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Abstract – Dicrocoelium dendriticum is a trematode that infects ruminant livestock and requires two different
intermediate hosts to complete its lifecycle. Modelling the spatial distribution of this parasite can help to improve
its management in higher risk regions. The aim of this research was to assess the constraints of using historical data
sets when modelling the spatial distribution of helminth parasites in ruminants. A parasitological data set provided by
CREMOPAR (Napoli, Italy) and covering most of Italy was used in this paper. A baseline model (Random Forest,
VECMAP�) using the entire data set was first used to determine the minimal number of data points needed to build
a stable model. Then, annual distribution models were computed and compared with the baseline model. The best
prediction rate and statistical output were obtained for 2012 and the worst for 2016, even though the sample size of
the former was significantly smaller than the latter. We discuss how this may be explained by the fact that in 2012,
the samples were more evenly geographically distributed, whilst in 2016 most of the data were strongly clustered.
It is concluded that the spatial distribution of the input data appears to be more important than the actual sample size
when computing species distribution models. This is often a major issue when using historical data to develop spatial
models. Such data sets often include sampling biases and large geographical gaps. If this bias is not corrected, the
spatial distribution model outputs may display the sampling effort rather than the real species distribution.
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Résumé – Contraintes liées à l’utilisation de données historiques pour la modélisation de la distribution
spatiale des helminthes parasites chez les ruminants. Dicrocoelium dendriticum est un trématode qui infecte les
ruminants et nécessite deux hôtes intermédiaires différents pour terminer son cycle de vie. La modélisation de la
distribution spatiale de ce parasite peut aider à améliorer sa gestion dans les régions à haut risque. L’objectif de
cette recherche était d’évaluer les contraintes liées à l’utilisation d’ensembles de données historiques lors de la
modélisation de la distribution spatiale des helminthes parasites chez les ruminants. Un ensemble de données
parasitologiques fourni par CREMOPAR (Naples, Italie) et couvrant la majeure partie de l’Italie a été utilisé dans
cet article. Un modèle de base (Random Forest, VECMAP�) utilisant l’ensemble des données a d’abord été utilisé
pour déterminer le nombre minimal de points de données nécessaires pour construire un modèle stable. Ensuite, des
modèles de distribution annuelle ont été calculés et comparés au modèle de référence. Le meilleur taux de
prédiction et le meilleur résultat statistique ont été obtenus pour 2012 et le plus mauvais pour 2016, malgré le fait
que la taille de l’échantillon du premier était nettement plus petite que celle du second. Nous discutons comment
cela peut s’expliquer par le fait qu’en 2012, les échantillons étaient plus uniformément répartis géographiquement,
alors qu’en 2016, la plupart des données étaient fortement regroupées. On conclut que la distribution spatiale des
données d’entrée semble être plus importante que la taille réelle de l’échantillon lors du calcul des modèles de
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distribution des espèces. C’est souvent un problème majeur pour développer des modèles spatiaux quand on utilise des
données historiques. Ces ensembles de données comportent souvent des biais d’échantillonnage et de grandes lacunes
géographiques. Si ce biais n’est pas corrigé, les résultats du modèle de distribution spatiale peuvent représenter l’effort
d’échantillonnage plutôt que la distribution réelle des espèces.

Introduction

The lancet liver fluke Dicrocoelium dendriticum is a para-
site of the bile ducts and gallbladder of different mammalian
species (mainly ruminants), including humans [31, 34].

The life cycle of this parasite requires two invertebrate inter-
mediate hosts: one being a xerophilic terrestrial snail (of various
genera such as Helicella, Zebrina or Cernuella), and the other
an ant (mainly of the genus Formica) [25].

Clinical signs in ruminants are not usually manifest, even in
severe infections, and therefore, major lesions, due to liver
impairment are detectable only at post-mortem examination
[31, 34]. Lesions are directly proportional to the parasitic bur-
den [23] and chronic inflammation of the bile ducts [8]. In
the early stages of the infection, reduced weight gain can be
detected, but the infection is usually asymptomatic [34] result-
ing only in livers being discarded during meat inspection at
slaughterhouses or with an appropriate coprodiagnostic analysis
[35]. In severe cases, infection can lead to emaciation, anaemia
with economic losses in production, and viscera condemnation
in animals [2, 14, 35]. Therefore, D. dendriticum is, together
with Fasciola hepatica, one of the leading causes of discarded
livers in the abattoir, with associated economic losses. Dicro-
coeliosis is also zoonotic [22, 36]. Hence, modelling the spatial
distribution of this parasite can help to improve its management
in higher risk regions [11, 27]. Due to global climate change,
seasonal and spatial patterns of parasites can alter [7]. This also
includes indirect effects of climate change such as management
changes [32]. Extended grazing periods, animal movements
and anti-helminthic resistance leading to treatment failure are
important drivers that boost the presence of parasites [5, 15,
19, 28].

Development of D. dendriticum is distinctly dependent on
ecology, geo-climatic factors and anthropogenic factors. This
is mainly due to its intermediate hosts that require highly speci-
fic environmental niches such as calcareous or alkaline soils
[29]. This results in a widespread presence of this trematode
throughout Europe with locally heterogeneous spatial distribu-
tion patterns and a significant variation in local prevalence [25].

The environment affects the phases of the parasite lifecycle.
Therefore, it is important to include these factors while making
risk maps. The environmental factors are geolocated [18]. Spe-
cies distribution modelling (SDM), also known as environmen-
tal modelling, is a tool that combines different observations of
species presence or absence with environmental predictors such
as temperature, rainfall, elevation, soil type, and vegetation that
are ecologically-relevant to the species being modelled [12].

The general approach to designing species distribution
maps is shown in Figure 1. First, a number of grid-cells (A),
in this case farms, are randomly selected within a larger area
and are sampled to obtain occurrence data (presence = red,
absence = green) (B). Second, a set of environmental data pro-
vides information for all the pixels in the sample area (C).

These are termed co-variates or predictor variables. Finally, dif-
ferent modelling methods can be used to predict the probability
of occurrence of trematodes within each of the grid-cells, which
generates a risk map covering the entire area (D).

To develop high-accuracy risk maps, it is pivotal to use the
right combination of predictors [13]. Clustering can be
observed for D. dendriticum in the southern part of Italy mainly
due to the specific environmental needs of the intermediate
hosts [6, 29]. Ekstam et al. [11] and Musella et al. [29] showed
that the prevalence of D. dendriticum increases in areas with
woody vegetation and decreases in wet areas. Species distribu-
tion model algorithms and the accuracy of model output are
also sensitive to the sample size of species occurrence records
[41], and spatial sample selection bias [3].

The aim of this study was to evaluate the impact of sample
size on model predictive performance for D. dendriticum in
Italy, using a historical longitudinal data set of diagnostic data,
and to evaluate the utility of opportunistic diagnostic data at a
higher temporal resolution for predicting the distribution of this
species.

Materials and methods

Overview

A Random Forest (RF) species distribution modelling algo-
rithm was applied to D. dendriticum diagnosis data and envi-
ronmental covariates to predict the spatial probability
distribution of this species in Italy. The model was replicated
using random subsets of the occurrence dataset to determine
the sample size threshold below which model performance
deteriorates. Models developed using annual subsets of occur-
rence data were compared against this threshold to evaluate
the impact of using historic datasets with restricted sample size
and temporal resolution on model performance.

Model development is documented according to the
ODMAP guidelines for reporting Species Distribution Models
([42]; Appendix).

Data

The preparation of both the covariate and the disease data
was conducted in R, version 3.4.3 [39]. VECMAP� was used
to generate a basic presence-absence map for rapid visualisation
of the georeferenced presence and absence of the parasites over
the years.

D. dendriticum occurrence data

The study area for this research is Italy, which is divided in
20 regions (Fig. 2) and has a surface area of 301.340 km2. Its
climate varies depending on the region. Overall low precipita-
tion is seen and the mean temperatures vary between 5 and
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20 �C depending on the region (http://koeppen-geiger.
vu-wien.ac.at/).

D. dendriticum data covering most of Italy ranging from
1999 to 2018 were provided by the Regional Centre for

Monitoring of Parasitosis (CREMOPAR), Campania Region,
Southern Italy. A wide variety of sources contributed to the his-
torical data set, including scattered samples collected by veteri-
nary practitioners, passive surveillance, and clustered data

Figure 1. General approach to designing species distribution maps.

Figure 2. Administrative regions of Italy referred to in the paper.
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collected as part of active surveillance programmes in limited
areas. None of these data sources were free from bias (e.g. sam-
ples from veterinarians were biased towards symptomatic cases)
and most of the surveys were conducted in southern Italy due to
the continuous monitoring service offered by the Department of
Agriculture of the Campania Region, through the activities of
CREMOPAR.

Environment covariates

In total, the predictor set used to develop the D. dendriticum
distribution models comprised 39 variables (Table 1).
Collinearity was checked using the variance inflation factor
and Spearman rank correlation. Variables with VIF > 10 were
removed from further analyses. Only one of variable pairs with
correlation >0.7 was retained.

Monthly normalised difference vegetation index (NDVI)
data with a resolution of 1 km, a vegetation index which mea-
sures the photosynthetic activity of plants, were obtained from
MODerate-resolution Imaging Spectroradiometer (MODIS)
imagery (http://modis.gsfc.nasa.gov/). These data were Fourier
transformed using the methods of [13], to derive biologically-
relevant secondary variables. We used this variable to help
identify the habitat of D. dendriticum, as mentioned above.

BioClim variables [17] at a resolution of 30 s, were added
to the set of environmental predictors. These are climate indica-
tors that may affect species distribution, summarising the period
1970–2000, and are developed by the U.S. Geological Survey
(USGS). They represent information regarding annual and sea-
sonal conditions and differences through the different seasons
in one year. This can be as a derived variable or in a time-series
[30]. These data were used for the baseline model and sample
size evaluation.

Table 1. Environmental co-variates (predictor data).

Abbreviation Variable

NDVI_14A0 Normalised difference vegetation index transformed Fourier analysis band 14 – A0 – mean
NDVI_14A1 Normalised difference vegetation index transformed Fourier analysis band 14 – A1 – amplitude of annual cycle
NDVI_14A2 Normalised difference vegetation index transformed Fourier analysis band 14 – A2 – amplitude of bi-annual cycle
NDVI_14A3 Normalised difference vegetation index transformed Fourier analysis band 14 – A3 – amplitude of tri-annual cycle
NDVI_14D1 Normalised difference vegetation index transformed Fourier analysis band 14 – D1 – variance in annual cycle
NDVI_14D2 Normalised difference vegetation index transformed Fourier analysis band 14 – D2 – variance in bi-annual cycle
NDVI_14D3 Normalised difference vegetation index transformed Fourier analysis band 14 – D3 – variance in tri-annual cycle
NDVI_14DA Normalised difference vegetation index transformed Fourier analysis band 14 – DA – combined variance in annual,

bi-annual, and tri-annual cycles
NDVI_14MN Normalised difference vegetation index transformed Fourier analysis band 14 – MN – minimum
NDVI_14MX Normalised difference vegetation index transformed Fourier analysis band 14 – MX – maximum
NDVI_14P1 Normalised difference vegetation index transformed Fourier analysis band 14 – P1 – phase of annual cycle
NDVI_14P2 Normalised difference vegetation index transformed Fourier analysis band 14 – P2 – phase of bi-annual cycle
NDVI_14P3 Normalised difference vegetation index transformed Fourier analysis band 14 – P3 – phase of tri-annual cycle
NDVI_14VR Normalised difference vegetation index transformed Fourier analysis band 14 – VR – variance in raw data parameter

Fourier variable image values
BIO 1 Annual mean temperature (�C)
BIO 2 Annual mean diurnal range (�C)
BIO 3 Isothermality (�C)
BIO 4 Temperature seasonality (standard deviation) (�C)
BIO 5 Tmax of warmest month (�C)
BIO 6 Tmin of coldest month (�C)
BIO 7 Annual temperature range (�C)
BIO 8 Mean temperature of wettest quarter (�C)
BIO 9 Mean temperature of driest quarter (�C)
BIO 10 Mean temperature of warmest quarter (�C)
BIO 11 Mean temperature of coldest quarter (�C)
BIO 12 Annual precipitation (mm)
BIO 13 Precipitation of wettest month (mm)
BIO 14 Precipitation of driest month (mm)
BIO 15 Precipitation seasonality (coefficient of variation) (%)
BIO 16 Precipitation of wettest quarter (mm)
BIO 17 Precipitation of driest quarter (mm)
BIO 18 Precipitation of warmest quarter (mm)
BIO 19 Precipitation of coldest quarter (mm)
TempXX_A0 Temperature of XX (depending on the year that is modelled 09, 12, 13, 14, 15, 16) – amplitude of annual cycle
TempXX_A1 Temperature of XX (depending on the year that is modelled 09, 12, 13, 14, 15, 16) – amplitude of bi-annual cycle
TempXX_A2 Temperature of XX (depending on the year that is modelled 09, 12, 13, 14, 15, 16) – amplitude of tri-annual cycle
TempXX_P0 Temperature of XX (depending on the year that is modelled 09, 12, 13, 14, 15, 16) – phase of annual cycle
TempXX_P1 Temperature of XX (depending on the year that is modelled 09, 12, 13, 14, 15, 16) – phase of bi-annual cycle
TempXX_P2 Temperature of XX (depending on the year that is modelled 09, 12, 13, 14, 15, 16) – phase of tri-annual cycle

4 A. Hendrickx et al.: Parasite 2021, 28, 46

http://modis.gsfc.nasa.gov/


To fit models to annual data, ERA5 temperature data for the
corresponding year were used to derive bioclimatic summaries
to replace these variables of the BioClim (Bio01–Bio11) data
set in the individual year models. ERA5 was developed by
the European Centre of Medium-Range Weather Forecast
(ECMWF) in 2017, including hourly estimates of different vari-
ables. It contains information such as temperature, humidity,
pressure and wind in the specific year of interest [1].

Host distribution data were obtained from the Gridded Live-
stock of the World (GLW 3) database, a collaboration of the
Food and Agriculture Organisation (FAO) and Environmental
Research Group Oxford (ERGO). This database provides the
distribution layers of bovines, small ruminants, pigs, and poul-
try derived by multivariate regression [33].

Spatial bias-correction

The occurrence data set did not include data points through-
out Italy and is therefore not representative for the whole of
Italy. As a result, we masked out the parts of Italy for which
the data are not representative using an environmental envel-
ope, also called climatic envelope, which is based on a set of
environments in which it is supposed that the species persist,
because the environmental needs of the species are satisfied
[40]. For this, Mahalanobis distance (MD) was used. Farber
and Kadmon [16] showed that using MD resulted in more accu-
rate predictions of species distributions compared to standard
envelopes that are rectilinear. Hereafter, only the area within
this environmental envelope was used for model development
and mapping, to avoid projecting outside of the range of the
model input data.

Data extraction

Prior to model development, data were first prepared in
VECMAP� by extracting environmental covariate data from
the sites where D. dendriticum is present and absent using
the “Extract data” function. The extract data tool iterates
through all the defined environment covariate images in the pre-
dictor suite and extracts an environmental value for each data
occurrence data point used to develop (train) the model, and
data outliers are excluded based on the standard deviation of
the predictor values. Second, the extracted data set needs to
be balanced when using non-bootstrapping models such as
Random Forest. We randomly sampled the largest class to
result in an equalisation of the presence and absence points.

Model development

Random Forest baseline model – best case scenario (BCS)

A machine learning modelling technique, Random Forest
(RF), was applied using VECMAP� software, which is based
on the randomForest R package [24]. This modelling technique
was previously used for modelling bulk-milk tank antibodies
against liver fluke at a European scale [10]. First, we computed
a baseline Random Forest model using the entire occurrence
and environmental covariate data set. The parasitic infection
(presence/absence of the parasite in the final host) was used
as a proxy for the parasite. The random Forest algorithm was
applied to the extracted data (Sect. Data extraction) to group
the presence-absence data into clusters based on different eco-
climatic patterns using a recursive partitioning approach (simi-
lar to a decision tree). This allows recognition of any pattern in
the data [10].

Initially, a model was fitted to the complete dataset (all
occurrence and covariate data), specifying 500 replicate trees
and 8 environmental variables to be selected at random at each
node. Variable importance was then assessed using mean
decrease accuracy and mean decrease Gini and a reduced set
of 3 environmental variables selected based on their importance
(cf. Tables 2 and 3). A second model was then fitted to the
reduced set of environmental variables, specifying 100 replicate
trees and 6 variables to be selected at random at each node.
Model evaluation is based on standard model statistics. These
include sensitivity, specificity, Cohen’s kappa, and area under
curve (AUC). Expert analysis is also used to evaluate the plau-
sibility of the mapped model outputs.

Minimal occurrence data sample size

The minimal number of occurrence data points needed to
build a stable model was determined by first starting with the
best-case scenario (BCS; described above). This is the maxi-
mum number of data points that can be used based on the num-
ber of presence and absence points available to assemble a
baseline model. Thereafter, RF model replicates were devel-
oped as described above, with the occurrence data incremen-
tally reduced by subtracting 10% of the total number of
samples at random with one replicate. Model performance
statistics were then compared between replicates; when a pla-
teau face was reached in the statistical output, this was the min-
imal sample size needed to build a stable model.

Table 2. Statistical model output baseline model using RF of Dicrocoelium dendriticum.

BCS �10% �20% �30% �40% �50% �60% �70% �80% �90%

Presence points 2508 2258 2008 1758 1508 1258 1008 758 508 258
Kappa 0.61 0.56 0.54 0.60 0.53 0.56 0.54 0.48 0.53 0.54
AUC 0.72 0.71 0.71 0.71 0.72 0.70 0.70 0.67 0.71 0.71
Sensitivity 0.68 0.68 0.66 0.69 0.67 0.64 0.64 0.62 0.66 0.70
Specificity 0.64 0.64 0.63 0.63 0.65 0.63 0.65 0.60 0.65 0.61
Predictor importance Bio11 Bio11 Bio11 Bio05 Bio01 Bio09 Bio01 Bio11 Bio11 Bio01

Bio05 Bio08 Bio01 Bio11 Bio09 Bio11 Bio09 Bio05 Bio01 Bio10
Bio07 Bio06 Bio12 Bio06 Bio11 Bio16 Bio11 Bio01 Bio06 Bio05
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Model performance based on annual historic data

We then investigated the possibility of developing annual
distribution maps using only the data available for each single
year for which data were available. Again, these models were
computed using the random Forest machine learning algorithm
of the VECMAP� software package, and the statistical perfor-
mance compared against the BCS model and the model using
the minimal sample size.

Results

Data exploration

A total of 5131 D. dendriticum occurrence records were
available. The distribution of D. dendriticum occurrence records
was not spatially homogeneous (Fig. 3). Most of the data were

clustered in central and southern Italy, specifically in the
Campania region and its neighbouring regions (bias due to the
location of CREMOPAR). The five years with the most pres-
ence points were: 2016 (415), 2009 (305), 2006 (184), 2008
(169), and 2012 (165). After removal of outliers, the five years
with the highest sample size for the best-case scenario, the max-
imal number of samples that can be used to model were: 2016
(415), 2009 (178), 2013 (135), 2012 (165), and 2015 (120).

Baseline model – best case scenario (BCS)

Following initial RF model fitting, a reduced variable set
(marked with an asterisk in Table 1) was used for development
of subsequent models. Using this reduced variable set, the BCS
model predicted an elevated probability of occurrence of D.
dendriticum throughout Campania, Calabria, Lazio, Abruzzo,
Marche, and Emilia-Romagna regions (Figs. 2 and 4, Table 2).

Figure 3. Data distribution for Dicrocoelium dendriticum from 1999–2018.

Table 3. Statistical model output using RF of Dicrocoelium dendriticum: BCS and �70% of baseline model compared to statistical output of
2009, 2012, 2013, 2015 and 2016.

BCS �70% 2009 2012 2013 2015 2016

Presence points 2508 758 175 163 134 120 415
Kappa 0.61 0.48 0.47 0.59 0.48 0.56 0.47
AUC 0.72 0.67 0.65 0.74 0.67 0.73 0.62
Sensitivity 0.68 0.61 0.60 0.67 0.57 0.70 0.61
Specificity 0.64 0.60 0.62 0.69 0.62 0.64 0.60
Predictor importance Bio11 Bio11 Bio16 Bio12 Bio12 Bio12 Bio13

Bio05 Bio05 Bio13 Bio16 Bio18 Bio16 Bio19
Bio07 Bio01 Bio15 Bio19 Bio16 Bio14 Bio12
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This reflects the known distribution of D. dendriticum on a
broad spatial scale.

Minimal occurrence data sample size

The RF model outputs are given in Table 2. A clear drop of
all statistics is observed at �70% of the data points. This is
referred to hereafter as the “cut-off” and corresponds to 758
presence- and 758 absence samples. The “cut-off” model using
this reduced dataset of 30% of the occurrence data (Fig. 5)
yielded similar spatial predictions to the BCS model, with the
exception of a slightly elevated risk in Marche and Emilia-
Romagna (Fig. 4, cf. Fig. 5).

With the exception of Bio11 (Mean Temperature of Coldest
Quarter), which was identified as one of the 3 most important
variables in all models except the model using only 10% of
the occurrence data, variable importance varied according to
the occurrence data subset used (Table 2).

Model performance based on annual historic data

No individual year reached the cut-off value of 758 pres-
ence samples. Therefore, we decided to model the 5 years that

contained the highest number of data: 2009 (n = 178), 2012
(n = 165), 2013 (n = 135), 2015 (n = 120), and 2016
(n = 415). Model performance and variable importance varied
according to the occurrence data subset used (Table 3). Fully
mapped details were provided only for 2012 and 2016, the most
interesting input for a discussion, in order to avoid overloading
this paper.

The statistical output of 2012 with 165 presence data sam-
ples, showed that overall higher values than the cut-off are
observed. The statistical output is almost equal to the baseline
model (Table 3). The data exploration map of 2012 (Fig. 6)
showed that most of the data are located in the Campania and
Basilicata regions. The model output of 2012 (Fig. 7) broadly
reflects the BCS model (Fig. 4), predicting 0.5–1 probability
of presence zones from the Po valley down to Calabria. Puglia,
Sicily, and Sardinia are low-prediction regions. The statistical
output of 2016 (Table 3), 415 samples, showed lower values
compared to the baseline model. Except for AUC, the statistical
values are approximately equal to the cut-off. The data
exploration map of 2016 (Fig. 8) showed that most of the data
are located in the Campania and Basilicata regions. A clustered
zone of samples can also be observed in these regions. Despite
the good statistical performance, the central-northern regions

Figure 4. Baseline model, BCS.
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which have previously reported D. dendriticum infections
(Fig. 3), and were previously identified as having elevated
probability of presence using the BCS model (Fig. 4), are pre-
dicted to have a low probability of presence using only 2012
data. Compared to the other individual year models an overall
low prediction zone is predicted throughout whole Italy in
2016 (Fig. 9). In Calabria and parts of Campania and Basilicata
0.75 predicted probability of presence zones are observed.

The results obtained for the other three years (maps not
shown here) are summarised below.

The statistical output of 2009 (Table 3), with 178 samples,
showed that compared to the statistical output of the cut-off
(�70%), the values are approximately equal but still lower than
the baseline model. The data exploration map of 2009 shows
that most of the presence/absence points are located in the
Campania and Basilicata regions. In the model output of
2009, we can observe 0.25–0.5 presence zones throughout
Italy. In Marche, 0.75 predictive zones are observed and in
Campania and Basilicata, high prediction (0.75–1) zones are
observed.

The statistical output of 2013 (Table 3), 135 samples,
showed that overall, except for Kappa, the statistical values
are in the same range as the baseline model. The data exploration

map of 2013 shows that most of the data are located in the
Campania and Basilicata regions. Compared to 2012, the same
pattern is seen in presence prediction but an overall higher
prediction rate is observed. Marche is predicted as a high
(1) presence region. Parts of Apulia, Sicily, and Sardinia had
lower (0.25–0.5) prediction zones.

The statistical output of 2015 (Table 3), 120 samples,
showed that the statistical values are almost equal to the base-
line model. The data exploration map of 2015 shows that most
of the data are located in the Campania and Basilicata regions.
Again, the same pattern is observed in the model output starting
from the Po valley to Calabria, not including the main part of
Puglia and Sicily. Sardinia has a higher prediction zone (0.5–
0.75) compared to the model from 2013. A higher prediction
zone is seen around Marche, compared to 2013.

Discussion

The first step in the spatial modelling process is planning
and gathering a presence-absence data set. In this research, a
historical data set for Italy covering the period from 1999 to
2018 was provided by CREMOPAR. The data were obtained

Figure 5. Baseline model, �70%.
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using both active and passive surveillance. The advantages of
having access to such a large data set are obvious, but one of
the main disadvantages is that the data were not specifically col-
lected for developing spatial models. It seems clear that this
results in a sampling bias: (i) some areas are oversampled (espe-
cially in central and southern regions); and (ii) there are large
geographical gaps. If this bias is not corrected the spatial distri-
bution model (SDM) outputs may display the sampling effort
rather than the real species distribution [38]. In this study, this
issue was partially solved by computing a mask based on the
environmental envelope of D. dendriticum that excluded the
pixels that were not representative for the sampled pixels which
will be discussed later in this section.

The second step is data exploration. An important observa-
tion when exploring the occurrence data of dicrocoeliosis was a
clustering of samples in some areas of southern Italy. The rea-
son for this is probably mainly the active monitoring pro-
gramme carried out by CREMOPAR. As a result, the area
surrounding the CREMOPAR is overrepresented as compared
to other sampled areas. This should not be confused with a clus-
tered distribution pattern of this parasite, as reported in other
studies [4, 6, 11, 29] where clustered areas of presence were
observed within larger sampled, but negative, areas. In these
surveys, the clustering observed was likely due to the speci-
fic eco-climatic condition required by intermediate hosts of
D. dendriticum to develop.

When making exploratory models, it is important to first
determine the minimal sample size in order to model a reliable

predictive map. Mateo et al. [26] showed that generated models
are influenced by sample size and prevalence. The predictive
power of a model increases when information is added. This
applies until the statistical values reach a “plateau”. From then,
model performance is not considerably enhanced when addi-
tional data are added. When sample size decreases, the accu-
racy, reliability, and stability of the model should decrease as
well. Therefore, it can be concluded that in order to generate
a robust model a minimum sample size, and more specifically
a minimum number of presence points, is needed. Also, SDMs
are used to limit the sampling effort. Hence, setting a minimum
sample size allows production of precise SDMs, without wast-
ing expensive resources [37]. No individual annual subset of
the occurrence data reached the cut-off determined from the
baseline models’ statistics. Therefore, the top 5 of most samples
throughout the individual years were selected to do further
modelling as a proof of concept.

Baseline model

For this research, we aimed to model the presence/absence
of the parasite detected in the final host, sheep, using eco-cli-
matic environmental predictor data. These are expected to show
the strongest relationship with the distribution of the intermedi-
ate host and free-living stages of the parasite. We hence used
predictor data that indirectly influence infection presence. In
this case, an absence of data means that the infection did not
occur when the diagnosis was made. Therefore, more presence

Figure 6. Data distribution for Dicrocoelium dendriticum 2012.
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data are needed to model a reliable predictive map. Hendrickx
[20] showed that separately modelling a vector, a disease and its
main symptom (e.g. anaemia) using eco-climatic predictor data,
systematically resulted in a lower level of accuracy of the dis-
ease model for the same number of samples. This was
explained by the fact that other factors than climatic data affect
the distribution of a disease in a host, and that many different
diseases may affect an observed symptom such as anaemia.

Indirect measures of parasite presence were used in this
study as a proxy for the presence of the parasite. Copromicro-
scopic analysis for the presence of parasite eggs is the most
widely used diagnostic procedure for D. dendriticum and other
helminths [9], where accurate detection of the parasite in the
environment is difficult (e.g. liver fluke metacercariae on pas-
ture), and more direct measures of parasite presence in the host
are invasive (e.g. post mortem to confirm parasite presence).
Copromicroscopic techniques are advantageous as they allow
for larger sample sizes than would be possible with more inva-
sive or laborious sampling methods. However, these
approaches may produce false-negative results where patent
infections are not always detectable. In our case, we used
eco-climatic data to model infection data, whilst other factors

such as farm management and the presence of the intermediate
host will also affect it. It is also very likely that disease manage-
ment strategies may vary greatly over such a wide geographical
range. The fact that these could not be included as co-variates
may affect the quality of the model outputs. Nevertheless, the
developed models performed well both statistically and qualita-
tively, showing that whilst not including such co-variate data
may affect the reliability of identifying causal factors, this does
not necessarily affect the efficiency of pattern matching that this
type of modelling implements. The models therefore provide a
good basis for further exploration of sample size requirements
and the impact of sample subset on model performance.

The produced model output using the entire observed pres-
ence data set yielded an overall satisfactory result. In both the
southern and central parts of Italy, the model provides satisfac-
tory spatial detail as a valid tool for further field work towards
refining the knowledge about the distribution patterns of this
parasite. The lack of information in the most northern part of
Italy is partially solved by removing non-representative areas
from the modelling process.

Interestingly, when reducing the sample size (�70%
model), whilst the general distribution pattern remains the same,

Figure 7. Annual distribution model 2012.
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this results in a loss of spatial detail. Here, the southern third of
Italy remains very similar to the full model output, in the central
part the high-risk (high probability of presence) areas increase
in size, and in the northern third, there is also a strong shift
towards a higher category. This suggests that the negative effect
of an uneven spatial distribution mainly affects smaller sample
sizes, as less variation within a sample may reflect less variation
in the output.

Annual distribution models

When developing models for individual years, the Bioclim
data for temperature (from Bio01 to Bio11) were replaced with
data derived from ERA5 for this variable. ERA5, developed in
2017, provides more precise data because the data are registered
hourly [1] compared to Bioclim, developed in 2005, that pro-
vides monthly climatic data based on long-term averages
(1970–2000) [21]. This allows us to take into consideration
specific climatic conditions prevailing in each year.

The individual year models confirm the statement that sam-
ple size affects model performance [26]. Though no individual
year reached the sample size cut-off and results for annual mod-
els were variable, the quality of the outputs obtained for the
years with the highest number of observations is encouraging.
The output statistics differ for each year, but there is no clear
decrease or increase in the statistics. The best prediction rate
and statistical output were obtained for 2012 (Fig. 7) and the

worst for 2016 (Fig. 9), even though the former sample size
was significantly smaller than the latter. This can be explained
by looking at the distribution of D. dendriticum in each individ-
ual year. The statistics of 2012 (Table 3) are improved com-
pared to the cut-off (�70%) model. The mapped model
output (Fig. 7) shows a similar pattern for southern and central
Italy. For this model, the input data (Fig. 6) are more evenly
geographically distributed throughout Italy, and there is no
dense data cluster in the southern third of the country. The
statistics for 2016 (Table 3) are worse compared to the cut-
off. For this year, a major portion of the data were strongly clus-
tered in the southern part of Italy (Fig. 8). The mapped model
output also shows a very different spatial distribution pattern in
the central and northern parts of Italy; this is unlikely to occur
because of climatic differences between years. As a result, the
2016 model failed to identify the central and northern region of
Italy as suitable for D. dendriticum. This may also be affected
by our choice to use the same full-data suitability mask when
computing the annual models. In future work, we will further
test the effect of using different suitability masks for each year.

Syfert et al. [38] showed that the prediction accuracy of
models made with spatially clustered data is inferior to that with
models which are not clustered. To overcome this, it may be
possible to filter the database to reduce spatial autocorrelation,
resulting in a data set with, for instance, maximum one record
per km2 cell. The impact of selecting maximum or mean values
per pixel will be explored in further work. However, in this

Figure 8. Data distribution for Dicrocoelium dendriticum 2016.
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case, this would not solve the issues that (a) no year made the
cut-off of minimal sample size to model a sufficiently stable
predictive model, and (b) geographical gaps in the data set
are too large.

Appropriate knowledge and robust experience on a parasite
and its intermediate hosts are required to interpret data sets for
their suitability when modelling. The open availability of many
species occurrence datasets (e.g. https://www.gbif.org) and the
apparent ease of implementing basic species distribution
models, make species distribution modelling attractive, without
considering the quality of the data used to develop such models.
Our results simultaneously highlight the potential opportunities
for modelling parasite distributions using longitudinal datasets
of indirect measures of presence (diagnostic data), and the
limitations of highly clustered data with a limited temporal
range. Given the weaknesses of our data set, discussed above,
the obtained results suggest that the proposed approach may
contribute to highlight differences between years provided that
the input data set is more evenly geographically distributed, and

that additional predictor variables reflecting non-environmental
factors, such as farm management, affecting the presence of
the infection, are identified and available at sufficient spatial
detail.

In conclusion, the spatial distribution of the input data
appears to be more important than the actual sample size when
computing species distribution models. This is often a major
issue when using historical data for developing spatial models.
Such data sets often include sampling biases and large geograph-
ical gaps. If this bias is not corrected, the SDM outputs may dis-
play the sampling effort rather than the real species distribution.
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Appendix

ODMAP checklist

Hendrickx et al., 2020: Constraints of using historical data for
modelling the spatial distribution of helminth parasites in
ruminants.

ODMAP element Contents

Overview
Authorship Authors: Hendrickx A, Marsboom C, Rinaldi L, Rose Vineer H, Morgoglione EM, Sotariki S, Cringoli G,

Claerebout E and Hendrickx G.
Contact email: ghendrickx@avia-gis.com
Title: Constraints of using historical data for modelling the spatial distribution of helminth parasites in ruminants.
DOI:

Model objective Objective: Explanation < Mapping (Inference < Interpolation).
Target outputs: Maps of relative probability of presence for Italy.

Taxon Parasitic helminth, Dicrocoelium dendriticum.
Location Italy.
Scale of analysis Spatial extent (Lon/Lat): 6.7–18.5 �E, 36.6–47.12 �N.

Spatial resolution: 1 km.
Temporal extent/time period: 1999–2018.
Type of extent/boundary: Administrative boundary (Italian border).

Biodiversity data
overview

Observation type: Veterinary diagnostic data and field survey.
Response/data type: Presence–absence.

Type of predictors Vegetation, bioclimatic, livestock density.
Conceptual model/

hypothesis
Hypotheses about species-environment relationships: There is evidence that the distribution of D. dendriticum is

driven by vegetation and climate (both directly and indirectly via intermediate host influences). However, the
quality, temporal resolution and quantity of available occurrence data may constrain the application of species
distribution models to predict the distribution of D. dendriticum cases. We developed SDMs to evaluate the
impact of subsetting historic occurrence data on model performance.

(Continued on next page)

14 A. Hendrickx et al.: Parasite 2021, 28, 46

https://www.R-project.org/


(Continued)

ODMAP element Contents

Assumptions We assumed that:

– Diagnostic data were representative of presence or absence of infection in the host.
– Sensitivity of diagnostic data does not change in space or time.
– The chosen environmental covariates represent all relevant environmental drivers of distribution.
– The data encompass the species realised niche in the area modelled (after bias-correction – see below).
– Sample selection bias is adequately corrected (see below).

SDM algorithms Algorithms: Random Forest – this method was chosen because of experience with the model and good
performance in previous modelling exercises.

Model complexity: 500 trees with 8 variables.
Ensembles: Not applicable (except for bagging implicit in the Random Forest algorithm).

Model workflow After preparation of environmental covariates, removal of errors and bias-correction (see below), Random Forest
models were fitted to the full dataset, and to a reduced set of covariates identified as important in the full model.
This process was repeated for incrementally increasing sample sizes (see portioning information below) to
identify the minimal sample size, below which statistical performance deteriorates. Models were also fitted using
the same process to annual occurrence data.

Software Software: Environmental variable processing was completed in R v3.4.3 (R Core Team, 2017 [43]). Mapping and
Random Forest modelling were completed in VECMAP� (https://www.avia-gis.com/vecmap).

Data
Biodiversity data Taxon names: Dicrocoelium dendriticum.

Ecological level: Species.
Data source: CReMoPAR, a parasitological reference lab from the Naples (Italy) area. Diagnostic data collected

1999–2018.
Sampling design: Samples submitted from throughout Italy for diagnosis (faecal egg counts), opportunistic

samples collected in the region surrounding CReMoPAR.
Sample size: 5131 occurrences.
Regional mask: Data were clipped to the Italian boundary.
Scaling: Not applicable.
Background data: Not applicable.
Errors and biases: Parts of Italy not represented in the dataset were masked using an environmental envelope

generated using a Mahalanobis distance approach. The area within this environmental envelope was used for
model development to avoid projecting model predictions outside of the range of the occurrence data. The data
set was balanced by randomly subsampling the largest class.

Data partitioning A model was developed using the full datasets to demonstrate the “best-case scenario” (BCS), before reducing the
size of occurrence dataset in 10% increments at random, to evaluate the impact of sample size on model
performance.

Models were also fitted to data for the 5 years between 1999 and 2018 with the highest occurrence data sample size
to evaluate the impact of dataset on model performance.

Predictor variables Predictor variables and data sources:

– NDVI data from MODIS (http://modis.gsfc.nasa.gov/), Fourier-transformed according to the methods described
by Estrada-peþa et al. [13].

– Bioclimatic variables [17] derived from ERA5 [1] temperature data.
– Gridded Livestock of the World livestock density data [33].

Spatial resolution and extent of the raw data: The livestock density data were available at a 10 km resolution.
Bioclimatic data were available at a 1 km resolution. NDVI data were available at a 1 km resolution.

Geographic projection: WGS84.
Temporal resolution and extent of the raw data: The livestock density data represent predicted livestock density

for 2011. Bioclimatic variables and NDVI data were averaged for the temporal extent of the occurrence dataset
(1999–2018).

Data processing: The extent of all data were clipped to the Italian boundary before processing. Resampling/
aggregation was not performed to standardise resolution.

Model
Variable pre-selection The choice of initial covariates was made as a compromise between availability and ecological/biological relevance

to the study species. Only weakly correlated covariates were included in the models.
(Continued on next page)
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ODMAP element Contents

Multicollinearity Multicollinearity between the covariates was investigated using the variance inflation factor and Spearman rank
correlations. Covariates with VIF > 10 were discarded. Only one variable from pairs with correlations >0.7 was
retained to avoid model overfitting.

Model settings Default settings were used throughout, except for the number of replicates and the number of variables to evaluate at
each node. For initial models using all variables (variable selection step), 500 replicates and 8 variables were
specified. For models using the reduced set of variables selected for their importance, 100 replicates and 6 nodes
were specified.

Model estimates Covariate importance was estimated with mean decrease accuracy and mean decrease Gini.
Model averaging/

ensembles
Not applicable.

Non-independence Not done, see discussion.
Assessment
Performance statistics Model evaluation is based on standard model statistics. These include Sensitivity, Specificity, Cohen’s Kappa, and

Area Under Curve (AUC).
Plausibility checks Expert analysis is used to evaluate the plausibility of the mapped model outputs.
Prediction
Prediction output Predictions of relative probability of presence of D. dendriticum is expressed on a continuous scale. Maps are

restricted to the environmental envelope identified using a Mahalanobis distance approach (see above) to avoid
projecting outside of the range of the occurrence data.

Uncertainty
quantification

Not applicable – ensembles not performed.
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