Two’s Company, Three’s a Crowd: Consensus-Halving for a
Constant Number of Agents

Argyrios Deligkas
Royal Holloway University of London, United Kingdom
Argyrios.Deligkas@rhul.ac.uk

Aris Filos-Ratsikas
University of Liverpool, United Kingdom

Aris.Filos-Ratsikas@liverpool.ac.uk

Alexandros Hollender
University of Oxford, United Kingdom

Alexandros.Hollender@cs.ox.ac.uk

Abstract

We consider the e-CoNSENSUS-HALVING problem, in which a set of heterogeneous agents
aim at dividing a continuous resource into two (not necessarily contiguous) portions that all of
them simultaneously consider to be of approximately the same value (up to €). This problem
was recently shown to be PPA-complete, for n agents and # cuts, even for very simple valuation
functions. In a quest to understand the root of the complexity of the problem, we consider the
setting where there is only a constant number of agents, and we consider both the computational
complexity and the query complexity of the problem.

For agents with monotone valuation functions, we show a dichotomy: for two agents
the problem is polynomial-time solvable, whereas for three or more agents it becomes PPA-
complete. Similarly, we show that for two monotone agents the problem can be solved
with polynomially-many queries, whereas for three or more agents, we provide exponential
query complexity lower bounds. These results are enabled via an interesting connection to
a monotone Borsuk-Ulam problem, which may be of independent interest. For agents with
general valuations, we show that the problem is PPA-complete and admits exponential query
complexity lower bounds, even for two agents.

1 Introduction

The Consensus-Halving problem is a classical problem in fair division whose origins date back to
the 1940s and the work of Neyman [1946]. In the approximate version of the problem studied by
Simmons and Su [2003], coined the e-CONSENSUS-HALVING problem, a set of n agents with different
and heterogeneous valuation functions over the unit interval [0, 1] aim at finding a partition of the
interval into pieces labelled either “4-” or “—" using at most n cuts, such that the total value of

mailto:Argyrios.Deligkas@rhul.ac.uk
mailto:Aris.Filos-Ratsikas@liverpool.ac.uk
mailto:Alexandros.Hollender@cs.ox.ac.uk

every agent for the portion labelled “+” and for the portion labelled “—" is approximately the
same, up to an additive parameter e. Very much like other well-known problems in fair division,
the existence of a solution to the exact version (for ¢ = 0) can be proven via fixed-point theorems,
whereas the approximate version (¢ > 0) admits constructive solutions via exponential-time
algorithms [Simmons and Su, 2003]. In fact, the Consensus-Halving problem is a continuous
variant of the well-known Necklace Splitting problem [Goldberg and West, 1985; Alon, 1987] with
two thieves, and can also be seen as a generalisation of the Hobby-Rice Theorem [Hobby and Rice,
1965].

The e-CoNsENsUs-HALVING problem received considerable attention in the literature of com-
puter science over the past few years, as it was proven to be the first “natural” PPA-complete
problem [Filos-Ratsikas and Goldberg, 2018], i.e., a problem that does not have a polynomial-sized
circuit explicitly in its definition, answering a decade-old open question [Papadimitriou, 1994;
Grigni, 2001]. Additionally, Filos-Ratsikas and Goldberg [2019], reduced from this problem to
establish the PPA-completeness of Necklace Splitting with two thieves; these PPA-completeness
results provided the first definitive evidence of intractability for these two classical problems,
establishing for instance that solving them is at least as hard as finding a Nash equilibrium of a
strategic game [Daskalakis et al., 2009; Chen et al., 2009]. Filos-Ratsikas et al. [2020] improved
on the results for the e-CoNsENsUs-HALVING problem, by showing that the problem remains
PPA-complete, even if one restricts the attention to very small classes of agents” valuations, namely
piecewise-uniform valuations with only two valuation blocks.

This latter result falls under the general umbrella of imposing restrictions on the structure
of the problem, to explore if the computational hardness persists or whether we can obtain
polynomial-time algorithms. Filos-Ratsikas et al. [2020] applied this approach along the axis of
the valuation functions, while considering a general number of agents, similarly to [Filos-Ratsikas
and Goldberg, 2018, 2019]. In this paper, we take a different approach, and we restrict the number
of agents to be constant. This is in line with most of the theoretical work on fair division, which is
also concerned with solutions for a small number of agents! and it is also quite relevant from a
practical standpoint, as fair division among a few participants is quite common. We believe that
such investigations are necessary in order to truly understand the computational complexity of
the problem. To this end, we state our first main question:

What is the computational complexity of e-CONSENSUS-HALVING for a constant number of
agents?

Since the number of agents is now fixed, any type of computational hardness must originate from
the structure of the valuation functions. We remark that the existence results for e-CONSENSUS-
HALVING are fairly general, and in particular do not require assumptions like additivity or
monotonicity of the valuation functions. For this reason, the sensible approach is to start from
valuations that are as general as possible (for which hardness is easier to establish), and gradually
constrain the domain to more specific classes, until eventually polynomial-time solvability becomes
possible. Indeed, in a paper that is conceptually similar to ours, Deng et al. [2012] studied the

For example, the existence of bounded protocols for cake-cutting for more than 3 agents was not known until very
recently [Aziz and Mackenzie, 2016a,b], but such protocols for 2 and 3 agents were known since the 1960s (see [Brams
and Taylor, 1996; Robertson and Webb, 1998]).

computational complexity of the contiguous envy-free cake-cutting problem* and proved that the
problem is PPAD-complete, even for a constant number of agents, when agents have ordinal
preferences over the possible pieces. These types of preferences induce no structure on the
valuation functions and are therefore as general as possible. In contrast, the authors showed that
for 3 agents and monotone valuations, the problem becomes polynomial-time solvable, leaving the
case of 4 or more agents as an open problem. We adopt a similar approach in this paper for
e-CONSENSUS-HALVING, and we manage to completely settle the complexity of the problem when
the agents have monotone valuations, among other results, which are highlighted in Section 1.1.

Another relevant question that has been surprisingly overlooked in the related literature is the
query complexity of the problem. In this regime, the algorithm interacts with the agents via queries,
asking them to provide their values for different parts of the interval [0, 1], and the complexity is
measured by the number of queries required to find an e-approximate solution. This brings us to
our second main question:

What is the query complexity of e-CONSENSsUS-HALVING for a constant number of agents?

As we will explain in more detail in Section 2, we develop appropriate machinery that allows us
to answer both of our main questions at the same time. In a nutshell, for the positive results, we
design algorithms that run in polynomial time and can be recast as query-based algorithms that
only use a polynomial number of queries. For the negative results, we construct reductions from
“hard” computational problems which allow us to simultaneously obtain computational hardness
results and query complexity lower bounds.

1.1 Owur Results

In this section, we list our main results regarding the computational complexity and the query
complexity of the e-CoNsENsUs-HALVING problem. We offer more details about the results and
our techniques in Section 2.

Computational Complexity: We start from the computational complexity of the problem for a
constant number of agents. We prove the following main results, parameterised by (a) the number
of agents and (b) the structure of the valuation functions.

- For a single agent and general valuations, the problem is polynomial-time solvable. The
same result applies to the case of any number of agents with identical general valuations.

For two or more agents and general valuations, the problem is PPA-complete.

For two agents and monotone valuations, the problem is polynomial-time solvable. This
result holds even if one of the two agents has a general valuation.

For three or more agents and monotone valuations, the problem is PPA-complete.

Finally, the e-ConsENsUs-HALVING problem with 2 agents coincides with the well-known e-Perfect
Division problem for cake-cutting (e.g., see [Branzei and Nisan, 2017, 2019]), and thus naturally

2This version of the classic envy-free cake-cutting problem requires that every agent receives a single, connected
piece.

Polytime forn =2 Polytime forn =1

Polytime for any n Open problem PPA-c forn >3 PPA-c forn > 2
Piecewise constant Additive Monotone General increasing generality

Figure 1: A classification of e-CoNsSENSUS-HALVING for a constant number 1 of agents, in terms of
increasing generality of the valuation functions.

our results imply that e-Perfect Division with 2 agents with monotone valuations can be done in
polynomial time, whereas it becomes PPA-complete for 2 agents with general valuations.

Before we proceed, we offer a brief discussion on the different cases that are covered by our
results. The distinction on the number of agents is straightforward. For the valuation functions,
we consider mainly general valuations and monotone valuations. Note that neither of these functions
is additive, meaning that the value that an agent has for the union of two disjoint intervals [a, b]
and [c, d] is not necessarily the sum of her values for the two intervals. For monotone valuations,
the requirement is that for any two subsets I and I’ of [0, 1] such that I C I’, the agent values I" at
least as much as I, whereas for general valuations there is no such requirement.

We remark that for agents with piece-wise constant valuations (i.e., the valuations used in
[Filos-Ratsikas and Goldberg, 2018] to obtain the PPA-completeness of the problem for many
agents), the problem can be solved rather straightforwardly in polynomial time for a constant
number of agents, using linear programming (see Lemma A.1 in Appendix A). In terms of the
classification of the complexity of the problem in order of increasing generality of the valuation
functions, this observation provides the “lower bound” whereas our PPA-hardness results for
monotone valuations provide the “upper bound”, see Figure 1. While the precise point of the
phase transition has not yet been identified, our results make considerable progress towards this
goal.

Query Complexity: Besides the computational complexity of the problem, we are also interested
in its query complexity. In this setting, one can envision an algorithm which interacts with the
agents via a set of queries, and aims to compute a solution to e-CONSENSUS-HALVING using the
minimum number of queries possible. In particular, a query is a question from the algorithm to
an agent about a subset of [0, 1], who then responds with her value for that set. We provide the
following results, where L denotes the Lipschitz parameter of the valuation functions:

- For a single agent and general valuations, the query complexity of the problem is © (log £).
The same result applies for any number of agents with identical general valuations.

- For n > 2 agents and general valuations, the query complexity of the problem is
n—1
o((®)"").
- For two agents and monotone valuations, the query complexity of the problem is O (log2 %)

This result holds even if one of the two agents has a general valuation.

- For n > 3 agents and monotone valuations, the query complexity of the problem is between

a((4)") ando((H)").

To put these results into context, we remark that when studying the query complexity of the
problem, the input consists of the error parameter ¢ and the Lipschitz parameter L, given by
their binary representation. In that sense, a @ (log"(L/¢)) number of queries, for some constant k,
is polynomial, whereas a ©(L/¢) number of queries is exponential. Not surprisingly, our PPA-
hardness results give rise to exponential query complexity lower bounds, whereas our algorithms
can be transformed into query-based algorithms of polynomial query complexity. We remark
however that beyond this connection, our query complexity analysis is in fact quantitative, as we
provide tight or almost tight bounds on the query complexity as a function of the number of
agents n, for both general and monotone valuation functions.

Finally, for the case of monotone valuations, we consider a more expressive query model,
which is an appropriate extension of the well-known Robertson-Webb query model [Robertson and
Webb, 1998; Woeginger and Sgall, 2007], the predominant query model in the literature of fair
cake-cutting [Brams and Taylor, 1996]; we refer to this extension as the Generalised Robertson-Webb
(GRW) query model. We show that our bounds extend to this model as well, up to logarithmic
factors.

1.2 Related Work

As we mentioned in the introduction, the origins of the Consensus-Halving problem can be traced
back to the 1940s and the work of Neyman [1946], who studied a generalisation of the problem
with k labels instead of two (“+”, “—"), and proved the existence of a solution when the valuation
functions are probability measures and there is no constraint on the number of cuts used to obtain
the solution. The existence theorem for two labels is known as the Hobby-Rice Theorem [Hobby and
Rice, 1965] and has been studied rather extensively in the context of the famous Necklace Splitting
problem [Goldberg and West, 1985; Alon and West, 1986; Alon, 1987]. In fact, most of the proofs of
existence for Necklace Splitting (with two thieves) were established via the Consensus-Halving
problem, which was at the time referred to as Continuous Necklace Splitting [Alon, 1987]. The term
“Consensus-Halving” was coined by Simmons and Su [2003], who studied the continuous problem
in isolation, and provided a constructive proof of existence which holds for very general valuation
functions, including all of the valuation functions that we consider in this paper. Interestingly, the
proof of Simmons and Su [2003] reduces the problem to finding edges of complementary labels on
a triangulated n-sphere, labelled as prescribed by Tucker’s lemma, a fundamental result in topology.

While not strictly a reduction in the sense of computational complexity, the ideas of [Simmons
and Su, 2003] certainly paved the way for subsequent work on the problem in computer science.
The first computational results were obtained by Filos-Ratsikas et al. [2018], who proved that the
associated computational problem, e-CoNsENsUs-HALVING, lies in PPA (adapting the constructive
proof of Simmons and Su [2003]) and that the problem is PPAD-hard, for n agents with piece-wise
constant valuation functions. Filos-Ratsikas and Goldberg [2018] proved that the problem is in
fact PPA-complete, establishing for the first time the existence of a “natural” problem complete
for PPA, i.e., a problem that does not contain a polynomial-sized circuit explicitly in its definition,
answering a long-standing open question of Papadimitriou [1994]. In a follow-up paper, [Filos-
Ratsikas and Goldberg, 2019] used the PPA-completeness of Consensus-Halving to prove that the
Necklace Splitting problem with two thieves is also PPA-complete. Very recently, Filos-Ratsikas

5

et al. [2020] strengthened the PPA-hardness result to the case of very simple valuation functions,
namely piece-wise constant valuations with at most two blocks of value. Deligkas et al. [2021]
studied the computational complexity of the exact version of the problem, and obtained among
other results its membership in a newly introduced class BU (for “Borsuk-Ulam” [Borsuk, 1933])
and its computational hardness for the well-known class FIXP of Etessami and Yannakakis [2010].

Importantly, none of the aforementioned results apply to the case of a constant number of
agents, which was prior to this paper completely unexplored. Additionally, none of these works
consider the query complexity of the problem. A very recent work [Alon and Graur, 2020] studies
e-CONSENSUS-HALVING in a hybrid computational model which includes query access to the
valuations, but contrary to our paper, their investigations are not targeted towards a constant
number of agents, and the agents have additive valuation functions.

A relevant line of work is concerned with the query complexity of fair cake-cutting [Brams and
Taylor, 1996; Procaccia, 2016], a related but markedly different fair-division problem. Conceptually
closest to ours is the paper by Deng et al. [2012], who study both the computational complexity
and the query complexity of contiguous envy-free cake-cutting, for agents with either general® or
monotone valuations. For the latter case, the authors obtain a polynomial-time algorithm for three
agents, and leave open the complexity of the problem for four or more agents. In our case, for
e-CONSENSUs-HALVING, we completely settle the computational complexity of the problem for
agents with monotone valuations.

In the literature of fair cake-cutting, most of the related research (e.g., see [Brams and Taylor,
1996; Aziz and Mackenzie, 2016a,b; Amanatidis et al., 2018; Branzei and Nisan, 2017]) has focused
on the well-known Robertson-Webb (RW) query model, in which agents interact with the protocol
via two types of queries, evaluation queries (EVAL) and cut queries (cuT). As the name suggests, this
query model is due to Robertson and Webb [1995, 1998], but the work of Woeginger and Sgall
[2007] has been rather instrumental in formalising it in the form that it is being used today. Given
the conceptual similarity of fair cake-cutting with Consensus-Halving, it certainly makes sense to
study the latter problem under this query model as well, and in fact, the queries used by Alon and
Graur [2020] are essentially RW queries. As we show in Section 7, our bounds are qualitatively
robust when migrating to this more expressive model, meaning that they are preserved up to
logarithmic factors.

Finally, among the aforementioned works in fair cake-cutting, Branzei and Nisan [2017] study
among other problems, the problem of e-Perfect Division, which stipulates a partition of the cake
into n pieces, such that each of the n agents interprets all pieces to be of approximate equal value
(up to €). For the case of n = 2, this problem coincides with e-CoNsENsus-HALVING, and thus one
can interpret our results for n = 2 as extensions of the results in [Branzei and Nisan, 2017] (which
are only for additive valuations) to the case of monotone valuations (for which the problem is
solvable with polynomially-many queries) and to the case of general valuations (for which the
problem admits exponential query complexity lower bounds).

3More accurately, Deng et al. [2012] prove their impossibility results for ordinal preferences, where for each possible
division of the cake, the agent specifies the piece that she prefers. In particular, if one were to define valuation functions
consistent with these preferences, the value of an agent for a piece would have to depend also on the way the rest of
the cake is divided among the agents.

2 Overview of our Results and Techniques

In this section, we provide a high-level overview of our approach for obtaining our results on the
computational complexity and the query complexity of e-ConsENsus-HALVING. We first describe
our main technique and then discuss its implications to each particular case (i.e., agents with
general valuations or agents with monotone valuations).?

21 Input Models

As we mentioned in the Introduction, we will be considering valuations beyond the case of
additive functions, namely monotone and general valuations. For such functions, we need to
specify the manner in which they will be accessed by an algorithm for e-Consensus-HALvING. We
consider the following two standard models.

e In the black-box model, the valuation functions v; can be arbitrary functions, and are accessed
via queries. Intuitively, a query to v; inputs a subset of [0,1] and outputs the non-negative
real value of the agent for that set. This input model is appropriate for studying the query
complexity of the problem, where the complexity is measured as the number of queries to
the valuation function v;.

o In the white-box model, the valuation functions v; are explicitly given in the input as
polynomial-time algorithms, mapping subsets of [0, 1] (represented as unions of intervals) to
non-negative rational numbers. This input model is appropriate for studying the computa-
tional complexity of the problem, where the complexity is measured as usual by the running
time of the algorithm.

2.2 Computational/query complexity results via efficient black-box reductions

At the heart of our techniques lies the concept of black-box reductions (see Section 4). Intuitively
speaking, a black-box reduction from Problem A to Problem B is a procedure which

- Translates a solution for Problem B to a solution for Problem A.

- Uses oracle calls (queries) for Problem B which contain as a subroutine oracle calls to the
instance of Problem A.

This type of reduction enables us to obtain query complexity upper and lower bounds for a “target”
problem in the black-box model, via reductions from and to some known computational problems
for which such query complexity bounds are known. To obtain computational complexity results
in the white-box model, we can use the same reduction, as long as the computation performed
within the procedure requires polynomial-time, and the number of oracle calls to the instance of
Problem B for each oracle call to the instance of Problem A is bounded by a polynomial.

More precisely, we will call a black-box reduction efficient, if it runs in polynomial time and
performs only a constant number of oracle calls to the instance of the problem that we reduce
from, for each oracle call of the “target” problem. Using these reductions, we will be able to

“To avoid having the reader refer back to this section, similar high-level descriptions are also present in the
corresponding sections.

obtain PPA-membership results/query complexity upper bounds and PPA-hardness results/query
complexity lower bounds for e-CoNsENsUs-HALVING, via the same set of reductions respectively.

The starting point for our results will be the computational problem nD-Tucker (Definition 4).
This problem is the computational version of Tucker’s Lemma [Tucker, 1945], and for which the
following results (stated informally below) are known.

Informal Theorem 1 ([Aisenberg et al., 2020; Papadimitriou, 1994], see Theorem 3.1). For n > 2,
nD-TUucCkeRr is PPA-complete.

Informal Theorem 2 ([Deng et al., 2011], see Theorem 3.2). For n > 2, nD-TUCKER admits exponential
query complexity lower and upper bounds.

According to our discussion above, if we constructed efficient black-box reductions from e-
CoNsENSsUS-HALVING to nD-TUCKER and vice-versa, we would obtain the desired results for the
former problem. Indeed, in Section 4.2, we present such a reduction from e-CoNSENsUs-HALVING
to nD-TuckeRr, which enables us to obtain that (a) e-CoNsENsUS-HALVING with at least 2 agents
with general valuations is in PPA and (b) that the problem can be solved with a number of queries
which is of the same order as the upper bound of the query complexity of nD-TUCKER.

For the other direction, we will obtain the reduction via the use of an intermediate problem, the
nD-Borsuk-ULAaM problem, which is the computational version of the Borsuk-Ulam Theorem
[Borsuk, 1933]. More precisely, in Section 4.1, we construct a general efficient black-box reduction
from nD-Borsuk-ULaM to e-CONSENSUS-HALVING with a constant number n of agents. This
reduction has the special feature that it preserves a certain set of properties, namely (see Definition 3)

- If the function F of nD-Borsuk-ULAM is normalised, then the valuation functions of e-
CoNSENSUS-HALVING are normalised.

- If the function F of nD-Borsuk-UrLAM is monotone, then the valuation functions of e-
CONSENSUS-HALVING are monotone.

The first of those properties will allow us to show our PPA-hardness results and query complexity
lower bounds for e-CoNSENSUS-HALVING, even in the case where the valuation functions must sat-
isfy a standard normalisation condition, making them stronger. The latter property is fundamental
in establishing our impossibility results for the case of e-CONSENsUs-HALVING, when agents have
monotone valuation functions. In particular, the property gives rise to a monotone Borsuk-Ulam
computational problem, which rather naturally corresponds to the Consensus-Halving problem
when agents have monotone valuations, and could be of independent interest. Our general
reduction in Section 4.1 thus allows us to reduce the problem of proving impossibility results
for e-CoNsENSsUS-HALVING to the task of proving such results of nD-Borsuk-ULam and mono-
tone nD-Borsuk-ULaM. These results will be established via efficient black-box reductions from
nD-TUCKER, in Section 5 and Section 6, respectively.

2.3 Agents with general valuations

Using our general approach described in the previous section, we can prove the following theorem,
stated informally.

Informal Theorem 3 (see Theorem 5.6, Theorem 5.8). For any constant n > 2, e-CONSENSUS-
HALVING with n agents and general valuations is PPA-complete, and admits asymptotically matching
exponential query complexity upper and lower bounds. This result holds even if the valuations are
normalised.

To obtain this result, in Section 5.1, we construct an efficient black-box reduction from nD-TUCKER
to nD-Borsuk-ULaM, thus inheriting both its computational hardness and its query complexity
lower bounds. On a high-level, we interpolate the nD-TUCKER instance in order to obtain a
continuous function, and then embed it in the nD-Borsuk-ULAM domain. Some extra care must
be taken to ensure that we obtain a normalised nD-Borsuk-ULAM instance.

The only case left uncovered by the theorem above is the case of a single agent with a general
valuation function. We observe that a simple binary search-like procedure can find a solution to
£-CONSENSUS-HALVING in this case both in polynomial time, and using a polynomial number of
queries (see Theorem 5.1). The result trivially extends to the case of multiple agents with identical
general valuations.

2.4 Agents with monotone valuations

For agents with monotone valuations, again we employ our general approach, but this time we
need to prove computational and query-complexity hardness of the monotone nD-Borsuk-ULam
problem; the corresponding impossibility results for e-ConseNsus-HALVING with agents with
monotone valuations then follow from our property-preserving reduction in Section 4. To this
end, we in fact construct an efficient black-box reduction from (n — 1) D-TUCKER to monotone
nD-Borsuk-ULAM, i.e., we reduce from the corresponding version of nD-TUCKER of one lower
dimension. In order to achieve this, we once again interpolate the (n — 1) D-TUCKER instance to
obtain a continuous function, but, this time, we embed it in a very specific lower dimensional
subset of the nD-Borsuk-ULam domain. We then show that the function can be extended to a
monotone function on the whole domain.

The “drop in dimension” which is featured in our reduction has the following effects:

e Since 1D-TUCKER is solvable in polynomial-time, we can only obtain the PPA-hardness of
monotone nD-Borsuk-UrLaM for n > 3, and therefore the PPA-hardness of e-CONSENSUS-
HALVING for three or more monotone agents.

e The query complexity lower bounds that we “inherit” from (n — 1) D-TuckeRr do not exactly
match our upper bounds, obtained via the reduction from e-CoNSENSUS-HALVING to nD-
TuckeRr in Section 4.2.

We have the following theorem, stated informally.

Informal Theorem 4 (see Theorem 6.6, Theorem 6.8). For any constant n > 3, e-CONSENSUS-
HALVING with n agents with monotone valuations is PPA-complete, and admits almost asymptotically
matching exponential query complexity upper and lower bounds. This result holds even if the valuations
are normalised.

It turns out that the inability of our reduction to give us hardness for 2 agents in the monotone
case is not a coincidence. In Section 6, we construct a polynomial-time algorithm for solving

the problem when n = 2 in the white-box model, which can also be interpreted as an algorithm
of polynomial query complexity in the black-box model. We state the corresponding theorem
informally.

Informal Theorem 5 (Theorem 6.1). e-CONSENSUS-HALVING with two agents and monotone valuation
functions is solvable in polynomial time and has polynomial query complexity.

At a high level, the algorithm (see Algorithm 1) performs a nested binary search procedure. It starts
with an interval, initially defined by the positions of the two cuts that “satisfy” the first agent,
when the leftmost cut sits on the left endpoint 0 of the interval. Then, the algorithm “shrinks” this
interval based on whether the other agent “sees” more “+” or “—" by this set of cuts, maintaining
the following invariant: (a) the first agent is always satisfied and (b) the solution that satisfies the
other agent is contained in the considered interval that is being shrunk. Intuitively, the algorithm
is moving on the “indifference curve” with respect to the valuation of the first agent, it “offers”
the other agent points (i.e., sets of cuts), to which the agent replies with either “4” or “—”,
indicating the label of her discrepancy. Using the answers of the second agent, we can move in
the appropriate direction whilst shrinking the interval in question.

2.5 Query Complexity in the Generalised Robertson-Webb model

Finally, we establish a connection between our results and the well-known Robertson-Webb (RW)
query model for fair cake-cutting [Robertson and Webb, 1998; Woeginger and Sgall, 2007]. In this
model, the algorithm interacts with the agents via evaluation (EvaL) and cut (cuT) queries, and
these queries have only been defined for agents with additive valuation functions.

Our first contribution in this section is to define an appropriate generalisation of the RW
model that can be used for agents with monotone valuations, which we refer to as the Generalised
Robertson Webb (GRW) query model. It turns out that the straightforward generalisation of EvaL
queries is in fact the type of queries that we use in our black-box model defined above. Therefore,
the GRW model is a stronger query model, equipped with—what we consider to be—the most
natural generalisation of cuT queries. Our main result in this section is that the query lower
bounds in this more expressive query model are qualitatively the same, as stated informally in the
following theorem.

Informal Theorem 6 (see Theorem 7.1). e-CONSENSUs-HALVING with n > 3 agents with monotone
valuations requires an exponential number of queries, even in the GRW model.

Using a straightforward binary search approach, it is possible to simulate an approximate cut
query using a logarithmic number of EVAL queries. In order to obtain our stronger result, which
holds even for exact cut queries, we construct “hard” nD-Borsuk-ULAM instances that are also
piece-wise linear. We then show that in the resulting e-CONSENSUS-HALVING instances, CUT queries
can be answered exactly by performing a logarithmic number of EvAL queries instead.

3 Preliminaries

In the e-CoNsENSUS-HALVING problem, there is a set of n agents with valuation functions v; (or
simply valuations) over the interval [0,1], and the goal is to find a partition of the interval into
subintervals labelled either “+" or “—”, using at most n cuts. This partition should satisfy that for

10

every agent i, the total value for the union of subintervals Z* labelled “+” and the total value for
the union of subintervals Z~ labelled “—" is the same up to ¢, i.e., [0;(Z1) — v;(Z7)| < e. In this
paper we will assume 7 to be a constant and therefore the inputs to the problem will only be &
and the valuation functions v;.

We will be interested in fairly general valuation functions; intuitively, these will be functions
mapping measurable subsets A C [0,1] to non-negative real numbers. Formally, let A([0,1]) de-
note the set of Lebesgue-measurable subsets of the interval [0,1] and A : A([0,1]) — [0,1] the
Lebesgue measure. We consider valuation functions v; : A([0,1]) — R>o, with the interpretation
that agent i has value v;(A) for the subset A € A([0,1]) of the resource. Similarly to [Deng
et al., 2012; Branzei and Nisan, 2017, 2019; Barman and Rathi, 2020], we also require that the
valuation functions be Lipschitz-continuous. Following [Deng et al., 2012], a valuation function
v; is said to be Lipschitz-continuous with Lipschitz parameter L > 0, if for all A, B € A([0,1]),
it holds that |v;(A) —v;(B)] < L-A(AAB). Here A denotes the symmetric difference, i.e.,
AAB = (A\B)U(B\ A).

Valuation Classes: We will be particularly interested in the following three valuation classes, in
terms of decreasing generality:

e General valuations, in which there is no further restriction to the functions v;.

e Monotone valuations, in which v;(A) > v;(A’) for any two Lebesgue-measurable subsets A
and A’ such that A" C A. Intuitively, for this type of functions, when comparing two sets of
intervals such that one is a subset of the other, an agent can not have a smaller value for the
set that contains the other.

e Additive valuations, in which v; is a function from individual intervals in [0,1] to R>o and for
a set of intervals Z, it holds that v;(Z) = Y_;c7 v;(I). Note that if v; is an additive valuation
function, then it is in fact a measure. We will not prove any results for this type of valuation
functions in this paper, but we define them for reference and comparison (e.g., see Figure 1).

Normalisation: We will also be interested in valuation functions that satisfy some standard
normalisation properties. We say that a valuation function v; is normalised, if the following
properties hold:

1. v;(A) € [0,1] for all A € A([0,1]),
2. Ui(®) =0and vi([O,l]) =1.

In other words, we require the agents’ values to lie in [0,1] and that their value for the whole
interval is normalised to 1. These are the standard assumptions in the literature of the problem for
additive valuations [Alon, 1987], as well as in the related problem of fair cake-cutting [Procaccia,
2016]. We will only consider normalised valuation functions for our lower bounds and hardness
results, whereas for the upper bounds and polynomial-time algorithms we will not impose any
normalisation; this only makes both sets of results even stronger.

With regard to the valuation classes defined above, we will often be referring to their nor-
malised versions as well, e.g., normalised general valuations or normalised monotone valuations.

11

Input models: Given the fairly general nature of the valuation functions, we need to specify the
manner in which they will be accessed by an algorithm for e-CoNsENsUs-HALVING. Since we are
interested in both the computational complexity and the query complexity of the problem, we
will assume the following standard two ways of accessing these functions.

e In the black-box model, the valuation functions v; can be arbitrary functions, and are accessed
via queries (sometimes also referred to as oracle calls). A query to the function v; inputs
a Lebesgue-measurable subset A (intuitively a set of subintervals) of [0,1] and outputs
vi(A) € Rxg. This input model is appropriate for studying the query complexity of the
problem, where the complexity is measured as the number of queries to the valuation
function v;.

We will also consider the following weaker version of the black-box model, which we will use
in our query complexity upper bounds, thus making them stronger: In the weak black-box
model the input to a valuation function v; is some set Z of intervals, obtained by using at
most n cuts, where 7 is the number of agents.

e In the white-box model, the valuation functions v; are polynomial-time algorithms, mapping
sets of intervals to non-negative rational numbers. These polynomial-time algorithms are
given explicitly as part of the input, including the Lipschitz parameter L.> This input model
is appropriate for studying the computational complexity of the problem, where the complexity
is measured as usual by the running time of the algorithm.

We provide the formal definitions of the problem in the black-box model and the white-box model
below.

Definition 1 (e-CoNseENsUs-HALVING (black-box model)). For any constant n > 1, the problem
e-CoNSENSUs-HALVING with n agents is defined as follows:

e Input: ¢ > 0, the Lipschitz parameter L, query access to the functions v;.

e Output: A partition of [0, 1] into two sets of intervals Z* and Z~ such that for each
agent i, it holds that |v;(Z1) — v;(Z7)| < ¢, using at most n cuts.

Definition 2 (e-CONSENsUs-HALVING (white-box model)). For any constant n > 1, the problem
e-CoNsENsUs-HALVING with n agents is defined as follows:

e Input: ¢ > 0, the Lipschitz parameter L, polynomial-time algorithms v;.

e Output: A partition of [0,1] into two sets of intervals Z* and Z~ such that for each
agent i, it holds that |v;(Z1) — v;(Z7)| < ¢, using at most # cuts.

Terminology: When the valuation functions are normalised, we will refer to the problem as
e-CONSENSUS-HALVING with n normalised agents. When the valuation functions are monotone, we

5To avoid introducing too many technical details here, we refer the reader to Appendix B for the fully formal
definition. We also remark that some related work [Branzei and Nisan, 2017; Alon and Graur, 2020] takes L to be
bounded by a constant, and thus it does not appear in their bounds.

12

will refer to the problem as e-CoNSENSUS-HALVING with n monotone agents. If both conditions are
true, we will use the term e-CoNsENsUs-HALVING with n normalised monotone agents.

3.1 Borsuk-Ulam and Tucker

For our PPA-hardness results and query complexity lower bounds, we will reduce from a well-
known problem, the computational version of the Borsuk-Ulam Theorem [Borsuk, 1933], which
states that for any continuous function F from S" to R" there is a pair of antipodal points (i.e.,
x, —x) which are mapped to the same point. There are various equivalent versions of the problem
(e.g., see [Matousek, 2008]); we will provide a definition that is most appropriate for our purposes.
In fact, we will include several “optional” properties of the function F in our definition, which will
map to properties of the valuation functions v; when we construct our reductions in subsequent
sections. Specifically, we will impose conditions for normalisation and monotonicity, which will
correspond to normalised valuation functions for our lower bounds/hardness results of Section 5,
and to normalised monotone valuation functions for our lower bounds/hardness results of
Section 6. Let B" = [—1,1]" and let d(B") denote its boundary. As before, we will require that the
functions we consider be Lipschitz-continuous. We say that F : B"*! — B" is Lipschitz-continuous
with parameter L, if ||F(x) — F(y)|loo < L-||x — y||o for all x,y € B"*L.

Definition 3 (nD-Borsuk-ULam). For any constant n > 1, the problem nD-Borsuk-ULAM is
defined as follows:

e Input: ¢ > 0, the Lipschitz parameter L, a function F : Brtl — B,
e Output: A point x € d(B""!) such that |F(x) — F(—x)|le < &
e Optional Properties:

Normalisation:
- F(1,1,...,1) =(1,1,...,1).
- F(—x) = —F(x), for all x € B"*1.

Monotonicity:

- If x <y, then F(x) < F(y), for all x,y € B"*!, where “<” denotes coordinate-wise
comparison.

In the normalised nD-BorsUk-ULAM problem, where F is normalised, we instead ask for a point
x € 9(B"*1) such that ||F(x)||c < e. By using the fact that F is an odd function (F(—x) = —F(x),
for all x € B"!), it is easy to see that this is equivalent to ||F(x) — F(—x)|le < €/2. We will
also use the term normalised monotone nD-BORsUK-ULAM to refer to the problem when both the
normalisation and monotonicity properties are satisfied for F.

In the black-box version of nD-Borsuk-ULAM, we can query the value of the function F at
any point x € B""!. In the white-box version of this problem, we are given a polynomial-time
algorithm that computes F. Since the number of inputs of F is fixed, we can assume that we are
given an arithmetic circuit with n + 1 inputs and n outputs that computes F. Following the related
literature [Daskalakis and Papadimitriou, 2011], we will consider circuits that use the arithmetic

13

gates 4+, —, X, max, min, < and rational constants.®

Another related problem that will be of interest to us is the computational version of Tucker’s
Lemma [Tucker, 1945]. Tucker’s lemma is a discrete analogue of the Borsuk-Ulam theorem, and
its computational counterpart, nD-TUCKER, is defined below.

Definition 4 (nD-Tucker). For any constant n > 1, the problem nD-TUckeR is defined as
follows:

e Input: grid size N > 2, a labelling function ¢ : [N]" — {£1,£2,...,+n} that is
antipodally anti-symmetric (i.e., for any point p on the boundary of [N]", we have
¢(p) = —L(p), where p; = N + 1 — p; for all i).

e Output: Two points p,q € [N]" with £(p) = —¢(g) and ||p — q]| < 1.

In the black-box version of this problem, we can query the labelling function for any point p € [N]"
and retrieve its label. In the white-box version, ¢ is given in the form of a Boolean circuit with the
usual gates A, V, .

In the white-box model, nD-TUCKER was recently proven to be PPA-hard for any n > 2, by
Aisenberg et al. [2020]; the membership of the problem in PPA was known by [Papadimitriou,
1994].

Theorem 3.1 (Aisenberg et al. [2020]; Papadimitriou [1994]). For any constant n > 2, nD-TUCKER is
PPA-complete.

The computational class PPA was defined by Papadimitriou [1994], among several subclasses of the
class TENP [Megiddo and Papadimitriou, 1991], the class of problems with a guaranteed solution
which is verifiable in polynomial time. PPA is defined with respect to a graph of exponential size,
which is given implicitly as input, via the use of a circuit that outputs the neighbours of a given
vertex, and the goal is to find a vertex of degree 1, given another such vertex as input.

Given the close connection between Tucker’s Lemma and the Borsuk-Ulam Theorem, the
PPA-hardness of some appropriate computational version of Borsuk-Ulam follows as well [Aisenberg
et al., 2020]. However, this does not apply to the version of nD-Borsuk-ULaMm defined above,
especially when one considers the additional properties of the function F required for normal-
isation and monotonicity, as discussed earlier. We will reduce from nD-TUCKER to our version
of nD-Borsuk-ULAM, to obtain its PPA-hardness, which will then imply the PPA-hardness of
e-CONSENSUS-HALVING, via our main reduction in Section 4.

In the black-box model, Deng et al. [2011], building on the results of Chen and Deng [2008],
proved both query complexity lower bounds and upper bounds for nD-TUCKER.

Theorem 3.2 (Deng et al. [2011]). For any constant n > 2, the query complexity of nD-TUCKER is
® (N 1).

®See [Etessami and Yannakakis, 2010] for more details on arithmetic circuits for fixed point-related problems.

14

The reductions that we will construct (from nD-TuckgR to nD-Borsuk-Uram to e-CONSENSUS-
HaLviNG) will be black-box reductions (see Section 4), and therefore they will also allow us to obtain
query complexity lower bounds for e-CONSENsUs-HALVING in the black-box model, given the
corresponding lower bounds of Theorem 3.2. For the upper bounds, we will reduce directly from
e-CONSENSUS-HALVING to nD-TUCKER, again via a black-box reduction. We remark that Deng et al.
[2011] use a version of nD-TUuckeR that is slightly different from the one that we defined above,
but their results apply to this version as well.

4 Black-box reductions to and from Consensus-Halving

In this section we develop our main machinery for proving both PPA-completeness results and
query complexity upper and lower bounds for e-ConseENsus-HALVING. Our techniques will be
based on the standard notion of black-box reductions.” Roughly speaking, a black-box reduction
from Problem A to Problem B is a procedure by which we can answer oracle calls (queries) for an
instance of Problem B by using an oracle for some instance of Problem A, such that a solution to
the instance of Problem B yields a solution to the instance of Problem A. For example, a black-box
reduction from nD-Borsuk-ULAaM to e-CONSENSUS-HALVING is a procedure that solves the latter
problem by accessing the function F of the former problem a number of times, and then translates
the solution of e-CoNSENSUS-HALVING to a solution of nD-Borsuk-ULam. The name “black-box”
comes from the fact that this type of reduction does not need to know the structure of the functions
v; of e-CoNSENSUS-HALVING or F of nD-Borsuk-ULAM.

In order to prove lower bounds on the query complexity of some Problem B, it suffices to
construct a black-box reduction from some Problem A, for which query complexity lower bounds
are known; the obtained bounds will depend on the number k of oracle calls to the input of
Problem A that are needed to answer an oracle call to the input of Problem B. We will say that a
black-box reduction is efficient if k is a constant, and therefore the query complexity lower bounds
of Problems A and B are of the same asymptotic order. To obtain upper bounds on the query
complexity, we can construct a reduction in the opposite direction (from Problem B to Problem A),
assuming that query complexity upper bounds for Problem A are known.

Ideally, we would like to use the same reduction to also obtain computational complexity
results in the white-box model. For this to be possible, the procedure described above should
actually be a polynomial-time algorithm. Slightly abusing terminology, we will use the term
“efficient” to describe such a reduction in the white-box model as well. To this end, we have the
following definition.

Definition 5. We will say that a black-box reduction from Problem A to Problem B is efficient if:

e in the black-box model, it uses a constant number of queries (oracle calls) to the function
(oracle) of Problem A, for each query (oracle call) to the function of Problem B;

e in the white-box model, the condition above holds, and the reduction is also a polynomial-
time algorithm.

Concretely for our case, all of our reductions will be efficient black-box reductions, thus allowing
us to obtain both PPA-completeness results and query complexity bounds matching those of the

"To keep the exposition clean, we do not provide formal definitions of these concepts here, as they are rather
standard; we refer the reader to the related works of [Beame et al., 1998; Komargodski et al., 2019] for more details.

15

problems that we reduce from/to. We remark that the reductions constructed for proving the
PPA-hardness of the problem in previous works (for a non-constant number of agents) [Filos-
Ratsikas and Goldberg, 2018, 2019; Filos-Ratsikas et al., 2020] are not black-box reductions, and
therefore have no implications on the query complexity of the problem.

We summarise our general approach for obtaining positive and negative results below.

e For our impossibility results (i.e., computational hardness results in the white-box model and
query complexity lower bounds in the black-box model), we will construct an efficient black-
box reduction from nD-Borsuk-ULaMm to e-CONSENsUs-HALVING with n agents (Section 4.1).
This reduction will preserve the optional properties of Definition 3, meaning that if the
instance of nD-Borsuk-ULAM is normalised (respectively monotone), the valuation functions
of the corresponding instance of e-CoNsSENsus-HALVING will be normalised (respectively
monotone) as well. This will allow us in subsequent sections to reduce the problem of
proving impossibility results for e-CONSENSUS-HALVING to proving impossibility results for
the versions of nD-Borsuk-ULaM with those properties. We will obtain these latter results
via reductions from nD-TUCKER, which for n > 2 is known to be PPA-hard (Theorem 3.1)
and admit exponential query complexity lower bounds (Theorem 3.2).

e For our positive results (i.e., membership in PPA in the white-box model and query complexity
upper bounds in the black-box model), we will construct an efficient black-box reduction
from e-CoNSENsUS-HALVING to nD-TuckeR (Section Section 4.2). We remark here that a
similar reduction already exists in the related literature [Filos-Ratsikas et al., 2021], but only
applied to the case of additive valuation functions. The extension to the case of general
valuations follows along the same lines, and we provide it here for completeness. We also
note that some of our positive results, namely the results for one general agent and two
monotone agents, will not be obtained via reductions, but rather directly via the design
of polynomial-time algorithms in the white-box model or algorithms of polynomial query
complexity in the black-box model.

4.1 From Borsuk-Ulam to Consensus-Halving

In this section, we present an efficient black-box reduction from nD-Borsuk-ULAM to e-CONSENSUS-
HALvING with 1 agents. As we mentioned earlier, this reduction will preserve the properties of
the Borsuk-Ulam function (normalisation and/or monotonicity), so that the resulting instance of
e-CoNsENsUs-HALVING will exhibit valuations with those same properties.

Description of the reduction. Letn > 1 be a fixed constant. Let ¢ > 0 and let F : B"tl — B" be
a Lipschitz-continuous function with Lipschitz parameter L. We now construct valuation functions
v1,...,0, for a Consensus-Halving instance.

Let Ry, Ry, ..., R;41 denote the partition of interval [0,1] into 1 + 1 subintervals of equal length,
ie, Rj = [%, 1] for j € [n+1]. For any A € A([0,1]), we define x(A) € B"*! = [-1,1]""! by
[X(A)]] = 2(1’1 + 1) . /\(A n R]) -1
for all j € [n + 1]. Recall that A denotes the Lebesgue measure on the interval [0, 1]. Note that

since A(ANR;) € [0, ;17], we indeed have [x(A)]; € [—1,1]; see Figure 2 for a visualisation.

16

Rl . RZ . H Rn H Ryt

Figure 2: The partition of [0, 1] into n + 1 subintervals of equal length and a set A, coloured by the
green region, as it is defined by the red cuts. The first three cuts on the left are located at positions
a <b<c, wherea € Ry and b,c € Ry. Here, since A(ANRy) =1/(n+1) —a, we would obtain
[x(A))1 =2(n+1)(1/(n+1)—a) —1=1—2(n+1)a. Similarly, A(ANRy) =1/(n+1) — (c—D),
and thus [x(A)], =1—-2(n+1)(c — b).

For i € [n], the valuation function v; of the ith agent is defined as

Fi(x(A)) +1

vi(A) = >

for any A € A([0,1]), where F; : B**! — [—1,1] is the ith output of F. Note that v;(A) € [0,1],
since Fi(x(A)) € [-1,1].

Lipschitz-continuity. For any A, B € A([0,1]) it holds that

|0i(A) —vi(B)| = % [Fi(x(A)) ~ F(x(B))| < 5 | F(x(4)) — F(x(B)) |

L
< 5 l1x(A) = x(B) [
<(n+1)L- max [A(ANR;)—A(BNR;)|
j€n+1]

< (n+1)L- max A((AAB)NR;)
je€n+1]

< (n+1)L-A(AAB)

Thus, v; is Lipschitz-continuous with Lipschitz parameter (n + 1)L.

Correctness. Now consider an ¢/2-Consensus-Halving of vy, ...,v,. Namely, let IT,7- bea
partition of [0,1] using at most n cuts, such that |v;(Z") —v;(Z7)| < /2 for all i € [n]. Since
T is obtained by using at most n cuts, it follows that there exists j € [n + 1] such that R;
does not contain a cut. As a result, Z* N R; is either empty or equal to R;. This implies that
AIZ*NR)) € {0,525} and thus [x(Z1)]; € {£1}, i.e, x(ZT) € 9(B"™). Furthermore, for any
j € [n+ 1], we have

(T =2+ 1) AT AR) —1=2(n+1)- <n—1|—1 AT N Rj)> 1
= 2(n+1)-A(Z"NR) +1

= —[x(Z7)];-

17

Letting y = x(Z1) € 9(B"*!), we have that for any i € [n]
E(y) — F(=y)| = [E(x(Z7)) = B(x(Z7))| = 2[oi(Z7) —v(I7)| < e

Thus, y is a solution to the original nD-Borsuk-ULAM instance.

White-box model. This reduction yields a polynomial-time many-one reduction from nD-
Borsuk-ULam to e-CONSENsUs-HALVING with n agents. Thus, if we show that nD-Borsuk-ULam
is PPA-hard for some 7, then we immediately obtain that e-ConsENsus-HALVING with n agents is
also PPA-hard.

Black-box model. It is easy to see that this is a black-box reduction. It can be formulated as
follows: given access to an oracle for an instance of nD-Borsuk-ULam with parameters (¢,L) we
can simulate an oracle for an instance of e-CoNsENsUs-HALVING (with n agents) with parameters
(e/2,(n+1)L) such that any solution of the latter yields a solution to the former. Furthermore,
in order to answer a query to some v;, we only need to perform a single query to F. Thus, we
obtain the following query lower bound: solving an instance of e-CoNSENsUs-HALVING (with
n agents) with parameters (¢, L) requires at least as many queries as solving an instance of
nD-Borsuk-ULam with parameters (¢, L') = (2¢, L+). This means that if nD-Borsuk-UrLam has

7 i+l
a query lower bound of Q(([g—;)”*l) for some 1, then e-Consensus-HALVING (with n agents) has a
query lower bound of Q((zg(n%l))”*l) = Q((L)"-1), since n is constant.

Additional properties of the reduction. Some properties of the Borsuk-Ulam function F carry
over to the valuation functions vy, ..., v,. In particular, the following properties are of interest to
us:

e If F is monotone, then vy,...,v, are monotone. Indeed, consider A, B € A([0,1]) with
A C B. Then, it holds that A(ANR;) < A(BNR;) for all j € [n+1], and as a result
x(A) < x(B) (coordinate-wise). By monotonicity of F, it follows that F;(x(A)) < F;(x(B)),
and thus v;(A) < v;(B) forall i € [n].

e If F is normalised, then vy,...,v, are normalised. As noted earlier, we already have
that v;(A) € [0,1] for all A € A([0,1]). Thus, it remains to prove that v;(®) = 0 and
v;([0,1]) = 1. It is easy to see that x([0,1]) = (1,1,...,1) and thus F(x([0,1])) = (1,1,...,1)
since F is normalised, which yields v;([0,1]) = 1. On the other hand, we have x(®) =
(=1,-1,...,—1) and thus F(x(?)) = —F(—x(®)) = —F(1,1,...,1) = (=1,—1,...,—1),
which yields v;(®@) = 0. Here we also used the fact F is an odd function, since it is
normalised. In fact, since F is odd, we also obtain that v;(A) + v;(A°) = 1 for all A €
A([0,1]), where A¢ = [0,1] \ A denotes the complement of A. This can be shown by noting
that x(A°) = —x(A) (by using the same argument as for Z+ and Z~ above) and then using
the fact that F(x(A)) = —F(x(A)).

This means that if we are able to show (white- or black-box) hardness of nD-Borsuk-ULam
where F has additional properties, then the hardness will also hold for e-ConsENsUs-HALVING
with n agents that have the corresponding properties.

18

Furthermore, note that if F is a normalised nD-Borsuk-ULaM function, then an e-approximate
Consensus-Halving for vy, ..., v, (i.e., |0;(Z7) —v;(Z7)| < ¢), yields an e-approximate solution
to F, in the sense that ||[F(x(Z"))|l~ < . This is due to the fact that, by definition, F is an odd
function, if it is normalised.

4.2 From Consensus-Halving to Tucker

The idea behind this reduction is the same as in [Filos-Ratsikas et al., 2021], where the result was
only proved for additive valuations. We include the full reduction here for completeness.

Description of the reduction. Consider an instance of e-CoNSENsUs-HALVING with 1 agents
with parameters ¢, L. Let vy, ...,v, denote the valuations of the agents. We consider the domain
K", where K, = {-1,—-(m—1)/m,...,—1/m,0,1/m,2/m,...,(m—1)/m,1}, for m = [2nL/¢].
A point in K, corresponds to a way to partition the interval [0, 1] into two sets Z,Z~ using at
most n cuts. A very similar encoding was also used by Meunier [2014] for the Necklace Splitting
problem. A point x € K, corresponds to the partition Z* (x),Z~ (x) obtained as follows.

1. Provisionally put the label “+” on the whole interval [0, 1]
2. For¢{=1,2,...,n:

e if x;, > 0, then put label “+” on the interval [0, x,|;
e if x; < 0, then put label “—" on the interval [0, —x/].

Note that subsequent assignments of a label to an interval, “overwrite” previous assignments. One
way of thinking about it, is that we are applying a coat of paint on the interval [0, 1]. Initially the
whole interval is painted with colour “+”, and as the procedure is executed, various subintervals
will be painted over with colour “—" or “+”. It is easy to check that the final partition into
I (x),Z-(x) that is obtained, uses at most n cuts. Furthermore, for any x € dK/,, the partition
Zt(—x),Z (—x) obtained from —x corresponds to the partition Z*(x),Z~ (x) with labels “+”
and “—" switched. In other words, Z* (—x) = Z~(x) and Z~ (—x) = Z*(x). For a more formal
definition of this encoding, see [Filos-Ratsikas et al., 2021].
We define a labelling ¢ : K}, — {£1,£2,...,£n} as follows. For any x € KJ;:

1. Leti € [n] be the agent that sees the largest difference between v;(Z" (x)) and v;(Z~ (x)), i.e.,
i = argmaXx;c[,) [0;(Z7 (x)) — vi(Z~ (x))|, where we break ties by picking the smallest such i.

2. Pick asigns € {+,—} as follows. If v;(Z (x)) > v;(Z~(x)), then let s = +. If v;(Z" (x)) <
vi(Z7(x)), thenlets = —. If v;(Z7(x)) = v;(Z (x)), then pick s such that 77 contains the
left end of the interval [0, 1].

3. Set {(x) = +i if s = +, and ¢(x) = —i otherwise.

With this definition, it is easy to check that /(—x) = —/(x) for all x € 9(K},). By re-interpreting
Kp' as a grid [N]" with N = 2m + 1, we thus obtain an instance ¢ : [N]" — {£1,£2,...,£n} of
nD-Tucker. In particular, note that ¢ is antipodally anti-symmetric on the boundary, as required.

19

Correctness. Any solution to the nD-TUCKER instance 0 yields x,y € K}, with ||[x — y|jec < 1/m
and {(x) = —{(y). Without loss of generality, assume that ¢(x) = +i for some i € [n]. Since
|x — ¥l < 1/m, we obtain that

MIT()AT () <) 1% —yjl = llx = ylh < nllx = yllo < n/m
j=1

and the same bound also holds for A(Z~(x)A Z~(y)). Since v; is Lipschitz-continuous with
parameter L, it follows that

0i(Z7 (x)) = vi(Z(y))| < L-MZT(x)A I7(y)) < nL/m

and similarly for |v;(Z~ (x)) — v;(Z~ (y))|-
Since ¢(x) = +i, it follows that v;(Z" (x)) > v;(Z~ (x)). For the sake of contradiction, let us
assume that v;(Z"(x)) > v;(Z~ (x)) + €. Then, it follows that

0i(ZT(y)) —vi(Z~(y)) > 0;(Z7(x)) —v;i(Z (x)) —2nL/m >¢e—2nL/m >0

since m > 2nL/e. But this contradicts the fact that ¢(y) = —i. Thus, it must hold that |v;(Z" (x)) —
vi(Z7(x))| < e. Since ¢(x) = +i, it follows that for all j € [n]

[0,(Z7(x)) = v(Z" (x))] < [0:(Z7 (x)) =0T~ (x)) <&

This means that Z* (x),Z~ (x) yields a solution to the original e-CONSENSUs-HALVING instance.

Note that the reduction uses N = 2m + 1 < 4nL /e + 3 for the nD-TuckeR instance. Further-
more, any query to the labelling function 7 can be answered by performing 2n queries to the
valuation functions vy, ..., v;,.

Our efficient black-box reduction in this section has several corollaries. First, it implies that
e-CONSENSUS-HALVING is in PPA, since nD-TUCKER is in PPA, by Theorem 3.1. As we remarked
earlier, this was known for additive valuations, via a similar proof [Filos-Ratsikas et al., 2021].

Proposition 4.1. For any constant n > 2, e-CONSENSUS-HALVING with n general agents is in PPA.

The next implication is that e-CoNsSENsUs-HALVING with n > 2 agents with general valuations
(and thus also for monotone valuations) can be solved with O((L/¢)"~!) queries. This is implied
by the query complexity upper bounds of Theorem 3.2, as in our reduction N is at most 4nL/e + 3,
and each query to the labelling function of nD-TUCKER requires 2n queries to the functions v;,
where 1 is constant.

Proposition 4.2. For any constant n > 2, the query complexity of e-CONSENSUS-HALVING with n general
agents is O((L/e)"~1), even in the weak black-box model.

By the results of Section 4.1 above, we also obtain corollaries for the nD-Borsuk-ULam problem,
since nD-Borsuk-ULAaM essentially reduces to nD-TUCKER via e-CONSENSUS-HALVING. For the
computational complexity of the problem in the white-box model, we have

Proposition 4.3. For any constant n > 2, nD-Borsuk-ULAM is in PPA.
Similarly, for the query complexity of the problem in the black-box model, we have

Proposition 4.4. For any constant n > 2, the query complexity of nD-Borsuk-UrLam is O((L/€)"~1).

20

5 General Valuations

We are now ready to prove our main results for the e-CoNsENsUs-HALVING problem, starting from
the case of general valuations. First, it is relatively easy to see that for a single agent with a general
valuation function, a simple binary search procedure is sufficient to find an e-CONSENSUS-HALVING
with a polynomial number of queries and in polynomial time, therefore obtaining an efficient
algorithm both in the white-box and in the black-box model.

Theorem 5.1. For one agent with a general valuation function (or multiple agents with identical general
valuations), there is a polynomial-time algorithm which solves e-CONSENsUs-HALVING using O (log %)
queries, even in the weak black-box model.

Proof. We will prove the theorem for the case of n = 1, as a solution to e-CONSENsUs-HALVING for
this case is also straightforwardly a solution to the problem with multiple agents with identical
valuations. Our algorithm essentially simulates binary search. We say that the label of a cut x € [0, 1]
is “+”,if v([0, x]) > v([x,1]) + &. Respectively, the label of cut x is “—", if v([x,1]) > v([0, x]) +&.
In any other case, the label of the cut is 0; if a cut has label 0, then it is a solution to e-CONSENSUS-
HarviNG. Observe that in order for an interval [a,b] C [0,1] to contain a solution, it suffices that
the label of a be “—" and the label of b be “+” (or vice-versa); then there is definitely a point
x € [a,b] where the label is 0 (by continuity of v).

Now let a = 0 and b = 1. If a or b has label 0, then we have immediately found a solution.
Otherwise, note that if a has label “—”, then b must have label “+”, and vice-versa. For convenience,
in what follows, we assume that a2 has label “—" and b has label “+”. Our algorithm proceeds
as follows in every iteration. Given an interval [a, b] with label “—" for a and label “+” for b, it
computes the label of “}2. This can be done via two EVAL queries. Then, if the label of “4% is “+”,
it sets b = ”‘Zih; if the label is “—", it sets a = % ; and if the label is 0 it outputs this cut.

We claim that the algorithm will always find a cut with label 0 after at most log L iterations.
For the sake of contradiction, assume that there is no such cut after log % iterations. Observe that
the length of [a, b] in this case will be ;. In addition, we know the labels of a and b. Cut a has
label “—", thus v([a,1]) > v([0,a]) + ¢, and cut b has label “+”, i.e., v(]0,b]) > v([b,1]) + €. Since
|b—a| < § and v is L-Lipschitz-continuous, it follows that

[o(a,1]) —o([b,1]))| < L-A(la,b)) <L- - =¢

£ _
=
and similarly |v([0,a]) — v([0,b])| < e. Putting everything together, we obtain that

v([0,b]) <v([0,a]) +¢ < v([a,1]) <v(]b1]) +e
which contradicts the assumption that cut b has label “4-". O

From Theorem 5.1, we have the following two corollaries. The first one follows from the trivial
observation that a polynomial-time algorithm which queries the polynomial-time algorithm of the
input O (log £) times is a polynomial-time algorithm.

Corollary 5.2. For one agent with a general valuation function (or multiple agents with identical general
valuations), e-CONSENSUS-HALVING is solvable in polynomial time.

The second corollary regards the black-box model, where we have the following result.

21

Corollary 5.3. For one agent with a general valuation function (or multiple agents with identical general
valuations), the query complexity of e-CONSENsus-HALVING is © (log £).

Again, the upper bound follows from Theorem 5.1 above, whereas the lower bound follows
from our general reduction from nD-Borsuk-ULAM in Section 4, and the query lower bounds
for the latter problem obtained in Section 5.1 below. In more detail, 1D-Borsuk-ULam (and thus
e-CoNsENsUs-HALVING with a single agent) inherits its query complexity lower bounds from
1D-TuckeRr, which can be easily seen to require at least)(log N) queries in the worst-case. The
latter bound naturally translates to a Q)(log(L/¢)) bound for e-CoNseNsus-HaLvING. We also
remark that the upper bound holds for any version of the problem with general valuations, even in
the weak black-box model, whereas the lower bound holds even for normalised general valuations
and for the standard black-box model.

We now move to our results for two or more agents with general valuations. Here we obtain a
PPA-completeness result for e-CONSENsUs-HALVING, as well as exponential bounds on the query
complexity of the problem. Our results demonstrate that for general valuations, even in the case
of two agents, the problem is intractable in both the black-box and the white-box model.

Our positive results were already obtained and presented in Section 4.2, so in this section we
will obtain the matching impossibility results. As we explained in Section 4, all the impossibility
results will be established via an efficient black-box reduction from nD-TUCKER to nD-BORSUK-
ULawm, which is captured by the following lemma.

Lemma 5.4. For any constant n > 1, nD-TUCKER reduces to normalised nD-Borsux-ULAM, via an
efficient black-box reduction.

Before we proceed with the proof of the lemma, we explain how we can obtain our results as its
corollaries, together with the results in Section 4.2, both in the white-box and in the black-box
model.

White-box model. The first corollary of Lemma 5.4 is the PPA-hardness of nD-Borsuk-ULaM.
Together with Proposition 4.3, we have the following theorem.

Theorem 5.5. nD-Borsuk-UrLaM is PPA-complete, for any constant n > 2. This remains the case, even
if (a) we fix e € (0,1), or (b) we fix L > 3.

Note that while the “in PPA” result does not require any assumptions, the PPA-hardness result
holds also for normalised nD-Borsuk-ULaMm, making both results stronger. Also note that if both
e and L are fixed, then the problem can be solved in polynomial time.

From the reduction in Section 4.1, Theorem 5.5 and Proposition 4.1, we immediately have the
following corollary, which is our main result of the section for the computational complexity of
e-CONSENSUS-HALVING.

Theorem 5.6. For any constant n > 2, e-CONSENSsUs-HALVING with n normalised general agents is

PPA-complete. This remains the case, even if (a) we fix e € (0,1), or (b) we fix L > 3(n+1).

Black-box model. In the black-box model, Lemma 5.4 has similar implications. First, it implies
that normalised nD-Borsuk-ULaM requires Q((L/¢g)"~1) queries. Together with Proposition 4.4,
we obtain the following theorem.

22

Theorem 5.7. Let n > 2 be any constant. There exists a constant ¢ > 0 such that for any € € (0,1) and
any L > 3 with L/e > c, the query complexity of nD-Borsuk-ULam is @((L/e)"1).

Again, from the reduction in Section 4.1, Theorem 5.7 and Proposition 4.2, we immediately
have the following corollary, which is our main result of the section for the query complexity of
e-CONSENSUS-HALVING.

Theorem 5.8. Let n > 2 be any constant. There exists a constant ¢ > 0 such that for any € € (0,1) and
any L > 3(n+ 1) with L/e > c, the query complexity of e-CONSENSUS-HALVING with n normalised
general agents is ©((L/e)"~1) queries.

Again, we remark that the lower bounds hold even for agents with normalised valuation functions,
whereas the upper bounds hold for any valuation functions and even in the weak black-box model,
therefore making both results stronger.

The next section is dedicated to the proof of Lemma 5.4.

5.1 Reducing nD-Tucker to normalised nD-Borsuk Ulam

Let n > 1 be any constant. Consider an instance ¢ : [N]" — {£1,£2,...,+n} of nD-TUCKER.
Let ¢ € (0,1). We will construct a normalised nD-Borsuk-Uram function F : B**! — B" that is
Lipschitz-continuous with Lipschitz parameter L = max{3,4n?(N — 1)e + 1} and such that any
x € 9(B"1) with |F(x)||e < € yields a solution to the nD-TUCKER instance.

Let § = min{2¢,1}. Note that 6 € (0,1] and ¢ < 6 < 2e. Without loss of generality, we can
assume that for p = (N, N, ..., N) it holds ¢(p) = +1. Indeed, it is easy to see that we can rename
the labels to achieve this, without introducing any new solutions.

Step 1: Interpolating the nD-Tucker instance. The first step is to embed the nD-Tucker grid
[N]"in [-1/2,1/2]", define the value of the function at every grid point according to the labelling
function ¢ and then interpolate to obtain a continuous function f : [-1/2,1/2]" — [=J-n,6 - n].

We embed the grid [N]" in [-1/2,1/2]" in the most straightforward way, namely p € [N]"
corresponds to p € [—1/2,1/2]" such that p; = —1/2+ (p; —1)/(N — 1) for all j € [n]. Note that
antipodal grid points exactly correspond to antipodal points in [—1/2,1/2]". In other words, p
and g are antipodal on the grid, if and only if p = —7.

Next we define the value of the function f : [-1/2,1/2]" — [=6-n,d - n] at the embedded
grid points as follows

f(p) =6-n-eyp)

for all p € [N]". For i € [n], e;; denotes the ith unit vector in R”, and e_; := —e.;. We then use
Kuhn’s triangulation on the embedded grid to interpolate between these values and obtain a
function f : [-1/2,1/2]" — [—6 -1, - n] (see Appendix C for more details). We obtain:

e f is antipodally anti-symmetric on the boundary of [—-1/2,1/2]", i.e., f(—x) = —f(x) for
all x € 9([—1/2,1/2]").

e f is Lipschitz-continuous with Lipschitz parameter 2n*(N — 1)J, since the grid size is
1/(N—=1) and || f(P)]|e < J-n forall p € [N]".

23

e Any x € [—1/2,1/2]" such that ||f(x)||c < € must lie in a Kuhn simplex that contains
two grid points p,q € [N]" such that ¢/(p) = —/(q), i.e., a solution to the nD-TUCKER
instance. Indeed, let p°, p!,...,p" € [N]" be the grid points of the Kuhn simplex containing
x. It {€(p°), €(p'),...,L(p")} does not contain two opposite labels, then all the points in
V= {f(pAO),f(pAl), .., f(p")} lie in the same orthant of R”". Since ||f(;;1)|\E>o =¢-nforalli,
it follows that any convex combination v of vectors in V must be such that ||v||; > - n, and
thus ||| > & > €. Thus, if ||f(x)]|e < g then {£(p°),£(pY),...,£(p")} must contain two
opposite labels.

e f(1/2,1/2,...,1/2) =6-n-e41 = (6-1,0,0,...,0).

Now, we define g : [-1/2,1/2]" — [0, 6]" to be the truncation of f to [—4,]", namely

<i(x) = min{d, max{—4, fi(x)}}.

It is not hard to see that g is also antipodally anti-symmetric, Lipschitz-continuous with Lipschitz
parameter 2n?(N — 1)6 and ¢(1/2,1/2,...,1/2) = 6 - e,1. Furthermore, if x € [-1/2,1/2]" is
such that ||g(x)|lw < ¢, then, since ¢ < 4, || f(x)|lw < ¢ and thus x again yields a solution to the
nD-TUCKER instance.

Step 2: Extending to [—1,1]". The goal of the next step is to define a function & : [-1,1]" —
[—1,1]" that extends g and ensures that #(1,1,...,1) = (1,1,...,1), while maintaining its other
properties. For x € [—1,1]" we let T(x) € [—-1/2,1/2]" denote its truncation to [—-1/2,1/2]", i.e.,
[T(x)]; = min{1/2,max{—1/2,x;}} for all i € [n]. The function & : [-1,1]" — [—1,1]" is defined
as

(2min;x; —1) -1+ (2 — 2min; x;j) - 6 - e 41 if x; >1/2forall i
h(x) =14 (2min;j(—x;) —1)-(=1)+ (2 —2min;(—xj))-d-e_1 ifx; < —1/2foralli
¢(T(x)) otherwise

where 1 € R” denotes the all-ones vector, i.e, 1 = (1,1,...,1). Clearly, it holds that 1(1,1,...,1) =
1. It is also easy to see that h(—x) = —h(x) for all x € 9([—1,1]"), in particular because
T(—x) = —T(x). Furthermore, if ||h(x)|| < ¢, then it must be that ||g(T(x))||« < €, which yields
a solution to the nD-TuckeRr instance. Indeed, if x; > 1/2 for all i, then

hi(x) = (ijinx]- 1)1+ (2- 2mjinx]-) >8>

s0 |[h(x)|l > €. By the same argument, if x; < —1/2 for all i, then we also have ||/h(x)|/« > €.

Since g(1/2,1/2,...,1/2) = -e4q and g(—1/2,—-1/2,...,-1/2) = 6 - e_4, it is easy to see
that /1 is continuous. Furthermore, since for any x,y € [—1,1]" it holds that ||T(x) — T(y)|le <
| x — y||eo, it is easy to see that h is 2n?(N — 1)é-Lipschitz-continuous outside of {x € [—1,1]"|x; >
1/2foralli € [n]}U{x € [-1,1]"|x; < —1/2foralli € [n]}. For any y,z € {x € [-1,1]"|x; >
1/2 for all i € [n]}, it holds that |h;(y) — h;(z)| = 2| min;y; — min; z;| < 2||y — z|e for i > 1, and
|h1(y) — h1(z)| = 2(1 —)| min; y; — min; z;| < 2|y — z||e. Thus, h is 2-Lipschitz-continuous on
{x € [-1,1)"|x; > 1/2for alli € [n]} and, by the same argument, also on {x € [—1,1]"|x; <
—1/2for alli € [n]}.

24

As a result, I is Lipschitz-continuous on [—1,1]" with Lipschitz parameter max{2,2n?(N —
1)6}. Indeed, consider any x,y € [—1,1]". If x; > 1/2 and y; < —1/2 for all i, then ||x — y|je > 1,
and thus [|h(x) — h(y)]|e < 2 < 2||x — y||co- By symmetry, the only remaining case that we need
to check is when x; > 1/2 for all i, and y is such that there exists i with y; < 1/2 and there exists i
with y; > —1/2. In that case, we consider the segment [x, y] from x to y, and let z € [x,y| be the
point that is the furthest away from x but such that z; > 1/2 for all i. Note that there must exist i
such that z; = 1/2. This means h(z) = ¢(T(z)) and thus ||(z) — h(y)]|e < 212(N — 1)6]|z — || co-
On the other hand, we have ||h(x) — h(z)]|e < 2||x — z||e. Putting these two expressions together,
we obtain that ||i(x) — h(y)|le < max{2,2n2(N —1)6}(||x — z|leo + ||z = y||eo) = max{2,2n?(N —
1)0}||x — y||«- Here we used the fact that z € [x, y], which means that there exists t € [0,1] such
that z = x + t(y — x) and thus

1 = 2lleo + Iz = Ylloo = tlx = yllw + (1 = D) Ix = Ylloo = [|¥ = Y]l

Step 3: Extending to [—1,1]""l. The final step is to define a normalised nD-Borsuk-ULam
function F : [—1,1]"*! — [~1,1]" such that any x € 9([—1,1]"!) with ||[F(x)]|e < ¢ yields a
solution to the nD-TuckeR instance. For x € [—1,1]"! we write x = (x/, x,,11), where x’ € [—1,1]".
We define

#h(x/) +#(—h(—x’)).

Since h(x'), —h(—x") € [-1,1] and F(x) is a convex combination of these two, it follows that
F(x) € [—1,1]". Furthermore, we have F(1,1,...,1) = h(1,1,...,1) = 1. F is an odd function,
since

F(x) = F(x', xp11) =

1+ Xn+1

ISty (y 4 T2 () = —F(, 041) = —Fx).

F(=x) = F(=x, —xu11) = —

Consider any x = (x, x,11) € 9([—1,1]"*!) with ||F(x)|| < e. Since F is an odd function, we can

assume that x,1 > 0 (otherwise just use —x instead of x). If x,,.1 = 1, then F(x', x,11) = h(x'),

and thus ||h(x")||e < ¢, which yields a solution to the nD-TuckeRr instance. If x,,.1 € [0,1), then

x" € d([—1,1]") and thus h(x’) = —h(—x'). This implies that F(x’, x,,+1) = h(x’) in this case too.
Finally, let us determine the Lipschitz parameter of F. Let x,y € [—1,1]""1. We have

1+x 1—x
IF(x', xn11) = F(y, xn41) oo < 7’”1”?1(") = h(y)le + %Hh(—x’) —h(=y')lleo
< max{2,2n*(N —1)6}{|x" — /||

and also

Xn — Yn
IFQY, %01) — F)l < 358) o4 (9 l) < 01— vl

Putting these two expression together, it follows that
IF () = F(y)lleo < max{3,2n*(N = 1)8 + 1}{|x — y||ec-
Note that max{3,2n*(N —1)6 + 1} < max{3,4n*(N —1)e + 1}.

In the black-box model, in order to answer one query to F, we have to answer two queries to /,

25

i.e., two queries to g. In order to answer a query to g, we have to answer one query to f,ie., n+1
queries to the labelling function ¢ (in order to interpolate). Thus, one query to F requires 2(n + 1)
queries to /.

This black-box reduction has various consequences.

White-box model. The reduction actually gives us a way to construct an arithmetic circuit that
computes F, if we are given a Boolean circuit that computes ¢. Indeed, using standard techniques
[Chen et al., 2009; Daskalakis et al., 2009], the execution of the Boolean circuit on some input can
be simulated by the arithmetic circuit. Furthermore, the input bits for the Boolean circuit can
be obtained by using the < gate. All the other operations that we used to construct F can be
computed by the arithmetic gates +, —, X, max, min, < and rational constants. Thus, we obtain a
polynomial-time many-one reduction from nD-TUCKER to normalised nD-Borsuk-ULaMm for all
n > 1. Since nD-TuckeR is PPA-hard for any n > 2, we immediately obtain the PPA-hardness of
nD-Borsuk-ULaM. Together with the reduction from nD-Borsuk-ULaMm to e-CONSENSUS-HALVING,
which is in PPA, we immediately obtain Theorem 5.5.

Black-box model. The reduction we have provided only requires black-box access to the labelling
function ¢ of the nD-TUCKER instance. In more detail, any query to F can be answered by making
2(n+1) queries to £. Since n is a constant, the query lower bounds from nD-TUCKER carry over to
normalised nD-Borsuk-ULaM, and we obtain Theorem 5.7.

6 Monotone Valuations

In this section, we present our results for agents with monotone valuations. In contrast to the
results of Section 5, here we prove that for two agents with monotone valuations, the problem
is solvable in polynomial time and with a polynomial number of queries, and in fact this result
holds even if only one of the two agent has a monotone valuation and the other has a general
valuation. For three or more agents however, the problem becomes PPA-complete once again, and
we obtain a corresponding exponential lower bound on its query complexity.

6.1 An efficient algorithm for two monotone agents

We start with our efficient algorithm for the case of two agents, which is a polynomial-time
algorithm in the white-box model, as well as an algorithm of polynomial query complexity in
the black-box model; see Algorithm 1. The algorithm is based on a nested binary search procedure:
we start with an interval, initially defined by a position of the two cuts that “satisfies” the agent
with the monotone valuation, when one of the two cuts sits on the left endpoint 0 of the interval.
Then we iteratively “shrink” this interval based on the preference of the other agent, maintaining
that (a) the first agent is always “satisfied” and (b) the solution that “satisfies” the other agent
is contained in the considered interval that is being shrunk. Intuitively, we are moving on the
“indifference curve” of the valuation function of the agent with the monotone valuation (see the
red zig-zag line in Figure 3), and we “offer” the other agent points (i.e., sets of cuts), to which
the agent replies with either “+” or “—", indicating the label of her discrepancy. Since there
are “equivalent” cut positions in which the second agent responds with opposite labels (see the

26

intersection points of the red line with the vertical axis and the horizontal axis in Figure 3), we
know labels of the boundary points corresponding to this agent, and we can move in the direction
towards the point with the opposite discrepancy label.

Before we proceed, we draw an interesting connection with Austin’s moving knife procedure [Austin,
1982], an Exact-Division procedure for two agents with general valuations. The procedure is
based on two moving knifes which one of the two agents simultaneously and continuously slides
across the cake, maintaining that the corresponding cut positions ensure that she is satisfied with
the partition. At some point during this process, the other agent becomes satisfied, which is
guaranteed by the intermediate value theorem. Our algorithm can be interpreted as a discrete
time implementation of this idea and quite interestingly, it results in a polynomial-time algorithm
when one of the two agents has a monotone valuation, whereas it is computationally hard when
both agents have general valuations, as shown in Section 5. On a more fundamental level, this
demonstrates the intricacies of transforming moving-knife fair division protocols into discrete
algorithms.

The main theorem of this section is the following.

Theorem 6.1. For two agents with monotone valuations, there is a polynomial-time algorithm which solves
e-CONSENSUS-HALVING using O (log2 %) queries, even in the weak black-box model. This result holds
even if one of the two agents has a general valuation.

Before we present its proof, we state its corollaries. The first one follows from the fact that when v;
is a polynomial-time algorithm (in the white-box model), the whole algorithm is polynomial-time.

Corollary 6.2. For two agents with monotone valuations, e-CONSENsUS-HALVING is solvable in polyno-
mial time. This result holds even if one of the two agents has a general valuation.

For the query complexity of the problem, Theorem 6.1 straightforwardly implies the following
theorem.

Theorem 6.3. For two agents with monotone valuations, the query complexity of e-CONSENsUS-HALVING

is O (log2 %) This result holds even if one of the two agents has a general valuation.

Next, we present the proof of Theorem 6.1.

6.1.1 Proof of Theorem 6.1

Before we proceed with our algorithm and its analysis, let us begin with some conventions that
will make the presentation easier. Since we have to make two cuts, we can distinguish between
them by calling them “left cut” and “right cut”, and denoting cut; and cut, their positions
respectively. We assume that 0 < cut, < cut, < 1. In addition, the labels of the corresponding
intervals are as follows: intervals [0,cut/| and [cuT,, 1] have label “+”, forming the positive
piece, and interval [cuTy, cuT,| has label “—”, forming the negative piece. Given a pair of cuts
(cuty, cuT,), agent i:

e prefers the positive piece, if v;([0, cuty] U [cut,, 1]) > v;([cuty, CUT/]) + ¢;

27

0 left cut 1
1 — [P €1 Ye o Yy
u 57 .
¢ < 2L] A_l

right

cut -
+ c o
cut! Do

Ye—A—=T1p

1
T 7

@ (b) (c)

Figure 3: Visual interpretation of Algorithm 1. Subfigure (a) depicts our initial assumptions. The
red line shows where Agent 1 is indifferent. The blue signs on (0, cur}) and (cut}, 1) show the
preferences of Agent 2 under these pairs of cuts. Subfigure (b) shows a possible position for the
cuts r — £ < 57. The arrows show how the difference between the values of the positive piece and
the negative piece change between the four possible combinations of pairs of cuts. Subfigure (c)
depicts the actual cuts on the cake: the green parts have label “4” and the yellow parts have label

1" 4

e prefers the negative piece, if v;([cuty, cut,]) > v;([0, cuTy] U [cuTy, 1]) + ¢
e is indifferent if |v;([cuTy, cuT,]) — v;(]0, cut/] U [cUuT,, 1])| < e.

The final assumption we need to make is regarding the preferences of Agent 2 for the two special
pairs of (0, cut}) and (cuty, 1), where cut} = cut} and Agent 1 is indifferent under any pair of
cuts. We note that we can find cur} and cur} efficiently using the algorithm from Theorem 5.1.
Observe that both pairs of cuts cut the cake into two same pieces and only change the labels of
the pieces. Hence, if Agent 2 prefers the positive piece under the pair of cuts (0, cur}), he has
to prefer the negative piece under the pair of cuts (cutj, 1). In the description of the algorithm
we will assume that this is indeed the case, which is without loss of generality. Using the above
notation and assumptions we can now state Algorithm 1.

To prove the correctness of Algorithm 1 we need to prove that the following invariants are

maintained through all iterations:

1. for any x € [/, r] there exists a y > x such that the pair of cuts (x,y) makes Agent 1
indifferent between the two pieces;

2. for any y = “F¥ there exists an x € [(,7] such that the pair of cuts (x,y) makes Agent 1
indifferent between the two pieces;

3. there exists a pair of cuts (x,y), where x € [{,r] and y > [y, y,] that makes Agent 2
indifferent between the two pieces.

28

1

2

3

4

5

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ALGORITHM 1: e-CoNsENsUS-HALVING for two agents with monotone valuations

Set £ < 0 and r + cur;}
Set cuT) + CUT} and cut, + 1
while Agent 2 is not indifferent under the pair of cuts (cuty, cut,) do
if r — (> 57 then
Find y > %, such that Agent 1 is indifferent under the pair of cuts (47,)
Set cuty % and cut, < y.
if Agent 2 prefers the positive piece under (cuty, CuT,) then
| Sete— 4r
end
if Agent 2 prefers the negative piece under (cuty, cut,) then
‘ Setr — %
end
else
Let y; and y, be such that Agent 1 is indifferent under the pairs of cuts (¢,y,) and (r,y,)
Find x € [(,7] such that Agent 1 is indifferent under the pair of cuts (x, “F¥")
Set cuty < x and cuT, + @
if Agent 2 prefers the positive piece under (CuTy, CUT,) then
‘ Sety, — WTW’
end
if Agent 2 prefers the negative piece under (Cuty, cuT,) then
‘ Set y, — @

end

end

end

For the first invariant, observe the following. If the pair of cuts (x,1) make Agent 1 indifferent,
then the claim holds. If on the other hand Agent 1 prefers a piece under this pair of cuts, it must
be the case that he prefers the negative piece. This is due to monotonicity of v;. In addition,
observe that under the pair of cuts (x, x), the whole cake gets label “+”, so in this case Agent 1
prefers the positive piece. From the intermediate value theorem we get that there must exist a
y € [x,1] such that v1([0, x] U [y, 1]) = v1([x,y]), i.e., that makes the agent indifferent.

For the second invariant, we need to consider two cases depending on whether y, > y, or
ye < yr». When y, > y, we observe that due to monotonicity of the valuation of Agent 1 we get
that

01(10, 41U [ye, 1]) = o1 ([€ yel) < 01([0,] ULy, 1) = 02 ([6, 9r]) < 02((0, 7] U yr, 1) = 02 ([r, 7).

In addition, since Agent 1 is indifferent under the pairs of cuts (¢,y,) and (r,y,), we know that

[01([0,] U [ye, 1)) —oa([Lye])| <& and [or([0,r]U [y, 1]) —or([r, e])| < &

29

So, if 0 > v1([0,4] U [ye,1]) — v1([4,ye]) > —e it must be true that 0 > v1([0,7] U [y,,1]) —
v1([r,y+]) > —e. Thus, the existence of an x that makes Agent 1 indifferent under (x, eryr) follows

from the intermediate value theorem. If y, < y,, then there are two cases.

o If sign(v1([0, €] U [ye, 1]) — v1([¢,y¢])) # sign(v1([0,7] U [yr, 1]) — v1([7, y+])), then the invari-
ant follows from the intermediate value theorem.

o If sign(v1([0, 4] U [ye, 1]) —v1([4, ye])) = sign(v1([0, 7] U [y, 1]) — v1([r, y/])), then using again
the monotonicity of v, using the fact that Agent 1 is indifferent between the two pieces
under the pairs of cuts (¢,y,) and (r,y,), and the intermediate value theorem, we can again
prove the claim.

For the third invariant, let us consider an iteration of the algorithm where cut, can be located
on [/, r]. Let y, be chosen in such a way that Agent 1 is indifferent under the pair of cuts (¢, y,).
Similarly, let y, be such that Agent 1 is indifferent under the pair of cuts (7,y,). Observe that, for
any ¢ considered by Algorithm 1, Agent 2 prefers the positive piece for the pair of cuts (£,y,). In
addition, for any r considered by Algorithm 1, Agent 2 prefers the negative piece for the pair of
cuts (7,y). This is due to the assumption that Agent 2 prefers the negative piece under the pair of
cuts (cut}, 1) and that he prefers the positive cut under the pair of cuts (0, cut;), and the update
rule used in Steps 8 and 12.

Next, in order to bound the running time of our algorithm we need to bound two things:
the time needed for Steps 5 and 15, and the number of iterations of the algorithm. The overall
running time of the algorithm will be bounded by the number of iterations multiplied by the
time needed for Step 5, or Step 15. Firstly, observe that Steps 5 and 15 can be tackled using the
algorithm from Theorem 5.1. This is because we can view the problem as a special case where we
have one agent and we need to place a single cut in a specific subinterval that, due to the first two
invariants, we know that a solution exists. Thus, each of these steps requires O(log £) time. In
addition, observe that after O(log £) iterations we get that r — ¢ < 5. Similarly, after O(log &)
we get that |y, — y,| < 55 as well. So, after at most O(log” L) time we either get a pair of cuts
(cuty, cut,) that make both agents indifferent between the pieces, or we have two pairs of cuts
(4,y¢) and (r,yr) such that the following hold. Firstly, their ¢; distance is at most £. In addition,
due to the updating rules at Steps 8, 12, 18, and 22, we get that v2([0,] U [ys,1]) > va([[¢, y¢]])
and that v5([0, 7] U [y, 1]) < v2([[7, y]]). These facts combined with the L-Lipschitz-continuity of
valuation function v, imply that at least one pair of cuts between (¢,y,) and (r,y,) makes Agent 2
indifferent. The proof for the two monotone agents is completed using the fact that Agent 1 is
indifferent for any pair of cuts between (¢,y,) and (,y,) and the fact that we can simulate every
step using queries; Steps 5 and 15 can be simulated with O(log 57) as it was already explained in
the proof of Theorem 5.1 and each of Steps 8, 12, 18, and 22 can be simulated via two queries.
Finally, we observe that we have not used the fact that Agent 2 is monotone. Hence, the Algorithm
works even when Agent 2 has a general valuation function.

6.2 Results for three or more monotone agents

We now move on to the case of three or more monotone agents, for which we manage to show that
the problem becomes computationally hard and has exponential query complexity. Our results
thus show a clear dichotomy on the complexity of e-CoNsENsus-HALVING with monotone agents,

30

between the case of two agents and the case of three or more agents.

Central to all of the results in this section will be the following lemma, the proof of which we
present in Section 6.2.1 below.

Lemma 6.4. For any constant n > 2, (n — 1) D-TuckeR reduces to normalised monotone nD-BORSUK-
ULaMm in polynomial time, via an efficient black-box reduction.

Lemma 6.4 has several implications, both in the white-box and the black-box model.

White-box model. The first corollary of Lemma 6.4 is the PPA-hardness of monotone nD-
Borsuk-ULawm, for n > 3, since by Theorem 3.1 nD-TUuckeR is PPA-hard for n > 2. Together with
Proposition 4.4, which holds for the general version of the problem (and thus also the monotone
version), we have the following corollary.

Theorem 6.5. Monotone nD-Borsuk-ULaM is PPA-complete, for any constant n > 3. This remains the
case, even if (a) we fix ¢ € (0,1), or (b) we fix L > 3.

We remark that the PPA-hardness still holds even if we restrict our attention to the normalised
nD-Borsuk-ULaM problem, whereas the PPA-membership holds under no assumptions, so both
results are stronger.

From the reduction in Section 4.1, which is property-preserving, Theorem 6.5 and Proposi-
tion 4.1, we immediately obtain our main result of the section for the computational complexity of
e-CONSENSUS-HALVING with n > 3 monotone agents.

Theorem 6.6. For any constant n > 3, e<CONSENSUS-HALVING with n monotone agents is PPA-complete.
This remains the case, even if (a) we fix ¢ € (0,1), or (b) we fix L > 3(n+1).

Once again, we remark that the PPA-hardness still holds even if we restrict our attention to agents
with normalised valuation functions, whereas the upper bound holds without any assumptions.

Black-box model. In the black-box model, Lemma 6.4 has similar implications. Interestingly,
since we are reducing from an instance of (n — 1)D-TUCKER (i.e., of one dimension lower),
we inherit the query complexity lower bounds for the problem for that case. Together with
Proposition 4.4, we get the following theorem.

Theorem 6.7. Let n > 3 and t € (0,1) be any two constants. There exists a constant ¢ > 0 such that
forany e € (0,t) and any L > 3 with L/e > c, the query complexity of monotone nD-BORSUK-ULAM is
between Q((L/e)"~2) and O((L/e)"1).

Again, the lower bounds also hold for the case of normalised monotone nD-Borsuk-ULaMm.
From the reduction in Section 4.1, which is property-preserving, together with Theorem 6.7 and
Proposition 4.2, we obtain our main result for the query complexity of e-CoNsENsUS-HALVING for
n > 3 monotone agents.

Theorem 6.8. Let n > 3 and t € (0,1) be any two constants. There exists a constant ¢ > 0 such that for
any e € (0,t) and any L > 3(n + 1) with L/e > c, the query complexity of e-CONSENSUS-HALVING with
n monotone agents is between Q((L/e)"~2) and O((L/e)*~1).

31

The lower bounds again hold even if the valuation functions are normalised. There is a small gap
between our lower and upper bounds; we conjecture that it should be possible to prove upper
bounds that match the lower bounds of Theorem 6.8, at least up to logarithmic factors, but we
leave this for future work.

We now proceed with the proof of Lemma 6.4, from which we obtain all the results of the section.

6.2.1 Reducing (n — 1)D-Tucker to monotone nD-Borsuk-Ulam

Let n > 2 be any fixed constant. Consider an instance ¢ : [N]""! — {£1,42,...,£(n —1)}
of (n —1)D-Tucker. Let e € (0,1). We will construct a monotone normalised 7D-BoRrRsUk-
Uram function F : [—1,1]""! — [—1,1]" that is Lipschitz-continuous with Lipschitz parameter
L= (4(n+1)*Ne+2)/(min{2,1/¢} — 1) and such that any x € 9(B"™!) with ||F(x)||« < € yields
a solution to the (n — 1) D-TUCKER instance.

Step 1: From (n — 1) D-Tucker to non-normalised (n — 1) D-Borsuk-Ulam. Let § = min{2¢,1}.
Note that 6 € (0,1] and ¢ < § < 2e. The first step of the proof is identical to the proof of
Lemma 5.4. Namely, we construct ¢ : [—1/2,1/2]""! — [=§,5]""! such that g is antipodally
anti-symmetric and 4(n — 1)2(N — 1)e-Lipschitz-continuous. Furthermore, any x € [—1/2,1/2]"1
with [|g(x)||e < ¢ yields a solution to the original (n — 1) D-TUCKER instance. Then, we define
h:[-1,1]""1 — [=4,6]" ! by h(x) = g(x/2). h has the same properties as g, except that it is
2(n — 1)2(N — 1)e-Lipschitz-continuous.

Next, we extend h to a (non-normalised) (n — 1) D-Borsuk-Uram function G : [-1,1]" —
[—4,6]" ! using the same construction as in the proof of Lemma 5.4. By the same arguments, it
holds that F is an odd function and it is Lipschitz-continuous with parameter 2(n — 1)>(N — 1)e +
5 < 2n?Ne. Furthermore, any x € 9([—1,1]") with ||G(x)||« < & yields a solution to the original
(n — 1) D-TuCKER instance.

On a high-level, the rest of the reduction, which is the most interesting part, works by
embedding G in an n-dimensional subspace of [—1,1]"*! and then carefully extending it to the
rest of [—1,1]""! in a monotonic way. This n-dimensional subspace is

n+1
in :0} .

D= {x e [-1,1)"*!
i=1

It has the nice property that for any x,y € D, if x <y, then x = y.

Step 2: Embedding into a function D — [—4,6]""!. We begin by defining a slightly modified
version of G. The function G : [—1,1]" — [—6,6]" ! is defined as follows

Gx)=G((n+1) T (x))

n+1

where T, : [—1,1]" — [—r,7]" denotes truncation to [—r, 7] in every coordinate. It is easy to see that
G remains an odd function and that it is Lipschitz-continuous with parameter (1 4 1) - 2n2Ne <
2(n + 1)3Ne. Furthermore, it holds that any x € [—1,1]" \ (—n%rl, n%rl)” with [|G(x)||e < 0 yields
a solution to the (n — 1) D-Borsuk-ULAM instance G.

32

Next, we embed G into D. Let H : D — [—4,6]" ! be defined by H(x) = H(x', x,11) = G(x').
Note that H remains an odd function and is also 2(n + 1) Ne-Lipschitz-continuous. Any x € D
with |[H(x) || < 6 and such that there exists i € [n] with |x;| > 1/(n + 1), yields a solution to G
and thus to the original (n — 1) D-TUCKER instance.

Step 3: Extending to a function [—1,1]""! — [~1,1]""!. In the next step, we extend H to a
function F' : [—1,1]"*! — [-1,1]*"1. For x € [-1,1]""!, we let S(x) = /"' x; € [~ (n+1),n + 1]
and IT(x) = x — (x,1,41) - L1 /(n+1) = x — S(x) - 1,11/ (n+ 1) € D denote the orthogonal
projection onto D. Here (-, -) denotes the scalar product in R"*!, and 1,11 € R"*! is the all-ones
vector. F/ is defined as follows:

S(x)
n+1

.]ln—l

F'(x) = (1 - fﬂ) CH(TI(x)) + C-
where C = 1+ 2(n + 1)*Ne. Note that F/(x) € [-1,1]""! for all x € [-1,1]""L. It is easy to
check that F’ is an odd function by using the fact that S(—x) = —S(x), I[I(—x) = —II(x) and
h(—x) = —h(x).

It is easy to see that F’ is continuous. Let us determine an upper bound on its Lipschitz
parameter. For any x,y € [—1,1]"! we have

17)~ F @l < Wy 1)) o 41— 15001 0 1) N CT(0) — B C1G9))

+C|S(x) =S|/ (n+1)
[x = Yoo +2(n + 1)>Nev/n + 1]|x — y||eo + C||x —]|eo
2(n+1)*Ne+C+1)||x — ¥/l

<
<

where we used [S(x) — S(y)| < (n+1)]lx — ylle and [[TI(x) = T1(y)[|w < [[x = yll2 < vVin +1]|lx =
Y|ls- Thus, F’ is Lipschitz-continuous with Lipschitz parameter 2(n + 1)*Ne+ C+1 = 4(n +
1)*Ne + 2.

Let us now show that F’ is monotone. For this, it is enough to show that F'(x) < F/(y) for all
x,y € [-1,1]"*! with x <y and S(x) > 0, S(y) > 0. Indeed, since F’ is odd, this implies that the
statement also holds if S(x) < 0 and S(y) < 0. Finally, if S(x) < 0 and S(y) > 0, then there exists
z with x < z <y and S(z) = 0, which implies that F'(x) < F'(z) < F'(y).

Let x € [—1,1]""! be such that S(x) > 0. Forany j € [n+1],i € [n —1] and t > 0 with
xi+t<1,it holds that

F/(x+t-ej) — F/(x)

- _nj_lHi(H(X-l-t-Ej)) + (1= 8(x)/(n+1))(H:(TI(x +t-¢))) — H;(I1(x))) + ntfl
2= —2(n 4 1)>Ne||TI(x + £ - ¢;) — TI(x)]]oo + ntf1

t
> (c:—1—2(n+1)41\ls).ﬁrl >0

IT(x)|l2 < ||x +t-e; — x||2 = t. We obtain that F’ is monotone, since for any x,y with x <y and

since C = 1+2(n + 1)*Ne. Here we used the fact that |[TI(x + - ¢;) — TI(x)[|eo < [[TI(x +£-¢;) —

33

S(x) >0,S(y) > 0, we can decompose y = (... ((x+ (y1 —x1) -e1) + (y2 —x2) -€2) ...) + (Yn41 —
xn+1) *ln1.

Step 4: Extending to a function [—1,1]"*! — [-1,1]". Define F, : [-1,1]"*! — R by Fj(x) =
Cn-S(x)/(n+1), where C, := (4(n+ 1)*Ne +2)/(min{2,1/¢} — 1). Clearly, F, is an odd
function, monotone and C,-Lipschitz-continuous. Finally, we define F : [-1,1]"*! — [-1,1]" by
F(x) = Ty (F'(x)). It is easy to check that F remains monotone and odd, because T; and F are
monotone and odd. Furthermore, since C > 1and C, > 1, we have that F(1,1,...,1) = (1,1,...,1).
Thus, F is a monotone normalised nD-Borsuk-ULam function with Lipschitz parameter max{4(n+
1)*Ne+2,Cy} = (4(n+1)*Ne+2)/(min{2,1/e} — 1).

Consider any x € 9([—1,1]"*1) with ||F(x)|| < e. Since |F,(x)| < ¢, it follows that |S(x)| <
(n+1)e/C,. Assume that there exists i € [n — 1] such that |H;(IT(x))| > J. Then, we have

|Fi(x)| > (1—¢/Cy)0 —Ce/Cy >6—(C+1)e/Cyy > 06— (min{2,1/e} —1)e >6— (6 —¢) > ¢

where we used C, > (C+1)/(min{2,1/¢e} —1). But this would mean that ||F(x)|l~ > ¢, a
contradiction. Thus, it must be that ||H(II(x))|le < J.

In order to show that I(x) is a solution to H, it remains to prove that there exists i € [n]
such that [[TI(x)];] > 1/(n+1). Since x € 9([—1,1]"™"), there exists j € [+ 1] such that |x;| = 1.
As aresult, [[IT1(x)];| = [xj — S(x)/(n+1)| > 1—¢/Cy. If j < n+1, then let i := j. Otherwise,
if j = n+1, then there exists i € [n] such that |[II(x)];| > 1/n —¢/(nC,), since S(Il(x)) = 0.
In both cases we have found i € [n] such that |[I1(x)];] > min{1 —¢/C,,1/n —¢/(nC,)}. Since
Cy > (n+1)g, it follows that |[IT(x)];] > 1/(n +1).

Thus, from any x € 9([—1,1]"*!) with ||F(x)||s < & we can obtain a solution to the original
(n — 1) D-TuckeR instance. Note that the reduction is polynomial-time and we have only used
operations allowed by the gates of the arithmetic circuit. In particular, we have only used division
by constants, which can be performed by multiplying by the inverse of that constant.

The reduction is black-box and any query to F can be answered by at most 2n queries to the
labelling function ¢ of the original (n — 1) D-TUCKER instance. Note that this is a constant, since n
is constant.

White-box model. We have obtained a polynomial-time many-one reduction from (n —1)D-
TuckeR to monotone normalised nD-Borsuk-Uram for all n > 2. Since (n — 1)D-TUCKER is
PPA-hard for any n > 3, we immediately obtain the PPA-hardness of monotone normalised
nD-Borsuk-UraM, and Theorem 6.5 follows.

Black-box model. The reduction we have provided only requires black-box access to the labelling
function ¢ of the (n — 1) D-TUCKER instance. In more detail, any query to F can be answered by
making at most 2n queries to ¢. Since n is a constant, the query lower bounds from (n — 1)D-
TUCKER carry over to monotone normalised nD-Borsuk-ULaMm, and Theorem 6.7 follows.

7 Relations to the Robertson-Webb Query Model

The black-box query model that we used in the previous sections is the standard model used in
the related literature of query complexity, where the nature of the input functions depends on the

34

specific problems at hand. For example, for nD-Borsuk-ULAM the function F inputs points on the
domain and returns other points, whereas in nD-TUuckER the function ¢ inputs points and outputs
their labels.

At the same time, in the literature of the cake-cutting problem, the predominant query model
is in fact a more expressive query model, known as the Robertson-Webb model (RW) [Robertson
and Webb, 1998; Woeginger and Sgall, 2007]. The RW model has been defined only for the case of
additive valuations, and consists of the following two types of queries:

- EVAL queries, where the agent is given an interval [4, b] and she returns her value for that
interval, and

- cuT queries, where the agent is given a point x € [0,1] and a real number «, and they
designate the smallest interval [x, y], for which their value is exactly a.

In fact, in the literature of envy-free cake-cutting, the query complexity in the RW model has
been one of the most important open problems [Brams and Taylor, 1996; Procaccia, 2016], with
breakthrough results coming from the literature of computer science fairly recently [Aziz and
Mackenzie, 2016a,b]. Since e-CONSENSUs-HALVING and e-fair cake-cutting [Branzei and Nisan,
2017] are conceptually closely related, it would make sense to consider the query complexity of
the former problem in the RW model as well.®

A potential hurdle in this investigation is that the RW model has not been defined for valuation
functions beyond the additive case. To this end, we propose the following generalisation of the RW
model that we call Generalised Robertson-Webb model (GRW)), which is appropriate for monotone
valuation functions that are not necessarily additive. Intuitively, in the GRW model the agent
essentially is given sets of intervals A rather than single intervals, and the queries are defined
accordingly (see also Figure 4).

Definition 6 (Generalised Robertson-Webb (GRW) Query Model). In the GRW query model, there
are two types of queries:

- EVAL queries, where agent i is given any Lebesgue-measurable subset A of [0,1] and
she returns her value v;(A) for that set, and

- CuUT queries, where agent i is given two disjoint Lebesgue-measurable subsets A; and

Ay of [0,1], an interval I = [a,b], disjoint from A; and A, and a real number v > 0,

and she designates some x € I such that % = 1, if such a point exists.

Let us discuss why this model is the most appropriate generalisation of the RW model. First, the
definition of EVAL queries is in fact the natural extension, as the agent needs to specify her value
for sets of intervals; note that in the additive case, it suffices to elicit an agent’s value for only
single intervals, as her value for unions of intervals is then simply the sum of the elicited values.
This is not the case in general for monotone valuations, and therefore we need a more expressive
EVAL query. We also remark that the EVAL query is exactly the same as a query in the black-box

8The e-ConsENsus-HALVING halving problem has in fact recently been studied under this query model as well,
but in a somewhat different direction, and for agents with additive valuations [Alon and Graur, 2020]. Note that the
authors do not refer to their query model as the RW model, but the queries that they use are essentially RW queries.

35

1
i
:TZ

Figure 4: Visualisation of cut and EvAL queries. (a) The input A to an EVAL query is denoted by
the green intervals. (b) The inputs A; and A, to the cur query are denoted by the green and
yellow intervals respectively, and the interval I = [a, b] is denoted in blue. The agent places a cut
(if possible) at a position x € I such that her value for A; U [g, x] and her value for A, U [x, b] are
in a specified proportion.

model, as defined in Section 3, and therefore the GRW model is stronger than the black-box
query model. Branzei and Nisan [2017] in fact studied the restriction of the RW model (for the
cake-cutting problem and for additive valuations), for which only EVAL queries are allowed, and
they coined this the RW~ query model. To put our results into context, we offer the following
definition of the GRW™ query model, which is, as discussed, equivalent to the black-box query
model of Section 3. By the discussion above, all of our query complexity bounds in Section 5 and
Section 6 apply verbatim to the GRW™ query model.

Definition 7 (Generalised Robertson-Webb~ (GRW™) query model). In the GRW™ query model, only
EVAL queries are allowed; there agent i is given a Lebesgue-measurable subset A of [0,1] and she
returns her value v;(A) for that set.

While the extension of EVAL queries from the RW model to the GRW model is relatively
straightforward, the generalisation of cuT queries is somewhat more intricate. Upon closer
inspection of a cut query in the (standard) RW model for additive valuations, it is clear that one
can equivalently define this query as

i(lax]) _

Given an interval I = [a, b] and a real number vy, place a cut at x € |[a, b] such that Z:) =

This is because one can easily find the value of the agent for [a, b] with one EVAL query, and then
for any value of « used in the standard definition of a cut query, there is an appropriate value of
7 in the modified definition above, which will result in exactly the same position x of the cut and
vice-versa.

The simplicity of the cuT queries in the RW model is enabled by the fact that for additive
valuations, the value of any agent i for an interval I does not depend on how the remainder of
the interval [0, 1] has been cut. This is no longer the case for monotone valuations, as now the
agent needs to specify a different value for sets of intervals. We believe that our definition of the
cur query in the GRW model is the appropriate generalisation, which captures the essence of the
original cut queries in RW, but also allows for enough expressiveness to make this type of query
useful for monotone valuations beyond the additive case.

Finally, we remark that for general valuations (beyond monotone), any sensible definition of
cut queries seems to be too strong, in the sense that it conveys unrealistically too much information
(in contrast to the RW and GRW models, where the cuT queries are intuitively “shortcuts” for
binary search). For example, assume that the agent is asked to place a cut at some point x in
an interval [a,b], for which (a) if the cut is placed at a the agent “sees” an excess of “+” and

36

(b) if the cut is placed at b, the agent still “sees” an excess of “+”. By the boundary conditions
of the interval, there is no guarantee that a cut that “satisfies” the agent exists within that in-
terval, and we would need to exhaustively search through the whole interval to find such a cut
position, if it exists, meaning that binary search does not help us here. On the other hand, a
single cuT query would either find the position or return that there is no such x within the interval.

We are now ready to state our results for the section, which we summarise in the following
theorem. Qualitatively, we prove that e-CoNSENSUS-HALVING with three normalised monotone
agents still has an exponential query complexity in the GRW model (with logarithmic savings
compared to the black-box model), whereas for two normalised monotone agents, the problem
becomes “easier” by a logarithmic factor.

Theorem 7.1. In the Generalised Robertson-Webb model:

(L/S)VHZ
log(L/¢)

o ¢-CONSENsUS-HALVING with n > 3 normalised monotone agents requires Q(() queries.

e ¢-ConsENsUS-HALVING with n = 2 monotone agents can be solved with O(log(L/¢€)) queries.

Proof. The upper bound for n = 2 can be obtained relatively easily, by observing that in the
proof of Theorem 6.1, Step 5 and Step 15 of Algorithm 1 were obtained via binary search, using
O(log(L/¢)) queries, which resulted in a query complexity of O(log®(L/¢)), since these steps
were executed O(log(L/¢)) times. In the GRW model, we can simply replace each of those binary
searches by a single cut query (as these only apply to the monotone agents) and obtain a query
complexity of O(log(L/¢)). For example, Step 5 can be simulated by a cur query where v =1,
A1 =@, Ay =10,5],and I = [57,1].

For the lower bound when n > 3, we will show how to construct an instance of e-CONSENSUS-
HALVING with 7 normalised monotone agents, such that the Q((L/¢)"~2) lower bound for
EVAL queries still holds, but we can additionally answer any cur query by performing at most
O(log(L/¢)) EvAL queries. We will again use our reduction from normalised monotone nD-
Borsuk-ULaM to e-CONSENSUS-HALVING with n normalised monotone agents, which we developed
in Section 4.1.

Given a cur query (Aj, Az, I = [a,b],y), we define ¢ : [a,b] — R by ¢(t) = %. Note
that we are looking for t* € I such that ¢(*) = o and that ¢ can be evaluated by using two
EVAL queries. Furthermore, since v; is monotone, ¢ is non-decreasing. We begin by checking
that % < vy and w > «. If one of these two conditions does not hold, then we can
immediately answer that there is no t € I that satisfies the query. In what follows, we assume that
these two conditions hold. In that case, we can query ¢(t) for some t € I to determine whether
the solution #* lies in [a, t] or in [t, b]. We denote by | C I the current interval for which we know
that t* € J. At the beginning, we have] := I. Using at most [log,(n + 1)] 4 2 queries to ¢ we can
shrink | such that] C R; for some j € [+ 1]. Recall that [x(A)]; =2(n+1) - A(ANR;) — 1 for
any i € [n+ 1] and A € A([0,1]). It follows that for any t €], [x(A; U [a,t])]; and [x(A2 U [t,D])];
are fixed for all i € [n + 1]\ {j}. Furthermore, with an additional [log, m| + 2 queries, we can
ensure that forall t €], [x(AyU [a,t])]; € [k/m,(k+1)/m] and [x(A2U[t,b])]; € [£/m, (£ +1)/m]
for some k, ¢ € Z. Next, with an additional 2[log,(n + 1)] queries, we can shrink], so that for
allt € J, x(A1 U [a,t]) and x(Az U [t,b]) each lie in some fixed simplex of Kuhn's triangulation
of the domain K,’}fl (defined below). In that case, by our construction below, it will hold that

37

vi(x(A1 U |a,t])) and v;(x(A2 U [t,b])) can be expressed as an affine function of ¢ € | and thus we
can exactly determine the value of +*. In order for this to hold, we will ensure that our normalised
monotone 17 D-BorsUk-ULaM function is piecewise linear. Furthermore, we will pick m = [2nL/¢],
and thus we have used 2(3[log,(n +1)] +2 + [log,([2nL/€])]| + 2) EVAL queries to answer one
cuT query. Note that this expression is O(log(L/¢)), since n is constant.

Consider a normalised monotone nD-Borsuk-Uram function F : [—1,1]"*1 — [—1,1]" with
Lipschitz parameter L > 3 and some ¢ € (0,1). We first discretize the domain to be K" :=
{-1,-(m—1)/m,...,—1/m,0,1/m,2/m,...,(m —1)/m,1}"*! where m = [2nL/e]. We let
f : Kt — [-1,1]" be defined by f(x) = F(x). Note that f is antipodally anti-symmetric
(f(=x) = —f(x) for all x € K*1), monotone (f(x) < f(y) whenever x < y) and f(1,1,...,1) =
(1,1,...,1). Furthermore, any x € 9(K/;t) with ||f(x)|l« < € yields a solution to the original
instance F. We extend f back to a function f : [—1,1]"*! — [—1,1]" by using Kuhn'’s triangulation
on the grid K;! and interpolating (see Appendix C for a description of the triangulation and
interpolation). By the arguments presented in Appendix C, it holds that]? is a continuous,
monotone, odd function, and f(l,l,...,l) = (1,1,...,1). Furthermore, if x; is fixed for all
i € [n+1]\ {j} and x; is constrained such that x lies in some fixed simplex ¢ of the Kuhn’s
triangulation, then j?(x) can be expressed as a linear affine function of x;.

Let us now determine the Lipschitz parameter of f. Consider any simplex o = {y°,%,...,y"*1}
of the Kuhn triangulation of K,*!. Consider any x € [0,1]""! that lies in ¢ and any j € [n + 1]
and t € [—1/m,1/m] such that x + ¢ - e also lies in ¢. Then, the interpolation (as defined in

Appendix C) yields

~ ~

1f(x) = flx+t-ep)lloo=lt-m-f(y)) —t-m-F(y)lleo <[t -m- [F(¥) = F/) loo
<|t]-m-L-[ly =y e
<L-Jt.

It is easy to check that this implies that fis (n 4+ 1)L-Lipschitz-continuous on the simplex ¢. By
a simple argument, it follows that f is (1 + 1)L-Lipschitz-continuous on [—1,1]"! (see e.g., the
proof in Section 5.1).

Now consider any simplex ¢ = {y°,y!,...,y""!} such that there exists i € [n + 1] U {0} with
£ ()|l > €. Since f(y') = f(y'), and f is (n + 1)L-Lipschitz-continuous, it follows that for any
x € [—1,1]"*! that lies in & we have

1F G leo = 1) lleo =nLllx = oo > €= nL/m > ¢/2

where we used m > 2nL/e. Thus, for any x € 9([—1,1]""!) with | f(x)]leo < €/2, it must hold

that both || f(1°) |l < e and [|f(y")|l < &, where o = {y°,y},...,y" "} is the Kuhn simplex
containing x. However, since x € 9([—1,1]""!), it follows that ° or 4! lies on the boundary of
K"*1. This means that we have obtained a solution to the original 7D-Borsuk-ULAM function F.

Since the parameters for fare L' =nL and ¢ = ¢/2, and n is constant, the query lower bound

for F carries over to f. O

38

8 Conclusion and Future Directions

In this paper, we managed to completely settle the computational complexity of the e-CONSENSUS-
HALVING problem for a constant number of agents with either general or monotone valuation
functions. We also studied the query complexity of the problem and we provided exponential
lower bounds corresponding to our hardness results, and polynomial upper bounds corresponding
to our polynomial-time algorithms. We also defined an appropriate generalisation of the Robertson-
Webb query model for monotone valuations and we showed that our bounds are qualitatively
robust to the added expressiveness of this model. The main open problem associated with our
work is the following.

What is the computational complexity and the query complexity of e-CONSENSUS-
HALVING with a constant number of agents and additive valuations?

Our approach in this paper prescribes a formula for answering this question: One can construct
a black-box reduction to this version of e-CONSENSUS-HALVING from a computationally-hard
problem like nD-TUucCkeR, for which we also know query complexity lower bounds, and obtain
answers to both questions at the same time. Alternatively, one might be able to construct
polynomial-time algorithms for solving this problem; concretely, attempting to do that for three
agents with additive valuations would be the natural starting step, as this is the first case for
which the problem becomes computationally hard for agents with monotone valuations.

Another line of work would be to study the query complexity of the related fair cake-cutting
problem using the GRW model that we propose. In fact, while the fundamental existence results
for the problem (e.g., see [Su, 1999]) actually apply to quite general valuation functions, most of
the work in computer science has restricted its attention to the case of additive valuations only,
with a few notable exceptions [Caragiannis et al., 2011; Deng et al., 2012]. We believe that our
work can therefore spark some interest in the study of the query complexity of fair cake-cutting with
valuations beyond the additive case.

Acknowledgements

Alexandros Hollender is supported by an EPSRC doctoral studentship (Reference 1892947).

References

James Aisenberg, Maria Luisa Bonet, and Sam Buss. 2-D Tucker is PPA complete. Journal of
Computer and System Sciences, 108:92-103, 2020. doi:10.1016/j.jcss.2019.09.002.

Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247-253, 1987. doi:10.1016/0001-
8708(87)90055-7.

Noga Alon and Andrei Graur. Efficient splitting of measures and necklaces. arXiv preprint, 2020.
URL https://arxiv.org/abs/2006.16613.

Noga Alon and Douglas B. West. The Borsuk-Ulam Theorem and Bisection of Necklaces. Proceed-
ings of the American Mathematical Society, 98(4):623—628, 1986. do0i:10.2307/2045739.

39

https://doi.org/10.1016/j.jcss.2019.09.002
https://doi.org/10.1016/0001-8708(87)90055-7
https://doi.org/10.1016/0001-8708(87)90055-7
https://arxiv.org/abs/2006.16613
https://doi.org/10.2307/2045739

Georgios Amanatidis, George Christodoulou, John Fearnley, Evangelos Markakis, Christos-
Alexandros Psomas, and Eftychia Vakaliou. An improved envy-free cake cutting protocol
for four agents. In Proceedings of the 11th International Symposium on Algorithmic Game Theory
(SAGT), pages 87-99, 2018. doi:10.1007 /978-3-319-99660-8_9.

A. K. Austin. Sharing a cake. The Mathematical Gazette, 66(437):212-215, 1982. d0i:10.2307/3616548.

Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for any
number of agents. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 416—427, 2016a. doi:10.1109/FOCS.2016.52.

Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for
four agents. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC),
pages 454464, 2016b. doi:10.1145/2897518.2897522.

Siddharth Barman and Nidhi Rathi. Fair cake division under monotone likelihood ratios. In
Proceedings of the 21st ACM Conference on Economics and Computation (EC), pages 401-437, 2020.
do0i:10.1145/3391403.3399512.

Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The Relative
Complexity of NP Search Problems. Journal of Computer and System Sciences, 57(1):3-19, 1998.
do0i:10.1145/225058.225147.

Karol Borsuk. Drei Sitze tiber die n-dimensionale euklidische Sphére. Fundamenta Mathematicae,
20:177-190, 1933. d0i:10.4064 /fm-20-1-177-190.

Steven J. Brams and Alan D. Taylor. Fair Division: From cake-cutting to dispute resolution. Cambridge
University Press, 1996. doi:10.1017/CB09780511598975.

Simina Branzei and Noam Nisan. The query complexity of cake cutting. arXiv preprint, 2017. URL
https://arxiv.org/abs/arXiv:1705.02946.

Simina Branzei and Noam Nisan. Communication complexity of cake cutting. In Proceed-
ings of the 20th ACM Conference on Economics and Computation (EC), pages 525-525, 2019.
doi:10.1145/3328526.3329644.

Ioannis Caragiannis, John K. Lai, and Ariel D. Procaccia. Towards more expressive cake cutting. In
Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pages 127-132,
2011. doi:10.5591/978-1-57735-516-8 /1JCAI11-033.

Xi Chen and Xiaotie Deng. Matching algorithmic bounds for finding a Brouwer fixed point. Journal
of the ACM, 55(3):13:1-13:26, 2008. do0i:10.1145/1379759.1379761.

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
Nash equilibria. Journal of the ACM, 56(3):14:1-14:57, 2009. doi:10.1145/1516512.1516516.

Constantinos Daskalakis and Christos H. Papadimitriou. Continuous local search. In Proceedings
of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 790-804, 2011.
ISBN 9780898719932. doi:10.1137/1.9781611973082.62.

40

https://doi.org/10.1007/978-3-319-99660-8_9
https://doi.org/10.2307/3616548
https://doi.org/10.1109/FOCS.2016.52
https://doi.org/10.1145/2897518.2897522
https://doi.org/10.1145/3391403.3399512
https://doi.org/10.1145/225058.225147
https://doi.org/10.4064/fm-20-1-177-190
https://doi.org/10.1017/CBO9780511598975
https://arxiv.org/abs/arXiv:1705.02946
https://doi.org/10.1145/3328526.3329644
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-033
https://doi.org/10.1145/1379759.1379761
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1137/1.9781611973082.62

Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complex-
ity of computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195-259, 2009.
doi:10.1137/070699652.

Argyrios Deligkas, John Fearnley, Themistoklis Melissourgos, and Paul G. Spirakis. Computing
exact solutions of consensus halving and the borsuk-ulam theorem. J. Comput. Syst. Sci., 117:75-
98, 2021. d0i:10.1016/j.jcss.2020.10.006. URL https://doi.org/10.1016/j.jcss.2020.10.006.

Xiaotie Deng, Qi Qi, Amin Saberi, and Jie Zhang. Discrete fixed points: Models, complexities, and
applications. Mathematics of Operations Research, 36(4):636-652, 2011. d0i:10.1287 /moor.1110.0511.

Xiaotie Deng, Qi Qi, and Amin Saberi. Algorithmic solutions for envy-free cake cutting. Operations
Research, 60(6):1461-1476, 2012. doi:10.1287/opre.1120.1116.

Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other fixed
points. SIAM Journal on Computing, 39(6):2531-2597, 2010. doi:10.1137/080720826.

Aris Filos-Ratsikas and Paul W. Goldberg. Consensus Halving is PPA-complete. In Proceed-
ings of the 50th Annual ACM Symposium on Theory of Computing (STOC), pages 51-64, 2018.
doi:10.1145/3188745.3188880.

Aris Filos-Ratsikas and Paul W. Goldberg. The Complexity of Splitting Necklaces and Bisecting
Ham Sandwiches. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing
(STOC), pages 638-649, 2019. doi:10.1145/3313276.3316334.

Aris Filos-Ratsikas, Seren Kristoffer Still Frederiksen, Paul W. Goldberg, and Jie Zhang.
Hardness Results for Consensus-Halving. In Proceedings of the 43rd International Sym-
posium on Mathematical Foundations of Computer Science (MFCS), pages 24:1-24:16, 2018.
d0i:10.4230/LIPIcs. MFCS.2018.24.

Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis. Consensus-
Halving: Does it Ever Get Easier? In Proceedings of the 21st ACM Conference on Economics and
Computation (EC), pages 381-399, 2020. doi:10.1145/3391403.3399527.

Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis. A topo-
logical characterization of modulo-p arguments and implications for necklace splitting. In
Proceedings of the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2615-2634, 2021. doi:10.1137/1.9781611976465.155.

Charles H. Goldberg and Douglas B. West. Bisection of Circle Colorings. SIAM Journal on Algebraic
Discrete Methods, 6(1):93-106, 1985. d0i:10.1137/0606010.

Michelangelo Grigni. A Sperner lemma complete for PPA. Information Processing Letters, 77(5-6):
255-259, 2001. doi:10.1016/50020-0190(00)00152-6.

Charles R. Hobby and John R. Rice. A moment problem in L1 approximation. Proceedings of the
American Mathematical Society, 16(4):665-670, 1965. do0i:10.2307/2033900.

Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complexity of
search problems: Ramsey and graph property testing. Journal of the ACM, 66(5):1-28, 2019.
doi:10.1109/FOCS.2017.63.

41

https://doi.org/10.1137/070699652
https://doi.org/10.1016/j.jcss.2020.10.006
https://doi.org/10.1016/j.jcss.2020.10.006
https://doi.org/10.1287/moor.1110.0511
https://doi.org/10.1287/opre.1120.1116
https://doi.org/10.1137/080720826
https://doi.org/10.1145/3188745.3188880
https://doi.org/10.1145/3313276.3316334
https://doi.org/10.4230/LIPIcs.MFCS.2018.24
https://doi.org/10.1145/3391403.3399527
https://doi.org/10.1137/1.9781611976465.155
https://doi.org/10.1137/0606010
https://doi.org/10.1016/S0020-0190(00)00152-6
https://doi.org/10.2307/2033900
https://doi.org/10.1109/FOCS.2017.63

Jifi Matousek. Using the Borsuk-Ulam theorem: lectures on topological methods in combinatorics and
geometry. Springer Science & Business Media, 2008. doi:10.1007 /978-3-540-76649-0.

Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems and
computational complexity. Theoretical Computer Science, 81(2):317-324, 1991. doi:10.1016/0304-
3975(91)90200-L.

Frédéric Meunier. Simplotopal maps and necklace splitting. Discrete Mathematics, 323(28):14-26,
2014. doi:10.1016/j.disc.2014.01.008.

Jerzy Neyman. Un théoreme d’existence. CR Acad. Sci. Paris, 222:843-845, 1946.

Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs
of existence. Journal of Computer and System Sciences, 48(3):498-532, 1994. doi:10.1016/50022-
0000(05)80063-7.

Ariel D. Procaccia. Cake cutting algorithms. In Handbook of Computational Social Choice, pages
311-330. Cambridge University Press, 2016. ISBN 978-1-107-06043-2.

Jack M. Robertson and William A. Webb. Approximating fair division with a limited number of
cuts. Journal of Combinatorial Theory, Series A, 72(2):340-344, 1995. d0i:10.1016/0097-3165(95)90073-
X.

Jack M. Robertson and William A. Webb. Cake-cutting algorithms: Be fair if you can. CRC Press,
1998. ISBN 9781568810768.

Forest W. Simmons and Francis E. Su. Consensus-halving via theorems of Borsuk-Ulam and
Tucker. Mathematical social sciences, 45(1):15-25, 2003. doi:10.1016/S0165-4896(02)00087-2.

Francis E. Su. Rental harmony: Sperner’s lemma in fair division. The American Mathematical
Monthly, 106(10):930-942, 1999. doi:10.1080/00029890.1999.12005142.

Albert W. Tucker. Some topological properties of disk and sphere. In Proceedings of the First
Canadian Math. Congress, Montreal, pages 286-309. University of Toronto Press, 1945.

Gerhard J. Woeginger and Jifi Sgall. On the complexity of cake cutting. Discrete Optimization, 4(2):
213-220, 2007. doi:10.1016/j.disopt.2006.07.003.

42

https://doi.org/10.1007/978-3-540-76649-0
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/j.disc.2014.01.008
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/0097-3165(95)90073-X
https://doi.org/10.1016/0097-3165(95)90073-X
https://doi.org/10.1016/S0165-4896(02)00087-2
https://doi.org/10.1080/00029890.1999.12005142
https://doi.org/10.1016/j.disopt.2006.07.003

APPENDIX

A e-Consensus-Halving for piece-wise constant valuations

As we mentioned in the introduction, the valuation functions studied in previous work [Filos-
Ratsikas and Goldberg, 2018, 2019] are piece-wise constant valuations (i.e., step functions) which
are given explicitly as part of the input, with each agent specifying the end-points and the height
of each step. For a constant number of agents #, this case is solvable in polynomial-time, as
illustrated in Figure 1.

Lemma A.1. e-CONSENsUS-HALVING with a constant number n of agents and piece-wise constant
valuations (given explicitly as part of the input) is solvable in polynomial time.

Proof. The proof follows closely that of Lemma 15 in [Filos-Ratsikas et al., 2020]; here we provide
the main proof idea, and we refer the reader to that paper for a fully detailed proof.

First, we partition the interval [0, 1] into regions, via a set of points t1,...,t, such that the
density of the valuation function of each agent is constant within each region. Let T = [t;, t;,1]
denote an arbitrary region, and let v;(T) denote the constant value of the density of agent i in
region T (i.e., the height of the step). Since the valuations are provided explicitly (or equivalently,
are polynomial in the other input parameters), this process will result in a polynomial number of
such regions.

We will be interested in the regions that will contain cuts, and then we will find the appropriate
positions of those cuts using linear programming. First, it is not hard to see that a solution in
which some region contains more than 1 cut can be transformed into a solution in which every
region contains at most 1 cut, by appropriately “merging” and “shifting” sets of cuts within the
region. Therefore, we can assume that each region either contains a cut or it doesn’t. For any
k=1,...,n, we can consider all the possible ways of distributing the k cuts to the regions, such
that no region receives more than one cut; since 7 is a constant, this can be done in polynomial
time.

Let x7 be the position of the cut in region T = [t;, t;11]. This means that for agent i, the “left
sub-region” [t;, x7| receives one label (say “+”), whereas the “right sub-region” [xr, t;11] receives
the other label (say “—"), resulting in values v;(T) - [t;, x7| and v;(T) - [xT, ti+1] for the agent
respectively. If there is not cut in region T, then the whole interval receives the same label. Now,
we can consider the set of cuts at positions xt in each of the regions that contain cuts, and the
corresponding partitioning of [0, 1] into intervals, labelled “+” and “—"; without loss of generality
we can assume that this labelling is alternating. From there, we can devise a linear program for
each value of k, where we aim to minimise z, subject to |0;(Z") — v;(Z7)| < z (which can be
transformed into a set of linear constraints), plus additional linear constraints for the positions
of the cuts. Since a solution always exists, and since we consider all values of k € [1,n], one of
the linear programs will terminate with z = 0, and therefore we can find an exact solution to the
problem. O

B Formal definition of the input model

In Section 3, we mentioned that in the white-box model, the agents’ valuations v; are accessed via
polynomial-time algorithms, which are given explicitly as part of the input. We provide the precise

43

definition of the input model in this section. Formally, we assume that valuations are computed
by Turing machines. The input to the Turing machine is a list of intervals, and the Turing machine
outputs the value of the union of these intervals.

Definition 8 (e-CONSENSUS-HALVING (white-box model), formal definition). For any constant
n > 1, and polynomial p, the problem e-ConsENsus-HALVING with n agents is defined as
follows:

e Input: ¢ > 0, the Lipschitz parameter L, Turing machines vy, ..., v,
e Output:
— A partition of [0, 1] into two sets of intervals Z and Z~ such that for each agent i,
it holds that |v;(Z") — v;(Z7)| < ¢, using at most n cuts.
— A violation of Lipschitz-continuity for one of the valuations.

- An input X on which one of the Turing machines does not terminate in at most
p(|X]) steps.

— (Optional, for monotone valuations only). A violation of monotonicity for one of
the valuations.

Note that for all solution types except the first one, a solution can be a union of an arbitrary
number of intervals, i.e., not obtained using at most n cuts. Note that the violation solutions are
there to ensure that the problem is contained in TENP. They are irrelevant for our hardness results,
which also hold for the promise version of the problem where we are promised that the input
does not violate any of the conditions.

C The Kuhn Triangulation

Let D, :={0,1/m,2/m,...,m/m}. Kuhn’s triangulation is a standard way to triangulate a grid
Dy.. Every x € (D, \ {1})" is the base of the cube containing all vertices {y : y; € {x;,x; +1/m}}.
Every such cube is subdivided into n! n-dimensional simplices as follows: for every permutation
mof [n], o = {y°,y',...,y"} is a simplex, where y* = x and y' = y" ! + Le, forall i € [n]
(where e; is the ith unit vector).

It is easy to see that Kuhn's triangulation has the following properties:

e For any simplex o = {z!,...,z"} it holds that ||z’ — z/||e < 1/m for all i, j, and there exists a
permutation 7 of [k] such that z7() < ... < 27K (component-wise).

e Given a point x € [0,1]", we can efficiently determine the simplex that contains it as follows.
First find the base y of a cube of D}, that contains x. Next, find a permutation 7 such that
Xr(1) = Yr(1) = "+ 2= Xp(n) — Yr(n)- Then, it follows that (y, 77) is the simplex containing x.

e The triangulation is antipodally anti-symmetric: if ¢ = {y°,y',...,y"} is a Kuhn simplex of
Dy, theno = {y°,...,y"} is also a simplex, where y; = 1 — y;- for all i, .

Using Kuhn's triangulation, a function f : D}, — [—-M, M| can be extended to a Lipschitz-
continuous function f : [0,1]" — [-M,M]. f is constructed in each Kuhn simplex ¢ =

44

{y°,y},...,y"} by interpolating over the values {f(y°), f(y!),..., f(y")}. In more detail, for
any x € [0,1]" that lies in simplex o = {y/°,y!,...,y"}, we let z := m - (x — y°). Let 7 denote the
permutation used to obtain 0. Note that since x lies in 0, it must be that z,;(1) > zz(2) =+ = Zz ().
Then, it holds that x = Y' (a;y’, where ap = 1 — z;(q), &y = Zz(n), and a; = z(j) — Z(ig1) for
i € [n—1]. We define

n

flx) =Y aif ().

i=0

It is easy to check that the function f : [0,1]" — [—M, M] thus obtained is continuous. Indeed,
if x lies on a common face of two Kuhn simplices, then the value f(x) obtained by interpolating
in either simplex is the same. It can be shown that J? is Lipschitz-continuous with Lipschitz
parameter 2M - n - m with respect to the {-norm.

Furthermore, if f is antipodally anti-symmetric, i.e., f(¥) = —f(x) for all x € D%, then so is ,
ie., f(%) = —f(x) forall x € [0,1]".

Finally, if f is monotone, i.e., f(x) < f(y) for all x,y € D!, with x < y, then so is f, i.e.,
f(x) < f(y) for all x,y € [0,1]" with x < y. Consider any point x € [0,1]" that lies in some
simplex ¢ = {y°,y',...,y"}. Then for any j € [n] and t > 0 such that x + ¢ - ¢; lies in the simplex

o, we have R R ' ‘
Flx+t-e) = f(x) = tmf(y)) — tmf(y'~") > 0

since y/ > /=1 and f is monotone. Using this it is easy to show that]?is monotone within any
simplex o, since for any x < y in ¢ we can construct a path that goes from x to y (and lies in o)
that only uses the positive cardinal directions. Since monotonicity holds for any segment of the
path, it also holds for x and y. Finally, for any x < y that lie in different simplices, we can just use
the straight path that goes from x to y, and the fact that fis monotone in each simplex that we
traverse.

45

	Introduction
	Our Results
	Related Work

	Overview of our Results and Techniques
	Input Models
	Computational/query complexity results via efficient black-box reductions
	Agents with general valuations
	Agents with monotone valuations
	Query Complexity in the Generalised Robertson-Webb model

	Preliminaries
	Borsuk-Ulam and Tucker

	Black-box reductions to and from Consensus-Halving
	From Borsuk-Ulam to Consensus-Halving
	From Consensus-Halving to Tucker

	General Valuations
	Reducing nD-Tucker to normalised nD-Borsuk Ulam

	Monotone Valuations
	An efficient algorithm for two monotone agents
	Proof of Theorem 6.1

	Results for three or more monotone agents
	Reducing (n-1)D-Tucker to monotone nD-Borsuk-Ulam

	Relations to the Robertson-Webb Query Model
	Conclusion and Future Directions
	-Consensus-Halving for piece-wise constant valuations
	Formal definition of the input model
	The Kuhn Triangulation

