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Abstract 15 

The use of primary neuronal cultures generated from Drosophila tissue provides a powerful model for 16 

studies of transport mechanisms. Cultured fly neurons provide similarly detailed subcellular resolution 17 

and applicability of pharmacology or fluorescent dyes as mammalian primary neurons. As an 18 

experimental advantage for the mechanistic dissection of transport, fly primary neurons can be 19 

combined with the fast and highly efficient combinatorial genetics of Drosophila, and genetic tools for 20 

the manipulation of virtually every fly gene are readily available. This strategy can be performed in 21 

parallel to in vivo transport studies to address relevance of any findings. Here we will describe the 22 

generation of primary neuronal cultures from Drosophila embryos and larvae, the use of external 23 

fluorescent dyes and genetic tools to label cargo, and the key strategies for live imaging and 24 

subsequent analysis. 25 

1 Introduction 26 

Neurons extend axons to communicate and innervate all parts of the body. Axons are the longest 27 

cellular protrusions, with motorneurons reaching up to a meter in humans. Axons predominantly form 28 

output synapses which are in their majority located at the distant end of the axon. The extreme spatial 29 

separation between synaptic terminals and the neuronal cell body or soma poses a logistical problem 30 

in that soma-derived proteins, RNAs, lipids and organelles crucial for the sustainability and function of 31 

axons and their synapses, need to be transported over large distances [1-3].  32 

Long distance axonal transport involves the coordinated action of motor proteins binding directly or 33 

indirectly (through adaptors) to the transported cargoes whilst walking along microtubules [4-7]. For 34 

this, axonal microtubules are arranged into loose parallel bundles that run all along the axon shaft 35 

[8,9]. Motor proteins involved in long distance axonal transport use ATP as energy source to step along 36 

microtubules; they include dynein/dynactin responsible for retrograde movements and certain 37 

members of the kinesin family for anterograde transport (kinesin-1, -2, -3, -4 [3,10,11]). Apart from 38 

antero- and retrograde cargo transport, this system must also ensure the controlled release, hence 39 

delivery, of cargoes at the appropriate target sites [12,13].   40 

It is not surprising that many neurodegenerative diseases are linked to genetic defects in this transport 41 

machinery, thus highlighting the importance of this process for neuronal function and viability [5,14]. 42 

Decrease in axonal transport is also considered as a widespread ageing hallmark [15]. It is therefore 43 
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pivotal to understand the transport machinery, its regulatory mechanisms and the consequence of its 44 

dysfunction.  45 

Despite the recent advances in understanding the mechanism of fast axonal transport (e.g. [16-19]), 46 

there are numerous unresolved issues in relation to the regulation of speed, directionality, selectivity 47 

of transport, targeted unloading of cargoes, and adaptation of transport to the specific cellular 48 

demands. Such complex regulatory processes are likely to involve the specific compositions of motor 49 

protein complex (e.g type of motor protein and cargo adaptors [20,21]), the interaction between 50 

different complexes and with other classes of microtubule binding proteins [22,23,2], 51 

posttranslational modifications (PTMs) of these complexes or of their microtubule tracks mediated by 52 

the orchestrating action of signalling pathways [24].    53 

 54 

A powerful model to study transport mechanisms in its complexity, is the fruit fly Drosophila 55 

melanogaster, which has been used for this purpose for more than two decades (e.g. [25-30]. The 56 

fundamental function and structure of Drosophila and vertebrate neurons is comparable [31-35], 57 

including the organisation and regulation of microtubules which follow similar organisational 58 

principles as in vertebrates, in spite of the fact that neurofilaments are absent [9]. Furthermore, most 59 

motor proteins have counterparts in Drosophila, but there is less redundancy: while around 40 genes 60 

encode members of the kinesin super-family in vertebrates [36], only 18 kinesin coding genes cover a 61 

similar range of motor protein classes in Drosophila [3]. For example, kinesin light chain comprises 3 62 

mouse members, but only one in Drosophila [3]. In addition, an arsenal of genetic tools for the 63 

manipulation of virtually every fly gene is readily available or can be efficiently generated through 64 

genomic engineering, and they can be easily targeted to specific neurons or combined to generate 65 

loss or gain of function of different genes or tools in the same neurons or organisms [37-39]. 66 

 67 

In its majority, research in Drosophila neurons makes use of in vivo studies in the whole organism. 68 

However, also the use of cultured Drosophila primary neurons, first used half a century ago (e.g. 69 

[40,41]) has proven a valuable complementary strategy. As is the case for mammalian primary 70 

neurons, also fly neurons give access to subcellular detail and robust and sensitive readouts and are 71 

accessible to external application of compounds such as fluorescent dyes and drugs [42-46]. 72 

Importantly, many of the observed subcellular features and dynamics are very similar to those of 73 

vertebrate neurons [47]. However, as an important advantage, primary fly neurons are accessible to 74 

the powerful combinatorial genetics mentioned above: as long as genetically manipulated embryos 75 

can generate neurons, these can be analysed in culture. Accordingly, primary Drosophila neuronal 76 

cultures have been used to successfully study various different aspect of neuronal physiology [48] [49], 77 

including cell division [50], axon guidance [51-53], cytoskeletal dynamics [54,55,43,56-58,42,59,60], 78 

neuronal activity [61,62], protein aggregation in neurodegenerative disease models [63], receptor 79 

signalling and trafficking [53,45] and for the study of axonal transport [64,44,65]. In this method paper 80 

we will explain primary neuronal cultures from Drosophila as cellular system where axonal transport 81 

can be studied efficiently. 82 

 83 

 84 

 85 

2 Materials 86 

1. Drosophila specimens: primary neuronal cultures can be performed from Drosophila embryos 87 

[66], late instar L3 larva [54] and late pupa [67] (see Note 1).  88 

2. Sodiumhypochlorite solution (or household bleach), diluted 1:1 with water to 50%. 89 

3. Ultrafine sieves and brushes for the collection and cleaning of embryos. 90 

4. Agar plates: dissolve 2-4% agar in water, boil, pour into empty plastic petri dishes (50mm 91 

diameter), let cool down and harden. 92 

5. 70 % Ethanol in ultrapure (Milli-Q) autoclaved water. 93 
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6. Supplemented Schneider’s medium pH 6.8 – 7.0: Combine Schneider’s Drosophila medium 94 

with 20 % non-heat inactivated FBS. Filter-sterilise and protect from light with aluminium foil. 95 

To inactivate the serum’s complement system incubate for 3 days at 26°C (alternatively use 96 

heat-inactivated FBS and skip the 3 days incubation at 26°C). Add 2 μg/mL insulin (2 mg/ml 97 

insulin stock can be aliquoted and kept at -20°C). Use a small aliquot of medium to test the pH 98 

and adjust to 6.8–7.0 with 1 N HCl or NaOH if needed. Aliquots of 1 to 2 mL medium can be 99 

stored at −80°C for 6 months. After thawing aliquots for use, filter-sterile with an 0.22 µm 100 

syringe filter and freshly add 10 U Penicillin / Streptomycin per mL medium. 101 

7. HBSS buffer: 30 mL 10 x Hanks' Balanced Salt Solutions (GIBCO, no calcium or magnesium), 102 

3ml Penicillin/Streptomycin (GIBCO, 10000 U/mL), 167 mL distilled water, 0.01g 103 

phenylthiourea; aid to dissolve by incubating at 37 °C for 30 minutes, sterile filter with 0.22 104 

µm filter. This buffer can be stored in aliquots at 4°C for 6 months.  105 

8. Dispersion or dissociation medium: dissolve 0.005 mg Dispase II and 0.001 mg Collagenase 106 

type V in 2 ml HBSS medium. Incubate at 37 °C for 30 minutes until dissolved. Filter through a 107 

0.22 µm filter and store at 4°C. It can be used for up to a week.  108 

9. Pestles: small autoclavable plastic pestles for 1.5 ml microcentrifuge tubes with a tight fit.  109 

10. Custom-made culture chambers or 35-mm glass bottom dishes (MatTek) to grow primary 110 

neurons:  culture chambers can be assembled from 1 lead-free glass microscope slide (Menzel 111 

Gläser) with a 15-mm hole (custom-made at a workshop) and 1 intact slide glued together 112 

with aquarium silicone. Dry (up to 5 days) and scrape off any excess silicone. Clean with 70% 113 

ethanol followed by 100% acetone. The chambers can be reused after cleaning with acetone 114 

and autoclaving. Alternatively, use 35-mm glass bottom dishes (for example from MatTek) 115 

with optical quality glass for microscopy. While incubation chambers and glass bottom plates 116 

can be used with inverted microscopes, incubation chambers are ideal for upright 117 

microscopes. 118 

11. 4x concanavalin A stock solution: in a laminar flow hood, dissolve concanavalin A (conA) in 119 

ultrapure autoclaved water to a concentration of 20 µg / mL. This stock solution can be frozen 120 

in aliquots at -20 °C. 121 

12. Treated coverslips: Drosophila primary neurons can grow on acetone-treated or conA -coated 122 

glass coverslip (Menzel Gläser, 24 x 24 mm, VWR international MENZBB024024A123). For 123 

acetone treatment, dip coverslips in 100% acetone, let dry and autoclave. For conA treatment, 124 

incubate coverslips with 150 µL conA at a concentration of 5 µg / mL at 37 °C for 1.5 hours. 125 

Remove conA solution, wash with 150 µL sterile water, remove and dry at ~50 °C overnight. 126 

Note that the morphology of neurons changes when growing on conA [66]. When using glass 127 

bottom dishes for live imaging, treat the glass coverslip that is attached to the bottom of the 128 

dish. 129 

13. Vaseline for sealing chambers/dishes with coverslips. 130 

14. 100 nM LysoTracker DND-99 / 50 nM MitoTracker Green FM/CMXRos in supplemented 131 

Schneider’s medium. 132 

15. Fixatives: We carry out standard fixations in 4% paraformaldehyde in 0.1 M phosphate buffer 133 

(pH 7.2). To prepare 100 mL fixative, dissolve 4 g Paraformaldehyde in 36 mL 0.2 M NaH2PO4 134 

(warm up slightly and stir), add 14 mL 0.2 M NaH2PO4 and fill up with water. Adjust pH if 135 

necessary.  136 

16. PBT: 0.3 % Triton X-100 (v/v) in 1x PBS 137 

 138 

3 Methods 139 

3.1 Drosophila embryonic primary neuronal cultures (Fig. 1A-D) 140 
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Drosophila primary neuronal cultures can be prepared from several developmental stages (embryo, 141 

larva and pupa) [66]. In this chapter, we will discuss our protocol for primary neuronal cultures derived 142 

from whole embryos or third instar larval CNSs, in which our transport studies have been performed 143 

(Fig. 1-2).  144 

1. Collect embryos (Fig. 1A.1) in vials or cages for ~15 hours at 20-25 °C (the temperature can be 145 

adapted to increase the yield of stage 11 to 12 embryos [68], see Notes 1 and 2). 146 

2. Dechorionate embryos (Fig. 1A.2) with 50 % bleach for 90 s. Wash thoroughly with water in a 147 

sieve. Note that extended incubations as well as the quality of the bleach can affect the 148 

viability of the cultures. Carefully collect embryos with a thin paint brush from the sieve and 149 

transfer them to an agar plate. 150 

3. Select stage 11 to 12 embryos (Fig. 1A.3) by autofluorescence pattern (for embryo stages see 151 

[68]; see Note 3 a-c).  If mutant Drosophila stocks are used (with adequate GFP-balancers), 152 

mutant embryos can now be selected based in the absence of GFP, using a fluorescent 153 

dissection microscope. For cultures on acetone treated glass coverslip select 10 embryos per 154 

culture (the number of embryos can be altered to achieve different densities of neurons in 155 

culture).  For cultures on conA coated glass coverslip select 5 embryos per culture.  156 

4. Transfer the embryos (Fig. 1B.4-5) into a 1.5 mL tube with a 5 µL drop of supplemented 157 

Schneider’s medium using clean forceps (with 70% ethanol). From this point on the next steps 158 

will be performed in a laminar flow hood wearing gloves and with autoclaved materials 159 

whenever possible. 160 

5. Wash the embryos (Fig. 1B.4-5) with 70 % ethanol solution for 30 s by gently inverting the 161 

tube several times. 162 

6. Remove ethanol and wash embryos in 500 µL supplemented Schneiders medium (Fig. 1B.6). 163 

Take care not to accidentally pipette the embryos. Pipetting against a black background can 164 

help to visualise the embryos.  165 

7. Replace Schneider’s medium with 100 µL HBSS-based dispersion medium at RT (Fig. 1B.7-9; 166 

see Note 4) 167 

8. Grind embryos in the tube with an autoclaved pestle to break down the embryos (Fig. 1B.7-168 

9), use one pestle per genotype (see Note 5). At this step there is the option to add a 169 

preculture step to reduce maternal contribution of proteins or allow for extra time for 170 

knockdowns to work, see section 3.2).   171 

9. Incubate the tubes with the cell dispersion for 4 - 7 min at 37 °C (Fig. 1B.7-9). OPTION: This 172 

step can be omitted leading to neurons with more complex morphologies and less isolated 173 

single neurons. 174 

10. Stop the dispersion reaction by removing from 37 °C and adding 200 µL of supplemented 175 

Schneider’s medium (Fig. 1B.10). 176 

11. Sediment cells at 600 - 750 x g for 4 min (Fig. 1B.11-12). Remember the orientation of the tube 177 

during centrifugation since it may be difficult to see the pellet. 178 

12. Aspirate and discard the medium (Fig. 1B.11-12). Make sure this step is performed promptly 179 

to avoid cell pellets resuspending in the old medium. Add 31 µL of fresh supplemented 180 

Schneider’s medium per culture/chamber. Adjust volume depending on the final number of 181 

cultures (we usually prepare 3 cultures per condition at a time). Gently resuspend cells in 182 

Schneider’s medium without generating bubbles. 183 

13. Distribute 30 µL cell suspension to either glass bottom dishes (treated with acetone or coated 184 

with conA) and cover with a regular coverslip using Vaseline as sealant; or to custom-made 185 

culture chambers and cover with a lead-free coverslips (treated with acetone or coated with 186 
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conA) and seal with Vaseline (Fig. 1C.13). Note that the morphology of neurons changes when 187 

growing on conA [66]. 188 

14. Let the cells settle onto the acetone or conA treated surfaces for 2 hours at 26°C (Fig. 1C.14).  189 

15. Flip over the incubation chambers / glass bottom dishes and grow primary neurons on top of 190 

the chamber as hanging drop cultures (Fig. 1C.15) until the desired time in vitro has been 191 

reached (see Note 6). 192 

 193 

3.2 Pre-culture step for Drosophila embryonic primary neuronal  194 

Cells can be cultured in a 1.5 mL tube for several days before being dispersed again and grown on 195 

coverslips in culture chambers. This step is useful in order to deplete healthy gene product deposited 196 

by heterozygous mothers in the egg cells (which otherwise carry mutations in a specific gene). 197 

Maternally contributed gene products can persist for several days and mask the homozygous mutant 198 

phenotype of embryos and larvae [69]. This step is also effective in allowing extra time for conditions 199 

of knockdowns. 200 

 201 

1. Follow steps 1-8 of Section 3.1 (Drosophila embryonic primary neuronal cultures). For this 202 

protocol increase the number of embryos to 15 per slide and use ConA coated coverslip. 203 

2. After grinding the embryos, immediately add 200 µL of supplemented Schneider’s medium. 204 

3. Sediment cells at 600 - 750 x g for 4 min. 205 

4. Aspirate the medium. Add 100 µL of fresh supplemented Schneider’s medium, gently 206 

resuspend cells and incubate in the tube for the desired time at 26°C (1-7 days). 207 

5. After the incubation, sediment cells at 600 - 750 x g for 4 min. 208 

6. Aspirate Schneider’s medium and add 100 µL HBSS-based dispersion medium. 209 

7. Gently resuspend the cell pellet and incubate 4 - 7 min at 37 °C.  210 

8. Continue from step 10 of Section 3.1 (Drosophila embryonic primary neuronal cultures). 211 

 212 

3.3 Third instar larval brain cultures   213 

1. Collect 2-3 late stage 3 larvae per culture. 214 

2. Wash larvae 3x in in 1.5 mL 70% ethanol. 215 

3. Wash larvae 3x in 1.5 mL sterile PBS. 216 

4. Transfer larvae into a sterile dissection dish with supplemented Schneiders medium. 217 

5. Dissect out brains (use sterile forceps) and transfer to a 1.5 mL tube with supplemented 218 

Schneiders medium. 219 

6. All following steps should be done in a laminar flow hood. 220 

7. Wash brains 3x in 500 µL supplemented Schneider’s medium. 221 

8. Remove medium and replace with 100 µL dispersion medium. 222 

9. Continue from step 8 of Section 3.1 (Drosophila embryonic primary neuronal cultures). 223 

3.4 Labelling of cargo 224 

The use of primary neuronal cultures to study transport allows the labelling of cargo by (a) genetically 225 

encoded tools, mostly tagged proteins or localisation sequences fused with GFP or other fluorophores 226 

and (b) fluorescent chemical compounds applied to the culture media such as LysoTracker, fluoro-227 

dextranes and mito-tracker. Here we describe the methods and tools we have been experimenting 228 

with. However, there is an arsenal of further tools that can be used to label specific cargo, such as 229 
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dense-core vesicle labelled with atrial natriuretic factor-GFP (ANF-GFP), APP-positive vesicles labelled 230 

with App-YFP, Golgi vesicles labelled with GalT-RFP, endosomes labelled with Rab4-RFP and 231 

ribonucleoprotein granules labelled whit GFP-Imp to mention some [27,70,30].  232 

3.4.1  LysoTracker staining (see Note 7): 233 

LysoTracker is a fluorescent probe which, due to its hydrophobic nature, diffuses into cells, and 234 

preferentially accumulates in vesicles with an acidic content. It is commonly used in vertebrate models 235 

to label late endosomes/lysosomes and to study their trafficking within cells including neurons [71-236 

75]. LysoTracker has been used previously to label lysosomes/late endosomes in Drosophila primary 237 

neuronal cultures [76], Drosophila tissue and cells lines [77]. Here we will describe its use in Drosophila 238 

primary neuronal culture (Fig. 2A, Suppl. Movie 1). Using this method, we find LysoTracker-positive 239 

vesicles move at ~0.6-0.9 µm/s in either direction (compared to reported average speeds for 240 

lysotracker vesicles between 0.34 µm/s and 1.2 µm/s in vertebrate neurons) [78]. 241 

1. Follow sections 3.1 - 3.3. for the generation of Drosophila primary neuronal cultures.  242 

2. Prepare supplemented Schneider’s medium with 100 nM LysoTracker DND-99.  243 

3. Shortly before use, spin down solution to remove any precipitates that might have formed 244 

and could affect imaging. 245 

4. When cells have reached the desired maturity (see Note 8), detach the coverslips from the 246 

culture chambers or glass bottom dish and wash the cells (they will be attached to the 247 

coverslips if using culture chambers or at the bottom of the glass bottom dish) and culture 248 

chambers in supplemented Schneider’s medium with 100 nM LysoTracker DND-99.  249 

5. Remove all medium and add 50 - 60 µL supplemented Schneider’s medium with 100 nM 250 

LysoTracker DND-99 to the culture chambers/glass bottom dishes.  251 

6. Reseal the culture chambers/glass bottom dishes with the same coverslip, a new Vaseline seal 252 

may be required. 253 

7. Incubate for 15 minutes at the desired temperature. 254 

8. Replace labelling solution with 50-60 µL label-free supplemented Schneider’s medium. 255 

9. Let cells adjust to the condition in the imaging chamber for 15 minutes and proceed to image 256 

the cells.  257 

3.4.2  MitoTracker staining: 258 

Mitochondria can be labelled by both fluorescent mitochondrial dyes including MitoTracker and 259 

genetically encoded fluorescently tagged mitochondrial proteins or tagged mitochondria-targeting 260 

sequences (such as mito-GFP [79], mito-mCherry [70]). MitoTracker is a fluorescent dye which 261 

covalently binds free sulfhydryls. It is frequently used for transport studies in vertebrate neurons [80] 262 

[81] [74] and some MitoTracker variants have previously been used in Drosophila tissue and in 263 

Drosophila cell lines to label mitochondria [82]. We experienced that MitoTracker dyes in Drosophila 264 

primary neuronal cultures can diminish mitochondrial dynamics slightly, as has similarly been reported 265 

for rat hippocampal neurons [83]. Nonetheless, MitoTracker easily and reliably labels mitochondria in 266 

cultured neurons and in our studies, it is instrumental in determining the number and distribution of 267 

mitochondria at the axon, cell body and synaptic terminals in fixed samples [44]. Here we will describe 268 

how we use MitoTracker (Fig. 2B, Suppl. Movie 2), before explaining the use of genetically encoded 269 

fluorescently tagged mitochondrial proteins in the next section.  270 

1. Follow sections 3.1 - 3.3. for the generation of Drosophila primary neuronal cultures.  271 

2. Prepare supplemented Schneider’s medium with 50 nM MitoTracker Green FM or CMXRos 272 

(note that not all MitoTracker variants will be retained after fixation).  273 
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3. Shortly before use, spin down solution to remove any precipitates that might affect the 274 

imaging. 275 

4. Once primary neuronal cultures from the desired genotype have reach the preferred 276 

developmental stage, detach the coverslips from the culture chambers or glass bottom plates 277 

and wash the cells (they will be attached to the coverslips if using culture chambers or at the 278 

bottom of the   glass bottom plates) and culture chambers in supplemented Schneider’s 279 

medium with 50 nM MitoTracker Green FM/CMXRos.  280 

5. Remove all medium and add again 50 - 60 µL supplemented Schneider’s medium with 50 nM 281 

MitoTracker Green FM/CMXRos. Be careful as the coverslips are prone to break.  282 

6. Replace Vaseline and reseal the culture chambers/ glass bottom plates back. 283 

7. Incubate for 15 minutes.  284 

8. Remove medium and replace with regular supplemented Schneider’s medium. 285 

9. Proceed to imaging. OPTION: MitoTracker CMXRos-labelled cultures can be fixed by following 286 

the steps below. 287 

10. Prewarm the standard fixative to RT. With a black permanent pen, mark the region of the 288 

culture drop on the non-cell side of the coverslip. Remove the coverslip from culture chamber 289 

and position on a piece of plasticine or a rubber block with the cells facing up in a humid 290 

chamber. If glass-bottom dishes are used, detach the coverslips from the culture chambers 291 

and proceed to step 8. 292 

11. Add 100–200 μL of 4% paraformaldehyde to the cells. Close the humid chamber and incubate 293 

for 30 min.  294 

12. Remove fixative and discard adequately, wash the cultures three times with PBT. MitoTracker 295 

can be combined with immunocytochemistry, using standard protocols [84]. 296 

 297 

3.4.3  Genetically encoded cargo markers (e.g. Synaptotagmin-GFP and mito-GFP/mCherry): 298 

Genetically encoded fluorescent tools are particularly useful to examine the dynamics of motile 299 

organelles and transport vesicles in neurons and have been used to this end during decades in vivo 300 

and in vitro studies and in various organisms including rodents, zebrafish, Drosophila and C. elegans 301 

[85] [86] [87] [88]. Drosophila examples of such tools include synaptic vesicle proteins such as GFP-302 

fused Synaptotagmin, Synaptobrevin and Synaptogyrin to label synapses and synaptic transport, 303 

tagged Ras-associated binding GTPases and Autophagy-related proteins to label endosomes and 304 

autophagosomes respectively, and mitochondrial targeting sequences fused to fluorescent proteins 305 

(eg. mito-GFP) to label mitochondria [44,65,89,90,45]. We have used primary cultures derived from 306 

transgenic Drosophila embryos expressing mito-GFP/mCherry, Synaptobrevin-GFP and 307 

Synaptotagmin-GFP using the UAS/Gal4 system to study the impact mutations in microtubule 308 

regulators such as Tau and spectraplakins [44] and 1-tubulin84B have on axonal transport. Here we 309 

will describe how we use genetically encoded cargo markers (see Note 9), for examples see Fig. 2C 310 

and D; Suppl. Movies 3 and 4. Using this method, we find Synaptotagmin-positive vesicles move at a 311 

velocity of about 1.0-1.9 µm/s. 312 

1. Generate Drosophila primary neuronal cultures (sections 3.1 - 3.3) from embryos or larvae 313 

expressing the genetically encoded cargo marker in the desired genetic background (see Note 314 

10 for suitable drivers and transfection options). 315 

2. Once primary neuronal cultures have reached the adequate developmental stage, detach the 316 

coverslips from the culture chambers or glass-bottom dishes and wash the cells (they will be 317 

attached to the coverslips if using culture chambers or at the bottom of the glass bottom 318 
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plates) and culture chambers in supplemented Schneider’s medium (~60 µL). Be careful as the 319 

coverslips are prone to break. This step is important to remove debris from the cultures which 320 

may interfere with live imaging. 321 

3. Remove all medium without disturbing the cells and add 50 - 60 µL fresh supplemented 322 

Schneider’s medium to the chamber/dish. 323 

4. Re-apply new Vaseline if needed and place the coverslip back in place. 324 

5. Let the cells adjust to the imaging conditions for 30 minutes in the environmental chamber 325 

attached to the microscope. 326 

 327 

3.5 Live imaging of neuronal transport 328 

Imaging neuronal transport is a delicate balancing act between sufficiently high resolution to visualise 329 

small vesicles, short exposure times to allow visualisation of fast neuronal transport events and 330 

minimise exposure to avoid photo-cytotoxic effects and photo-bleaching. We make use of spinning 331 

disk microscopy as the systems have been specifically developed to reduce phototoxicity whilst 332 

providing provide high sensitivity. 333 

1. Image neurons using a spinning disk confocal (SDC) microscope with environmental chamber 334 

and at least 60 x magnification objective (or equivalent equipment with good sensitivity and 335 

signal to noise ratio). Ideally, set the environmental chamber to the same conditions as the 336 

primary neurons were cultured at. 337 

2. Use a microscope with automated z-focus control (e.g. Definite Focus system or similar), 338 

which is highly advantageous as any focus drift could shift vesicles/organelles out of focus and 339 

prevent successful tracking of their movement (see Note 11). 340 

3. Use either eye piece widefield fluorescence, phase contrast or SDC imaging to locate suitable 341 

cells. 342 

4. Make sure to take note of the position of the cell body and axon/neurite tips for all imaged 343 

cells / axons to determine antero- and retrograde directionality. 344 

5. Image with the appropriate timeframes and acquisition intervals, depending on the observed 345 

organelle/vesicle speeds, mutant conditions, labels used in the assay and their intensity during 346 

imaging. For LysoTracker, Synaptobrevin-GFP, Synaptotagmin-GFP and mito-GFP/mCherry, 347 

imaging timeframes in the range of 1 - 5 minutes at 0.25 - 1 second intervals have been used 348 

successfully. Due to the frequency of events and the slow transport component of 349 

mitochondria, imaging intervals might be expanded, and intervals prolonged for the analysis 350 

of mitochondrial transport. 351 

6. Adjust the imaging conditions to the moving, not the stationary objects. 352 

7. The number of cells to image depends on the frequency/number of visualised transport 353 

events. For the most part we have imaged 10-20 cells per each of the 3 coverslips, for 354 

statistical analysis of organelle/vesicle movements (e.g. Synaptotagmin-GFP, LysoTracker).  355 

8. Process the imaging time series for either direct object tracking or kymograph analyses. 356 

 357 

3.6 Analysing axonal transport 358 

1. Process the imaging time series for either direct object tracking (manual tracking plugin 359 

for ImageJ, TrackMate [91]) or kymograph generation and analyses (e.g. 360 

KymoResliceWide & Velocity measurement (http://dev.mri.cnrs.fr/projects/imagej-361 

macros/wiki/Velocity_Measurement_Tool [92]) or KymoAnalyzer plugins for ImageJ [93]). 362 
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2. Suitable parameters to analyse are: the number of moving objects vs stationary objects, 363 

flux (number of moving particles through a defined length of the axon over a set time), 364 

directionality of movements (fraction of anterograde vs retrograde movement), average 365 

object track velocity (total speed over the whole kymograph track of a moving 366 

object  including pauses, changes in speed and in direction ), transport segment velocity 367 

(speed calculated for each  individual segment of a kymograph track of a moving object. 368 

A new segment within the trach is defined each time there are changes in speed or 369 

direction of movement), transport run length (average length of a particle’s runs), number 370 

of pauses per transport track, number of direction switches. 371 

 372 

NOTES: 373 

1)  Any genetic combination can be used for primary cultures, these can include specimens with 374 

specific mutations, and/or expressing fluorescently tagged markers to visualise cargos. In the 375 

case of specimens carrying embryonic lethal mutations the mutant stock will need to be 376 

balanced over a balancer chromosome which allows for the selection of mutant stage 11 377 

embryos. For this we use the TwistGal4-UAS-GFP balancers (available in the Bloomington 378 

stock centre #6873, #6662, #6663) 379 

2) Collection times must be adapted when changing temperatures. e.g. 15 hours at 25 °C will 380 

favour stage 16 but hardly yield stage 11 embryos, while 15 hours at 21-23 °C will be enriched 381 

with stage 11 embryos (for stages and precise timing see [68]). 382 

3) There are several factors to consider when selecting embryos: 383 

a. Embryonic stages 11 would be ideal for primary neuronal cultures, at this stage most neurons 384 

in embryos are post-mitotic and are beginning axogenesis.  [66]. However, depending on the 385 

experimental setting, stage 15 / 16 might be useful, e.g. when the fluorescent signal from 386 

specific cargo is too week at younger stages (elav-Gal4 driven expression of synaptic markers 387 

is difficult to detect at stage 11). 388 

b. When collecting for embryos expressing synaptic markers, select embryos with weak 389 

expression as this will facilitate imaging (strongly expressing cells will have more stationary 390 

objects that can negatively impact imaging). An inducible expression system and a short 391 

expression time might be desirable to reduce the number of labelled stationary objects. 392 

c. When collecting mutant embryos against fluorescent balancers, make sure the balancer 393 

fluorescence is visible at the desired embryonic stage. 394 

4) When using more embryos / more larval brains, adjust all volumes proportionately after 395 

grinding and before incubating at 37°C in HBSS-based dispersion medium at RT. Do not exceed 396 

100 µL dispersion medium in a 1.5 mL tube for the grinding step as an increased volume can 397 

lead to spillage. We use approximately 100 µL dispersion medium per 15-30 embryos.  398 

5) The grinding step is a key point in the protocol. Make sure to have a tight fit between tube 399 

and pestle. Using too much force might adversely affect the cultures though. However, be 400 

sure to dissociate all embryos. Any intact embryos will survive, develop into larvae, and disrupt 401 

the rest of the cultured cells. An alternative for grinding is to harvest cells from the ventral 402 

region of the embryo using a glass capillary and a micromanipulator [66], this method is 403 

considerably more laborious but may lead to purer cultures.  404 
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6) 26 °C would be the standard incubation temperature for Drosophila primary neurons. 405 

However, Drosophila primary neurons can be cultured at a range of temperatures ranging 406 

from 12 to 29 °C. For instance, incubation at 29 °C can boost UAS-Gal4 expression. Make sure 407 

controls are incubated at the same temperature. If imaging of the initial outgrowth is required, 408 

the seeding and attachment time can be reduced to 30 minutes. However, to get the same 409 

cell density, a 2-3 times increased amounts of embryos will be required. 410 

7) The same protocol can be used to treat neurons with drugs and other live cell imaging 411 

fluorescent probes such as SiR-tubulin.  We used 50 - 100 nM SiR-tubulin to label 412 

microtubules. Note that the higher end of SiR-tubulin concentrations can have effects on 413 

microtubule dynamics. A minimum of 30-minute incubation will ensure microtubules are 414 

robustly labelled, and can optionally be followed by a washing step with supplemented 415 

Schneider’s medium but is not required, longer incubation will yield stronger labelling. 416 

Microtubules can be visualised from 45-50 minutes onwards. SiR-tubulin labelling of 417 

Drosophila primary neurons does not require Verapamil treatment. We have successfully 418 

visualised neurite outgrowth and development from primary neurons as early as 45 minutes 419 

in vitro up to 22 hours in vitro (for long-term imaging setup, see Fig. 1D). For this, the cell pellet 420 

is resuspended in supplemented Schneider’s medium that contains 50 nM SiR-tubulin. Other 421 

compounds (e.g. microtubule stabilisers or destabilisers, inhibitors of kinesins, kinases and 422 

phosphatases, oxidative stress inducers amongst others) can be added to the cell culture 423 

medium keeping in mind that each drug will need a different incubation time. 424 

8) Axonal transport of synaptic components in Drosophila primary neurons, can be observed 425 

already at 6 h in vitro [44], however we frequently image neurons at 2 to 3 days in vitro so 426 

that synaptic components are robustly established and long-range transport can be observed. 427 

Primary neurons cultured form larval brains allow imaging of lysotracker after one day in vitro. 428 

9) The same protocol can be used to visualise EB dynamics in neurons. Both expression of EB1-429 

GFP or EB1-mCherry via elav-Gal4 or sca-Gal4 and transfection of neurons with pAc-EB1-430 

mCherry have been successfully used in our laboratories [42,43,54,55]. 431 

10) For UAS-Gal4-based expression of fluorescently tagged proteins in primary neuronal cultures, 432 

suitable driver lines are: sca-Gal4, elav-Gal4, tubulin-Gal4, nSyb-Gal4. Note that sca-Gal4 433 

expression is strong in young neurons (6HIV) but decreases over time and nSyb-Gal4 is weakly 434 

expressing in young neurons but increases over time and can be robustly detected after 2-3 435 

days in vitro (Ines Hahn, personal communication). An alternative to UAS-Gal4-based 436 

expression is transfection of neuronal cultures. We find that the actin-promotor in the 437 

pAc5.1/V5 vector variants is suitable for expression of constructs upon transfection of primary 438 

neurons (for protocol see [55]). Alternatively, Gal4 expressing neurons can be transfected with 439 

UAS-constructs. 440 

11) Be aware that due to the neurites/axons/dendrites being dynamic, they might move and leave 441 

the focal plane. ConA treatment of coverslips can be an advantage here since it increases the 442 

attachment axons. 443 
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 456 

Figure legends 457 

Fig. 1 Workflow to generate Drosophila primary neuronal cultures for short- and long-term imaging. 458 

The numbers in the figure correspond to the protocol steps in section 3.3 (A) Diagram showing the 459 

steps for embryo collection, removal or the chorion,  and selection of embryos for primary neuronal 460 

cultures. (B) Diagram showing the main steps to generate a suspension of primary cells from 461 

Drosophila embryos. Note that the protocol can be modified to use late stage 3 larval brains as well 462 

(see section 3.3 for more detail). (C) Diagram showing the hanging drop culturing technique. 463 

Drosophila primary cells are allowed to attach to coverslips before inverting the sealed culture 464 

chambers (upper row) / glass bottom dishes (lower row). Cells are then grown the desired time in vitro 465 

(hours to days). Cultures can optionally be incubated with drugs and/or dye-based organelle/vesicle 466 

markers before medium is exchanged for imaging. (D) For long-term imaging, cells can be allowed to 467 

either (a) directly attached to coated or uncoated glass bottom dishes or (b) grown as hanging drop 468 

cultures in glass bottom dishes, then unsealed and vaseline removed (see C). Cells can then be treated 469 

with drugs and/or dye-based organelle/vesicle labels. The dish is then filled up with Schneider's 470 

medium and sealed with a coverslip to prevent evaporation of the medium during long-term imaging. 471 

Fig. 2 Transport of vesicles and organelles in Drosophila primary neuronal cultures. Single frame 472 

from time-lapse movies from Drosophila primary neuronal cultures showing different labelled cargo 473 

(cell bodies are at the bottom of the image), and kymograph plot showing the trajectory of cargoes. 474 

(A) Larval primary cultures treated with the dye-based fluorescent label LysoTracker DND-99. (B-D) 475 

Embryonic primary neuronal cultures (B) treated with the dye-based fluorescent label MitoTracker 476 

Green FM, (C) expressing Synaptotagmin-GFP using the tubulin-Gal4 driver and (D) expressing mito-477 

mCherry using the elav-Gal4 driver. Magenta dashed lines mark the axon. Panels on the right in A-D 478 

show corresponding kymographs. Lines with positive slopes in kymographs indicate anterograde 479 

transport, lines with negative slopes retrograde transport and horizontal lines indicate stationary 480 

objects. Scale bar in overview images is 5 µm in length. 481 

 482 

Supplementary material 483 

Suppl. Movie 1 484 

Live movie of larval Drosophila primary neurons grown for 1 day in vitro and incubated for 15 minutes 485 

with 100 nM LysoTracker DND-99. Scale bar represents 5 µm, time is given in seconds. 486 

Suppl. Movie 2 487 

Live movie of embryonic Drosophila primary neurons precultured in a 1.5 mL tube, grown for 1 day in 488 

vitro and incubated for 15 minutes with 50 nM MitoTracker Green FM. Scale bar represents 5 µm, 489 

time is given in seconds. 490 
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Suppl. Movie 3 491 

Live movie of Drosophila embryonic primary neurons expressing UAS-Synaptotagmin-GFP under 492 

control of the tubulin-Gal4 driver line. Cells were grown for 3 days in vitro. Scale bar represents 5 um, 493 

time is given in seconds. 494 

Suppl. Movie 4 495 

Live movie of embryonic Drosophila primary neurons expressing UAS-mito-mCherry under control of 496 

the elav-Gal4 driver line. Cells were grown for 1 day in vitro. Scale bar represents 5 µm, time is given 497 

in seconds. 498 
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