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ABSTRACT There are several non-uniform effects on photovoltaic (PV) modules related to aging in a
PV array. These subsequently bring about non-uniform operating parameters with individual PV modules,
causing a variance in the PV array performance. The current study undertakes an indoor experimental study to
establish and positively affect the efficacy of a non-uniform aged 2 x 4 PV array, with a commercially avail-
able small panel module of 0.36 W (monocrystalline). This paper proposes a gene evolution algorithm (GEA)
for offline reconfiguration that can provide more significant output power compared to non-uniformly aged
PV arrays through repositioning instead of replacing aged PV modules, which will help lower maintenance
expenses. This reconfiguration requires data input from the PV module’s electrical properties in order to
select ideal reconfiguration setups. The outcomes show that greater output power can be facilitated through
a non-uniformly aged PV array and used on many different PV array sizes.

INDEX TERMS Solar photovoltaic, rearrangement, offline reconfiguration, non-uniform aging, gene

evaluation algorithm, output characteristics.

I. INTRODUCTION

Energy resources and demand are critical to the development
of emerging economies and their long-term viability. Fossil
fuels are the main fuel source for the world economy needs,
but these resources are finite and are rapidly running out,
therefore bringing negative impacts on the wider ecosystem.
Worldwide energy consumption has increased by 3000% in
the 21st century alone, and the lack of sustainable resources is
becoming increasingly apparent. As energy needs are increas-
ing, the negative impacts seen in the environment are also
rising. Greenhouse gases are released into the environment
through heavy carbon fuels, facilitating dangerous climate
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change. In turn, there is a pressing need to find a renewable
energy source that does not produce pollution in order to
meet current world needs. The energy provided by the sun
can be exploited in different ways, such as photovoltaic (PV)
processing, which uses the sun’s energy to produce electricity.
Through PV panels, sunlight is transformed into energy, and
solar energy is consistently rising in popularity and appli-
cability as alternative green energy compared to traditional
energy-producing methods. On the other hand, PV device
performance is highly related to levels of shading.

With regards to electrical characteristics, the selected PV
modules in an array were confirmed as identical. There are
unique changes in these modules when working under inho-
mogeneous insolation, which facilitates mismatch losses in
a PV system and brings PV aging. In relation to efficiency
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and energy yield, a PV system’s design needs assessment of
operation in a wide range of atmospheric conditions, such
as shadow, dust, bird droppings, cracks and more. Aging
also influences the energy yield and electrical performance
of a PV system, and if this is substantial, then the system
will not achieve its potential payback point [1]. Because of
environmental conditions, the I-V curves produced change
from their standard form, and there is a significant drop in
PV array output power as a result [2], [3]. In large solar PV
arrays, aging caused by environmental factors is a significant
problem. The impact of environmental conditions on a solar
PV system’s power output has been widely investigated in
other studies [4], [5].

Similarly, power output losses as a result of aging has also
received significant study focus [6]-[9]. Based on environ-
mental conditions, there is the possibility that many local
maximum power point (MPP) will become apparent. In turn,
the efficient tracking of global MPP is restricted by these
local MPP, causing poor overall performance, hot spots being
created and premature cell and module degradation [10], [11].

To make sure optimal performance is achieved, and mis-
match losses of a PV system are limited (under aging con-
ditions), a number of interconnection configurations have
been suggested for PV modules [12]-[15]. Numerous sim-
ulation studies for various interconnection setups for PV
modules were undertaken in order to examine PV module
electrical behavior [16]-[18]. Besides, refs have compared
basic interconnection schemes series and parallel configu-
ration (SP) and their impact on bypass diodes. [19]-[21].
It was shown that the power loss in series-connected PV
modules under mismatching was able to be mitigated with
anti-parallel bypass diodes [22], [23]. Furthermore, there
was a greater effect seen by the parallel configuration under
mismatching [18], [24], [25]. There is a clear need for an
optimal power conditioning system together with a suitable
DC-DC converter when it comes to controlling a high current
output at a low voltage level in parallel interconnection
schemes [26]-[28]. Earlier literature has shown a range of
different interconnection schemes, including series-parallel
(SP), Total-cross-tied (TCT), Bridge-linked (BL) and
Honeycomb configuration (HC), depicted in Figure 1.
In refs [28]-[30] an optimal Sudoku configuration was pre-
sented, which had the disadvantages of a complicated config-
uration due to a large increase in the wiring. Piccoli et al. [31]
put forward a different approach, which would more effi-
ciently use building-integrated PV (BIPV) systems. A virtual
reality environment was used when analysing the PV modules
and nearby obstacles, but this did not offer any additional
insight into the impacts of real-time problems related to
various PV array configurations.

The study in [12], [13], [32], [33] developed an offline
rearrangement approach in order to increase the energy effi-
ciency of aged PV systems by examining potential rear-
rangements made to PV modules in line with maximum
power point (MPP). Besides, [34] used the Munkres algo-
rithm to evaluate optimal arrangement for balancing and
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FIGURE 1. Twenty-five PV panels are interconnected in (a) SP; (b) TCT);
(c) BL configurations.

attenuating the switches’ aging process in the switching
matrix [35], [36]. Problems concerning different sized PV
array module restructuring were shown to be managed effec-
tively under other methods. On the other hand, these are
highly complicated from a computational standpoint and very
time-consuming, as there is a need to search for every possible
restructuring option [13], [37].

The current paper intends to suggest a way to reposition
aging PV modules in such a way that the PV system has a
less negative impact, using indoor experimentation. This will
increase the power a PV array can produce, and for the cur-
rent study needs, the algorithm can quickly find the optimal
reconfiguration. The paper structure is as follows: Section II
Methodology defines the developed reconfiguration scheme
for a non-uniformly aged PV array. Section III presents
the simulation and the experimental findings concerning the
2 x 4 PV arrays. Section IV includes a discussion of these
findings, while Section V describes this study’s conclusions.

Il. METHODOLOGY

A. PV MODULE CHARACTERISTICS

This experiment used a2 x 4 PV array to assess the efficiency
of different array interconnection topologies for reducing
mismatch loss due to aging factors. In turn, eight polycrys-
talline small PV modules (0.36 W/m? and 25°C) were used
as shown in Figure 2, and the electrical specifications of
single PV modules are clearly in Table 1 and Figure 3 [38].
Because of the current pandemic (COVID-19), the experi-
ment was performed at home in an indoor laboratory. Five
different aging patterns were employed to effectively analy-
ses the performance when linked in a series-parallel SP topol-
ogy. The details of array configuration, aging patterns, and
detail experimental procedure are described in the following
subsections.

B. PV ARRAY CONFIGURATION

The current paper examines SP topology due to its theoretical
potential of being retrofitted effectively in all current PV
fields. It is considered that almost all SP topology recon-
figuration examinations have been completed through an
examination of PV units. These PV units can be depicted
simplistically, with strings of PV cells. Also, the fact that
multiple maxima in the P-V features of several strings of
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FIGURE 2. The type of small solar power panel 0.36W 2V Polycrystalline
SunPower DIY module.

TABLE 1. Electrical specification of monocrystalline ANYSOLAR Ltd
(SM301K09L-ND) module and array.

Parameter Unit Symbol PV module
(8 Cell)
Open Circuit Voltage \ Voc 2.5
Short Circuit Current A Isc 0.180
Maximum Power Point Voltage \% Vupp 2
Maximum Power Point Current A Ly 0.160
Maximum Power Point w Ppp 0.36
Operating Temperature T °C 25
0.22 0.40
—=u— Current P
Ry | — Power X L0.35
0.18 - =-uy
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FIGURE 3. Magnetization I-V and P-V curves of single PV (At standard test
conditions) of the healthy module.

this kind could be present must be accounted for as well.
When it comes to commercially available PV modules, cell
strings are protected through a dedicated bypass diode paired
with an aging factor, impacting the module. Frequently, this
brings about several maximum power point tracking (MPP)
conditions. Notably, most studies focusing on TCT architec-
ture reconfiguration algorithms do not take into account the
multi-modality of P-V curves [16], [39], [40].

Furthermore, short-circuit currents were investigated
almost exclusively in all existing studies. In turn, the cur-
rent paper analyses a reconfiguration algorithm for the SP
connection of commercially available PV modules instead,
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FIGURE 4. Sixteen PV panels are interconnected in Series-Parallel (SP)
configuration.

IO

(a) Aging patter - 1 (b) Aging pattern - IT

=

(d) Aging pattern - IV

(c) Aging pattern - IIT

FIGURE 5. Four different PV modules aging patterns for SP configuration
(a, b, cand d).

based on comprehending the entire I-V characteristic range
of each PV module. This way, the reconfiguration algorithm
can accurately describe the prevalence of maximum power
point (MPP) in different PV modules’ P-V features. It should
also be noted that the current study intends to develop an
SP reconfiguration strategy that can be used in faulty PV
modules as seen in Figure 4, or those with defective or aging
PV systems, instead of simply comparing SP and TCT topol-
ogy reconfiguration performances. This way, a PV array’s
maximum power output can be boosted by changing the PV
module positions. The suggested algorithm needs to establish
the optimal configuration rapidly and then apply it in polyno-
mial time.

C. PV ARRAY AGING PATTERNS

An example, random 16 PV modules connected in the PV
string series for medium size PV array are commonly used
for the MPPT investigation. Besides, PV module aging is
achieved through films, and Figure 5 shows the suggested
aging patterns, which can be used as examples of the
SP configuration. In aging pattern-I, (a) four modules are
aging (in the first string) horizontally. In aging pattern-II,
(b) two strings are aging as (a) horizontally. Finally, in aging
pattern-III, (c) eight modules are aging vertically, and the
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FIGURE 6. Example of connecting PV panels/module in series and
parallel, where the healthy module begins 1000W/m?2.

modules are connected in parallel. This type of aging tech-
nique was employed on eight modules in order to produce
aging pattern-1V, (d). These aging patterns’ significance is
evaluated using array current, array voltage, and power for the
array configuration SP. As a result, Figure 6 shows the first
PV string of pattern-I (a) as an example with three peaks in the
top right corner and two PV modules (D and C) with ageing
patterns for P-V curves. Simultaneously, the PV string in the
top left identified four different ageing of second patterns-
II, (b), with modules (D and C) exhibiting ageing factors.
In contrast, the others (B and A) remained stable.

D. RECONFIGURATION BEASED ON GENE EVOLUATION
ALGORTHIM

Based on GEA, the configuration that generates the most
power out of all possible connection patterns with the low-
est total number of PV module substitutions can be found.
This algorithm’s advantages include its ability to conduct an
arbitrary local search (to an extent). Simultaneously, muta-
tion processes can accelerate convergence to a better solu-
tion once the iteration is close to a superior solution at a
given number of times. Besides, precocity is reduced through
the availability of numerous practical solutions. For GEA
applications, it is necessary to represent each configuration
using a row of numbers as a chromosome while estimating
each configuration’s power output using a fitness function.
Pre-prepared chromosomes make up the fitness function
inputs, and, in turn, the GEA uses the results to establish the
chromosomes selected as parents for the future generation of
chromosomes [13], [41]. Therefore, an on and off switching
of the GEA-computed PV array module is needed, along with
the lowest number of substitutions.

PV = - (1)
pv
an(j)voc
j—1
j=12,....,nxm 2)

where S, is the module short-circuit current, V. is the
open-circuit voltage; PV power is the power delivered by the
PV array, and npy is the number of modules in the system.
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TABLE 2. The steps of SP configuration by using the gene evolution
algorithm.

Parameters Function
I Fitness Equations (1 and 2) express the
proposed fitness function, and the
GEA is intended to maximise the
PV value to the maximum power.
1L Parametric Design 1. Population size = 300

2. Chromosome Length =
nxm

3. Evolution time = 3000

111 Decimal-Based Direct coding with the PV module

number; hence, a sequence will take

Encoding the form of  chromosome
expression.
Iv. Evaluate the Fitness of | PV estimation is performed based

on the formulated fitness function

Each Chromosome in .
after chromosome mapping into a

Population two-dimensional array nxm.
V. Achieving  Iterations | Steps VI-VII, for example, can only
Objective be bypassed if the evaluation
succeeds.
VL Selection of Parents | This means sorting the fitness from
for The Future largf_: too small to identify the
surviving chromosome, followed by
Generation a random number of individuals
who survive despite low fitness.
VIL Parental Chromosome | This issue is challenging due to the
crossover approach; a sequential
Crossover

hybridisation algorithm is used. An
exchange of hybridisation segments
and the parental models' relative
positions help determine the other
positions.

Thus, GEA intends to maximise the PV value, as shown
in Table 2.

To explain part (VII) in Table 2. The other positions are
determined based on the relative positions of the models of
the parents. For example, the chromosome can be given as
the sequence {1,2,3...,8}.

| PVi1 PVip PViz PV
em = |:PV21 PVy PV PV24} 3
Assume:
Parent,,, = {8,6,3,5,4,1,7,2} 4
Parent,,,, = {1,7,8,2,5,6,4, 3} 5)

Then, the random hybridisation points selected from
parent one = {8,6,3,5,4,1,7,2} and in parent two =
{1,7,8,2,5,6,4,3}.

In order to swap the hybrids:

Parentyn, = {#,#,#,12,5,6], #, #} (6)

Parenttwo = {#7 #7 #7 |53 47 1| ’ #5 #} (7)

And then, get to the group from the second hybridisation
point of parents one in equations (4 and 5) and removing

the elements in the hybridisation segment {2, 5, 6}, finally
getting the {8, 3, 4,1,7},
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FIGURE 7. Displayed the flow chart of GEA procedure of PV array
reconfiguration.

Thus, the outcome in parent one for hybridization
point 6 from the second crossing point in turn:

Parent,,, = {4,1,7, 12,5, 6], 8, 3} ®)
Similar,
Parenlrwa = {71 87 27 ”51 47 1” 7673} (9)

In this step, the chromosome Mutation scheme of three
integers guarantees a certain population of mutations by
choosing three specific mutations from within the population
(1 <u<v<w<n x m)and the genes between v and u,
including u and v, with paragraph insertion after w; the fourth
step is subsequently undertaken.

In the final step, the outputs of the chromosome,
an overview of each configuration that satisfies every step and
a possible initial state are given in Figure 4.

However, GEA found nine iterations enough to achieve
optimal reconfiguration for a 2 x 4 PV array with hetero-
geneous aging. In Figure 7, the final step is shown together
with the lowest swap times and the most significant output
power. Algorithm code used in Python 3.6.2 Intel (R) Core
(7M) 17-8565u CPU @1.80 GHz/Windows 10/8 GB/512GB
SSD/UHD 620 to be a suitable computer with which to find
the ideal configuration for a sizable PV array.

E. EXPEREMNTAL STUDY
This section discusses the research setup and measure-
ment processes. The experiment involved 2 x 4 arrays in
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measuring

Siugle PV

FIGURE 8. Experimental prototype to investigate before and after
arranging the I-V and P-V characteristics of the PV array by offline
reconfiguration.

TABLE 3. The output of the I-V tracer parameters.

IV Parameters Accuracy of Range of
Measur t Measur t
Voltage measurement (V) +1% 7.5-7.8
Current measurement (A) +1% 0.170-0.174
Temperature (°C) +2% +25 to +50
Irradiance (W/m?) +3% 0-1200

Load
Current

Solar cell
=

Computer USB

Voltage

FIGURE 9. Experimental setup to investigate the I-V and P-V
characteristics of the single module and array.

confirming the suggested approach, depending on availabil-
ity. In Figure 8, three halogen bulbs are employed as artificial
sunlight (0.5kW each), positioned parallel to the display mod-
ules. Practical used flexible wires and clips to link the individ-
ual PV modules’ output edges to make the connections more
manageable. In turn, commercial multimeters were used to
evaluate the PV array’s output I-V and P—V parameters,
along with an irradiance sensor and temperature sensor. The
room temperature was 25°C during the experiment, with a
variable speed cooling fan used.

Following the experiment, the results are shown in the III
below.

Furthermore, the setup of this experiment identifies the
requirements for describing as illustrated in Figure 9 to obtain
the performance characteristics of PV single and array mod-
ules below:

s As in the full sun, a solar cell is positioned at a fixed
distance from a light source (using artificial sunlight).

s The voltage probe was connected to the solar cell’s out-
put, with the black lead to the negative and the red lead
to the positive.
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TABLE 4. The output of the Current (I)-Voltage (v) tracer parameters.

PV cell parameters Values Units
Voltage Cell 2.27 \
Current Cell 0.16 A

Power Cell 0.36 W
Voltage Array 18.16 \Y%
Current Array 0.16 A

Power Array 291 \

TABLE 5. A2 x 4 PV array before reconfiguration.

The PV age module condition (per unit)

0.7 p.u. 1 p.u.
1 p.u. 0.6 p.u.

0.5 p.u. 1 p.u.
0.9 p.u. 0.5 p.u.

Row (string 1)
Row (string 2)

TABLE 6. PV array 2 x 4 output parameters before reconfiguration.

Parameters Parameters Parameters
Voltage 7.8 \Y%
Current 0.174 A
Power 1.498 w

s The current probe was connected in series with a battery
load to the solar cell’s output.

s Figure 3 displayed the I-V and P-V using Python MPP
code and store output data.

s In a PV array, the measurement was repeated with a
different solar cell.

s The calculation was repeated with different illumination
levels, to get the best results, such as changing the artifi-
cial sunlight.

Following the experiment, the results of the healthy PV mod-
ules are shown in Table 4 below.

Ill. ANALYSIS OF THE RESULTS
A. 2 x 4 PV ARRAY BEFORE REARRANGEMENT
Table 4 shows the exact PV module parameters in the
experiment. A plastic cling film is used to cover the
four modules positioned in both two strings (modulell,
module13, module22, module23 and module24) illustrated
in Figure 10 in order to achieve the aging condition. The
maximum short-circuits currents in a healthy module are
set as per unit (1 p.u.), from standard test conditions STC
(1000 W/m?) at 25 °C module temperature. Figure 11 shows
the test results seen before the arrangement, with the module
output characteristics for both strings shown in Table 5.
Before applying the suggested PV array method, and
I-V and P-V were not reconfigured, the PV array maxi-
mum output power was 1.498 W. The voltage was 7.8 V,
and the current was 0.174 A respectively, as depicted
in Table 6, and Figure 12 describes the final parameters before
rearrangement.

B. 2 x 4 PV ARRAY AFTER REARRANGEMENT

Once the suggested strategy is used on the PV array, nine
iterations were used to define the optimal reconfiguration

VOLUME 9, 2021
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FIGURE 10. The non-uniform aging PV modules without reconfiguration
(covered with a black plastic membrane).
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FIGURE 11. The 2 x 4 PV modules output characteristics of I-V and P-V
before reconfiguration.

for a2 x 4 PV array with heterogeneous aging, as depicted
in Table 7. Figure 7 describes the last stage, with the smallest
amount of swap times illustrated in Figure 13, as well as
increasing the output power.

Identifying the optimal reconfiguration allowed the final
stage to be reached through greater output power and reduced
swap to the greatest degree. Thus, the ideal PV modules
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FIGURE 12. The outputs of the 2 x 4 PV array (before rearrangement).

0.5 row 1, col 1 is swapped by 1.0 rTow 4, col 2
0.9 row 1, col 2 is swapped by 0.5 row 4, col 1
0.6 row 2, col 1 is swapped by 1.0 row 3, col 2
0.7 row 2, col 2 is swapped by 1.0 row 3, col 1
1.0 row 3, col 1 is swapped by 0.7 rTow 2, col 2
1.0 row 3, col 2 is swapped by 0.6 rTow 2, col 1
0.5 row 4, col 1 is swapped by 0.9 row 1, col 2
1.0 row &, col 2 is swapped by 0.5 rTow 1, col 1

Total swaps: B

2>

FIGURE 13. Final iterations to obtain the ideal configuration for the
proposed method.

TABLE 7. A2 x 4 PV array after reconfiguration.

The PV age module condition (per unit)

Row (string 1)
Row (string 2)

1 p.u. 0.5 p.u. 1 p.u. 1p.u.
0.7 p.u. 0.6 p.u. 0.9 p.u. 0.5p.u.

were replaced with ones that could boost final output power,
described with:

s (PV modulell in string 1 “swapped” with PV mod-
ule21 in string 2).

s (PV modulel?2 in string 1 “swapped” with PV mod-
ule13 in string 2).

This shows that the reconfiguration established the lowest
swap times where only four PV modules shifted position to
boost output power, while the others (module14, module22,
module23 and module24) did not move, as seen in Figure 14.
In addition, the PV module output properties of I-V and P-V
after reconfiguration are depicted in Figure 15 as a series
connection.

Once the suggested PV array solution was applied,
the algorithm’s potential to uncover the optimal arrangement
was ensured through simulating the two PV structures. The
peak power output following rearrangement is shown in Fig-
ure 16, which was 1.669 W, with a PV array output voltage
of 6 V and an MPP current of 0.258 A. The computational
time for the suggested algorithm for describing aged 2 x 4 PV
array rearrangements are shown in Table 8.
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TABLE 8. PV array 2 x 4 output parameters after reconfiguration.

Parameters Parameters Parameters
Voltage 6 \
Current 0.258 A

Power 1.669 W

Module 21 Module 12 Module 14

String 1

| J'h

J.‘.‘J Ul M

. \‘|||‘\-|
Module 11 Module 23 4." Module 24

FIGURE 14. The non-uniform aging PV modules with reconfiguration
(where 4 modules have swapped marked with red boxes).
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Voltage (V)

|—m— String 1
String 2

1.0
0.8
0.6
0.4
0.2
0.0 . .

0 2 4

Power (W)

Voltage (V)

FIGURE 15. The series 2 x 4 PV modules output characteristics of I-V and
P-V after reconfiguration.

IV. DISSECTION

For PV arrays of varying dimensions, the proposed algo-
rithm can be applied to support maximum power output.
Besides, for the 2 x 4 PV arrays, the algorithm considered
important aging factors for rearranging specific PV module
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FIGURE 16. The outputs of the 2 x 4 PV array (after rearrangement).
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FIGURE 17. The outputs of PV arrays before and after arrangements,
including a percentage of improvement.

positions in each string, therefore enhancing the impact of
bypass diodes. In turn, all string PV modules suffered from
mismatch loss to a smaller degree, but voltage limits were not
considered. Additional studies which examine this area can
be found [2], [33], [42]. The recommended algorithm has the
ability to sort the PV modules iteratively and hierarchically.
The produced P-V curves seen in Figure 17 depict the PV
array reconfiguration strategy’s potential to increase system
efficiency and lower operating costs.

Besides, the proposed algorithm can bring about rapid
results, as there is no requirement to access all potential con-
figurations of a specific PV Array (Online or Offline), which
streamlines the action. This was seen where the algorithm
established the ideal PV module configuration in only nine
steps, with an average computational time of 0.134325 s.
Therefore, by finding an ideal module configuration quickly,
the real-time implementation process is sped up. Another
benefit of the proposed algorithm is that it only rearranges
impacted PV modules, with others not being affected. Also,
this paper shows that rearrangement increases maintenance
management efficiency. Notably, expenditures and benefits
are the critical decision criteria for offline reconfiguration
methods. The selected methods increase reconfiguration effi-
ciency, profitability, and cost-effectiveness during operation,
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as developing an aging map for PV plants is crucial. Recon-
figuration can be supported as a step towards maximising PV
plant strengths once profitability and more outstanding power
production outweigh the expense of labor force rearrange-
ment. Once these elements are taken into account, the pro-
posed methodology would provide many benefits. PV module
positions would be replaced in line with the workforce instead
of replacing all aging modules with new ones [41], [42].

V. CONCLUSION

The current paper concentrates on non-uniform aging pro-
cesses in PV arrays. The included experiment presents the
finding that PV array power production is impacted by the
position of aged PV modules in the PV arrays. Thus, the sug-
gested algorithm for reconfiguring PV arrays will help limit
the effect of PV arrays with non-uniform aging while boost-
ing the amount of power produced while overcoming the
need to replace aged PV modules. The algorithm arranges
the PV modules repetitively and hierarchically to mitigate
the incompatibility effect of non-uniform aging amongst PV
modules. In turn, the output power increased by 11.42 % for
the 2 x 4 PV array, shown in Figure 17.

Therefore, the proposed approach for the offline reconfig-
uration of PV modules can raise the maximum power output
of PV systems with more miniature relays than the online PV
array reconfiguration approaches. The optimal reconfigura-
tion strategy is determined by the costs and benefits involved.
Finding the ageing map of a PV plant is needed to devise a
cost-effective reconfiguration strategy that will also increase
income. The swapping cost of PV modules relating to the
workforce should also be found. By comparing the above
values, the PV plant owner can decide whether to undertake
the suggested reconfiguration if the increase in profit through
more significant power generation surpasses the workforce’s
efforts in this regard. Thus, the suggested strategy’s main
benefit is to suggest suitable swaps of PV modules’ positions
only through a workforce.
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