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A B S T R A C T   

In recent years, kirigami – the ancient art of paper-cutting – has been widely studied by scientists and engineers 
in various fields such as structural mechanics, materials, optics, electronics, robotics, and bioengineering. Kir-
igami is a combination of slits and creases; therefore, a kirigami structure has a cutting step that is not involved in 
making an origami structure. In general, a kirigami structure starts from a continuous planar sheet, forms a new 
shape by cutting or carving, and finally acquires a new structural configuration by stretching, folding, or other 
external stimuli. Kirigami is considered to be an innovative and effective method for advanced three-dimensional 
micro- and nano-manufacturing by providing different fabrication strategies through cutting and folding thin 
sheets. Furthermore, kirigami is generally used as a technique to make (meta)materials and (meta)structures 
with extraordinary properties such as negative Poisson’s ratio. In doing so, a given material/structure is trans-
formed into a metamaterial/metastructure with properties which do not exist in the initial material/structure. In 
this paper, from the perspective of geometric design, kirigami patterns are categorized into two groups: (1) cut- 
only kirigami, and (2) cut-and-fold kirigami. Moreover, the patterns are classified into five categories as follows: 
fractal cut, ribbon, lattice, zigzag, and closed-loop kirigami. Physical models are made and presented to 
demonstrate the design and geometric properties of these kirigami patterns. Finally, this review summarizes the 
current developments in kirigami-inspired metastructures and metamaterials and concludes with a future 
outlook of their potential applications in science and engineering.   

1. Introduction 

The word ‘kirigami’ means paper cutting, which is a traditional 
Chinese and Japanese art with a history of around fifteen centuries 
[1–11]. In kirigami, a piece of paper is cut, and might be folded, in order 
to create a new two- or three-dimensional object. In general, a kirigami 
structure starts from a continuous planar sheet, forms a new shape by 
cutting or carving, and finally acquires a new structural configuration by 
stretching, folding, or other external stimuli. In recent decades, kirigami, 
along with origami (the art of paper folding), have attracted the atten-
tion of researchers across science, mathematics, engineering, and ar-
chitecture [12–60]. Kirigami is generally used as a technique to make 
(meta)materials and (meta)structures with extraordinary properties 
such as negative Poisson’s ratio. In doing so, a given material/structure 
is transformed into a metamaterial/metastructure with properties which 

do not exist in the initial material/structure. 
Kirigami metastructures with unique flexibility and stretchability 

have been used to manufacture macro and micro materials, equipment, 
structures, and systems [61]. For example, the concept of kirigami 
graphene was introduced to increase the ductility of graphene [62] and 
build mechanical metamaterials, which can transform single-layered 
graphene sheets into deformable parts with microscale dimensions 
[63]. Thereafter, kirigami has provided a new direction in the research 
and applications of graphene. 

After decades of research and development, 3D microfabrication/ 
nanofabrication is approaching the bottleneck of physical limits. There 
are two conventional approaches to 3D micro-manufacturing; the first 
approach includes direct laser writing (LDW) [64] and focused-ion- 
beam (FIB) [65] techniques that require precise 3D translation 
[66,67]; and the second approach includes multilayer stacking [68] and 
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oblique angle deposition [69] that require precise alignment. When the 
manufacturing precision is within the nanometer range, the above 
manufacturing methods may become highly costly and time-consuming. 

Kirigami is considered as an innovative and effective method for 
advanced three-dimensional (3D) microfabrication/nanofabrication 
[70] by providing different manufacturing strategies through cutting 
and folding thin sheets [71,72]. In general, kirigami patterns are made 
on a 2D plane, enabling us to flexibly create complex and programmable 
patterns on the nanometer scale. Subsequently, these 2D structures are 
folded or bent into 3D configurations [73] by external stimuli. In addi-
tion, this method can be applied to a variety of single-layer or multi- 
layer initial materials, such as metals [74], graphene [63,75] and 
nanocomposites [76,77]. Compared with traditional 3D printing tech-
nologies, 3D manufacturing using kirigami has many advantages, 
including wider range of applicable materials, higher manufacturing 
accuracy, and feasibility and manufacturability of more complex 
patterns. 

A kirigami structure has a cutting step which is not involved in 
making an origami structure. Origami directly transforms uncut paper 
into an intricate 3D structure by folding along crease lines [78]. There is 
a wide range of methods to design fold patterns to achieve origami 
structures, including empirical methods, trial and error processes, and 
numerical methods based on computational geometry [79,80], 
geometric-graph-theoretic method [81,82], as well as metaheuristic 
approaches using genetic algorithm [82] and particle swarm optimiza-
tion [83]. The empirical method is relatively random, and the numerical 
method involves a lot of analysis or computational challenges [82]. 

In comparison with origami methods, which are usually based on a 
single flat sheet for folding the desired structure, kirigami methods can 

be based on multiple layers and produce more complex structures. As a 
result, after cutting the paper appropriately based on kirigami tech-
niques, the folding process could generally be easier to obtain a rich 
variety of complex metamaterials and metastructures [82–84]. Kirigami 
structures can be folded and unfolded repeatedly by selecting suitable 
materials, such as composite materials with a heat [85], humidity [86], 
electric [87], and light [88] sensitive interlayer. 

In this paper, kirigami patterns are categorized into two groups: (a) 
cut-only kirigami, and (b) cut-and-fold kirigami. Under these two gen-
eral categories, this review classifies five types of kirigami objects, 
including fractal-cut kirigami, ribbon kirigami, lattice kirigami, zigzag 
kirigami and closed-loop kirigami, as illustrated in Fig. 1. 

2. Fractal-cut kirigami 

Kirigami techniques involving only cutting – called cut-only kirigami 
in this paper – are usually used to make 2D materials and structures with 
enhanced elasticity. Cut-only kirigami patterns can be divided into two 
categories; one uses a method known as ‘fractal cut’ [89] to create 
rotating units, and the other involves strip-shaped cutting of the paper to 
form a curved unit. Both types can achieve large strains that cannot be 
attained by the initial material through external tension or compression. 
Importantly, the tensile properties of kirigami sheets are largely deter-
mined by the specific kirigami patterns rather than the tensile properties 
of the initial material, leading to the development of metamaterials/ 
metastructures. 

Inspired by the hierarchical structure and recursive division of stem 
cells in nature, Cho et al. [89] demonstrated that the fractal cut method 
could fit a piece of sheet to a wide range of graphic boundaries, 

Fig. 1. A general classification of kirigami structures produced by (a) cutting only, and (b) cutting and folding.  
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including 2D and 3D shapes. The rotating units formed by hierarchical 
cut patterns are polygons, as illustrated in Fig. 2. For example, a square 
is hierarchically cut into square rotating units connected by hinges, 
whereas a hexagon is correspondingly cut into triangles. As a result of its 
hierarchical formation method, the fractal cut kirigami has remarkable 
fitting ability and stretchability. Considering the square hierarchical 
cutting as an example, the maximum theoretical lateral strain of the 
level-1 and level-2 structures are respectively 43% and 62%. Interest-
ingly, Cho et al. [89] showed experimentally that the square was 
expanded to 800% of its original area. Based on this research, Tang et al. 
[90] improved the stretchability and compressibility of such meta-
structures by using rectangular units with an aspect ratio of 2:1 which 
dramatically increases the lateral strain of the level-1 and level-2 
structures to 124% and 156%, respectively. A geometric model was 
proposed to predict the tensile properties and Poisson’s ratio of kirigami 
metamaterials. For the level-1 structures, the nominal strains along the 
x- and y-directions denoted respectively by εLvl− 1

x and εLvl− 1
y , and Pois-

son’s ratio υLvl− 1, can be expressed as 
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(3)  

where m = a/b is the aspect ratio of the rectangle, where a and b 
respectively denote width and length. In Eqs. (1)–(3), θ is expansion 
angle, as illustrated in Fig. 2f-g. It can be concluded from Equation (3) 
that Poisson’s ratio υLvl− 1is negative when the tensile strain is small. As 
the tensile strain gradually increases, υLvl− 1 transitions from zero to 
positive. For the level-2 structure, after the geometric model considers 
the level-1 cut structure unit as a rectangle, the equation is the same as 
that of the level-1 structure. It is important to note that the rotation 
angles θ of the level-1 level-2 structures are independent. 

For the shape of the rotating unit, Tang et al. [90] introduced a 
circular cut in the initial square unit. This method forms hierarchical 
porous-square-unit metamaterials, which further enhance stretchability. 
Furthermore, it enables the kirigami sheets to have superior compres-
sion performance in comparison with other kirigami patterns. When 

Fig. 2. (a) A fractal cut pattern with square units. (b-d) Square fractal cutting examples of (b) level-1, (c) level-2, and (d) level-3, where the black lines indicate the 
cut lines. (e) Two level-1 cutting motifs. (f & g) Deformation of (f) level-1, and (g) level-2 rectangular fractal cut kirigami structures after being stretched in the 
y-direction. 
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compressed, the pores in the porous-square-unit materials are com-
pressed and closed. Thus, the materials exhibit a macroscopic 
compression behavior. Moreover, a re-entrant geometry was introduced 
to replace rigid square rotating units which led to improved stretch-
ability and compressibility. 

There are two main cutting methods for hierarchical cutting, namely 
α-motif and β-motif, as displayed in Fig. 2. Alternating cutting motifs 
will have greater maximum lateral strain than a single-motif cut pattern. 
In each cutting level, using the same cutting method can facilitate reg-
ular stretch deformation, whereas to fit arbitrary and complex boundary 
conditions, inhomogeneous deformation is required, which can be 
achieved by either mixing α-motif and β-motif at the same level, or 
designing distinct numbers of cutting levels in different areas [89]. An 
et al. [91] achieved programmable information encryption by 
combining different hierarchical kirigami patterns, where one kirigami 
pattern composes information, and another pattern fills the vacant part. 
Jin et al. [92] combined a kirigami sheet and an elastic membrane, and 
utilized the kirigami sheet to control the deformation of the elastic 
membrane when it was inflated. By programming the geometric pa-
rameters of the kirigami pattern, the kirigami balloon can simulate 
various geometries with circular cross-sections (e.g., vases, fish hooks, 
and pumpkins) after being inflated. 

The stretching of hierarchical cut structures is based on the free 
rotation of their constituting rotating unit. However, the hinges con-
necting the rotating units in actual materials may fail due to stress 
concentration or large deformations. Elastic materials can resist tear to a 
certain extent, but when hierarchical kirigami pattern is applied to other 
materials (e.g., brittle materials), the problem of hinge failure cannot be 
avoided. Tang et al. [93] first studied the mechanical properties of hi-
erarchical cut structures under the real properties of the initial material. 
Based on numerical simulations and experiments, the hinge of hierar-
chical cut structures was optimized to the dog-bone-like shape. In 
addition, they proposed that the width of the hinge should vary with the 
change of level. The hinge width of level-1 should be the largest, while 
the hinge width of the smallest sub-unit should be the smallest. Because 
the hinge with the smallest width is more susceptible to deformation 
when stretched and has the largest number, it can absorb more energy 
for the level-1 hinge and reduce the opening angle of the level-1 hinge 
[93]. In addition, creases have been introduced to the design of the 
hinges. Three creases are added to the vertices of the cut lines. Conse-
quently, the hinge at the vertex will be folded along the crease lines 
when the rotating unit rotates [94]. This strategy can avoid stress con-
centration and therefore tearing at the hinges. 

Babaee et al. [95] took inspiration from the claws and scales of 
creatures and designed a kirigami pattern resembling fish scales. Taking 
this kirigami pattern as an example, Rafsanjani et al. [96] verified that 
the kirigami shell exhibit discontinuous phase transitions during 
stretching through theoretical analysis, numerical simulation, and ex-
periments. It should be noted that only the buckled phase exists in the 
kirigami sheet with zero curvature, whereas the buckled and unbuckled 
phases can coexist in the cylindrical kirigami shell with non-zero cur-
vature. Changing the geometric characteristics of the kirigami pattern 
and the curvature of the kirigami shell can change the position, 
sequence, and recognition of the discontinuous phase transition. Based 
on this property, the movable surface of linear actuators can be 
designed. 

Fractal-cut kirigami is capable of creating flexible shapes; conse-
quently, many studies have been conducted on shape fitting and hinge 
optimization for such structures. Furthermore, there have been a few 
studies on the practical applications of fractal-cut kirigami which mainly 
focused on shape fitting [89] and soft robotics [97]. However, research 
on the control of the rotational angle in fractal-cut kirigami has been 
limited. 

3. Ribbon kirigami 

Another cut-only kirigami pattern is the ribbon pattern, which was 
originally proposed to improve the ductility of graphene. Qi et al. [62] 
divided the tension process of graphene kirigami into four stages, while 
the tensile load is applied perpendicular to the length of the ribbon. 
Firstly, when the tensile deformation is small, the ribbon rotates around 
the hinge to produce out-of-plane distortion. At this stage, the material 
itself is not stretched and thus no stress is induced. Secondly, the tensile 
deformation increases, and the deformation of the material contributes 
to the total deformation. The stress of the ribbon increases, and the 
material stress and strain at the hinge is the largest. Thirdly, the tensile 
deformation further increases, and the kirigami structure yields due to 
stress concentration at the hinges. Finally, the kirigami structure is 
damaged by the tearing of the hinges. The whole process is shown in 
Fig. 3a-d. Whether the initial material is elastic or plastic, the defor-
mation process of the kirigami structure after being stretched remains 
qualitatively similar. 

The strain capacity of the kirigami structure is mainly concentrated 
in the second stage of deformation [98]. Moreover, the second stage is in 
a state of elastic deformation with little loss of strain energy. Han et al. 
[99] introduced the beam deflection theory to study the tensile response 
of kirigami metallic glass in the elastic phase. The combination of two 
beam elements replaced one side of the diamond pattern produced by 
stretching. A prediction model that can calculate the critical force of the 
first and second stages was proposed. There are some studies on plastic 
strain in the third stage and fracture in the fourth stage. A recent study 
found that, the larger the size of the kirigami pattern unit, the greater the 
fracture force required to tear the kirigami structure [99]. When the 
kirigami structure is stretched, the deformations of the two ends and the 
middle part of the structure are different. Because the end regions are 
close to the tensioned position, deformation is limited. In order to better 
simulate the actual situation of stress–strain behavior and potential 
fracture, a series spring model was proposed [100]. Springs with certain 
stiffness characteristics were used to simulate different deformation 
areas, and each cycle was regarded as one spring. 

Scientists have carried out various studies on the shapes [98,101], 
cut-distances [77,101,102], and hinge forms [98] of kirigami patterns to 
increase the tensile strain of kirigami structures. Experimental studies 
[98] show that the kirigami structures produced by straight-cutting and 
curve-cutting have similar stretchability, where the limit of tensile strain 
of the curve-cut kirigami slightly increases. For instance, a straight-cut 
pattern is depicted in Fig. 3e, while a curve-cut pattern is shown in 
Fig. 3f. The geometric parameters that affect the critical buckling load 
and stretchability of the kirigami structure mainly include the horizontal 
distance, vertical distance, and length of the slits. In general, the thinner 
the ribbon formed by cutting, the better the stretchability and the larger 
the size at the hinge, the greater the critical buckling load. The experi-
mental and numerical results of Shyu et al. [77] showed that the in-
crease of the horizontal (or vertical) distance and the decrease of slit 
length improve the critical buckling load. They reported that the in-
crease of horizontal distance and slit length and the decrease of vertical 
distance enhance the stretchability. Isobe et al. [102] proposed a theo-
retical explanation to qualitatively verify this conclusion. For the hinge 
design, Chen et al. [98] designed circular cuts at both ends of the slit, as 
shown in Fig. 3i-j, and compared the influence of the radius on the strain 
energy loss. Due to the existence of the circular gap, the plastic defor-
mation of the material at the hinge is small during stretching. As a result, 
the strain energy loss is proportional to the radius of the circle. Similarly, 
Hwang et al. [103] added orthogonal small incisions at both ends of the 
slit, increasing the ultimate tensile strain to twice and the elasticity by 
30 times. 

When the ribbon kirigami structure is stretched, the ribbon will bend 
upward or downward, and its deformation mode is not unique. This 
bistable deformation mode will cause great difficulties in the application 
of ribbon kirigami structures. In order to control the deformation mode 
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during stretching and realize the programmability of kirigami struc-
tures, some research work has been performed. Tang et al. [104] pro-
posed a kiri-kirigami method that introduces shallow grooves on the 
front or back of the hinges. The deformation of the kirigami structure 
when stretched will be affected and induced by defects (grooves). Rib-
bons tend to close the grooves and twist around them, thus achieving the 
predetermined deflection. Yang et al. [105] analyzed the occurrence of 
symmetric bending (bistable unit cell) and antisymmetric bending 
(monostable unit cell) from the perspective of energy. Both the theory of 
minimum energetic state and experimental results showed that anti-
symmetric bending is in a lower energy state. Switching between 
different bending modes requires a certain amount of bending energy. 
They adjusted the geometric parameters of the kirigami pattern to 
achieve different bending modes under the same stretching force. 

The ribbon kirigami structure can greatly improve the elasticity of 
the material with a simple manufacturing process. Therefore, it has a 
wide range of applications for various materials and structures. The 
ribbon kirigami was first applied to graphene materials [63,75,106]. In 
recent years, it has been gradually applied to other materials such as 
metallic glasses [99,101], shape memory alloys [107], monolayer MoS2 
[108], MnO2 nanowire composites [76], and carbon nanotubes [109]. 
The ribbon kirigami structures have been widely exploited in the design 
and fabrication of energy and biomedical devices. 

4. Lattice kirigami 

Kirigami design involving cutting and folding is an emerging 
approach to 3D nanomanufacturing. Folding is the key to the conversion 
of 2D sheets to 3D structures. Such a kirigami structure is cut off 
appropriate parts, and then folded to close the missing part to form a 3D 
structure. 

Inspired by phyllotaxis [110,111], Castle et al. [112] proposed the 
concept of lattice kirigami. Notably, lattice kirigami is based on the 
Bravais lattices. They introduce defects into the sheets, including cutting 
and removing (or adding) wedges [113], and then perform dislocations 

or disclinations to form 3D structures. There are five types of 2D Bravais 
lattices, among which triangle lattices and square lattices are suitable for 
kirigami structures [113]. 

Current research on lattice kirigami mainly focuses on the honey-
comb (triangular) lattice [112,114]. Castle et al. [112] removed some 
wedges from the hexagonal lattice to form a 5–7 dislocation pair and a 
2–4 dislocation pair, which are illustrated in Fig. 4a-b. The wedge vertex 
removed by a 5–7 dislocation pair is located at the center of the hexagon, 
and the vertex angle is π/3. The wedge vertex removed by a 2–4 dislo-
cation pair is located at the center of the hexagon, and the vertex angle is 
2π/3. The heights of the steps formed by folded 5–7 and 2–4 dislocation 
pairs are different. The height of a 5–7 dislocation pair is 

̅̅̅
3

√
times the 

side length of the hexagon, and the height of a 2–4 dislocation pair 
equals the side length of the hexagon. The height difference between 
them indicates that they cannot exist simultaneously around a plateau 
[112]. Both 5–7 and 2–4 dislocation pairs are bistable and can be folded 
up or down, which is important to achieve programmable kirigami. In 
addition, Castle et al. [112] proposed the concepts of climb cut and glide 
cut, as shown in Fig. 4c-d. The kirigami patterns illustrated in these 
figures are all formed by the 5–7 dislocation pairs. 

Subsequently, based on the bistable behavior of the 2–4 dislocation 
pairs, Sussman et al. [114] proposed a multifunctional lattice kirigami. 
The smallest unit is composed of six hexagons surrounding an excised 
hexagon, as shown in Fig. 4e. Folded along the parallel mountain and 
valley creases, the excised hexagon can be closed, and the triangular 
platform formed by the creases will be at different height platforms. A 
unit cell can form two modes by adjusting the mountain and valley 
creases, two-level platform, and three-level platform. Even so, the 
involved folding allows the height difference between the adjacent 
platforms to be one grid. The drop of the two levels platform appears on 
the opposite triangular platform. The height difference of each level of 
the platform is 1/

̅̅̅
3

√
times the side length of the platform triangle. The 

unit cells are arranged periodically according to the lattice vector, and 
the surface of any curvature can be fitted. The range of gradients that 
can be fitted depends on the ratio of height to platform width [114]. The 

Fig. 3. Ribbon kirigami. Parts (a)-(d) show the stretching process of ribbon kirigami. (e) Straight-cutting. (f) Curve-cutting. Figures (g)-(j) show four types of hinges, 
including (g) ordinary U-shaped cut hinges, (h) dog-bone-like cut hinges, (i) 4r circular hinges, and (j) 8r circular hinges. 
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5–7 dislocation pairs also have a similar unit design [114]. However, it 
needs to be excised in different positions to be folded upward and 
downward. Fitting different macroscopic curvatures requires completely 
different designs, thus it is difficult to achieve actual application 
requirements. 

Castle et al. [113] cut a zigzag along the triangular Bravais lattice, 
then staggered the formed serrations and inserted them. This method 
creates wrinkles in the paper, similar to the“z-plasty” techniques of 
plastic surgery [115]. This kind of cutting does not remove parts, and 
can be called area-preserving lattice kirigami. The zigzag cut essentially 
forms a pair of Gaussian curvature dipoles and then separates them. 
With appropriate mountain and valley creases, the Gaussian curvature 
of the vertex can be changed. The area-preserving lattice kirigami can be 
carried out continuously, or it can be folded separately and combined 
with other types of lattice kirigami. 

The kirigami patterns of the above lattice kirigami are all based on 
the triangular/hexagonal Bravais lattice. Since the square Bravais lattice 
has the same side length and C4v symmetry [116,117], the above lattice 
kirigami patterns are applicable with slight changes. In addition, Castle 
et al. [113] explored the lattice unit, which is the basis of the lattice 

kirigami. According to the rectangular and centered rectangular Bravais 
lattices with unequal sides, after excising a wedge with an apex angle 
less than π, the two sides of the apex angle cannot completely overlap 
due to the unequal length. The last type of Bravais lattice, the oblique 
lattice, has the potential for lattice kirigami when the four sides are 
equal (rhombus lattice). The side lengths of the rhombic lattice are 
equal. However, the angle is still a variable, and it is worth being 
investigated. Furthermore, the triangular and square lattices are com-
bined into a new lattice according to certain rules. The new lattice 
should have the same side length and higher symmetry so that the cuts 
can completely overlap after excising the wedge. The triangular and 
square lattices form a new lattice around a vertex in the order of STSTT 
(square-triangular-square-triangular-triangular), which is presented in 
Fig. 5a [113]. Excise C4v symmetric four-pointed stars from the STSTT 
tile. Excise C4v symmetric squares (see Fig. 5b) or four-pointed stars 
(including a square and four triangular lattices) (see Fig. 5c) from the 
STSTT tile, and the remaining patterns can be folded into 3D structures 
[113]. 

Moreover, lattice kirigami with different folding modes under the 
same lattice can be interlocked at the edges in complementary 

Fig. 4. Lattice kirigami. Two ways to remove the wedge block: (a) a 5–7 dislocation pair, and (b) a 2–4 dislocation pair. (c) Pure climb cut: the gap is closed by 
folding, and there is no relative sliding between the slits. (d) Pure glide cut: the gap is closed by folding and relative sliding between slits. (e) “Sixon”: Six hexagons 
surround a cut hexagon. Upward or downward steps are formed by folding along the mountain (red) or valley (blue) creases. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. STSTT tiling. (a) STSTT tiling diagram. (b) A pre-fold pattern formed by removing every other square. (c) Another pre-fold pattern formed by removing four- 
pointed stars. 
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polyhedral shapes. Recall that lattice kirigami is useful for fitting various 
Gaussian curvature surfaces. The basic lattice of lattice kirigami should 
be further studied. 

5. Zigzag kirigami 

The folding pattern of the zigzag kirigami is inspired by a classic 
origami pattern called the Miura-ori which has the desirable charac-
teristics of negative Poisson’s ratio [118] and rigid folding [119]. 
Inspired by the Miura-ori, Eidini et al. [120] combined two single- 
degree-of-freedom (DOF) zigzag strips with the same kinematics and 
different unit scales, and proposed a new kirigami metamaterial. Each 
unit cell of the zigzag strip has a hole, and a large-scale Miura strip 
corresponds to an n-folded small-scale Miura strip. Therefore, this zigzag 
kirigami unit cell is called the BCHn (Basic unit Cell with Hole) unit cell. 
The mechanical properties of the zigzag kirigami were studied, 
including the in-plane Poisson’s ratio and out-of-plane bending and 
twisting behavior [120]. The parameter representation of the BCHn unit 

cell is shown in Fig. 6a. For the zigzag kirigami with n = 2, the in-plane 
Poisson’s ratio of the approximately infinite BCH2 is expressed as [120] 

ν∞ = − tan2ϕ
4λcosα − cos2ϕ
4λcosα + cos2ϕ

(4)  

where λ = a/b, and ϕ is the angle in the xy plane between edge b and 
the × axis [120]. The sign of Poisson’s ratio depends on the sign of the 
numerator in the equation. 

Furthermore, Eidini [121] proposed a misplaced zigzag strip kir-
igami based on the Miura-ori. The misplaced zigzag strip unit cell is 
shown in Fig. 5b. There are two ways of dislocation of zigzag strips. One 
is that two sets of adjacent zigzag strips are misaligned upward and 
downward respectively, and the kirigami structure formed is shown in 
Fig. 5d. The other is that adjacent zigzag strips are misaligned in the 
same direction, and the kirigami structure formed is displayed in Fig. 5c. 
In addition, the geometric parameter [121] changes of the parallelo-
gram voids formed by the dislocation also affect the pattern and folding 
of the zigzag kirigami, as shown in Fig. 5e. The in-plane Poisson’s ratio 

Fig. 6. Zigzag kirigami. (a) Geometry of the ZCH pattern unit cell. (b) Geometry of the BCH2 pattern unit cell. Adjacent zigzag bars are misaligned in the same 
direction to form (c), and the two sets of adjacent zigzag bars are respectively displaced upward and downward to form (d). The distance of dislocation is changed to 
form (e). 
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of the approximately infinite ZCH (Zigzag unit Cell with Hole) is 
expressed as [121] 

ν∞ = − tan2ϕ
acosα − bhcos2ϕ
acosα + bhcos2ϕ

(5) 

Similarly, the sign of Poisson’s ratio depends on the sign of the 
numerator. 

The ZCH kirigami retains the characteristics of the Miura-ori, 
including negative Poisson’s ratio, stackability, and rigid folding. Due 
to the existence of the holes, the zigzag kirigami has lower density and 
higher programmability. These characteristics make it have a wider 
application prospect than the Miura-ori. 

6. Closed-loop kirigami 

On the nano scale, kirigami methods can break through the limita-
tions of micro-3D manufacturing, and induce folding, bending, and 
twisting through cutting and external stimuli. In 2018, Liu et al. [74] 
proposed a kirigami-inspired nano pinwheel-like pattern with large 
optical chirality. This nano-kirigami first cuts four rotationally sym-
metric slits on the 2D gold film sheet, as shown in Fig. 7. Then, the gold 
film is irradiated by a global programmable ion beam. The sputtering of 
gold atoms and the implantation of gallium atoms on the gold film make 
the gold film subject to tensile stress and compressive stress, respec-
tively. The tensile and compressive stresses along the thickness direction 
of the gold film make the gold film bend towards the irradiation direc-
tion (see Fig. 7b). The nano pinwheel-like pattern irradiated by the 
global focus ion beam (FIB) [122-124] will be convex and twisted under 
the equilibrium of stress. Tang et al. [125] studied the optical properties 
of this symmetric nano-kirigami pattern and found that it has giant 
nonlinear optical circular dichroism. Liu et al. [126] explored the optical 
properties of the C3, C4, and C6 symmetric kirigami patterns. 

Li and Liu [127] named the above-mentioned type of FIB-based 
nano-kirigami closed-loop nano-kirigami. The kirigami characteristic of 
this closed-loop system is that the parts in a closed-loop will influence 

and restrain each other when folded/bent/twisted. The deformation of 
the closed-loop kirigami after ion beam irradiation is not only affected 
by a single crease, but is also dependent on the geometric topology and 
stress equilibrium of the entire close-loop system. Therefore, the 
deformation process and results of closed-loop nano-kirigami patterns 
are difficult to predict. Liu et al. [74] proposed a comprehensive me-
chanical model to build an accurate nano-kirigami model, and proved 
that this model can predict the deformed structure well through exper-
iments and numerical simulations. It has a similar topology with 
pinwheel-like patterns, including combined multiple Fibonacci spirals 
(see Fig. 7c) and concentric arc structure (see Fig. 7a). 

The boundary conditions, width, radian inside the closed-loop kir-
igami pattern and ion beam dosage will affect the formed 3D structure. 
Therefore, the closed-loop kirigami has considerable potential for 
programmability. In addition, compared with other FIB-based nano-
manufacturing methods [128,129], the closed-loop kirigami has simpler 
steps and higher precision. The closed-loop nano-kirigami has potential 
for applications in optical/mechanical devices and electromagnetic 
components. 

7. Discussion and conclusions 

This paper reviewed the research progress of kirigami-inspired 
metastructures and metamaterials from the perspective of geometric 
design. We summarized the latest developments in the field of kirigami 
according to five types of kirigami patterns. For the fractal-cut kirigami, 
the ductility of square cutting, porous square cutting, two fractal cutting 
methods, hinge design, and the discontinuous phase transition of the 
kirigami shell were discussed. For the ribbon kirigami, the stretching 
process of kirigami metamaterials was introduced, and the shape of the 
tape-shaped pattern, cutting distance, and hinge form were investigated. 
For the lattice kirigami, the design principle and the method to fit 
Gaussian surface were discussed. The properties of zigzag kirigami are 
partially similar to the Miura-ori. For the closed-loop kirigami, the 
deformation and optical characteristics were reviewed. A classification 

Fig. 7. Closed-loop kirigami: (a) Concentric arc structure. (b) C4 symmetric pinwheel-like structure. (c) Combined multiple Fibonacci spirals structure.  
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of these kirigami patterns was presented. 
The metastructures and metamaterials inspired by kirigami have 

many outstanding properties. For example, the cut-only kirigami has 
excellent ductility. The square fractal-cut kirigami sheets can be 
extended to 800% of its original area [90], and the ribbon kirigami can 
be stretched to 30 times its original length [103]. The fractal-cut and 
lattice kirigami can fit Gaussian surfaces with a certain range of curva-
tures [89,114]. This plays a major role in fitting a curved surface with a 
plane. The zigzag kirigami has special mechanical properties such as 
negative Poisson’s ratio [120,121]. Meanwhile, it has a much smaller 
density and programmable characteristics, compared with the Miura- 
ori. Some forms of closed-loop kirigami structures have important ap-
plications in the field of nano optics. 

Therefore, kirigami has a wide range of applications in the fields of 
solar energy, optics, electricity, magnetism, metamaterials, and 
biomedicine. Inspired by the orthogonal fractal-cut kirigami, Sedal et al. 
[97] used a kirigami structure to make soft deployable crawling robots. 
The flexibility of the geometric parameters of the kirigami structure is 
conducive to the realization of the programmable stiffness and kine-
matics of soft robots. Moreover, the ribbon kirigami structure is widely 
used in the fields of energy and medical equipment due to its huge 
ductility. A supercapacitor [76] with a customizable shape with a tensile 
strain of up to 500% was proposed in 2017. This supercapacitor can be 
made into an energy storage device with artistic appearance and 
retractable performance, and also has stable sensing performance when 
worn on the arm. Similarly, Song et al. [130] proposed stretchable 
lithium-ion batteries based on kirigami, which can stably power smart 
watches in experiments. Lamoureux et al. [131] used ribbon kirigami for 
the study of dynamic solar tracking. The angle and orientation of the 
strip slope can be realized by adjusting the displacement and height of 
both ends of the strip-shaped cut structure. The solar tracking device 
designed based on the kirigami design principle is lighter and more 
economical than traditional devices. Wu et al. [132] proposed tribo-
electric nanogenerators based on a kirigami structure which can obtain 
energy through various sports. Dijvejin et al. [133] designed a wireless 
sensor by mixing two sizes of ribbon kirigami structures, combined with 
split-ring resonators. In the area of medical technologies, kirigami 
structures are mainly used in wearable health monitoring devices. 
Yamamoto et al. [134] designed a printed combined health monitoring 
device. It can adhere to the skin to monitor body temperature, electro-
cardiogram, and exercise status. Jang et al. [135] and Guo et al. [136] 
respectively proposed wearable heating devices based on different 
conductive papers and kirigami structures. The pinwheel-like closed- 
loop kirigami has massive nonlinear optical circular dichroism [74,125] 
which is of great significance in nano-scale optical research. 

The current research on kirigami structures mainly focuses on 
theoretical and applied conceptual design. Very few kirigami studies are 
actually applied to the development of practical equipment. Kirigami 
structures are mainly utilized as a structural skeleton or carrier in 
various optical, electrical, and medical devices. There are many other 
potential research opportunities on kirigami from theory to practical 
applications. 

When using real materials to fold, the thickness of the materials 
should be considered. In recent years, there have been many studies on 
self-folding and stretching on macro and micro scales. However, 
whether it can stably maintain the folded state, or fold/unfold as 
required, still needs to be studied. In addition, kirigami-inspired meta-
structures and metamaterials are usually programmable due to the rich 
diversity of cutting patterns and folding methods. Some of these have 
already been applied successfully, such as inflatables [92] with pro-
grammable shapes inspired by the square fractal cutting, tracking solar 
cells [131] inspired by the ribbon kirigami, and optical chiral materials 
[126]. Although there are a few related studies, there is still a lack of 
systematic research on the programmable characteristics of kirigami. At 
present, most of the designs of kirigami patterns are inspired by expe-
rience or practice, whereas for origami crease pattern design, there are 

established mathematical and geometric methods available. Based on 
geometric topology and analysis, we need to further analyze and design 
kirigami methods to create and optimize novel kirigami patterns with 
desirable properties. In addition, while theoretical work on some kir-
igami patterns is almost mature, research on their engineering appli-
cations is rarely carried out. The properties of chosen materials, 
manufacturing methods, equipment, and product performance tests 
need to be carried out. Kirigami is still a nascent research field, so it is 
believed that it will have further developments in the future. 
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