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Abstract: In this study, a two-step approximate Bayesian computation (ABC) updating framework 

using dynamic response data is developed. In this framework, the Euclidian and Bhattacharyya 

distances are utilized as uncertainty quantification (UQ) metrics to define approximate likelihood 

functions in the first and second steps, respectively. A new Bayesian inference algorithm combining 

Bayesian updating with structural reliability methods (BUS) with the adaptive Kriging model is then 

proposed to effectively execute the ABC updating framework. The performance of the proposed 

procedure is demonstrated with a seismic-isolated bridge model updating application using 

simulated seismic response data. This application denotes that the Bhattacharyya distance is a 

powerful UQ metric with the capability to recreate wholly the distribution of target observations and 

the proposed procedure can provide satisfactory results with much-reduced computational demand 

compared with other well-known methods, such as transitional Markov chain Monte Carlo 

(TMCMC). 

Introduction 

Bayesian model updating using observed dynamic response data has a broad range of applications 

in a number of engineering fields (Beck and Ktafygiotis 1998; Ktafygiotis and Beck 1998; Cheung and 

Beck 2009; Jensen et al. 2013; Rocchetta et al. 2018). In Bayesian model updating, uncertainties in both 

the simulation and observation procedures should be appropriately considered; hence, uncertainty 

quantification (UQ) metrics are significant in order to comprehensively and quantitatively measure 

the stochastic discrepancy between model predictions and observations. 

In the context of UQ, parameters are categorized according to the involvement of aleatory or/and 

epistemic uncertainties as (Kennedy and O’Hagan 2001; Crespo et al. 2014):  

I) Parameters without any uncertainties, appearing as explicit constants; 

II) Parameters with only aleatory uncertainty, appearing as random variables with fully 

determined probability characteristics such as density functions and distribution coefficients;  

III) Parameters with only epistemic uncertainty, appearing as unknown-but-fixed constants 

bounded by given intervals; 

IV) Parameters with both aleatory and epistemic uncertainties, appearing as imprecise random 

variables with only vaguely determined probability characteristics. 

Both Categories III and IV parameters are considered in Bayesian model updating, whose target is 

not a single set of the crisp parameter values, but a reduced space of epistemic uncertainty such as 

reduced intervals of Category III parameters and reduced bounds of the cumulative probability 

function (CDF) of Category IV parameters. 

The geometric discrepancy between model predictions and observations caused by Category III 

parameters can be quantified using the classical Euclidian distance as the UQ metric. On the other 
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hand, quantifying the stochastic discrepancy caused by Category IV parameters requires a more 

comprehensive UQ metric capable of capturing a higher level of statistical information. The 

Bhattacharyya distance (Bhattacharyya 1946) has been recently investigated as such a potential UQ 

metric (Bi et al. 2017). The Bhattacharyya distance is a stochastic measure between two sets of random 

samples, i.e., model predictions and observations, and accounts for their probability distributions.  

Bi et al. (2019) developed a Bayesian model updating framework, in which the Bhattacharyya 

distance was employed as the UQ metric to define an approximate but efficient likelihood function 

based on the approximate Bayesian computation (ABC) method (Turner and Van Zandt 2012; Safta 

et al. 2015). This framework was demonstrated upon a three degree of freedom (DOF) spring-mass 

system example and showed to have a potential to recreate wholly the target observations. While the 

target outputs in this example is scalar modal responses, the direct computation of the Bhattacharyya 

distance becomes infeasible for high-dimensional dynamic responses because of so-called curse of 

dimensionality. A dimension reduction procedure is thus proposed in this study to calculate the 

Bhattacharyya distance for such dynamic responses. 

On the other hand, Markov chain Monte Carlo (MCMC) algorithms are generally accepted as 

the most attractive Bayesian inference tools (Beck and Au 2002; Cheung and Beck 2009). Of particular 

importance among these algorithms is transitional Markov chain Monte Carlo (TMCMC) (Ching and 

Chen 2007; Betz et al. 2016) and Bi et al. (2019) also utilized TMCMC to perform the ABC updating 

framework. Although TMCMC is quite flexible and general, it requires a large number of model 

evaluations for calculating the likelihood function. In the ABC updating framework, the approximate 

likelihood function is calculated based on the Bhattacharyya distance, and the Bhattacharyya distance 

evaluation requires random samples of model predictions, which is generally generated by Monte 

Carlo (MC) sampling. Therefore, the number of model evaluations is extremely large compared with 

the general model updating and the computational cost becomes excessive in cases of time-

consuming model evaluations, which are often involved in predicting dynamic responses. 

Straub and Papaioannou (2015) recently provided a formulation called Bayesian updating with 

structural reliability methods (BUS). The key idea of this formulation is to transform the Bayesian 

updating problem into an equivalent reliability problem, allowing to obtain samples from posterior 

distributions as conditional samples located into the failure domain of this reliability problem. By 

employing Subset simulation techniques (Au and Beck 2001), BUS has shown great efficiency in 

estimating posterior distributions (Betz et al. 2018). Moreover, its efficiency depends on the choice of 

the so-called likelihood multiplier. Whereas the optimal multiplier ensuring the best acceptance rate 

is generally unknown, it can be defined a priori for the proposed approximate likelihood function. 

Hence, BUS has a potential to be efficiently integrated with the ABC updating framework.  

At the same time, BUS can further improve its efficiency by applying metamodeling techniques 

(Giovanis et al. 2017).  Among various types of the metamodels, the adaptive Kriging model has been 

shown to be one of the most accurate and efficient methods in solving reliability problems (Echard et 

al. 2011; Echard et al. 2013; Huang et al. 2016). However, the failure probability associated with the 

equivalent reliability problem in BUS is generally known to be extremely small. In such rare events, 

the adaptive Kriging model becomes significantly inefficient, since the number of candidate samples 

should be extremely large to ensure that enough samples are contained in the failure domain. On the 

other hand, Wei et al. (2019) recently proposed a new algorithm called AK-MCMC, in which the 

Kriging model is adaptively trained upon dynamically updated MCMC populations. This algorithm 

is in particular suitable for extremely rare events. The objective of this study is consequently to 

develop an efficient ABC updating framework using dynamic response data by combining BUS with 

the AK-MCMC algorithm.  

The structure of this paper is as follows. In Section 2, we describes the dimension reduction 

procedure to evaluate the Bhattacharyya distance for high-dimensional dynamic response data, and 

the proposed ABC updating framework. Section 3 outlines the novel Bayesian inference algorithm 

combining BUS with the adaptive Kriging model based on the AK-MCMC algorithm. The principle 

and illustrative application is detailed in Section 4, using a model updating problem of a seismic-

isolated bridge based on simulated seismic response data. The computational efficiency of the 



 3 of 16 

 

 

proposed scheme is also presented by comparing with the results using TMCMC. Finally, some 

conclusions are given in Section 5. 

Approximation Bayesian Computation using Dynamic Response Data 

Formulations of the Bhattacharyya Distance for Dynamic Response Data 

In the context of Bayesian model updating, the investigating system can be expressed as: 

𝐲 = ℎ(𝐱) (1) 

where 𝐱 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛]  is a column vector of 𝑛  input parameters; 𝐲 = [𝑦1, 𝑦2 , ⋯ , 𝑦𝑚]  is a column 

vector of the output features as 𝑚-dimensional dynamic responses; ℎ(∙) is the simulator (e.g. finite 

element model). The uncertainties of the system are first characterized by uncertain input parameters 

in various categories (refer Section 1) and then propagated through the simulator into the uncertain 

output features. In general, randomly sampled values of the parameters and features are used in 

Bayesian model updating. Suppose the required sample size is 𝑁𝑠𝑖𝑚, the simulator ℎ is executed 𝑁𝑠𝑖𝑚 

times to generate the sample set of the simulated features 𝐘𝑠𝑖𝑚 ∈ ℝ𝑁𝑠𝑖𝑚×𝑚: 

𝐘𝑠𝑖𝑚 = [𝐲1, 𝐲2, ⋯ , 𝐲𝑁𝑠𝑖𝑚
]

𝑇
, with 𝐲𝑖 = [𝑦1𝑖 , 𝑦2𝑖 , ⋯ , 𝑦𝑚𝑖], ∀𝑖 = 1, 2, ⋯ , 𝑁𝑠𝑖𝑚  (2) 

In addition to the simulated features, observed features are required as the target of model 

updating. Suppose the number of observations is 𝑁𝑜𝑏𝑠, the sample set of the observed features has a 

similar structure as Eq. (2), where only the number of rows is changed: 𝐘𝑜𝑏𝑠 ∈ ℝ𝑁𝑜𝑏𝑠×𝑚. The objective 

of Bayesian model updating can be expressed as to minimize the stochastic discrepancy between 𝐘𝑜𝑏𝑠 

and 𝐘𝑠𝑖𝑚 by updating the uncertainty characteristics of the input parameters. 

In the following, possible UQ metrics are defined to capture the discrepancy between 𝐘𝑜𝑏𝑠 and 

𝐘𝑠𝑖𝑚. The very classical Euclidian distance metric is expressed as: 

𝑑𝐸(𝐘𝑜𝑏𝑠 , 𝐘𝑠𝑖𝑚) = √(𝐘𝑜𝑏𝑠 − 𝐘𝑠𝑖𝑚)(𝐘𝑜𝑏𝑠 − 𝐘𝑠𝑖𝑚)𝑇 (3) 

where 𝐘∎ is a row vector of means of the features. The Euclidian distance is a point-to-point distance 

capable to capture the geometric discrepancy caused by Category III parameters. On the other hand, 

in the presence of Category IV parameters, it is desirable to employ a more comprehensive metric 

capable to consider a higher level of statistical information from the sample sets. 

The Bhattacharyya distance is herein proposed as such a stochastic metric to robustly measure 

the degree of overlap between distributions of two sample sets. Its original definition is given as: 

𝑑𝐵(𝐘𝑜𝑏𝑠 , 𝐘𝑠𝑖𝑚) = − log [∫ √𝑝𝑜𝑏𝑠(𝑦)𝑝𝑠𝑖𝑚(𝑦)
𝕪

d𝑦] (4) 

where 𝑝∎(𝑦) is the probability density function (PDF) of each feature sample; 𝕪 is the 𝑚-dimensional 

feature space; ∫ ∎
𝕪

d𝑦 is the integration performed over the whole feature space. Differently from the 

Euclidian distance, the Bhattacharyya distance considers not only the means but also the variances, 

covariances, and even the distribution shapes of the samples sets. Nevertheless, the direct evaluation 

of Eq. (4) is not feasible because precise estimation of the PDF is generally unavailable, especially for 

applications where experiments are difficult or expensive. Bi et al. (2019) hence proposed the so-

called binning algorithm to evaluate the probability mass function (PMF) of a discrete distribution, 

such that the discrete Bhattacharyya distance is used instead. The PMF is a function which maps the 

possible values of a discrete random variable to the probabilities of their occurrence (Grimmett and 

Stirzaker 2001). The discrete Bhattacharyya distance is defined as (Patra et al. 2015): 

𝑑𝐵(𝐘𝑜𝑏𝑠 , 𝐘𝑠𝑖𝑚) = − log { ∑ ⋯ ∑ √𝑝𝑜𝑏𝑠(𝑏𝑖1,𝑖2,⋯,𝑖𝑚
)𝑝𝑠𝑖𝑚(𝑏𝑖1,𝑖2,⋯,𝑖𝑚

)

𝑛𝑏𝑖𝑛

𝑖1=1

𝑛𝑏𝑖𝑛

𝑖𝑚=1

} (5) 
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where 𝑝∎(𝑏𝑖1,𝑖2,⋯,𝑖𝑚
) is the PMF value of the bin 𝑏𝑖1,𝑖2,⋯,𝑖𝑚

. The bin has 𝑚  subscripts because it is 

generated under a 𝑚 -dimensional joint PMF space. More detailed information of the binning 

algorithm can be referred to Bi et al. (2019). 

In this study, the output features are assumed to be very high-dimensional dynamic responses. 

In such circumstances, the direct evaluation of Eq. (5) becomes infeasible since the total number of 

bins is exponentially increasing with the dimension 𝑚 due to so-called curse of dimensionality. To 

overcome this obstacle, a dimension reduction procedure consisting of the following steps is herein 

proposed (Kitahara et al. 2020). 

1) Define the window length 𝐿 and divide 𝐲𝑖, ∀𝑖 = 1, 2, ⋯ , 𝑁𝑠𝑖𝑚 into ⌈𝑚 𝐿⁄ ⌉ intervals, where ⌈∎⌉ 

denotes the upper integer of the investigating values. This is also applied to 𝐘𝑜𝑏𝑠; 

2) Compute the root mean square (RMS) values of each interval 𝐑 = [𝑅1, 𝑅2, ⋯ , 𝑅⌈𝑚 𝐿⁄ ⌉]  and 

generate the sample set of the RMS values 𝐑𝐘𝑠𝑖𝑚
∈ ℝ𝑁𝑠𝑖𝑚×⌈𝑚 𝐿⁄ ⌉ : 

𝐑𝐘𝑠𝑖𝑚
= [𝐑𝐘𝑠𝑖𝑚

1 , 𝐑𝐘𝑠𝑖𝑚

2 , ⋯ , 𝐑𝐘𝑠𝑖𝑚

⌈𝑚 𝐿⁄ ⌉
], with 𝐑𝐘𝑠𝑖𝑚

𝑗
= [𝑅1𝑗, 𝑅2𝑗 , ⋯ , 𝑅𝑁𝑠𝑖𝑚𝑗]

𝑇
, ∀𝑗 = 1, 2, ⋯ , ⌈𝑚 𝐿⁄ ⌉  (6) 

and 𝐑𝐘𝑜𝑏𝑠
∈ ℝ𝑁𝑜𝑏𝑠×⌈𝑚 𝐿⁄ ⌉. Note that, 𝐑𝐘𝑜𝑏𝑠

 has a similar structure as Eq. (6), where only the 

number of rows is changed; 

3) Evaluate the Bhattacharyya distance 𝑑𝐵𝑗  between two sample sets of the RMS values 𝐑𝐘𝑜𝑏𝑠

𝑗  

and 𝐑𝐘𝑠𝑖𝑚

𝑗
, ∀𝑗 = 1, 2, ⋯ , ⌈𝑚 𝐿⁄ ⌉; 

4) Obtain the RMS value of the Bhattacharyya distances and employ it as a UQ metric. 

The principle of the window length 𝐿  is that a smaller 𝐿  leads to employing more detailed 

information of the target dynamic response data, while it leads to a larger computational demand at 

the same time. It is found that 𝐿 = 0.025 ∙ 𝑚 is a reasonable choice in this study. This corresponds to 

the case where each RMS contains 2.5 % of the target signals.  

Approximate Bayesian Computation 

The ABC updating framework with the distance-based UQ metrics is summarized here. Bayesian 

model updating is based on the Bayes’ theorem (Beck and Ktafygiotis 1998): 

𝑃(𝐱|𝐘𝑜𝑏𝑠) =
𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱)𝑃(𝐱)

𝑃(𝐘𝑜𝑏𝑠)
 (7) 

where 𝑃(𝐱) is the prior distribution of 𝐱, representing the initial knowledge about the parameters 𝐱; 

𝑃(𝐱|𝐘𝑜𝑏𝑠) is the posterior distribution of 𝐱, representing the updated knowledge about the parameters 

𝐱 based on the observed data; 𝑃(𝐘𝑜𝑏𝑠) is the normalized factor ensuring that the posterior distribution 

integrates to one; 𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱) is the likelihood function of 𝐘𝑜𝑏𝑠 for an instance of the parameters 𝐱.  

The likelihood function is the key component in Bayesian model updating, since it quantifies the 

degree of relevance of a model with a given instance of the parameters, by representing the possibility 

of the observations. Under the assumption of independence between each observation, the likelihood 

function in Eq. (7) is theoretically defined as: 

𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱) = ∏ 𝑃(𝐘𝑘|𝐱)

𝑁𝑜𝑏𝑠

𝑘=1

 (8) 

where 𝑃(𝐘𝑘|𝐱) is the PDF value of the 𝑘th observed data 𝐘𝑘 conditional to the corresponding instance 

of the parameters 𝐱. Note that, the precise estimation of the PDF requires a large number of simulated 

features. Consequently, an analytical formula of the likelihood in Eq. (8) demands a huge number of 

model evaluations and it can be almost infeasible for complex simulators. 

The ABC method (Turner and Van Zandt 2012; Safta et al. 2015) is utilized to overcome the above 

obstacle by replacing the full likelihood with an approximate but efficient function containing the 

information of the observations and the instance of the parameters 𝐱. In the approximate likelihood, 

any types of statistics can be used to measure the stochastic discrepancy between model predictions 

and observations (Turner and Van Zandt 2012); hence, it is natural to define it employing the distance 
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metrics. Various functional formulas have been investigated in the literature for the ABC method, 

such as the Gaussian (Turner and Van Zandt 2012), sharp (Rocchetta et al. 2018), and Epanechnikov 

(Safta et al. 2015) functions. Nevertheless, the basic principle of the approximate likelihood is that it 

should return a high value when the distance metric is small, while it penalizes the 𝐱 instance when 

its corresponding distance metric is large. In this study, an approximate likelihood function based on 

the Gaussian function is proposed as: 

𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱) ∝ 𝑒𝑥𝑝 {−
𝑑2

𝜀2
} (9) 

where 𝑑  is the distance metric; 𝜀  is the so-called width factor, which is a pre-defined coefficient 

controlling the centralization degree of the posterior distribution. Based on a series of tests in various 

applications, 𝜀  is determined to lie in the interval [10−3, 10−1]  (Patelli et al. 2017). A smaller 𝜀 

corresponds to a more peaked posterior distribution which is more likely to converge to the true 

value but requires more computational demand for convergence. 

By employing the Bhattacharyya distance, the proposed approximate likelihood function is 

capable of capturing comprehensive uncertainty information from both model predictions and 

observations. However, the Bhattacharyya distance in Eq. (5) will be infinite if the initial 𝐘𝑠𝑖𝑚 is too 

far from 𝐘𝑜𝑏𝑠 , i.e., there is no overlap between the two sample sets, and thus cannot be directly 

employed in the likelihood.  Hence, Bi et al. (2019) proposed the two-step ABC updating framework, 

in which a preliminary step with the Euclidian distance-based likelihood is employed to force an 

overlap between 𝐘𝑜𝑏𝑠 and 𝐘𝑠𝑖𝑚. The comprehensive uncertainty characteristics of the parameters are 

then further updated in the main step with the Bhattacharyya distance-based likelihood. This two-

step framework is also utilized in this study and its detailed information can be referred to Bi et al. 

(2019). 

Bayesian Updating with Adaptive Kriging Model 

Bayesian Updating with Structural Reliability Methods (BUS) 

In this section, the BUS formulation (Straub and Papaioannou 2015; DiazDelaO et al. 2017) is briefly 

reviewed. The BUS formulation is based on the conventional rejection principle. Let 𝑐 denotes the so-

called likelihood multiplier such that the following inequality holds for all the parameters 𝐱: 

𝑐𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱) ≤ 1 (10) 

In the above context, a sample distributed as the posterior distribution 𝑃(𝐱|𝐘𝑜𝑏𝑠) ∝ 𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱)𝑃(𝐱) in 

Eq. (7) can be generated by the following rejection principle: 

1) Generate 𝑢 uniformly distributed on [0, 1] and 𝐱 distributed as the prior distribution 𝑃(𝐱); 

2) If 𝑢 < 𝑐𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱), return 𝐱 as a posterior sample. Otherwise, go back to Step 1).  

Although the rejection sampling is theoretically viable, it becomes inefficient with increasing the 

number of observations due to the large rejection rate. Hence, BUS transforms the Bayesian updating 

problem into an equivalent reliability problem to maintain the advantage of the rejection principle 

but have much higher efficiency. Consider a reliability problem with uncertain parameters (𝐱, 𝑢) 

according to the joint PDF 𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1). Here, 𝐼(∙) denotes the indicator function, equal to one if 

its argument is true and zero otherwise. The limit state function and failure domain of this reliability 

problem can be defined as: 

𝐺 = 𝑢 − 𝑐𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱) (11) 

𝐹 = {𝐺 < 0} (12) 

The PDF of the failure sample (𝐱′, 𝑢′) can be then obtained as: 

𝑝𝐱′,𝑢′(𝐱, 𝑢) = 𝑝𝐹
−1𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1)𝐼(𝑢 < 𝑐𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱)) (13) 

where 
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𝑝𝐹 = ∬ 𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1)𝐼(𝑢 < 𝑐𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱))𝑑𝑢𝑑𝐱  

is the failure probability of the reliability problem. In this formulation, the PDF of the failure sample 

𝑝𝐱′,𝑢′(𝐱, 𝑢)  and the failure probability 𝑝𝐹  correspond to the posterior distribution 𝑃(𝐱|𝐘𝑜𝑏𝑠)  and 

normalized factor 𝑃(𝐘𝑜𝑏𝑠) in Eq. (7), respectively. As a consequence, the samples for deriving the 

posterior distribution can be generated as the conditional samples falling into the failure domain by 

existing reliability analysis methods including Subset simulation (Au and Beck 2001). 

A key component in BUS is the likelihood multiplier, since the acceptance rate in BUS is directly 

proportional to it. Hence, it should be selected as large as possible along with satisfying the inequality 

in Eq. (10) for all the parameters 𝐱 and its optimal choice is defined as 𝑐 = [max𝑃𝐿(𝐘𝑜𝑏𝑠|𝐱)]−1. While 

the optimal multiplier is generally unknown in advance, it can be defined as 𝑐 = 1 for the proposed 

approximate likelihood function, because the approximate likelihood function is maximized when 

the distance metric is minimized to be zero. Therefore, BUS can be efficiently utilized as the Bayesian 

inference tool in the two-step ABC updating framework. 

Adaptive Kriging-based BUS Algorithm 

BUS has shown great efficiency in estimating the posterior distribution by employing Subset 

simulation techniques (Betz et al. 2018). However, the failure probability of the equivalent reliability 

problem in BUS becomes significantly small and can reach 10−6 or even smaller with increasing the 

number of observations. In such rare events, a large number of limit state function evaluations is 

required to estimate the failure probability even for Subset simulation. Moreover, in the main step of 

the ABC updating framework, the limit state function involves the Bhattacharyya distance evaluated 

based on random samples of model predictions. Consequently, BUS with Subset simulation demands 

a huge number of model evaluations and it can be almost infeasible for complex simulators. 

BUS can further improve its efficiency by applying metamodeling techniques (Giovanis et al. 

2017).  Among various types of the metamodels, the adaptive Kriging model has been paid significant 

attention as one of the most accurate and efficient methods in solving reliability problems. It can be 

interpreted as the classification method for the failure domain by the Kriging model, also known as 

the Gaussian process model. In this model, the estimated responses follow a Gaussian distribution 

with the Kriging means and Kriging variances. The basic rationales of the kriging model can be found 

in Echard et al. (2011).  

The key idea of the adaptive Kriging model is to adaptively identify samples close to the limit 

state function from the candidate MC samples based on the Kriging means and Kriging variances. 

The Kriging model trained by those samples enables to provide a precise classification for the failure 

domain and thus the failure probability can be efficiently estimated using this model. Nevertheless, 

the failure probability of the equivalent reliability problem in BUS is significantly small. In such rare 

events, the adaptive Kriging model becomes very inefficient, since the candidate sample pool should 

be enlarged to ensure that enough samples are contained in the failure domain.  

Meanwhile, Wei et al. (2019) proposed a new algorithm called AK-MCMC. In this algorithm, the 

classification for a series of intermediate failure domains 𝐹𝑖 = {𝐺 < 𝑏𝑖} is provided. Here, 𝑏𝑖  is the 

intermediate failure thresholds (𝑏1 > 𝑏2 > ⋯ > 𝑏𝑚 = 0). An illustration of a two-dimensional case 

following the AK-MCMC algorithm is provided in Fig. 1. Fig. 1(a) illustrates its initial step as the 

classification for the initial intermediate failure domain 𝐹1 = {𝐺 < 𝑏1} upon MC samples represented 

by the plots. The grey and black plots denote the arbitrary selected initial training samples and the 

additional training samples adaptively selected based on the Kriging means and Kriging variances, 

respectively. In addition, the dashed and solid lines show the initial intermediate failure surface and 

the Kriging model trained by the above samples, respectively. On the other hand, Fig. 1(b) illustrates 

the classification for the failure domain 𝐹𝑚 = {𝐺 < 𝑏𝑚(= 0)} upon MCMC samples represented as the 

squared points. Note that, this figure corresponds to the case where 𝑚 = 2. As same as Fig. 1(a), the 

black plots denote the adaptively selected training samples and the dashed and solid lines show the 

failure surface and the Kriging model trained by all of the training samples. As shown in these figures, 

this algorithm provides the classifications for a series of intermediate failure domains, which will 
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finally converge to the classification for the true failure domain, and is much more efficient than the 

direct classification for the failure domain. As a consequence, this algorithm enables to efficiently 

utilized for extremely rare events and thus it is expected to be suitable for BUS. 

 

Fig. 1. Illustration of the AK-MCMC algorithm: (a) Classification for the initial intermediate failure domain;  

(b) Classification for the failure domain. 

In this study, a new Bayesian inference algorithm is thus proposed herein by combining BUS 

with the adaptive Kriging model using the AK-MCMC algorithm. The flowchart of this algorithm is 

summarized in Fig. 2 and the procedure is described in detail as below: 

1) Let 𝑖 = 1. Generate an 𝑁 MC samples population 𝐖1 of the parameters (𝐱, 𝑢) according to 

the joint PDF 𝑃(𝐱)𝐼(0 ≤ 𝑢 ≤ 1); 

2) Randomly select 𝑁0 samples from 𝐖1 and evaluate the limit state function in Eq. (11) on 

these samples. Attribute these 𝑁0 samples to the training samples population 𝐖𝑡; 

3) Train or update the Kriging model �̂�𝑖(𝐱, 𝑢) with 𝐖𝑡; 

4) Predict the limit state function value for each non-training sample contained in 𝐖𝑖 by the 

Kriging model �̂�𝑖(𝐱, 𝑢). Obtain or update the intermediate failure threshold 𝑏𝑖 based on the 

principle that ⌊𝑝0𝑁⌋  samples in 𝐖𝑖  is conditional on the intermediate failure domain 𝐹𝑖 . 

Here, 𝑝0 is the pre-defined target probability and ⌊∎⌋ is the lower integer of the investigating 

values; 

5) Compute the following learning function as: 

𝑈(𝐱, 𝑢) = |𝜇𝐺(𝐱, 𝑢) − 𝑏𝑖| 𝜎𝐺(𝐱, 𝑢)⁄  (14) 

where 𝜇𝐺(𝐱, 𝑢) is the Kriging mean and 𝜎𝐺(𝐱, 𝑢) is the Kriging standard deviation. If the 

stopping criterion as min(𝑈(𝐱, 𝑢)) ≥ 2 is satisfied for all the 𝑁 samples, go to the next step. 

Otherwise, find the non-training sample in 𝐖𝑖  with the minimum value of the learning 

function in Eq. (14) and evaluate the true limit state function. Attribute the sample to 𝐖𝑡 and 

return to Step 3); 

6) If 𝑏𝑖 ≤ 0, let 𝑚 = 𝑖, save the Kriging model �̂�𝑚(𝐱, 𝑢). Identify samples in 𝐖𝑚 located into the 

failure domain 𝐹. Keep these samples as the seeds 𝐖𝑠 and go to the next step. Otherwise, 

generate an 𝑁 MCMC samples population 𝐖𝑖+1 of the parameters (𝐱, 𝑢) conditional on the 

intermediate failure domain 𝐹𝑖  by calling the Kriging model �̂�𝑖(𝐱) based on the modified 

Metropolis-Hastings algorithm (Au and Beck 2001). Let 𝑖 = 𝑖 + 1 and �̂�𝑖(𝐱) = �̂�𝑖−1(𝐱), and 

return to Step 4). 

7) Drawn 𝑁𝑝 posterior samples in 𝐹 with the seeds 𝐖𝑠 by calling the Kriging model �̂�𝑚(𝐱, 𝑢) 

based on the modified Metropolis-Hastings algorithm. 

The learning function in Eq. (14) was proposed by Echard et al. (2011). Because the Kriging 

predictor follows a Gaussian distribution, Φ(𝑈(𝐱, 𝑢)) denotes the probability of making a wrong 

classification on the sign of �̂�(𝐱, 𝑢) − 𝑏𝑖 , where Φ is the standard normal cumulative distribution 
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function. Thus, the stopping criterion (min(𝑈(𝐱)) ≥ 2) corresponds to the case that the probability of 

making a wrong classification on the sign of �̂�(𝐱) − 𝑏𝑖  is less than Φ(−2) = 0.023. 

The advantage of the proposed procedure is that it only needs a small number of evaluations to 

the computationally demanding limit state function in estimating posterior distributions. In addition, 

no prior information about the failure probability 𝑝𝐹  is required for implementing this procedure, 

since the population size 𝑁 depends on the target probability 𝑝0 which is defined by the analyst in 

advance. Nevertheless, in the main step of the ABC updating framework, the stochastic property of 

the Bhattacharyya distance may cause inaccuracy in the classification of the failure surface by the 

Kriging model. Hence, the use of common random numbers (CRN) (Kleinman et al. 1999) is also 

employed in this step. CRN attempts to induce a positive correlation between the stochastic outputs 

(i.e. Bhattacharyya distances) for different inputs and thereby reduces the variance in the difference 

between the outputs; thus, it works to avoid the inaccuracy in the adaptive Kriging model.   

 

Fig. 2. Flowchart of the proposed Bayesian updating algorithm. 

Numerical Example  

Description of the Bayesian Updating Problem 

The two-step ABC updating framework using dynamic response data is demonstrated on a model 

updating problem of a seismic-isolated bridge based on simulated seismic response data. The target 

bridge is a seismic-isolated bridge with lead rubber bearings designed based on Japan Road 

Association (JRA) (2016). Descriptions of the target bridge are listed in Table 1. The reinforced 

concrete (RC) pier with the rubber bearings is modeled as a 2-DOF lumped mass system shown in 

Fig. 3(a), in which the superstructure and RC pier are represented as lumped masses and the rubber 
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bearings and RC pier are described as nonlinear horizontal springs. The boundary condition at the 

surface is assumed to be fixed. The rubber bearings are idealized by a bi-linear model with the ratio 

of the yield stiffness 𝐾𝐵1 to the post-yield stiffness 𝐾𝐵2 as 6.5:1 based on JRA (2004). On the other hand, 

the hysteresis and skeleton curves of the RC pier are idealized by a bi-linear model with the elasto-

plastic characteristic and the stiffness degradation model (so-called Takeda model) (Takeda et al. 

1970), respectively. Rayleigh damping is assumed in which damping ratios of the rubber bearings 

and RC pier are given as 0% and 2%, respectively.  

Table 1. Descriptions of the target bridge. 

Model parameter Nominal value 

Superstructure Mass 𝑀𝑠 (ton) 604.0 

Rubber bearings Yield strength (kN) 1118 

Yield stiffness 𝐾𝐵1 (kN/m) 40000 

Post-yield stiffness 𝐾𝐵2 (kN/m) 6000 

RC pier Mass 𝑀𝑃 (ton) 346.2 

Yield strength (kN) 3374 

Yield stiffness 𝐾𝑃 (kN/m) 110100 

Yield displacement (m) 0.0306 

Ultimate displacement (m) 0.251 

 

Fig. 3. (a) 2-DOF lumped mass system; (b) Time-history of the acceleration response at the superstructure. 

The objective of the model updating problem is to capture the uncertainties in the post-yield 

stiffness of the rubber bearings 𝐾𝐵2, which characterize the nonlinear behavior of the target bridge 

under strong earthquakes, as well as in the other stiffness parameters 𝐾𝑃 and 𝐾𝐵1 by using simulated 

seismic response data. The remaining parameters are assumed to be fixed constants with the nominal 

values, as shown in Table 1. The time-history of the acceleration response at the superstructure 

subjected to the level-2 type-II-II-2 earthquake, shown in JRA (2016), is taken as the investigating 

output features whose uncertainties are driven by the uncertain parameters 𝐾𝑃 , 𝐾𝐵1 , and 𝐾𝐵2 . 

Dynamic response analysis of the 2-DOF system is conducted by Newmark 𝛽 method (𝛾 = 1 2⁄  and 

𝛽 = 1 4⁄ ) with a time step ∆𝑡 = 0.001 s. Fig. 3(b) illustrates a time-history of the acceleration response 

at the superstructure for the case where all parameters are considered as the nominal values in Table 

1. The duration time of the time-history is 40 s with the time step ∆𝑡 = 0.001 s; hence the output 

features are in the 40,000 dimensional-space. Both aleatory and epistemic uncertainties are involved 

in this system and are included by modeling 𝐾𝑃 , 𝐾𝐵1 , and 𝐾𝐵2  as independent Gaussian random 

variables, where the means and standard deviations are not fixed but unknown lying within given 

intervals. According to the parameter categories in Section 1,  𝐾𝑃 , 𝐾𝐵1 , and 𝐾𝐵2  are Category IV 

parameters, while the remaining parameters are Category I parameters. The intervals of the means 𝜇 

and standard deviations 𝜎 associated to 𝐾𝑃, 𝐾𝐵1, and 𝐾𝐵2 are detailed in Table 2. 
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Table 2. Uncertain characteristics and target epistemic inputs of the 2-DOF system. 

Parameter Uncertainty characteristic Target value of epistemic input 

𝐾𝑃 Gaussian, 𝜇1 ∈ [0.5, 1.5], 𝜎1 ∈ [0, 0.15] 𝜇1 = 1.0, 𝜎1 = 0.07 

𝐾𝐵1 Gaussian, 𝜇2 ∈ [0.5, 1.5], 𝜎2 ∈ [0, 0.15] 𝜇2 = 1.0, 𝜎2 = 0.07 

𝐾𝐵2 Gaussian, 𝜇3 ∈ [0.5, 1.5], 𝜎3 ∈ [0, 0.15] 𝜇3 = 1.0, 𝜎3 = 0.07 

The target of the updating procedure 𝐘𝑜𝑏𝑠 is a set of the output features obtained by assigned 

target values of epistemic inputs 𝜇1, 𝜇2, and 𝜇3 and 𝜎1, 𝜎2, and 𝜎3 as shown in Table 2. Those target 

values are given based on Adachi (2002). The sample size of the observed features is set to be 𝑁𝑜𝑏𝑠 =

100, generated by evaluating the model 100 times with the model parameters sampled from their 

assigned Gaussian distributions with the target epistemic inputs. 

In addition to the target values in Table 2, a set of initial values of the epistemic inputs is arbitrary 

selected within the pre-defined intervals but different from the target values. The sample size of the 

initial simulated features is set to be 𝑁𝑜𝑏𝑠 = 500, generated by evaluating the model 500 times with 

the model parameters sampled from their assigned Gaussian distributions with the initial epistemic 

inputs. Fig. 4 illustrates the relative positions of the target observed features and initial simulated 

features. RMS values of both the observed and simulated features for each interval divided based on 

the window length 𝐿(= 0.025 × 40000 = 1000) are computed and five arbitrary selected RMS values 

RMSACC
𝑗  are shown in this figure. The diagonal subfigures compare histograms of the observed and 

initial simulated features. Due to the initial values of the epistemic inputs are intended assigned to 

be different from their target values, the scatters and histograms of the initial simulated features are 

clearly apart from those of the target observed features. Note that, Bayesian updating is not really 

started from those initial values, but from the prior distributions of the epistemic inputs, as shown in 

the second column of Table 2. 

As shown in Fig. 4, the objective of the model updating herein is no longer a single updated 

point with maximum fidelity to a single observation point, but the updated means and variances of 

the parameter distributions which can represent simulated features as similar as the observed ones.  

To achieve this objective, both the Euclidian and Bhattacharyya distances are employed as metrics in 

the ABC updating framework. Moreover, this framework is executed using the proposed algorithm 

combining BUS with the adaptive Kriging model to efficiently estimate the posterior distributions.  

 

Fig. 4. Target observed scatters (in blue) and initial simulated scatters (in green); unit: m s2⁄ . 
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Updating Results with the Euclidian Distance 

In the first step where the Euclidian distance is taken as the metric, the geometric distance between 

the centre of mass of the two sample sets is measured, while the dispersion and distribution 

information of the sample sets cannot be considered. Thus, only the parameter means are considered 

as the uncertain parameters, whose prior distributions are set to be uniform based on the intervals in 

Table 1, and the model parameters are represented as those values, so that only the parameter means 

are updated in this step.  

The parameters of the proposed algorithm are set to be 𝑁 = 3000, 𝑁0 = 12, 𝑝0 = 0.01, and 𝑁𝑝 =

500. The width factor in the approximate likelihood is set as 𝜀 = 0.1. Totally four intermediate failure 

surfaces are produced to finally provide the classification for the true failure domain. It implies that 

the failure probability of the equivalent reliability problem herein is reach around 10−8. Even for such 

a challenging problem, the number of the total training samples is 229, selected by evaluating the 

limit state function associated with the Euclidian distance metric 229 times. The computation of the 

Euclidian distance needs a single model evaluation with the parameter means. Hence, only 229 model 

evaluations are required throughout this step.  

As illustrated in Fig. 5, the posterior distributions of the parameter means well converge to their 

target values presented as the red lines. The horizontal axes of the figure are set to be as same as their 

prior intervals listed in Table 2. Table 3 presents the updated values of the parameter means which 

are obtained by estimating means of the posterior distributions. Percentage errors compared with the 

target values are also provided in the parentheses after the updated values.  

 

Fig. 5. Posterior distributions of parameter means after updating with the Euclidian distance. 

Table 3. Updated epistemic inputs with both the Euclidian and Bhattacharyya distances. 

Input Target value Updated value  

  With Euclidian distance With Bhattacharyya distance 

𝜇1 1.0 0.9682 (3.18 %) 1.0125 (1.25 %) 

𝜇2 1.0 0.9772 (2.28 %) 1.0159 (1.59 %) 

𝜇3 1.0 1.0276 (2.76 %) 1.0024 (0.24 %) 

𝜎1 0.07 – 0.0604 (13.7 %) 

𝜎2 0.07 – 0.0572 (18.3 %) 

𝜎3 0.07 – 0.0813 (16.1 %) 

Furthermore, Fig. 6 illustrates the relative positions of the target observed features and updated 

simulated features. The updated simulated features are obtained by evaluating the model 500 times 

with the model parameters sampled from their assigned Gaussian distributions with the updated 

means shown in Table 3 and variances arbitrary selected from their prior intervals. It can be seen that 

the simulated features are progressively sifted toward the observed features as a result of minimizing 
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the Euclidian distance metric, corresponding to the maximization of the likelihood. Nevertheless, 

there are still some discrepancies between the observed and simulated features. These discrepancies 

are addressed in the next step using the Bhattacharyya distance as the metric. 

 

Fig. 6. Target observed scatters (in blue) and simulated scatters after updating with the Euclidian distance (in 

green); unit: m s2⁄ . 

Updating Results with the Bhattacharyya Distance 

This section presents the second step where the Bhattacharyya distance is employed as the metric. 

The posterior distributions obtained in the first step are taken as the prior distributions of the 

parameter means in this step. At the same time, the prior distributions of the parameter variances are 

set to be uniform based on the intervals in Table 1. The model parameters are given as the assigned 

Gaussian distributions with the sampled means and variances, such that both the parameter means 

and variances are updated. In each computation of the Bhattacharyya distance, 100 random samples 

of the model parameters are generated and similarly 100 simulated features is obtained. 

The parameters of the proposed algorithm are set to be same as those in the preliminary step. 

The width factor in the approximate likelihood is set to be 𝜀 = 0.01. After four intermediate failure 

surfaces are produced, the final Kriging model providing the classification for the true failure domain 

is obtained. It indicates that the failure probability of the equivalent reliability problem herein is also 

reach around 10−8. The number of the total training samples is 521, selected by evaluating the limit 

state function associated with the Bhattacharyya distance metric 521 times. Differently from the first 

step, the Bhattacharyya distance evaluation requires 100 model evaluations. Hence, totally 52100 

model evaluations are executed throughout this step.  

Fig. 7 illustrates the finally updated posterior distributions of the epistemic inputs. The posterior 

distributions of the means are further updated to be more centralized to their target values compared 

with those in Fig. 5. This is caused by introducing the posterior samples in the first step as the prior 

samples in this step. More attention is paid to the posterior distributions of the standard deviations, 

which almost well converge to their target values presented as the red lines. The estimated means of 

these posterior distributions are listed in the last column of Table 3 as their updated values. The 

parameter means have quite high updating precisions with predicted errors less than 2%, while the 

parameter standard deviations show relatively large predicted errors more than 13%. This fulfils the 
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general experience that dispersion information of parameters is much more difficult to be precisely 

updated than the means. Nevertheless, the finally updated simulated features obtained by evaluating 

the model 500 times with the model parameters sampled from their assigned Gaussian distributions 

with the updated epistemic inputs well coincide with the target observed features, as shown in Fig. 

8. This demonstrates that the Bhattacharyya distance is a powerful UQ metric with the capability to 

recreate wholly the distribution of the target observations. 

 

Fig. 7. Posterior distributions of epistemic inputs after updating with the Bhattacharyya distance. 

 

Fig. 8. Target observed scatters (in blue) and simulated scatters after updating with the Bhattacharyya distance 

(in green); unit: m s2⁄ . 

Computational Efficiency 

Finally, computational efficiency of the proposed procedure is demonstrated. For comparison, the 

two-step ABC updating framework is also executed using the TMCMC algorithm. The number of 

samples generated from the posterior distributions are set to be 𝑁𝑝 = 500 as same as that in the 

proposed procedure. The width factors in the approximate likelihoods are set to be also same as those 

in the proposed procedure in order to keep the same computational demand for convergence as in 
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the proposed procedure. All computations are processed using a local parallelization on a 12 cores 

machine installing an Intel core 2.10 GHz processor. 

Table 4 summarizes the total computational time (in minutes) to reach convergence for both the 

first and second steps, in which the Euclidian and Bhattacharyya distances are used as metrics, 

respectively. In this context, computational efficiency is indicated as the ratio of the computational 

time using TMCMC and the proposed algorithm combining BUS with the adaptive Kriging model, 

and is provided in the parentheses after the computational time of the proposed algorithm. It can be 

seen that the second step with the Bhattacharyya distance needs much more computational demands 

than the first step with the Euclidian distance. The computational time in the second step is more 

than 300 times of that in the first step for TMCMC and is about 50 times of that in the first step for 

the proposed algorithm. It is obviously due to the necessity of MC sampling for each computation of 

the Bhattacharyya distance. Nevertheless, the difference in the computational time of those two steps 

is successfully reduced in the proposed procedure by confining the evaluation of the likelihood 

function only for the Kriging approximation.  

Furthermore, it is noted that the proposed procedure reaches convergence with one-fifth of the 

computational time in the first step and with less than one-thirty of the one in the second step 

compared with TMCMC. This is mainly because the number of the model evaluations is significantly 

reduced by implementing the adaptive Kriging model in the proposed procedure. It should be noted 

that, the adaptive Kriging model enable to be also implemented in TMCMC. Nevertheless, several 

modifications are necessary to employ the adaptive Kriging model in TMCMC as the approximation 

of the likelihood function (Angelikopoulos et al. 2015; Jensen et al. 2017), because it was originally 

developed as the classification method in reliability problems. Meanwhile, the proposed algorithm 

transforms the Bayesian updating problem into the equivalent reliability problem; thus, the adaptive 

Kriging model is naturally implemented as the classification method. As a consequence, the proposed 

procedure combining BUS with the adaptive Kriging model enables to produce satisfied results with 

the much-reduced computational demand compared with TMCMC. 

Table 4. Comparison of computational efficiency. 

Method Computational time (minutes)  

 With Euclidian distance With Bhattacharyya distance 

TMCMC 39.1 12437.5 

BUS with the adaptive Kriging 7.9 (5.0) 394.4 (31.5) 

Conclusions 

In this study, the novel Bayesian inference algorithm combining BUS with the adaptive Kriging 

model is developed in order to effectively execute the two-step ABC updating framework using 

dynamic response data. The distance-based approximate likelihood function is capable to maximize 

the acceptance rate in BUS, since the optimal likelihood multiplier is straightforwardly applicable. 

Furthermore, to cope with the significant computational demand in the Bhattacharyya distance 

evaluation, the adaptive Kriging model based on the AK-MCMC algorithm is utilized to provide the 

classification for the limit state function associated with the Bhattacharyya distance. The AK-MCMC 

algorithm provides the classifications for a series of intermediate failure domains, which will finally 

converge to the classification for the true failure domain, and is much more efficient than the direct 

classification for the failure domain. The proposed procedure is demonstrated upon the seismic-

isolated bridge model updating application using simulated seismic response data. This application 

denoted that the Bhattacharyya distance is a powerful UQ metric with the capability to recreate 

wholly the distribution of the target observations and that the proposed inference algorithm is enable 

to provide satisfactory results with much-reduced computational demand compared with TMCMC. 

Data Availability Statement 

All data, models, or code that support the findings of this study are available from the 

corresponding author upon reasonable request. 



 15 of 16 

 

 

References 

Angelikopoulos, P., C. Papadimitriou, and P. Koumoutsakos. 2015. “X-TMCMC: Adaptive kriging 

for Bayesian inverse modeling” Compt. Methods Appl. Mech. Eng. 289: 409-428. https://doi.org/ 

10.1016/j.cma.2015.01.015. 

Au, S. K., and J. L. Beck. 2001. “Estimation of small failure probabilities in high dimensions by subset 

simulation.” Probab. Eng. Mech. 16(4): 263-277. https://doi.org/10.1016/S0266-8920(01)00019-4. 

Adachi, Y. 2002. Reliability analysis and limit state design method of isolated bridges under extreme ground 

motions. Doctoral thesis, Kyoto University, Kyoto. [In Japanese.] 

Beck, J. L., and L. S. Ktafygiotis. 1998. “Updating models and their uncertainties. I: Bayesian statistical 

framework.” J. Eng. Mech. 124(4): 455-461. https://doi.org/10.1061/(ASCE)0733-

9399(1998)124:4(455). 

Beck, J. L., and S. K. Au. 2002. “Bayesian updating of structural models and reliability using Markov 

chain Monte Carlo simulation.” J. Eng. Mech. 128(4): 380-391. https://doi.org/10.1061/(ASCE)0733-

9399(2002)128:4(380). 

Betz, W., I. Papaioannou, and D. Straub. 2016. “Transitional Markov chain Monte Carlo: Observations 

and improvements.” J. Eng. Mech. 142(5): 04016016. https://doi.org/10.1061/(ASCE)EM.1943-

7889.0001066. 

Betz, W., I. Papaioannou, J.L. Beck, and D. Straub. 2018. “Bayesian inference with Subset Simulation: 

Strategies and improvements.” Compt. Methods Appl. Mech. Eng. 331: 72-93. https://doi.org/ 

10.1016/j.cma.2017.11.021. 

Bhattacharyya, A. 1946. “On a measure of divergence between two multinominal populations.” 

Indian J. Stat. 7(4): 401-406. 

Bi, S., S. Prabhu, S. Cogan, and S. Atamturktur. 2017. “Uncertainty quantification metrics with 

varying statistical information in model calibration and validation.” AIAA J. 55(10): 3570-3583. 

https://doi.org/10.2514/1.J055733. 

Bi, S., M. Broggi, and M. Beer. 2019. “The role of the Bhattacharyya distance in stochastic model 

updating.” Mech. Syst. Signal Process. 117: 437-452. https://doi.org/10.1016/j.ymssp.2018.08.017. 

Cheung, S. H., and J. L. Beck. 2009. “Bayesian model updating using hybrid Monte Carlo simulation 

with application to structural dynamic models with many uncertain parameters.” J. Eng. Mech. 

1135(4): 243-255. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:4(243). 

Ching, J., and Y. C. Chen. 2007. “Transitional Markov chain Monte Carlo method for Bayesian 

updating, model class selection, and model averaging.” J. Eng. Mech. 133(7): 816-832. 

https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(816). 

Crespo, L. G., S. P. Kenny, and D. P. Giesy. 2014. “The NASA Langley multidisciplinary uncertainty 

quantification challenge.” In: 16th AIAA Non-Deterministic Approaches Conf., National Harbor, 

Maryland. 

DiazDelaO, E. A., A. Garbuno-Inigo, S. K. Au, and I. Yoshida. 2017. “Bayesian updating and model 

class selection with Subset Simulation.” Compt. Methods Appl. Mech. Eng. 317: 1102-1121. 

https://doi.org/10.1016/j.cma.2017.01.006. 

Echard, B., N. Gayton, and M. Lemaire. 2011. “AK-MCS: An active learning reliability method 

combining Kriging and Monte Carlo Simulation.” Struct. Safety 33(2): 145-154. 

https://doi.org/10.1016/j.strusafe.2011.01.002. 

Echard, B., N. Gayton, M. Lemaire, and N. Relun. 2013. “A combined Importance Sampling and 

Kriging reliability method for small failure probabilities with time-demanding numerical 

models.” Reliab. Eng. Syst. Safety 111: 232-240. https://doi.org/10.1016/j.ress.2012.10.008. 

Grimmett, G. R., and D. R. Stirzaker. 2001. Probability and random processes. New York, Oxford 

University Press. 

Huang, X., J. Chen, and H. Zhu. 2016. “Assessing small failure probabilities by AK-SS: An active 

learning method combing Kriging and Subset Simulation.” Struct. Safety 59: 86-95. 

https://doi.org/10.1016/j.strusafe.2015.12.003. 



 16 of 16 

 

 

Japan Road Association. 2016. Design specifications of highway bridges V: Seismic design. Tokyo, 

Maruzen. 

Japan Road Association. 2004. Manual on bearings for highway bridges. Tokyo, Maruzen. [In Japanese.] 

Jensen, H. A., C. Vergara, C. Papadimitriou, and E. Millas. 2013. “The use of updated robust reliability 

measures in stochastic dynamical systems.” Compt. Methods Appl. Mech. Eng. 267: 293-317. 

https://doi.org/10.1016/j.cma.2013.08.015. 

Jensen, H. A., C. Esse, V. Araya, and C. Papadimitriou. 2017. “Implementation of an adaptive meta-

model for Bayesian finite element model updating in time domain.” Reliab. Eng. Syst. Mech. 160: 

174-190. https://doi.org/10.1016/j.ress.2016.12.005. 

Kennedy, M. C., and A. O’Hagan. 2001. “Bayesian calibration of computer models.” J. R. Stat. Soc.: 

Ser. B (Stat. Methodol.) 63(3): 425-464. https://doi.org/10.1111/1467-9868.00294. 

Kitahara, M., M. Broggi, and M. Beer. 2020. Bayesian model updating for existing seismic-isolated 

bridges using observed acceleration response data. In: XI international conference on structural 

dynamics. https://doi.org/ 10.47964/1120.9291.18937. 

Kleinman, N. L., J. C. Spall, and D. Q. Naiman. 1999. “Simulation-based optimization with stochastic 

approximation using common random numbers.” Manage Sci. 45(11): 1570-1578. 

https://doi.org/10.1287/mnsc.45.11.1570. 

Ktafygiotis, L. S., and J. L. Beck. 1998. “Updating models and their uncertainties. II: Model 

identifiability.” J. Eng. Mech. 124(4): 463-467. https://doi.org/10.1061/(ASCE)0733-

9399(1998)124:4(463). 

Patelli, E., Y. Govers, M. Broggi, H. M. Gomes, M. Link, and J. E. Mottershead. 2017. “Sensitivity or 

Bayesian model updating: a comparison of techniques using the DLR AIRMOD test data.” Arch. 

Appl. Mech. 87: 905-925. https://doi.org/10.1007/s00419-017-1233-1. 

Patra, B. K., R. Launonen, V. Ollikainen, and S. Nandi. 2015. “A new similarity measure using 

Bhattacharyya coefficient for collaborative filtering in sparse data.” Knowledge-Based Syst. 82: 163-

177. https://doi.org/10.1016/j.knosys.2015.03.001. 

Rocchetta, R., M. Broggi, Q. Huchet, and E. Patelli. 2018. “On-line Bayesian model updating for 

structural health monitoring.” Mech. Syst. Signal Process. 103:174-195. 

https://doi.org/10.1016/j.ymssp.2017.10.015. 

Safta, C., K. Sargsyan, H. N. Najm, K. Chowdhary, B. Debusschere, L. P. Swiler, and M. S. Eldred. 

2015. “Probabilistic methods for sensitivity analysis and calibration in the NASA challenge 

problem.” J. Aerosp. Inf. Syst. 12(1): 170-188. https://doi.org/10.2514/1.I010256. 

Straub, D., and I. Papaioannou. 2015. “Bayesian updating with structural reliability methods.” J. Eng. 

Mech. 141(3): 04014134. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000839. 

Takeda, T., M. A. Sozen, and N. N. Nielsen. 1970. “Reinforced concrete response to simulated 

earthquakes.” J. Struct. Div. 96(12): 2557-2573.  

Turner, B. M., and T. Van Zandt. 2012. “A tutorial on approximate Bayesian computation.” J. Math. 

Psychol. 56(2): 69-85. https://doi.org/10.1016/j.jmp.2012.02.005. 

Wei, P., C. Tang, and Y. Yang. 2019. “Structural reliability and reliability sensitivity analysis of 

extremely rare failure events by combining sampling and surrogate model methods.” Proc. I. 

Mech. E Part O: J. Risk and Reliability 233(6): 943-957. https://doi.org/10.1177/1748006X19844666. 

https://doi.org/10.1016/j.knosys.2015.03.001
https://doi.org/10.1016/j.knosys.2015.03.001
https://doi.org/10.1016/j.knosys.2015.03.001
https://doi.org/10.1016/j.knosys.2015.03.001
https://doi.org/10.1016/j.knosys.2015.03.001
https://doi.org/10.1016/j.knosys.2015.03.001
https://doi.org/10.1016/j.knosys.2015.03.001

