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Abstract 
 

The research reported in this thesis focuses on understanding the development of residual 

stresses in the Laser Powder Bed Fusion (L-PBF) process. All Laser Powder-Bed Fusion (L-PBF) 

parts contain residual stresses because of the high energy input, and the rapid heating and 

cooling rates of the part throughout the manufacturing process. The process parameters used 

for the L-PBF process affect the development of the residual stresses in the components 

significantly generating deformation leading to critical distortion and structural failure of the 

parts during manufacturing or in service. The aim of this research is to understand the 

complex evolution of residual stresses in the L-PBF process through the use of in-situ 

measurements and to understand the effect of the process parameters and process-material 

relationship on the development of residual forces, from which residual stresses can be 

inferred, with the use of a Force Transducer Device (FTD). 

With the experimental work presented in this thesis, it has been demonstrated that in-situ 

measurements give a good understanding of the complex evolution of residual stresses in the 

L-PBF process which are difficult to obtain by post-process methods. The in-process 

measurements revealed the interlayer forces developed in the L-PBF process, which provide 

a successful way to understand the effect of the material properties and process parameters 

on the development of residual stresses. The results presented in this thesis showed that 

residual forces developed in the build vary depending on the process parameters used and on 

the material properties of the metal powder being used.  

A study of the effect of the process parameters on the development of residual stress was 

conducted, where different scan strategies were analysed. Amongst Stripe, Meander and 

Chessboard, Meander had the lowest residual force development with 40% less than in the 

Stripe scan strategy for different metal powders. The effect of the energy density was also 

tested. A variation from the exposure time from 60 µs, 70 µs and 80 µs showed that for higher 

energy input higher the residual stresses developed in the L-PBF samples; however, induced 

porosity for lower energy input can affect the mechanical properties of the final part.  

The experimental work reported in this thesis showed the important influence that material 

properties of the different metal powders have on the development of residual forces in the 

L-PBF process, which has not been previously studied in the literature. The process 

parameters and process conditions used in L-PBF were shown to have different effects for 
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different metal powders. These differences could be related to a specific property of each 

metal alloy; however, it was difficult to correlate the development of residual stresses to a 

particular material property. Material properties, such as the phase transformation, were 

shown to have an effect on the forces developed and part distortion in the L-PFB process. 

From four tested metal powders, Maraging steel was shown to develop much lower residual 

forces during the process (over 50%) compared to the rest of the metals tested; this could be 

due to the low phase transformation upon rapid cooling from austenite (α’) to martensite (ϒ) 

of the Maraging steel. The phase transformation for Maraging steel leads to volumetric 

expansion during cooling, which subsequently results in a reduction of the residual stresses.  

Process parameters such as the gas used as the inert atmosphere in the L-PFB chamber 

affected the strains developed in the process and the part deformation of the final component 

for Maraging steel samples, which has not been previously reported in the literature. Results 

showed that Maraging steel samples exhibited deformation that was the inverse of the 

deformation observed in the samples from the other metal powders when using Argon (Ar) 

gas to create the inert atmosphere; however, the use of Nitrogen (N2) gas in Maraging steel 

changed the direction of the part deformation after releasing the samples from the base plate, 

this could be because Nitrogen (N2) works as a martensite stabilizer retaining the austenite 

transformation.   
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 Introduction 
 

Additive Manufacturing (AM)  is defined by the ISO/ASTM 52900 [1] as “the process of joining 

materials to make objects from 3D model data, usually layer upon layer, as opposed to 

subtractive manufacturing methodologies”. AM techniques produce objects directly from a 

3D computer-aided design (CAD) model, which allows the production of more complex 

geometries than traditional manufacturing methods without the need for additional tooling, 

reducing manufacturing steps and material waste [2-4]. AM emerged in the 1980s [5, 6] from 

the term rapid prototyping (RP) with the development of Stereo Lithography Apparatus (SLA),  

patented by Charles Hull in 1986 [7], which polymerised photosensitive resins bonding thin 

layers of solid material layer by layer using ultra-violet light [8]. AM has experienced significant 

growth over the past 30 years; different AM techniques have developed to produce ready to 

use parts from a wide range of materials (i.e. polymers, ceramics or metals) by consolidating 

layers in different ways.  Some processes use thermal energy from lasers or electron beams 

directed by optics for melting metallic powders, and others use inkjet-type printing heads to 

spray binder or solvent onto ceramic or polymer powders.  Some AM processes include Fused 

Deposition Modelling (FDM), Electron Beam Melting (EBM), Selective Laser Sintering (SLS) and 

Selective Laser Melting (SLM) [2, 3, 9]. Although AM systems produce parts by using different 

processes i.e. sintering, fusing or polymerisation of materials, each technique has the same 

principle of producing a final component from the CAD model by the addition of layer upon 

layer until the 3D part is complete. The implementation of new technologies into the different 

AM processes have significantly improved the quality of the finished parts and allowed AM to 

evolve from producing prototypes to fabricating ready to use components by employing new 

materials, improvements in process parameters and the freedom of design.  

Some AM technologies allow the production of nearly full density parts of complex geometries 

that are difficult to produce with traditional methods, which can reduce production costs by 

the optimisation of material used and generating less waste. AM parts may be designed and 

manufactured in ways that would not be possible using traditional methods (e.g. mould 

casting) allowing the optimization of new designs keeping or even improving the properties 

of the finished part compared to traditional manufacturing processes. Over recent years, 

industries such as automotive, aerospace, medical, dental and construction have started to 

adopt AM processes as their method of manufacturing [10-12]. However, the variations in 

part quality and mechanical properties of the components due to inadequate dimensional 
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tolerance, presence of defects, surface roughness and residual stresses, among others, limit 

its use in high-value applications. While much progress has been made in the development of 

AM processes the various problems involved from the different AM techniques pose multiple 

challenges for AM technologies in the desire to produce functional parts, such as improving 

part quality, lowering production costs, increasing production speed and utilizing new 

materials [13]. Overcoming these challenges involves the use of computer simulations, post 

processing tests and in process experimental approaches to assess the accuracy of AM parts.  

One of the primary markets for AM is manufacturing metal components. The metal systems 

and metal powder materials market was worth $905M in 2016 and is expecting to be  worth 

$6.6 billion by 2026 [14]. One of the most widely used AM techniques used for the production 

of high-density metal parts, is Powder Bed Fusion (PBF), it is defined by the ISO/ASTM 52900 

[1] as the “additive manufacturing  process in which thermal energy selectively fuses regions 

of a powder bed”. PBF allows the manufacture of metal components of complex geometries 

directly from a CAD model, selectively melting thin layers of metal powder layer by layer using 

a scanning energy source. The PBF process includes the following commonly used 3D printing 

techniques: direct metal laser sintering (DMLS), electron beam melting (EBM), selective heat 

sintering (SHS), selective laser sintering (SLS) and selective laser melting (SLM). 

The two main components of metal AM process are the type of raw material input and the 

energy source used to consolidate or form the part (see Figure 1). There are different AM 

processes capable of producing near-net-shape metal components and these can be classified 

in three major categories; (1) powder bed systems, (2) powder feed systems, and (3) wire feed 

systems [15].  One of the most widely used and researched methods for metal AM is powder 

bed fusion (PBF). Two of the most important PBF processes are Electron Beam Melting (EBM) 

and Laser powder bed fusion (L-PBF), due to their advantages in producing complex functional 

metallic components rapidly and cost-effectively, and their increasing use for industrial 

applications in the aerospace and biomedical fields. EBM, commercialised by Arcam, is a PBF 

process, which uses an electron beam as the heat source to melt metal powder materials in a 

high vacuum chamber with a typical layer thickness of 100 µm [16]. A key characteristic of 

EBM is that the powder bed is preheated significantly to reduce the temperature gradient 

reducing the development of residual stresses compared to L-PBF;  however, as the EBM 

process is more complex and due to the single patent,  L-PBF processes have the largest share 

of the PBF market (82% of the PFB market in 2016) [17].    
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Figure 1: Classification of metal AM processes (adapted from [18]) 

 

The focus of this thesis lies within the selective laser melting (SLM) process, also known as 

laser powder bed fusion (L-PBF). The additive manufacturing technology Selective Laser 

Melting (SLM) [5], is defined by the ISO/ASTM 52900 [1] as the “powder bed fusion process 

used to produce objects from powdered materials using one or more lasers to selectively fuse 

or melt the particles at the surface, layer upon layer, in an enclosed chamber”. SLM emerged 

in the late 1980s and early 1990s [19] by Dr M. Fockle and Dr D. Schwarze and was a 

development from the SLS process by raising the temperature of the powder to above its 

melting point and was patented in 1998 as “SLS at Melting Temperature”[20]. SLS compared 

to SLM binds powder materials via solid-state sintering or melting of binding agents, resulting 

in parts with high porosity and low strength. Post-processing is needed to improve the 

properties of SLS finished parts, such as heat treatment and material infiltration, taking 

additional time. In the SLM process, the material is completely melted by the use of a high-

intensity laser eliminating the need for the binder materials and post-processing required for 

SLS. The SLM process enables the production of individual metal parts of nearly 100% density 

relative to cast parts and complex geometries matching the mechanical properties of parts 

conventionally manufactured without the need for tooling or pre-production costs.   

Figure 2 illustrates the operating principle of the L-PFB process. First, the 3D-CAD model is 

converted into a STereoLithography (STL) file, which is defined by the ISO/ASTM 52900 [1] as  

“a file format for model data describing the surface geometry of an object as a tessellation of 

triangles used to communicate 3D geometries to machines in order to build physical parts”. 

The STL file is processed by machine specific software to slice the STL file and generate the 

data for individual layers, and then the file is transferred into the L-PBF machine. Subsequently, 
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a defined thin layer of the metal powder material with a spherical grain structure from 10–45 

µm (see Figure 3) is deposited and evenly distributed over a substrate in the build chamber. 

Since the metal powder is the raw material used to produce L-PBF parts powder 

characteristics, such as spherical particle shape, particle size distribution, close packing of 

particles and good flow, are very important to achieve a consistent powder dosing through 

the build process. The two main methods used to create spherical particles for AM metal 

powder are gas atomisation and plasma atomisation [21-23]. 

 

Figure 2: Operating principle of the Laser Powder Bed Fusion  (L-PBF) process (from [9]) 

 

 

Figure 3: SEM micrograph of the CoCr-01 alloy powder (from [24]) 
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After the powder is spread over the build platform, a single or multiple high-power laser beam 

selectively melts the desired part geometry using predefined scanning parameters. The 

geometric information of individual layers is transmitted by the laser beam to the powder bed; 

where the regions to contain solid material are scanned under an inert atmosphere, 

commonly, Argon or Nitrogen to avoid oxidation, causing a solid layer of the piece to be 

produced. During production, the laser executes a scanning or filling strategy. The strategies 

associated with the laser path are characterized by the length, direction, and separation (point 

and hatch spacing) of neighbouring scan vectors. After the scanned layer is completed, the 

build platform is lowered by a defined layer thickness, and the process is repeated until the 

functional 3D part is finished. When the part is complete, the unfused powder is sieved and 

can be reused for future builds. Since standard metallic powders are used, which melt 

completely, the part has a density of approximately of the cast material, thus assuring 

mechanical properties that match or even exceed those of conventionally manufactured parts 

[9]. Different materials are available with this technology, such as steel, titanium, aluminium, 

cobalt-chromium and nickel alloys, among others.  

In order to achieve a successfully finished part through the L-PBF process, an optimum design 

for AM (DfAM) must be achieved by the use of CAD preparation software to select the best 

orientation and support strategy for each build. Several software packages for solid modelling 

using CAD have been developed since 2011 allowing the optimisation of both DfAM and 

material properties for L-PBF processes; as well as the design of complex lattice structures 

that optimize reductions in material and weight, making the process more cost-effective [25].  

AM manufacturing of metal components has expanded extensively in the last three decades 

within AM techniques such as L-PBF and EBM. The benefits from the freedom of design in 

metal components to produce ready to use parts of complex geometries have gained 

significant interest in research and have been adopted by a large number of industries for 

prototyping and manufacturing purposes. Metal AM technologies could revolutionise many 

sectors of manufacturing by reducing component lead time, production costs, material waste, 

energy usage, and carbon footprint [26].  AM of metals is opening up new possibilities for low-

cost manufacturing and novel designs that cannot be made using current technologies, state 

of the art in AM PBF has improved from a rapid-prototyping to production technology.  
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1.1 Applications of L-PBF 

 

Parts produced through PBF can match or exceed the mechanical properties of parts 

conventionally manufactured [27], making it widely used as a manufacturing process by 

industries such as aerospace, automotive and medical engineering [14]. The aerospace and 

automotive industries continue to find new applications for L-PBF, which offers potentially 

significant benefits from the manufacture of lightweight parts with unique geometries 

capable of decreasing material waste and energy consumption [28].  

PBF includes the following commonly used 3D printing techniques: direct metal laser sintering 

(DMLS), electron beam melting (EBM), selective heat sintering (SHS) and laser powder bed 

fusion (L-PBF). L-PBF and EBM processes being the most important in the metal industry due 

to the accuracy of the finished part and the wide range of metal powders alloys currently 

developed for these processes. EBM is very similar to L-PBF but differs in the source of the 

energy used for melting the powder; EBM uses an electron beam to deliver the melting energy 

while L-PBF uses laser energy to melt the material. Of these two PBF processes, L-PBF 

represents the majority of industrial and academic applications [29, 30], this could be due to 

the more straightforward process of L-PBF technology over EBM and the fact that there is 

currently only one manufacturer for EBM machines [31], Arcam AB recently acquired by 

General Electric (GE) [32].  

 

Figure 4: Metal Additive Manufacturing (AM) leading companies (from [14]) 

 

Many firms have a share of the L-PBF market and are distributed as shown in Figure 4. The 

German company, EOS (Electro Optical System), leads with 28% of the 2016 market. Recently, 
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GE has invested over $1.4 billion in the acquisition of Arcam AB and SLM Solutions Group AG  

enabling the company to develop GE Additive, creating new services and applications across 

the company, and gaining 346 patents in powder metals alone [32]. There is wide interest in 

future investment in AM technologies to accelerate market adoption due to the potential 

benefits of metal AM to both the economy and environment. Among many incentives to 

invest in AM technologies, one of the main advantages has been creating lighter parts through 

the freedom of design. Which, gives the ability to produce complex geometries allowing the 

reduction of the part count in an assembly by combining different parts produced using 

traditional manufacturing methods into a single component. Reducing the part count reduces 

the weight of the aircraft by eliminating assembly components such as bolts, welds or other 

interfaces used to attach parts [33].  

GE Aviation has adopted metal AM into their process on a significant scale; an example is the 

use of 3D printed nozzles used in the LEAP-1C jet engine (see Figure 5), which is used as a 

power plant for the Boeing 737 MAX and Airbus A320neo [34]. The use of the 3D printed 

nozzles led to a 15% reduction in fuel consumption and CO₂ emissions versus current engines, 

a 50% cut in NOx emissions, compliance with the most stringent noise standards and it has 

been approved by the Federal Aviation Administration (FAA) and the European Aviation Safety 

Association (EASA) [34].  GE Aviation has also tested a 35% additive manufactured inclusion 

of metal AM components into an Advanced Turboprop Engine (ATP), which is set to power 

the all-new Cessna Denali single-engine aircraft and reduced the final weight by enabling the 

reduction of part numbers. The use of AM also enabled additional freedom in the design of 

the aircraft, which led to reductions in fuel consumption and CO₂ emissions [35]. GE’s ATP 

uses more additive parts than any production engine in aviation history and reduces 855 

subtractive manufactured parts into twelve Additive Manufactured components reducing by 

5% the ATP’s weight while contributing a 1% improvement in specific fuel consumption. The 

AM parts include sumps, bearing housings, frames, exhaust case, combustor liner, heat 

exchangers and stationary flow path components [35]. In 2015 Rolls -Royce announced that 

it would flight-test a 3D printed titanium structure that measured 1.5m in diameter and 0.5m-

thick and was claimed to be the largest 3D printed component to power an aircraft. The front 

bearing housing contained 48 aerofoils and was manufactured using Arcam’s electron beam 

melting technology [36]. As PBF has already been proven to reduce material waste, fuel 

emissions, and lead times in other aerospace projects, this component was suggested by Rolls-

Royce to cut manufacturing lead time by 30%.  
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Figure 5:  3D Printer engine fuel nozzle used for the LEAP-1C jet engine [34] 

 

In addition to the aerospace sector, metal AM technology is accelerating industrial 

development in other sectors such as the automotive industry from printing prototypes to 

ready-to-use parts. The French sports car manufacturer Bugatti started using AM technology 

in 2014 with the design and production of a biconically optimised differential housing for the 

front axle (Figure 6). More recently, Bugatti successfully tested a large 3D printed brake 

calliper built on an SLM 500 system in Ti-6Al-4V and achieved a tensile strength of 1,250 

N/mm² and a material density over 99.7%. BMW Group achieved the first cost-effective series 

production of a metal AM component in the commercial automotive market with the use of 

an optimised fixture for the folding mechanism of the BMW i8 Roadster. The optimised AM 

fixture, produced using a novel printing technique, is ten times stiffer than the plastic injection 

moulded counterpart and was 44% lighter in AlSi10Mg [37].    

 

Figure 6:  Comparison of front axle differential using traditional manufacturing vs metal 3D printed part [33] 
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Governments, especially in the United States of America (USA) and United Kingdom (UK), are 

supporting AM technologies development by founding research together with leading AM 

companies. The U.S Army through the Army Research Laboratory (ARL) has signed a $15 

million contract with 3D Systems to develop a metal 3D printer that can produce large parts. 

ARL has invested in AM for two decades, producing custom tools and refurbishing worn parts. 

Still, the aim is to implement this metal printing platform for the manufacture of long-lasting, 

durable components. The build area of the printer is aimed to be around 1000 x 1000 x 600 

mm, while it will be able to print parts with a wall thickness of 100µm and layer thickness of 

30µm [38]. Sigma Components received £140,000 from the UK government through the 

National Aerospace Technology Exploitation Programme, which it is using to work with Rolls 

Royce to 3D print lightweight pipe end-fittings.  Also in 2015, the UK government invested 

£154 million in four 3D printing research projects, to explore new technologies and drive 

research with the aim of keeping the UK competitive on the world stage by creating lighter, 

greener and more fuel-efficient aircraft and reducing CO2 emissions by 75% by 2050 

compared to levels in 2000 [36, 39]. 

Over the past two decades, continuous advances have pushed forward the concept of using 

AM in support of the surgical treatment of conditions ranging from arthritis of the hip or knee 

to ablation of malignant tumours of the head and neck [40]. Significant advances in 

applications and materials have led to metal AM playing a key role in shaping the way surgery 

is performed today. The anatomy of each patient is unique and complex, which creates an 

opportunity to produce patient-specific implants, such as cranial plates, using AM. Custom-

shaped titanium implants can be fabricated at exactly the right size and shape, either 

parametrically scaled to fit the patient or even produced directly from a computer 

tomography (CT) scan of the original bone to be replaced or from a symmetrical healthy bone 

[41]. The use of AM parts in medicine can contribute to reducing the length of operations, 

which reduces the risk to patients and the costs of surgery. Prosthetics and orthotics were 

relatively early adopters of the AM.  Customised surgical instruments and direct AM-

fabricated implants are expected to continue to expand into many other anatomical areas and 

surgical specialities [25]. 

The common materials used in L-PBF are stainless steel, pure titanium and titanium alloys 

(such as Ti-6Al-4V), aluminium casting alloys, nickel-based superalloys (Inconel 718, Inconel 

625 and Maraging steel), and cobalt-chromium alloys. Steel and other iron-based materials 

have been the leading materials for L-PBF due to their early start in the field from1993.  
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Titanium-based metals have attracted much interest due to their application in high value-

added industries such as aerospace, due to its lightweight, and medicine due to its good 

biocompatibility. Nickel alloys are widely used for aero applications as the base for high-

temperature superalloys [42]. Research in novel materials has increased in recent years, and 

the range of alloys available for use in L-PBF has expanded as new technologies and 

applications emerge [18]. An essential aspect of the research prior to the implementation of 

new materials are the tests and evaluations that have to be made in order to find the right 

process parameters to accomplish the desired part quality. Since, a final component produced 

by L-PFB must meet the desired specifications for chemistry, surface roughness, damage 

tolerance, fatigue, strength, and part deformation. Many of these material properties are 

influenced by the residual stresses induced in the part during manufacture; and, hence the in-

situ measurement of the forces induced during manufacture is a key driver for the work 

presented in this thesis. 

 

1.2 Motivation  

 

L-PBF allows the production of more accurate metal parts than any other AM process and 

with a density of approximately 100% relative to cast parts, assuring mechanical properties 

that match or even improve those of conventionally manufactured parts [9, 43, 44]. However, 

the large thermal gradients in the process lead to the development of residual stresses that 

remain in the final component after manufacture. Residual stresses must be considered from 

the early stages of the L-PBF process, i.e. part design, because they can have a significant 

impact on the final component reducing the mechanical properties of the manufactured part 

and generating critical part deformation. When high residual stresses develop during the 

building process, they can cause the build process to fail due to a collision between the part 

and the wiper in the L-PBF machine. 

Residual stresses can also reduce the life of the finished part through its influence on fracture 

toughness and fatigue crack growth [45]. Therefore, it is essential to understand the 

development of residual strains in the process in order to control or reduce them. The two 

main processes of residual stress development in L-PBF are the Thermal Gradient Mechanism 

(TGM) and the constrained shrinkage of material on cooling [46]. The TGM creates tensile 

stress in the top surface as the laser melts the powder and partially melts the previously 
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deposited layers. As the solid material heats up, it starts to expand; however, it is constrained 

by the surrounding material causing compression in the top layer and tension in the 

surrounding material. Subsequently, as the top layer cools down, the previously solidified 

layer to which it is fused restrains it from shrinking inducing tension in the new layer and 

compression in the surrounding material. 

Previous studies have demonstrated that the parameters used for the build process have a 

significant effect on the development of residual stresses within the part, i.e. the scan 

strategies, laser power, layer thickness and exposure time among others [42, 43]. Currently, 

different techniques are used to measure residual stress after the build process is completed, 

either destructive methods (hole-drilling and contour method) or non-destructive methods 

(x-ray diffraction and neutron diffraction). The acquisition of measurements of the 

deformation of the part during the L-PBF process is difficult because manufacturing must be 

conducted in a chamber containing an inert atmosphere and a new layer of powder has to be 

spread across the part at regular intervals. Limited research has been reported on the analysis 

of the stresses as they develop during the process [45, 47, 48]. Nevertheless, measurements 

have shown that there is an interlayer effect on the development of residual strains in the 

process [48]; however, the focus was on a single material and a single measuring point. 

Therefore, there is a lack of understanding of the effect of different process parameters and 

material properties on the development of residual stresses during the L-PBF process.  

There are several challenges to fully understanding the residual stresses developed in the L-

PBF process and the effect that the processing parameters and metal properties have on the 

interlayer effects while the part is being built. To understand the effect that the different scan 

strategies have on the melting of subsequent layers of the part for different metal powders 

during the building process, much higher fidelity measurements are required. A measuring 

technique proposed by Robinson [49], consists of an in-process device with multiple 

measurement points across the substrate, was used in this thesis while parts were built to 

determine the effect of the process parameters and the material properties on residual stress.  

The better understanding of the development of residual stresses in the L-PFB process will 

help to reduce the development of residual stress in the final component eliminating the need 

for post-processing heat treatments.  

In the current literature, there is a lack of detailed understanding of the process-material 

property relationship in the L-PBF process and the effect on the residual stress developed 

during the building process. The properties of each metal powder and alloy are different; 
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therefore, the laser-material interaction and melt pool characteristics will not be the same for 

each metal powder. In order to produce nearly completely dense parts, different process 

parameters are used for each metal alloy and are likely to induce different residual stresses; 

hence, an investigation of these stresses needs to be conducted to understand the effect of 

metal properties on the development of residual stresses in the L-PBF process. Thus, although 

the industry has grown significantly over the last three decades, many opportunities remain 

for improving the state of the art. 

 

1.3 Aims and Objectives 

 

The aim of this investigation is to understand the complex evolution of residual stresses in the 

L-PBF process through the use of in-situ measurements and to understand the effect of the 

process-material relationships on residual stresses. During the development of this PhD, the 

following objectives were addressed: 

1. To conduct a literature review of PBF processes, residual stress development in L-PBF, 

in-situ measurement and current understanding of residual stress. 

 

2. To investigate the generation of residual stresses in the L-PBF process through the 

use of a Force Transducer Device (FTD) to explore how residual stresses originate and 

evolve during the manufacturing process using different metal powders. 

 

3. To explore and identify the key parameters in the build process that result in the 

formation of residual stresses through in-situ measurements and investigate the 

effect of the material properties on the development of residual stress. 

 

4. To investigate a correlation from the in-situ measurements, process parameters and 

material properties in the development of residual stresses in the L-PBF process.   
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1.4 Experimental Plan 

 

Based on the research objectives outlined, a proposed flow chart with the experimental plan 

is shown in Figure 7. This project was part of a collaboration involving the University of 

Liverpool and Renishaw Plc working together on the €4m EU funded ENCOMPASS project with 

the EU’s Research and Innovation Programme under the grant agreement No 723833 

(https://encompass-am.eu/, https://cordis.europa.eu/project/id/723833,). The ENCOMPASS 

project aimed to create a fully digital integrated design decision support (IDDS) system to 

cover the whole manufacturing chain for the laser powder bed fusion (L-PBF) process 

encompassing all individual processes within it.  The ENCOMPASS project included 9 other 

partners, besides Renishaw and the University of Liverpool. Due to the collaboration within 

the ENCOMPASS project, the machine and powder choices were strongly directed by 

Renishaw due to their investment and support in the form of the L-PBF machines allocated to 

this project.  Therefore, the experimental work was conducted in two phases, the first stage 

was conducted using Ti-6Al-4V due to the interest of collaborators in this particular material 

and the machine and powder assigned for the project. When the collaboration with the 

Encompass project ended the assigned machine was sold, and a second phase was conducted 

using different metal powders and different machines. This second phase allowed to the 

investigation into determining the effect of different material properties using three nickel-

based alloys: Inconel 625, Inconel 718 and Maraging steel. Experimental work was performed 

using a novel device for in-process measurements to study the effect of a variety of processing 

parameters and using different metal powders to better understand residual stress 

generation during the L-PBF process. Combining these many elements together provided a 

better understanding of the development of residual stresses in the L-PBFP that could 

eventually provide a method to reduce and control the development of residual stresses and 

the distortion of manufactured parts. 

 

 

 

 

 

https://encompass-am.eu/
https://cordis.europa.eu/project/id/723833
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Figure 7: Experimental plan flow chart Phase 1 using Ti-6Al-4V and Phase 2 using Nickle based alloys 

 



Chapter 1: Introduction 

 

15 
 

1.5 Thesis Structure 

 The structure of this thesis is outlined below: 

• Chapter 2:  Literature Review 

In this chapter, a literature review is reported, which identifies the current state of knowledge 

of residual stress development in the laser powder bed fusion (L-PBF) process. First, a general 

review of the history of additive manufacturing and PBF process is presented, followed by an 

overview of the development of residual stress in L-PBF. The different techniques used to 

measure and predict residual stresses are discussed. Finally, the effects of the process 

parameters and the material properties on the development of residual stresses and part 

deformation in L-PBF parts are reviewed.  

• Chapter 3: Materials and Methods 

This chapter gives an overview of the materials and methods used during this investigation. It 

describes the equipment and software used and the different techniques for the analysis of 

the results. 

• Chapter 4: Experimental Results  

In this chapter, the results from the experimental work performed during the investigation 

are presented.  Three modes of experimental work were used: in-situ measurements using a 

force transducer device; post-build measurement of the part distortion using digital image 

correlation; and post-build microscopy to examine the morphology of the melt pool. The 

development of residual forces in L-PBF have been studied based on in-situ measurements 

with the use of a Force Transducer Device (FTD). Modifications to an existing residual stress 

dynamometer were performed for the FTD to permit its use in a Renishaw AM250 system. 

The effect on residual forces induced in the L-PBF process by different process parameters, 

i.e. laser power, scan speed, layer thickness and scan strategy, are reported for different metal 

powders: Ti-6Al-4V, Inconel 625, Inconel 718 and Maraging300 steel.  

The effect of the material properties and processing parameters for different metal powders 

on the deformation of the final part were measured using digital image correlation (DIC) and 

are presented in this chapter. The results from a microscopic analysis of the melt pool 

characteristics for a single track with powder and no powder are reported. In addition, the 

results of experiments to investigate the effect of laser speed, power and hatch distance on 

the characteristics of the melt pool are described. 
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• Chapter 5: Discussion 

In this chapter, a discussion of the reliability and significance of the results obtained in the 

investigation is presented. The findings are compared to those reported previously in the 

literature, and a revised design for the FTD is proposed. 

• Chapter 6: Conclusions 

In this chapter, the conclusions obtained from this research work are summarized along with 

recommendations for future work.   

 

1.6 List of publications 

 

• R. Magana-Carranza, J. Robinson, I. Ashton, P. Fox, C. Sutcliffe, E.A. Patterson. A Novel 

Device for In-situ Force Measurements during L-PBF, 2020 (accepted). 

o This paper describes the design and manufacture of the FTD and its first use 

as a novel device for in-situ measurements during the L-PBF process, which 

are included in this thesis in Section 3.5.5. The paper describes the results 

and analysis from the in-situ measurements of the forces developed in the L-

PBF process for a square sample built using Inconel 625 and using the FTD, 

shown in Figure 99.  

 

• R. Magana-Carranza, C. Sutcliffe, E.A. Patterson. The effect of processing parameters 

and material properties on residual forces in L-PBF, 2020 (submitted, under review). 

o This paper is based on the results and analysis of the effect of process 

parameters and material properties on the developed residual forces in the 

L-PBF process.  This paper includes the results and analysis from the 

experimental work for the study of the use of different scan strategies and 

layer thickness (Section 3.62) in the L-PBF process. The study of the effect of 

the energy density is presented, as well as a comparison of the developed 

forces and part deformation using different the metal alloys (Section 4.2.2).    

  

  



 

 Literature Review 
 

This chapter presents a literature review covering the relevant published research and the 

current state of knowledge. The review starts with the history of Additive Manufacturing (AM) 

covering the different AM techniques and the development of Powder Bed Fusion (PBF) for 

metal components from prototyping to producing ready-to-use parts. The development of 

residual stresses in L-PBF is then reviewed, followed by the techniques used to measure 

residual stresses and the results from previous experiments reported in the literature. Finally, 

the chapter is concluded with a consideration of the effect of the process parameters and 

material properties on residual stresses in the L-PBF process.    

 

2.1 Background of Additive Manufacturing (AM) and Powder Bed 

Fusion (PBF) 

 

Additive manufacturing (AM) emerged from the term rapid prototyping (RP) and is defined as 

the process of joining materials to make objects using 3D model data, layer upon layer 

employing thin cross-sections of the part [4, 19]. The 3D CAD model is broken into 2D cross-

sections of finite thickness; the thinner each layer is, the closer the final part will be to the 

original geometry [6, 50]. AM processes include different techniques using different materials 

(Figure 8); however, all of these technologies employ the same principle, the transformation 

of a geometric CAD model into a physical model produced layer by layer. The main advantage 

of AM processes is the freedom they give to the designer to utilize complex geometries not 

possible by traditional manufacturing methods; without requiring planning of process 

sequences or specific equipment for handling materials, or the need of any additional tooling. 

AM first emerged in 1987 with Stereolithography (SL) [2, 7] from 3D Systems, a process that 

solidifies thin layers of ultraviolet (UV) light-sensitive liquid polymer using a laser (see Figure 

9a). In 1988, 3D Systems and Ciba-Geigy partnered in SL materials development and 

commercialised the first generation of acrylate resins. DuPont’s Somos stereolithography 

machine and materials were developed the same year. In 1991, three AM technologies were 

commercialised, including fused deposition modelling (FDM) from Stratasys, solid ground 

curing (SGC) from Cubital, and laminated object manufacturing (LOM) from Helisys (see Figure 
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9b). FDM extrudes thermoplastic materials in filament form to produce parts layer by layer 

(see Figure 9c). SGC is a photo-polymer-based additive manufacturing technology used for 

producing models, prototypes, patterns, and production parts, in which the production of the 

layer geometry is carried out by means of a high-powered UV lamp through a mask. LOM is a 

rapid prototyping system in which layers of adhesive-coated paper, plastic, or metal laminates 

are successively glued together and cut to shape with a knife or laser cutter [19]. 

 

Figure 8: Classification of Additive Manufacturing Technologies (from [2]) 

 

Selective laser sintering (SLS) from DTM (now a part of 3D Systems) and the Soliform 

stereolithography system from Teijin Seiki became available in 1992 (see Figure 9d). In 1993, 

Soligen commercialised direct shell production casting (DSPC) and was patented by 

Massachusetts Institute of Technology (MIT). Using an inkjet mechanism, DSPC deposited 

liquid binder onto the ceramic powder to form shells for use in the investment casting process. 

At around the same time, the stereolithography QuickCast build style was introduced, which 

consisted of producing investment-casting patterns that are mostly hollow, making it possible 

to burn them out without fracturing the ceramic shell. In the mid-90s, Stratasys introduced 

the Genisys machine, which used an extrusion process similar to FDM but based on 

technology developed at IBM’s Watson Research Center. While 3D Systems sold its first 3D 

printer (Actua 2100), using a technology that deposits wax material layer-by-layer using an 
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inkjet printing mechanism; and, Z Corp. launched its Z402 3D printer, primarily for concept 

modelling. Based on MIT’s inkjet printing (3DP) technology, the ballistic particle 

manufacturing (BPM) process deposited wax materials using an inkjet print head. In 1997, 

AeroMer was founded and developed a laser additive manufacturing (LAM) that used a high-

powered laser and powdered titanium alloys. By the late ’90s, 3D Systems introduced a faster 

and less expensive version of the Actua 2100 called the ThermoJet. In addition, in 1999, 

Röders began to sell its controlled metal build-up (CMB) machine, mainly based on technology 

developed at the Fraunhofer Institute for Production Technology. At around the same time, 

Fockele & Schwarze of Germany introduced its steel powder-based selective laser melting 

system [51]. 

 

Figure 9: Schematic principles from the different AM processes: a) Stereolithography (SL) process (from [52]), b) 
Laminated Object Manufacturing (LOM) process (from [53]), c) Fused Deposition Modelling FDM (from [54]) and d) 
Selective Laser Sintering (SLS) process (from[55]) 

 

In 2000, several new technologies were introduced: Object Geometries of Israel announced 

Quadra, a 3D inkjet printer that deposited and hardened photopolymer using 1,536 nozzles 

and a UV light source. Sanders Prototype (now Solidscape) introduced PatternMaster, a 
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machine designed to produce precision wax patterns. Precision Optical Manufacturing (POM) 

announced direct metal deposition (DMD), a laser-cladding process that produces and repairs 

parts using metal powder. Z Corp. introduced its Z402C machine, the world’s first 

commercially available multi-colour 3D printer.  

In 2001, EOS announced its DirectSteel 20-V1, a steel-based powder consisting of particles 20 

microns in size, which produced metal parts with 20 microns layer thickness. Also, the 

company introduced EOSINT 380, a laser-sintering machine with speed improvements. 

Concept Laser GmbH introduced a new system that combined laser sintering, laser marking, 

and laser machining; the machine used an yttrium-aluminium-garnet (YAG) laser and 

stainless-steel powder to produce nearly fully dense parts. In 2003, EOS introduced the 

EOSINT M 270 direct laser metal sintering machine, which used a fibre laser. In the same year, 

Trumpf, a German company, introduced its TrumanForm LF which used a 250-watt laser and 

a fibre optic cable to direct light onto a bed of pure powder metal. In November 2005, MCP 

Tooling Technologies (now MTT Technologies Group) introduced the SLM ReaLizer 100 

Selective laser-melting machine. During this period, Voxeljet Technology GmbH of Germany 

introduced a large powder-based system machine VX800 which uses 3DP technology 

originally developed at MIT and commercialised by Z Corp. In 2008 MTT released a larger 

selective laser-melting machine, the SLM 250-300. This machine offered a 250 mm x 250 mm 

x 300 mm build volume with automated powder handling and recycling. In May 2009, EOS 

sold its first EOSINT P 800 laser-sintering machine for processing PEEK and other high-

temperature materials [51].  

Qualification and certification have been repeatedly identified as a challenge to widespread 

adoption of AM structurally critical components; the current process is too costly and takes 

too long. Hence, alternative means are needed to accelerate the qualification and certification 

of the AM processes [15]. More recent developments in the L-PBF process are the 

development of multi-laser or quad-laser machines. The quad-laser machines have four lasers 

operating simultaneously to enhance the AM capability. The quad-laser system reduces the 

production times significantly by working with four laser beams to manufacture a part. 

Multiple lasers can be used to increase build rates in L-PBF by either having the lasers 

operating independently on separate parts or cooperating on single components. Using a 

quad-laser configuration is particularly effective, as it can increase build rates by 90% over 

twin-laser configurations [56]. Machines like the SLM Solutions’ SLM500 achieving build rates 

up to 171 cm³ in a 500 mm x 280 mm x 365 mm build chamber using lasers with power ratings 
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between 800 W and 2.8 kW. The system also offers an automated closed-loop material supply, 

recovery and sieving to minimise operator handling of the metal powder. The SLM500 was 

the first quad-laser machine introduced to the market in 2013 [56] (see Figure 10 [57,58]).  

 

 

Figure 10: SLM 500HL machine multi-laser technology and schematic of the multi laser system (from [57] and [58]) 

 

AM technologies fabricate models by fusing, sintering or polymerising materials in 

predetermined layers [10]. It makes it possible to manufacture complex geometries including 

internal part details that are difficult to manufacture using machining and moulding processes 

because the process does not require a predetermined tool path, draft angles and undercuts.  

Layers in AM are formed by slicing CAD data by converting files into STL format [1]. The STL 

file developed by 3D Systems Inc. is a representation of a 3D model by a number of three-

sided planar facets (triangles), each facet defining part of the external surface of the object 

[2]. Layer thickness depends upon many parameters, including the machine being used and 

ranges from 10 µm up to 200 µm. Layers in AM are built up on top of a previously deposited 

layer, as shown in Figure 11. After a layer is processed, the work platform is moved down by 

a single layer thickness in the Z direction, and a fresh material layer is created in a number of 

different ways depending on the technique being used, i.e. in a powder-based system, the 
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powder is spread using a roller or wiper, and in other systems, the material is deposited 

through a nozzle. Different software such as VISCAM RP, MAGICS, Ansys, Simufact Additive, 

QuantAM, and Netfabb are available to position and orient parts in the build platform to 

maximise the number of parts per build. Additionally, they allow the creation of support 

structures to separate the part from the bed, to support overhanging structures, to avoid part 

failures due to induced residual stresses and to reduce part deformation during the build 

process.  

 

Figure 11: Definitions of the axes and planes discussed with respect to the build layers (from [59]) 

 

A large number of additive processes are now available [13]. AM systems are classified in 

terms of the energy source or the material feedstock. Some methods melt or soften material 

to produce the layers [60, 61], i.e., Selective Laser Melting (SLM) or Direct Metal Laser 

Sintering (DMLS), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM); while 

others cure liquid materials using different sophisticated technologies, i.e., Stereolithography 

(SLA). With Laminated Object Manufacturing (LOM), thin layers of paper, polymer or metal 

are cut to shape and joined together [62] (see Figure 9) .  

Over the last three decades, the impact of AM has continued to grow, with the new materials 

and advances in system developments [11, 13, 25, 63]. Many sectors of industry from all 

sectors have realised the potential of using these types of processes to develop their products, 

enabling cost savings, new optimised designs, and new products and processes [32-35, 40, 

56]. Several industries, such as biomedical and aerospace are adopting AM as their main 

method of manufacture [9, 14]. As the development of AM technologies continues to grow 

across the world work on the international standardisation of processes and materials has 

progressed to support the large-scale industrialization of the technology and the potential 

demand for products [13]. A proposed timeline of the past, present, and potential future 

developments of AM applications by Tromans [64] can be seen in Figure 12.  
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Figure 12:  AM applications timeline (from [64]) 

 

There is still potential growth in AM technologies  as demonstrated by Bourell et al. [65] who 

published a roadmap for AM based on a workshop attended by 65 key people in AM, that 

identifies important aspects of AM which need to be further developed to achieve significant 

benefits in terms of affordability, maintainability, reliability, rapidity and functionality. These 

developments included: 

- Design: Produce a new foundation for computer-aided design systems to overcome 

the limitations of existing solid modelling in representing complex geometries and 

multiple materials. 

- Process modelling and control: Create closed-loop and adaptive control systems with 

feedforward and feedback capabilities. Control system algorithms based on predictive 

models of the system response to process changes. Produce new sensors that can 

operate in build chamber environments. 

- Material, process and machines: Develop screening methodologies to answer the 

question as to why some materials are processable by AM, and some are not. Develop 

and identify sustainable (green) materials, including, recyclable, reusable, and 

biodegradable materials. 

- Biomedical applications: Create design and modelling methods for customised 

implants and medical devices. Develop viable Bio-AM (BAM) processes for fabrication 

of “smart scaffolds” and for construction of 3D biological and tissue models using 

living biologics.  
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- Energy and sustainability applications: Develop equitable indicators for measuring 

sustainability in AM processes and products. Identify sustainable engineering 

materials for AM processes. 

 

2.2 Materials in L-PBF and their Applications 

There is a wide range of engineering materials that are processable through L-PBF [6, 12, 15, 

42]. Most of the research has focused on Iron, Titanium, and Nickel-based alloys, due to their 

widespread application and their competitive process costs [42], as shown in Figure 13. 

Developments in new technology have allowed for improvements in process parameters in L-

PBF, e.g., higher laser power, which has enabled research on many other metals, such as 

Aluminium, Copper, Magnesium, 17-4PH Stainless Steel and Tungsten [3, 63].  A particularly 

novel application  of the L-PBF process involves the manufacture of open-cellular structures 

with pre-selected elastic modulus or stiffness (E) for aerospace structural components, 

complex heat exchangers and orthopaedic implants tailored to eliminate bone stress shielding 

by reducing E for high-modulus metals by more than an order of magnitude [3]. 

 

Figure 13: Research publications on materials for L-PBF (from  [42]) 

 

 Steel and Iron-based Alloys 

Iron-based alloys have been investigated since 1993 [66] and are the most commonly used in 

L-PBF due to their competitive price and that they are readily processable. Research in steel 

has increased significantly due to the advantage of producing porous structures that allow the 

reduction of the material’s relative density allowing the production of lightweight 

components while retaining the high strength properties of the material. This means that 

besides the design freedom given by AM, additional material savings and weight reductions 

can be achieved. Most of the research publications on L-PBF for ferrous metals are based on 
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316L Stainless Steel; however, it was only in 2010 that Tolosa et al. [67] achieved a 99.9% 

relative density in L-PBF  samples. Different variants of steel have also been investigated, 

including Maraging300 steel [68-70] and 17-4 PH [71, 72]. Steel is often used in industry due 

to its strength; L-PBF steel parts have been shown to be stronger compared to their cast 

counterparts [27, 67]. This could be attributed to the L-PBF process, where a very small 

amount of material is melted, and rapid solidification takes place, resulting in a more uniform 

microstructure throughout the part. 

There is a wide range of applications of L-PBF using steel materials due to their key properties, 

such as strength, ductility and biocompatibility [34-36]. Some important applications of steel 

components in L-PBF include heat exchangers where the freedom of design in L-PBF allows 

the production of conformal cooling channels used in injection moulding. Garcia et al. [73], 

used metal-AM to produce a mould incorporating spiral conformal cooling channels for 

injection moulding parts which improved part quality and cycle time. Wong et al. [74],  

investigated the potential applications of L-PBF to heat transfer applications with the use of 

novel geometries and lightweight structures in steel 316L and Aluminium 6061 components. 

Steel AM produced parts are also used for medical and dental applications. Kruth et al. [75], 

described a biocompatible metal framework for dental prostheses produced from L-PBF 316 

stainless steel and Ti-6Al-4V and demonstrated that the use of  L-PBF for the fabrication of 

the complex framework was viable without the need of manual intervention and with less 

pre-or post-processing.  Li et al. [76]  studied the design of structures with a gradient of 

porosity produced in 316 steel using L-PBF by varying the scan speed and this enhanced tissue 

growth in biocompatible implants.  

 Titanium and Titanium Alloys 

Titanium in the liquid state is highly reactive and sensitive to Oxygen, making it difficult to be 

processed by conventional methods. Almost all research has focused on commercially pure 

Titanium (CpTi) and Ti-6Al-4V (Ti64). It is possible to achieve parts with a high relative density 

in Titanium (99.5%) [77] and Ti-6Al-4V (99.98%) [16, 78] using the L-PBF process. L-PBF 

produced Titanium and Ti-6Al-4V parts show similar or superior strength to their cast 

counterparts (UTS = 654 MPa and UTS = 1250 MPa respectively) [16, 27, 78].  Koike et al. [16] 

preformed a comparison of AM produced samples of small dental implant products using Ti-

6Al-4V ELI to cast specimens.  The specimens were fabricated using electron beam melting 

(EBM) and laser melting systems (SLM). The samples manufactured using SLM and EBM had 

much finer α-β lamellar structures compared to the cast samples. Grindability was found to 
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be comparable to those of wrought and cast Ti-6Al-4V ELI specimens, and, both EBM and SLM 

processing exhibited harder samples than the cast counterparts. 

The interest in Titanium and its alloys has largely been due to the potential application in the 

medical sector because of its good biocompatibility. Porous Titanium structures with 

mechanical and biomedical properties close to those of the human bone are possible with L-

PBF scan strategies [79-81].  Mullen et al. [82] designed a novel porous titanium structure with 

a unit cell approach for the purpose of bone in-growth and applicable to the production of 

orthopaedic devices in commercially pure titanium (CpTi). Murr et al. [83] studied the 

mechanical and microstructural behaviour of Ti-6Al-4V during EBM and L-PBF, which can 

produce a wide range of crystallographic phases for biomedical applications, that are difficult 

to produce with traditional methods. Vandenbroucke and Kruth [78] examined the production 

of specific frameworks for complex dental prostheses using L-PBF to efficiently manufacture 

parts in Ti-6Al-4V and Co-Cr-Mo with appropriate mechanical and chemical properties. The 

use of L-PBF for medical and dental applications has strong economic potential because it 

allows the manufacture of multiple unique parts in a single production run and enables mass 

customisation [18].  

 Nickel-based Superalloys 

Nickel-based superalloys are typically used in high-temperature applications such as aircraft 

and automotive engines. Nickel alloys investigated for use in the L-PBF process include Inconel 

625, Inconel 718, Chrome and Hastelloy X among others. Nickel-based alloy parts fabricated 

by L-PBF have achieved nearly 100%, (99.98% Inconel 718) density relative to cast parts and 

had higher ultimate tensile strength (UTS) compared to their cast counterparts [84].  

Due to their excellent corrosion resistance high-temperature strength, fatigue resistance, 

wear resistance, and good weldability, Nickel superalloys, like Inconel 718, have been used for 

high-temperature applications up to about 700 °C [85]. Combined with the advantages of L-

PBF, such as freedom of design, engine components can be made with complex internal 

structures to increase cooling efficiency or to reduce weight, reducing fuel consumption and 

CO₂ emissions.  The turbine blades, which are thin-wall parts with complex channels inside, 

were produced using L-PBF from Inconel 718 and Cobalt Chrome alloy by Concept Laser [74]. 

Inconel 718  has been tested in applications for aircraft engines, including swirlers in 

combustion chambers, repair patches and turbocharger rotors [18]. Since 2016, Airbus Safran 

Launchers pursue a comprehensive approach to the development of L-PBF processing for 

Inconel 718 injectors for liquid rocket engines [86]. 
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2.3 Development of Residual Stress in L-PFB 

 L-PBF involves the heating and melting of powder material with a laser beam and the rapid 

solidification and cooling of the melted material to form the desired component.  The unique 

rapid heating-cooling thermal cycle of AM leads to residual stress in the produced part which 

affect the microstructure of the produced samples [27]. Residual Stresses (RS) are defined as 

stresses that remain inside a material when it has reached equilibrium with its environment 

after manufacturing, heating or other alterations and results whenever a material undergoes 

non-uniform plastic deformation [87-89]. From the measurement perspective, residual 

stresses can be classified by the length scale in which they operate and are divided into three 

characteristic length scales [89]. A schematic of the types of residual stress is shown in Figure 

14.    

 

Figure 14: Classification of residual stresses into three length scales (adapted from [90]) 

Type I residual stresses are macro stresses that act on the scale of the component’s geometry 

and may cause global distortion. These types of stresses are those mainly discussed in the 

literature regarding AM components. They arise from the non-uniform plastic deformation at 

the part scale and directly affect the fatigue properties of the material and are the main cause 

of distortion during or after production. Type II residual stresses are micro-stresses acting at 

the scale of individual grains; these tend to arise due to local microstructural effects, e.g. 

differences in slip behaviour from grain to grain. Type III residual stresses are at the atomic 

scale, arising from heterogeneous behaviour; this might arise from line defect (dislocations) 

or point defects, such as arise from radiation damage or doping with atoms of different size 

[89, 91]. 
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Due to the thermal cycle of L-PBF and the locally concentrated energy input, global residual 

stresses (Type I) develop in the part during the process and can lead to geometry distortion. 

Thermally generated residual stresses are often the consequence of non-uniform heating or 

cooling operations. Coupled with the material constraints in the bulk of a large component, 

this can lead to severe thermal gradients and the development of significant internal stresses. 

Residual stresses that arise in the part as it is being produced in the L-PBF process can be 

critical to performance and should be considered in the design of a component. In any free-

standing body, the equilibrium of stresses must be maintained, which means that the 

presence of a tensile residual stress in the component will be balanced by a compressive stress 

elsewhere in the body. Tensile residual stresses in the surface of a component are generally 

undesirable since they can contribute to, and are often the major cause of, fatigue failure, 

quench cracking and stress corrosion cracking [92]. 

Residual stress imposes some serious limitations on the practical use of the final component 

by reducing its mechanical properties (e.g. ultimate tensile strength, yield strength). A 

schematic representation of crack propagation due to residual stresses induced during an L-

PBF process is shown in Figure 15a. Leuders et al. [93],  concluded that internal residual 

stresses were primarily responsible for worsening crack propagation, thereby reducing fatigue 

life.  The distribution of residual stresses in L-PBF parts has also been found to result in 

anisotropic fatigue properties.  

Residual stresses may also reduce the part quality by affecting geometric tolerances. These 

stresses can cause warping and, in extreme cases, can cause the part to pull away from its 

supports, or even to crack [28]. The metal base plate on which the parts are built constrains 

part distortion during printing; hence, when the part is removed from the base plate, the 

constrained stresses are released causing a permanent part deformation as shown in Figure 

15b. Large residual stresses exceeding the yield strength will result in plastic deformation 

and/or micro-cracks in the parts that could lead to failure of the production process as a 

consequence of the interaction of the part with the powder recoater, as illustrated in Figure 

15c. Moreover, large residual stresses can limit the strength of the parts compared to a stress-

free state [94]. Therefore, it is critical to understand the development of residual stresses in 

the process.  
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Figure 15: Effects of RS in L-PBF Parts. a) reduced fatigue properties, b) distortion upon removal, and c) potential 
failure in the process (from [90]). 

 

The two major contributors to the development of residual stress within the L-PBF process 

are the Thermal Gradient Mechanism (TGM) and the contraction caused by the cooling of the 

new solid material [46].  

 Thermal Gradient Mechanism 

Large thermal gradients occur around the laser spot and rapid heating of the upper layer and 

with slow heat conduction, results in a steep temperature gradient. In the absence of 

mechanical constraints, the expansion of the top layer causes bending the part away from the 

laser beam, as shown in Figure 16(a). Elastic compressive strains are introduced since the 

underlying material is at a lower temperature and restricts the expansion of the hotter top 

layer; and, when the material’s yield strength is reached, the top layer will be plastically 

compressed in the heated zone. During the cooling stage when the source is removed, the 

plastically compressed upper layers start shrinking when cooling down but the shrinkage is 

partially restrained by the plastic strain formed in the heating stage. Finally, tensile residual 

stress is formed in the heated zone, which is balanced by compressive stress in a zone 

surrounding it that induces bending towards the laser beam, as shown in Figure 16a. 
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Figure 16: Thermal Gradient Mechanism (a) and constrained contraction effect (b) in L-PBF process (from [95]) 

 

 Thermal Contraction 

Thermal contraction is another explanation for the development of residual stresses in L-PBF, 

due to the process of building in layers. During the L-PBF process, when a new layer is added 

and heated far above the temperature of the underlying part, the new layer of material will 

first expand uniformly. This expansion of the top layer will be restricted by the much cooler 

underlying part, resulting in the development of compressive stresses in the new layer, and 

tensile stresses in the underlying part. A schematic of the thermal contraction is shown in 

Figure 16b. When the heat source is removed, the new layer will cool at enormous cooling 

rates of the order of 103 − 108 K/s [96], contracting at a greater rate than the cooled part 

beneath, thus resulting in tensile stresses in the new layer and compressive stresses in the 

part below. The thermal gradient mechanism (TGM) is based on localised heating and cooling, 

whereas the thermal contraction is based on global heating and cooling.   

 Theoretical Model  

A theoretical model was proposed by Shiomi et al. [45] to calculate the residual stress in an L-

PBF part built on a base plate. When the first layer is added on the base plate, it is cooled 

down from the melting point and shrinks. Since the shrinkage strain is much greater than the 

elastic strain for the yield stress, the residual stress of the new layer is considered to be equal 

to the yield stress Y. The proposed model by Shiomi et al. [45] is shown in Figure 17. 
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Figure 17: Development of residual stress due to solid contraction (from [44]) 

 

The strain ∈ created by the cooling of the part can be calculated with the material’s coefficient 

of thermal expansion (CTE) α and the variation in temperature ∆T, as shown in Equation 1.  

 

 ∈ =  𝛼∆𝑇  (1) 

The yield strength is, however, related to the temperature of the material. The yield stress at 

higher temperatures is lower; therefore, the required temperature change to yield the 

material at higher temperatures will be smaller.   

A simplified theoretical model proposed by Mercelis and Kruth [46], described in Figure 18, 

was developed to calculate the residual stress in L-PBF samples assuming that a part is being 

built on top of a base plate with height  ℎ𝑏 . The part built so far has a height  ℎ 𝑝  and the 

layer thickness 𝑡. 

 

Figure 18: Simplified Theoretical Model of the L-PBF Process [46] 
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This simple theoretical model assumes that: 

• The base plate and the part being built are at room temperature. 

• The upper layer induces stress due to its shrinkage (αΔT); the tensile stress is equal to 

the material’s yield strength σ (since a strain of αΔT would result in a much larger 

stress than the yield strength). 

• The stress 𝜎𝑥𝑥  is independent of the Y coordinate. i.e. the variation of the normal 

stress across the width of the part is neglected.  

• The general beam theory is valid. 

• No external forces are applied to the combination of the base-plate and part. 

 

The sum of the stresses normal to the build plane must be zero for static equilibrium to exist. 

At each instant, the equilibrium of both forces Equation (2) and moments Equation (3) need 

to be obeyed since no forces are acting on the system:  

 

∫ 𝜎𝑥𝑥(𝑧)𝑑𝑧 = 0 
 

(2) 

 

∫ 𝜎𝑥𝑥(𝑧)𝑧𝑑𝑧 = 0 
 

(3) 

 

 

Where z is the vertical build direction and 𝜎𝑥𝑥  is the in-plane stress. To complete the 

calculations, Shiomi et al. [45] and Mercelis and Kruth [46], assumed linearity of the strain 

field with respect to the layer height. The assumptions used for these models reduce the 

accuracy of the prediction of residual stresses compared to the actual L-PBF process due to 

the fact that the material’s properties are dependent on the temperature. The assumption 

that no external forces are applied is also a limitation given that there are forces from the 

supports and substrate until removal of the part from the substrate. Despite these limitations, 

this model could be helpful for prediction residual stresses and making comparisons with 

other methods, including FEA simulations.   
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The mechanisms described by Shiomi et al. [45] and Mercielis and Kruth [46] give some insight 

into the development of residual stress in the L-PBF process. However, the development of 

residual stresses is more complicated because each layer is heated uniformly in the single 

tracks exposed to the laser causing each track to heat and cool independently. When a layer 

is added to the base plate, it induces a compressive stress in the upper part of the base plate 

and tensile stress in the lower part. When successive layers are added on top, each layer 

induces further stresses in the base plate, but also in the already solidified layers; thus, 

changing the tensile stresses present in the previous layers and eventually resulting in 

compressive stresses in the underlying layers, and hence the in-plane residual stresses are 

more significant than the normal (z-direction) stresses [46]. This effect was confirmed by Liu 

et al. [97], who investigated the origin of residual stress in terms of the thermal gradient 

mechanism for 316L L-PBF parts by measuring stresses along the vertical and horizontal 

directions by X-ray diffraction and demonstrated that the residual stress distribution and its 

evolution in the vertical (z) direction are significantly affected by the subsequent thermal 

cycling (STC).  

In terms of the microstructural effects, when a high-energy laser irradiates the molten pool, 

the temperature gradient between the bottom of the molten pool and the surface provides a 

driving force for the growth of the grain. Due to the fast solidification and cooling rates when 

the laser beam moves out of the molten pool, the crystal development of austenite is 

significantly restricted due to there being insufficient time for the grain growth. In L-PBF, when 

a subsequent layer is deposited over the underlying layer, the temperature in the previously 

solidified layer has already decreased, which leads to a uniform heating and cooling process 

between the adjacent layers. This thermal boundary effect changes the cooling and 

solidification processes as well as the microstructural evolution as can be seen in Figure 19 

and the stresses concentrated at the bottom of the part connecting to the base plate result 

in a tensile stress [97].    

Stress in an L-PBF part is built up locally by the thermal shrinkage of the solidified melt pool 

and is larger in the direction of a scan track than perpendicular to it. The shrinkage is impeded 

in the horizontal direction by the solid material below, causing horizontal tensile stresses at 

the top surface of L-PBF produced parts. These horizontal stresses exert a tensile force which 

would cause the part to curl up if it were not anchored to the base plate. Because the part is 

anchored, curl up is avoided but vertical tensile stresses are introduced at the sides, while 

compressive stresses exist in all directions in the centre of the part [98]. 
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Figure 19: Inter-layer thermal boundary effect on the microstructure of an L-PBF 316L part (from [97]) 

The layer-by-layer additive process results in residual stress magnitude and orientation being 

highly dependent on the process parameters (e.g. laser power, scan strategy, scan speed and 

layer thickness), material properties and part geometry. It has been shown that due to the 

high and localised energy of the laser beam, the magnitude of the resulting stresses in the L-

PBF process are generally large, approaching the material’s yield strength [46]. The stresses 

in the longitudinal direction (σxx) of the beam motion are typically much higher than those in 

the transverse direction (σyy), i.e. perpendicular to the path due to the contraction of the 

heated material being more severely constrained in the direction of the laser path [99]. The 

maximum tensile stresses in the transverse direction have been found to be approximately 

half those in the scanning direction [100].  

Many researchers have confirmed through experiment and modelling that the top and the 

bottom of parts are generally in tension, while the middle section is in compressive stress. 

Moat et al. [101], used neutron diffraction and the contour method to map the stress field 

inside a thin wall. Results from both methods coincided and showed that the overall stress 

state in the part, while still attached to the base plate, were compressive in the centre and 

tensile along the side and top surfaces. Rangaswamy et al. [102], also used neutron diffraction 

and the contour method on 3-D solid structures. They found that residual stresses were large 

in the vertical direction and smaller in the horizontal plane. The stress maps showed that 
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mainly vertical stresses were present, which were compressive in the centre and tensile along 

the outer surfaces. Vranken et al. [103] showed from 2-D residual stress plots obtained using 

the contour method that the stress field in a sample, produced using L-PBF, were compressive 

stresses in the centre and tensile stresses near the top and bottom edges, as can be seen in 

Figure 20.  

 

Figure 20: Stress distribution obtained  via the contour method where Z is the  build direction (from [103]) 

 

Based on similar findings,  Denlinger et al. [104] developed a three-dimensional finite element 

model (FEM) and used a thermomechanical analysis to gain an insight into the accumulation 

of residual stresses in multi-layer builds.  Results from the FEM showed that the newly 

deposited layers experienced high levels of tension (above the yield strength), while layers 

beneath were forced into compression.  

2.4 Measurement Techniques of Residual Stress in L-PBF 

Residual stresses induced in the L-PBF manufacturing process can reduce the mechanical 

properties of the final component. Due to the strong anisotropy associated with the build 

direction in the L-PBFP process, significant differences have been found in the mechanical 

performances of L-PBF parts [27].  Therefore, identifying the source of residual stress is 

essential; once residual stresses are identified, further studies can be conducted to determine 

ways to reduce or control the development of residual stresses during the L-PBF process. 

There are many techniques for measuring residual stresses in metals, and they can be 

classified as either destructive or non-destructive [92].  A wide variety of existing residual 

stress measurement techniques have been applied by researchers to measure residual 
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stresses in L-PBF components. These methods of stress analysis vary in terms of technique, 

resolution and accuracy. Table 1 gives an overview of the most common techniques.  

Table 1:  Residual stress measuring techniques (adapted from [92, 105]) 

Technique Penetration Resolution Accuracy Comments 

Hole Drilling  

(distortion caused 

by stress relaxation) 

1.2 x hole 

diameter 

50 -100 µm 

depth 

±50 MPa, limited by 

reduced sensitivity 

with increasing 

depth 

Destructive. Quick and simple. 

Low cost. Measures in-plane RS 

type I. 

Curvature / Contour   

(distortion as stress 

arise or relax) 

0.1 - 0.5 of 

thickness 

0.05 of 

thickness; 

no lateral 

resolution 

Limited by 

minimum 

measurable 

curvature 

Destructive. Stress not uniquely 

determined unless used 

incrementally. Medium cost. 

Measures RS type I. 

X-ray Diffraction 

 (atomic strain 

gauge) 

Near-

surface 

<1 mm 

(with layer 

removal) 

1mm 

laterally; 20 

µm depth 

±20 MPa, limited by 

non-linearity or 

surface condition  

Non-destructive only as a 

surface technique. Sensitive to 

surface preparation. Portable 

systems Measures macro and 

micro RS. Peak shifts: types 1, 2; 

peak widths: type II, III.  High 

cost.  

Neutron Diffraction 

 (atomic strain 

gauge) 

Volumetric 500 µm ±50 x 10, limited by 

counting statistics 

and reliability of 

stress-free 

references  

Non-destructive. Excellent 

penetration & resolution 3D 

maps; low data acquisition rate. 

Macro and micro RS. 

Microstructure sensitive, 

Measures RS types I, II, III. High 

cost. 

 Destructive and Non-destructive Methods 

Destructive methods rely on the monitoring of changes in the distortion of the component 

when removing material to allow the stresses relaxation. The regions of a sample containing 

residual stress will relax into a different shape when the stresses are released, providing data 

for the back-calculation of residual stress.  

2.4.1.1 Hole drilling 

Hole drilling is one of the most widely used techniques for measuring residual stress as it is 

relatively simple, quick and low cost. Equipment can be laboratory-based or portable, and the 

technique that can be applied to L-PBF produced parts in a wide range of metals. The principle 

of the technique involves drilling a small hole into a component containing residual stresses 

at the centre of a strain gauge rosette which is used to measure the locally relieved surface 

strains. The hole drilling method is described by an ASTM standard test method ASTM E 837-

13  [106]. Due to the high sensitivity of the method, many factors must be considered such as 

the position of the strain gauge rosette, the size of the hole and the levels of residual stress 
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to be measured. This method is only valid for uniform residual stresses that should not exceed 

60% of the yield strength of the material or errors can arise due to localised yielding. The 

surface roughness may also affect the quality of strain gauge attachment, which would reduce 

the accuracy of the strains recorded. Material may, therefore, need to be removed before the 

gauges are bonded to the surface, but this would inherently change the levels of residual 

stress, as the removal of material would allow stresses to be relaxed. 

The hole-drilling method has been successfully applied to studying the residual stresses in 

components manufactured by L-PBF in different materials [107-109]. Knowles et al. [107], 

used the hole drilling method to evaluate residual stress within L-PBF Ti-6Al-4V specimens, 

where the residual stresses were found to be exceedingly high and in some areas approached 

and exceeded the yield strength of the material.  Salmi et al. [108] used an MTS3000 REsidual 

STress ANalyzer (RESTAN), which is a system manufactured by SINT Technology  based on the 

hole drilling method to measure the residual stresses of the samples (see Figure 21). The 

technique involves drilling a small hole into a component containing residual stresses at the 

centre of a strain gauge rosette which is used to measure the locally relieved surface strains. 

Measurements were taken for AISi10Mg parts and compared the residual stresses in samples 

after building and after stress relieving using shot-peening treatments. The outcomes of the 

study showed the presence, on the as-built components, of high tensile stresses that the usual 

post-processing operations were not able to minimise. Casavola et al. [109], successfully 

measured residual stresses for a set of components in AISI 18 Maraging steel employing the 

strain gauge hole drilling method using a strain gauge rosette with three radial grids, as shown 

in Figure 22, and showed that the stress magnitude decreased in the inner layers.  

 

Figure 21: MTS3000 RESTAN (REsidual STress ANalyzer) system by SINT Technology positioned on the construction 
platform with the samples (from [108]). 
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Figure 22: Residual stress hole-drilling measuring device (from [109]) 

 

2.4.1.2 Curvature Method 

Curvature measurements are frequently used to determine the stresses within coatings and 

layers. The deposition of a layer can induce stresses which cause the substrate to curve. The 

resultant changes in the curvature during deposition make it possible to calculate the stress 

as a function of the thickness of the deposited layer. The curvature can be measured with 

contact methods (i.e. strain gauges) or without direct contact (i.e. digital image correlation, 

laser scanning).  The Stoney Equation (4) [110]  is often used to relate the deflection to the 

stress:  

 

𝜎 =  −
4

3
 𝐸 

ℎ2

𝑙2
 
𝑑𝑔

𝑑ℎ
 

(4) 

 

Where, g is the deflection of a thin beam of length (𝑙) and stiffness (𝐸), and 𝜎  is the stress 

along the beam of thickness (ℎ). Using a similar concept, Zaeh and Branner [95] proposed a 

method to measure the deformation of a T-shaped cantilever when releasing the residual 

stresses developed through the L-PBF process after the part is detached from the supports 

using a wire-cutting EDM as shown in Figure 23. The results of their investigation showed that 

deformation in the negative vertical direction occurred when the residual stresses in the parts 

were released. In addition, the results showed that the use of different parameters in the 

process affected the deformation of the part after removal, i.e. using a smaller layer thickness 
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caused larger part deformation, scan strategies using only X-vectors caused more deformation 

that Y-vectors, and heating the substrate at higher temperatures reduced the deformation of 

the part.  

 

Figure 23:  T-Shaped cantilever deformation method proposed by Zaeh and Branner (from [95]) 

 

Using the same approach, Kruth et al. [111], proposed the bridge curvature method (BCM) to 

compare the effect of different parameters in the L-PBF process on the development of 

thermal stresses. The method consists of measuring the deformation of a bridge-like part after 

removal from the base plate, as shown in Figure 24. This method has been adapted by other 

researchers [112, 113], whose results agreed with Kruth’s experimental results in that shorter 

scan vectors and a rotation angle between the layers reduced residual stresses and part 

deformation. 

 

 

Figure 24: BCM  proposed by Kruth et al. [111] in which the curvature of the part is measured (a) before and (b) after 
removal from the base plate 
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2.4.1.3 The contour method 

The contour method is a powerful method for measuring residual stresses. This method 

involves cutting a planar surface through a part containing residual stress. The cut releases 

the residual stresses across the plane and the newly exposed surface responds by deforming 

[114]. By measuring the out-of-plane deformations, it is possible to determine the original 

residual stresses across the cut through the use of the finite element (FE) method. This is 

achieved by imposing displacement boundary conditions on the cut surface of the FE models 

that are equal and opposite to the measured deflections. The contour method requires a very 

accurate planar section to be cut through the stressed material; for this reason, electrical 

discharge machining (EDM) is typically used. Vrancken et al. [103] used the contour method 

together with a finite element model (FEM) to measure residual stresses in L-PBF components,  

where the normal stresses obtained are assumed equal to the stresses needed to return the 

part to a flat surface.  

2.4.1.4 X-ray diffraction 

 X-ray diffraction relies on elastic deformations within a polycrystalline material to measure 

internal strains in a material. The deformation causes changes in the spacing of the lattice 

planes from their stress-free value to a new value that corresponds to the magnitude of the 

applied stress. This new spacing will be the same in any similarly oriented planes, with respect 

to the applied stress and the crystal lattice; therefore, the lattice spacing effectively acts as a 

very small strain gauge. During a measurement, the specimen is irradiated with high energy 

X-rays that penetrate the surface, the crystal planes diffract some of these X-rays, according 

to Bragg's law (5) and a detector, which moves around the specimen to detect the angular 

positions where diffracted X-rays are located, records the intensity of these rays at a function 

of angular position [115].  

𝜆𝑛 = 2𝑑𝑠𝑖𝑛𝜃 (5) 

Where 𝜆 is the wavelength of the incident radiation, d is the interplanar spacing and, 𝜃 the 

Bragg angle, which is the angle that the incident beam makes with the diffracting plane. In the 

case of a stress-free material, the interplanar spacing d, for a particular reflection (hkl), is 

constant from one crystallite to another. When the material is deformed elastically, the lattice 

spacing of the crystallites change from their stress-free values and cause a shift in the Bragg 

angle. The strain calculated from this shift is termed the lattice strain. The lattice strain will 

depend upon the orientation of the reflecting group of crystallites with respect to the 

direction of stress [115]. Since the penetrating power of X-rays used for diffraction is small, 
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surface preparation is very important, and the surface must be smooth to avoid incorrect 

readings from the X-rays. This can be achieved by surface grinding, followed by mechanical 

polishing.  

 The X-ray method has been used by many researchers to measure residual stress in L-PBF 

components [97, 103, 115]. Liu et al. [97] studied the effect of the process parameters in L-

PBF by X-ray measurements along with the vertical and horizontal directions. The influences 

of subsequent thermal cycling, energy input and scanning track length were investigated and 

the results showed that residual stresses parallel to the scanning direction are much larger 

than that perpendicular to the scanning direction. Lower energy input and shorter line lengths 

induced smaller residual stresses in the L-PBF parts. The method has also been used by 

Vrancken et al. [116], who concluded that the direction of the largest stress on the top surface 

coincides with the direction of its scan vector for all tested materials (Ti-6Al-4V, AlSi10Mg, 

Inconel 718, Maraging steel and 316L).  

2.4.1.5 Neutron Diffraction 

Neutron diffraction is a non-destructive method that relies on elastic deformations within a 

polycrystalline material that causes changes in the spacing of the lattice planes from their 

stress-free value. Measurements are carried out in much the same way as in X-ray diffraction, 

with a detector moving around the sample, locating the positions of the high intensity 

diffracted beams. The most significant advantage that neutrons have over X-rays is their large 

penetration depths, which makes them capable of measuring at near-surface depths of 

around 0.2 mm down to bulk measurements of up to 100 mm in aluminium or 25 mm in steel. 

Figure 25 shows a schematic of the neutron diffraction process, which is representative of the 

other diffraction methods. 
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Figure 25: Schematic of the neutron diffraction method (from [108]) 

 

With high spatial resolution, neutron diffraction can provide complete three-dimensional 

strain maps of components [92, 117].  The neutron diffraction technique for making strain 

measurements makes use of Bragg’s law (Equation 6) to relate the neutron wavelength (𝜆), 

the measured angle of diffraction (𝜃) and the lattice spacing (d) of the lattice planes identified 

by Miller indices (hkl) 

𝜆𝑛 = 2𝑑ℎ𝑘𝑙𝑠𝑖𝑛𝜃ℎ𝑘𝑙 (6) 

 

The elastic lattice strain at a particular location is derived from the change in the experimental 

lattice spacing with respect to an appropriate stress-free reference lattice spacing 𝑑ℎ𝑘𝑙
0  , as 

follows (Equation 7),  

 

𝜀ℎ𝑘𝑙 =
𝑑ℎ𝑘𝑙 − 𝑑ℎ𝑘𝑙

0

𝑑ℎ𝑘𝑙
0  

(7) 

 

Three orthogonal elastic stress components (i.e.  𝜎𝑥 , 𝜎𝑦 𝑎𝑛𝑑 𝜎𝑧 ), directed along the 

geometrical axes (X, Y, Z), may be calculated from three measured components of elastic 

strain (𝜀𝑥 , 𝜀𝑦,𝜀𝑧) using Hooke’s Law, which is written for the component 𝜎𝑥 as (Equation 8), 
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𝜎𝑥 =
𝐸ℎ𝑘𝑙((1 − 𝑉ℎ𝑘𝑙)𝜀𝑥 + 𝑉ℎ𝑘𝑙𝜀𝑦 +  𝑉ℎ𝑘𝑙𝜀𝑧)

(1 + 𝑉ℎ𝑘𝑙)(1 − 2𝑉ℎ𝑘𝑙)
 

(8) 

 

Where, 𝐸ℎ𝑘𝑙  is the diffraction elastic constant analogous to Young’s modulus and 𝑉ℎ𝑘𝑙  is 

analogous to Poisson’s ratio. Diffraction elastic constants relate the elastic lattice strain in the 

direction normal to the (hkl) plane used in the diffraction measurement, to the macroscopic 

stress field [102]. 

Among many researchers, Rangaswamy et al. [102] applied this method to study the 

development of residual stress of LENS® SS 316L and Inconel 718 samples. The results showed 

that the residual stress at the centre of the samples is compressive and tensile at the edges 

of the parts. The magnitudes of the residual stresses exceeded 40-50% of the nominal yield 

strength of the material. Anderson et al. [99] used neutron diffraction to determine the 

distribution of residual stress in Ti-6Al-4V samples produced by L-PBF. They concluded that 

increasing the layer thickness reduced the stress gradients in the part and that the use of 

alternated scan vectors gave a more homogenous stress field. 

Furthermore, Sochalski-Kolbus et al. [118] using neutron diffraction compared the residual 

stress distribution of Inconel 718 samples produced by EBM and DLMS, where DMLS  samples 

exhibited higher residual stress levels compared to the EBM samples, most likely due to the 

powder-preheating step used in the EBM process.   

 In-process Measurements of Residual Stress in PBF  

Understanding the development of residual stress in the building process is needed to control 

residual stresses in L-PBF [42]. Some more specific techniques for making residual stress 

measurements during the L-PBF process have been developed. Researchers have developed 

in-situ measurement techniques using strain gauges, laser displacement sensors (LDS) and 

differential variable transducer (DVRT) [45, 47, 48, 119].  

Some researchers have used strain gauges attached to the base plate to measure the changes 

in strain during the building process with the addition of each new layer [45, 47].  Van Belle et 

al. [47] studied the development of residual stresses by measuring the variation in strains and 

temperature during the fusion and consolidation of new layers. A rosette strain gauge and a 

k-type thermocouple were attached to the bottom of a support structure, which was clamped 

onto the moving bed of the L-PBF machine, as shown in Figure 26. The strains and 
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temperature variation were recorded during the manufacturing process for Maraging steel 

samples.  

 

Figure 26: In-situ measurement system for strain and temperature evolution by Van Belle [47] 

Shiomi et al. [45] studied the thermal distortion in the L-PBF process for Chrome-Molybdenum 

steel samples. Measurements were taken using two strain gauges attached at the centre of 

the base plate that measured the strains parallel and perpendicular to the laser scan. A 

schematic of the setup used by Shiomi is shown in Figure 27. 

 

 

Figure 27: Experimental arrangement for measuring the developed strains in the substrate by Shiomi et al. [45] 
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In both studies, the calculated strain difference per layer (∆∈) was used to estimate the 

residual stress and was based on the layer removal method (Figure 28).  

 

Figure 28: Strain Increment in model and base plate by removal of the top layer (from [45]) 

 

Other studies have used displacement sensors for in-process analysis instead of stain gauges, 

including differential variable reluctance transducers (DVRT) [48] and laser displacement 

sensors (LDS) [120]. Dumbar et al. [48] developed an enclosed system for in-situ 

measurements of temperature and distortion from underneath the part. Distortion 

measurements were completed using a differential variable transducer (DVRT) displacement 

sensor, connected to a DEMOD-DC to convert displacement into voltage. The voltages were 

measured by a voltage data acquisition (DAQ) system, and temperature measurements were 

completed using a K-type thermocouple. A substrate attached to the top of the enclosed 

system was used as a build plate, as shown in Figure 29.   

 

Figure 29: Experimental set-up for in-situ distortion measurements using a DVRT proposed by Dumbar et al. [48] 
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The distortion in this study is considered as an analogue of residual stress. Results from the 

in-situ measurements for Inconel 718 samples, showed a distortion cycle during the L-PBF 

process resulting in a final distortion in the Z direction caused by the thermal gradient 

mechanism (TGM). Using a constant scan strategy increased distortion by 37.6% as compared 

with a rotating scan pattern. A similar study was performed by Denlinger et al. [120], who 

analysed the effect on the inter-layer dwell times on distortion and residual stress in Ti-6Al-

4V and Inconel 625. In-situ measurements of distortion in the substrate were taken with a 

laser displacement sensor (LDS). A substrate was clamped from one end, and the LDS was 

placed at the free end of the substrate to capture the bowing distortion mode of the sample 

in the z-direction. Results showed that increasing dwell time, to allow additional cooling 

during the deposition process, reduced distortion for the Inconel 625 samples; whereas the 

opposite occurred for the Ti-6Al-4V samples.  

Robinson et al. [119] studied residual strains developed during the L-PBF process with the use 

of a Force Transducer Device (FTD) (see Figure 30). Their FTD consisted of a specially enclosed 

substrate holding an arrangement of load cells that allowed the building of two different part 

geometries and measurement of the forces developed. The load cells were connected to 

Titanium pegs that work as the build platform and registered the developed strains while the 

part is being built. Their results showed the primary stresses to be in the scanning direction 

and by using shorter scans, the strains developed were lower than with unidirectional long 

scans. The use of a higher laser power increased the residual stress in the component.  

 

Figure 30: The Force Transducer Device (FTD), developed by Robinson [from 119] for in-situ measurements. 

Some other non-disruptive methods have been developed for in-situ measurements by using 

optical monitoring systems. Smurov et al. [122] analysed the thermal processes during 

selective laser melting of a layer of INOX 316L metal powder using an Infra-Red (IR) camera. 

The laser interaction parameters, specifically the power, scan rate, and heated spot diameter, 

corresponded to typical operating windows for the L-PBF processes. The temperature of the 
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surface of the melt pool of the metal powder during the L-PBF process was determined with 

the infrared camera. A schematic of the temperature distribution during the laser sintering of 

powdered INOX 316L stainless steel is shown in Figure 31. Results illustrate the effect of the 

scan rate and laser power on the geometry of the melt zone. Another study was developed 

by Rodriguez et al. [123] investigated the absolute surface temperatures using in-situ IR 

imaging of the melted or solid surfaces layer-by-layer during fabrication within an EBM system. 

The thermal camera was synchronised with the system's signal voltages for three 

synchronised events (pre-heating, melting, and raking) to capture images automatically. A 

calibration procedure was established to acquire absolute temperature values from the IR 

images to determine the solid material's emissivity and the reflected temperature or mean 

radiant temperature of the build chamber. Verification of the data was performed using a 

thermocouple embedded during fabrication that showed a 3.77% difference in temperature. 

The thermal model developed can be extended to other PBF processes to improve thermal 

monitoring and control of the fabrication process. 

 

Figure 31:  Temperature distribution during laser sintering of powdered INOX 316L stainless steel: Region 1 is the melt 
isotherm, 1450 °C. (from [123]) 

 

2.5 Methods to Model and Predict Residual Stress in PBF 

The measurement methods described previously are often used to validate Finite Element (FE) 

models. FE models are then used to predict the development of residual stresses in a build for 

different process parameters or part geometries. FE models have been developed to simulate 

the L-PBF process to identify the best process parameters in order to reduce or control 

residual stresses. FE models are not only used to predict residual stresses, but they can also 

be suitable for the development of new scan strategies and to develop the optimum 

parameters for new materials thus reducing the need for costly experimental work. FE models 
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together with experimental methods have been widely used to study and understand residual 

stresses in the L-PBF process and other AM technologies; therefore, it is important to 

understand and review the FEA models developed in the literature.  

L-PBF is a very complex process that involves the production of components formed from the 

addition of hundreds or thousands of individual layers that range from 20 µm to 100 µm in 

thickness; in addition, each layer is melted non-uniformly by a moving laser beam resulting in 

complex patterns of heat transfer. Therefore, a precise representation of the L-PBF process 

using an FE model requires an enormous computational expense and time. In order to reduce 

the computational expense and to develop accurate FE models, some studies have focused 

their models only on understanding the thermal cycles developed in each single scan [124-

130].  This provides an insight into the flow of matter and energy in the laser melting process 

but ignores the multi-layer effects. At the same time, other researchers have extended their 

studies into the prediction of the residual stresses that develop in the whole process, resulting 

in good comparisons with experimental results [131-144].  

Most of the studies are similar in the consideration of the thermal effects; Figure 32 shows a 

schematic of the factors considered in modelling the heat transfer in a thermal model (i.e. 

heat conduction theory, initial and boundaries conditions). The laser scans the powder bed 

according to a defined scanning pattern, resulting in the powder undergoing state and phase 

changes from solid to liquid and then back to solid when cooling. Considering the 

temperatures and phase conditions, temperature-dependent material properties are also 

required for accurate results. The FE model involves information from the material properties 

such as the coefficients of thermal expansion, conductivity, yield strength, density, elastic 

modulus and the specific latent heat.   

 

Figure 32: Schematic of the heat transfer conditions during L-PBF process (from [124])  
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The heat transfer is usually modelled using Fourier’s theory for heat conduction [145]. To 

describe the governing heat conduction (9) was used by Carlsaw and Jeager [146].  

 

𝑘 (
𝛿2𝑇

𝛿𝑥2
+

𝛿2𝑇

𝛿𝑦2
+

𝛿2𝑇

𝛿𝑧2 ) + 𝑞 = 𝜌𝑐
𝛿𝑇

𝛿𝑡
 

(9) 

 

 

Where k is conductivity coefficient, T is temperature, 𝜌 is density, c is heat capacity coefficient, 

and q the internal heat generation.  

The initial conditions and boundary conditions can be described by Equations (10) and (11). 

𝑇(𝑥, 𝑦, 𝑧, 0) = 𝑇0 (10) 

 

−𝑘 (
𝛿𝑇

𝛿𝑧
) = 𝜖𝜃𝜎(𝑇4 − 𝑇𝑒

4) + ℎ(𝑇 − 𝑇𝑒) 
(11) 

 

 

Where, 𝑇0 the initial temperature, 𝑇𝑒 the free stream temperature, 𝜖𝜃 the emissivity, 𝜎 the 

Stefan-Boltzman constant, and ℎ the convective heat transfer coefficient.  

The parameters modelled vary among the different studies, due to the costs and time 

implications for the simulations. The heat transfer into the part can be modelled as originating 

from an area of constant temperature [147] or as a distribution of heat flux [95]; and the 

volume of irradiated material is often increased to reduce computational expenses. Another 

common strategy to reduce computational costs has been to group a large number of thin 

layers into a small number of much thicker layers, because this allows faster residual stress 

and distortion calculations but reduces the level of precision.   Fu and Guo [148] developed 

an FE model to simulate the multi-layer deposition of Ti-6Al-4V in L-PBF. A physics-based layer 

build-up approach coupled with a surface moving heat flux was incorporated into the model. 

The melt pool shape and dimensions were predicted and experimentally validated. The 

temperature gradient and thermal history in the multi-layer build-up process were also 

obtained, as shown in Figure 33. 



Chapter 2: Literature Riview 

 

50 
 

 

Figure 33: Simulation schematic of L-PBF proposed by Fu and Guo (from [148]) 

 

Another approach used to model the multilayer effect and final part deformation is to ignore 

the laser motion within layers; Zaeh and Branner [95] developed an FE model of a T-shape 

cantilever based on their experimental work. To reduce calculation times the simulation was 

performed by grouping 20 real layers of 50 µm into a single layer of 1 mm, and every layer 

was charged with 200 W power for a period of time of 20 ms followed by a cooling period of 

4 s. The layers were heated uniformly, thus reducing computational time while still allowing 

multilayer effects and in-plane residual stresses to be estimated. The residual stresses 

predicted by Zaehe and Branner are shown in Figure 34. The results show a stress of about 

490 N/mm² within the cantilever while the measurements from neutron diffraction exhibited 

a maximum of 435 N/mm2. The simulation results shown are close to those in the 

experimental work and could be improved by reducing the layer thickness for a more realistic 

approach. 
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Figure 34: Final temperature and residual stress distribution for interlayer effect simulation (from [95]) 

 

There are a large number of simplifications performed in the modelling of the L-PBF process 

in order to reduce the computational costs; however, good correlations to experimental work 

have been achieved. FE models have helped to understand and predict the development of 

residual stresses and part deformation in the L-PBF process. Several commercial software 

packages have been developed for specific AM processes to allow predictions of residual 

stress and part deformation; these include, Ansys, 3DSIM and Simufact Additive. The use of 

these software packages enables the analysis of the use of different process parameters in 

different materials to select the optimum part orientation and support structures to achieve 

a successful build with the lowest residual stress level.   

2.6 Process dependence on Residual Stress 

According to the literature, many process variables in L-PBF affect the development of residual 

stress. From a combination of experimental analysis and FEM simulations performed in the 

literature, it is clear that changing the process variables has a significant impact on the 

resulting residual stresses and part deformation for the built part. Bartlett and Li [90] 



Chapter 2: Literature Riview 

 

52 
 

categorised the most prevalent process parameters discussed in the literature in three main 

groups: scanning strategy, beam variables and process conditions, as shown in Figure 35.  

 

Figure 35: Process parameters that affect residual stress formation in L-PBF (adapted from [90]) 

 

L-PBF, as in other AM process, has a wide range of input factors and output parameters 

affecting the functionality of the final component. Input factors to be considered include laser 

power, scanning speed, scanning interval, scanning strategy, layer thickness and metal 

powder physical properties. The output parameters which determine the functionality of the 

part and are measurable, include tensile strength and part density [149].  A schematic of 

functionality input factors and output parameters for the L-PBF process is shown in Figure 36. 

The main input parameters for the L-PBF process and their effect on residual stresses as 

reported in the literature are reviewed in this section. 
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Figure 36: Functionality of input factors and output parameters for the L-PBF process (adapted from [149]) 

 

 Process Parameters and Material Properties  

Since the foremost objective in L-PBF is to produce components with comparable density to 

cast material, sufficient heat input to melt a certain amount of material is required. Therefore, 

the process parameters need to be appropriate for each type of metal powder which requires 

using the correct processing parameters, e.g. laser power and exposure time. When plotting 

the power and speed of the laser beam as a function of one another, the graph can be divided 

into four zones, as shown in Figure 37. The combinations of power and speed in zone I result 

in parts of comparable density to cast material, while high power and lower speed in zone II 

result in ‘over melting’ and lower power and high speed in zone III result in lack of fusion. 

While for zone OH with high power and very low scan speeds leads to significant thermal 

deformation in the part [150]. A combination of high power and lower scan speed can result 

in the generation of keyholes due to the excessive heat supply. 
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Figure 37:  Process window of L-PBF zones for Ti-6Al-4V (from  [150]) 

 

Process parameters such as laser power, scan speed, point distance, hatch spacing and layer 

thickness are adjusted for each specific material to assure the powder is completely melted 

and fused to the neighbouring melt vector and with the previous layers. Not using the correct 

parameters corresponding to the specific material properties, could lead to the formation of 

material defects during the process, such as keyhole porosity [151] and lack-of fusion (LoF) 

[152] defects. The process parameters and the laser-material interaction will be discussed in 

more detail further in this thesis. It is known that the thermal conditions and cooling rates 

affect the development of residual stress in the L-PBF process. The parameters for the energy 

input laser power and scan speed are the primary variables that alter the energy input in the 

process.  The volumetric energy density ED (J/𝑚𝑚3) is defined as the average energy applied 

per volume of material was calculated from the formula defined in (Equations ( 12) and (13)) 

[153]. 

𝐸𝐷 =
𝑃

𝑆𝑆 ∗ 𝐻𝐷 ∗ 𝐿𝑇
 

 
( 12) 

 

 

𝑆𝑆 =  
𝑃𝐷

𝐸𝑇
 

 
 
(13) 

Where, P is laser power (W), SS scan speed (mm/s) defined from Equation (13), PD point 

distance (µm) over ET exposure time (µs), HD is hatch spacing (mm), and LT is layer thickness 
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(mm).  Simons et al. [154] reported significant higher residual stresses in 316: L-PBF samples 

when the energy density was increased from 43 J/mm3 to 71 J/mm3.  Since components with 

lower energy density have higher porosity, there are no fixed connections to the surrounding 

tracks and the residual stresses can be reduced. Yadroitsev et al. [155] in a single- track 

deposition study reported laser power to be the most important factor in determining the 

residual stress development in the L-PBF process and in being a critical factor in reducing 

porosity in the produced samples.   

 

Each cross-section of a part manufactured by L-PBF is produced as a result of laser melting of 

sections of the powder surface.  A schematic of the formation of a melt pool is shown in Figure 

38, and is controlled by the scanning parameters, laser power, exposure time, point distance, 

hatch distance, and layer thickness. The laser beam melts the powder particles, and with each 

pass, an extended molten pool is formed. Tensile forces below the surface can cause track 

fragmentation, which is one of the L-PBF problems known as balling-effect [149, 156]. 

Manvatkar and DebRoy [157] found that lowering the laser power reduced the melt pool size 

and the heat transfer to surrounding material, which resulted in higher cooling rates [157]. 

Higher laser power has been reported to result in lower part deformation [158]; while 

reducing the exposure time or scan speed leads to lower temperature gradients, lower cooling 

rates and reduces residual stress developed [157, 159, 160]. The limit on the point distance is 

determined by the ability to produce a continuous melt track because reducing the point 

distance too much results in a bigger melt pool and a balling effect. In contrast, increasing the 

point distance too much results in a broken melt track without a proper melting that can 

generate porosity or delamination.  

 

Figure 38: Formation of layer single track in L-PBF, where: 1 - Laser Beam; 2 - Single Track Bead; 3- Loose Powder 
Material Layer; 4- Base or Previous Layer; l - Melt Pool; m - Track Width; n- Powder Consolidation Area[149] 
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Ruidi et al. [156]  showed that the balling characteristics are also strongly influenced by laser 

powers (Figure 39). At lower laser power of 70–100 W, the scan tracks were discontinuous 

combined with having balling initiation. On increasing the laser power to 150–190 W, the scan 

tracks became continuous without the presence of any balling initiation as seen in Figure 39. 

Therefore, the high laser power can provide enough input energy, favouring the wetting and 

spreading of molten pool similar to the influence of scan speed on balling initiation. Zhirnov 

et al. [149] suggested that properties of the final part depend upon the properties of each 

track and separate layer as well as on the bond between them. Their experimental results 

showed that L-PBF has a threshold nature, where, in some areas, the laser melt is continuous 

and, in other areas, it is unstable where the tracks are not continuous. Instabilities occurred 

at low scanning speeds in the form of deviations and defects as well as at extremely high 

speeds where balling effects occurred. Therefore, the size of the melt pool is important in 

preventing the formation of balling and instability in order to produce a successful layer by 

layer build. 

 

Figure 39: SEM showing the balling effect of single scan tracks occurred while using lower laser powers (70-110 W),  
while the scan tracks are continuous for higher laser power (150-190 W) (from [156]) 

 

Melt pool characteristics, such as geometry and dimensions, provide significant information 

that is helpful for the determination of process parameters for new materials, and machine 

set-up or model calibration. Single beads can be easily fabricated and analysed for melt pool 

characterisation, significantly reducing time and cost compared to conventional optimisation 

methods based on more expensive experimentation [161, 162]. 

The use of different metal powders and scanning parameters change how residual stresses 

are developed in the L-PBF process. The thermal conductivity of materials is especially 
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important as it determines the temperature gradient during cooling. Conductivity is not, 

however, the only property that affects the thermal gradient. The length of an L-PBF part and 

the moment of inertia affect the magnitude of the residual stresses [29]. According to 

Casavola et al. [109], circular specimens warp less as opposed to components where the 

geometrical dimensions have greater relative variation. Their work also concluded that for the 

same diameter, thicker specimens have lower stresses as opposed to thinner specimens. 

Rangaswamy et al. [102] showed that the geometry of the sample has an important effect on 

the development of residual stresses, because, the thermal expansion is not the same at the 

centre and corners of a part. As the laser deposits material away from the edge, the pattern 

of heat flow is roughly circular in and near the melt pool as shown schematically in Figure 40 , 

however, at an edge, the heat flow is localized and the energy dissipates further into the 

previous layers.  

 

Figure 40: Schematic of the patterns of heat flow in a thin wall sample when the melt pool is (1) in the middle of the 
top edge and (2) when it is at the side edge of a thin wall plate (from [102] ). 

 

Material properties also have significant implications in the thermal contraction mechanism. 

Materials inherently have different coefficients of thermal expansion; hence the deformation 

generated from the constrained contraction will also differ. This process is also dependent on 

the temperature difference between the already solidified and the newly formed layers, 

which could be affected by the layer thickness. The absorption capacity of the powder layer 

depends not only upon the powder’s physical-chemical properties but also on its 

granulometry (particle size and shape) and bulk density.  When the metal powder is in its solid-

state,  the material properties are affected mainly by the via thermal conductivity (k), and 

when the metal powder is melted, it is necessary to consider the ratio of the thermal 

conductivity and area (k/A) [109]. 
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The geometry of the parts also has a significant consequence on the magnitude and 

orientation of residual stresses. The part geometry has an effect on the heat transfer within 

the part and this, in turn, affects the temperature gradient and thus the magnitude and 

orientation of the residual stresses. The effect of the geometry influences not just the heat 

transfer during the build, but also the local temperature gradient surrounding the melt pool. 

If the part is melted with vectors that traverse the full width of the part, the time between 

consecutive vectors coming back to the same point will be different for different widths. 

Therefore, the temperature of adjacent vectors will also differ; this means, a higher thermal 

gradient and thus greater residual stress in parts with long scans in comparison to short scans. 

When alternating the scan strategies layer by layer, the part temperature will be more 

homogeneous; this is one of the reasons why it has been proposed in the literature that 

alternating the scanning strategies in each layer is a way to reduce the residual stresses [48, 

49]. The heat transfer is not only dependent on the geometry, but also on the surroundings 

such as the supports structures used in the build, which can act as conduction paths, and 

therefore affect the stress [119].  In addition, an experimental analysis done by Casavola et al. 

[163] using the hole drilling method, suggested that the development of residual stress in an 

L-PBF component is influenced by the positioning of the part on the build plate and by the 

thickness of the part, with the lowest stress value occurring at the central position of the build 

plate and the thickest specimen.  

 Scanning Parameters 

The scanning strategy determines the distribution of energy in each layer. The variation 

of the scan vector lengths, the sequence and direction of scan vectors and the rotation of 

the consecutive layers alters the way heat is supplied to the powder bed and affects the 

properties of the finished part. Vasinonta et al. [164] proposed that different scanning 

parameters should be used at the edge and at the centre of the part as the heat transfer 

conditions will be different at the edges of the slice compared to the centre of the layer. At 

the edges, there is a reduced number of heat transfer paths, which causes the edges to be 

hotter than the centre. Therefore, a greater temperature gradient will be apparent at the 

edges, which causes the development of compressive stresses in the centre of the part, and 

tensile stresses at the edges.  

Previous studies in the literature have reported that the residual stresses in a component is 

affected by the scan strategy used to expose the metal power in each layer to the laser beam. 

The scan strategy consists of two main parts: the scan parameters or parameter set (laser 
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power, scan speed, scan spacing and layer thickness) and the scan pattern (laser path). A 

number of different scan patterns have been developed in order to improve the efficiency of 

the L-PBF process. Jhabvalva et al.  [165] suggested four major scanning strategies to control 

the temperature gradient inside the part in the L-PBF process. A schematic of the scan 

strategies is shown in Figure 41.  

 

Figure 41: Schematic of four different scanning strategies used in the L-PBF process (from [165]) 

Parallel scanning is the most common strategy and consists of parallel scan vectors in each 

with the layer of the part, either all in the same direction, back and forth, or the scan vectors 

rotate 90° between each layer to form an alternating pattern. Spiral scanning consists of a 

continuous exposure path rotating from the centre out or from the outside to the centre. 

Paintbrush scanning consists of splitting the part into columns reducing the length of the scan 

vectors. Chessboard scanning or island scanning, shown in Figure 42, consists of splitting the 

part surface into small chessboard squares and parallel scanning each square in a random 

direction, thus reducing the scan vectors length. These scanning strategies are designed to 

minimise the thermal influence of previously scanned sectors on the next scanned vector.  
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Figure 42: Schematic representation of the Island scan strategy (from [59]) 

Mercelis and Kruth [91] suggested that the exposure strategy has a significant influence on 

the residual stress levels developed during the process. Results from their experimental work 

showed that the stresses are larger perpendicular to the scan direction than along the scan 

direction. A subdivision of the surface into smaller parts resulted in a lower maximum stress 

value and equally large stresses in the X and Y direction. Heating of the substrate plate 

resulted in a reduction of the residual stress level since the temperature gradients were 

reduced. When the part was removed from the base plate, it contained much lower stress 

levels than when attached to the base plate, but suffered from deformation during the part 

removal because, when the part is detached from the substrate, its constraints were released 

causing uniform shrinkage and bending [94]. The stress distribution in the part, consisted of a 

zone of tensile stresses just below the upper surface, a large zone of compressive stress in the 

centre and tensile stresses at the bottom. The magnitude of the stresses depended on the 

part height and the stiffness and thickness of the base plate. Before the part removal, a 

greater build height resulted in a lower stress level in the base plate and a more uniform stress 

level in the part; therefore, the use of a thick base plate resulted in less deformation due to 

part removal compared to a thin base plate [91, 111, 166].  

In an investigation of sectoral scanning or island scanning, Yasa and Evren [167] concluded 

that sectoral scanning reduced residual stresses compared to common scan strategies, 

especially when the orientation of the scan tracks was set at 45° to the x-direction as shown 

in Figure 43. The sector size did not have any significant impact on the residual stresses. The 

scan spacing between successive scan tracks was found to be optimal at 62% of the spot size 

when other process parameters were constant (a scan speed of 300 mm/s, a laser power of 

100 W and a spot size of 180 µm). Very low scan spacing resulted in excessive energy intensity 

into the powder material resulting in irregular and large pores. In contrast, very high scan 

spacing factors resulted in un-molten regions between tracks resulting in aligned and 
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excessive porosity. With similar results, Zaeh and Branner [95] used of the cantilever method 

and neutron diffraction to obtain similar results and concluded that the use of island scanning 

is preferred over long scanning vectors.  

 

Figure 43: Sector size and orientation of used scan strategy by Yasa and Evren (from [167]) 

 

Robinson et al. [49]  performed an experimental analysis by building sample blocks with 

different scanning strategies.  Using the hole drilling method, they found that scanning 

direction, scan vector length and the part geometry had important effects on residual stresses.  

The direction and magnitudes of the residual stresses were found to be very dependent on 

the scanning strategy used, with unidirectional scans generating the largest stresses. The use 

of hatch rotations, other than alternating 90°, showed little benefit in lowering the magnitude 

of residual stresses; but could lead to a more uniform distribution. 

Bo et al. [168] in an experiment using a helix scan strategy and a progressive scan strategy 

concluded that helix scan strategy was more suitable for complex parts resulting in lower 

maximum deformations.  Jhabvalva and Boillat [165] investigated the spiral scan strategy and 

found that it reduced the temperature gradient within a layer compared to parallel scan 

vectors.  

Carter et al. [59] investigated the effects of the use of different scan strategies and suggested 

that ideally, the optimum scan strategy should be calculated using a layer by layer approach 

taking into account the part geometry and even adjusting the fundamental parameters of 

laser power and scan speed. Manufacturers of L-PBF commercial equipment have made many 

different laser scanning strategies available, and a classification of these strategies is shown 

in Figure 44. 
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Figure 44: Treatment strategy classification according to laser treatment type in L-PBF (from [149]) 

 

2.7 Knowledge Gap in Literature 

Laser-Power Bed Fusion (L-PBF) is well-established as an additive-manufacturing process with 

a history of innovation in machine design culminating recently in multi-laser machines that 

also include automated, closed-loop material supply, recovery and sieving. A wide range of 

materials have been investigated, and specialised build strategies developed to permit the 

production of parts for an ever-increasing number of industrial sectors, including aerospace, 

automotive and biomedical. However, residual stresses induced in the parts remain an issue 

for laser powder bed fusion because these stresses can influence the mechanical performance 

of a part both in terms of decreased functionality due to distortion and of reduced service life 

due to fatigue and fracture. Two main mechanisms have become popular as explanations of 

the formation of residual stresses during the L-PBF process, namely the thermal contraction 

and thermal gradient mechanism. However, despite extensive efforts, our understanding of 

the mechanism of residual stress formation during L-PBF are limited, and this severely impairs 

our ability to reliably predict or control residual stresses. This lack of understanding arises 

partly from the large choice of build parameters available for controlling the building of a part; 

and partly, from the difficulty in evaluating residual stresses at an appropriate spatial 

resolution either during or after the build process. There is a significant body of work 

describing the influence of many build parameters, based on both experimentation and 



Chapter 2: Literature Riview 

 

63 
 

simulation studies; however, this body of work does not provide a comprehensive or 

systematic knowledge of these influences and instead provides information about trends, 

which inhibits the development of optimum build strategies. Residual stresses cannot be 

evaluated directly and have been inferred from measurements of deformation and strain 

using point sensors in-situ and after the build process using either destructive techniques, 

such as hole drilling and the contour method, or non-destructive techniques, such as x-ray 

and neutron diffraction. However, none of these techniques provides detailed information 

about the distribution of residual stresses induced during the build process which Carter et al. 

[59] have proposed will vary both spatially and temporally as each layer is added to a part. 

Hence, knowledge of the variation of the residual stress, during the build process at an 

appropriate level of resolution and as each layer is added, would appear to be essential to 

creating reliable simulations of the process and, hence or otherwise, devising optimum build 

strategies. Recently in the manufacturing group in the University of Liverpool, Robinson [119] 

developed a force transducer device (FTD) that provides real-time, in-situ data describing the 

forces exerted on the baseplate in an L-PBF machine during the build process. Hence, in this 

study, following a review of the relevant literature (objective #1), the FTD has been selected 

to explore the evolution of residual stress during the build process (objective #2) and to 

investigate the influence of a number of key build parameters on the evolution of residual 

stress in selected materials (objective #3). The use of different metal powders allowed the 

investigation of the effect of the metal powers on the development of residual stresses 

(objective #4). The experience gained from this investigation has been used to propose a 

revised design of the FTD capable of working at higher temperatures and loads. The FTD, as 

its name implies, provided measurements of the forces generated on the base plate during 

the L-PBF process from which residual stress can be inferred. Overall, these components of 

the study are designed to provide new knowledge about the evolution and final state of 

residual stresses developed during L-PBF by using the latest in-situ measurements technology 

to provide time-varying data such as each layer is added. The methods employed and results 

obtained are described in the next chapters.  

 



 

 Materials and Methods 
 

This chapter details the materials and methods used during this investigation, including the 

manufacturing equipment used for the production of the L-PBF samples and details the 

different metal powders that were studied to evaluate the effect of the material properties 

on residual stress. In this chapter, a description of the different measurement techniques and 

software packages used for the analysis of the results is also presented.  

3.1 Materials Used 

This section presents an overview of the materials used in the experimental work described 

in this thesis. L-PBF samples were built in different metal powders to evaluate the residual 

forces developed in the L-PBF process and the part deformation after removal. The materials 

used for the experimental work are widely use in L-PBF by different industries [13, 18, 25]. For 

the Encompass project, a study of the effect of residual forces was done in Ti-6Al-4V (Phase 

1). After the completion of the Encompass project (Phase 2), and due to the interest and 

machine availability provided by the sponsor Renishaw, the effect of the material properties 

on the development of residual forces was investigated using: Inconel 625, Inconel 718 and 

Maraging steel. 

 Ti-6Al-4V ELI-0406 Alloy  

 Ti-6Al-4V ELI-0406 alloy comprises a mass fraction of up to 90% Titanium alloyed with 

Aluminium up to 6.75% and Vanadium up to 4.5%. Powder supplied by Renishaw for AM has 

a particle size of 15-45 µm. Ti-6Al-4V has excellent specific strength (strength to weight ratio) 

which makes it ideal for load-saving structures where weight is an important factor. It has 

good corrosion resistance, and it is biocompatible, leading to it being widely used for surgical 

and dental applications. It has good osseointegration properties, low thermal expansion and 

conductivity. Its material properties specifications are shown in Table 2.  Further details of its 

material specifications can be found in the material data sheet in Appendix A1. 
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Table 2: Ti-6Al-4V ELI-0406 alloy material properties  

Density 4.42 g/cm³ 

Thermal conductivity 6 W/mK to 8 W/mK 

Melting range 1635 °C 1665 °C 

Coefficient of Thermal Expansion 8 x  10−6𝑘−1  to 9 x 10−6𝑘−1   

Particle size distribution   15-45 µm 

 

 Inconel 625-0404 Alloy 

Inconel 625-0404 alloy comprises Nickel alloyed with Chromium of mass fraction up to 23% 

and Molybdenum up to 10%, along with other minor elements. Powder supplied by Renishaw 

for AM has a particle size distribution of 15-45 µm. Inconel 625 has a wide range of 

applications in industry, particularly where good tensile, creep, rupture strength, very high 

corrosion and oxidation resistance at high temperatures is required.  Its material properties 

specifications are shown in Table 3.  Further details of its material specifications can be found 

in the material data sheet in Appendix A1. 

Table 3: Inconel 625-0404 alloy material properties 

Density 8.44 g/cm³ 

Thermal conductivity 9.2 W/mK to 10.7 W/mK 

Melting range 1290 °C 1350 °C 

Coefficient of Thermal Expansion 12.8 x  10−6 𝑘−1   

Particle size distribution   15-45 µm 

 

 Inconel 718-0405 Alloy 

Inconel 718-0405 alloy comprises a mass fraction up to 55% Nickel alloyed with Iron to 21% 

and Chromium up to 21%, along with other minor elements.  Powder supplied by Renishaw 

for AM has a particle size distribution of 15-45 µm. Inconel 718 has a wide range of 

applications in industry and is particularly suitable for applications where good tensile creep 

and rupture strength are required. Properties of this material include high strength, excellent 

corrosion resistance and a working temperature between -250 °C and 650 °C. Its excellent 

welding characteristics and resistance to cracking makes it an ideal material for AM. Its 

material properties are shown in Table 4.  Further details of its material specifications can be 

found in the material data sheet in Appendix A1. 
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Table 4: Inconel 718-0405 alloy material properties 

Density 8.19 g/cm³ 

Thermal conductivity 6 W/mK to 12 W/mK 

Melting range 1260 °C 1336 °C 

Coefficient of Thermal Expansion 12 µm/mK to 16 µm/mK  

Particle size distribution   15-45 µm 

 

 Maraging Steel M300.  

In Maraging Steel M300, Nickel is the main alloying element with up to 19% mass fraction, 

with Cobalt up to 10%, Molybdenum up to 5.2% and Titanium up to 1.2% as secondary 

intermetallic alloys.  This metal alloy has a martensitic crystal structure and is strengthened 

by ageing at approximately 500 °C. This ultra-low Carbon alloy has very high strength and 

hardness properties delivered from precipitation of intermetallic compounds. It is widely used 

in mould and die tooling due to its high strength, high hardness, wear resistance, and good 

machinability. Its material properties are shown in Table 5. Further details of its material 

specifications can be found in the material data sheet in appendix A4. 

Table 5: Maraging Steel M300 alloy material properties 

Density 8.1 g/cm³ 

Thermal conductivity 142.2 W/mK at 20 °C, 21.0 W/mK at 600 °C, 28.6 W/mK at 1300 °C  

Melting point 1413 °C 

Coefficient of Thermal Expansion 10.3 10−6 𝑘−1   

Particle size distribution   15-45 µm 

 

3.2 Manufacturing Equipment  

All experiments were carried out on a Renishaw AM250 (Renishaw, UK) L-PBF machine (Figure 

45) at Renishaw PLC facilities in Stone, Staffordshire UK. The Renishaw AM250 is an industrial 

3D printer which uses the typical Selective Laser Melting (SLM) 3D printing technology, 

designed for the production of components with high precision and surface quality. From the 

beginning of the project, the Renishaw AM250 - W44 was assigned by the sponsor, Renishaw 

in collaboration with the Encompass project, to study the effect of residual strain in Ti-6Al-4V 

(Phase 1). After the completion of the Encompass project (Phase 2) in order to compare the 

development of residual stresses in different metal powders experimental work with different 

materials was carried out using: Inconel 625, Inconel 718 and Maraging steel.  
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Figure 45: a) Renishaw AM250 L-PBF machine and b) inside view from the build chamber 

The Renishaw AM250 operates with an R4 RedPOWER (SPI Lasers, UK) laser which is a 

modulated ytterbium fibre laser with a maximum power output of 200 W and an output 

wavelength of λ=1070 nm. The laser beam at its focal point has a Gaussian profile with a 1/e2 

diameter of approximately 70 μm, as shown in Figure 46. The machine specifications are 

shown in Table 6.  

 

Figure 46: Renishaw AM250 laser beam profile 
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Table 6: Renishaw AM250 Machine Specifications 

Machine Build Volume 

[mm] 

Laser Power 

[W] 

F-theta focal length 

[mm] 

Nominal Focus Diameter 

[μm] 

Renishaw AM250 250 X 250 X 300 200 W IPG 250 70 

 

The Rayleigh length for the focal point is around 2 mm long, which gives a ±1 mm tolerance 

with which the focus spot can be achieved. The optical system consists of a Galilean beam 

expander formed of three lenses within a bespoke linear guide system. The beam is directed 

by two galvanometer scanning mirrors which steer the beam through an f-theta objective lens 

that adjusts the focal length to a flat field thus keeping the spot size the same across the 

powder bed. The diameter of the spot can be adjusted by moving the objective lens along the 

beam direction. A positive value will move the focal point below the datum, and a negative 

value will bring the focal point above the datum line, as described in Figure 47.  

 

Figure 47: Focal point at datum plane (from [169]) 

 

The Renishaw AM250 machine operates with a protective overpressure Argon gas 

atmosphere. Oxygen is removed from the machine by a vacuum system and refilled with 

Argon gas, which gives an Oxygen content within the build chamber of less than 0.1 %. A gas 

recirculation system flows over the build area to blow vapour and spatter away from the 

powder bed to avoid contamination. The vapour flows through gas vents, and spatters are 

trapped by a filter. The system operates with a safe change filter for the removal of nano-

particles, which are formed from the condensation of the metal vaporised during the process, 

and which are pyrophoric due to their high surface area to volume ratio.  The safe filter keeps 

the spatters out of contact with Oxygen, thus evading potential hazards. The build platform 
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dimensions are of 250 mm x 250 mm x 300 mm. The dosing system consists of a fixed hopper 

for powder loading, and the defined amount of powder to be dosed is triggered by a wiper 

system. Each dose is evenly distributed across the building platform by a silicone recoater (see 

Figure 45b). 

 Manufacturing Process 

The following steps outline the process that is involved in the manufacture of a part by L-PBF 

irrespective of the machine used. A schematic of the L-PBF machine can be seen in Figure 48: 

 

Figure 48: Schematic of a Renishaw AM250 L-PBF system 

 

A build file (.MTT format) is loaded into the L-PBF machine. The file is prepared using QuantAM 

software (Renishaw, UK) to customise the material profile based on the metal powder, build 

parameters (i.e., scan strategies, layer thickness, scan speed) and allowing for the creation of 

additional supports when needed. The .MTT files are converted directly from an .STL file [1, 

170] which are standardised files for AM technologies and divide the 3D parts into 2D triangles.  

A flat substrate of similar material to the metal powder is securely fastened to the build 

platform of the L-PBF machine. To ensure the flatness of the substrate, the thickness of the 

substrate is measured at each corner with a digital calliper, and the average is input into the 

machine to provide a datum for positioning the laser. Then, the substrate is securely attached 
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to the build platform by aligning the four bolt holes on the substrate to the ones on the build 

platform. Once the holes are aligned, the bolts are inserted and must be tightened with an 

Allen key so that the substrate is secured firmly to the build platform and to avoid any 

movement of the substrate during the building process, as well to ensure that the bolt head 

does not protrude above the substrate to avoid any interactions with the wiper.   

The height of the recoated blade must be calibrated so it can deposit an evenly distributed 

layer of powder. The space between the recoater blade and the substrate is measured across 

the entire building surface using a 50 µm gauge. Setting the proper wiper height ensures that 

the melted powder will properly fuse to the substrate on the first layer and that the powder 

will be evenly distributed across every layer during the build process.  

L-PBF process is performed within an inert gas atmosphere to reduce the rate of oxide 

formation on the melted metal and for safety reasons by keeping the process chemically 

inactive relative to reactive gases that exist in the air (i.e. O2 and CO2). Renishaw uses Argon 

as inert gas for the building environment of its additive manufacturing systems. In order to 

create an inert atmosphere inside the chamber, first, a vacuum is created by removing all the 

Oxygen from the chamber. Then, the Oxygen levels are dropped further by purging the 

chamber with Argon gas until the Oxygen level falls below 0.1% (<1000 ppm). The Argon gas 

pressure in the machine must be kept between 7-15 mBAR to prevent air from leaking into 

the chamber. The Argon gas is recirculated through the machine with a recirculating pump, 

and gas flows over the build area to blow away vapour and spatter to avoid contamination of 

the part. The gas flow also carries highly reactive nanoparticles into the safe change filter to 

be neutralized. This condensed material is highly flammable and can immediately ignite when 

exposed to air. Therefore, after the build is completed, the safe change filter is completely 

sealed by closing the top and bottom knobs before being removed from the machine keeping 

the spatters out of contact with Oxygen. Then, the safe filter change is carefully filled with 

water to neutralise the condensed nanoparticles attached to the filter during the build process.   

For powder dosing during the building process, the metal powder (typically with a spherical 

size particle between 15-60 µm) is stored in a hopper, where the minimum level for 

completing the build must be kept avoid from running out during the build. The characteristics 

for AM metal powder, such as spherical particle shape, close packing of particles and good 

flow, are fundamental to achieving a consistent powder dosing through the build process. A 

single dose of powder is released from the hopper by the recoating mechanism triggered by 

the wiper arm and is spread uniformly by a silicone wiper over the whole area of the substrate. 
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To ensure the build platform is completely covered on each layer, the quantity of powder to 

be dosed must be defined for each build and can vary depending on the layer thickness. Any 

excess powder drops into the front and back overflow compartments to be sieved and reused 

in future builds.   

The laser is scanned over the metal powder to melt and fuse the metal powder particles 

together and to the previous layers to form the desired parts. The laser operates by using 

point exposures; each point is given an XY coordinate position along with pre-set parameters 

to avoid porosity: point distance (mm), exposure time (µm) and power (W).  

After the geometry is scanned, the build platform moves down by the chosen layer thickness, 

and the process of powder deposition and laser exposure is repeated until the desired part(s) 

has been manufactured. 

To remove the part from the machine, the build platform is raised to the maximum top 

position, and the unfused powder is carefully removed from around the part by slowly raising 

the substrate and sweeping the excess powder into the overflow compartment by hand using 

brushes. Once all the powder is swept away, the substrate is removed from the chamber.   

The part is removed from the base plate by the use of a wire-cutting system.  A wire Electro 

Discharge Machine (wire EDM) [171] is commonly used for L-PBF part removal due to its high 

precision and because it can have a cutting path or kerf as small as 0.021 mm (0.83 mils) using 

Ø 0.02 mm (0.79 mils) wire. The wire EDM process is achieved by creating an electrical 

discharge between a thin single-strand metal wire, usually brass,  which is fed through the 

workpiece, submerged in a tank of dielectric fluid, typically deionized water, in order to 

control the sparking process from shorting out [171]. Because wire EDM does not require high 

cutting forces for removal of material no change in the mechanical properties of a material is 

expected. However, the part can distort due to the residual stress-relief in the machining 

process. Wire EDM was used for this experimental work to cut off the FTD part from the 

machined pegs in order to re-use the machined pegs for future builds.  After the part is wire 

cut from the base plate additional cleaning of the part to remove any loose powder is done 

using an ultrasonic bath and parts are rinsed with ethanol or deionised water. Once the part 

is completely cleaned and any excess powder removed, post-processes are performed which 

might include, machining, polishing and or heat treatments. 

The unfused powder is sieved with a 56 µm mesh screen and ultrasonic deblending for 10 

minutes in order to remove any large particles or sintered globules ejected from the melt pool. 
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All the powder from the overflow bottles must be sieved before it can be reused for future 

builds to remove any contaminated powder that could affect future builds. Once the powder 

is sieved, the cleaned powder is deposited into clean bottles and fed into the L-PBF machine 

for reuse.  

 Scanning Parameters 

 

A 3D CAD solid geometry can be created in a variety of solid modelling software such as Creo 

(PTC, USA). To create the data that is required to build the part, the geometry information 

must be converted into a standardised file format; the current accepted standard file is 

Stereolithography (STL) [1]. This file contains an unstructured set of triangles each with a 

vector normal to the surface that points to the outside of the part. These triangles form an 

interconnected surface that is used as an approximation to the surface of the part (see Figure 

49). The accuracy and resolution of this representation are dependent on the number of 

triangles and the levels of curvature of the original surfaces. The STL file is then sliced into 2-

dimensional layers with a particular layer thickness. For L-PBF, this layer thickness generally 

ranges between 20 μm and 100 μm. To convert these outlines into a solid structure the whole 

bounded area must be exposed to the laser. Scan vectors are generated that will fill the 2D 

slices; these define the path that the laser will follow in each layer. Hatching is the process by 

which the 2D slices are converted into a toolpath or scan lines. There are a variety of hatch 

types used in L-PBF and described in the literature; the three scan strategies used for this 

experimental work are Meander, Stripe and Chessboard, which are described in Figure 50. 

The selected scan strategies for the experimental work were the strategies used by Renishaw 

for their commercially manufactured parts. These scan strategies were selected as part of the 

investigation as they cover the principal variations in scan strategies generally used in the L-

PBF process [160]: Meander, single line vector, and two types of sectional scanning Stripe and 

Chessboard. 
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Figure 49: Definition of a layer through the intersection between the 3D STL model and a slicing plane (from [2]) 

 

 

Figure 50: Description of scan strategies used in L-PBF (adapted from [169]) 

 

The distance between the hatch lines is defined in the material file as the hatch distance. 

Hatch lines are subdivided into a series of points. Instead of running continuously, the laser 

operates by using discrete point exposures. Each exposure creates a melt pool of metal, which 

takes the form of a 3D Gaussian curve. A representation of the point distance and hatch lines 

are shown in Figure 51. 
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Figure 51: Schematic of the laser scanning point exposure and hatch distance (adapted from [169]) 

 

The key parameters for the laser scanning process are: 

• Power (W):  dictates the intensity of the laser beam 

• Exposure time (µs): length of time the laser will be on for each point.  

• Point distance (mm): the distance between the centres of each successive melt pool 

• Hatch distance (µm): the distance between the lines of point exposures. 

It is important to select the correct hatch distance in order to produce nearly completely solid 

components; hatch lines need to overlap in order to completely melt all the powder within 

the part geometry and to reduce the porosity in the part. A schematic of the parameters for 

each scan layer is shown in Figure 52.  

 

Figure 52: Schematic of scanning parameters used in the L-PBF process 
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3.3 Software Packages 

Different software packages were used throughout the investigation with a variety of 

applications and capabilities. These applications include the creation of 3D CAD models, 

design and manipulation, data acquisition, programming and simulation.  

 Creo 5.0 (PTC, USA) 

Creo Parametric, formerly known as Pro/ENGINEER, is a design software for solid modelling. 

This software was used to design all the L-PBF samples tested for the experimental work. This 

software was also used to design modifications to the FTD and to develop a proposed new 

design of FTD. This software was used due to compatibility with prior work and because it 

provides the tools needed for the design of L-PBF samples; as well as the option to easily 

convert files into .STL format for the L-PBF process.    

 QuantAM 4.1.0.76 (Renishaw, UK) 

QuantAM is the data preparation software for Renishaw AM machines. Its function includes 

slicing of the imported .STL file. This software was used to prepare the L-PBF build files, set 

the part orientation and location in the build platform. The software allows the production of 

additional supports when needed.  This software was used to select the filling hatch strategy 

and to set the material file for the metal to be used which assigned the process parameters. 

This software is an integral part of the Renishaw product and is supplied with the Renishaw 

AM250 machine used for the experimental.  

 ImageJ/FIJI 1.48 (National Institute of Health, US) 

ImageJ is a Java-based program developed at the National Institutes of Health and the 

Laboratory for Optical and Computational Instrumentation. The software allows the analysis 

of microscopy samples and the analysis of image structures. FIJI is an image processing tool-

kit and was used for the majority of the image analysis and processing development within 

the project. This software was used due to its availability and capability to measure 

dimensions in microscope images of the melt pool.  

 InstruNet World Plus v3.7 (GW Instruments, US) 

InstruNet World Plus is a data acquisition software. It enables one to digitise, plot, control, 

analyse and save to disk analogue to digital (A/D), digital to analogue (D/A), and digital input 

or output (I/O) data from instruNet hardware. The software was used for data acquisition 

during the in-situ measurements during the L-PBF process. This software was used due to its 
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availability and compatibility with InstruNet boxes to which the load cells and thermocouples 

were connected. 

 Abaqus Student Edition 2017 (Dassault Systèmes, France) 

Abaqus is a Finite Element Analysis (FEA) package that runs from either a command line or a 

GUI interface. The GUI function allows both pre-processing, solving and post-processing 

functions. The main use of this software was to simulate the experimental results from the in-

situ measurements for part deformation and residual stress developed in the process. This 

software was used as it is provided by the University of Liverpool. It contained the functions 

needed for the simulation, i.e. the spring element mechanism required to simulate the load 

cell in the FEA analysis used for the part deformation analysis of the sample.   

 ExaSIM v2.2 (Ansys Inc., US) 

An Ansys software exaSIM, developed by 3DSIM, is a simulation software that can help 

machine operators and designers using additive manufacturing to develop parts and to 

identify residual stress, distortion and build failure. The software allows the simulation of part 

deformation and stresses after removal for different materials and PBF machines. This 

software was used as it was provided as part of a collaboration with 3DSIM during the project.  

 Conform Surfaces 1.2 (University of Liverpool, UK) 

This software was developed at the University of Liverpool [119]. It includes the algorithms 

for creating conformal surfaces, surface modifications and structure analysis. This software 

was used because of the capabilities of the software to design porous structures from a solid 

CAD model.   

 

3.4 Measurement Equipment 

The following section details the measurement equipment used in the experimental work.  

 Image Correlation System Q-400 (Dantec Dynamics, DNK) 

The Digital 3D Image Correlation System Q-400 is an optical measuring device for full-field, 

non-contact and three-dimensional measurement of shape, displacements and strains on 

components and structures made from almost any material. A multi-camera system was used 

to measure the part deformation of the samples after removal from the building platform. 
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 Instron® 5984 tensile testing machine (Instron, USA) 

The Instron 5984 is a dual compressive and tensile testing machine fitted with a 100kN load 

cell controlled by the Bluehill software (Instron, USA). This testing equipment allowed 

compression or tensile loading of material samples to establish their strength and stiffness. 

 SEM JOEL JSM 7001f (Joel Ltd, U.K.) 

The JOEL JSM-7001F is a field emission Scanning Electron Microscope (SEM). This machine 

was used for Scanning Electron (SE) imaging and Energy-Dispersive X-ray (EDX) analysis, as it 

has an Oxford Instruments INCA X-act EDX detector. The SEM was used to capture images for 

the analysis of the melt pool geometry and melt pool boundaries of the L-PBF samples. 

 SmartScope® ZIP 300 (OGP, UK) 

SmartScope ZIP® 300 is a fast, accurate metrology system offering a combination of hardware 

performance, optical capability, and ease-of-use to fully characterise parts automatically in a 

single setup. It is composed of a rigid cast iron base that ensures stability and metrological 

accuracy. As a multisensor machine, SmartScope ZIP 300 is available with contact and non-

contact probes, including the unique switchable TTL (through-the-lens) laser, which was used 

for the determination of the density of the samples. 

 

3.5 Measurement Methods 

This section details the measurement methods and the protocols followed during testing.  

 Melt pool and Microstructure Analysis  

In order to measure the melt pool characteristics for the single bead-tracks, the specimens 

were first sectioned through the middle of the part to reveal the melt pool depth of single 

tracks. The sections were vacuum mounted in a low viscosity epoxy resin (Eposet, Metprep 

Ltd, UK). The mounted specimens were polished down to a surface integrity of 10 µm using 

standard metallographic techniques. Fine chemical polishing was accomplished using a 

"Metaserv Auto-pol" machine (Metallurgical Services Ltd, UK), operating at 150 rpm, on a 

short-napped cotton substrate. Samples were washed with a mild detergent solution, rinsing 

initially with distilled water and finally with ethanol and dried in a stream of hot air. The melt 

pool characteristics were then analysed under a microscope; measuring melt pool dimensions, 

i.e. width, height and depth. A schematic of the dimensions acquired for the melt pool analysis 

is shown in Figure 53. A light optical microscope (LOM) and Scanning Electron Microscopy 

(SEM) machine were used for imaging and analysis. The JOEL JSM 7001f machine was used 
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for SE imaging and EDX analysis, as it has an Oxford Instruments INCA X-act EDX detector. The 

EDX detector system provided a chemical analysis of the samples which provided accurate 

data at the micro- and nanoscales. The SE and EDX images helped to reveal the melt pool 

formation which is difficult to detect by using a standard microscope. Accelerating voltage can 

be selected in the range of 0-40 kV and different accelerating voltages were used depending 

on the requirement for the microstructure analysis. 

 

Figure 53: Melt pool characteristics for laser-powder interaction for single beads 

 

 Relative Density of Solids 

In order to assess their relative density, the samples were first sectioned through the centre 

of the part, removing any molten material that could be attached at the surface of the part 

which could affect the density measurements. The samples were vacuum mounted in a low 

viscosity epoxy resin (Eposet, Metprep Ltd, UK). To facilitate a rapid and consistent production 

of specimens the mounted samples were automatically polished using a Buehler Automet™ 

250 grinder polisher (Buehler, USA) to 20 nm surface finish with the use of noncrystallising 

Colloidal Silica, following standard procedures for each metal. After polishing, the samples 

were washed with a mild detergent solution, rinsing initially with distilled water and finally 

with ethanol, prior to drying in a stream of hot air. The density of the samples was then 

measured using the SmartScope® ZIP 300 optical CMM. The samples were mounted and fixed 

into the sample holder, and optical density testing was carried out on 10 mm x 10 mm x 10 

mm blocks. For porosity analysis twenty images of each cube were taken, stitched together, 

a threshold applied to generate binary images, and the pixels counted to reveal the 

metallurgical porosity of the specimens; this method was able to detect pores greater than 

14 μm in diameter. 
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 Tensile Testing 

Tensile test specimens of the geometry shown in Figure 54 were fabricated parallel to the 

build direction of the machine (Z-axis). Tensile tests were performed on an Instron 5984 

tensile testing machine equipped with a UKAS calibrated 100 kN load cell and an Instron® 

extensometer (Instron, USA), with the experiments being logged and controlled using the 

Bluehill® 3.76 software (Instron, USA). Tests were conducted using strain rates of 0.005 min-

1 (start to yield point) and 0.05 min-1 (yield point to failure). The strain rates were defined by 

Renishaw as for following their standardised procedure.  

 

Figure 54: Geometry of tensile test specimens (dimensions in mm) 

 

 Part Deformation after Removal 

The residual stresses developed during the building process in L-PBF parts are released when 

the part is detached from the base plate. The amount of deformation occurring on release is 

related to the distribution of residual stresses in the part.  A non-contact measuring system, 

Digital Image Correlation (DIC), was used to measure the part deformation of the L-PBF 

samples after removal from the FTD. Digital Image Correlation (DIC) is a 3D, full-field, non-

contact optical technique for measuring contour, deformation, vibration and strain in almost 

any material. The setup used consisted of a Digital Image Correlation System (DIC) (Q-400 DIC 

– Dantec Dynamics GmbH, Ulm, Germany) fitted with a pair of CCD cameras with matching 

50mm lenses. The basic operation of DIC consists of tracking a speckle pattern in reference 

and deformed images; therefore, a speckle pattern must be applied to the sample. The 

pattern must cover the area of interest, therefore, to measure the out of plane displacement 

in the build direction of the part, the FTD samples were prepared for analysis by adding a 

speckle pattern on the top surface. First, as a background, the surface of the part was 

completely painted with white spray paint. After the paint was completely dry, speckle pattern 
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in the form of dots of black paint was sprayed into the surface. To make sure that the Force 

Transducer Device (FTD) was stationary while the bolts attaching the part were being released, 

the FTD was clamped into a flat surface. Measurements for the part deformation were 

recorded as the stresses were relieved when the bolts that attached the build to the load cells 

were removed one by one from the back of the device. A schematic of the DIC set-up for 

measurement of the part deformation is shown in Figure 55. 

 

Figure 55: DIC Setup for part deformation measurements (top and bottom left). FTD sample with speckles with white 
and black paint to the surface of the part (bottom right). 

 

 In-situ Measurements of Strains Developed in L-PFB 

 

The literature shows that residual stresses arise in the L-PBF process due to the high energy 

input and the rapid changes in temperature during the building process [59, 132, 141]. Some 

research has been done on the development of residual stress during the L-PBF process 

through in-situ measurements from the build plate [45, 47, 48, 119], but there is still not a 

clear understanding of how residual stress develops in the actual part during the L-PBF process. 

It is difficult to measure residual stresses in-situ with most measurement techniques due to 

the fact that the part is completely surrounded by powder obscuring all but the top layer of 

the part. A comparison among the in-process measurements reported in the literature to 

estimate or infer residual stresses during the L-PBF process is shown in Table 7. Shiomi et al.  

[44], and Van Belle et al. [49], used strain gauges located under the base plate to measure the 

strain variation per layer during the L-PBF process. Dumbar et al. [50] measured the base plate 
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distortion during the process, and Robinson [119] manufactured a Force Transducer Device 

(FTD) to measure the forces developed while the part is being built. As many measuring 

methods were available, it was necessary to select the one that would be most advantageous 

to the research objectives. While Shiomi’s, Van Belle’s and Dumbar’s proposed methods are 

limited to providing information at the base plate and at a single point, Robinson’s multiple 

load cell arrangements allow measuring the developed forces directly from the sample and 

measurements are taken at different positions on the part. The method proposed by Robinson 

[119] gives a good opportunity to understand the evolution of the residual stresses during the 

process at different sections in the part geometry tested; therefore, this novel measurement 

technique was used for the measurements of in-situ residual stress presented in this thesis. 

This section describes the design of the FTD.  

 

Table 7: In-process measurements used to estimate or infer residual stresses during the L-PBF process 

Reference Method / 

Measurements 

Position Pros Cons 

Shiomi et al.  [45] 

Van Belle et al.  

[47] 

Strain Gauge / 

Strain  

Base Plate - Measures strain 

changes on the platform 

with the addition of new 

layers 

 

-  Measurements are 

taken from the baseplate 

and not from the build 

- Single point 

measurement 

Dumbar et al. [48] DVTR / 

Distortion 

Base Plate - Measurements of the 

direct distortion of the 

base plate during the 

build process 

- Measurements are taken 

from the baseplate and 

not from the build 

- Single point 

measurement 

Robinson [119] Load Cell / Force Support - Multiple point 

measurements of force 

developed during the 

building process 

- Easy to set-up for 

multiple L-PBF machines  

- Limited by force and 

temperature   

- Lack of in-process 

measurement of the 

temperature of the part  
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In-situ measurements of strains developed during the L-PBF process were performed using 

strain gauge binocular load cells ±50 kg (RobotShop, UK), with an operating temperature 

range of -20 °C to 55 °C, an output rate of 2.0c2±0.15 (MV/V), and a temperature sensitivity 

(%RO/°C) of 0.0016. The strain-gauge configuration is based on a Wheatstone bridge for 

measuring bending strains and such that they are insensitive to movements, meaning that if 

the built part is not perfectly aligned on the load cell, then the effect on the recorded load is 

insignificant. Strain gauges produce a voltage differential and must be read by a high-

resolution analogue-to-digital converter. The load cells were connected to 16 channel 

InstruNet i100 (Omega, USA) data acquisition (DAQ) system with a read-back accuracy of ±3 

mV, at a sample rate of 3.122 s/sec/ch and 100,000 points/scan. 

The load cells were calibrated, to ensure that the readings taken were accurate, by adding 

known weights to each load cell in increments of 5 kg up to a maximum of 40 kg. The real load 

and the measured load were then plotted against each other, and the gradient of the line of 

best fit was taken as the scaling factor. The scaling factor for each load cell was input into the 

InstruNet World Plus software (Omega, USA) and the loading process was repeated to ensure 

the scaling was accurate. The results from the calibration are shown in Figure 56, as 

distributions of the differences between the applied load and the registered load from each 

of the 14 load cells after the calibration. The temperature of the system was measured using 

K-type thermocouples (TC) which were attached to one of the load cells at each FTD. Due to 

the reduced space in the overflow compartment and the available channels on the InstruNet 

data loggers no more than one thermocouple could be attached into the device. Therefore, it 

was assumed that all of the load cells would be at approximately the same temperature, 

assuming that the heat distribution was similar across the surface of the part. The build 

process was halted when the thermocouples registered a temperature exceeding the 

operating range of the load cell.  
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(a) 

 

(b) 

Figure 56: Loads registered by each load cell based on 5kg increments of load: (a) before calibration; and, (b) after 
calibration 
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3.5.5.1 Single Array Force Transducer Device (FTD1) for Rectangular Part 

 

In order to measure the development of residual forces at different points in the build, a 

preliminary design of Force Transducer Device (FTD) was used. The design consisted of a single 

array of 14 binocular load cells on a rectangular grid (32 mm x 112 mm) and allowed the 

measurement of the forces developed during unidirectional scanning patterns.  

In order to avoid modifications to the machine and for easy setup and removal after use, the 

FTD was designed on a 250 mm x 250 mm aluminium monocoque chassis which is the size of 

a standard substrate, as shown in Figure 57. This allowed the FTD to be fitted directly into 

standard L-PFB machines without the need for modifications.  

 

Figure 57: FTD substrate design for in-situ measurements  

 

To ensure the correct positioning of the load cells in the substrate, 14 groves were machined 

for the alignment; below the load cells, an area was cut-out to ensure that the movement of 

the load cells was not restricted during the build. An additional slot at the front of the 

substrate was created as a wire exit.  To maintain the inert gas atmosphere inside the building 

chamber, the load cells wiring was connected to two push-pull sealed connectors (LEMO, UK).  

The removable sealed connectors allowed the wiring harness to pass through the overflow 

compartment. The wiring was fitted through a flange, and a cable gland was used to seal the 
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wire exit to maintain the inert atmosphere inside the machine.  The push-pull connectors 

made the FTD easy to remove after each build for powder cleaning. 

To create a build platform, 10 mm diameter pegs were bolted onto the free end of each load 

cell, as shown in Figure 58. The material of the pegs was changed according to the metal 

powder being used for each build (Titanium pegs for the Ti-6Al-44V samples and steel pegs 

for the Nickel based metal alloys). An access slot in the centre of the substrate was machined, 

allowing access to remove the pegs once the build was completed without the need to remove 

the load cells from the FTD after each build.  

 

Figure 58: Single array load cell FTD1 

 

It is important that no powder could access the inside of the FTD.  To prevent powder 

ingressing into the load cell, the FTD was fully sealed by adding two 5 mm thick substrates 

separated by a 0.5 mm thick laser-cut silicone membrane. The holes in the silicone membrane 

were 8mm in diameter resulting in a tight fit around the 10 mm pegs, providing an effective 

seal of the load cell volume while allowing free transmission of loads through to the load cells. 

The substrates are held firmly in place with 11 M5 countersunk screws ensuring that there 

was no movement between the substrates, while the countersunk screwing maintained a 

planar upper surface to avoid wiper interaction during the process. A cross-section of the 

assembly of the FTD1 is shown in Figure 59.  
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Figure 59: Cross-section of the FTD1 assembly 

 

The use of commercial load cells limits both the maximum temperature and the force that the 

system can withstand. To ensure that the load cells did not exceed their maximum working 

temperature, a k-type thermocouple was attached to measure the temperature of the 

loadcell during the building process. Due to the reduced space in the overflow compartment 

and the available channels in the InstruNet data loggers no more than one thermocouple 

could be attached into the device. Therefore, a k-thermocouple was attached to load cell 11 

which is located in the centre of the part, this gave an insight of the heat transferred from the 

part to the load cell, and it was assumed that the heat transfer was similar for the rest of the 

load cells. If the temperature was close to the limit the build was paused until the temperature 

of the load cell was reduced before continuing with the build.  The build was stopped manually 

before any of the load cells reached their maximum workable load of 50 kg. The load 

increment of the load cells, as well as the temperature, were monitored from the InstruNet 

Plus software which registered the load increment during the build. The FTD1 arrangement 

measured the development of strains for a 32 mm x 112 mm part. In order to have a solid flat 

surface prior to connecting each of the load cells for the in-situ measurements a pyramidal 

section starting from an 8 mm diameter circle, which extended into 16 mm x 16 mm squares, 

was built up from the metal pegs as shown in Figure 60. The dimensions of the manufactured 

sample are shown in Figure 60. The height of the part for each build was dependant on the 

developed strains as the build had to be stopped when any of the load cells reached 50 kg. 
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Figure 60: FTD 14 load cell arrangement for a rectangular part geometry (measurements are in mm) 

 

3.5.5.2 4x4 Array Force Transducer Device (FTD2) for square Part 

The single array FTD allowed the forces developed by unidirectional scan vectors to be 

evaluated during the L-PFB process. A second FTD with a 4x4 arrangement was used to 

measure the effect of alternate scan strategies. The second FTD consisted of 16 Micro Load 

Cells 0-50 kg (Robot Shop, UK), with a maximum load capacity of 50 kg and a maximum 

overload of 60 kg, and an operating temperature of -20 °C to 55 °C. The load cells were 

arranged in two separate substrates, one above the other, as shown in Figure 61. Each of the 

substrates having eight load cells arranged, such that, the bottom-level load cells measured 

the forces from the central two columns, and the top-level measured the forces from the 

outside columns.  

 

Figure 61: FTD2 for in-situ measurements in the L-PBF process 
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Similar to the previous FTD, to prevent powder from ingressing into the load cell area, the FTD 

was fully sealed by adding two 5 mm thick substrates separated by a 0.5 mm thick laser-cut 

silicone membrane. The holes in the silicone membrane were 8 mm in diameter resulting in a 

tight fit around the 10 mm pegs, providing an effective seal for the load cell volume while 

allowing free transmission of loads through to the load cells. The substrates were held firmly 

in place with 14 M5 countersunk screws ensuring that there was no movement between the 

substrates and maintaining a planar upper surface to avoid wiper interaction during the 

process. A cross-section of the assembly of the FTD2 is shown in Figure 62.  

 

Figure 62: Cross-section of the FTD2 assembly 

Cylindrical pegs 10 mm in diameter were attached to each load cell which created a build 

platform. The material of the pegs was changed depending on the metal powder used for 

each build (Titanium pegs for the Ti-6Al-44V samples and steel pegs for other materials alloys). 

The pegs for the bottom section were 48 mm long while the pegs for the top section were 16 

mm long, as shown in Figure 62. In order to avoid exceeding the allowable temperature of the 

load cells, two K-type thermocouples were attached one to a load cell in each level substrate 

(load cells 5 and 6). Only two thermocouples were used to reduce the wiring thickness and 

due to the limited capacity of the InstruNet logger channels, and it was assumed that the 

temperature was similar along the whole of the part. The load cells and thermocouples were 

connected into three 100i InstruNet data logger boxes (Omega, USA). The InstruNet logger 

amplified the signal and measured the differential voltage in order to determine the residual 

forces developed at different stages of the built process. In-situ measurements during the L-

PFB process were registered at a sample rate of 3.122 s/sec/ch and 100,000 points/scan. A 

schematic of the part geometry for in-situ measurements is shown in Figure 63. 
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Figure 63: Schematic of the square build geometry for the FTD2 (measurements in mm) 

 

Following the same procedure as for the previous FTD, each of the load cells was calibrated 

to ensure an accurate reading by adding known loads to each load cell in increments of 5 kg 

up to a maximum of 45 kg. The real load and the measured load were then plotted against 

each other, and the gradient of the line of best fit was taken as the scaling factor. This scaling 

factor was input into the InstruNet plus software (Omega, USA), and the process was repeated 

to ensure the scaling had been accurate. The results from the calibration are shown in Figure 

64,  with a standard deviation of 0.222 kg for the distribution of the differences between the 

applied load and the registered load from each of the 16 load cells after the calibration. 
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Figure 64: Loads registered by each load cell for FTD2 based on 5kg increments of load:) before calibration (top); 
and, after calibration (bottom) 
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3.5.5.3 Modifications to the Force Transducer Device (FTD) 

This section will detail the modifications made to the previously manufactured FTDs to allow 

their use in a Renishaw AM250 machine. The force transducer devices were originally 

manufactured to carry out experimental work on a Realizer SLM250 machine and were 

designed to be set up as a regular base plate. The build plate platform for the Realizer SLM250 

machine and the Renishaw AM250 are of the same dimensions (250 mm x 250 mm), which 

allowed the device to be used on the Renishaw AM250 and to be attached as a regular 

substrate into the build platform without needing any machine or process modifications. A 

schematic of the setup is shown in Figure 65; where the FTD is attached securely into the build 

platform as a regular substrate.  

 

Figure 65: FTD setup into the Renishaw AM250 L-PBF machine  

The wiring for the load cells and the K-thermocouples, on the Realizer SLM250 machine, were 

fed through the glove compartment and properly sealed keeping the inert gas atmosphere 

required for the L-PFB process. Due to the design of the Renishaw AM250, the wires could not 

be fed in the same way as in the Realizer SLM250 machine. Therefore, it was decided to feed 

the wires through the front overflow. Due to the small size of the compartment in the front 

overflow, for the wiring to fit through the overflow compartment and for ease of set-up and 

removal, the load cell wiring was connected to a 36-pin Push-Pull Self-Latching Connector 

(LEMO, UK) as shown in Figure 66. An enclosed section at the front of the FTD was added for 

the wiring from the load cells and the K-Thermocouples to be attached to the sealed pin 

connectors and, thus to prevent powder from ingressing into the FTD load cell space.  
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Figure 66: CAD of the substrate used for the modified FTD used for in-situ measurements 

The FTD cables were fitted through the overflow compartment of the machine, as shown in 

Figure 67.  To avoid any interaction with the recoating wiper and the FTD connectors, the 

maximum forward position of the wiper was reduced from 320 mm to 230 mm; therefore, no 

powder went through the overflow compartment during the building process. The wires were 

fitted through a flange where a cable gland was used to seal the wire exit to assure standard 

vacuum and pressure parameters needed on the machine for operation. The other end of the 

wires were connected into the InstruNet data loggers for data acquisition, as shown in Figure 

68. 

 

Figure 67: Load cell wiring fed through the overflow compartment into the InstruNet data loggers 
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Figure 68: Load cell wiring arrangement into three InstruNet100i for data acquisition 

 

3.5.5.4 Steps for in-situ measurements: 

The following steps were performed for each build with the FTD (see   

Figure 69): 

1. The FTD was attached to the build platform of the L-PBF machine as a regular base 

plate. The wiper-recoater’s maximum front position was adjusted to stop just before 

reaching the FTD wire section (from 320 mm to 230 mm).  

2. Prior to the build, a first dose of powder was spread to assure all the pegs were aligned 

and that the powder was spread evenly over all of the top section of each of the pegs. 

 As a first stage of the build, solid inverted pyramid structures were built onto the 

cylindrical pegs from an 8mm circle, which extended into 16 mm x 16 mm squares, 

until just before they start connecting each other.  
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3. A second section was built-on top of the inverted pyramid structures, which 

connected them and each load cell together. The load cells registered the forces 

developed with each newly deposited layer. The build was stopped once the force 

reached the maximum working capacity of any load cell of 50 kg. 

4. The machine was cleaned, following the standard de-build procedures and the FTD 

was removed from L-PFB the machine.  

5. The L-PBF part was removed from the FTD for post-process measurements of part 

deformation using the DIC system. 

(1)                                      (2) 

(3)                                                                           (4) 

(5)  

Figure 69: Process of a part being built on the Renishaw AM250 machine with the use of the FTD 
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3.6 Experimental Arrangements 

The aim of this investigation is to understand the complex evolution of residual stresses in the 

L-PBF process through the use of in-situ measurements and to understand the effect of the 

process-material relationships on residual stress. The experimental requirements came from 

both the research objectives and the previous knowledge from the literature review.  The 

great complexity from the L-PBF process lies in the extensive amount of parameters involved 

in the process and their interactions which are influenced by the thermal, physical and 

mechanical properties of the metal powders used. Three groups of influential parameters are 

well-known from the literature: scan parameters which are defined by the machine operator, 

material parameters which are fixed by the choice of metal powders used, and the machine 

parameters, fixed by the type of machine, such as the laser properties.   

The experimental work for this thesis was divided in two sections due to machine availability 

to perform the experimental work. The first phase consisted of the study of different aspects 

of the interaction of the Ti-6Al-4V powder with the L-PBFP process. A first study was 

preformed to determine the in-process distribution and magnitude of the residual forces 

developed during the L-PBF process, after which the influence of several process parameters 

was investigated, in particular the laser power, scan speed, and layer thickness.  For the 

second phase, the general behaviour of various materials (Inconel 635, Inconel 718 and 

Maraging steel) during the L-PBF process was investigated, both in terms of the developed 

microstructure as well as the material specific response to the process parameters and the 

residual stresses. Through examination of the literature, the studied processing parameters 

were in this thesis were determined to be the most influential to the residual stress 

development in both magnitude and orientation. The fist parameter studied was the laser 

power (W), it is defined as the applied laser energy per unit time. Laser power is one of the 

primary variables which alter the energy input in the L-PBF process and plays an important 

role in determining residual stress magnitude [173]. Next, the scan strategy was considered 

as it defines the residual stress distribution. The scan strategy largely indicates what will occur 

in the part as it defines the motion of the laser bean and the properties of the melt pool. The 

build parameters used for each scan strategy tested were based on those specified by 

Renishaw to achieve a 99% density and were then modified to explore the influence of the 

build parameters. The modification of the process parameters, i.e. laser power could affect 

part density, therefore the effect of the energy density on residual stress was further 
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investigated through the variation of the scan speed. Finally, the effect of the material 

properties on residual stresses were studied.  

Previous studies in the literature suggest that the relationship among certain process 

parameters and residual stress magnitude can be material dependent [120, 166]. The phase 

transformation that occurs in certain materials can act to counter the shrinkage and the stress 

distribution during the L-PBF process, therefore it is important to understand the relationship 

of the material properties and the processing parameters on the residual stresses in the L-PBF 

process.   All samples were produced using a Renishaw AM250 machine previously described 

in Section 3.2 and the in-process residual forces were measured by the use of the FTD 

previously described in Section 3.5.5.  

 Effect of the Processing Parameters on Residual Stress and Part Deformation using Ti-

6Al-4V  

3.6.1.1 Effect of the Laser Power 

 

In order to investigate if there is a correlation between the laser power and the forces induced 

in the process, the laser power was varied, while keeping the rest of the process parameters 

constant. Samples were built using Ti-6Al-4V due to the machine allocated by the sponsor for 

the Encompass project. The maximum power of the laser for the Renishaw AM250 is 200 W; 

therefore, the laser power was lowered by 10% and 20% to 180 W and 160 W. This variation 

on laser power was chosen in order to see a clear effect on the variation of the energy input, 

which previous studies in the literature suggest was the most important factor to influence 

the residual stress development and the effect of the part density [173] which was studied 

further on this chapter.  All samples were produced with an identical scanning strategy and 

layer thickness. The Stripe scan strategy, described in Section 3.2.2 was chosen as this is the 

most commonly used scan strategy in Renishaw’s commercial builds. Using the parameters 

described in Table 8, where S1 are Renishaw’s recommended parameters for building a part 

with a relative density greater than 99.9% and using a rotation of 67° per layer because 

previous studies have shown that rotating scan strategy in each layer reduces the levels of 

residual stress [49]. The use of a 67° rotation between each layer was used to ensure that it is 

many layers before the scanning direction is exactly repeated. All parts were 64 mm x 64 mm 

with the geometry as described in section 3.5.5.2 built on the FTD2. In order to start the force 

measurements for all the samples under the same conditions, the inverted pyramid structures 

were built using a Stripe scan strategy and using Renishaw’s recommended parameters in 
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Table 8 which produced a part with a density nearly equivalent to a cast part. All the 

processing parameters described in Table 8 are subject to be changed by the user from the 

material file (.CVS) and can be input into the build from the QuantAM software. However, in 

order to achieve a part with a density greater than 99.5%, the material files should be carefully 

selected according to the metal alloy being used.  

Table 8: Build parameters for consideration of the effect the laser power on residual stress 

Sample 
Pyramid 
Section 

Laser 
Power 

(W) 

Layer 
Thickness 

(µm) 

Exposure 
Time (µs) 

Point 
Distance 

(µm) 
Scan Strategy 

S1 Solid 
Structure 

200 30 50 55 Stripe / 67° 
rotation  

S2 Solid 
Structure 

180 30 50 55 Stripe / 67° 
rotation  

S3 Solid 
Structure 

160 30 50 55 Stripe / 67° 
rotation  

S4 Lattice 
Structure 

200 30 50 55 Stripe / 67° 
rotation  

S5 Lattice 
Structure 

180 30 50 55 Stripe / 67° 
rotation  

S6 Lattice 
Structure 

160 30 50 55 Stripe / 67° 
rotation  

 

Lattice Support Structures 

The use of commercial load cells limited the force and temperature allowable in the system; 

therefore, in an attempt to reduce the heat transferred to the load cells and allow building for 

a longer period of time without reaching the maximum workable temperature; three 

additional samples were built using the parameters described in Table 8 for the square section, 

but with the inverse pyramid section built using a lattice structure as shown in Figure 70. The 

lattice structure will reduce the heat transferred from the build into the load cells. The lattice 

structure was generated using Boolean clipping, generated with the use of the Conformal 

Surfaces software (Liverpool University, UK) with a unit size cell of 450 µm. The parameters 

for the lattice structure used for the connector pillars are shown in Table 9. 
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Table 9: Lattice structure build parameters 

 

 

Lattice Structure Parameters for 

Pyramid Section  

Unit Cell Size 450 µm 

Laser Power 200 W 

Layer Thickness 30 µm 

Exposure Time 50 µm  

 Figure 70: Lattice structure used for the pyramid section 

 

Since the load cells used in the FTD are capable of working up to 55° Celsius and a load of 50 

kg, the machine was stopped at each build before the registered forces by the InstruNet 

loggers reached the maximum load capacity. The building process is described in Section 3.5.5.  

3.6.1.2 Effect of the Scan Strategy and Layer Thickness  

Previous literature suggests that dividing the scan vector into short scan vectors reduces the 

residual stresses developed in the part [91, 97, 137, 174]. This occurs both due to the 

reduction in the length of scan vectors and as a result of the rotation of the orientation of the 

scan vectors in each layer [48, 49].  In order to study the effect of altering the scan strategy 

with sectoral scan vectors, a first set of samples were tested using the Stripe scan strategy 

with a scanning orientation that was rotated 67° per layer, with all stripes-oriented vectors in 

the Y direction and with all stripes-oriented vectors in the X direction as shown in Figure 71, 

and using the single array FTD with the rectangular part geometry. This was followed by an 

analysis to determine the effect of the three scan strategies used by Renishaw, i.e. Meander, 

Stripe and Chessboard (previously described in Section 3.2.2) on the residual forces and part 

deformation. Additional samples with the Stripe, Meander and Chessboard scan strategies 

were built on the FTD2 with a square part geometry, to determine the effect of the scan 

strategies and layer thickness on residual forces developed with a different part geometry. 

The use of these scan strategies allowed a comparison of the use of single-line vectors and 

sectioning scan vectors. The parameters used for each scan strategy were based on those 

specified by Renishaw to achieve a relative density greater than 99.8% and were then 

modified to explore the influence of the build parameters (Table 10).  The parameters to 

produce samples with a relative density higher than 99%.8 for each scan strategy are defined 

independently and are highly dependent on the single vectors geometry.  The hatch distance 
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(HD) and point distance (PD) for the laser scan vectors is critical, and have been found to 

determine the level of porosity and the level of surface roughness within a part, therefore 

they have to be defined specifically for each scan strategy depending on the geometry of the 

scan vectors (length and direction). If the hatch spacing is greater than the track width, this 

results in unfused powder between tracks. On the contrary, reducing the hatch spacing has a 

variety of issues: increased build time, over heating in small regions, and increased 

susceptibility of porosity due to the effect of keyholes [142].  Keyhole pores are a particular 

type of pore defect in the L-PBF process, which form when excess energy is imparted by the 

laser to the melt pool. These pores act as stress concentrators and have a negative effect on 

the mechanical properties. Overheating during changes in laser scan velocity, such as at laser 

turn points, leads to increased evaporation of metal from the surface causing a deep keyhole 

depression to form. The keyhole depression is unstable and can collapse to trap gas in the 

pores within the part [142]. The lengths of the scan vectors differ among the scan strategies; 

therefore, the parameters vary among the scan strategies tested for the 30 µm samples, in 

the case of Stripe and Chessboard as the scan vectors are sectioned in smaller segments. 

Therefore, an overlap between the fields is needed to prevent porosity reducing the point 

distance but increasing the hatch distance. As for the Meander’s parameters to prevent 

porosity, by using single line vectors from side to side, a shorter hatch distance for the scan 

vectors is used.  Finally, to determine the effect of the layer thickness, samples were built with 

an increment in the layer thicknesses from 30 µm to 60 µm. In previous studies, Renishaw had 

determined that the Chessboard scan strategy produces more defects per unit area of the 

part than the Stripe and Meander scan strategies, due to the high concentration of heat 

induced at the border of each check board. For the Chessboard scan strategy, due to an 

acceleration of the laser at the border area of each of the squares, a higher heat concentration 

is induced to the part; the concentrated heat in a particular area induces more defects in the 

part, such as keyhole porosity. Therefore, Renishaw had previously determined that the 

Chessboard scan strategy with a layer thickness of 60 μm was not suitable; therefore, the layer 

thickness was only studied for the Stripe and the Meander scan strategies by changing the 

layer thickness from 30 μm to 60 μm.  The scanning strategies test cases are shown in Table 

10. 
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Table 10: Build parameters used for Ti-6Al-4V samples built on a Renishaw AM250 machine for a part density greater 
than 99.9% 

     Material  Ti-6Al-4V       

Sample 
Number 

Part 
Geometry 

Scan 
Strategy 

Laser 
Power 

(W) 

Layer 
Thickness 

(µm) 

Point 
Distance 

(µm) 

Exposure 
Time (µs) 

Hatch 
Distance 

(mm) 

S7 

Rectangular 

Stripe 200 30 55 50 0.105 

S8 Stripe All X 200 30 55 50 0.105 

S9 Stripe All Y 200 30 55 50 0.105 

S10 Chessboard 200 30 55 50 0.105 

S11 Meander 200 30 75 50 0.065 

S12 

Square 

Stripe 200 30 55 50 0.105 

S13 Chessboard 200 30 55 50 0.105 

S14 Meander 200 30 75 50 0.065 

S15 Stripe 200 60 60 70 0.095 

S16 Meander 200 60 60 70 0.095 

 

 

Figure 71:  Scan strategies tested for the rectangular part geometry on the FTD1. (a) Stripe scan strategy with 67° 
rotation, (b) Stripe scan strategy with all X scan vectors, (c) Stripe scan strategy with all Y scan vectors, (d) meander 
scan strategy with 67° rotation, and (e) Chessboard scan strategy with 67° rotation.  
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 Effect of the Material Properties and Processing Parameters using Nickel-based Alloys 

Samples were manufactured using different metal powders in order to determine the 

developed forces through the L-PBF process.  The build parameters used are shown in Table 

11, which were previously defined by Renishaw to create parts with a density greater than 

99.9%.   

3.6.2.1 Effect of the scan strategy 

In order to compare if the results from the previous section built from the use of the Stripe 

scan strategy and the Meander scan strategy, built using Ti-6Al- 4V, was an effect of the scan 

strategy rather than of the metal powder. As it was previously defined by Renishaw the 

Chessboard scan strategy produces more defects per unit area to the part than the Stripe and 

the Meander scan strategies and is not suitable to be used with a 60 μm layer thickness. 

Therefore, the layer thickness was only studied for Stripe and Meander scan strategies by 

doubling the layer thickness from 30 μm to 60 μm. Two samples (S17 and S18) were built 

using Inconel 625 and a 60 µm layer thickness using the Meander and the Stripe scan 

strategies; additional samples were built using Maraging steel using the Stripe and Meander 

strategies (S21 and S22) using the parameters described in Table 11. This allowed comparison 

of the effect of the scan strategies on different metal powders and see if the difference was 

an effect of the scan strategy rather than of the metal alloy.  

3.6.2.2 Effect of the Metal Alloy 

In order to compare the effect of the metal properties on the developed forces during the 

process, samples were built in four different metal powders Ti-6Al- 4V, Inconel 625, Inconel 

718, Maraging Steel. All samples were built using Stripe scan strategy and the build 

parameters previously defined by Renishaw to create parts with a density greater than 99.9% 

for each metal alloy, as described in Table 11. To reduce the building time all samples were 

built using a layer thickness of 60 µm.   

3.6.2.3 Effect of the Inert Gas 

 Previously manufactured parts from Renishaw had shown a variation in the measurements 

between samples built with Nitrogen instead of Argon gas as the inert atmosphere. Therefore, 

samples were manufactured with Nitrogen to explore the effect on the forces using the FTD 

measurements. Two samples using Maraging steel were built varying the inert gas 

atmosphere in the machine between Argon (Ar) and Nitrogen (N₂). An additional sample with 

Inconel 625 was built with Nitrogen (N₂) inert gas atmosphere, in order to see if this was solely 

an effect for the Maraging steel. The samples were built using Stripe scan strategy and the 
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build parameters previously defined by Renishaw to create parts with a relative density 

greater than 99.9% for each metal alloy, as described in Table 11. 

3.6.2.4 Effect of the Energy Density 

Previous literature shows a known dependency of the developed residual stresses on the 

thermal condition. In order to study the effect of the energy input during the build process 

and the effects of the part density, three samples were built using Inconel 625 only, due to 

machine availability, increasing the point distance from 60 µm to 70 µm and 80 µm, while 

keeping the rest of the parameters constant. This study investigated the effect of the energy 

density on residual stress in regards to the volumetric energy input.  The parameters used for 

each build are shown in Table 12. All samples were built using the same scan strategy i.e. 

Stripe with a rotation of 67° per layer. Samples were built in this material due to machine 

availability.  

 Melt Pool Characteristics  

Depending upon heat condition of the powder bed, the melt pool of laser melting metallic 

powder exhibits a varied size and morphology, even if the identical scanning parameters are 

used. It is known that the base plate or a solid metal provides high thermal conduction for 

fusion energy to be dissipated, while the powder bed heat conduction is much lower than that 

of solid metals due that gas-filled pores may reduce the thermal conductivity [175]. Thus, the 

characteristics of the melt pool on a powder bed without any prior layers will have different 

properties than those developed with a previous powder bed, and this could give significant 

information for the development of FEA models. Therefore, single tracks were performed 

under two conditions; one set was built with a previous 30 µm layer thickness of metal powder, 

and a second set directly over the support part with no previous disposed layer of powder. In 

collaboration with 3DSIM (Ansys) single bead samples were built using different metal 

powders Ti-6Al-4V, Inconel 625 and Maraging steel where single beads were built varying the 

laser power (W) and exposure time (µs), as shown in Table 13. The parameters used for the 

development of the single beads were defined in collaboration with 3DSIM (Ansys) based on 

their requirements for the calibration of their simulation software.  The samples were cross-

sectioned, and measurements were taken 4 mm apart from the centre of the part, as shown 

in Figure 72.  
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Figure 72: Schematic of the rectangular based where 12 single beads are scanned on the top surface (measurements 
are in mm) showing the width, height and depth measurements made for a single bead (bottom right). Parameters 
used for the single beads are shown in Table 13 

 

Table 11: Renishaw AM250 build parameters for Nickel-based superalloys 

Sample 

Number 

Material Scan 

Strategy 

Laser 

Power 

(W) 

Layer 

Thickness 

(µm) 

Point 

Distance 

(µm) 

Exposure 

Time 

(µs) 

Hatch 

Distance 

(mm) 

Inert 

Gas 

S17 Inconel 625 Meander 200 60 60 100 0.14 Ar 

S18 Inconel 625 Stripe 200 60 60 100 0.14 Ar 

S19 Inconel 718 Stripe 200 60 60 70 0.09 Ar 

S20 Maraging Steel Stripe 200 40 65 80 0.08 Ar 

S21 Maraging Steel Stripe 200 40 65 80 0.08 N2 

S22 Maraging Steel Meander 200 40 65 80 0.08 Ar 

S23 Inconel 625 Stripe 200 60 60 100 0.14 N2 
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Table 12: Parameters with a variation of the point distance for Inconel 625 

Sample  S24 S25 S26 

Point Distance (µm) 60 70 80 

Energy Density J/mm3 39.68 34.01 26.76 

Scan Strategy Stripe 

Laser Power (W) 200 200 200 

Exposure time (µs) 100 100 100 

Hatch Distance (mm) 0.140 0.140 0.140 

Layer Thickness (µm) 60 60 60 

 

 

 Table 13: Single beads build parameters 

Bead No.  Laser Power (W) Exposure Time (µs) Scan Speed 
(mm/s) 

Energy Density 
(J/mm³) 

SB 1 160 40 1375 36.9408 

SB 2 160 50 1100 46.1760 

SB 3 160 100 550 92.3520 

SB 4 170 40 1375 39.2496 

SB 5 170 50 1100 49.0620 

SB 6 170 100 550 98.1241 

SB 7 180 40 1375 41.5584 

SB 8 180 50 1100 51.9480 

SB 9 180 100 550 103.8961 

SB 10 200 40 1375 46.1760 

SB 11 200 50 1100 57.7200 

SB 12 200 100 550 115.4401 



 

 Experimental Results 
 

This chapter presents the results from the experimental work performed on the effect of the 

processing parameters and material properties on the development of residual forces in the 

L-PBF process, from which residual stresses were inferred. Results from the out-of-plane 

measurements of distortion by DIC are also presented in this chapter. In-situ measurements 

were performed with the use of a Force Transducer Device (FTD). The use and evaluation of 

these techniques, for residual stress assessment in L-PFB, extends our understanding of how 

the stresses are developed in different metal powders, providing the necessary knowledge 

required for the optimisation of the process. The research was performed in four different 

metal powders and are described in two sections: Ti-6AL-4V and Nickel-based superalloys 

(Inc625, Inc718 and Maraging Steel).  

4.1 Effect of Processing Parameters on Residual Stress and Part 

Deformation for Ti-6Al-4V  

The first phase of the experimental work was performed using Ti-6Al-4V, because as for the 

machine assigned for the project, the sponsors, Renishaw, were interested in this particular 

material due to its significant commercial usage in the aerospace industry. The literature 

review showed that due to the thermal cycles in the L-PBF process, residual stresses develop 

in the part that can lead to critical distortion. The aim of this section was to understand the 

effects that process parameters, such as laser power, scan strategy and layer thickness, have 

on residual stress development for Ti-6Al-4V. Previous literature reported that laser power is 

the principal factor that defines layer bonding [176], and therefore, it has a large effect in 

determining the development of residual stresses. To assess the effect of the laser power and 

in order to determine if there was a correlation between the induced forces and the laser 

power input, a set of experiments were performed in which the laser power was varied while 

keeping the rest of the process parameters constant. In order to see a noticeable effect, the 

laser power was reduced by 10% and 20% from the maximum value of 200 W. Another factor 

that contributes significantly to the residual stresses is the scan strategy, as it defines the path 

along which the laser melts the metal powder and this affects the thermal gradients and 

cooling rates induced in each layer [59, 113, 143, 167].  The effect on the induced forces of 

the three most commonly used scan strategies: Stripe, Meander and Chessboard, were 

studied by in-process measurements. Finally, the effect of layer thickness has shown to affect 
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the residual stress in the L-PBF process [177] by altering the thermal gradients induced in the 

part; therefore, a study on the effect of the layer thickness on the forces induced and part 

deformation was conducted.  

 Effect of the Laser Power  

The forces registered while the part was being built were recorded and plotted against time 

and layer number for each build. The resultant forces developed over time during the building 

process for sample S1 using 200 W laser power are shown in Figure 73.  The results from the 

in-process measurements show that the edges in the part are in tension or being pulled up, 

against the build platform (load cells 1, 4, 13 and 16), generating a tensile force in the load 

cells; while the load cells in the middle are being compressed or pushed towards the build 

platform (load cells 6, 7, 10 and 11), thus the deformation creates a bending moment in the 

build, e.g. curl as previously described by Thomas [178]. The curl effect from the forces 

developed during the process can be seen in Figure 74. This agrees with the literature that 

the residual stress near the centre of the part tends to be compressive and tensile near the 

surface area [158, 179] with respect to the build platform; therefore, the stresses would act 

to make the sample curl relative to the baseplate [46], as it can be seen from the surface plot 

in Figure 74. Figure 75 shows the contour plot of the force on the load cells at layer 10, layer 

50 and layer 100 (when the build was stopped); as it can be seen, the forces are symmetrical 

and evenly distributed through the part. The tensile forces must balance the compressive 

forces, and the distribution of forces must be symmetrical. The tensile forces registered at the 

corners are balanced by the compressive forces registered by the central load cells, and the 

smaller tensile forces at the centre of the edges parallel to the x-axis are balanced by the 

smaller compressive forces at the centre of the edges parallel to the y-axis through the build.  

Therefore, as no additional forces are acting over the FTD the algebraic sum of the forces 

remains zero, as it can be seen from the red line in Figure 69. The results in Figure 73 are 

illustrated in three groups, i.e. loads measured in the centre, corners, and edges; hence, to 

reduce the number of forces on each graph the absolute sum of the forces from each group 

of load cells has been used in subsequent graphs, e.g. Figure 76. 
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Figure 73: FTD2 In-situ measurement results from sample S1 (see Table 8) built with: laser power 200W, Stripe scan 
strategy and solid pyramids section  

 

Figure 74: Surface profile showing the curl effect from the measured forces for Figure 68 at the end of the build for 
sample S1 (see Table 8 for more details) 
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Figure 75: Contour plots of measured forces at layers (a) 10, (b) 50 and (c) 100 for a square sample (S1), shown in 
Figure 73. Using a Stripe scan strategy and a 30µm layer thickness (see Table 8 for more details). 

 

Figure 76 shows the forces measured during the scanning process per layer. Each oscillation 

represents one layer of the build. When the laser is melting the metal powder, it causes a 

release of the residual stresses in the part; and an increase in the stresses when the part cools 

down as the laser beam is moved away and while the metal powder is spread for the next 

layer. This effect represents the thermal gradient mechanism (TGM), where, as the part is 

heated up by the laser this will locally relieve some stress and as the laser moves away the 

part cools down, causing the strain levels to rise due to the constraints of the underlying layers.  

As the melt pools solidify, the cooling causes the deposited material to shrink, pulling the 
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supports together generating a strain in the load cells.  As can be seen in Figure 76, the 

development of the forces after the first ten layers of the build seems to follow a linear trend 

for both the centre and the corner load cells, this agrees with Shiomi et al. [45].  

 

 

Figure 76: Comparison of the sum of the absolute resultant force of the corner and centre load cells per layer for 
Sample S1 built using the Stripe scan strategy with a 30µm layer thickness. 

 

The sum of the absolute values for the corner load cells, shown in Figure 76, exhibit a higher 

strain rate than for the centre load cells, which might be caused by the geometry of the part. 

This would imply that the stresses generated are not equal across the build, such that the 

stresses are higher in the corners than in the centre of the part. This could be due to thermal 

expansion not being the same at the centre as it is in the corners of a part, as described by 

Rangaswamy et al. [102].  At the corners the heat flow is localised, and the energy dissipates 

further into the previous layers compared to the centre, which is surrounded by more material, 

and consequently, the energy dissipates to the sides.  

Plots of the sum of the absolute forces from the load cells for the builds with porous and solid 

supports for the first 55 layers are shown in Figure 77. The results showed that the samples 

built with a porous structure in the pyramid section registered lower forces than the samples 

with a solid structure. This could be due to the lattice structure being less dense than the solid 

structure and absorbing deformation in the structure which is not transferred to the loadcells. 
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The samples built with 160 W laser power (samples S3 and S6; see Table 14) had a lower initial 

increment of force in the first layers of the build; this could be due to the melt pool being 

smaller with less laser power. The samples S3 and S6 failed at layer 55 and layer 61, 

respectively, due to a lack of bonding between the first layer of the square part and the 

pyramid section. As the penetration depth of the laser beam is smaller with a lower laser 

power, the melt pool depth is shorter; therefore, the bonding between the new layer and the 

previous layer is not as strong as for the higher laser powers, generating less strain into the 

load cells. In addition to developing insufficient bonding, a shorter penetration depth or melt 

pool depth could generate porosity in the parts [155].  

 

Figure 77: Effect of laser power and support structure on forces induced during the build process using a Stripe Scan 
Strategy. See Table 8 and Table 9 for details of specimens.  

 

The variation of laser power had an effect on the forces measured using the FTD. For the 

samples with a laser power of 160 W (S3 and S6), the forces registered in the first layers of 

the build were much lower than for the samples built using a laser power of 200 W and 180 

W; however, the samples with the lower laser power (S3 and S6) failed due to the poor fusion 

between the pyramid structure and the square section.  For the samples with solid pyramid 

structures, the load cells registered at layer six an absolute sum of force of 1197 N for S3 while 

2072 N for S1 and 2172 N for S2. However, later in the build at layer 12, the absolute sum of 

forces for S1 and S3 levelled up to 2326 N and 2191 N, while for S2 the absolute measured 
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forces at the same layer were 2677 N. This could be because of the lower laser power (160 W) 

for sample S3 causing a lower bonding with the previous section, which can lead to a partial 

release of the residual stresses due to the separation from the pyramid section.  And after 

approximately 12 built layers, a more solid structure is built underneath the top surface 

levelling the values of residual stress development as suggested by Zyl et al. [180]. Figure 78 

shows a contour map of the measured forces at the end of each build for Samples S1 to S5. 

 

Figure 78: Contour plots of force at the end of each build for square samples S1 to S6 with the use of Stripe scan 
strategy and a laser power variation from 200 W to 160 W. Using a solid base (S1-S3) and lattice structure base (S4-
S6). See Table 8 for further details.  

 

In general, the forces in the sample S1 built with the maximum power of 200 W increased at 

a more consistent and lower rate than when the laser power was 180 W; thus, allowing the 

build to reach 74 layers for S1 compared to 67 and 55 for samples S2 and S3 respectively 

before any of the load cells reached the maximum load of 50 Kg (see Table 14).  This agrees 

with previous literature, where it was reported that lowering the laser power reduced the 

maximum temperature of the melt pool, and its size, which resulted in higher cooling rates 

[98, 181].  
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Table 14: Results from the measured forces from the samples with laser power variation S1 to S6. 

 No. Layers (-) Sum of Measured Force (N) 

S1 200W Solid 74 4098 

S2 180W Solid  67 4037 

S3 160W Solid  55 3607 

S4 200W Lattice 68 3031 

S5 180W Lattice  66 2856 

S6 160W Lattice 61 2135  

 

The size of the melt pool affects the cooling rates. A deeper melt pool has more thermal 

energy to dissipate and so takes longer to cool and solidify [182]; by lowering and controlling 

the thermal gradients and cooling rates in the process, residual stress can be mitigated. 

However, these results are contrary to other work [154], where the increase in energy input 

increased the residual stress levels. By reducing the laser power, the energy input into the 

sample is less; thus, more porosity is induced in the sample, as it can be seen from the 

micrographs of the samples shown in Figure 79. Therefore, the effect of the energy density 

on residual stress was further studied in this thesis.  

 

Figure 79: Density results and micrographs from Samples S1, S2 and S3, built using different levels of laser power 
shown in Table 8 

 

The samples with lattice structure in the pyramids had similar outcomes to those with the 

solid structures, i.e. samples S4 and S5 built with a laser power of 200 W had the same 

measured forces in the first layers of the build, whereas, the incremental rate was higher for 

sample S6 built with 180 W laser power. Sample S6 built with 160 W exhibited much lower 

forces later in the build and, as for sample S3 the build failed at layer 61.  
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The samples built with a lattice structure in the inversed pyramid section exhibited lower 

increments of force as well as lower heat transfer into the load cells (Table 14). However, the 

results were less consistent between builds due to the lattice structure on the pyramid section 

of the samples. Therefore, it was decided to use a solid structure for the inversed pyramid 

section of the samples for all the future experimental work presented in this thesis. These 

experiments showed that the residual stress depends not only on the process parameters, i.e. 

laser power but also on the support structures. Imperfections, such as porosity or lack of 

fusion between layers/supports/substrate, can cause deformation and stress relaxation [180]. 

 Effect of the Scan Strategy and Layer Thickness 

According to the literature, the exposure strategy used to fuse the powder layers has a 

significant influence on the development of residual stress. Some studies suggest that stresses 

are higher perpendicular to the scan direction than along the scan direction [177, 183], and 

longer scan vectors develop higher stresses than dividing vectors into shorter length scans [97, 

137, 174]. In order to measure the effect of scan strategy on the development of residual 

stresses, different scan strategies were tested using two different part geometries a 

rectangular part of 32 mm x 112 mm using the FTD1 and a square part geometry 64 mm x 64 

mm using the FTD2, previously described in section 3.5.5. The scan strategies were compared 

using the parameters needed to produce a sample of nearly 100% density as shown in Table 

8. In-situ measurements were recorded through the building process, as described in section 

4.1.1. Each build was stopped when any of the load cells reached its maximum allowable force 

of 50 kg. 

In-situ measurements for Rectangular Parts  

Results from the in-situ measurements for part S7 are shown in Figure 80.  The external corner 

(load cells 1, 8, 7, and 14) are in tension and are being pulled away from the base plate, while 

the rest of the structure (load cells 2, 3, 4, 5, 6, 9, 10, 11, 12, and 13) is in compression and is 

being pushed towards the base plate. Therefore, after the part was detached from the load 

cells and its strains were released, the part curled away from the build platform as can be seen 

in Figure 81. This deformation is analysed later in the thesis. The build was stopped at layer 

98 at a height of 2.94 mm when load cell 14 approached 50 kg. The forces in the load cells did 

not increase to a significant extent when the part cooled down after the build was stopped.  

As shown in the previous samples (Figure 76), the cycle for each layer follows the theory of 

the thermal gradient mechanism (TGM), i.e. when the laser melts the powder, the stresses 

are released, and the load cells register lower forces this is  followed by a steady increase 
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when the laser moves away and the melted material solidifies and cools down while the 

powder is spread for the next layer. Then the process is repeated for each layer.  

 

Figure 80: In-situ measurements for a rectangular part built on the FTD1 with a Stripe scan strategy for specimen S7, 
see Table 10 for details 

 

 

Figure 81:  Curl-up of specimen S7 (see Table 10) following release from the build platform as previously studied by 
Thomas [170] in his thesis work  

 

The sum of the measured forces developed on the front row of load cells (1 to 7) were higher 

compared to the sum of the forces from the back row (8 to 14), as can be seen in Figure 82.  
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Figure 82: Comparison of measured forces for the front and back rows of the FTD1 for a rectangular part for Sample 
S7. More details can be seen in Table 8 

In order to see the effect of the scanning direction in the development of the forces, two more 

parts were built, one with all the vectors in the X-direction and one with all the vectors in the 

Y-direction as shown in Figure 71 b and c. The results from the in-situ measurements are 

shown in  Figure 83.   

 

 Figure 83: Results from In-situ force measurements using FTD1 for a rectangular part using three scan strategies: 
Rotating 67° per layer (Sample S7), Stripe all-X (Sample S8) and all-Y scan strategies (Sample S9) 
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It is clear that the all-X sample (S8) developed much higher forces than the all-Y sample (S9) 

and the 67° rotating Stripe sample (S7). When the build for the all-X sample S8 was stopped, 

due to reaching to the maximum load of 50 kg at layer 80, the sum of the forces was 3737 N 

compared to 2750 N for the all-Y and 2818 N for the stripe rotating 67° build. The length of 

the rectangular part in the X direction is greater than its width (Y direction); hence, these 

differences could have arisen because the forces developed parallel to the laser scan 

orientation were higher than the ones developed perpendicular to the laser scan. This would 

agree with previous results [49] that suggest that the stress generated normal to the scanning 

direction are lower than parallel to it. Figure 84 shows a contour plot of the force distribution 

along the part, as it can be seen the forces in the corners are in tension while the forces at the 

centre of the part are in compression as from the previous results from the square parts and 

as previously reported in the literature [158, 179].  

 

Figure 84: Contour plots of force at the end of each build for rectangular samples S7, S8 and S9 shown in Figure 79 
using (a) Stripe 67° rotation scan strategy, (b) scan vector with all X orientation, and (c) scan vector in all y 
orientation. See Table 7 for further details  
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A closer look at the development of the forces in each layer for each scan strategy from layer 

7 to 12 is shown in Figure 85. Even when the stripe length of each scan vector is the same (5 

mm), the orientation of the scanning had an influence on the development of the forces. For 

the sample S9 with all-Y scan vectors, the forces were much lower and exhibited less variation 

or amplitude from layer to layer; this could be due to the lower cooling rates. The scanning 

section is longer in the horizontal direction; therefore, as the laser scans through the whole 

length of the part, the temperature of the part cools at each location before the laser returns 

and starts melting the next layer. When the orientation of the scanning vector changes 

between each layer, it can be seen that there is a higher variation in the forces developed in 

each layer, due to the fact that the laser starts scanning at different points in each layer.  This 

may contribute to keeping a more constant temperature through the process, especially for 

more complex part geometries and for parts with more layers.  As can be seen in Figure 83, 

the All Y scanning strategy seems to develop slightly lower forces at the beginning of the build, 

but later as more layers were added, the forces increase at higher rates until they are equal 

to those for the rotating scan strategy. The builds had to be stopped due to the limitation of 

the load cells, but the results could mean that the rotating scan strategy would develop less 

residual stress if a much higher part was built.  

        

 

Figure 85: Development of forces in each layer for different scan strategies for Samples S7, S8 and S9, see Table 10 
for details.   
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To further investigate the effect of the scan strategies, samples were built using the Stripe, 

Chessboard and Meander strategies, samples S7, S10 and S11, respectively. The scan 

strategies were compared based on the parameters needed to manufacture samples with a 

relative density greater than 99.9%, as shown in Table 10. The samples were built using the 

rectangular geometry (samples S7, S10, S11) and the square geometry (samples S12, S13 and 

S14) on both of the FTDs.  Figure 86 shows the sum of the absolute values for the measured 

forces from the load cells for the builds with Meander, Stripe and Chessboard with the 

rectangular part geometry samples S7, S10, S11, respectively. The Meander scan strategy 

developed much lower forces than the Chessboard and Stripe scan strategies. At layer 85 

Meander’s total force was 1034 N compared to 2638 N for the Stripe and 2473 N for the 

Chessboard strategies. This allowed a much higher part to be built with the Meander scan 

strategy before reaching the maximum working force on any of the load cells. The build with 

the Meander scan strategy was stopped at layer 136, with a height of 4.08 mm. The build with 

Chessboard scan strategy was stopped at layer 107, with a height of 3.21 mm, and the build 

with the Stripe scan strategy was stopped at layer 97, with a height of 2.91 mm, which was 

almost 30 % less than achieved with Meander scan strategy.  

 

Figure 86: In-situ Measurements of the sum of the measured forces (N) per layer for rectangular parts built with the 
Stripe (S7), Chessboard  (S10),  and Meander strategies (S11) and a  layer thickness of 30 µm, see Table 10 for details. 
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Contour plots of force at the end of each build for Samples S7, S10 and S11 are shown in  

Figure 87.  It can be seen that the sample built using the Meander scan strategy with single 

scan vectors produced much lower forces compared to the Stripe and Chessboard scan 

strategies, which divide the part geometry into smaller scanning segments. From the samples 

built using sectioned scanning, Stripe and Chessboard strategy,  it can be seen that even that 

the sum of forces is lower (Figure 86), the sample built using the Chessboard strategy 

developed higher forces of nearly 500 N at the edges of the part which could lead to higher 

part deformation;  the part deformation is further analysed in this section.    

 

Figure 87: Contour plots of force at the end of each build for rectangular samples S7, S10 and S11, using a 30 µm 
layer thickness and different scan strategies (a) Stripe (b) Chessboard, and (c) Meander. See Table 10 for details. 

 

From Figure 88, which shows the sum of measured forces for the first 15 layers of the build, 

it is clear that the Meander scan strategy has a high variation of force from layer to layer 

compared to the Chessboard and Stripe scan strategies. For the Meander scan strategy, every 

second layer the forces decrease followed by an increase with the third layer and this reduced 
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the overall forces in the part. Whereas for the Chessboard and Stripe scan strategies, the 

increments in forces are approximately constant for each layer, adding up layer after layer. 

The results imply that the sectioning of the scan vectors gives a more constant temperature 

during the build.  However, the forces measured for a single line vector are much lower 

compared to the sectioning scans. This could be related to the overlapping of the sectional 

scanning, which was necessary to avoid porosity in the samples built with Stripe and 

Chessboard scan strategies; the overlapping means more material is being re-melted, which 

creates higher thermal gradients in each layer. By reducing the point distance for the Stripe 

and Chessboard scan strategies, more energy is input into the part, which probably increases 

the residual forces.  

 

Figure 88:  Sum of absolute measured forces for the first 15 layers of the rectangular part built using the Stripe (S7), 
Chessboard (S10) and  Meander (S11) scan strategies with a layer thickness of 30 µm, see Table 10 for details.  

 

In addition to the energy input, the period the laser is on varies with the scan strategies. For 

the Meander scan strategy, the average time of a scan was 57 seconds per layer, for the Stripe 

scan strategy the average was 48 seconds and for the Chessboard scan strategy the average 

was 48 seconds per layer.  The Meander scan strategy had a much higher scanning time per 

layer, and the time between each layer had more variation compared to the other two scan 
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strategies. This was reflected in the inconsistency of the magnitude of the forces per layer.  

Table 15 shows the scanning times for the first 15 layers of each build; these times include 

the time for powder deposition.  Previous studies have shown that the interlayer dwelling 

times have an effect on the development of residual stress [120]. The previous literature 

suggests that the part geometry also has an effect on the development of residual stresses in 

the L-PBF process; therefore, in order to see if the effect of dwell time is related to the part 

geometry, additional samples for each scan strategy were built with a square geometry, and 

using the FTD2.    

Table 15: Scanning time (in seconds) per layer (L1-L16 for samples S7, S10 and S11) with a rectangular geometry (see 
Table 10 and Figure 72 for more details) 

 

In-situ measurements for square parts  

Figure 89 shows a comparison among the sum of the forces for 64 mm x 64 mm square parts 

measured on the FTD2 for each scan strategy (Stripe (S12), Chessboard (S13) and Meander 

S14), using a layer thickness of 30 µm. As shown in previous results from a rectangular part 

geometry, the residual stress levels developed in the build vary depending on the scan 

strategy used. The Meander scan strategy showed the lowest forces, thus enabling a higher 

part to be built, before reaching maximum working force of any of the load cells. At layer 65, 

the total force was 1457 N for the Meander scan strategy compared to 2385 N and 2330 N 

for the Stripe and Chessboard scan strategies respectively.  

Figure 89 show the sum of the measured forces for the samples S12, S13 and S14.  A contour 

plot of the measured forces at the end of each build are shown in Figure 90.; S14 

manufactured with Meander scan strategy, the build was stopped at layer 129, with a height 

of 3.87mm. The sample built with the Chessboard scan strategy (S13) was stopped at layer 92 

with a height of 2.76 mm.  The sample built with the Stripe scan strategy (S12) was stopped 

 L1 L2 L3 L4 L5 L6 L7 L8 

Stripe (S7) 46.12 46.12 46.12 45.80 45.80 45.80 45.80 45.44 

Chessboard (S10) 48.36 48.68 48.68 48.68 48.04 47.72 48.04 48.36 

Meander (S11) 60.85 59.25 57.33 57.97 60.53 57.01 57.33 55.41 

 L9 L10 L11 L12 L13 L14 L15 L16 

Stripe (S7) 45.80 48.36 48.04 48.36 48.04 48.04 49.32 48.04 

Chessboard (S10) 48.68 48.36 48.04 48.04 47.72 48.04 47.72 48.04 

Meander (S11) 60.21 56.05 56.05 55.41 59.8 58.61 56.37 56.05 
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at layer 78 with a height of 2.34 mm. As shown in Figure 89, the Stripe and Chessboard scan 

strategies showed a faster increased in the measured forces, reducing the part height by 40%, 

compared to the Meander scan strategy. It is evident from the start of the build, for the Stripe 

and Chessboard scan strategies, that there is a peak in the force and after the first ten layers, 

the force increases in an approximately linear manner, as with the previous results for 

rectangular parts. The differences in the forces measured for the Meander, Stripe and 

Chessboard scan strategies, could be related to the effect of scan segmentation on the 

thermal gradient.  The Stripe and Chessboard scan tracks were split into 5mm width sections; 

therefore, to avoid pores in the part, the hatch distance needed to be higher than for the 

Meander scan strategy, resulting in more overlap between scan vectors and therefore more 

material being re-melted and higher residual stress. A plot of the measured forces for the first 

15 layers of these samples is shown in Figure 91.  

 

Figure 89: In-situ Measurements Resultant Forces (N) per Layer. Comparison of Stripe S12, Chessboard S13 and 
Meander S14 scan strategies used to build square parts with 30 µm layer thickness showing the sum of the absolute 
forces registered from FTD2. See Table 10 for details.  
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Figure 90: Contour plots of force at the end of each build for square samples S12, S13 and S14. Samples built using a 
30 µm layer thickness and different scan strategies (a) Stripe, (b) Chessboard and (c) Meander. See Table 7 for details. 

 

Similar to the rectangular parts, the average scanning time per layer in the square parts was 

higher for the Meander scan strategy. The scanning times per layer are shown in Table 16, 

and the Meander scan strategy has more variation than the Stripe and Chessboard scan 

strategies. However, due to the symmetry of the square part, the variation between layers 

was not as significant as in the rectangular part for the Meander strategy; nevertheless, it was 

still more significant compared to Stripe and Chessboard strategies. The average scanning 

times per layer were 62.29 seconds, 50.01 seconds and 53.79 seconds, for the Meander, 

Stripe and Chessboard respectively. These results confirm the interlayer effects on the 

development of residual strains in the L-PBF process; because, as a layer of a part is scanned, 

the time elapsed from the scanning and powder deposition until the laser heats the same 

point has been demonstrated to change the forces measured in the Ti-6Al-4V samples, as 

shown in previous studies [91, 109].  
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Figure 91: Sum of absolute values measured in the first 15 layers of squared parts built using Meander, Stripe and 
Chessboard scan strategies with 30 µm layer thickness. See Figure 89 for complete build and Table 10 for details of 
the parts and build parameters.  

Table 16: Scanning time (in seconds) per layer (L1-L16) for samples with square geometry see Table 10 and Figure 91 
for details. 

 

Effect of the Layer Thickness on Residual Forces 

In order to see the effect of the layer thickness on the residual forces, the samples were built 

using the Stripe and Meander strategies with a layer thickness of 60 µm. As mentioned before 

the Chessboard scan parameters for a 60 µm layer thickness are not of interest because it is 

not feasible for larger and more complex part geometries. The results for the forces developed 

were similar to those for a 30 µm layer thickness and are shown in Figure 92  and Figure 94. 

 L1 L2 L3 L4 L5 L6 L7 L8 

Stripe (S12) 50.93 50.93 50.93 52.21 50.93 51.25 50.93 50.93 

Chessboard (S13) 54.45 53.49 53.81 53.81 54.13 53.49 53.81 53.81 

Meander (S14) 62.79 61.83 62.79 65.03 61.18 62.47 59.90 64.39 

 L9 L10 L11 L12 L13 L14 L15 L16 

Stripe (S12) 50.61 50.61 50.93 50.61 51.57 50.93 50.93 50.61 

Chessboard (S13) 53.81 53.81 53.81 53.81 53.17 53.81 53.81 53.81 

Meander (S14) 60.54 62.79 60.86 64.07 59.90 63.11 62.79 64.07 
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The initial forces developed using the Stripe strategy were much higher than with the 

Meander strategy. At layer five, the sum of measured forces was of 1000 N for the sample 

built using the Meander strategy while for the sample built using the Stripe strategy the sum 

of measured forces at layer five was of 2500 N, over 50% more from the first layers of the 

build.  However, after the first 10 layers the gradient of the plot in Figure 92  are approximately 

equal and constant for the two scan strategies. The difference in forces at the start of the 

build allowed a part of 65 layers with a height of 3.9 mm to be built with the Meander scan 

strategy and only 40 layers with a height of 2.4 mm with the Stripe scan.  Contour plots of 

force at the end of each build for Sampler S15 and S16 are shown in Figure 93. 

 

Figure 92: Sum of absolute values measured in squared parts built using Stripe (S15) and Meander (S16) scan 
strategies with 60 µm layer thickness. See Table 10 for details of the build parameters. 

 

Figure 93: Contour plots of force at the end of each build for square samples S15 and S16 built using a 60 µm layer 
thickness and different scan strategies (a) Stripe and (b) Meander. See Table 7 for details. 
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 A larger layer thickness requires a larger amount of powder to be melted by the laser beam 

to induce proper bonding between the newly deposited layer and the previously deposited 

layers. Thus, different processing parameters were needed to yield the same part density, and 

this was achieved by increasing the exposure time (ET) and reducing the hatch distance (HD) 

and point distance (PD) for the 60 µm layer thickness samples.   

 

(a) 

 

(b) 

Figure 94: Effect of layer thickness on residual forces for (a) Stripe and (b) Meander scan strategies. See Table 10 for 
further details.   
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For the Stripe scan strategy, the increase in exposure time and reduction in point distance 

reduced the scan speed from 1100 mm/s for a layer thickness of 30 µm to 857 mm/s for a 

layer thickness of 60 µm.  As a result, the volumetric energy density (ED) (J/mm³) was reduced 

correspondingly from 57.72 J/mm³ to 40.93 J/mm³.  As can be observed in Figure 94(a) 

induced forces were higher for the 60 µm sample from the start of the build.  The total force 

registered by the load cells at 2.4 mm was 12% higher for the 60 µm layer thickness than for 

the 30 µm layer thickness corresponding to total forces of 3710 N and 3228 N respectively. 

For the Meander scan strategy, the increase in exposure time and reduction in point distance 

reduced the scan speed from 1500 mm/s for a layer thickness of 30 µm to 857 mm/s for a 

layer thickness of 60 µm.  As a result, the volumetric energy density (ED) (J/mm³) was reduced 

correspondingly from 68.37 J/mm³ to 40.93 J/mm³.  As can be observed in Figure 94(b) the 

distribution of the induced forces were higher for the 60 µm sample from the start of the build.  

The total force registered by the load cells at 3.6 mm was approximately 11% higher for the 

60 µm layer thickness than for the 30 µm layer thickness corresponding to total forces of 3961 

N and 3521 N respectively.  

It can be observed in Figure 94 that, for both scan strategies, the induced forces at the 

maximum height are 11% higher for the thicker layer which is the opposite trend to that 

expected from the lower energy input and might arise due to the effect of reducing the scan 

speed. Since, as the scan speed is reduced, the scanning time per layer is reduced which 

increases the cooling times for the deposited layers and might develop greater residual forces, 

as previously demonstrated by Denliger [120]. A summary of the build height among the 

different scan strategies and layer thickness for the square samples is shown in Figure 95.   

 

Figure 95: Comparison of build height among the different scan strategies and layer thickness for the squared samples 
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 Analysis of the Part Deformation  

When removing the part from the substrate, in this case the FTD, the strains in the part will 

be released, causing deformation of the part. A non-destructive approach was chosen to 

measure this part deformation using Digital Image Correlation (DIC) [158]. DIC is a popular 

and powerful technique for full-field motion, deformation and shape measurement [159].  The 

deformation of the part after removal was measured using DIC while the bolts were removed 

in the sequence shown in Figure 96. Figure 97 shows the DIC measurements of the part with 

no bolts removed (top) where no deformation is registered as the bolts are restraining the 

part; when the corner bolts have been removed and when the subsequent pair of bolts are 

removed moving inwards. No data was collected when the final pair of the bolts at the centre 

of the part were removed because, by this stage they were not restraining any constraint. As 

expected from the results obtained from the FTD measurements, the corners of the parts curl 

upwards indicating they were in tension.   

 

Figure 96: Sequence for the part removal from the FTD1 for DIC measurements for part deformation 

 

Figure 97: Results from DIC measurements for out of plane distortion when the bolts are removed from the FTD1 in 
the sequence shown in Figure 88 for Sample 7 (see Table 10) for details. Note that no data was collected when the 
final set of bolts were removed.  
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In order to investigate the effect of the scan strategies and layer thickness on the part 

deformation after the part is released from the build platform, the previously built square 

samples were measured using the DIC system, and the results are shown in Figure 98. The 

square parts show the same upwards curl as the rectangular parts but about both exes of 

symmetry rather than in a single direction. The Meander strategy with a 30 µm layer thickness 

exhibited the least deformation with an overall part deformation of 0.638 mm.  As seen in 

previous results from the in-situ measurements, the Meander strategy developed lower force 

increment while the part was being built; thus, less strain was released when the part was 

detached from the FTD. The meander scan strategy exhibited almost 60% less deformation 

than the Stripe scan strategy, for which the overall part deformation was 1.209 mm and 1.051 

mm for layer thicknesses of 30 µm and 60 µm respectively. While, the layer thickness had 

almost no effect in the build height results, the DIC measurements show that the parts built 

with 30 µm layer thickness had approximately 12% less deformation when removed from the 

load cells compared to the 60 µm layer thickness with the same scan strategy, which was the 

same % difference in the force developed during the building process. A summary of the 

results from the DIC measurements are shown in Table 17. 

Table 17: Results from DIC measurements of square parts after removal  

DIC Results for Deformation on Square Parts  

Scan Strategy Stripe (S13) Chessboard (S14) Meander (S16) Stripe (S15) Meander (S17) 

Layer Thickness 30 µm 30 µm 30 µm 60 µm 60 µm 

Maximum 

Deformation 

(towards the laser) 

0.657 mm 0.653 mm 0.412 mm 0.753 mm 0.451 mm 

Maximum 

Deformation (against 

the laser) 

-0.394 mm -0.387 mm -0.226 mm -0.456 mm -0.275 mm 

Absolute 

Deformation 
1.051 mm 1.040 mm 0.638 mm 1.209 mm 0.726 mm 
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Figure 98: DIC measurements of part deformation after removal for different scan strategies and layer thicknesses for 
Ti-6Al-4V square samples (S12-16), see Table 10 for details 
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4.2 In-situ Measurements of Developed Strains in L-PFB for 

Nickel-based Super Alloys: Inconel 625, Inconel 718 and 

Maraging Steel  

Previous studies suggest that the material properties have an effect on the development of 

residual stress and can alter the effect of process parameters [90] in the L-PBF process.  

Therefore, it is important to gain a better understanding of the effect of the material 

properties on the development of residual stresses in the L-PBF process. In order to determine 

the effect of the material properties on the development of residual forces, square samples 

were manufactured, and the FTD2 was used to measure the forces developed when using 

three different metal powders: Inconel 718, Inconel 625 and Maraging Steel. The effect of the 

inert gas atmosphere on the forces developed and the part deformation for two metal 

powders, i.e. Inconel 625 and Maraging steel was also investigated. In addition, in this section, 

the effect of the volumetric energy input on the development of residual forces is reported 

for Inconel 625.   

 Effect of the Scan Strategy 

 

The results from the in-situ measurements of forces developed while the part is built for a 

square part built using Inconel 625 are shown in Figure 99; the developed forces show similar 

results as the previously shown for Ti-6Al-4V. The corners of the part are in tension while the 

centre of the part is in compression. Figure 100 shows a comparison of the sum of the absolute 

forces for the first 40 layers of the build using the Meander and Stripe strategies with 

Inconel®625. As shown in the previous section for Ti-6Al-4V, the Meander scan strategy 

showed a much lower level of force in the building process, allowing the part to reach a height 

of 3.840 mm compared to the 2.520 mm with the Stripe scan strategy. The processing 

parameters were the same for both scan strategies (see Table 11), giving the same energy 

input for both parts of 13003 J per layer. In the first ten layers of the build, the Stripe scan 

strategy has developed higher forces than the Meander strategy, which is the same found for 

Ti-6Al-4V. The measured force after the first ten layers of the build was 1600 N and 2500 N 

respectively for Meander and Stripe scan strategy. While at layer 40, when the build was 

stopped, the force was 2200 N and 3500 N respectively, i.e. 62% more for the Stripe sample. 

Contour plots of force at the end of each build for both scan strategies, samples S17 and S18, 

are shown in Figure 101. 
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Figure 99: In-situ measurements of the forces developed for a square part built using the Stripe scan strategy using 
Inconel 625. Data for Sample S17, see Table 11 for details. 

 

 

Figure 100:  Comparison of the sum of measured forces for the Stripe and Meander strategies using Inconel 625 to 
build square samples (Samples 17 and 18), see Table 11 for details.   
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Figure 101: Contour plots of force at the end of each build for Samples S17 and S18 built using a 60µm layer thickness 
and different scan strategies a) stripe and b) Meander. See Table 11 for details. 

From layer 10 the gradient in Figure 100 is similar and constant as seen for both scan 

strategies as was seen previously for Ti-6Al-4V. In both cases, the Meander scan strategy 

produced lower forces.  

 Effect of the Metal Alloy 

 

To better understand the effect of the material properties on residual stress, square samples 

were manufactured to measure the forces developed during the L-PBF, using the processing 

parameters described in Table 11. 

Of the four different materials investigated, the Maraging steel showed the lowest level of 

force measured during the building process, as shown in Figure 102.  From the start of the 

build, at 0.3 mm, the force induced increased to only 1250 N, which was 50% less than the 

force developed in the Inconel 718 sample at the same height.  The maximum force in the 

Maraging steel was reached at a build height of approximately 1.2 mm and dropped slightly 

to 1318 N when the build was finished at a height of 4mm height. This could be due to a phase 

transformation in the Maraging steel, which might eliminate the residual strains developed 

during the building process. The rest of the materials exhibited similar behaviour to one 

another with the maximum permissible force being reached at a build height of about 2.5mm.   

The maximum resultant force of 3770 N was measured in the Inconel 625 sample. Contour 

plots of the force at the end of each build are shown in Figure 103, where it is shown that the 

forces are symmetrically distributed along the X and Y axes for all metal powders; and it is 

clear that the sample built using Maraging steel show much lower forces developed than the 

rest of the metal powders tested.  
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Figure 102: In-situ measurements of the sum of the forces for square parts built with Stripe scan strategy in various 
materials. Data for samples S15, S18, S19 and S20 shown, see Table 10 and Table 11 for details 

 

Figure 103: Contour plots of force at the end of each build, from Figure 102, for square parts using a 60 µm layer 
thickness and different metal powders (Samples S15, S17, S19 and S20). See Table 10 and Table 11 for details. 
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The residual strains developed for the Maraging steel were very low compared to the rest of 

the materials using the same scan strategy and remained very constant after the initial stages 

of the build. This was probably due to an allotropic transformation of martensite to austenite 

which occurs at low temperatures (see Figure 104) and could have caused a volumetric 

expansion which would have limited the tensile forces developed during cooling of the part 

[184]. This is the opposite mechanism to the rest of the materials, when the part cools down, 

tension occurs in the corner load cells and compression in the centre load cells.   

 

Figure 104: Dilatometer curve for the longitudinal direction of 18% Maraging steel from -196 °C to annealing 
temperature (adapted from Kranzlein [184]) 

The resultant forces from the centre and corner load cells for the Maraging steel samples are 

shown in Figure 105 where it can be seen that after the build is finished and has cooled down, 

the forces registered by the load cells exhibit the opposite behaviour to that described in the 

rest of the materials. Instead of slightly increasing during cooling, the forces for the Maraging 

steel sample reduced as the part cooled down. This behaviour reduced the part deformation 

when it was released from the base plate, as shown in  Figure 107 using the DIC results. As 

residual levels for the Maraging steel part were 60% less than the developed for the rest of 

the materials, the part deformation of the sample was very low and the bending of the sample 

was opposite from the rest of the materials, having a negative bending in reference to the 

build platform.   
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Figure 105:  In-situ Measurements of forces developed for Sample S20 built in Maraging Steel with the Stripe Scan 
Strategy, see Table 11 for details.  

 

 

Figure 106: Contour plots of force from Figure 101, (a) at the end of the build at layer 100 and (b) after the part cools 
down for squared Sample (S20) built using Maraging steel and using the Stripe scan strategy. See Table 11 for details. 
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Figure 107: DIC Measurements of out of plane displacement (top) (positive towards the laser) and along diagonal 
(bottom) in Sample S20 built using the Stripe strategy and using Maraging steel, see Table 11 for further details.  

 

 Effect of the Inert Gas Atmosphere 

In this experiment, the effect of the inert gas atmosphere on the development of residual 

forces and the part deformation in Maraging steel was investigated. Renishaw uses Argon gas 

as inert gas atmosphere and from an observation from Renishaw, that dimensional 

geometries were affected in samples built using Argon compared to samples built using 

Nitrogen. Therefore, a study was conducted on the effect of changing the gas as the inert 

atmosphere from Argon to Nitrogen on the forces developed during the L-PBF process for 

Maraging steel. Results from the in-situ measurements of the sample built with N2 as the inert 

atmosphere are shown in Figure 108; the corners exhibit compressive forces and the centre 

tensile forces which is opposite to the forces measured in an Argon atmosphere (see Figure 

109). Figure 109 show the contour plots of force at the end of each build before the part cools 

down to room temperature. It is clear how the forces change with the use of different inert 

gas when the sample is built using Argon the force at the corners is in tension while the centre 

of the part is in compression, while when using Nitrogen, the corners are in compression while 

the centre of the part is in tension when the build is stopped before the parts cool down. 
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Figure 108: Results from the in-situ measurements for a square part built with a Stripe strategy in Maraging steel 
with the inert gas atmosphere of Nitrogen. Data is shown for Sample S21, and further details are given in Table 11 

 

Figure 109: Contour plots of force at the end of each build for square parts before cooling down using Maraging steel 
with a variation of the inert gas using Argon (S20) and Nitrogen (S21) gas. Samples built using the Stripe scan strategy 
and a 60 µm layer thickness. See Table 11 for details. 
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A comparison of the sum of the forces from the samples built in Ar and N2 atmospheres are 

shown in Figure 110.  It can be seen from the results that forces in the N2 sample tend to 

increase slightly with the build height, while the sample built with Ar gas slightly decrease with 

the build height.  The same behaviour was observed with the Meander scan strategy using Ar 

gas, although the forces were lower than for the Stripe strategy. This could be because the N2 

gas acts as an austenite stabiliser, promoting austenite reversion [84].  After the part cools 

down the forces are relaxed changing the orientation of the force distribution as shown in the 

contour plot of Figure 111. 

 

Figure 110: Comparison of the Sum of forces measured in square parts built using Maraging steel using N2 and Ar as 
the inert gas atmosphere. Data is shown for parts S20, S21 and S22. For which further details can be found in Table 
11. 
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Figure 111: Contour plots of force after the part cools down from Figure 106, for square parts built using Maraging 
steel Samples S20, S21 and S22. Samples built using a 60 µm layer thickness and different scan strategies a) and b) 
Stripe and c) Meander. See Table 11 for details. 

 

Analysis of the Part Deformation  

A comparison of DIC measurements of part deformation after removal from the base plate 

for the samples built under Nitrogen and the Argon gas is shown in Figure 112. The results 

show that the use of a different gas atmosphere has an effect on the part deformation for 

Maraging steel. For the part built with Argon gas, the centre curls away from the baseplate 

which is opposite to the behaviours observed in other metals built in an Argon atmosphere. 

where the corners deform away from the baseplate. However, the part built in the N2 

atmosphere shows the opposite behaviour deformation, as shown in Figure 112.   
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  (a) Sample built using Argon gas (S20)                        (b) Sample built using Nitrogen (S21) 

Figure 112: Effect on the part deformation after removal of the inert gas atmosphere for Maraging Steel samples 
showing DIC results (top) and displacement along a diagonal (bottom) using data from samples S20 and S21 built 
using the Stripe Scan Strategy, for further details see Table 11. 

 

DIC measurements of part deformation after removal from the base confirmed that with the 

part deformation had the same orientation for both Stripe and Meander strategies in Argon 

atmosphere, as shown in Figure 113. 
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Figure 113: Effect on the part deformation after removal for square parts built using Maraging Steel and the Meander 
scan strategy showing DIC results (top) and displacement along a diagonal (bottom) for sample S22, see Table 11 for 
further details.  

 

In order to see if the change in part orientation was an effect of the inert gas rather than the 

material, an additional sample was built using Inconel 625 (S23) in a Nitrogen inert gas 

atmosphere, using the parameters shown in Table 11. Results from the in-situ measurements 

shown in Figure 114 show that after the part was stopped the tendency of the forces did not 

change as from the Maraging steel sample.  As well as the change in inert gas atmosphere 

from Ar to N2 did not change the direction of the part deformation for Inconel 625, as shown 

in Figure 115. However, the N2 atmosphere reduced the forces developed, allowing 56 layers 

to be built, which was 27% more than in an Ar atmosphere. The force relaxation when the 

part cooled down was lower than in the Argon atmosphere, which resulted in lower part 

deformation.  
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Figure 114: In-situ measurements for forces in the sample build with Stripe strategy in Inconel 625 with an Inert 
Atmosphere of Nitrogen. Data for sample S23 Table 11 for details.  

 

 

Figure 115: Out of Plane displacement from DIC (left) and micrographs showing porosity and relative density (right) 
for square parts (S18, and S23) built using the Stripe scan strategy from Inconel 625 metal powder using N2 and Ar as 
the inert gas. See Table 11 for more details.  
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 Effect of the Energy Density  

 

In order to see the effect of the energy density on the forces developed during the L-PBF 

process, three square samples were built using Inconel 625, due to machine availability,  

increasing the point distance from 60 µm to 70 µm and 80 µm, while keeping the rest of the 

parameters constant (see Table 12).  

Results from the variation of the energy density showed that the distribution of the forces 

changed as the point distance was increased.  Figure 116 show the contour plots of force from 

the variation of the point distance, as it can be seen, higher tensile forces were developed at 

the edges of the part on the X-axis for the samples built with higher point distance which could 

generate a higher part deformation after released.  However, as it can be seen in Figure 117, 

the absolute sum of the measured forces developed during the build reduce with increasing 

point distance. When the point distance was increased in 10 µm increments from 60µm to 80 

µm, the scan speed was increased correspondingly from 600 mm/s to 800 mm/s in 100 mm/s 

increments which decreased in the energy density as shown in Table 12. The bulk density of 

the samples increased nearly linearly with increasing the energy input [45],  see Figure 118. 

The reduction in energy density resulted in greater porosity due to the lack of fusion of the 

metal powder particles, and also reduced the density of the part, as shown in Figure 119.    

 

Figure 116: Contour plots of force at the end of each build for square samples S24, S25 and S26. Samples built using 
the Stripe scan strategy and a 60 µm layer thickness with a variation of point distance from 60 µm to 80 µm. See Table 
12  for details. 
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Figure 117: In-situ measurements of resultant forces developed in samples S24, S25 and S26 with variation in point 
distance (PD) built using Stripe strategy using Inconel 625 metal. Details for the square parts can be found in Table 
12. 

 

 

Figure 118: Bulk density as a function of volumetric energy density in square parts built using Stripe scan strategy. 
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Figure 119: Micrographs showing porosity on a function of point distance in density cubes parts built using Stripe 
scan strategy in Inconel 625 metal. Details for relative density and volumetric energy density are shown and further 
details can be found in Table 12 

 

At the same time, the increment in point distance increased the porosity of the part and 

decreased its relative density, the increase in point distance also caused larger deformation 

on releasing the part, see Figure 120, smaller elongation to failure and lower ultimate tensile 

strengths (see Figure 121). These changes in behaviours are connected to changes in the 

microscale structure of the part characterised by the porosity shown in Figure 119. 

Imperfections, such as porosity or lack of fusion between layers, can cause deformation and 

stress relaxation; the loss of metallurgical contact with the previous layers during 

manufacturing could lead to the re-distribution of stresses within the part [180]. Any 

heterogeneity in packing density throughout a powder layer can result in non-uniform 

shrinkage behaviour when one region of the powder layer consolidates more rapidly than 
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another region. Therefore, the induced porosity in the sample decreases the volume of 

solidifying material which caused less material shrinkage; thus, the residual stress is reduced 

[185]. 

 

DIC Result for Part Deformation 

Inconel 625 PD 60 µm 

(S24) 

PD 70 µm 

(S25) 

PD 80 µm 

(S26) 

Maximum Deformation 

(towards the laser) 
0.24 mm 0.32 mm 0.53 mm 

Maximum Deformation 

(against the laser) 
-0.15 mm -0.24 mm -0.24mm 

Absolute Deformation 0.39 mm 0.56 mm 0.81 mm 

 

 

Figure 120: Out of plane displacement map from DIC for square parts with different point distances built using stripe 
scan strategy in Inconel 625 as detailed in Table 12; together with numerical results (Top).  
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Figure 121: Tensile stress results from samples with different point distance, see Table 12 for more details.  

 

4.3 Melt Pool Characteristics  

A better understanding of the melt pool characteristics based on laser - material interactions 

would help to calibrate the 3DSIM software for other types of simulation and more accurate 

results. Therefore, in collaboration with Ansys, a study based on the melt pool 

characterizations was conducted from single tacks built using different metal powders Ti-6Al-

4V, Inconel 625 and Maraging steel with multiple laser power and exposure time 

combinations, as described in Table 13. Depending upon the heat condition of the powder 

bed, the melt pools of the L-PBF melting metallic powder exhibit a varied size and morphology, 

even if identical scanning parameters are used. It is known, that the base plate or a solid metal 

provides high thermal conduction for fusion energy to be dissipated, while thermal 

conduction from the powder bed is much lower due to gas-filled pores that may reduce 

thermal conductivity [165]. Thus, the characteristics of the melt pool on a powder bed without 

any prior layers will have different properties than that developed in prior layers. Comparing 

both conditions could give additional significant information on the melt pool characteristics.  

Therefore, single beads with no powder and single beads with a single layer of powder of 

thickness 30 µm were built over a 2 mm base, but using the same parameters combination 

shown in the schematic in Figure 72. Measurements were taken of each single bead to 

determine the melt pool width at the surface, the height of the powder bead from the top of 

the base and the depth of the melt pool. In order to be far away from the start and the end 
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of the laser scan motion to avoid the scanning effects caused by speed ramping of the laser 

galvanometers and the optic effect caused by the edges of the sample, which as can be seen 

in Figure 122.  The samples were cross-sectioned, and measurements were taken from the 

centre of the part, as described in Figure 72.  

 

Figure 122: Alicona Infinite Focus image of the surface for a single bead of Ti-6Al4V built with no powder (No.12 in 
Table 18) (top) and for the single bead (No.12 in Table 19) with powder (bottom), see Table 13 for more details.   

 

 Three-dimensional Optical Measurements 

 

The single beads were individually measured using an optical three-dimensional 

measurement system (Alicona Infinite Focus); each part was measured at two different 

positions along the single bead to determine the height and the width of the beads. Figure 

123 shows an example of the measurement of the height of the bead for a sample with 

powder. The measurements were taken from the top of the bead to a surface of the base 

giving a difference in the z-direction of 193.8089 µm for the example in Figure 123. Figure 124 

shows an example of the measurement of the height of bead with no powder, at the top of in 

this case the height of the bead was 12.8242 µm. 
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Figure 123: Optical Micrograph (top) for a single bead of Ti-6Al4V built with powder (No.12 in Table 19) and the 
corresponding height across the marked section (bottom) from which the height of the bead was evaluated.  

 

Figure 124: Optical Micrograph (top) for a single bead of Ti-6Al4V built with no powder (No.12 in Table 18) and the 
corresponding height across the marked section (bottom) from which the height of the bead was evaluated.  

 

For the single beads with no powder, single beads were formed due to the re-melting and 

solidification of the base material. The single beads were consistent, and without any 

interruption along the scan, as it can be seen in Figure 122 and Figure 124, thus, the width 

variation along the bead was not significant. For the powder case, single beads were 
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generated by melting the metal powder and base plate material and are solidified 

together. As it can be seen in Figure 122 and Figure 123, there was a higher variation of 

the width of the single bead along the scan, compared to the single bead formed without 

powder using the same scan parameters. The surface roughness for the single bead with 

powder was affected by metal particles attached to both sides of the single bead during 

the scan, as seen in Figure 123, and is similar to previous studies [162]. In addition, the 

single tracks from the samples with powder were not consistent along the scan as from 

the single beads with no scan; some holes can be observed on the surface along the scan 

that could be produced by the vapours released from the melt pool due to the 

vaporization of the metal alloy [162], especially on the tracks with lower energy input 

which presented higher inconsistencies. The results for the measurements of the surface of 

the single beads produced without powder are shown in Table 18, and the results for the 

measurements of the top surface from the single beads produced with powder are shown in 

Table 19. The results show that there is an increase in the bead size with an increase in the 

exposure time for the single beads with no powder present for all energy levels and a decrease 

in the bead size for the single beads produced with a layer of powder for all the energy levels. 

The variation in each bead is greater or equal to the difference between the energy levels. 

This could be due to the lower thermal conductivity of the powder bed compared to a solid 

base and to the higher laser absorptivity of the metal powder compared to solid materials 

[161]. When higher energy is present in the samples with no powder greater thermal 

conductivity is transferred due to the solid material of the base plate, increasing the size of 

the melt pool. However, for the samples with powder due to the low thermal conductivity of 

metallic powder, less thermal energy is conducted downwards to the base while more energy 

is accumulated in the powder bed resulting in lower dimension of single beads width while 

increasing the energy levels.  As the parts were measured from the top surface only, the height 

and the width of the single beads could not be measured, for measuring the depth of the melt 

pool the part must be cross-sectioned and etched.  Further analysis using microscopic 

measurements were performed. 
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Table 18: Results from the measurements of the top surface for single beads without powder built using Ti-6Al-4V 

Single 

Bead 

Laser 

Power 

(W) 

Exposure 

Time (µs) 

Height 

BTM 

Width 

BTM 

Height 

TOP 

Width 

TOP 

Average 

Height 

(μm) 

Average 

Width 

(μm) 

1_NP 160 40 6.6652 137.3554 8.6754 138.4964 7.6703 137.9259 

2_NP 160 50 9.1365 144.0348 15.0258 158.244 12.08115 151.1394 

3_NP 160 100 18.3954 184.0927 12.3261 175.4627 15.36075 179.7777 

4_NP 170 40 9.1087 132.5476 11.8408 150.1546 10.47475 141.3511 

5_NP 170 50 12.3228 147.6378 13.6595 160.9651 12.99115 154.30145 

6_NP 170 100 15.8507 193.6434 11.4571 175.6488 13.6539 184.6461 

7_NP 180 40 9.5176 143.2974 11.0578 148.5852 10.2877 145.9413 

8_NP 180 50 6.7948 149.9153 10.4911 165.1645 8.64295 157.5399 

9_NP 180 100 12.8558 174.0608 10.9843 191.262 11.92005 182.6614 

10_NP 200 40 10.1653 145.1278 15.4237 163.3209 12.7945 154.22435 

11_NP 200 50 12.3269 172.1465 16.1124 166.5775 14.21965 169.362 

12_NP 200 100 12.1468 189.4862 7.7162 199.7458 9.9315 194.616 

 

Table 19: Results from the measurements of the top surface for single beads with powder built using Ti-6Al-4V 

Single 

Bead 

Laser 

Power 

(W) 

Exposure 

Time 

(µs) 

Height 

BTM 

Width 

BTM 

Height 

TOP 

Width 

TOP 

Average 

Height 

(μm) 

Average 

Width 

(μm) 

1_WP 160 40 193.8089 247.5213 151.3286 204.8904 172.56875 226.20585 

2_WP 160 50 126.1025 185.8763 144.5769 173.3911 135.3397 179.6337 

3_WP 160 100 138.5803 175.9383 89.4753 101.331 114.0278 138.63465 

4_WP 170 40 151.2598 190.1453 146.4455 196.8814 148.85265 193.51335 

5_WP 170 50 98.3231 175.2306 115.3651 183.8469 106.8441 179.53875 

6_WP 170 100 135.5496 176.3875 99.4697 119.7953 117.50965 148.0914 

7_WP 180 40 138.296 209.3847 118.5456 200.2649 128.4208 204.8248 

8_WP 180 50 126.3841 183.0336 166.6429 191.699 146.5135 187.3663 

9_WP 180 100 176.428 194.3719 134.4481 143.1447 155.43805 168.7583 

10_WP 200 40 115.4324 183.1932 132.625 171.6686 124.0287 177.4309 

11_WP 200 50 128.0301 156.6407 139.0725 154.7875 133.5513 155.7141 

12_WP 200 100 129.5584 163.3495 76.8957 153.2368 103.22705 158.29315 

 

 Section Measurements 

The Ti-6Al-4V samples were sectioned, mounted, polished and etched using the Keller’s etch 

composition, to allow their features to be measured in a microscope. The diagram on Figure 

72 shows the definition of height, width and depth for a single bead. Figure 125 and Figure 
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126  show the optical micrographs for the samples without and with powder, respectively. 

Measurements were made on two sections along each using the ImageJ software, and the 

results are shown in Table 20 and Table 21.  

   

160 W, 40 µs 160 W, 50 µs 160 W, 100 µs 

   

170 W, 40 µs 170 W, 50 µs 170 W, 100 µs 

   

180 W, 40 µs 180 W, 50 µs 180 W, 100 µs 

   

200 W, 40 µs 200 W, 50 µs 200 W, 100 µs 

Figure 125: Cross-section of samples showing the melt pool geometry of single beads built using Ti-6Al-4V without 
powder and with different laser power (vertically) and for exposure times of 40 µs (left), 50 µs (middle) and 100 µs 
(right). The details of the beads are described in Table 13.  
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160 W, 40 µs 160 W, 50 µs 160 W, 100 µs 

   

170 W, 40 µs 170 W, 50 µs 170 W, 100 µs 

   

180 W, 40 µs 180 W, 50 µs 180 W, 100 µs 

    

200 W, 40 µs 200 W, 50 µs 200 W, 100 µs 

Figure 126: Cross-section samples showing the melt pool geometry of single beads built using Ti-6Al-4V with powder 
and with different laser power (vertically) and for exposure times of 40 µs (left), 50 µs (middle) and 100 µs (right). The 
details of the beads are described in Table 13. 
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Table 20: Results from the measurements of height, width and depth for single beads without powder built with 
different laser power and exposure times (see Table 13) obtained from the micrographic sections from Figure 125. 

Single 

Bead 

Laser Power 

(W) 

Exposure 

Time (µs) 

Average 

Height (μm) 

Average 

Width (μm) 

Average 

Depth (μm) 

1_NP 160 40 6.224 130.1135 122.3915 

2_NP 160 50 7.1955 143.5905 135.2065 

3_NP 160 100 13.366 141.3405 189.3670 

4_NP 170 40 9.435 121.9805 103.3310 

5_NP 170 50 10.143 139.1970 126.4875 

6_NP 170 100 13.619 162.1770 193.3270 

7_NP 180 40 9.1645 122.5270 116.5895 

8_NP 180 50 9.901 148.2925 134.7205 

9_NP 180 100 13.128 164.2015 155.4470 

10_NP 200 40 11.386 139.6110 122.0305 

11_NP 200 50 10.9165 146.5620 137.1410 

12_NP 200 100 13.8705 191.6130 172.0480 

 

 

Figure 127: Comparison of measurements results shown in Table 20 from the height, width and depth of single beads 
built using Ti-6Al-4V with one 30 µm layer of powder with different laser power and exposure times, see Table 13 for 
more details. 
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Table 21: Results from the measurements of height, width and depth for single beads with one 30 μm layer of powder 
built with different laser power and exposure times obtained from the micrographic sections from Figure 126. 

Single Bead Laser Power 

(W) 

Exposure 

Time (µs) 

Average 

Height (μm) 

Average 

Width (μm) 

Average 

Depth (μm) 

1_WP 160 40 75.7610 85.9715 102.5015 

2_WP 160 50 69.0675 98.3645 78.9875 

3_WP 160 100 99.2795 157.7915 130.716 

4_WP 170 40 65.1370 86.0645 87.1470 

5_WP 170 50 99.2725 107.0440 98.3385 

6_WP 170 100 104.4875 151.4900 136.4190 

7_WP 180 40 99.0370 69.9995 73.0265 

8_WP 180 50 91.1060 79.7420 80.4720 

9_WP 180 100 123.8310 152.6925 118.5780 

10_WP 200 40 85.6670 95.8130 99.2585 

11_WP 200 50 110.4005 98.3565 98.0250 

12_WP 200 100 120.8085 131.0560 201.0295 

 

 

Figure 128: Comparison of measurements results shown in Table 21 from the height, width and depth of single beads 
built using Ti-6Al-4V with one 30 µm layer of powder with different laser power and exposure times, see Table 13 for 
more details.  
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For both cases, the width and depth of the melt pool increased with both laser power and 

exposure time with the trends being more evident when powder was present as it can be seen 

from the plots in Figure 127 and Figure 128. However, the absolute depth was greater in the 

absence of powder; this could be because attributed to the lower thermal conductivity of the 

powder bed compared to a solid material and the enhanced laser absorptivity of the powder.  

 

 

Figure 129: SEM images showing the melt pool geometry for single beads built using Ti-6Al-4V with powder and 
different laser power and for exposure times of 40 µs (left) 50 µs (middle) and 100 µs (right). The details of the beads 
are shown in Table 19.  
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Figure 130: SEM images showing the melt pool geometry for single beads built without powder and different laser 
power and for exposure times of 40 µs (left) 50 µs (middle) and 100 µs (right). The details of the beads are shown in 
Table 19.  
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For single beads created using lowest energy density, the melt pool geometry was hard to 

observe as very little material melted, while in samples for which a higher laser power and 

lower scan speed result in large melt pools were observed as shown in Figure 129 and Figure 

130. Pores were found in the melt pools with a keyhole geometry in samples with a high 

energy density input, as shown in the bottom right micrograph in Figure 130. This may be 

attributed to gas entrapped in the melt pool due to material evaporation [186].   

In order to see the effect of the laser-material interaction with respect to the metal alloy 

properties, the experiments were repeated with the single bead built using different metal 

powders, i.e. Inconel 625 and Maraging steel; additionally, samples were analysed using 

Maraging steel built using Nitrogen as the inert gas, as it was noticed from the previous result 

that it the change in the inert gas could affect the microstructure of the Maraging steel 

samples. The samples were cross-sectioned perpendicular to the scanning direction and 

polished and etched for metallography to show dimensional and geometrical features from 

the melt pool formation.   Figure 131, Figure 133 and Figure 135 show the optical micrographs 

for the samples without powder fabricated using Inconel 625 and Maraging steel (Ar) and 

Maraging steel (N2) respectively.  Figure 132, Figure 134 and Figure 136 show the optical 

micrographs for the samples with powder fabricated using Inconel 625 and Maraging steel 

(Ar) and Maraging steel (N2) respectively. Measurements were made on two sections along 

each using the ImageJ software, and the results are shown in Table 22 and Table 23.  
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Figure 131: Cross-section samples showing the melt pool geometry of single beads built using Inconel 625 and built 
without powder and with different laser power (vertically) and for exposure times of 40 µs (left), 50 µs (middle) and 
100 µs (right). The details of the beads are described in Table 13. 
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Figure 132: Cross-section samples showing the melt pool geometry of single beads built using Inconel 625 and built 
with powder and with different laser power (vertically) and for exposure times of 40 µs (left), 50 µs (middle) and 100 
µs (right). The details of the beads are described in Table 13. 
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Figure 133: Cross-section samples showing the melt pool geometry of single beads built using Maraging steel and 
built without powder and with different laser power (vertically) and for exposure times of 40 µs (left), 50 µs (middle) 
and 100 µs (right). The details of the beads are described in Table 13. 
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Figure 134: Cross-section samples showing the melt pool geometry of single beads built using Maraging steel and 
built with powder and with different laser power (vertically) and for exposure times of 40 µs (left), 50 µs (middle) and 
100 µs (right). The details of the beads are described in Table 13. 
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Figure 135: Cross-section samples showing the melt pool geometry of single beads built using Maraging steel with 
Nitrogen as Inert gas; built without powder and with different laser power (vertically) and for exposure times of 40 µs 
(left), 50 µs (middle) and 10 0µs (right). The details of the beads are described in Table 13. 
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Figure 136: Cross-section samples showing the melt pool geometry of single beads built using Maraging steel with 
Nitrogen as Inert gas; built with powder and with different laser power (vertically) and for exposure times of 40 µs 
(left), 50 µs (middle) and 100 µs. 
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Table 22: Results from the measurements of height, width and depth for single beads with one 60 μm layer of powder 
built with different laser power and exposure times obtained from the micrographic sections from Figure 132, Figure 
134 and Figure 136. 

 

Table 23: Results from the measurements of height, width and depth for single beads without powder built with 
different laser power and exposure times obtained from the micrographic sections from Figure 127, Figure 129, and 
Figure 131. 

 

As can be seen in Figure 137 and Figure 138, even when the same parameters were used for 

the fabrication of single bead the melt pool characteristics width, height, and depth were 

different for both cases (with powder and without powder) for the different metal powders 

i.e. Inconel 625 and Maraging steel. As well as, the melt pool characteristics were different for 

the samples built using Maraging steel with Argon and Nitrogen as inert gas.  This confirms 

that the change of the inert gas from Argon to Nitrogen affects the microstructure of the 

samples built using Maraging steel.  

 

Single 

Bead

Laser 

Power (W)

Exposure 

Time (μs)
Inconel 625

Maraging 

steel (Ar)

Maraging 

steel (N)
Inconel 625

Maraging 

steel (Ar)

Maraging 

steel (N)
Inconel 625

Maraging 

steel (Ar)

Maraging 

steel (N)

1_WP 160 40 60.396 98.44 93.26 100.01 90.37 148.8 52.478 28.13 67.37

2_WP 160 50 99.01 96.22 95.52 157.426 134.71 196.14 170.3 121.46 109.22

3_WP 160 100 104.653 108.1 125.09 205.941 188.02 216.2 201.99 242.76 162.1

4_WP 170 40 80.204 80.69 90.15 135.647 102.16 193.99 121.789 79.36 97.3

5_WP 170 50 100.99 91.05 100.67 138.687 144.33 240.54 186.139 205.95 145.67

6_WP 170 100 108.915 100.67 108.13 203.96 218.37 267.6 237.626 241.31 200.65

7_WP 180 40 67.334 74.75 89.57 116.836 111.02 219.08 192.082 129.56 136.03

8_WP 180 50 86.144 82.18 86.62 147.528 158.73 249.21 225.745 240.57 128.82

9_WP 180 100 114.856 107.32 103.88 206.931 229.01 287.91 348.516 299.01 243.13

10_WP 200 40 89.109 60.69 87.83 143.564 130.27 203.54 191.092 78.12 194.82

11_WP 200 50 107.921 79.95 93.26 151.485 144.36 220.36 237.626 219.82 165.82

12_WP 200 100 116.832 97.7 107.61 236.636 199.84 256.09 353.48 286.44 281.44

Average Height (μm) Average Width (μm) Average Depth (μm)Samples with powder

Single 

Bead

Laser 

Power 

(W)

Exposure 

Time (μs)
Inconel 625

Maraging 

steel (Ar)

Maraging 

steel (N)
Inconel 625

Maraging 

steel (Ar)

Maraging 

steel (N)
Inconel 625

Maraging 

steel (Ar)

Maraging 

steel (N)

1_WP 160 40 6.7 17.82 27.38 130.697 143.11 148.8 110.962 106.59 91.11

2_WP 160 50 7.44 25.92 22.22 168.697 173.99 196.14 174.359 190.5 148.8

3_WP 160 100 30.35 37.01 29.64 248.517 220.31 216.2 279.215 247.56 189.84

4_WP 170 40 6.66 21.48 39.23 141.584 194.89 193.99 126.736 194.89 164.31

5_WP 170 50 14.8 31.09 35.9 181.199 201.11 240.54 183.171 252.54 219.14

6_WP 170 100 28.87 33.34 40.71 263.368 242.84 267.6 312.038 253.36 233.92

7_WP 180 40 20.01 28.09 32.78 148.518 178.86 203.54 156.439 199.84 237.59

8_WP 180 50 21.48 31.83 34.79 162.379 183.55 220.36 201.983 233.14 240.57

9_WP 180 100 32.2 48.11 41.34 279.208 244.27 256.09 302.972 252.41 291.62

10_WP 200 40 27.42 23.7 33.31 139.604 160.72 219.08 157.429 160.64 194.82

11_WP 200 50 28.87 26.69 42.16 173.27 205.79 249.24 266.338 245.35 253.95

12_WP 200 100 34.584 45.89 45.91 282.18 276.07 287.91 400.001 331.59 310.89

Average Height (μm) Average Width (μm) Average Depth (μm)Samples without powder
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Figure 137: Comparison of measurements results shown in Table 22 from the height, width and depth of single beads 
built using one 60 µm layer of powder with a laser power of 200 W and an exposure time of 100 µs using different 
metal powders, see Table 13 for more details. 

 

Figure 138: Comparison of measurements results shown in Table 23 from the height, width and depth of single beads 
built without powder with a laser power of 200 W and exposure time of 100 µs using different metal powders, see 
Table 13 for more details. 



 

 Discussion  
 

The aim of this research was to understand the complex evolution of residual stresses in the 

L-PBF process.  In order to accomplish this, the following objectives were addressed:  

1. To conduct a literature review of the current understanding of residual stresses 

developed in L-PBF and the existing measurement methods used to determine the 

residual stresses in the L-PBF process.  

 

2. To investigate the generation of residual stress in the L-PBF process through the use 

of a Force Transducer Device (FTD) to explore how residual stresses originate and 

evolve during the manufacturing process using different metal powders. 

 

3. To explore and identify the key parameters in the build process that result in the 

formation of residual stresses through in-situ measurements and investigate the 

effect of the material properties on the development of residual stress. 

 

4. To investigate a correlation between the in-situ measurements, process parameters 

and material properties in the development of residual stresses in the L-PBF process.   

Significant research has been conducted on residual stresses using post-process 

measurements [87, 92, 113, 187], while very few studies have reported on in-process 

measurement of residual stresses during the L-PFB process [45, 47, 48]. Previous methods 

reported in the literature for in-process measurements have provided valuable information 

on the development of residual stresses in the L-PBF process; however, the reported research 

has been limited to measurements at single points of a single variable and were focused on a 

particular material. Therefore, the method proposed by Robinson [119] was used to extend 

the investigation to a more complete understanding of the development of residual stresses 

through in-process measurements in the L-PBF process for different metal powders. The 

method used in this thesis effectively allowed the investigation of the development of residual 

forces, from which residual stresses can be inferred, for two different part geometries using 

an array of measurement points to investigate and compare the effects of process parameters 

and material properties for different metal powders.  
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5.1 Experimental Results 

The experimental work in this thesis was conducted in two phases. The first phase of the 

project was focused on the study of the effect of the different processing parameters (such 

as laser power, scan strategy and layer thickness) on the development of residual forces 

during the L-PBF process and the resulting part deformation. This first stage was conducted 

using Ti-6Al-4V, which is one of the most common materials used in the L-PBF process, due to 

the interest in this particular material from the sponsor and collaborators. The second phase 

of the project extended the study into three Nickle based metal powders: Inconel 625, Inconel 

718 and Maraging steel, to investigate the effect of material properties on the development 

of residual forces during the L-PFB process.  Results from the experimental work demonstrate 

how the processing parameters have a significant impact on the development of residual 

stress in the L-PFB process. The in-process measurements allowed observation of how the 

residual stress levels developed during the build vary depending on the energy input, and how 

varying the process parameters can affect the manufactured parts in different ways 

depending on the material properties of the metal alloy used.  All experiments were 

performed using a Renishaw AM250 machine. However, the machine is representative of the 

L-PBF process, which consists of the selective melting and fusing of metallic powders with a 

laser beam under an inert gas atmosphere layer by layer until completion. Therefore, the 

experimental work will be applicable to all L-PBF machines including all variations of materials 

and parameters. Since the operating principle of the L-PBF process will not vary if a different 

machine is used, all the parameter variations (i.e. laser power, layer thickness and point 

distance) are capable of being repeated using any other L-PBF machine. If this study was 

repeated using a different L-PBF machine, the forces developed could be slightly different; 

however, the fundamental result would be the same.  

 Effect of the processing parameters for Ti-6AL-4V 

The use of the FTD allowed the development of residual forces in the L-PBF process over time 

to be studied, which revealed inter-layer effects not noticed with post-process measurements. 

The distribution of the forces in the L-PBF process are not uniform because the sections of the 

part are heated non-uniformly following the scanning pattern of the laser, such that sections 

of the part are heated and cooled independently. This makes the magnitude and orientation 

of the stresses strongly dependent on the scanning strategy used.  It can be observed in Figure 

73, that the forces measured for the central load cells (6, 7, 10, and 11) and external load cells 

follow a linear trend after the first layer of the build. The forces on the central load cells are 

compressive while the forces on the corner load cells are tensile. While the forces registered 
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by the centre external load cells are much lower than the registered by the corner. Thus, the 

sum of the forces remains zero, as shown in Figure 73. The distribution of the forces of the in-

plane (xy plane) with respect to the build direction (z-direction) are shown in Figure 74 and 

implies that the part will curl away from the build platform when the constraining forces are 

released, creating a permanent part distortion, which agrees with previous research on the 

distribution of developed stresses in the L-PBF process [187-189].  Similar effects occur in 

different AM processes due to the shrinkage of the material used [190, 191]. In the FDM 

process, the curling effect occurs due to the behaviour of thermoplastic polymer where, the 

polymer is warmed up to glass transition temperature and turn into molten state. Then, the 

molten polymer is extruded through a nozzle and follows the desired deposition path. 

However, when it becomes cold, the uneven distribution of heat will generate internal 

stresses causing it to bend in upward direction [190]. Similar, in Stereolithography, shrinkage 

forces occur mainly in the scanning direction which results in one-sided curling of the parts, 

therefore, Onuh and Hun [191] showed that the use of an alternating exposure of the layers, 

i.e. divergent STAR-WEAVE (DSW), resulted in more homogeneous residual stress in the  part  

and to higher part  stability than when layers are scanned in only one direction. 

As can be seen in Figure 76, the sum of the measured forces oscillates with each layer, the 

results obtained from the in-process measurements from the FTD suggest that this could be 

an effect of the thermal gradient mechanism (TGM). When a new layer is added and heated 

far above the underlying layers, the melted material will first expand uniformly releasing the 

forces present in the part; this expansion will be restricted by much cooler underlayers in the 

part. When the heat source moves away from the part, the new layer will cool at a faster rate 

than the underlying material, resulting in a primary tensile stress in the upper layer and a 

primary compressive stress in the layers below. The results from the in-situ measurements 

reported in section 4.2.1 have shown that the forces developed per layer are related to the 

scan direction and scan vectors length.   

The results from the experiments performed in section 4.2.1 demonstrated that the scan 

strategy has a significant impact on the development of residual forces in the L-PFB process, 

which vary depending on the vector’s orientation, and length and on the energy input. 

Longitudinal stresses are developed in the direction of the scan track and perpendicular to 

the scan track, giving strong credence that the primary stress is oriented in the direction of 

the scanning (parallel to the scan vector), which agrees with previous research [49]. However, 
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this still needs to be further investigated in order to see if the orientation of the FTD influences 

the results.  

When using a unidirectional scan strategy, higher levels of force were developed with X- 

direction scan than with Y-direction scan vectors for a rectangular part; this agrees with 

previous studies [174, 192].  As can be seen in Figure 85 from the sum of the forces registered 

by the 16 load cells, there is an oscillation per layer, because the forces are relaxed when the 

laser is scanning the part and, when the laser is off while recoating of the powder for the next 

layer, the forces increase as the part cools down. This layer by layer oscillation was different 

for the three scan strategies tested with a constant amplitude of 10 N and 40 N for X and Y 

direction scanning respectively and a varying amplitude for the 67° rotating scan strategy. 

These results show that the residual forces developed during the L-PBP are highly dependent 

on the orientation of the scan vectors, as the layers are not melted uniformly, but rather are 

dependent on the track of the laser beam. The non-uniform temperature distribution of the  

scanning pattern results in different cooling rates throughout the part, which agrees with 

previous research [99, 183]. The use of a rotating scan strategy contributes to reducing the 

residual stress developed in the process as approaching the part from different directions for 

each layer will keep a more consistent temperature in the part [166]; hence, it is 

recommended to use a rotating scan strategy rather than a unidirectional scan strategy [174]. 

The time elapsed between layers showed an effect on the developed strains, this agrees with 

previous research [120]; nonetheless further studies were needed for different materials, as 

previous results showed that the cooling dwell times have an effect on the material properties.   

In an additional investigation of the effect of the scan strategies, samples produced using 

three different scan strategies: Stripe, Chessboard and Meander showed the Meander scan 

strategy to develop lower forces than the rest of the strategies allowing a higher part to be 

built before the force on any of the load cells reached the maximum permissible load of 50 

Kg.  This agrees with previous studies [193] in which single line vectors, from side to side of 

the part, were found to develop less residual stress than sectioned scanning, but disagrees 

with others studied [166, 194, 195]. Results for the build height reached for each scan strategy 

and layer thickness are shown in Figure 95. The Stripe scan strategy with a 30 µm layer 

thickness showed much faster development of forces than the rest of the scan strategies 

investigated, thus reducing the part height by 40% of the maximum height built (3.9 mm) 

using the Meander strategy with a 60 µm layer thickness and single-track scan vector. While 

the Chessboard strategy with a 30 µm layer thickness was 29% below the maximum height. 
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The effect of the thickness of the layers was small compared to the scan strategy with a 

doubling in the thickness producing only a 12% increase in the residual forces. A thicker layer 

implies fewer layers are required to build the part leading to less number of cycles and hence 

lower residual forces, despite greater energy input required to melt the thicker layers [98].  

For all the scan strategies, there was a linear rate increase in the forces after the first seconds 

of the build or layer 11 of the build. These consistencies could benefit the prediction of the 

stresses developed in one scan strategy based on another and to determine a residual stress 

factor for a particular material. Further investigation was performed to determine if this 

tendency extends to different metal powders and if the development of residual stresses is 

characteristic to a particular property of each material rather than of a process parameter.  

Lower forces were developed in the Meander scan strategy, which could be related to the 

volumetric energy input. The Meander scan strategy with a 30µm layer thickness, had an 

energy density of 42.328  𝐽/𝑚𝑚3 , which was lower than the value for the Stripe and 

Chessboard scan strategies which was 57.720 𝐽/𝑚𝑚3 . The parameters used to build a sample 

using the Stripe and Chessboard strategies were the same; however, the sample built using 

the Stripe strategy reached the maximum workable load for the load cells faster than the 

sample built using the Chessboard strategy.  

 

The parameters used to build a nearly dense part were the same used for the Stripe and 

Meander scan strategies using a 60µm layer thickness with an energy density of 40.93 𝐽/𝑚𝑚3. 

It would be expected that because of using the same parameters, the forces developed would 

be similar for both samples. However, for the sample built using the Meander strategy, the 

forces developed were much lower compared to the sample built using the Stripe strategy, as 

shown in Figure 86. This could be attributed to the less material melted per scan when using 

single line vectors for the Meander scan strategy compared to the 5mm stripes sections from 

the Stripe scan strategy; thus, the shrinkage of the solidified material is smaller using the 

Meander scan strategy developing less tensile forces per layer. In general, the result showed 

that by reducing the energy input, the total measured force was reduced, which agrees with 

previous results from Simons et al. [154]; however, the forces developed depend on the scan 

strategy used being lower using a single line scan rather than a sectioned scan.  An extended 

analysis of the effect of the energy density was performed using Inconel 625, the material had 

to be changed due to the availability of the machine, and is further discussed in this section. 
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A limitation to this result is that by using the FTD, in-situ measurements performed in this 

work were limited into simple part geometries, i.e. square part and rectangular part; therefore, 

the thermal gradients could vary according to more complex part geometries, and the scan 

pattern could affect differently on the developed residual stresses for different part 

geometries.    

By reducing the laser power from 200 W to 180 W and 160 W the sum of forces, as can be 

seen in Figure 77, were affected during the first 12 layers of the builds, particularly the 160 W 

for which the measured forces were significantly lower than for the 200 W and 180 W samples. 

As more layers were added, the measured forces increased up to a similar resultant force for 

the three samples after 50 layers. As can be seen in Figure 78 the contour plots show that the 

distribution of forces was the same for all samples at the end of each build, being tensile in 

the corners and compressive in the centre of the part, this agrees with previous literature 

[179, 196]. The sum of the measured forces followed a nearly linear trend as a function of the 

laser power (Figure 139) as previously reported by Mukherjee [197]. The higher heat input by 

using a higher laser power, slightly lowers thermal gradients and allows for a higher 

temperature increase during the process, thus reduces the residual stresses developed in the 

part [196].  

 

Figure 139: Absolute total measured force (N) from in-situ measurements for a square part in Ti-6Al-4V as a function 
of laser power (W), from samples S1, S2 and S3, shown in Figure 73. 
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 Effect of the Material Properties 

 

Material properties were found to have a strong effect on the development of residual forces 

induced in the L-PBF process.  Thermal and mechanical properties of the material powder 

were expected to affect the development of residual stresses in the part, such that materials 

with lower thermal diffusivity would have higher thermal strains [198].  The coefficient of 

thermal expansion of the material was expected to be important to the residual stresses 

developed in the process, with a large thermal expansion coefficient leading to large shrinkage 

of the material during cooling and higher stresses [116].  In addition, the yield stress at the 

high temperatures in the process will influence the levels of the residual stress.  Amongst the 

tested materials, Inconel 625 has the highest coefficient of thermal expansion [12.8 10−6𝐾−1] 

and exhibited the highest measured force.  However, Maraging steel’s coefficient of thermal 

expansion   [10.3 10−6𝐾−1]  is greater than Ti-6Al-4V alloy’s [9.3 10−6𝐾−1] and was found 

to have much lower forces induced during the process, which makes it difficult to define a 

correlation, as seen in Figure 140.   

 

Figure 140: Relationship of measured force to material properties: yield strength, thermal conductivity, ultimate 
tensile strength and thermal expansion for the different metal powders tested.  

 

Results from the experimental work showed an important effect of the phase transformation 

on the development of strains and the part deformation not previously shown in literature, 
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which implies that the Type II stresses, developed in the phase transformation of the material, 

have a significant effect in the L-PBF. In Maraging steel, allotropic transformations between 

austenite and martensite occur at much lower temperatures than in other materials. In 

Maraging steel, martensite is transformed to austenite during continuous heating, this 

transformation begins (Ms) at about 590 °C and is completed (Mf) at approximately 770 °C. 

Upon cooling, the structure begins to transform from austenite to martensite at about 154 °C 

(Ms) and is reported to be completely transformed at about 99 °C (Mf) [184]. Compressive 

stresses generated by the martensite to austenite and austenite to martensite transformation 

are large enough to neutralise and overcome the tensile stress, developing much lower forces 

than the rest of the materials. Potentially, this behaviour will allow the manufacture of 

complex parts with lower residual stresses and part deformation than other metal powders. 

However, a dimensional change is anticipated on transforming from one phase to the other, 

because of the simultaneous contraction associated with the transformation of martensite to 

austenite and the expansion of the residual martensite [184]. The martensite has an atomic 

packing factor of 0.68, while the austenite has an atomic packing factor of 0.74. The difference 

in atomic packing factor leads to a volumetric expansion during cooling and subsequently 

results in compressive stress [184]. The compressive stresses are large enough to neutralise 

and overcome the residual tensile stresses, which reduces the overall levels of residual stress. 

This difference leads to a volumetric expansion during cooling and subsequently results in 

compressive stress. As it can be seen in the contour plots for the measured forces shown in 

Figure 106 after the part cools down the forces at the corners changed from being 

compressive to tensile, which may be caused by the volume expansion due to the 

transformation of austenite to martensite (Figure 141). This effect supports the theory that 

differences in dimensional changes observed during the martensite to austenite and austenite 

to martensite phase transformations produce shape deformation [199, 200].  

  

Figure 141: Dimensional part geometry change due to the phase transformation for Maraging steel. 
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 Effect of the inert gas atmosphere 

The use of different inert gases for Maraging steel affected the part deformation and force 

distribution, which might be due to the N2 gas acting as an austenite stabilizer. The residual 

strains developed for the Maraging steel were very low compared to the rest of the materials 

using the same scan strategy in both Argon and Nitrogen gas atmospheres (Figure 102).  The 

sum of the developed forces increased slightly more in the Nitrogen built part as can be seen 

in Figure 110. This effect of the inert gas has not been previously reported in the literature, 

and is an additional factor to consider when modelling the L-PBF process and specifying build 

parameters for parts.  The effect of changing the inert gas was not the same for Inconel 625 

on the part deformation.  However, for the sample built using Inconel 625 and Nitrogen inert 

gas, the forces developed were lower, which allowed to build a higher part as from previous 

sample using argon gas, as shown in Figure 114.  

As can be seen in Figure 142, the melt pool boundaries differ for the different inert gases, with 

N2 producing metastable hexagonal grain boundaries, possibly from the formation of 

martensite at the lower melt pools due to the retained austenite often found along grain 

boundaries, as described by Takata et al [173] and in the schematic shown in Figure 143. 

Further analysis needs to be done on the mechanical properties of the parts built in the 

different inert gases as the microstructural changes will likely influence the final properties of 

the parts.   

   

Figure 142: SEM image showing the microstructure of the melt pool boundary from (left) sample with Argon gas (S20) 
and (right) from sample using Maraging steel with Nitrogen gas (S21) inert atmosphere. 
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Figure 143: Schematic of the formation process of microstructure in the Maraging steel during L-PBF (from [173]) 

 

 Effect of the Energy Density   

 

Energy Density (ED) has been shown to influence the development of resultant strains.  By 

reducing the energy input into the part, a lack of fusion of the metal particles can induce 

porosity into the part that impacts the mechanical properties of the final component. The 

processing parameters, including the energy input, should be carefully selected to ensure the 

complete fusion of the metal particles to reduce porosity in the samples and ensure interlayer 

bonding while avoiding excess energy input that will increase residual stresses due to the 

increase melt pool size and the Heated Affected Zone (HAZ) [176]. By increasing the point 

distance, the scan speed is reduced, reducing the energy density induced in the process. By 

increasing the point distance, the strains developed during the build reduced, producing a 

linear correlation between energy density and measured forces, as seen in Figure 144. 

However, the mechanical properties of the samples were also reduced by increasing the point 

distance, which induced increased porosity and reduced elongation at failure and the ultimate 

tensile stress (UTS) of the samples. 
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Figure 144: Total measured force vs Energy density from samples with a point distance (PD) variation 

 

The density of the energy input influences the size and the morphology of the melt pool. The 

characteristics of the melt pool are discussed in the next section; however, the three types of 

behaviour can be identified based on increasing levels of energy density, i.e. insufficient 

melting, conduction melting and keyhole melting, as shown in  Figure 145. As using high 

energy densities, the temperature from the melt pool exceeds the boiling point of the metal 

leading to evaporation and formation of bubbles known as keyhole pores [201]. Hence, the 

selection of an appropriate energy density is essential to achieve the desired material 

structure and density.  

 

Figure 145: SEM images of the melt pool characteristics with energy input variation from 51.94 J/mm³ (top left), 57.72 
J/mm³ (top right), and 115.44 J/mm³ ( bottom) for Ti-6Al-4V samples showing porosity in the sample due to lack of 
fusion (top left), dense melt pool heat conduction (top right) and keyhole porosity (bottom) 
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 Melt pool characteristic 

 

The scanning process in the L-PBF process is based on single-line scanning where the powder 

particles are melted when a laser beam travels along with a prescribed pattern. When the 

laser beam melts the powder particles, a single solid track is formed after creating a melt pool 

shape whose properties are dependent on the parameters used in the L-PBF process.  The 

melt pool size and behaviour directly depend upon the applied energy density. Therefore, the 

study of the laser powder interaction in the formation of single tracks becomes important to 

control residual stress development and for process simulations.  

The characteristics of the melt pool were studied by examining sections of a part in a scanning 

electron microscope to obtain images such as those shown in Figure 143. The length, width 

and depth of the melt pool were measured and found to increase with laser power and 

exposure time. At the higher levels of power and exposure time, keyholes were observed to 

have formed, as described in the previous section. The results agree with those found in 

previous studies [186, 201, 202].  Increasing the scan speed and laser power elongates the 

melt pool, which could increase the magnitude and anisotropy of the residual stresses on each 

layer [196]. The microstructure of the samples manufactured using L-PBF is the result of local 

rapid solidification and cooling, which lead to large thermal gradients, and it is, therefore 

metastable and unique compared to traditional manufacturing methods. This microstructure 

could react differently to high temperatures than that of the same material processed via 

another technique [116]. Material properties such as the coefficient of thermal expansion and 

thermal diffusivity could affect the melt pool geometries; thus, the thermal gradients induced 

in the process. Having a good understanding of laser-material interaction could help to 

determine a correlation between material parameters and the magnitude of residual stresses 

and can lead to more accurate FE models and simulation results.  

The measurements for the single beads were performed manually, which could be slightly 

different if the process was repeated, and the definition of the melt pool geometries was 

dependant on a visual judgement. The known geometry could have been slightly inaccurate, 

and the scaling measurements might not have been precise; therefore, the accuracy of the 

measurements could be significantly improved by the automatization of the process.  As well 

there were some inconsistencies in the single tracks especially in the cases for the lower laser 

power and exposure times, if the parts were sectioned at a different position along the track 

the results could be different, the measurements might not have been consistent enough for 
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a tendency to be observed. However, it was clear that the melt pool size and behaviour 

directly depend upon the applied energy density and will influence the developed residual 

stresses per layer.  

As a result of this experimental work, it is clear that the residual stresses developed in a 

component during the L-PBF process are very complex and result from not only the process 

parameters but also the material properties; both have an important effect on the residual 

stresses developed.  Further work is needed to improve our understanding of the phase 

transformation in Maraging steel, as well as the dependence of the individual material 

properties on the forces developed during the L-PBF process for different metal powders.   

 

5.2 Proposal Design for High-Temperature FTD 

Due to the continuous and fast development of technology available in the L-PBF process, 

new capabilities to expand the process parameters arise, i.e. work with higher laser powers 

and multi-lasers systems, heated base plates and heated chambers. The use of more than one 

laser for the manufacturing of a part reduces the production times significantly reducing the 

thermal gradient effect and could modify the microstructure of the parts and could reduce 

the residual stresses. The effect of multiple lasers allows developing new scan strategies that 

might reduce the development of residual stresses. The actual FTD has a limitation on the 

temperature and maximum load capacity, which makes it impossible to use with multiple laser 

systems, therefore we need to use load cells capable of working at higher temperatures. A 

comparison of commercially available load cells can be seen in Table 24. Few commercial load 

cells were found to be available that work at higher load capacity, but only one was able to 

work at temperatures up to 200 °C.  Therefore, the proposed FTD was designed using a BD-

MCL Bi-directional miniature load cell (PMC, UK), shown in Table 24. The BD-MCL miniature 

bi-directional load cell is produced from either aluminium (400 N) or stainless steel (800 N), is 

able to be used at temperatures up to 200 °C.  
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Table 24: High-temperature load cell availability 

 
 

The FTD3 was designed using the same principle as of the previous FTD; a special substrate 

was designed to accommodate the BD-MCL Bi-directional load cell. A rectangular part will be 

built on top of cylindrical pegs attached to the load cell, which will be able to be removed after 

the build is complete. The top cover will be sectioned in three parts in order to give access to 

the pegs after the build is complete in order for the finished part to be removed Figure 146.  

The design is composed of 8 load cells as shown in the cross-section in Figure 147 which will 

allow measuring the forces developed at multiple sections of the part; a schematic of the part 

geometry is shown in Figure 148. The estimated cost of the FTD is of £1,3957.83. A bill of 

materials and can be seen in Appendix 2. 

 

Figure 146: Design of FTD3 for higher temperatures and greater load capacity 
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Figure 147: Cross-section of the FTD3 

 

 

Figure 148: Part geometry for In-situ residual force measurements for the FTD3 

 

The proposed FTD3 with a higher workable temperature load cell will allow for the device to 

be used on the multiple laser machines, i.e. Renishaw AM500. With the use of multiple laser 

systems, the possibility to develop new scan strategies is extended and can contribute to 

reducing the residual stresses developed in the part. Some of the different scan strategies 

that can be tested to reduce the thermal gradient per layer and measure the effect on residual 

stress development are shown in Figure 149:  

a) Individual laser scan with different initial points to reduce the thermal gradient effect.  

b) Re-scan with different laser parameters to alleviate residual stresses  

c) Use of different boundary scans to reduce residual stresses part deformation  
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d) Use of combined scan strategies to reduce residual stresses and part deformation with 

different laser scanning parameters, i.e. Use of different laser powers at different sections 

of the part. 

 

 

Figure 149: Scan strategies to achieve a lower thermal gradient to be used in the FTD3 

 



 

 Conclusions 
 

The aim of this investigation is to understand the complex evolution of residual stresses in the 

L-PBF process through the use of in-situ measurements and to understand the effect of the 

process-material relationships on residual stress. A novel method for in-process 

measurements of the induced forces, from which the residual stresses could be inferred, was 

used to study the effect of different processing parameters and material properties on the L-

PBF process. The results from the experimental work in this thesis illuminate the effects, which 

are difficult to observe using post-measurement techniques, of different processing 

parameters, such as scan strategies, layer thickness, energy density, inert gas and material 

properties in the L-PBF process. These results obtained from in-process measurements were 

found to contribute to the magnitude and distribution of the developed forces. However, it is 

difficult to identify a direct correlation between the residual stress and any particular variable, 

as the processing parameters are dependent on the material properties of the metal powder 

being used. 

In general, forces measured in-situ during the build process using the FTD were tensile at the 

edges of the part and compressive at the centre, regardless of the scan strategy employed. 

These forces were released when the part was removed from its baseplate which resulted in 

the part deforming into a catenoid with the corners curling away from the baseplate.   

The magnitude of the forces measured during a build process increased in an approximately 

linear manner after the first layers of the build were completed; although there was a layer-

by-layer oscillation in the forces which could be a result of cyclic heat input caused by 

movement of the laser to and away from the part. 

The magnitudes of the forces measured and their rate of development was dependent on the 

pattern of scanning used, such that for unidirectional scanning in a layer produced lower levels 

of force when the scan direction was rotated 67° between layers, than when all layers were 

scanned in the same direction. In addition, scanning all layers in y-direction induced lower 

forces than scanning all layers in x-direction, and it was not clear whether this was a bias in 

the FTD or L-PBF machine, though the literature would imply the latter.  

The meander scan strategy avoids this bias by using uni-directional scanning at 45° to the 

machine’s axes. It was found to induce forces that were 40% lower than those induced by 

sectional scan strategies, i.e. the Stripe and Chessboard strategies. 
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The influence of the thickness of the layers was found to be less than the scan strategy. 

Nevertheless, doubling the thickness from 30 µm to 60 µm allowed a higher part to be built 

before the maximum permittable force on a load cell was exceeded; perhaps because fewer 

layers and hence fewer thermal cycles were required. And, the sum of the absolute forces in 

the part was 12% lower for the part built using a layer thickness of 30 µm. 

An important process parameter is the point distance which was changed in step with the 

scan speed, i.e. 10 µm increments in point distance corresponded to 100 mm/s increments in 

scan speed and approximately 5 J/mm³ reductions in energy density. The forces measured in-

situ decreased with increasing point distance and tensile tests showed that the ultimate 

tensile strength and elongation to failure also decreased. Analysis of section of built parts 

implied that these changes in mechanical performance were related to an increase in porosity, 

which the results from the experimental work suggest that was caused by the decrease in 

energy density and increase in scan speed.  

Results from the experimental work in this thesis show the effect of metal properties, such as 

the phase transformation, has on the development of residual forces that have not been 

previously studied. Four different materials were investigated: Ti-6Al-4V, Inconel 625, Inconel 

718 and Maraging steel; the Maraging steel samples showed the lowest development of 

restraining force in comparison with the rest of the materials. This was probably due to the 

low temperature allotropic transformation of martensite to austenite which caused a volume 

expansion and limited the tensile forces developed during cooling of the parts in the Maraging 

steel.  

In an Argon (Ar) gas inert atmosphere, the direction of part deformation for the Maraging 

steel sample was the opposite to the rest of the materials and exhibited curling towards the 

building platform. The effect of changing the inert gas atmosphere from Argon (Ar) to 

Nitrogen (N2) for the Maraging steel samples, was shown to have an effect on the 

development of forces and changed the direction of the part deformation after release. This 

effect might be due to the Nitrogen acting as an austenite stabiliser promoting austenite 

reversion.  

The use of in-situ measurements has contributed to providing in-process information which 

is difficult to obtain from post-process analysis for the L-PBF process. These results will be 

useful in designing scanning strategies and selecting processing parameters that minimise 

residual stresses in parts built using L-PBF. These activities are often informed by simulations 
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performed using computational models, and these results will be valuable for validating the 

predictions from such simulations and for building higher fidelity models.  

List of contributions to knowledge: 

• The results obtained from the in-process measurements were found to contribute to 

the magnitude and distribution of the developed forces and allowed to notice inter 

layer oscillation in the forces which could be a result of cyclic heat input caused by 

movement of the laser to and away from the part. 

• In process measurements shown that the forces induced in the first five layers 

represented approximately 80% of the maximum on completion of the build and were 

distributed such as the part deforming into a catenoid with the corners curling away 

from the baseplate. 

• The magnitudes of the forces measured and their rate of development was 

dependent on the pattern of scanning used. The use of a rotated 67° scan between 

layers reduced the levels of force than scanning every layer in the same direction. 

•  Using single vector scanning (Meander scan strategy) was found to induce forces that 

were 40% lower than those induced by sectional scan strategies (Chessboard and 

Stripe scan strategies) for the tested part geometry. 

• Doubling the thickness from 30 µm to 60 µm reduced the forces developed per layer 

possible because fewer layers were required and hence fewer thermal cycles are 

induced. 

• The effect of metal properties, such as the phase transformation, has a strong 

influence on the development of residual forces. Results shown that for Maraging 

steel sample much lower development of forces was noticed. This could be due to the 

low temperature allotropic transformation of martensite to austenite which will cause 

a volume expansion limiting the tensile forces developed during cooling of the parts 

reducing the residual forces. In addition, the change in the inert gas from Argon to 

Nitrogen (which promotes austenite formation) for the Maraging steel samples 

reduced the value and orientation of the forces measured at the end of the build and 

of the part deformation on release from the substrate. 
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Future Work 

Regardless of all the research that has already been conducted on residual stresses in the L-

PBF process, due to the large number of parameters involved in the process the variation of 

these processing parameters has been found to have different results dependant on the 

properties of the materials.  Hence, it has been difficult to find a correlation between the 

processing parameters and the material properties. Therefore, there is still a wide area of 

investigation on how residual stresses develop in L-PBF components. The technological 

advances in L-PBF process are in constant development.  As the L-PBF process capabilities 

expand, opportunities for conducting research continue to expand in the use of new different 

parameters, i.e. higher laser power and multiple laser systems.  

The experimental work in this project needs to be extended further in understanding the 

relationship of the process-material interaction. As it was noticed from the results in this 

research, the material properties have a strong influence on how the process variables will 

affect the development of residual stresses in the process. The phase transformation of the 

metal alloys can contribute the minimize the developed residual stresses. However, further 

investigation needs to be done in the coefficient expansion of Maraging steel and the changes 

in the part geometry during the phase transformation. As well as, the mechanical properties 

from the Maraging steel samples manufactured using Argon and Nitrogen gas need to be 

analysed, as they could be affected by the changes in the microstructure. Additionally, the 

findings from the benefit of the phase transformation in the reduction of residual stresses 

could be extended in the design of new metal alloys for the L-PBF process based on this 

fundamental approach.   

This work needs to be extended into the development of an FE model. As this work has shown, 

residual stresses in the L-PBF process are built up from a layer by layer basis and are 

dependent on every single track. Therefore, a model should be developed, from the 

characteristics of the melt pool to capture the influence of the process parameters such as 

laser power and exposure time, together with the influence of the material phase 

transformation. In addition, the scan strategies should be taken into consideration for the 

development of the FE model as scan strategies have a strong influence on the developments 

of the residual stresses. However, a model of such complexity will require high costs and time 

implications for such precise simulations. However, these factors should be considered in the 

design of the L-PBF parts.  
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It has been demonstrated that preheating the base plate to 170 °C contributes to the 

reduction of the stresses developed in the process [45, 166]. The in-situ measurements 

performed in this work were limited to the load cells’ maximum operational load and 

temperature. Therefore, a proposed FTD described in section 5.2, was designed that will allow 

the investigation of the residual forces developed during the L-PBF process, which could be 

extended into the effect of heating the base plate and could allow working with L-PBF 

machines with higher laser powers and/or multiple laser systems.  
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• Data Sheet Ti-6Al-4V  
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• Data Sheet Inconel 625 
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• Data Sheet Maraging M300 
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• Data Sheet Inconel 718 
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