Homologous Recombination Deficiency (HRD) pathway (7.8% (57/733) BRCA1, 5.7% (42/733) BRCA2, and 3.1% (23/733) ATM) (Supplemental Table 3).  ESR1 mutations almost always occur following endocrine therapy in estrogen receptor (ER) positive patients and has been shown to be a biomarker of endocrine resistance.[31] In this cohort of BCBM, 4.9% (36/733) of the patients harbored an ESR1 mutation(s) which could help inform decision making  for these BCBM patients as well as highlighting the importance of including such patients in any relevant clinical trials (Supplemental Table 4). 

In the CGP defined ERBB2 amplified BCBM cohort (n = 178), there were fewer genomic alterations in PTEN (1.7% [3/178] vs 21.6% [120/555], p < 0.001), RB1 (2.2% [4/178] vs 12.8% [71/555], p < 0.001), and BRCA1 (1.1% [2/178] vs 9.9% [55/555], p < 0.001) compared to the ERBB2 non-amplified BCBM cohort (Supplemental Table 5). This contrasts with the CGP defined TMB-High BCBM cohort (n = 119), where there was enrichment for alterations in PIK3CA (47.4% [55/119] vs 26.5% [163/614], p = 0.001) and ARID1A (16.4% [19/119] vs 5.7% [35/614], p = 0.009) compared to the non-TMB-High BCBM cohort (Supplemental Table 6).

In the confirmed TNBC-BM cohort, the top 5 genes with GA were TP53 (87.5%, 14/16), RAD21 (56.3%, 9/16), PTEN (37.5%, 6/16), MYC (31.3%, 5/16), and VEGFA (18.8%, 3/16) (Figure 3A). A significantly higher number of GA were present in the TNBC-BM cohort when compared to the primary TNBC cohort, though significant differences were not found in individual genes (p <0.001, p ≥ 0.05, respectively) (Table 2, Figure 3B, Supplemental Table 7). 

Immune Checkpoint Inhibitor (ICPI) Biomarkers 
ICPI biomarkers of TMB-High (16.2% [119/733] vs 5.4% [584/10772], p < 0.001), MSI-H (1.9% [14/733] vs 0.4% [42/10772], p < 0.001), CD274 (encodes for PD-L1 protein) amplification (3.6% [27/733] vs 1.7% [186/10772], p <0.001), and APOBEC mutational signature (5.9% [43/733] vs 3.6% [384/10772], p = 0.003) were significantly higher in the BCBM cohort when compared to the primary BC cohort (Table 1). In addition, we also examined the ICPI biomarker prevalence in ERBB2 amplification, PIK3CA mutations, BRCA1/2 mutations, and ESR1 mutation positive and negative disease subsets (Supplemental Table 8). In the PIK3CA mutation positive cohort, prevalence of TMB-High (26.0% [51/196] vs 12.7% [68/527], p < 0.001) and APOBEC mutational signature (14.8% [29/196], 2.6% [14/537], p < 0.001) was significantly higher when compared to the PIK3CA mutation negative cohort. No significant difference was found in the other comparisons.

The frequency of PD-L1 positivity was lower in the TNBC-BM cohort than that in the primary TNBC cohort (37.5% [6/16] vs. 64.0% [110/173], p = 0.057). However, when examining the other ICPI biomarkers (TMB-High: 18.8% [3/16] vs. 2.3% [4/172], p = 0.014; CD274 amplification: 18.8% [3/16] vs. 2.9% [5/172], p = 0.022), we saw a significantly higher prevalence in the TNBC brain metastatic cohort when compared to the primary TNBC cohort. No MSI-H patients were identified in the TNBC primary and BM cohorts. When using both CGP and PD-L1 IHC, 37.5% (6/16) of the TNBC patients were eligible for atezolizumab based on PD-L1 IHC, and 18.8% (3/16) were eligible for pembrolizumab based on TMB-High status, and 12.5% (2/16) of patients were eligible for both atezolizumab and pembrolizumab based on PD-L1 IHC and TMB-High status (Supplemental Figure 1). 

Paired Primary BC and BCBM Samples
In our cohort, 11 paired primary BC and BCBM samples were identified (Table 3). The time between the collection date of the primary BC sample to the BCBM sample ranged from 5.7 months to 8 years. Overall, there were an additional 23 amplifications, 9 mutations, and 1 fusion detected in the paired BCBM samples when compared to the paired primary BC samples. In addition, of the 11 paired cases, 90.9% (10/11) had at least one additional GA discovered in the BCBM sample when compared to the primary BC sample.  Also, 45.5% (5/11) of the BCBM samples did not have at least one GA that was found on the primary BC sample.  Of importance, case 1 (HR+/HER2-) had gained a PIK3CA E545K in the BCBM sample and did not have any PIK3CA mutations on the primary BC sample; and case 10 (HR+/HER2-) had gained a PIK3CA E726K in the BCBM sample in addition to the PIK3CA E545K on the original primary BC sample (Table 3). For ICPI biomarkers, case 11 showed a gain of a CD274 amplification and case 7 had changed to a TMB-High and MSI-H status in their paired BCBM sample; and three cases had lost the TMB-High status in their paired BCBM samples (Table 3).

We next compared the genomic profiles of the 11 primary breast cancer cases that eventually metastasized to the brain with the overall primary BC cohort. Here, we saw higher prevalence of GA in TP53 (90.9% [10/11] vs 59.4% [6395/10761], p = 0.860), PIK3CA (36.4% [4/11] vs 31.4% [3375/10761], p = 1), ERBB2 (27.3% [3/11] vs 11.8% [1265/10761], p = 1), and MYC (36.4% [4/11] vs 21.1% [2272/10761], p = 1), in the primary BC that eventually metastasized to the brain, though no significance was found due to the limited number of these samples (Supplemental Table 9). 

Discussion
This retrospective cohort study of 733 BCBM and 10,772 primary BC specimens revealed that brain metastases were more likely to exhibit TP53, ERBB2, RAD21, NF1, BRCA1, and ESR1 GAs. These genes have important clinical implications. For example, TP53 mutations has been shown to have distinct prognostic relevance; ERBB2 amplifications are an indication for the use for HER2 inhibitors; RAD21 expression confers resistance to chemotherapy; NF1 GA are associated contralateral breast cancer and poor survival, BRCA1/2 mutations are an indication for the use for PARP inhibitors; and ESR1 mutations are resistance biomarkers for aromatase inhibitor therapy.[5, 6, 31-35] In the confirmed TNBC cohort, the number of GA per sample was also increased in the brain metastases cohort and in many cases it was different from the primary BCs. Due to these differences, for patients with breast carcinoma that metastasized to the brain, the metastatic tissue in the brain or CSF specimen when safely available, should be considered as specimens for CGP testing.[36, 37] 

In the eleven-paired primary BC and BCBM samples we found that there was at least one additional GA in 90.9% (10/11) BCBM (post treatment) sample when compared to the primary BC sample and 45.5% (5/11) of the BCBM lost a least one GA when compared to the primary BC sample. One case had gained a PIK3CA mutation on the BCBM sample with no PIK3CA mutation detected in the primary BC sample, thus making the BM targetable with PIK3CA inhibitors. Another BM case gained an additional PIK3CA mutation on top of the original PIK3CA mutation, which likely portends a higher sensitivity to PIK3CA inhibitors when compared to a single PIK3CA mutation.[38, 39] Last, one case gained a CD274 amplification in the BCBM samples not previously detected in the primary BC sample which confers sensitivity to ICPI.[40] Previously, it was shown that HER2+ and TNBC breast carcinoma have an increased risk of developing brain metastasis.[20] In our 11 primary BC that eventually developed BM, we discovered a higher prevalence of GA in TP53, PIK3CA, ERBB2, and MYC which suggests that GA alterations in these genes could play a role in the metastasis of BC to the brain. It is important to note that our cohort is small, and so conclusions cannot be made on this data alone, but these findings do highlight important trends that should be expanded upon in a larger dataset. 

In the overall breast carcinoma cohort, the ICPI biomarkers of TMB-H, MSI-H, CD274 amplification, and APOBEC mutational signature, were all enriched in the BCBM samples when compared to the primary BC samples. Importantly, several have documented efficacy for immune checkpoint therapy in brain metastases (mostly from lung, melanoma and renal cell cancers).[41] These results further suggest that a subset of BCBM are positive for ICPI biomarkers and could be considered for treatment with ICPI. We detected enrichment of TMB-High and CD274 amplification in the TNBC-BM samples; however, we also found a lower PD-L1 positivity rate among TNBC-BMs compared to the TNBC primary cohort similar to what was previously described.[42] One possibility for this observed difference in PD-L1 positivity rate could be due to the small sample size.  However, it is more likely pre-analytic factors in processing brain specimens or biologic reasons caused a lower PD-L1 positivity rate in TNBC-BM specimens when compared to primary TNBC specimens, and this difference could be considered when choosing a sample for PD-L1 IHC testing for treatment purposes or enrollment into a clinical trial. 

Last, in the TNBC-BM confirmed cohort with PD-L1 testing (n=16), we saw that 37.5% (6/16) of the TNBC patients were eligible for atezolizumab based on PD-L1 IHC, 18.8% (3/16) were eligible for pembrolizumab based on TMB-High status, and 12.5% (2/16) patients were eligible for both atezolizumab and pembrolizumab based on PD-L1 IHC and TMB-High status. While there is a subset of patients eligible for both atezolizumab and pembrolizumab based on TMB and PD-L1 IHC, there is a distinct subset of patients only eligible for atezolizumab or pembrolizumab, exemplifying the importance of testing with both CGP and PD-L1 IHC in these patients. Given the recent approval of Dako 22C3 PD-L1 IHC in TNBC for pembrolizumab, it would be important to determine if the positivity for this assay overlaps with TMB and Ventana SP142 PD-L1 IHC. 

The major strength of this study is the large number of BCBM samples all undergoing centralized CGP using a single assay.  However, a primary limitation of this study is the limited clinical information available with the patient samples. It is likely that some primary BC samples in our study could also have concurrent BCBM; however, in the absence of clinical histories, we do not know the extent of their disease.  However, in general, most samples received at our institution are from patients with advanced disease at time of testing. Also, the rates of BCBM patients who undergo surgery and obtain a surgical specimen are low (Sperduto et al [21.1%, 521/2473] and (Lin et al [15.8%, 46/291]) and this study only represents the patients who had a tissue specimen for CGP testing.[43, 44] In addition, while we have the HER2 status of the patients in this study based on CGP testing, we do not have the ER/PR status of most of the patients to further stratify the patients based on ER/PR status.  Another limitation is that the only FDA approved therapy specifically for BCBM is tucatinib.  While the actionability of the biomarkers described in this study have been associated with breast carcinoma patients, they have not been FDA approved for BCBM patients, and so further clinical studies are needed to formally assess the actionability of these biomarkers in BCBM patients.  

Conclusion
We found a higher prevalence of clinically relevant GA in patients with BCBM which suggests that metastatic tissue to the brain or CSF specimen should be considered as specimens for CGP testing.[36] In addition, we saw a higher frequency of immunotherapy biomarker positivity in the BCBM cohort suggesting that patients with breast carcinoma metastasized to the brain should be assessed for ICPI biomarkers and advanced to such treatment modalities when clinically appropriate. Last, we found only a weak relationship between TMB and PD-L1 IHC which exemplifies the importance to test with both PD-L1 IHC and CGP for ICPI eligibility in TNBC patients with brain metastases.
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Figure Legend
Figure 1 Genomic landscape of breast carcinoma brain metastases (BCBM). A) Co-mutation plot of the 733 BCBM samples. The top 5 genes with genomic alterations (GA) were TP53, PIK3CA, ERBB2, MYC, and PTEN. B) Longtail plot of genes with GA and comparison between the BCBM and primary BC cohort. The genomics of the breast carcinoma brain metastases was different from primary breast carcinoma samples.  Enrichment of GA in TP53, ERBB2, RAD21, NF1, BRCA1, and ESR1 was present in the BCBM cohort when compared to the primary BC cohort (p < 0.05). 
Figure 2 BCBM patient eligibility for therapy based on CGP CDx dataset. In this BCBM cohort, more than half of the patients (51.7%, 379/733) were positive for at least one companion diagnostic biomarker as determined by CGP. 
Figure 3 Genomic landscape of triple negative breast carcinoma brain metastases (TNBC-BM). A) Co-mutation plot of the TNBC-BM cohort.  In the confirmed TNBC-BM cohort, the top 5 genes with genomic alterations (GA) were TP53, RAD21, PTEN, MYC, and VEGFA. B) Longtail plot of genes with GA and comparison between the TNBC-BM and primary TNBC cohort. A significantly higher number of GA were present in the TNBC-BM when compared to the primary TNBC cohort, though significant differences were not found in individual genes with GA (p < 0.001, p ≥ 0.05).







Table 1 Patient Characteristics of Primary Breast Carcinoma and Breast Carcinoma Brain Metastases
	Patient Characteristics
	Primary Breast Carcinoma (n=10772)
	Breast Carcinoma Brain Metastases (n=733)
	ap-value

	bAge (years old)
	
	
	<0.001

	Median
	55
	53
	

	Mean
	55
	53
	

	cPredominant Ancestry
	
	
	0.22

	African
	14.8% (1564)
	13.0% (94)
	

	Central and South American
	11.9% (1250)
	14.3% (103)
	

	East Asian 
	4.2% (442)
	3.7% (27)
	

	European
	67.3% (7094)
	66.7% (481)
	

	South Asian
	1.8% (192)
	2.2% (16)
	

	Immunotherapy Biomarkers 
	
	
	

	TMB-High
(≥10 mutations/Mb)
	5.4% (586)
	16.2% (119)
	<0.001

	MSI-High
	0.4% (42)
	1.9% (14)
	<0.001

	CD274 amplification
	1.7% (186)
	3.6% (27)
	<0.001

	APOBEC mutational signature
	3.6% (384)
	5.9% (43)
	0.003


aAll p-values from Fisher’s exact test except for age which is from ANOVA and predominant ancestry which is from Chi-squared contingency test; bAge was not available for 3 breast carcinoma brain metastases and 28 primary breast carcinoma samples; cPredominant genetic ancestry could not be determined for a few cases (n=721 for total breast carcinoma brain metastases and n= 10542 for total primary breast carcinoma)













Table 2 Patient Characteristics of Primary TNBC and TNBC Brain Metastases
	Patient Characteristics
	Primary TNBC (n=172)
	TNBC Brain Metastases (n=16)
	p-value

	Age (years old)
	
	
	*0.454

	Median
	54
	58.5
	

	Mean
	54.1
	56.9
	

	Predominant Ancestry
	
	
	**0.805

	African
	25.0% (43)
	18.8% (3)
	

	Central and South American
	12.2% (21)
	18.8% (3)
	

	East Asian 
	2.9% (5)
	0% (0)
	

	European
	57.6% (99)
	62.5% (10)
	

	South Asian
	2.3% (4)
	0% (0)
	

	PD-L1 Positivity Rate (IC ≥ 1)
	64.0% (110)
	37.5% (6)
	***0.057

	# of GA / sample
	
	
	*<0.001

	Median
	5
	8
	

	Mean
	5.7
	8.3
	

	Immunotherapy Biomarkers
	
	
	

	TMB-High
(≥10 mutations/Mb)
	 2.3% (4)
	18.8% (3)
	***0.014

	MSI-High
	0% (0)
	0% (0)
	***1

	CD274 amplification
	2.9% (5)
	18.8% (3)
	***0.022















Table 3 Genomics of 11 Paired Primary Breast Carcinoma and Breast Carcinoma Brain Metastasis Samples
	Case
	Days b/w Specimen Collection
	Pt Age at pBC
	 Ancestry
	Histologic Subtype
	HR/HER2 Status 
	*Primary Breast Carcinoma
	*BCBM
	Addition of Genomic Findings 
	Loss of Genomic Findings

	1
	720
	56
	European
	 invasive ductal carcinoma 
	HR+/HER2-
	MYC amp, MDM2 amp, ZNF703 amp, ESR1 D538G, TMB-High
	MYC amp, MDM2 amp, ZNF703 amp, FRS2 amp, ARFRP1 amp, PIK3CA E545K, ESR1 D538G
	PIK3CA E545K, FRS2 amp, ARFRP1 amp
	TMB-High

	2
	2937
	58
	European
	 invasive ductal carcinoma 
	HR-/HER2- (TNBC)
	EGFR amp, TP53 R342fs*3, PIK3CA V105_R108del
	EGFR amp, EMSY amp, FGF19 amp, CCND1 amp, FGF3 amp, FGF4 amp, TP53 R342fs*3, IKZF1 G141*, PIK3CA V105_R108del
	EMSY amp, FGF19 amp, CCND1 amp, FGF3 amp, FGF4 amp, IKZF1 G141*
	N/A

	3
	343
	33
	East Asian 
	 invasive ductal carcinoma 
	HR(unk)/ HER2-
	FGFR2 amp, MYC amp, TP53 A159P, PIK3R1 N673fs*19, STK11 V337fs*22
	FGFR2 amp, TP53 A159P, CDH1 duplication, STK11 V337fs*22
	CDH1 duplication
	MYC amp, PIK3R1 N673fs*19

	4
	608
	41
	European
	 invasive ductal carcinoma 
	HR+/HER2-
	CCND1 amp, FGFR2 amp, PIK3CA H1047R, TP53 R280K
	FGFR2 amp, CCND1 amp, EMSY amp, PIK3CA H1047R, TP53 R280K
	EMSY amp
	N/A

	5
	172
	31
	European
	 invasive ductal carcinoma 
	HR-/HER2- (TNBC)
	REL amp, PDGFRA amp, KIT amp, KDR amp, TP53 M237I
	REL amp, KIT amp, KDR amp, TP53 M237I
	N/A
	PDGFRA amp

	6
	639
	27
	European
	 invasive ductal carcinoma 
	HR-/HER2+
	ERBB2 amp, MYC amp, TP53 R175H
	ERBB2 amp, MYC amp, TP53 R175H, RB1 splice site 1390-16_1421+29del77
	RB1 splice site 1390-16_1421+29del77
	N/A

	7
	610
	65
	European
	 invasive lobular carcinoma 
	HR(unk)/ HER2+
	ERBB2 amp, MLH1 del, TP53 R267G, ERBB2 V777L, CDK12 truncation, BCORL1 P1681fs*20, CDH1 N315fs*6, CHD4 Q1596*, NOTCH3 N1961fs*5
	ERBB2 amp, MLH1 del, ERBB2 V777L, TP53 R267G, ABL1 P310fs*9, CDK12 truncation, NOTCH3 N1961fs*5, MSH3 K383fs*32, BCORL1 P1681fs*20, CDH1 N315fs*6, SMO P694fs*82, TMB-High, MSI-H
	ABL1 P310fs*9, MSH3 K383fs*32, SMO P694fs*82, TMB-High, MSI-H
	CHD4 Q1596*,

	8
	1008
	61
	African
	 invasive ductal carcinoma 
	HR-/HER2+
	TOP2A amp, ERBB2 amp, SMAD2 del, PIK3CA G1049R, TBX3 E275fs*7, TP53 D281fs*24
	ERBB2 amp, SMAD2 del, ZNF703 amp, FGFR1 amp, TOP2A amp, PIK3CA G1049R, TBX3 E275fs*7, TP53 D281fs*24
	ZNF703 amp, FGFR1 amp
	N/A

	9
	618
	39
	African
	 invasive ductal carcinoma 
	HR-/HER2- (TNBC)
	MYC amp, LYN amp, MYST3 amp, BCL2L2 amp, TP53 E204*, EP300 truncation
	LYN amp, MYST3 amp, MYC amp, BCL2L2 amp, NCOR1 G150R, TP53 E204*
	NCOR1 G150R
	EP300 truncation

	10
	784
	51
	European
	breast carcinoma (nos)
	HR+/HER2-
	ZNF217 amp, GNAS amp, AURKA amp, TP53 R196Q, XRCC2 R91Q, PIK3CA E545K, ARAF E568*, NF1 splice site 4577+1G>A, IRF2 E30*, GATA3 S408*, APOBEC mutational signature, TMB-High
	AURKA amp, ZNF217 amp, GNAS amp, PIK3CA E726K, PIK3CA E545K, XRCC2 R91Q, NF1 S1954*, CDKN1B S138*, APOBEC mutational signature
	PIK3CA E726K, NF1 S1954*, CDKN1B S138*
	TP53 R196Q, ARAF E568*, NF1 splice site 4577+1G>A, IRF2 E30*, GATA3 S408*, TMB-High

	11
	473
	41
	Central and South American
	breast carcinoma (nos)
	HR-/HER2- (TNBC)
	EGFR amp, PRKCI amp, TERC amp, FGF12 amp, TP53 P300fs*6,
TMB-High
	RAD21 amp, SOX2 amp, MYC amp, CCNE1 amp, MYCL1 amp, RPTOR amp, CD274 amp, PRKCI amp, EGFR amp, VEGFA amp, PIK3CA amp, TERC amp, PDCD1LG2 amp, FGF12 amp, NOTCH3 amp, JAK2 amp, CCND3 amp, MYB-AHI1 rearrangement, TP53 P300fs*6
	RAD21 amp, SOX2 amp, MYC amp, CCNE1 amp, MYCL1 amp, RPTOR amp, CD274 amp, VEGFA amp, PIK3CA amp, PDCD1LG2 amp, NOTCH3 amp, JAK2 amp, CCND3 amp, MYB-AHI1 rearrangement
	TMB-High


*Immune checkpoint inhibitor biomarkers of TMB-High, MSI-H, CD274 amplification, and APOBEC mutational signature are also included when present. 
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