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In this note we improve the theorem on Galois rational
covers X 99K V for primitive Fano varieties V , recently
proven by the author, in the two directions: we extend to the
maximum the class of Galois groups G, for which the proof
works, and relax the conditions that must be satisfied by the
variety V — the divisorial canonicity alone is sufficient.
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1. Primitive Fano varieties. All varieties considered in this note are defined
over the field of complex numbers. Recall that a projective variety V of dimension
M > 3 is a primitive Fano variety, if it is factorial, has at most terminal singularities,
and its anti-canonical class (−KV ) is ample and generates the Picard group, Pic V =
ZKV .

A primitive Fano variety V is divisorially canonical, if for every effective divisor
D ∼ −nKV , where n > 1, the pair (V, 1

n
D) is canonical: for every exceptional

divisor E over V the inequality

ord E D 6 n · a(E),

which is opposite to the Noether-Fano inequality, holds.

The divisorial canonicity is a very strong property. For many families of higher-
dimensional Fano varieties (including, for instance, hypersurfaces of degree M + 1
in PM+1 for M > 5) it is known that a Zariski general variety in these families is
divisorially canonical. The list of those families is given at the end of the paper.

2. Galois rational covers. Fix a divisorially canonical primitive Fano variety
V . A rational map X 99K V of a finite degree, where X is some projective variety,
is called a Galois rational cover, is the corresponding field extension C(V ) ⊂ C(X)
is a Galois extension. In [1] it was shown that if the variety V (in addition to the
condition of divisorial canonicity) satisfies the following two technical conditions:

(*1) for every anti-canonical divisor R ∈ | − KV |, every prime number p > 2
and every, possibly reducible, closed subset Y ⊂ V of codimension > 2 there is a
non-singular curve N ⊂ V , such that

p 6 | (N ·KV ),
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N ∩ Y = ∅ and N meets R transversally at non-singular points,

(*2) for every, possibly reducible, closed subset Y ⊂ V of codimension > 2 there
is a non-singular rational curve N ⊂ V , such that N ∩ Y = ∅,
then there are no Galois rational covers X 99K V of degree > 2 with an abelian
Galois group G, where X is a rationally connected variety.

If the variety V is non-singular, then the condition (*2) holds automatically,
since V is rationally connected, see [2, Chapter II]. For a non-singular hypersurface
V ⊂ PM+1 of degree M + 1 the condition (*1) is easy to check, see [1, Sec. 3]. It
is not hard to check this condition for non-singular Fano complete intersections in
the projective space, too; however, we will show below that the conditions (*1) and
(*2) are in fact unnecessary and can be dropped.

3. The main result. The aim of this note is to improve the theorem, shown
in [1], in the two directions: firstly, to extend the class of Galois groups G, for
which the proof given in [1] works to the maximum (answering a question of Yu.
G. Prokhorov), and, secondly, to show that the conditions (*1) and (*2) are not
needed. For a group G its commutant is denoted by the symbol [G,G]. If the
equality G = [G,G] holds, then the group G is said to be perfect. The following
claim is true.

Theorem 1. For a divisorially canonical primitive Fano variety V there are
no Galois rational covers X 99K V , the Galois group G of which is not perfect
(G 6= [G, G]), where X is a rationally connected variety.

Proof. We will show that the theorem stated above follows from the proof of
the main result of [1] with minimal additional arguments. First of all, let us consider
the question, for what class of groups the proof given in [1] works. Assume that
X 99K V is a Galois rational cover with some, not necessarily abelian, Galois group
G. If G1CG is a proper non-trivial normal subgroup, then the rational map X 99K V
is the composition of the rational maps

X 99K X1 99K V,

where C(X1) ⊂ C(X) is a Galois extension with the Galois group G1, and C(V ) ⊂
C(X1) is a Galois extension with the group G/G1. Since the image of a rationally
connected variety is rationally connected, the quotient group G/G1 is abelian if and
only if G1 ⊃ [G,G], and, finally, in every finite abelian group there is a subgroup, the
quotient group by which is a cyclic group of a prime order, Theorem 1 is equivalent
to the following claim.

Theorem 2. For a divisorially canonical primitive Fano variety V and every

prime number p > 2 there are no Galois rational covers X
p:199K V , the Galois group

of which is a cyclic group of order p, where X is a rationally connected variety.

Now let us show that the proof of the main result of [1] gives Theorem 2 without
using the conditions (1*) and (2*).

4. Cyclic covers of the variety V . Fix a prime number p > 2 and a cyclic
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cover σ: X 99K V of order p, where X is a rationally connected variety, assuming
that such covers exist. We may assume that X is a non-singular projective variety
and σ is a morphism. In [1, Propositions 1,2] the following objects are constructed:

— a birational morphism ϕ: V + → V , which is a composition of blow ups with
non-singular centres, where V + is a non-singular projective variety with the Picard
group

Pic V + = ZH ⊕
⊕
i∈I

ZEi,

where H = −KV is the anti-canonical class of the variety V , the ample generator
of the group Pic V (we omit the pull back symbol ϕ∗), and Ei, i ∈ I, are all ϕ-
exceptional prime divisors on V +,

— a non-singular quasi-projective variety UX , a birational morphism ϕX : UX →
X and a Zariski open subset U ⊂ V +, such that

(i) the rational map
ϕ−1 ◦ σ ◦ ϕX : UX 99K V +

extends to a morphism σU : UX → V +, the image of which is U ,

(ii) the inequality
codim ((V + \ U) ⊂ V +) > 2

holds,

(iii) the map σU : UX → U is a cyclic cover of order p, branched over a non-
singular hypersurface W ⊂ U .

Let W be the closure of the effective divisor W in V +. Then

W ∼ nH +
∑
i∈I

ζiEi

for some n ∈ Z+ and ζi ∈ Z. In [1, Sec. 3] it was shown (and this is the key step),
that

n ∈ {0, 1}.
It is in order to exclude these two options that the conditions (*2) (if n = 0) and
(*1) (if n = 1) were needed. However, we will show that these two cases are easily
excluded by means of the explicit constructions in [1, Sec. 5]. This would complete
the proof of Theorem 2, which implies Theorem 1.

5. The explicit construction of a cyclic cover. Since the variety V + is
obtained from V by means of a sequence of blow ups, and the codimension of the
complement V + \ U is at least 2, there is an open subset U+ ⊂ U , the image
UV = ϕ(U+) ⊂ V of which on V is an open subset, and moreover,

codim((V \ UV ) ⊂ V ) > 2

and the map ϕ|U+ : U+ → UV is an isomorphism. In order to construct the subset
U+, one should simply remove from U all closed subsets Ei ∩ U , i ∈ I: their image
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on V is of codimension > 2. Set

U+
X = σ−1

U (U+),

so that σ+
U : U+

X → U+ (where σ+
U is obviously the restriction of the morphism σU

onto U+
X) is the cyclic cover of order p, branched over a non-singular hypersurface

W+ ⊂ U+. Identifying U+ and UV , we can assume that U+ is an open subset of the
original variety V . Obviously,

U+ ⊂ V \ Sing V.

Let W+ ⊂ V be the closure of the effective reduced divisor W+ in V . We have:

W+ ∼ nH.

For a hypersurface in the projective space the options n ∈ {0, 1} can be excluded
from the purely topological grounds, but we will give an algebro-geometric proof,
using only the general properties of the variety V , based on the explicit construction
of a cyclic cover given in [1, Sec. 5]. Let us recall that construction. Since we are
interested only what happens over an open subset U+ = UV ⊂ V with a small
complement in V , we no longer need to consider the variety V +.

Arguing as in [1, Sec. 5], we construct the variety X0 ⊂ V × P1
(x0:x1), given by

the equation
a1x

p
1 − a0x

p
0 = 0, (1)

where a0, a1 ∈ H0(V,OV (N)) are sections without a common divisor of zeros on V .
There is a commutative diagram of maps

X
β99K X0

σ ↓ ↓ π
V = V,

where the upper horizontal arrow β is a birational map and π is induced by the
projection of the direct product V × P1 onto the first factor. Removing from U+

suitable subsets of codimension > 2, we may assume that the sections a0, a1 have
no common zeros on U+, and the hypersurfaces

{a0|U+ = 0} and {a1|U+ = 0}
(in the set-theoretic sense) are non-singular — although possibly reducible. Let TV

be the set of all prime divisors on V , on which one of the sections a0, a1 vanishes,
so that ⋃

T∈TV

(T ∩ U+)

is a non-singular (possibly reducible) hypersurface. Set for T ∈ TV

µ(T ) = max{ordT a0, ordT a1}.

4



(Precisely one of the two integers in the right hand side is positive.) Let us show
that the constructions of [1, Sec. 5] imply the following fact.

Proposition 1. The branch hypersurface W+ contains a divisor T ∈ TV if and
only if p 6 |µ(T ).

(Over the complement

U+ \
⋃

T∈TV

(T ∩ U+)

the projection π is not ramified, and the variety X0 is non-singular; this is obvious
from the equation (1).)

6. Local modifications. Let us prove Proposition 1, repeating the arguments
of [1, Sec. 5] for the open set U+ ⊂ V (from which we can, if necessary, remove
closed subsets of codimension > 2). Set X1 = U+ × P1 and X1 = X0 ∩ pr−1

V (U+).
Let us construct a sequence of locally-trivial P1-bundles over U+

X1
β1← X2

β2← · · · βk−1← Xk,

with projections πi:Xi → U+, in the following way. With respect to some trivialization
of the P1-bundle Xi/U

+ over an open set, intersecting the divisor T ∈ TV , the
hypersurface Xi — the strict transform of X1 on Xi — is defined by the equation

ai,1x
p
1 − ai,0x

p
0 = 0,

where (x0 : x1) are homogeneous coordinates on P1 and one of the regular functions,
say ai,1, does not vanish on T . Assume that

ordT ai,0 > p.

Then the birational transformation

βi:Xi+1 → Xi

is the composition of the blow up of the subvariety

Ti = π−1
i (T ) ∩Xi

and the subsequent contraction of the strict transform of the hypersurface π−1
i (T ) ⊂

Xi. It is easy to check that locally in a neighborhood of the generic point of the
divisor T the hypersurface Xi+1 ⊂ Xi+1 is defined by the equation

ai+1,1x
p
1 − ai+1,0x

p
0 = 0,

where ai+1,1|T 6≡ 0 and
ordT ai+1,0 = ordT ai,0 − p,

see [1, Sec. 5].
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Now setting
µi(T ) = max{ordT ai,0, ordT ai,1}

for every i = 1, . . . , k and T ∈ TV , we get that for every i = 1, . . . , k there is a
precisely one divisor T (i) ∈ TV , such that

µi+1(T (i)) = µi(T (i))− p,

and µi+1(T ) = µi(T ) for all T 6= T (i). For the variety Xk ⊂ Xk we have

µk(T ) 6 p− 1

for all T ∈ TV , and moreover, µk(T ) ≡ µ(T ) mod p.

Now for each T ∈ TV there are three options:

(0) µk(T ) = 0, and then the hypersurface Xk is not ramified over T and for that
reason non-singular over T , so that T 6⊂ W+,

(1) µk(T ) = 1, and then the hypersurface Xk is ramified over T and non-singular
over T , so that T ⊂ W+,

(2) µk(T ) ∈ {2, . . . , p− 1}, and then the variety Xk has a cuspidal singularity of
the type

tp − sµk(T ) = 0

along the non-singular subvariety π−1
k (T )∩Xk, in terms of some local coordinates t, s

on the plane; in that case the normalization of the variety Xk or the obvious sequence
of blow ups along non-singular subvarieties, isomorphic to T , gives a variety, non-
singular over T , that covers U+ cyclically, and this cyclic cover is ramified over T ,
so that here T ⊂ W+, too.

Since µk(T ) ≡ µ(T ) mod p, the proof of Proposition 1 is complete. Q.E.D.

7. Exclusion of the cases n = 0 and n = 1. Let us complete the proof of
Theorem 2. Assume that n = 0, that is to say, the hypersurface W+ is empty. This
means that µ(T ) ≡ 0 mod p for every T ∈ TV . It follows that p | N and we can
“extract the root” from the sections a0, a1 (see Sec. 5): there are sections

e0, e1 ∈ H0(V,OV (N/p)),

such that a0 = ep
0 and a1 = ep

1. But then the equation (1) takes the form

ep
1x

p
1 − ep

0x
p
0 =

p∏
i=1

(e1x1 − ζ ie0x0) = 0,

where ζ = exp(2πi/p), that is, the variety X0 is reducible and is a union of p
irreducible components, covering V birationally. This is impossible. The contradiction
excludes the case n = 0.

Assume that n = 1. In that case there is a unique divisor T ∗ ∈ TV , for which
p 6 |µ(T ∗), and moreover, T ∗ ∼ −KV is a “hyperplane section” (the ample generator
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of the Picard group) of the variety V . Since the sections a0, a1 do not vanish
simultaneously on any prime divisor, we have, say, that a1|T ∗ ≡ 0 and a0|T ∗ 6≡ 0,
and p | µ(T ) for every prime divisor T 6= T ∗, T ∈ TV . Therefore, we get: ordT a1 ≡
0 mod p for T 6= T ∗ and ordT ∗ a1 6≡ 0 mod p. Since a1 is a section of the sheaf OV (N),
this implies that

p 6 |N.

On the other hand, ordT a0 ≡ 0 mod p for all T ∈ TV . Since a0 is also a section of
the sheaf OV (N), we get that

p | N.

This contradiction excludes the case n = 1 and completes the proof of Theorems 2
and 1.

8. Divisorially canonical varieties. To conclude, we give the list of families
of Fano varieties, for a general divisor in which divisorial canonicity is known. In
[3] divisorial canonicity is shown for Zariski general smooth hypersurfaces of degree
M+1 in PM+1 for M > 5 and (smooth Zariski general) double covers of the projective
space PM , branched over a hypersurface of degree 2M for M > 3. In [4] this result
was improved: the divisorial canonicity was shown for Zariski general hypersurfaces
of degree M+1 in PM+1, with at worst quadratic singularities of rank > 8, for M > 9,
and moreover, hypersurfaces that do not satisfy the condition of divisorial canonicity
form a subset of codimension > 1

2
(M−6)(M−5)−5 in P(H0(PM+1,OPM+1(M +1))).

For the double covers of the space PM in [4] a similar improvement was shown: for
M > 10 the double space, branched over a Zariski general hypersurface of degree 2M
with at worst quadratic singularities of rank > 4, is divisorially canonical, and the
branch hypersurfaces, for which the corresponding double cover is not divisorially
canonical, form a set of codimension > 1

2
(M − 4)(M − 1) in P(H0(PM ,OPM (2M))).

For a Zariski general non-singular complete intersection of type

d1 · d2 · . . . · dk

in PM+k, where 2 6 d1 6 d2 6 . . . 6 dk and d1 + . . . + dk = M + k, where the
inequality

M > 2k + 3

holds, the divisorial canonicity was shown in [5]. Before that paper, in [6] and [7]
the divisorial canonicity was shown for smaller classes of complete intersections of
index 1. In [8] the divisorial canonicity was shown for Zariski general smooth Fano
double hypersurfaces of index 1 and dimension > 6.

In [9] the divisorial canonicity was established for Fano varieties of index 1 that
are d-sheeted covers of PM , under the assumption that they have at worst quadratic
singularities, the rank of which is bounded from below (the bound depends on the
dimension M and the degree of the cover) and satisfy certain additional conditions
of general position, and the varieties that are not divisorially canonical form a set,
the codimension of which is bounded from below by an integer-valued function of
the parameters d and M , which grows as 1

2
M2 when M grows.
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Finally, for complete intersections of type d1 ·d2 in PM+2 the divisorial canonicity
was shown for the varieties with at worst quadratic and bi-quadratic singularities,
the rank of which is bounded from below, in [10], under the assumption that certain
additional conditions of general position are satisfied, and for the codimension of
the set of complete intersections that do not satisfy those conditions, an estimate,
similar to the estimates above, was obtained.
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