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Optimal Variance–Gamma approximation

on the second Wiener chaos

Ehsan Azmoodeh a, Peter Eichelsbacher b Christoph Thäle c

Abstract

In this paper, we consider a target random variable Y ∼ V Gc(r, θ, σ) distributed according
to a centered Variance–Gamma distribution. For a generic random element F = I2(f) in the
second Wiener chaos with E[F 2] = E[Y 2] we establish a non-asymptotic optimal bound on the
distance between F and Y in terms of the maximum of difference of the first six cumulants. This
six moment theorem extends the celebrated optimal fourth moment theorem of I. Nourdin & G.
Peccati for normal approximation. The main body of our analysis constitutes a splitting technique
for test functions in the Banach space of Lipschitz functions relying on the compactness of the Stein
operator. The recent developments around Stein method for Variance–Gamma approximation by
R. Gaunt play a significant role in our study. As an application we consider the generalized
Rosenblatt process at the extreme critical exponent, first studied by S. Bai & M. Taqqu.

Keywords: Cumulant, generalized Rosenblatt process, Malliavin calculus, six moment theorem,
Stein’s method, Variance–Gamma approximation, Wasserstein distance, Wiener chaos
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1 Introduction and results

1.1 Motivation and a summary of related results

The Variance–Gamma (VG) probability distribution on R with parameters r > 0, θ ∈ R, σ > 0 and
µ ∈ R has probability density function given by

pVG(x; r, θ, σ, µ) =
1

σ
√

πΓ( r
2 )

e
θ

σ2 (x−µ)

( |x − µ|
2
√

θ2 + σ2

) r−1

2

K r−1

2

(√
θ2 + σ2

σ2
|x − µ|

)
, x ∈ R, (1)

where Kν(x) is the modified Bessel function of the second kind, see [Gau20b, Appendix A]. We write
Y ∼ VG(r, θ, σ, µ) when random variable Y is distributed according to the density pVG; for a detailed
account and different parametrizations the reader is referred to [Gau13]. When the parameter µ satisfies
µ = −rθ, we write V Gc(r, θ, σ) to denote the centered VG distribution, i.e., the one with mean zero.
The family of VG distributions contains several classical probability distributions as special or limiting
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cases. Examples include the normal (Gaussian), the gamma or the normal product distribution as
well as the difference of gamma distributions, see [Gau13, Proposition 1.2] and [ET15, p. 11]. The VG
distribution has widely been applied in financial modelling [MCC98, MS90], and for other applications,
see [KKP01].

The Malliavin-Stein method [NP09b, NP12a] is a powerful technique to derive quantitative limit
theorems on the Wiener (or the Poisson and the discrete Rademacher) space. Undoubtedly, the most
striking result in this direction is the fourth moment theorem [NP05] due to Nualart & Peccati, which
can be considered as the spring of the theory; we refer the reader to [NP12a] as well as to Section 2
below for any unexplained notion evoked in the present section. For fixed p ≥ 2 it states that a sequence
(Fn : n ≥ 1) ⊆ Hp of elements in the fixed Wiener chaos of order p converges in distribution towards
a standard normal distribution if and only if, as n → ∞, E[F 2

n ] → 1 and E[F 4
n ] → 3. In [NP09b],

Nourdin & Peccati combined Stein method for normal approximation with Malliavin calculus to give
a quantitative version of this fourth moment theorem. Their result reads as follows. Let N ∼ N(0, 1)
be a standard Gaussian random variable, and let (Fn : n ≥ 1) ⊆ Hp be such that E[F 2

n ] = 1 for each
n > 1. Then,

dTV(Fn, N) ≤
√

4p − 4

3p

√
E[F 4

n ] − 3, (2)

where we recall that dTV(F, G) := supB∈B(R)

∣∣P(F ∈ B) − P(G ∈ B)
∣∣ denotes the total variation

distance between two random elements F and G. It was believed for years that the appearance of
the square root in the bound (2) makes it sub-optimal. In fact, it is and we refer to [BBNP12] for an
optimal bound for normal approximation in a ’smooth’ integral probability metric. Finally, Nourdin
& Peccati [NP15] established the optimal bound for the total variation distance. Their technique is
based on an elegant iteration of Stein’s method and the integration-by-parts formula (see (18)) from
Malliavin calculus, resulting in so-called higher-order iterated Gamma operators (defined at (19)).
Their result says that there are two constants C1, C2 > 0, independent of n, so that for any sequence
(Fn : n ≥ 1) ⊆ Hp of random elements in a fixed Wiener chaos of order p > 2,

C1 max
{∣∣κ3(Fn)

∣∣,
∣∣κ4(Fn) − 3

∣∣
}

≤ dTV(Fn, N) ≤ C2 max
{∣∣κ3(Fn)

∣∣,
∣∣κ4(Fn) − 3

∣∣
}

, (3)

where κ3(Fn) and κ4(Fn) are the third and the fourth cumulant of Fn, respectively. In particular,
when p is odd and therefore κ3(Fn) = 0, the optimal rate (3) improves by a power of two the rate in
(2).

The Malliavin-Stein approach to probabilistic limit theorem on a fixed Wiener chaos has been
extended to many other target distributions, for example to the (centered) Gamma distribution
[NP09a, NP09b, NPR10, NR14, DP18]. For fixed ν > 0 let G(ν) stand for a random variable
distributed according to the centered Gamma distribution on R with probability density function

pν(x) = 2− ν
2 Γ
(

ν
2

)−1
(x + ν)

ν
2

−1 e− x+ν

2 , x > −ν. In [AEK20], the authors provide an optimal rate
analogous to (3) within the second Wiener chaos in terms of the maximum of the third and fourth
cumulant. Namely, there are constants C1, C2 > 0 such that for a sequence (Fn : n > 1) of elements
Fn ∈ H2,

C1 max
{∣∣κ3(Fn) − κ3(G(ν))

∣∣,
∣∣κ4(Fn) − κ4(G(ν))

∣∣
}

≤ dH2
(Fn, G(ν)) ≤ C2 max

{∣∣κ3(Fn) − κ3(G(ν))
∣∣,
∣∣κ4(Fn) − κ4(G(ν))

∣∣
}

, (4)

where, following [DP18, AMPS17], for k ≥ 1, the so called smooth Wasserstein distance dHk
(F, G)

between two random elements F and G is given by

dHk
(F, G) := sup

h∈Hk

∣∣∣E[h(F )] − E[h(G)]
∣∣∣.
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Here, the class Hk of the test functions is defined as

Hk := {h ∈ Ck−1(R) : h(k−1) ∈ Lip(R) and ‖h(1)‖∞ 6 1, . . . , ‖h(k)‖∞ 6 1},

where Ck−1(R) is the space of k − 1 times continuously differentiable functions on R, Lip(R) is the
space of Lipschitz functions on R and ‖h(k)‖∞ denotes the smallest Lipschitz constant of h(k−1), the
derivative of order k − 1 of h (where for convenience h(0) = h). It is worth pointing out that ‖f (k)‖∞
coincides with the uniform norm of the derivative of f (k−1), whenever f (k−1) is differentiable. In
particular, for k = 1 we obtain the classical Wasserstein distance.

In [ET15] the Malliavin-Stein method for VG approximation has been introduced, we outline
the general estimates in Section 2.3. Thanks to recent developments on Stein’s method for the VG
distribution by Gaunt [Gau20b], we present the results in a strengthened form using the distance
dH1

(instead of the so-called bounded Wasserstein distance dHb,1
for which the results in [ET15]

actually hold; note however that erroneously all bounds in [ET15] are formulated for the dH1
-distance).

In contrast to the case of the normal or the Gamma distribution, the Stein equation for the VG
distribution is a second-order differential equation. Unlike for the normal or the Gamma distribution,
in the context of the Malliavin-Stein method this results in the appearance of the higher-order iterated
Gamma operator Γalt,2, see Definition 20 below. Due to the involved nature of the Γalt,2 operator, up
to this date only the case of the second Wiener chaos has been treated successfully, since in this case
the general Malliavin-Stein bound could be translated into the language of finitely many cumulants, see
for example [AP17, Conjecture 6.8]. Let Y ∼ V Gc(r, θ, σ) and assume that for each n > 1, Fn ∈ H2

is an element in the second Wiener chaos. Then, the bound for VG approximation of Fn in terms of
cumulants reads as follows, see Theorem 2.7:

dH1
(Fn, Y ) ≤ C

{√√√√
6∑

ℓ=2

Cℓ (κℓ(Fn) − κℓ(Y )) +
∣∣∣κ3(Fn) − κ3(Y )

∣∣∣
}

, (5)

where (Cℓ : ℓ = 2, ..., 6) are explicit constants depending only to parameters r, θ, and σ. The bound
(5) and its comparison with (2) and (3) (for normal approximation) or (4) (for Gamma approximation)
are the main motivation and the starting point for the present paper.

1.2 Statement of the main result

Although bound (5) is very handy and shows that convergence of the first six cumulants already implies
convergence in distribution towards a VG distribution, its similarity with the bound (2) for normal
approximation raises the question whether also in this situation the appearance of the square root
makes it sub-optimal. In fact, our main result shows that this is indeed the case; for the proof see
Section 3.1.

Theorem 1.1 (Optimal Variance–Gamma approximation). Let Y ∼ V Gc(r, θ, σ) be distributed
according to a centered Variance–Gamma distribution with parameters r > 0, θ ∈ R and σ > 0. Let
(Fn : n > 1) ⊆ H2 be a sequence of elements from the second Wiener chaos. Define

M(Fn) := max
{∣∣∣κℓ(Fn) − κℓ(Y )

∣∣∣ : ℓ = 2, 3, 4, 5, 6
}

. (6)

Then, there are constants C1, C2 > 0 only depending on r, θ and σ such that

C1 M(Fn) ≤ dH2
(Fn, Y ) ≤ C2 M(Fn). (7)

We recall an important stability result established by Nourdin & Poly [NP12b] for convergence in
distribution of elements in the second Wiener chaos. It states that for a sequence (Fn : n ≥ 1) ⊆ H2 in
the second Wiener chaos converging in distribution to a random element F , as n → ∞, one necessarily
has that F ∈ H1 ⊕ H2, the direct sum of the first and the second Wiener chaoses. In combination
with Theorem 1.1 this yields the following result.
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Corollary 1.2. Fix α, β > 0 and let r ∈ N. Assume that Y ∈ H2 belongs to the second Wiener chaos
and takes the form

Y
law
=

r∑

i=1

α(N2
i − 1) −

r∑

j=1

β(Ñ2
j − 1) ∼ VGc(r, α − β, 2

√
αβ),

where (Ni, Ñi : i ≥ 1) are independent standard Gaussian random variables. Let (Fn : n > 1) ⊆ H2

be a sequence of elements belonging to the second Wiener chaos. Then, there are constants C1, C2 > 0
depending only on α, β and r such that

C1 M(Fn) ≤ dH2
(Fn, Y ) ≤ C2 M(Fn).

We close this section with a number of comments related to Theorem 1.1.

Remark 1.3. (a) In most practical applications, the rate (7) provides an improvement of (5), for
a concrete example see Section1.3. In addition, when Y ∼ SVGc(r, θ = 0, σ) has a centered and
symmetric VG distribution, the quantity M(Fn) in (7) can be replaced by

M′(Fn) := max
{∣∣κℓ(Fn) − κℓ(Y )

∣∣ : ℓ = 2, 3, 4, 6
}

where in comparison to M(Fn) the fifth cumulant difference κ5(Fn) − κ5(Y ) does not appear.
However, the presence of the difference κ3(Fn)−κ3(Y ) is inevitable as demonstrated by [AAPS17,
Example 2.1].

(b) A significant feature of the optimal rate (7) is that it is non asymptotic and a priori does not
assume the law of the chaotic random variables Fn ∈ H2 in the second Wiener chaos to be close
to that of the Variance–Gamma target distribution Y . The same phenomenon has first been
observed for the centered Gamma distribution in [AEK20].

(c) For the proof of the upper bound in Theorem 1.1, the starting point is an adaption of the
technique developed in [NP15] for normal approximation. However, in order to achieve the
optimal upper bound we re-employ a novel operator theory technique introduced in [AEK20]
within Stein’s method to split appropriate test functions. This is the topic of Section 3.1.2. Our
methodology to obtain the optimal lower bound is based on complex analysis and differs from
that in [NP15].

(d) Due to the existence of singularities in the derivative of the solution of the Variance–Gamma
Stein equation [Gau20b, Propositions 3.4, 3.5] associated to non smooth test functions (such as
indicator functions), an optimal rate for non-smooth probability metrics such as the Kolmogorov
or the total variation distance is out of the scope of the techniques developed in the present
paper.

(e) Let us briefly comment on a natural thought relating to the generalization of the optimal rate (7)
to higher order Wiener chaoses. In fact, at least for the upper bound which is more demanding
part, such an extension would come at the cost of understanding two technically rather involved
computations. The first would be a tractable relation between the iterated Gamma operators
Γalt,2 and Γ2. For elements of the second Wiener chaos we overcome this difficulty in Proposition
2.1. Second, in higher order chaoses, verifying the crucial variance estimates (42), and (43)
turns into estimates involving norms of contraction operators, which were not feasible for us.
Furthermore, our method to achieve the optimal lower bound, relying on complex analysis,
cannot be used in higher order chaoses, and hence require the development of new ideas.

(f) In [Gau17, Corollary 4.2], Gaunt derived the optimal 1/n rate for normal product approximation,
which is a particular distribution in the VG class. Although his result allows for a wide class
of potential applications (not necessary restricted to Gaussian set-up, i.e., the Wiener chaos),
however imposing the normal distribution to the entries of the partial sums considered in [Gau17]
leads to a special subclass of the second Wiener chaos. We would like to emphasize at this point
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that this framework is still not broad enough to capture the application we develop in Section
1.3. Furthermore, in [Gau17] stronger smoothness assumptions on the test functions defining the
probability metric are required.

1.3 Application to the generalized Rosenblatt process at extreme critical

exponents

Recently Bai & Taqqu [BT17] considered the so called generalized Rosenblatt process Fγ1,γ2
= (Fγ1,γ2

(t) :
t ≥ 0) which is defined a a double Wiener-Itô stochastic integral

Fγ1,γ2
(t) = A

∫ ′

R2

(∫ t

0

(s − x1)γ1 (s − x2)γ2 ds

)
B(dx1)B(dx2), (8)

where the prime ′ indicates exclusion of the diagonal {x1 = x2} in the stochastic integral, B denotes a
standard Brownian random measure on R2, and A 6= 0 is a normalizing constant so that E[Fγ1,γ2

(1)2] =
1. The exponents γ1, and γ2 belong to the open triangle ∆ given by

∆ :=
{

(γ1, γ2) ∈ R
2 : γi ∈ (−1, −1/2), i = 1, 2, γ1 + γ2 > −3/2

}
.

The definition of ∆ ensures that the integrand in (8) belongs to L2(R2), and hence the process is
well-defined. The special case Fγ(t) := Fγ,γ(t), where γ ∈ (−3/4, −1.2) is the well-known Rosenblatt

process [Taq75]. The self-similarity property of Fγ1,γ2
yields that Fγ1,γ2

(t)
law
= tγ1+γ2+2Fγ1,γ2

(1).
Hence, hereafter we work only with random variable Fγ1,γ2

:= Fγ1,γ2
(1).

In [BT17], Bai & Taqqu studied distributional behavior of the random variable Fγ1,γ2
at extreme

critical exponents, that is, when the exponents γ1, and γ2 approach the boundaries of the triangle ∆,
and obtained (among other results) the following remarkable limit theorem (the last assertion in part
(b) follows from the results in [AAPS17, Section 3.3]).

Theorem 1.4 ([BT17], Theorem 2.2 and Theorem 2.4). Consider the sequence of random variables
(Fγ1,γ2

: (γ1, γ2) ∈ ∆).

(a) As (γ1, γ2) → (−1/2, γ) or (γ1, γ2) → (γ, −1/2), where −1 < γ < −1/2, the following weak
convergence takes place:

Fγ1,γ2

law−→ Y
law
= N1 × N2 ∼ VGc(1, 0, 1)

where N1, N2 ∼ N(0, 1) are independent standard Gaussian random variables. Moreover, there
exists a constant C > 0 so that, as γ1 → −1/2,

dH1
(Fγ1,γ2

, Y ) ≤ C

√
−γ1 − 1

2
. (9)

(b) Let ρ ∈ (0, 1), and consider random variable

Yρ =
αρ√

2
(N2

1 − 1) − βρ√
2

(N2
2 − 1) ∼ VGc(1,

αρ − βρ√
2

,
√

2αρβρ), (10)

where N1, N2 ∼ N(0, 1) are independent standard Gaussian random variables. Put

αρ :=
(2

√
ρ)−1 + (ρ + 1)−1

√
(2ρ)−1 + 2(ρ + 1)−2

, βρ :=
(2

√
ρ)−1 − (ρ + 1)−1

√
(2ρ)−1 + 2(ρ + 1)−2

.
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Assume γ1 ≥ γ2, and that γ2 = γ1+1/2
ρ − 1/2. Then, as γ1 → −1/2 (and hence, γ2 → −1/2 too),

the following weak convergence takes place:

Fγ1,γ2

law−→ Yρ.

Moreover, the exists a constant C > 0 so that, as γ1 → −1/2,

dH1
(Fγ1,γ2

, Yρ) ≤ C

√
−γ1 − 1

2
. (11)

Since by definition all the random variables Fγ1,γ2
are elements of the second Wiener chaos H2, we

can apply our main Theorem 1.1 in order to deduce the following improved and in fact optimal rate
of convergence in the Bai-Taqqu limit theorem for the dH2

-distance; see Section 3.2 for the proof.

Theorem 1.5. Let all the assumption of Theorem 1.4 prevail. In both cases of Theorem 1.4 and with
the corresponding target random variable Y , as γ1 → −1/2, there exist two constants C1, C2 > 0 such
that

C1

∣∣∣∣−γ1 − 1

2

∣∣∣∣ ≤ dH2
(Fγ1,γ2

, Y ) ≤ C2

∣∣∣∣−γ1 − 1

2

∣∣∣∣ .

Remark 1.6. (a) The rate
√

−γ1 − 1/2 at item (a) in Theorem 1.4 is first obtained in [BT17], and
recently in [Gau20b] in the stronger probability metric dH1

. On the other hand, the same rate√
−γ1 − 1/2 appearing at item (b) was obtained first in [AAPS17] for the 2-Wasserstein distance

(see [AAPS17, Definition 1.1]) by using a purely discrete Hilbert space approach, whereas Gaunt
recently in [Gau20b] established the same rate for the distance dH1

using Stein’s method for VG
approximation. Gaunt’s approach has the following advantages. First, his approach is general,
meaning that it provides estimate for a general random variable F satisfying only a minimal set
of assumptions, while the approach in [AAPS17] can be applied only to elements living in the
second Wiener chaos. Second, it provides accesses to explicit constants, see Theorem 2.7.

(b) Gaunt in [Gau20b, Proposition 3.6] relates the distance dH1
to the classical Kolmogorov distance

dKol(F, G) := supx∈R

∣∣P(F ≤ x) − P(G ≤ x)
∣∣ between two random variables F and G. Applying

his result, in the setting of Theorem 1.4, we infer that, as γ1 → −1/2,

dKol(Fγ1,γ2
, Y ) ≤ C

∣∣∣∣−γ1 − 1

2

∣∣∣∣
1/4

log

∣∣∣∣
1

−γ1 − 1
2

∣∣∣∣ , (12)

for some constant C > 0 depending on the parameters of the target distribution, see [Gau20b,
p. 18] and [AMPS17, Theorem 3]. We strongly believe that this bound is subpotimal, but as
explained in Remark 1.3 (d) an improvement by our techniques seems currently out of reach.

2 Background material

2.1 Elements of Malliavin calculus on Wiener space

In this section, we provide a brief introduction to Malliavin calculus and define some of the operators
used in this framework. For more details, we refer the reader to the textbooks [NP12a, Nua06, NN18].

2.1.1 Isonormal Gaussian processes and Wiener chaos

Let H be a real separable Hilbert space with inner product 〈·, ·〉H, and X = {X(h) : h ∈ H} be
an isonormal Gaussian process, defined on some probability space (Ω, F , P ). This means that X
is a family of centered, jointly Gaussian random variables satisfying E[X(g)X(h)] = 〈g, h〉H. We
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assume that F is the σ-algebra generated by X . For an integer q > 1, we write H⊗q or H⊙q to
denote the q-th tensor product or the q-th symmetric tensor product of H, respectively. If Hq(x) =

(−1)qex2/2 dq

dxn e−x2/2 is the q-th Hermite polynomial, then the closed linear subspace of L2(Ω) generated
by the family {Hq(X(h)) : h ∈ H, ‖h‖H = 1} is called the q-th Wiener chaos of X and will be denoted
by Hq. For f ∈ H⊙q, let Iq(f) be the q-th multiple Wiener-Itô integral of f . An important observation
is that for any f ∈ H with ‖f‖H = 1 we have that Hq(X(f)) = Iq(f⊗q). As a consequence, Iq provides
an isometry between H⊙q and the q-th Wiener chaos Hq of X . It is a well-known fact, called the
Wiener-Itô chaotic decomposition, that any element F ∈ L2(Ω) admits the expansion

F =

∞∑

q=0

Iq(fq), (13)

where f0 = E[F ] and the fq ∈ H⊙q, q > 1 are uniquely determined.
Let (ek, k > 1) be a complete orthonormal system in H. Given f ∈ H⊙p and g ∈ H⊙q, for every

r = 0, . . . , p ∧ q where p ∧ q denotes the minimum of p and q, the contraction of f and g of order r is
the element of H⊗(p+q−2r) given by

f ⊗r g =
∞∑

i1,...,ir=1

〈f, ei1
⊗ . . . ⊗ eir

〉H⊗r ⊗ 〈g, ei1
⊗ . . . ⊗ eir

〉H⊗r . (14)

Notice that the definition of f ⊗r g does not depend on the particular choice of (ek, k > 1). Also note
that f ⊗r g is not necessarily symmetric, its symmetrization will be denoted by f⊗̃rg ∈ H⊙(p+q−2r).
Moreover, f ⊗0 g = f ⊗ g equals the tensor product of f and g while, for p = q, f ⊗q g = 〈f, g〉H⊗q .
Contractions appear naturally in the product formula for multiple Wiene-Itô integrals. Namely, if
f ∈ H⊙p and g ∈ H⊙q, then

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). (15)

Another important result is the following isometry property of multiple integrals. Let f ∈ H⊙p and
g ∈ H⊙q, where 1 6 q 6 p. Then

E[Ip(f)Iq(g)] =

{
p! 〈f, g〉H⊗p if p = q

0 otherwise.
(16)

2.1.2 Malliavin operators

We denote by S the set of smooth random variables, that is, random variables of the form F =
g(X(ϕ1), . . . , X(ϕn)), where n > 1, ϕ1, . . . , ϕn ∈ H and g : Rn → R is a C∞-function, whose partial
derivatives have at most polynomial growth. For such random variables, we define the Malliavin
derivative of F with respect to X as the H-valued random element DF ∈ L2(Ω,H) given by

DF =
∞∑

i=1

∂g

∂xi

(
X(ϕ1), . . . , X(ϕn)

)
ϕi.

The set S is dense in L2(Ω) and using a closure argument, one can extend the domain of D to D
1,2,

the closure of S in L2(Ω) with respect to the norm ‖F‖D1,2 := E[F 2]+E[‖DF‖2
H

]. We refer to [NP12a]
for a more general definition of higher order Malliavin derivatives and the spaces Dp,q. The Malliavin
derivative satisfies the following chain-rule. If φ : Rm → R is a continuously differentiable function
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with bounded partial derivatives and F = (F1, . . . , Fm) is a vector of elements of D1,q for some q, then
φ(F ) ∈ D1,q and

Dφ(F ) =
m∑

i=1

∂φ

∂xi
(F ) DFi. (17)

We remark that the conditions on φ are not optimal and can be weakened.
For F ∈ L2(Ω), with chaotic expansion as in (13), we define the pseudo-inverse of the infinitesimal

generator of the Ornstein-Uhlenbeck semigroup as

L−1F = −
∞∑

p=1

1

p
Ip(fp).

The following integration-by-parts formula is one of the main ingredients in Section 3.1 for proving
the upper bound in the main theorem 1.1. It says that for random elements F, G ∈ D1,2,

E[FG] = E[F ]E[G] + E[〈DG, −DL−1F 〉H]. (18)

2.1.3 Gamma operators and cumulants

Let F be a random variable with characteristic function φF (t) = E[eitF ], where i stands for the
imaginary unit. Its j-th cumulant, j ∈ N, denoted by κj(F ), is defined as

κj(F ) =
1

ij

∂j

∂tj
log φF (t)

∣∣∣
t=0

.

Now, let F be a random variable with a finite chaos expansion as at (13). We define the Gamma
operators Γj , j ∈ N0 recursively via

Γ0(F ) := F and Γj+1(F ) := 〈DΓj(F ), −DL−1F 〉H, for j > 0. (19)

We also introduce the centered versions of the Gamma operators by

Γj(F ) := Γj(F ) − E[Γj(F )].

It is important to note that there is an alternative definition of the Gamma operators, which can be
found in most other papers in this framework, see for example Definition 8.4.1 in [NP12a] or Definition
3.6 in [BBNP12]. For the sake of completeness, we also mention these classical Gamma operators,
which we also call alternative Gamma operators, which we shall denote by Γalt. These are defined via

Γalt,0(F ) := F and Γalt,j+1(F ) := 〈DF, −DL−1Γalt,j(F )〉H, for j > 0. (20)

The alternative Gamma operators are related to the cumulants of F by the following identity from
[NP10]. For all j > 0, one has that E[Γalt,j(F )] = 1

j! κj+1(F ).

Clearly, Γj(F ) = Γalt,j(F ), for j = 0, and j = 1, while for j > 2 this is no more the case. However,
on the second Wiener chaos the identity is preserved as the following result shows, which will frequently
be used throughout this text.

Proposition 2.1. [AEK20, Proposition 2.1] Let F = I2(f) ∈ H2 for some f ∈ H⊙2 be an element of
the second Wiener chaos. Then,

Γj(F ) = Γalt,j(F ) for all j > 0.
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2.1.4 Useful facts on random elements in the second Wiener chaos

Let F = I2(f) for some f ∈ H⊙2 be a generic element in the second Wiener chaos. It is a classical
result (see [NP12a, Section 2.7.4]) that random variables of this type can be analyzed be means of
the associated Hilbert-Schmidt operator Af : H → H that maps g ∈ H onto f ⊗1 g ∈ H. Denote
by {cf,i : i ∈ N} the set of eigenvalues of Af . We also introduce the following sequence of auxiliary

kernels (f ⊗(p)
1 f : p > 1) ⊂ H⊙2, defined recursively as f ⊗(1)

1 f = f , and, for p > 2 by f ⊗(p)
1 f =(

f ⊗(p−1)
1 f

)
⊗1 f .

Proposition 2.2. (see e.g. [NP12a, p. 43]) Let F = I2(f) with f ∈ H⊙2 be an element from the
second Wiener chaos.

(a) The random variable F admits the representation

F =

∞∑

i=1

cf,i

(
N2

i − 1
)

, (21)

where the (Ni : i > 1) are independent standard Gaussian random variables. The random series
converges in L2(Ω) and almost surely.

(b) For every p > 2, the p-th cumulant κp(F ) of F is given by

κp(F ) = 2p−1(p − 1)!

∞∑

i=1

cp
f,i

= 2p−1(p − 1)!〈f, f ⊗(p−1)
1 f〉H

= 2p−1(p − 1)! Tr
(

Ap
f

)
,

(22)

where Tr(Ap
f ) stands for the trace of the p-th power of operator Af .

2.2 Variance–Gamma distributions: basic properties and Stein estimates

Recall that a random variable Y is said to have a Variance–Gamma (VG) probability distribution with
parameters r > 0, θ ∈ R, σ > 0, µ ∈ R if and only if its probability density function pVG(x; r, θ, σ, µ)
is given by (1). We write Y ∼ VG(r, θ, σ, µ) in this situation. In the limiting case σ → 0 the support
becomes the open interval (µ, ∞) if θ > 0, and is (−∞, µ) if θ < 0. Also, it is known that for
Y ∼ VG(r, θ, σ, µ) one has

E(X) = µ + rθ, and Var(X) = r(σ2 + 2θ2), (23)

see for example relation (2.3) in [Gau14]. In this paper, we are interested in centered target distribu-
tions, so without loss of generality we set µ = −rθ, and write V Gc(r, θ, σ) for VG(r, θ, σ, −rθ) to denote
the centered Variance–Gamma distribution with parameters r > 0, θ ∈ R and σ > 0. In particular,
when θ = 0, the random variable Y ∼ V Gc(r, θ = 0, σ) has the symmetric centered Variance–Gamma
distribution SVGc(r, σ). It is known that Y ∼ V Gc(r, θ, σ) if and only if

Y
law
= θ(G − r) + σ

√
GN (24)

where N ∼ N(0, 1) is standard Gaussian and G ∼ Γ(r/2, 1/2) is Gamma distributed with parameters
r/2 and 1/2, and N and G are independent, see [Gau13, Proposition 3.6]. Moreover, the following
formulas from [ET15, Lemma 3.6] for the first sixth cumulants of Y ∼ V Gc(r, θ, σ) will be used in the
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proof of Lemma 2.6:

κ2(Y ) = r(σ2 + 2θ2),

κ3(Y ) = 2rθ(3σ2 + 4θ2),

κ4(Y ) = 6r(σ4 + 8σ2θ2 + 8θ4)

κ5(Y ) = 24rθ(5σ4 + 20σ2θ2 + 16θ4),

κ6(Y ) = 120r(σ2 + 2θ2)(σ4 + 16σ2θ2 + 16θ4).

(25)

Next, we derive a distributional identity for random variables having a centred VG distribution
and belong to the second Wiener chaos.

Proposition 2.3. Let Y ∼ V Gc(r, θ, σ). Assume further that Y belongs to the second Wiener chaos.
Then, r ∈ N is an integer, and there exist α, β > 0 with 2(α2 + β2) = σ2 + 2θ2 such that

Y
law
=

r∑

i=1

α(N2
i − 1) −

r∑

j=1

β(Ñ2
j − 1) (26)

where (Ni, Ñi : i ≥ 1) are independent standard Gaussian random variables. In particular, θ = α − β,
and σ = 2

√
αβ.

Proof. Let φY (t) := E[eitY ] be the characteristic function of Y . Then, by using a conditioning argu-
ment, we obtain

(φY (t))−2 = e2itθr
(
1 − i2θt + σ2t2

)r
, (27)

see [MCC98, Equation (7)]. On the other hand, there exist α, β > 0 with α − β = θ, and σ2 = 4αβ
so that we can write 1 − i2θt + σ2t2 = (1 − 2iαt)(1 + 2iβt). Next, using the assumption that Y is an
element in the second Wiener chaos, the characteristic function of Y can be also expressed as

(φY (t))−2 =
∏

k≥1

e2itαk (1 − 2iαkt) (28)

where the spectral coefficients (αk : k ∈ N) satisfy
∑

k≥1 α2
k < ∞. Now, by comparison (27) and (28),

and a root argument, one can infer that αk = α or −β for all k ≥ 1. Hence, the claim follows from a
standard comparison between characteristic functions.

Next, we turn to Stein’s method for VG approximation. Following [Gau13, ET15], a Stein equation
for the centered Variance–Gamma distribution V Gc(r, θ, σ) associated with a test function h : R → R

is given by the following second order ordinary differential equation:

σ2(x + rθ)f ′′(x) + (σ2r + 2θ(x + rθ))f ′(x) − xf(x) = h(x) − V Gc(r, θ, σ)(h), (29)

where V Gc(r, θ, σ)(h) = E[h(Y )] and Y ∼ V Gc(r, θ, σ). Moreover, we assume that E|h(Y )| < +∞. In
[Gau14] it was shown that a solution to (29) is given by

fh(x) = −e−βxKν (α|x|)
σ2|x|ν

∫ x

0

eβy|y|νIν (α|y|) h̃(y)dy

− e−βxIν (α|x|)
σ2|x|ν

∫ ∞

x

eβy|y|νKν (α|y|) h̃(y)dy

= −e−βxKν (α|x|)
σ2|x|ν

∫ x

0

eβy|y|νIν (α|y|) h̃(y)dy

+
e−βxIν (α|x|)

σ2|x|ν
∫ x

−∞
eβy|y|νKν (α|y|) h̃(y)dy,

(30)
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where h̃ = h − V Gc(r, θ, σ)(h), ν = r−1
2 , α =

√
θ2+σ2

σ2 , β = θ
σ2 , and Iν represents the modified Bessel

function of the first kind. Also, if h is bounded, then fh(x) and the derivative f ′
h(x) are bounded for

all x ∈ R, and (30) is the unique bounded solution when r ≥ 1, and the unique solution with bounded
first derivative if r > 0. The next proposition plays a significant role in Section 3.1.2 and gathers the
essential ingredients for our purposes on the regularity of the solution of the VG Stein equation (29).

Proposition 2.4 ([Gau20b]). Let fh denote the solution (30) of the Variance–Gamma Stein equation
(29) associated with the test function h.

(a) Assume that h : R → R is Lipschitz. Then

‖fh‖∞ ≤ D0(r, θ, σ)‖h′‖∞,

‖f ′
h‖∞ ≤ D1(r, θ, σ)‖h′‖∞,

‖f ′′
h ‖∞ ≤ D2(r, θ, σ)‖h′‖∞,

where the constants Di(r, θ, σ) > 0, i ∈ {0, 1, 2}, only depend on r, θ and σ, and are explicitly
given in Equations (3.15)-(3.18) in [Gau20b].

(b) Assume furthermore that the function h : R → R is such that its first derivative h′ is bounded
and Lipschitz. Then,

‖f
(3)
h ‖∞ ≤ D3(r, θ, σ)

{
‖h′‖∞ + ‖h′′‖∞

}
,

where the constant D3(r, θ, σ) > 0 only depends on r, θ and σ, and is explicitly given in [Gau20b,
Corollary 3.2].

In the proof of Proposition 3.7 below we need the following technical result.

Proposition 2.5. The solution fh given by (30) of the Variance–Gamma Stein equation (29) associ-
ated with a bounded test function h satisfies the following properties.

(a) There exists a function U : R → R with |U(x)| → 0, as |x| → ∞, so that |fh(x)| ≤ ‖h‖∞ U(x).

(b) There exists a function V : R → R with |V (x)| → 0, as |x| → ∞, so that |f ′
h(x)| ≤ ‖h‖∞ V (x).

Proof. Both statements are direct consequences of the estimates (3.12), (3.13) given in [Gau20b, The-
orem 3.1].

2.3 Malliavin–Stein method for Variance–Gamma approximation

In this section we recall some elements related to the Malliavin-Stein method for Variance–Gamma
approximation originally developed in [ET15] and later refined in [Gau20b]. We start with the following
useful observation that relates the variance of a linear combination of the iterated Gamma operators
introduced via relation (19) to that of a linear combination of cumulants.

Lemma 2.6. Assume that F = I2(f) ∈ H2 is an element belonging to the second Wiener chaos.
Then, for ℓ ≥ 1 one has that

Var
(
Γℓ+1(F ) − 2θΓℓ(F ) − σ2Γℓ−1(F )

)

=
κ2ℓ+4(F )

(2ℓ + 3)!
− 4θ

κ2ℓ+3(F )

(2ℓ + 2)!
+
(
4θ2 − 2σ2

) κ2ℓ+2(F )

(2ℓ + 1)!
+ 4θσ2 κ2ℓ+1(F )

(2ℓ)!
+ σ4 κ2ℓ(F )

(2ℓ − 1)!
. (31)

In particular, when ℓ = 1,

Var
(

Γ2(F ) − 2θΓ1(F ) − σ2F
)

=
κ6(F )

5!
− 4θ

κ5(F )

4!
+
(
4θ2 − 2σ2

) κ4(F )

3!
+ 4θσ2 κ3(F )

2!
+ σ4κ2(F ).

(32)
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Furthermore, when F
law
= Y ∼ V Gc(r, θ, σ) has a centered Variance–Gamma distribution, then

κ6(Y )

5!
− 4θ

κ5(Y )

4!
+
(
4θ2 − 2σ2

) κ4(Y )

3!
+ 4θσ2 κ3(Y )

2!
+ σ4κ2(Y ) = 0. (33)

Proof. To prove part (a) we use relation [APP15, Equation (24)], saying that

Γℓ(F ) = Γℓ(F ) − E[Γℓ(F )] = 2ℓI2

(
f ⊗(ℓ+1)

1 f
)
, (34)

and the isometry property (16). This allows us to conclude that

Var
(
Γℓ+1(F ) − 2θΓℓ(F ) − σ2Γℓ−1(F )

)

= 2
∥∥∥2ℓ+1f ⊗(ℓ+2)

1 f − 2ℓ+1θf ⊗(ℓ+1)
1 f − 2ℓ−1σ2f ⊗(ℓ)

1 f
∥∥∥

2

H

= 22ℓ+3〈f, f ⊗(2ℓ+3)
1 f〉H − 4θ22ℓ+2〈f, f ⊗(2ℓ+2)

1 f〉H + (4θ2 − 2σ2)22ℓ+1〈f, f ⊗(2ℓ+1)
1 f〉H

+ 4θσ222ℓ〈f, f ⊗(2ℓ)
1 f〉H + σ422ℓ−1〈f, f ⊗(2ℓ−1)

1 f〉H.

Now, the result follows by using item (b) in Proposition 2.2. Finally, the identity (33) follows by a
direct computation via the cumulant relations (25).

Next, we rephrase, in a slightly different form, the result obtained in [ET15, Theorem 4.1], which
is the starting point for our analysis. We accentuate the recent development on Stein’s method for VG
approximation in [Gau20b] that permits us to state the result in the stronger dH1

-distance instead of
the so-called bounded Wasserstein distance dHb,1

and with fully explicit constants.

Theorem 2.7 ([ET15, Gau20b]). Let Y ∼ V Gc(r, θ, σ) be a centered Variance–Gamma random vari-
able with parameters r > 0, θ ∈ R, and σ > 0.

(a) Let F be a centered random variable admitting a finite chaos expansion with E[F 2] = E[Y 2].
Then

dH1
(F, Y ) ≤ C1E

∣∣∣Γalt,2(F ) − 2θ Γalt,1(F ) − σ2F
∣∣∣+ C2

∣∣∣κ3(F ) − κ3(Y )
∣∣∣

≤ C1

√
Var (Γalt,2(F ) − 2θΓalt,1(F ) − σ2F ) + C2

∣∣∣κ3(F ) − κ3(Y )
∣∣∣,

(35)

where

C1 =
1

σ2

{ 2

r + 2
Ar+1,θ,σ

}{
1 +

(
2 +

θ2

σ2
Br,θ,σ

)}
, C2 =

1

2
C1, (36)

Br,θ,σ = 6 +
2
√

2√
r

+ 2
√

2π(r + 1)
|θ|
σ

(
1 +

θ2

σ2

) r−1

2

+ 2(
√

2r + r)Ar,θ,σ, (37)

Ar,θ,σ =





2
√

π√
2r−1

(
1 + θ2

σ2

) r
2

, if r ≥ 2,

12Γ( r
2 )
(

1 + θ2

σ2

)
, if r ∈ (0, 2).

(38)

(b) Suppose that F = I2(f) ∈ H2 belongs to the second Wiener chaos and satisfies E[F 2] = E[Y 2].
Then

dH1
(F, Y ) ≤ C1

{
1√
5!

√∣∣κ6(F ) − κ6(Y )
∣∣+ 2

√
|θ|
4!

√∣∣κ5(F ) − κ5(Y )
∣∣

+

√
|4θ2 − 2σ2|

3!

√∣∣κ4(F ) − κ4(Y )
∣∣+ σ

√
2|θ|

√∣∣κ3(F ) − κ3(Y )
∣∣
}

+
C1

2

∣∣∣κ3(F ) − κ3(Y )
∣∣∣,

(39)
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where the constant C1 is the same as in (a). The bound (39) can further be simplified to

dH1
(F, Y ) ≤ C

√
M(F ) (40)

where C = C1 max{ 1
2 , 2
√

|θ|
4! ,
√

|4θ2−2σ2|
3! , σ

√
2|θ|} and, where we recall that the quantity M(F )

is given by (6).

Proof. The general estimate (35) can be achieved via the Stein equation (29), the Malliavin integration-
by-parts formula (18), along with the universal Stein bounds at item (a) in Proposition 2.4. The reader
is referred to [ET15, Theorem 4.1] for details. The estimate (39) is a direct consequence of Proposition
2.1 and Lemma 2.6.

Remark 2.8. (a) The assumption in part (a) of Theorem 2.7 that F admits a finite chaotic expan-
sion can be relaxed. However, this direction is not the focus of the present paper.

(b) Imposing the assumption that E[F 2] = E[Y 2] in Theorem 2.7 is no restriction of generality. In
fact, if it is not satisfied, one can work with the bound

dH1
(F, Y ) ≤ C1

√
Var (Γalt,2(F ) − 2θΓalt,1(F ) − σ2F )

+ C2

∣∣∣κ3(F ) − κ3(Y )
∣∣∣+ C3

∣∣∣κ2(F ) − κ2(Y )
∣∣∣

in which C1, C2, C3 > 0 are suitable explicit constants.
(b) When the target random variable Y ∼ SVGc(r, θ = 0, σ) is symmetric, a closer look at the bound

(39) reveals that one can rewrite (40) as

dH1
(F, Y ) ≤ C

√
M′(F ) (41)

where the quantity M′(F ) is given in Remark 1.3, item (a). Again, the presence of the third
cumulant difference |κ3(F ) − κ3(Y )| is inevitable, see [AAPS17, Example 2.1].

3 Proofs

3.1 Proof of Theorem 1.1

3.1.1 Variance estimates

The next two propositions provide the auxiliary estimates towards the optimal upper bound in terms
of the variance of the iterated Gamma operators of Malliavin calculus.

Proposition 3.1. Let Y ∼ V Gc(r, θ, σ) and let F = I2(f) ∈ H2 be a random variable belonging to
the second Wiener chaos such that E[F 2] = E[Y 2] = r(σ2 + 2θ2). Put C = C(r, θ, σ) = 2r(σ2 + 2θ2).
Then, for ℓ ≥ 1,

Var
(
Γℓ+2(F ) − 2θΓℓ+1(F ) − σ2Γℓ(F )

)
≤ C(r, θ, σ) Var

(
Γℓ+1(F ) − 2θΓℓ(F ) − σ2Γℓ−1(F )

)

≤ C(r, θ, σ)ℓ Var
(
Γ2(F ) − 2θΓ1(F ) − σ2F

)
.

(42)

Proof. Using the representation (34) and the isometry (16), we get

Var
(
Γℓ+2(F ) − 2θΓℓ+1(F ) − σ2Γℓ(F )

)

= 2
∥∥∥2ℓ+2f ⊗(ℓ+3)

1 f − 2ℓ+2θf ⊗(ℓ+2)
1 f − 2ℓσ2f ⊗(ℓ+1)

1 f
∥∥∥

2

H

= 2
∥∥∥2f ⊗1

(
2ℓ+1f ⊗(ℓ+2)

1 f − 2ℓ+1θf ⊗(ℓ+1)
1 f − 2ℓ−1σ2f ⊗(ℓ)

1 f
)∥∥∥

2

H

≤ 2‖2f‖2
H

∥∥∥2ℓ+1f ⊗(ℓ+2)
1 f − 2ℓ+1θf ⊗(ℓ+1)

1 f − 2ℓ−1σ2f ⊗(ℓ)
1 f

∥∥∥
2

H
,
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where to obtain the last inequality we used the classical estimate (4.4) in [BBNP12, Lemma 4.2]. Now,
the result follows by noticing that E[F 2] = 2‖f‖2

H
= E[Y 2] = r(σ2 + 2θ2).

Remark 3.2. Assume F
law
= Y ∼ V Gc(r, θ, σ) has a centered Variance–Gamma distribution belonging

to the second Wiener chaos. Then Proposition 3.1 together with the relation (33) immediately yield
the following fact of independent interest that for every ℓ ≥ 1 the linear combination of cumulants
appearing on the right-hand side of (31) always vanishes.

The next proposition encodes the splitting procedure of a given test function in the Banach space
of Lipschitz functions. In particular, inequality (43) is the key estimate for our approach.

Proposition 3.3. Let Y ∼ V Gc(r, θ, σ). Let F = I2(f) ∈ H2 be a random variable belonging to the
second Wiener chaos such that E[F 2] = E[Y 2] = r(σ2 + 2θ2). Then, for ℓ ≥ 1,

Var

(
(
Γ2ℓ+3(F ) − 2θΓ2ℓ+2(F ) − σ2Γ2ℓ+1(F )

)
− 2θ

(
Γ2ℓ+2(F ) − 2θΓ2ℓ+1(F ) − σ2Γ2ℓ(F )

)

− σ2
(
Γ2ℓ+1(F ) − 2θΓ2ℓ(F ) − σ2Γ2ℓ−1(F )

)
)

≤ 2 Var 2
(
Γℓ+1(F ) − 2θΓℓ(F ) − σ2Γℓ−1(F )

)
.

In particular for ℓ = 1 one has that

Var

(
(
Γ5(F ) − 2θΓ4(F ) − σ2Γ3(F )

)
− 2θ

(
Γ4(F ) − 2θΓ3(F ) − σ2Γ2(F )

)

− σ2
(
Γ3(F ) − 2θΓ2(F ) − σ2Γ1(F )

)
)

≤ 2 Var 2
(
Γ2(F ) − 2θΓ1(F ) − σ2F

)
. (43)

Proof. Using the relation (34), the isometry property (16) and the classical estimate (4.4) in [BBNP12,
Lemma 4.2], we see that

Var

(
(
Γ2ℓ+3(F ) − 2θΓ2ℓ+2(F ) − σ2Γ2ℓ+1(F )

)
− 2θ

(
Γ2ℓ+2(F ) − 2θΓ2ℓ+1(F ) − σ2Γ2ℓ(F )

)

− σ2
(
Γ2ℓ+1(F ) − 2θΓ2ℓ(F ) − σ2Γ2ℓ−1(F )

)
)

= 2

∥∥∥∥∥22ℓ+3f ⊗(2ℓ+4)
1 f − θ22ℓ+4f ⊗(2ℓ+3)

1 f +
(
θ222ℓ+3 − σ222ℓ+2

)
f ⊗(2ℓ+2)

1 f

+ θσ222ℓ+2f ⊗(2ℓ+1)
1 f + σ422ℓ−1f ⊗(2ℓ)

1 f

∥∥∥∥∥

2

H

= 23

∥∥∥∥∥
(

2ℓ+1f ⊗(ℓ+2)
1 f − θ2ℓ+1f ⊗(ℓ+1)

1 f − σ22ℓ−1f ⊗(ℓ)
1 f

)

⊗1

(
2ℓ+1f ⊗(ℓ+2)

1 f − θ2ℓ+1f ⊗(ℓ+1)
1 f − σ22ℓ−1f ⊗(ℓ)

1 f
)∥∥∥∥∥

2

H
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≤ 23

∥∥∥∥∥2ℓ+1f ⊗(ℓ+2)
1 f − θ2ℓ+1f ⊗(ℓ+1)

1 f − σ22ℓ−1f ⊗(ℓ)
1 f

∥∥∥∥∥

4

H

= 2 Var 2
(
Γℓ+1(F ) − 2θΓℓ(F ) − σ2Γℓ−1(F )

)
.

This completes the argument.

3.1.2 A splitting technique

The methodology introduced in [NP15] and Theorem 2.7 suggests that in order to get the optimal
upper bound, one has to analyze the quantity

∣∣∣∣∣E
[
h(F )

(
Γ2(F ) − 2θ Γ1(F ) − σ2F

)]
∣∣∣∣∣ (44)

for a given test function h : R → R, which is bounded and Lipschitz. This will be carried out by
means of a so-called splitting technique suggested by the crucial variance estimate (43). To this end,
we adapt the language of operator theory that is employed for first time in [AEK20]. We start by
introducing the Banach space of Lipschitz functions (B, ‖ · ‖B) by

B := {h : R → R : h Lipschitz, ‖h‖∞ < ∞, ‖h′‖∞ < ∞}, ‖h‖B = ‖h‖∞ + ‖h′‖∞.

Proposition 3.4. Let h ∈ B. Denote by S(h) the unique bounded solution of the centered Variance–
Gamma Stein equation (29) with bounded first derivative. Then S(h) ∈ B, and moreover the mapping
S : B → B is a bounded linear operator.

Remark 3.5. We remark that existence and uniqueness of S(h) in Proposition 3.4 is guaranteed by
[Gau13, Lemma 3.13, Lemma 3.14].

Proof of Proposition 3.4. Let h ∈ B. Linearity of S follows directly from (29), and the uniqueness
of the bounded solution with bounded first derivative. Also, S(h) ∈ B in virtue of Proposition 2.4.
Finally,

‖S(h)‖B = ‖S(h)‖∞+‖S′(h)‖∞ ≤ (D0+D1)‖h′‖∞ ≤ (D0+D1) (‖h‖∞ + ‖h′‖∞) = (D0+D1)‖h‖B,

where the constants D0 and D1 are the same as in Proposition 2.4. Hence, ‖S‖ ≤ D0 + D1, and
therefore S is a bounded linear operator on B.

Proposition 3.6. Let a, b, c ∈ R be not equal to zero simultaneously. Consider the bounded linear
operator S : B → B defined as in Proposition 3.4. Set L = L(a, b, c) := aS + bS2 + cS3, where S2 and
S3 stand for the two- and threefold composition of the operator S, respectively. Then L is a bounded
linear operator and the following statements are in order.

(a) The operator L does not admit any non-zero eigenvalue, i.e., if L(h) = λh for some non-zero
constant λ ∈ R, then necessary h = 0.

(b) For every non-zero scalar λ ∈ R, the operator I + λL : B → B is a one-to-one map, where
I : B → B stands for the identity operator.

Proof. That L is a bounded linear operator directly follows from the observation that ‖L‖ ≤ |a|‖S‖ +
|b|‖S‖2 + |c|‖S‖3. To prove (a), by virtue of the spectral mapping theorem [Rud91, Theorem 10.33],
it is enough to show that the point spectrum σp(S) satisfies σp(S) = ∅. We proceed by contradiction.
Assume that there exists h ∈ B such that for some non-zero scalar λ,

S(h) = λh (45)
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Let Y ∼ V Gc(r, θ, σ). This implies that λE [h(Y )] = E [S(h)(Y )] = 0, and hence E [h(Y )] = 0. Next,
relation (45), together with the Stein equation (29) implies that the function h satisfies in the ordinary
differential equation

λσ2(x + rθ)h′′(x) + λ(σ2r + 2θ(x + rθ))h′(x) − (λx + 1) h(x) = 0. (46)

According to [ZP02] the general solution of (46) is given by

h(x) = e

√
θ2+σ2−θ

σ2 x
{

C1u1(x) + C2u2(x)
}

, (47)

where u1, u2 are two linearly independent solution of the so called confluent hypergeometric equation
xu′′ + (r − x)u − κu = 0 and the constant κ = κ(r, θ, σ, λ) is explicit. Also C1, C2 ∈ R are constants.

First note that
√

θ2+σ2−θ
σ2 > 0. On the other hand, it is known that the confluent hypergeometric

equation xu′′ + (r − x)u − κu = 0 has a singular point at infinity, see [Vau07], Chapter 5, Appendix
B. Hence, as x → +∞, the general solution h given by (47) becomes unbounded, unless C1 = C2 = 0.
If either one of constants C1 or C2 would be non-zero, then function h and therefore function S(h)
becomes unbounded, which contradicts the fact that S(h) is bounded. Hence, C1 = C2 = 0, and
therefore h = 0.

For part (b) assume that λ 6= 0 is a non-zero scalar. Then the mapping I + λL : B → B is a linear
operator. Hence, I + λL is a one-to-one map if and only if Ker(I + λL) = 0. However, latter property
follows directly from part (a).

Proposition 3.7. The bounded linear operator S : B → B defined in Proposition 3.4 is a compact
operator. Moreover, for any three scalars a, b, c ∈ R the operator L = L(a, b, c) := aS + bS2 + cS3 is
compact as well.

Proof. Let UB := {h ∈ B : ‖h‖B = ‖h‖∞ + ‖h′‖∞ ≤ 1} denote the unit ball of the Banach space B.
We need to show that the image S (UB) of the unit ball is a precompact set in B, or equivalently, that
every sequence (S(hn) : n ≥ 1) ⊆ S(UB) has a convergent subsequence in the topology of the Banach
space B. Following the first step presented in the proof of [AEK20, Proposition 3.7] without loss of
generality we can assume that there exists an element h ∈ UB such that hn → h pointwise, as n → ∞.
Hereafter, we adapt the second parametrization of the Variance–Gamma distribution from [Gau13,
Denition 3.2] that can easily transform into our parametrization via [Gau13, Equation (3.3)]. We now
literally follow [Gau13, Chapter 3] for the solution of the Variance–Gamma Stein equation to verify
some desired analytic properties of the solution S(h). Due to the integral representation of the solution
S(h) [Gau13, Lemma 3.14, Equation (3.15)] (see also (30)), and the derivative S(h)′ [Gau13, Lemma
3.16, Equation (3.16)] (see also [Gau20b], Equation (3.26)) an application of Lebesgue’s dominated
convergence theorem implies that as, n → ∞,

S(hn) → S(h), and S(hn)′ → S(h)′, pointwise .

Hence, we are left to show that the latter convergences hold uniformly too. To this end, again following
steps (2), and (3) in the proof of [AEK20, Proposition 3.7], it is enough to show that family S :=
(S(hn), S(h), S′(hn), S′(h) : n ≥ 1) is equivanishing at infinity, that is, for every given ε > 0 there
exists a compact interval K ⊂ R such that

∣∣f(x)
∣∣ < ε for all f ∈ S and x /∈ K. However, this is a

direct consequence of Proposition 2.5 together with the fact that ‖hn‖∞, ‖h‖∞ ≤ 1 for every n ≥ 1.
Finally, compactness of the operator L follows directly from the fact that the subset of all compact
operators constitutes an ideal of bounded operators, see [Meg98, 3.4.10 Proposition]

Theorem 3.8. Let a, b, c ∈ R be not-zero simultaneously. Consider the bounded linear operator L =
L(a, b, c) := aS + bS2 + cS3 as in Proposition 3.6. Let λ ∈ R be a non-zero. Then for every h ∈ B
there exists a unique solution g ∈ B to the functional equation

h = (I + λL) (g) = g + aλS(g) + bλS2(g) + cλS3(g). (48)
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Proof. This is a direct application of Propositions 3.6, and 3.7, and the classical Fredholm alternative
[Meg98, Theorem 3.4.24, p. 329].

Proposition 3.9. For r > 0 let UB(r) := {h ∈ B : ‖h‖B ≤ r} denote the centered ball of radius r in
B. Let a, b, c ∈ R be not zero simultaneously and consider the bounded linear operator L = L(a, b, c) :=
aS + bS2 + cS3 as in Proposition 3.6. Let r1 > 0 and λ ∈ R be non-zero. Then there exists a universal
constant r2 > 0 such that for every h ∈ UB(r1) the unique solution g of the functional equation (48)
satisfies ‖g‖B ≤ r2.

Remark 3.10. We remark that the constant r2 in the previous proposition may depend on the
parameters r1, λ, a, b, c, r, θ and σ, but is universal with respect to the choice of h.

Proof of Proposition 3.9. Combining Proposition 3.6 with Theorem 3.8 we see that the linear bounded
operator I + λL : B → B is a bijection. Hence, the result follows from the inverse mapping theorem
[Meg98, 1.6.6 Corollary].

After these operator theoretic preparations we turn now to VG approximation of random elements
from the second Wiener chaos. The analysis of the quantity Ψℓ(g) with ℓ > 0 and g ∈ H1 given by
(50) below is motivated by the Malliavin-Stein bound arising in the course of the proof of Theorem
1.1.

Proposition 3.11. Let Y ∼ V Gc(r, θ, σ) and F = I2(f) be a random element belonging to the second
Wiener chaos with E[F 2] = E[Y 2]. Let g ∈ H1. For ℓ ≥ 0, define

Γℓ+2,ℓ+1,ℓ(F ) := Γℓ+2(F ) − 2θΓℓ+1(F ) − σ2Γℓ(F ), (49)

as well as the centred version

Γℓ+2,ℓ+1,ℓ(F ) := Γℓ+2,ℓ+1,ℓ(F ) − E [Γℓ+2,ℓ+1,ℓ(F )] .

Then

Ψℓ(g) := E

[(
g(F ) − 2θS(g)(F )

)
Γℓ+2,ℓ+1,ℓ(F )

]
=

4∑

k=1

Ψℓ,k(g), (50)

where the quantities Ψℓ,k(g), k ∈ {1, 2, 3, 4}, are given by

Ψℓ,1(g) := −2E
[
S(g)(F ) Γℓ+3,ℓ+2,ℓ+1(F )

]
,

Ψℓ,2(g) := −E

[
S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F ) Γ2,1,0(F )

]
,

Ψℓ,3(g) := −E

[
S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F )

]
×
{
E

[
Γ2,1,0(F )

]
− E

[
Γ2,1,0(Y )

]}
,

Ψℓ,4(g) := −E

[
S(g)(F )

]
×
{
E

[
Γℓ+3,ℓ+2,ℓ+1(F )

]
− E

[
Γℓ+3,ℓ+2,ℓ+1(Y )

]}
.

Furthermore, there exists a constant C > 0 only depending only on r, σ, θ such that

∣∣∣Ψℓ,k(g)
∣∣∣ ≤ C M(F ) (51)

for k ∈ {2, 3, 4}.
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Proof. Let g ∈ H1. Taking into account that E
[
Γℓ+2,ℓ+1,ℓ(F )

]
= 0, we can write

E

[
g(F ) Γℓ+2,ℓ+1,ℓ(F )

]
= E

[
(g(F ) − E[g(Y )]) Γℓ+2,ℓ+1,ℓ(F )

]

= E

[(
σ2(F + rθ)S(g)′′(F ) + (σ2r + 2θ(F + rθ))S(g)′(F ) − FS(g)(F )

)
Γℓ+2,ℓ+1,ℓ(F )

]
. (52)

Using Malliavin integration-by-parts formula, we obtain

−E

[
FS(g)(F ) Γℓ+2,ℓ+1,ℓ(F )

]
= −E

[
S(g)(F )Γℓ+3,ℓ+2,ℓ+1(F )

]
− E

[
S(g)′(F ) Γℓ+2,ℓ+1,ℓ(F )Γ1(F )

]
.

Note that E [Γ1(F )] = κ2(F ) = r(σ2 + 2θ2), and using (52) we have that

− E

[
S(g)′(F ) Γℓ+2,ℓ+1,ℓ(F )

(
Γ1(F ) − 2θF

)]

= −E

[
S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F )

(
Γ2(F ) − 2θΓ1(F )

)]

− E

[
S(g)′(F )

〈
D Γℓ+2,ℓ+1,ℓ(F ), −DL−1(Γ1(F ) − 2θF )

〉

H

]
.

(53)

Note that

E [Γ2,1,0(F )] =
1

2
κ3(F ) − 2θκ2(F ),

E [Γ2,1,0(Y )] = rθσ2

and that, for ℓ ≥ 0, we have
E [Γℓ+3,ℓ+2,ℓ+1(Y )] = 0.

Plugging these identities into (52) we obtain

E

[
g(F ) Γℓ+2,ℓ+1,ℓ(F )

]

= −E

[
S(g)(F )Γℓ+3,ℓ+2,ℓ+1(F )

]
− E

[
S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F )Γ2,1,0(F )

]

− E

[
S(g)′(F )

〈
D Γℓ+2,ℓ+1,ℓ(F ), −DL−1(Γ1(F ) − 2θF )

〉

H

]

= −E

[
S(g)(F )Γℓ+3,ℓ+2,ℓ+1(F )

]
− E

[
S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F ) Γ2,1,0(F )

]

− E

[
S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F )

]
×
{
E

[
Γ2,1,0(F )

]
− E

[
Γ2,1,0(Y )

]}

− E

[
S(g)′(F )

〈
D Γℓ+2,ℓ+1,ℓ(F ), −DL−1(Γ1(F ) − 2θF )

〉

H

]

= −E

[
S(g)(F ) Γℓ+3,ℓ+2,ℓ+1(F )

]
− E

[
S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F ) Γ2,1,0(F )

]

− E

[
S(g)′(F )

〈
D Γℓ+2,ℓ+1,ℓ(F ), −DL−1(Γ1(F ) − 2θF )

〉

H

]

− E

[
S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F )

]
×
{
E

[
Γ2,1,0(F )

]
− E

[
Γ2,1,0(Y )

]}

− E

[
S(g)(F )

]
×
{
E

[
Γℓ+3,ℓ+2,ℓ+1(F )

]
− E

[
Γℓ+3,ℓ+2,ℓ+1(Y )

]}
.

(54)

Next, using representation (34) a straightforward computation shows that
〈

D Γℓ+2,ℓ+1,ℓ(F ), −DL−1(Γ1(F ) − 2θF )
〉

H
= Γℓ+4,ℓ+3,ℓ+2(F ) − 2θ Γℓ+3,ℓ+2,ℓ+1(F )

+ E
[
Γℓ+2,ℓ+2,ℓ

(
Γ1(F ) − 2θF

)]
.

(55)
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Hence,

E

[
S(g)′(F )

〈
D Γℓ+2,ℓ+1,ℓ(F ), −DL−1(Γ1(F ) − 2θF )

〉

H

]

= E

[
S(g)′(F )

(
Γℓ+4,ℓ+3,ℓ+2(F ) − 2θ Γℓ+3,ℓ+2,ℓ+1(F )

) ]

+ E [S(g)′(F )] × E
[
Γℓ+2,ℓ+2,ℓ

(
Γ1(F ) − 2θF

)]

= E

[
S(g)(F )

(
Γℓ+3,ℓ+2,ℓ+1(F ) − 2θ Γℓ+2,ℓ+1,ℓ(F )

) ]

+ E [S(g)′(F )] × E

[
Γℓ+2,ℓ+2,ℓ

(
Γ1(F ) − 2θF

) ]

− E [S(g)′(F )] × E

[
Γℓ+4,ℓ+3,ℓ+2(F ) − 2θΓℓ+3,ℓ+2,ℓ+1

]

= E

[
S(g)(F )

(
Γℓ+3,ℓ+2,ℓ+1(F ) − 2θ Γℓ+2,ℓ+1,ℓ(F )

) ]
,

(56)

where we also used that

E
[
Γℓ+2,ℓ+1,ℓ

(
Γ1(F ) − 2θF

)]
= E [Γℓ+4,ℓ+3,ℓ+2(F ) − 2θΓℓ+3,ℓ+2,ℓ+1] .

Now, plugging (56) into (54) we obtain (50).
Next, we treat the estimates (51) for k ∈ {2, 3, 4}. Let k = 2. Using Proposition 2.4, the Cauchy-

Schwartz inequality and Proposition 3.1 we obtain

∣∣∣Ψℓ,2(g)
∣∣∣ ≤ E

∣∣∣∣∣S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F ) Γ2,1,0(F )

∣∣∣∣∣ ≤ C E

∣∣∣∣∣Γℓ+2,ℓ+1,ℓ(F ) Γ2,1,0(F )

∣∣∣∣∣

≤ C
√

Var (Γℓ+2,ℓ+1,ℓ) ×
√

Var (Γ2,1,0) ≤ C
√

Var (Γ2,1,0) ×
√

Var (Γ2,1,0)

≤ C M(F ),

where we have implicitly used (32) to obtain the last inequality. Here and in what follows, C > 0
stands for a constant whose value might change from line to line.

Now, let k = 3. First, note that using Propositions 2.4 and 3.1, we obtain

∣∣∣∣∣E
[
S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F )

]∣∣∣∣∣ ≤ C
√

Var (Γℓ+2,ℓ+1,ℓ(F )) ≤ C
√

M(F ).

Hence,

∣∣∣Ψℓ,3(g)
∣∣∣ =

∣∣∣∣∣E
[
S(g)′′(F ) Γℓ+2,ℓ+1,ℓ(F )

]∣∣∣∣∣×
∣∣∣∣∣

{
E

[
Γ2,1,0(F )

]
− E

[
Γ2,1,0(Y )

]}∣∣∣∣∣

≤ C
√

M(F ) ×
∣∣∣κ3(F ) − κ3(Y )

∣∣∣ ≤ C M(F )3/2.

Finally, let k = 4. First, using Proposition 2.4 we have
∣∣E [S(g)(F )]

∣∣ ≤ C. Next, we proceed by an
induction argument to show that, for ℓ ≥ 1,

∣∣∣∣∣E
[
Γℓ+3,ℓ+2,ℓ+1(F )

]
− E

[
Γℓ+3,ℓ+2,ℓ+1(Y )

]∣∣∣∣∣ ≤ C M(F ); (57)

note that the statement holds for ℓ = 0 by (25) and a simple direct check. To show (57) we start by
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writing

E [Γℓ+3,ℓ+2,ℓ+1(F )] =
κℓ+4(F )

(ℓ + 3)!
− 2θ

κℓ+3(F )

(ℓ + 2)!
− σ2 κℓ+2(F )

(ℓ + 1)!

=
κℓ+4(F )

(ℓ + 3)!
− 4θ

κℓ+3(F )

(ℓ + 2)!
+ (4θ2 − 2σ2)

κℓ+2(F )

(ℓ + 1)!
+ 4θσ2 κℓ+1(F )

ℓ!
+ σ4 κℓ(F )

(ℓ − 1)!

+ σ2

{
κℓ+2(F )

(ℓ + 1)!
− 2θ

κℓ+1(F )

ℓ!
− σ2 κℓ(F )

(ℓ − 1)!

}

+ 2θ

{
κℓ+3(F )

(ℓ + 2)!
− 2θ

κℓ+2(F )

(ℓ + 1)!
− σ2 κℓ+1(F )

ℓ!

}

=
κℓ+4(F )

(ℓ + 3)!
− 4θ

κℓ+3(F )

(ℓ + 2)!
+ (4θ2 − 2σ2)

κℓ+2(F )

(ℓ + 1)!
+ 4θσ2 κℓ+1(F )

(ℓ − 1)!

+ 2θE [Γℓ+2,ℓ+1,ℓ(F )] + σ2
E [Γℓ+1,ℓ,ℓ−1(F )] .

The two summands in the last line can be handled by means of the induction hypothesis. For the
terms in the first line of the last expression, we have two possibilities. If ℓ = 2s for some s ≥ 1, then

κℓ+4(F )

(ℓ + 3)!
− 4θ

κℓ+3(F )

(ℓ + 2)!
+ (4θ2 − 2σ2)

κℓ+2(F )

(ℓ + 1)!
+ 4θσ2 κℓ+1(F )

ℓ!
+ σ4 κℓ(F )

(ℓ − 1)!

= Var (Γs+1,s,s−1(F )) ≤ C Var (Γ2,1,0) ≤ C M(F ).

If otherwise ℓ = 2s + 1 for some s ≥ 1, then using Proposition 3.1 we obtain

∣∣∣∣∣
κℓ+4(F )

(ℓ + 3)!
− 4θ

κℓ+3(F )

(ℓ + 2)!
+ (4θ2 − 2σ2)

κℓ+2(F )

(ℓ + 1)!
+ 4θσ2 κℓ+1(F )

ℓ!
+ σ4 κℓ(F )

(ℓ − 1)!

∣∣∣∣∣

=

∣∣∣∣∣
κ2s+5(F )

(2s + 4)!
− 4θ

κ2s+4(F )

(2s + 3)!
+ (4θ2 − 2σ2)

κ2s+3(F )

(2s + 2)!
+ 4θσ2 κ2s+2(F )

(2s + 1)!
+ σ4 κ2s+1(F )

(2s)!

∣∣∣∣∣

=

∣∣∣∣∣E
[
Γs+2,s+1,s(F ) Γs+1,s,s−1(F )

]
∣∣∣∣∣

≤
√

Var (Γs+2,s+1,s(F )) ×
√

Var (Γs+1,s,s−1(F ))

≤ C
√

Var (Γ2,1,0(F )) ×
√

Var (Γ2,1,0(F ))

≤ C M(F ).

This completes the argument.

As a final step in the preparation of the proof of the upper bound in Theorem 1.1 we develop
a general upper bound for the dH2

-distance between a second Wiener chaos random element and a
centred VG-distributed random variable.

Proposition 3.12. Let Y ∼ V Gc(r, θ, σ) and F be a random element belonging to the second Wiener
chaos with E[F 2] = E[Y 2]. Then there exists a constant C = C(r, θ, σ) > 0 only depending on r, θ and
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σ such that

dH2
(F, Y ) ≤ C

{
sup

h∈Hb,1

∣∣∣∣∣E
[
h(F ) Γ2,1,0(F )

]
∣∣∣∣∣+
∣∣∣κ3(F ) − κ3(Y )

∣∣∣
}

≤ C

{
sup

h∈Hb,1

∣∣∣∣∣E
[(

h(F ) − 2θS(h)(F ) − 4(θ2 + σ2)S2(h)(F )

+ 8θ(θ2 + 4σ2)S3(h)(F )
)

Γ2,1,0(F )

]∣∣∣∣∣+
∣∣∣κ3(F ) − κ3(Y )

∣∣∣
}

.

Proof. Let h ∈ H2 be an arbitrary test function. Then using the Stein equation (29), the Malliavin
integration-by-parts formula (18), and Proposition 2.4, we obtain the upper bound

∣∣∣∣∣E [h(F )] − E [h(Y )]

∣∣∣∣∣ ≤
∣∣∣∣∣E
[
S(h)′′(F ) Γ2,1,0(F )

]∣∣∣∣∣+

∣∣∣∣∣E
[
S(h)′′(F )

]
×
[
κ3(F ) − κ3(Y )

]∣∣∣∣∣

≤ C

{
E

[
S(h)′′(F ) Γ2,1,0(F )

]
+
∣∣∣κ3(F ) − κ3(Y )

∣∣∣
}

.

Now, the claims follow by applying Proposition 2.4, Theorem 3.8 with λ = 1, a = −2θ, b = −4(θ2 +
σ2), c = 8θ(θ2 + 4σ2) and, finally, Proposition 3.9.

3.1.3 Proof of Theorem 1.1: upper bound

In what follows C > 0 stands for a generic constant whose value may change from line to line. Also,
recall that the mapping Ψr(·) is defined via relation (50). We apply several times Proposition 3.11 to
obtain (

Ψ0(h) − 2θΨ0 (S(h))
)

− 2θ
(

Ψ0 (S(h)) − 2θΨ0

(
S2(h)

) )

= 4Ψ3

(
S2(h)

)
+ R1

= −8E
[
S3(h)(F ) Γ5,4,3(F )

]
+ R̃1.

(58)

Here R1 is some remainder term and the remainder term R̃1 only consists of terms satisfying the
estimate |R̃1| ≤ CM(F ). Similarly,

Ψ0 (2θS(h)) − Ψ0

(
8θ2S2(h)

)
= 16 θE

[
S3(h)(F ) Γ4,3,2(F )

]
+ R2 (59)

where R2 also satisfies |R2| ≤ CM(F ). Moreover,

− 4σ2Ψ0

(
S2(h)

)
= 8σ2

E
[
S3(h)(F ) Γ3,2,1(F )

]
+ R3 (60)

where once more |R3| ≤ CM(F ). Summing up (58), (59), (60), and using the linearity of map Ψ0(·)
we obtain
(

Ψ0(h)−2θΨ0 (S(h))
)

− 2θ
(

Ψ0 (S(h)) − 2θΨ0

(
S2(h)

) )
+ Ψ0 (2θS(h))

− Ψ0

(
8θ2S2(h)

)
− 4σ2Ψ0

(
S2(h)

)

= Ψ0

(
h − 2θS(h) − 4(θ2 + σ2)S2(h) + 8θ(θ2 + 4σ2)S3(h)

)

= E

[(
h(F ) − 2θS(h)(F ) − 4(θ2 + σ2)S2(h)(F ) + 8θ(θ2 + 4σ2)S3(h)(F )

)
Γ2,1,0(F )

]

= −8E
[
S3(h)(F )

(
Γ5,4,3(F ) − 2θ Γ4,3,2(F ) − σ2 Γ3,2,1(F )

)]
+ R

(61)
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where R is some term satisfying the estimate |R| ≤ CM(F ). Now, the claim follows by applying first
Proposition 3.12, then Proposition 2.4, item (b), to infer that

‖S3(h)‖∞ ≤ C
{

‖h′‖∞ + ‖h′′‖∞
}

≤ C,

and finally the Cauchy-Schwartz inequality along with variance estimates (43) and (32). This completes
the proof of the upper bound in Theorem 1.1. �

3.1.4 Proof of Theorem 1.1: lower bound

We essentially follow the same line of arguments already employed in [AEK20, Section 4.3] to prove
the lower bound in Theorem 1.1. To this end, first taking into account the second moment assumption
E[F 2] = E[Y 2] and using hypercontractivity of the elements in Wiener chaos [NP12a, Corollary 2.8.14],
it is a classical result (see [Luk70, Chapter 7]) that there exits a strip ∆ = ∆r,θ,σ := {z ∈ C : |Im z| < δ}
in the complex plane (with δ = δ(r, θ, σ) depending on r, θ and σ so that the two imaginary roots of
the polynomial 1 − 2iθt + σ2t2 lie outside the strip) such that the characteristic functions φF and φY

are analytic inside ∆. Moreover, within the strip ∆, they admit the integral representations

φF (z) =

∫

R

eizxµF (dx) and φY (z) =

∫

R

eizxµY (dx),

where µF and µY stand for the distributions of F and Y , respectively. Next, recall that all elements in
the second Wiener chaos have finite exponential moments, see [NP12a, Proposition 2.7.13, item (iii)].
Denote for ρ > 0 by Ωρ,δ ⊆ ∆ the domain

Ωρ,δ :=
{

z = t + iy ∈ C : |Re z| < ρ, |Im z| < min{δ, e−1}
}

.

Then, for any z ∈ Ωρ,δ, using with a Fubini’s argument, we have that

∣∣∣φF (z) − φY (z)
∣∣∣ =

∣∣∣
∫

R

eitx−yx(µF − µY )(dx)
∣∣∣ =

∣∣∣
∑

k≥0

(−y)k

k!

∫

R

xkeitx(µF − µY )(dx)
∣∣∣

≤
∑

k≥0

e−k

k!

∣∣∣φ(k)
F (t) − φ

(k)
Y (t)

∣∣∣ ≤
∑

k≥0

e−k

k!
ρk+1dH2

(F, Y )

= ρ eρe−1

dH2
(F, Y ).

Hence |φF (z) − φY (z)| ≤ CρdH2
(F, Y ) for every z ∈ Ωρ,δ and some constant Cρ > 0 only depending

on ρ. Let R > 0 be such that the disk DR ⊆ Ωρ,δ with the origin is the center and the radius is R.
Now, using the fact that

1

φ2
Y (z)

= eirθz(1 − 2iθz + σ2z2)r/2, z ∈ DR,

one can readily conclude that function φY is bounded away from 0 on the disk DR. Also, for any
ℓ ≥ 2,

∣∣κℓ(F )
∣∣ ≤ 2ℓ−1(ℓ − 1)!

∑

i≥1

|ci|ℓ ≤ 2ℓ−1(ℓ − 1)! max
i

|ci|ℓ−2
∑

i≥1

|ci|2

≤ 2ℓ−2(ℓ − 1)!
√
E[F 2]

ℓ−2 × E(F 2) = 2ℓ−2(ℓ − 1)!(E[F 2])ℓ/2.

(62)
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Let E[F 2] = E[Y 2] = r(σ2 + 2θ) =: η = η(r, θ, σ). Therefore, for any z ∈ DR,

∣∣∣
1

φF (z)

∣∣∣ ≤ exp
{∑

ℓ≥2

|κℓ(F )|
ℓ!

|z|ℓ
}

≤ exp
{∑

ℓ≥2

2ℓ−2(ℓ − 1)!
√

η ℓ

ℓ!
|z|ℓ
}

≤ exp
{∑

ℓ≥2

2ℓ−2(ℓ − 1)!
√

η ℓ

ℓ!
Rℓ
}

=: CR,η < ∞,

where CR,η is a constant depending on R and η. Hence, the function φF (z) is also bounded away from
0 on the disk DR. Thus we come to the conclusion that the functions φY (z) and φF (z) are analytic
on the disk DR and there exists a constant c > 0 such that |φY (z)|, |φF (z)| ≥ c > 0 for every z ∈ DR.
This implies that there exist two analytic functions gF and gY such that

φF (z) = egF (z), φY (z) = egY (z), z ∈ DR,

i.e., g(z) = log(φF (z)) and gY (z) = log(φY (z)), for z ∈ DR. In fact, the functions gF and gY are given
by the power series

gF (z) =
∑

ℓ≥1

κℓ(F )

ℓ!
(iz)ℓ, gY (z) =

∑

ℓ≥1

κℓ(Y )

ℓ!
(iz)ℓ, (63)

respectively. Since the derivative of the analytic branch of the complex logarithm is (log z)′ = 1
z (see

[Con95, Corollary 2.21]), one can infer that for some constant C > 0 whose value may differ from line
to line and for every z ∈ DR, we have

∣∣∣
∑

ℓ≥2

κℓ(F ) − κℓ(Y )

ℓ!
(iz)ℓ

∣∣∣ =
∣∣∣log(φF (z)) − log(φY (z))

∣∣∣ ≤ C
∣∣∣φF (z) − φY (z)

∣∣∣ ≤ CdH2
(F, Y ).

Now, using Cauchy’s estimate for the coefficients of analytic functions, for any ℓ ≥ 2, we obtain
∣∣∣κℓ(F ) − κℓ(Y )

∣∣∣ ≤ ℓ!Rℓ sup
|z|≤R

∣∣∣log φF (z) − log φY (z)
∣∣∣.

Therefore,

max
{∣∣κℓ(F ) − κℓ(Y )

∣∣ : ℓ = 2, 3, 4, 5, 6
}

≤ CdH2
(F, Y )

and the proof of Theorem 1.1 is complete. �

3.2 Proof of Theorem 1.5

Suppose that the target random variable Y is either as in item (a) or in item (b) of Theorem 1.5,
respectively. Then, for any ℓ ≥ 3, as γ1 → −1/2, it is known that

κℓ(Fγ1,γ2
) = κℓ(Y ) + O

(
−γ1 − 1

2

)
. (64)

In fact, when Y is as in item (a), the asymptotic relation (64) for the cumulants has been established
in [BT17, Theorem 5.3], and in the case of item (b) in [AAPS17, Lemma 3.2]. Hence, the result follows
by applying our main Theorem 1.1. �

Acknowledgement

EA would like to thank Robert Gaunt for several stimulating discussions on Stein’s method for
Variance–Gamma approximation. The authors also thank him for his careful reading of our draft
and his comment that simplified the original proof of Proposition 2.5.

23



References

[AAPS17] Arras, B., Azmoodeh, E., Poly, G., and Swan, Y. (2019). A bound on the 2-Wasserstein
distance between linear combinations of independent random variables. Stochastic processes and
their Applications, Vol. 129, Issue 7, 2341–2375.

[ACP14] Azmoodeh, E., Campese, S., and Poly, G. (2014). Fourth Moment Theorems for Markov
diffusion generators. J. Funct. Anal., 266(4):2341–2359.

[AEK20] Azmoodeh, E., Eichelsbacher, P., Knichel, L. (2020). Optimal Gamma Approximation on
Wiener Space. ALEA, Lat. Am. J. Probab. Math. Stat. 17, 101–132.

[AMPS17] Arras, B., Mijoule, G., Poly, G., Swan, Y. (2017). A new approach to the Stein-
Tikhomirov method: with applications to the second Wiener chaos and Dickman convergence,
arXiv:1605.06819v2.

[AP17] Azmoodeh, E., Peccati, G. (2017). Malliavin-Stein Method: a Survey of Recent Developments.
https://arxiv.org/abs/1809.01912.

[APP15] Azmoodeh, E., Peccati, G., Poly, G. (2015). Convergence towards linear combinations of chi-
squared random variables: a Malliavin-based approach. In In memoriam Marc Yor—Séminaire
de Probabilités XLVII, volume 2137 of Lecture Notes in Math., pages 339–367. Springer, Cham.

[BT17] Bai, S., Taqqu, M. (2017). Behavior of the generalized Rosenblatt process at extreme critical
exponent values, Ann. Probab. 45 (2), 1278-1324.

[BBNP12] Biermé, H., Bonami, A., Nourdin, I., Peccati, G. (2012). Optimal Berry-Esseen rates on the
Wiener space: the barrier of third and fourth cumulants. ALEA Lat. Am. J. Probab. Math. Stat.,
9(2):473–500.

[CGS11] Chen, L. H. Y., Goldstein, L., and Q.-M. Shao, Q.-M. (2011). Normal Approximation by
Stein’s Method. Probability and its Applications (New York). Springer, Heidelberg.

[Con95] Conway, J. B. (1995). Functions of one complex variable. II, volume 159 of Graduate Texts in
Mathematics. Springer-Verlag, New York.

[DGV17] Döbler, C., Gaunt, R. E., and Vollmer, S. J. (2017). An iterative technique for bounding
derivatives of solutions of Stein equations. Electron. J. Probab. 22, no. 96, 1–39, 2017.

[DP18] Döbler, C., Peccati, P. (2018). The Gamma Stein equation and noncentral de Jong theorems.
Bernoulli, 24(4B):3384–3421.

[ET15] Eichelsbacher, P., Thäle, C. (2015). Malliavin-Stein method for Variance-Gamma approxi-
mation on Wiener space. Electron. J. Probab., 20:Paper No. 123, 28.

[Gau13] Gaunt, R. E. (2013). Rates of Convergence of Variance-Gamma Approximations via Stein’s
Method. D.Phil. thesis, University of Oxford.

[Gau14] Gaunt, R. E. (2014). Variance-Gamma approximation via Stein’s method. Electron. J. Probab.
19(38), pp.1–33.

[Gau17] Gaunt, R.E. (2017) On Stein’s method for products of normal random variables and zero bias
couplings. Bernoulli, 23(4B), 3311-3345.

[Gau18] Gaunt, R. E. (2018). Inequalities for integrals of modified Bessel functions and expressions
involving them. J. Math. Anal. Appl. 462, pp. 172–190.

[Gau20a] Gaunt, R. E. (2020). Wasserstein and Kolmogorov error bounds for Variance-Gamma approxi-
mation via Stein’s method I. J. Theoret. Probab. 33, pp. 465-505.

[Gau20b] R. E. Gaunt. (2020) Stein factors for Variance-Gamma approximation in the Wasserstein and
Kolmogorov distances. https://arxiv.org/pdf/2008.06088.pdf.

[KKP01] Kotz, S., Kozubowski, T. J. and Podgórski, K. (2001). The Laplace Distribution and Gen-
eralizations: A Revisit with New Applications. Springer.

[Luk70] Lukacs, E. (1970). Characteristic functions. Hafner Publishing Co., New York. Second edition,
revised and enlarged.

24

http://arxiv.org/abs/1605.06819


[MCC98] Madan, D. B., Carr, P. and Chang, E. C. (1998). The Variance Gamma process and option
pricing. Eur. Finance Rev. 2, pp. 74-105.

[MS90] Madan, D. B., Seneta, E. (1990). The Variance Gamma (V.G.) Model for Share Market
Returns. J. Bus. 63, pp. 511-524.

[Meg98] Megginson, R. E. (1998). An introduction to Banach space theory, volume 183 of Graduate
Texts in Mathematics. Springer-Verlag, New York.

[NN18] Nualart, D., Nualart, E. (2018). Introduction to Malliavin calculus, volume 9 of Institute of
Mathematical Statistics Textbooks. Cambridge University Press, Cambridge.

[NP05] Nualart, D., Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic
integrals. Ann. Probab., 33(1):177–193.

[NP09a] Nourdin, I., Peccati, G. (2009). Noncentral convergence of multiple integrals. Ann. Probab.,
37(4):1412–1426.

[NP09b] Nourdin, I., Peccati, G. (2009). Stein’s method on Wiener chaos. Probab. Theory Related
Fields, 145(1-2):75–118.

[NP10] Nourdin, I., Peccati, G. (2010). Cumulants on the Wiener space. J. Funct. Anal., 258(11):3775–
3791.

[NP12a] Nourdin, I., Peccati, G. (2012). Normal Approximations with Malliavin Calculus: From Stein’s
Method to Universality. Cambridge Tracts in Mathematics. Cambridge University Press.

[NP12b] Nourdin, I., Poly, G. (2012). Convergence in law in the second Wiener/Wigner chaos. Electron.
Commun. Probab., 17:no. 36, 12.

[NP15] Nourdin, I., Peccati, G. (2015). The optimal fourth moment theorem. Proc. Amer. Math.
Soc., 143(7):3123–3133.

[NPR10] Nourdin, I., Peccati, G., Reinert, G. (2010). Invariance principles for homogeneous sums:
universality of Gaussian Wiener chaos. Ann. Probab., 38(5):1947–1985.

[NR14] Nourdin, I., Rosiński, J. (2014). Asymptotic independence of multiple Wiener-Itô integrals
and the resulting limit laws. Ann. Probab., 42(2):497–526.

[Nua06] Nualart, D. (2006). The Malliavin calculus and related topics. Probability and its applications.
Springer, Berlin and Heidelberg and New York, 2. ed. edition.

[Rud91] Rudin, W. (1991). Functional Analysis, 2nd Edition, New York: McGraw-Hill.

[Ste72] Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum
of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical
Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability
theory, pages 583–602. Univ. California Press, Berkeley, Calif.

[Taq75] Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt
process. Z. Wahrsch. Verw. Gebiete 31 287-302.

[ZP02] Valentin F. Zaitsev and Andrei D. Polyanin (2002). Handbook of Exact Solutions for
Ordinary Differential Equations, Chapman and Hall/CRC.

[Vau07] Vaughn, M. T. (2007). Introduction to Mathematical Physics. Wiley-VCH.

25


	1 Introduction and results
	1.1 Motivation and a summary of related results
	1.2 Statement of the main result
	1.3 Application to the generalized Rosenblatt process at extreme critical exponents

	2 Background material
	2.1 Elements of Malliavin calculus on Wiener space
	2.1.1 Isonormal Gaussian processes and Wiener chaos
	2.1.2 Malliavin operators
	2.1.3 Gamma operators and cumulants
	2.1.4 Useful facts on random elements in the second Wiener chaos

	2.2 Variance–Gamma distributions: basic properties and Stein estimates
	2.3 Malliavin–Stein method for Variance–Gamma approximation

	3 Proofs
	3.1 Proof of Theorem 1.1
	3.1.1 Variance estimates
	3.1.2 A splitting technique
	3.1.3 Proof of Theorem 1.1: upper bound
	3.1.4 Proof of Theorem 1.1: lower bound

	3.2 Proof of Theorem 1.5


