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Abstract—Wireless body area network is a key enabler for connected healthcare but recent cyberattacks have compromised its
security and trustworthiness. This paper investigates heartbeat-based key generation to secure body area networks. The interpulse
intervals (IPIs) between any two adjacent peaks of heartbeat signals are random and state-of-the-art literature has demonstrated that
IPI is a good random source to be extracted as cryptographic keys. Heartbeat signals can be measured by electrocardiography (ECG)
and photoplethysmography (PPG) sensors. A general heartbeat-based key generation framework applicable to both ECG and PPG
signals is proposed. A robust peak detection algorithm is designed to capture noisy peaks and a simple yet efficient IPI alignment
algorithm to align the common IPIs. A key establishment protocol is used to convert analog IPIs to digital binaries and reconcile them
between legitimate devices. We evaluate the performance for both ECG signals from an online public database, MIT PhysioBank, and
PPG signals collected from our testbed. The results demonstrate that our algorithm is robust and heartbeat-based key generation can
be completed for both ECG and PPG signals. We finally create a PPG-based prototype and a demonstration video to show the
practicality of our framework.

Index Terms—Body area networks, key generation, biometrics, electrocardiography (ECG), photoplethysmography (PPG), interpulse
interval

F

1 INTRODUCTION

W IRELESS body area network (WBAN) has become
an important part of the Internet of Things (IoT)

as connected healthcare becomes prevalent [1], [2]. There
are abundant commercial off-the-shelf (COTS) wearable de-
vices such as Fitbits and smart watches as well as medical
implantable devices, e.g., pacemakers. Wireless communi-
cations are preferred for these devices because they are
free from constraints of cables. Wireless connections are
essential for implantable devices, e.g., a pacemaker can be
wirelessly configured and medical data in the pacemaker
can be transmitted by using a device programmer.

The security and trustworthiness of the WBAN have
become a big issue [3]. Numerous implantable and wear-
able devices transmit vital and/or private signals, such as
health information or control signals. Wireless communica-
tions are broadcast and freely accessible to anyone within
the communication range but the security countermeasures
for healthcare devices are rather limited. This concern has
been evidenced by e.g. a demonstration that ten types of
implantable cardioverter defibrillators had no or limited

Manuscript received xxx; revised xxx; accepted xxx. Date of publication xxx;
date of current version xxx. The work of J. Zhang was supported in part by the
UK EPSRC New Investigator Award and in part by the National Key Research
and Development Program of China under grant ID 2020YFE0200600. The
review of this paper was coordinated by xxx. (Corresponding author: Junqing
Zhang.)

• J. Zhang and Y. Zheng are with the Department of Electrical Engineering
and Electronics, University of Liverpool, Liverpool, L69 3GJ, U.K. (emails:
Junqing.Zhang@liverpool.ac.uk; Y.Zheng23@student.liverpool.ac.uk)

• W. Xu is with Department of Computer Science, City University of Hong
Kong, Hong Kong SAR China. (email: weitaoxu@cityu.edu.hk)

• Y. Chen is with Department of Electrical and Computer Engi-
neering, Rutgers University, Piscataway, NJ 08854, US. (email:
yingche@scarletmail.rutgers.edu)

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.
Digital Object Identifier xxx

security primitives and could be accessed by a common
wireless platform [4]. Medical data stored inside them could
be breached by malicious entities. It would be catastrophic
if these weak devices had been attacked by hackers.

Cryptographic schemes are commonly used to protect
wireless transmissions, consisted of symmetric encryption
and key distribution. Symmetric encryption, such as Ad-
vanced Encryption Standard (AES), is used to protect con-
nections between two legitimate devices, named Alice and
Bob. There have been hardware and software efficient im-
plementations of AES hence it is suitable for embedded
devices. For example, an AES coprocessor is included in
the ZigBee chip, TI cc25311. On the other hand, secure and
lightweight key distribution is challenging. Symmetric key
is required for encryption and decryption at Alice and Bob,
which is usually completed by public key cryptography
(PKC) primitives [5]. However, PKC tends to be compu-
tationally expensive and thus it may not be applicable to
many medical devices. For instance, implantable devices are
limited in size and powered by a battery, which will not
have sufficient computational and energy resources.

The above facts motivate researchers to design secure
and lightweight alternatives for distributing cryptographic
keys for wearable and medical devices. Heartbeat signals
are found as a good candidate. To the best knowledge of the
authors, the concept of exploiting physiological signals for
secure communications can date back to 2003 [6]. Poon et al.
extracted cryptographic keys from the interpulse intervals
(IPIs) of heartbeats [7], which are the time intervals between
any two adjacent peaks of heartbeats. Heartbeat signals
have the following characteristics that make IPIs ideal to
be explored as cryptographic keys [7]:

• Reciprocity. The heartbeat rate information measured

1https://www.ti.com/lit/ds/symlink/cc2531.pdf
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from different parts of the same person will be the
same as they are all rooted in the contraction and
relaxation of the cardiac muscle.

• Uniqueness. The patterns of heartbeats between dif-
ferent individuals are not identical [8].

• Randomness. The IPIs are found to be random [9].

In addition, Xu et al. has demonstrated that this technique is
lightweight and suitable for devices that have the capability
of measuring heartbeats [10]. A summary of the state-of-the-
art literature is given in Table 1.

IPI can be extracted from electrocardiogram (ECG) and
photoplethysmography (PPG) signals. Most of the work
uses ECG signals from public databases, e.g., MIT Phys-
ioBank databases [14], to evaluate their protocols [10], [12],
[15]–[18]. There are also some research efforts using real
ECG sensors [8], [11], [19], [20]. However, most of the ECG
sensors require direct contact to the skin and will be difficult
for daily use. PPG sensors can also measure heartbeats.
However, employing PPG signals to extract IPI for key
generation has not been reported yet2. PPG sensors are
widely used in wearable devices such as Fitbit, which are
very convenient to use. This paper extends IPI-based key
generation for PPG sensors.

The IPI extraction is the most important step as the IPI
is the random source. The extraction is quite challenging
because heartbeat-related signals are non-stationary and
noisy. Most literature did not reveal sufficient technical
details on the IPI extraction. Wavelet analysis is usually used
to process ECG signals to eliminate the amplitude baseline
drift and noise [16], [17]. After the wavelet processing, it is
still difficult to extract the peaks as they are swamped by
numerous void peaks. A hard threshold detection based on
the peak amplitude cannot extract IPIs accurately because
the amplitudes of ECG peaks vary from time to time on
the same person and are also affected by setups of different
sensors. A local peak detection algorithm is used in [13].
However, it is difficult to specify the length of the local
detection window as the heartbeat rates vary among differ-
ent people. A normal sinus rhythm of an adult is 60 to 100
heartbeats per minute. A robust and accurate IPI extraction
algorithm is thus urgently required. This paper addresses
the challenge by using wavelet transform and clustering
algorithm.

The generated key can be used for encryption and de-
cryption, which involves at least two devices having the
same key. However, most work only considers the key
generation performance with one sensor [16], [17]; whether
two devices will generate the same key remains unknown.
Different from [16], [17], this paper further exploits the key
generation for encryption/decryption between two devices,
which involves them extracting IPIs separately and recon-
ciling on the common key. The investigation of IPI align-
ment and key disagreement rate (KDR) analysis is rather
limited [12], [13], [22], [23]. KDR quantifies the similarities
of keys of two devices. IPI misalignment occurs when the
IPI detection algorithm may miss the correct peaks or detect
the wrong peaks. Seepers et al. designed a heartbeat misde-
tection algorithm [12], which divided the IPIs into different

2The work in [21] used the frequency domain feature of PPG signals for
key generation. They did not investigate the IPI of PPG signals.

blocks and removed the entire block once an anomaly IPI
was detected. Choi et al. took a step further by proposing
a self-recovery procedure when peak detection failed or
a fake peak was detected [22]. However, it was based on
the assumption that peak misdetection only happened once
over the entire process, which may not be realistic. Kim et al.
also designed a peak misdetection recovery algorithm [23]
but their algorithm needed a random number generator
which may not be available. The misalignment will result
in different measured IPIs at legitimate devices and thereof
failure of key generation. A robust IPI alignment algorithm
is still missing but urgently required. Even after the IPI
alignment is implemented, there will still be differences
between the measured IPIs due to the sampling noise, which
will result in key disagreement between legitimate devices.
There is very limited research on the KDR [13] and more
investigation is required. The research on IPI alignment
and KDR will be essential for generating identical keys at
both parties. An efficient IPI alignment is designed in this
paper by indexing each IPI and aligning them based on the
common index.

This paper addresses the aforementioned challenges by
designing a practical heartbeat-based key generation frame-
work to secure wearable and implantable devices. Specif-
ically, we considered a practical setup that two devices
only exchange data for assisting IPI alignment and key
agreement using wireless communications. The timestamps
and IPI information is processed at each device to avoid
leaking keying information. We evaluated the framework
using both ECG and PPG signals to demonstrate the frame-
work is generic and applicable. We used ECG data from
the MIT PhysioBank database and simulated two virtual
devices running the designed key generation framework.
We built a testbed to collect PPG signals and created a
prototype demonstration to show the framework is working
successfully. Our contributions are listed as follows.

• A complete IPI-based key generation protocol is pro-
posed, which includes heartbeat measurement, IPI
extraction, and key establishment.

• A robust and generic IPI extraction scheme is de-
signed. We use wavelet transform to denoise the
captured heartbeat signals and a clustering algorithm
to obtain the IPIs. We design a simple yet efficient IPI
alignment algorithm to enable Alice and Bob agree
on the same IPIs. The scheme is applicable to both
ECG and PPG signals.

• The performance of the proposed solution has been
extensively evaluated using ECG data from the
widely used MIT PhysioBank databases. Our algo-
rithm is stable as it works successfully with ECG
signals lasting more than 20 hours. We evaluated
the KDR and key generation rate (KGR) to show the
effectiveness of our protocol.

• The performance is also evaluated using PPG sig-
nals measured from our customized testbed. It is
composed of PPG sensors, AD conversion (Arduino)
and a PC for signal processing, which provides full
access to the raw waveform of PPG signals. We also
create a PPG-based prototype that consists of PPG
sensors, Arduino and Raspberry Pi as the processing
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TABLE 1
A Summary of Literature

Paper Random Extraction Contribution Data

Rostami et al. [11] IPI (four LSB) A secure pairing protocol for implantable devices
ARM implementation ECG sensors

Seepers et al. [12] IPI (Bits 5 to 7) A full fuzzy commitment-based protocol;
Peak misalignment detection MIT PhysioBank

Lin et al. [13] IPI (Bits 4 to 6) A full key generation protocol;
Evaluating sampling frequency Piezo vibration sensors

Chizari et al. [9] IPI trend Extensive randomness evaluation on a huge dataset
(with 900,000,000 IPIs) MIT PhysioBank
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Fig. 1. System diagram. Two sensors are attached to the human body
and measure the heartbeat signals. The IPIs of the heartbeat signals
are extracted as cryptographic keys.

platform. A demo video has been produced to show
a successful working system.

The rest of the paper is organized as follows. Section 2
briefly introduces the system overview. Section 3 presents
the IPI extraction algorithm and Section 4 designs the key
establishment protocol. Section 5 evaluates the performance
of the proposed solution using the ECG signals from the
MIT PhysioBank databases. In Section 6 we present a PPG-
based testbed designs, experimental validation as well as
a prototype. The related work is introduced in Section 8.
Section 9 concludes the paper.

2 SYSTEM OVERVIEW

The system diagram is portrayed in Fig. 1, where Alice and
Bob represent two legitimate sensors attached to the human
body and measure heartbeats. The key generation protocol
is shown in Fig. 2, composed of three stages, namely heart-
beat measurement, IPI extraction, and key establishment.

Any sensor that can capture heartbeat signals will work.
This paper considers common ECG and PPG sensors. ECG
sensors detect the electrical activities of the heart. ECG
measurements usually require electrodes in direct contact
with the skin, but there are also wearable ECG sensors, e.g.,
embedded in Apple Watch. PPG sensors consist of a light
emitter and a detector. An LED will illuminate the tissue,
which will be reflected by the blood. As the blood volume
changes during a cardiac cycle, the detector will detect
the variation and thereof the heartbeat [24]. PPG sensors
are widely used in consumer electronics such as Fitbits.
Snippets of ECG and PPG signals are shown in Fig. 3(a)
and Figs 3(b), respectively.

Once the heartbeat signals are captured by sensors, the
peaks of the ECG or PPG signals will be first located
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Fig. 2. Heartbeat-based key generation framework. IPI values are in the
unit of millisecond. The dashed lines represent wireless transmissions.
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Fig. 3. (a) ECG signal from MIT PhysioBank database and Sym4 wavelet
scale 3. (b) PPG signal measured by a pulse sensor and Sym4 wavelet
scale 5.

by the peak detection algorithm. Alice and Bob will then
individually calculate the IPI. There will be misdetected or
missed peaks, IPI alignment is adopted to enable Alice and
Bob to agree on peaks with common indexes. Peak detection
and IPI alignment will be introduced in Section 3.

IPIs are analog values and should be converted to digital
binary sequences, which is completed by the key estab-
lishment protocol, consisting of quantization, information
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reconciliation, and privacy amplification. The protocol will
be explained in Section 4.

Information exchange is required for the above process.
WBAN devices have wireless communications modules,
such as Bluetooth, ZigBee and WiFi. Bluetooth uses adaptive
frequency hopping, which is suitable in high interference
environments [25]. As this paper does not consider wireless
interference, WiFi is used as an example.

3 IPI EXTRACTION

IPI extraction is the most important step as it extracts
entropy from heartbeat signals. However, many literature
treated this step very trivially, which simply indicated that
wavelet analysis was used but a detailed explanation and re-
sults are missing. In addition, detecting peaks and aligning
them is also essential. It is necessary to study IPI extraction
in a more comprehensive manner and reveal more technical
details, which shall be beneficial for the community.

Some examples of ECG and PPG signals are given in
Fig. 4(a) and Fig. 5, respectively. Same as most literature, this
paper used ECG signals from the MIT PhysioBank database.
Regarding PPG signals, we designed a pulse sensor-based
testbed, which will be introduced in Section 6. The heartbeat
signals captured by the sensor u are denoted as xu(t).

3.1 Peak Detection
IPI extraction relies on detecting the pulse peaks and calcu-
lating the intervals between any adjacent peaks. As shown
in Fig. 3, both ECG and PPG signals have pulse peaks and
their IPI can be given as

∆pu(i) = t(i + 1)− t(i), (1)

where t(i) is the timestamp of the ith peak. Regarding ECG
signals, the IPI is also referred as R-R interval.

An intuitive idea is to detect the peaks based on their
amplitudes, which is not robust. As can be observed in
Fig. 4(a) and Fig. 5, the peaks of the ECG and PPG signals
varied significantly in amplitudes. In addition, the peak
amplitudes will also vary based on the measuring devices
and the heartbeat signals, hence a hard threshold will not
work. A robust and adaptive peak detection algorithm is
thus strongly required. We designed a three-step algorithm,
consisted of wavelet analysis, peak elimination and peak
refinement. The pseudo code is given in Algorithm 1.

3.1.1 Wavelet Analysis
Wavelet analysis has been proved efficient to remove the
noise in ECG signals [16]. As shown in Fig. 3(a) and Fig. 3(b),
the sym4 wavelet resembles for both peaks of the ECG and
PPG signals. Different from other papers, we demonstrated
the same sym4 wavelet can be used for both ECG and PPG
signals, which makes our algorithm generic.

Multiple level wavelet decomposition can be applied to
the heartbeat signals, xu(t). Drift of signal amplitudes are
low frequency parts. We can deliberately remove these parts
and the reconstructed signal is denoted as xw

u (t), which is
illustrated in Fig. 4(b). The effect for the PPG signals is
similar hence the results are not shown here for brevity.
From now on we use ECG signals to explain our algorithm.
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Fig. 4. (a) A snapshot ECG signal from MIT PhysioBank database.
Dataset: mitdb/101. (b) ECG signal processed by wavelet analysis. (c)
ECG signal processed after peak elimination.

3.1.2 Peak Elimination

As shown in Fig. 4(b), there are many other peaks in ECG
signals, which should be eliminated to detect the correct
peaks. We designed a window peak elimination algorithm.
The signal, xw

u (t), is partitioned into multiple segments,
each with 300 ms. The window length is selected based on
the fact that the heartbeat interval of any people alive will be
larger than 300 ms, otherwise, the person will be in danger
to life. This can ensure that only one (valid or void) peak
in each segment but will not accidentally remove any valid
peaks. We only kept the peaks and set the values of the rest
of the points inside the segment as zero. The detected peak
index is t′(k).
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Fig. 5. A snapshop of the collected PPG signal using our testbed.

Algorithm 1 Peak Detection
INPUT: xu(t) % Heartbeat signals of sensor u
OUTPUT: {t(i),∆pu(i)} % Detected IPI of sensor u

% Wavelet Analysis
1: Apply wavelet decomposition to xu(t).
2: Remove the low frequency components.
3: Apply wavelet reconstruction and get xw

u (t).
% Peak Elimination

4: Partition xw
u (t) into segments with length of 300 ms.

5: Detect the peak in each segment and set the rest as 0.
6: Obtain the peak index {t′(k)}.

% Peak Refinement
7: Calculate intervals between adjacent detected peaks,

∆tu(k) = t′(k + 1)− t′(k)
8: Cluster ∆tu into two groups (correct and incorrect).
9: Detect incorrect intervals and calibrate the correspond-

ing peaks.
10: Update the detected {t(i),∆pu(i)}.

3.1.3 Peak Refinement
There will be void peaks detected, as exemplified in Fig. 4(c).
While the peak amplitudes may vary significantly, the range
of IPIs is rather stable, which inspires us to further remove
void peaks based on peak intervals.

As shown in Algorithm 1, we first calculate the intervals
between any two adjacent detected peaks, including void
peaks. The calculated intervals consist of the correct IPIs and
the incorrect ones, which can be clustered into two groups.
We can then find the timestamps that result in the incorrect
intervals and calibrate the peaks of these timestamps by
setting their values as zero. Each device finally refines the
detected IPIs and obtain {t(i),∆pu(i)}.

3.2 IPI Alignment
After the above steps, there could still exist misdecteted or
missed peaks, making Alice and Bob hard to reach an agree-
ment. However, key establishment requires common peaks
at both ends for generating identical keys. An intuitive way
is to directly compare the timestamps of the peaks at both
devices and only keep the common ones. Unfortunately, it is

Algorithm 2 IPI Indexing
INPUT: {t(i),∆pu(i)}
INPUT: Tref % reference IPI
OUTPUT: {t(i), Su(i),∆pu(i)}

1: Su(1) =
⌊

t(1)
Tref

⌉
+ 1;

2: for i← 2 to N do
3: Su(i) =

⌊
t(i)
Tref

⌉
+ 1;

4: if Su(i) == Su(i− 1) then
5: Su(i) = 0
6: end if
7: end for
8: Remove void peaks (whose sequence numbers are zero)

not applicable because the timestamps (IPI) are the random
source and should not be transmitted publicly.

A simple yet efficient IPI alignment algorithm is de-
signed by indexing each IPI a sequence number and aligning
between Alice and Bob based on the common sequence
numbers. This is inspired by the packet sequence number
used in wireless protocols. Heartbeats are continuous, hence
the peaks and the IPIs can be indexed based on their corre-
sponding timestamps, as explained in Algorithm 2. Alice
and Bob will use the same reference IPI, Tref , e.g., the mean
value of Alice’s IPIs. In this case, Alice will first calculate
Tref and then transmit it to Bob wirelessly. Because both
Alice and Bob measure heartbeat signals simultaneously,
their timestamps are almost the same. For any ith peak of
the sensor u, its sequence number can be calculated as

Su(i) =
⌊ t(i)

Tref

⌉
+ 1, (2)

where b·e denotes the operating of rounding to the nearest
integer. If it is the same as the sequence number of its
previous IPI, it indicates that this IPI is invalid and its Su(i)
is set as zero.

The alignment will require exchanging the sequence
number between Alice and Bob. Alice will transmit se-
quence numbers of her IPIs, SA, to Bob, who will locally
compare with his sequence numbers, SB . Bob will work out
a common list by calculating the intersection between SB

and SA, i.e., SAB = SB ∩ SA, and send the list to Alice.
Both Alice and Bob will only keep the IPIs matching to the
common list, {SAB}. It is worth noting that the sequence
numbers are publicly transmitted from Alice to Bob but it
does not reveal the information of the IPIs.

After the above steps are completed, Alice and Bob
will obtain a list of common IPIs, {t(i),∆pA(i)} and
{t(i),∆pB(i)}, respectively. It should be noted that while
Alice and Bob have the IPIs with the common index, their
IPI values, namely ∆pA(i) and ∆pB(i), will not be identical,
due to the measurement errors and sampling noise.

4 KEY ESTABLISHMENT PROTOCOL

After Alice and Bob extract the aligned IPIs, they will
need to convert the analog IPI values into digital binary
sequences, which are required by the cryptographic appli-
cations. Key generation from wireless channels has been
investigated comprehensively in the last decade [26], which
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Algorithm 3 IPI trend-based quantization algorithm
INPUT: ∆pu(i) % IPI interval of sensor u
OUTPUT: Kq

u(i) % Key sequence of sensor u
1: for i← 1 to N − 1 do
2: if ∆pu(i + 1) > ∆pu(i) then
3: Kq

u(i) = 1
4: else
5: Kq

u(i) = 0
6: end if
7: end for

consists of channel probing, quantization, information rec-
onciliation, and privacy amplification. This paper exploits
the randomness source from heartbeats, hence IPI extraction
is designed to replace channel probing. The rest three steps
are borrowed from wireless key generation.

4.1 Quantization
There have been several quantization algorithms to extract
randomness from IPIs. Much work agreed that the four
least significant bits (LSBs), i.e., bits 5678 of IPI have high
entropy [10], [11]. However, Ortiz-Martin et al. found it may
not be correct via an in-depth entropy test [27]. They found
that the combination of bits 2638 is better than the four LSBs.
Chizari et al. reckoned IPI values are not fully suitable as
random sources based on extensive tests on huge datasets
with almost 900,000,000 IPIs [9]. To the best knowledge of
the authors, this is the most comprehensive evaluation. They
further demonstrated that the IPI trend is a better candidate,
which is therefore used in this paper.

The IPI trend-based quantization algorithm is given in
Algorithm 3. The trend-based quantization has also been
investigated in wireless key generation, which is named as
differential-based quantizer in [28], [29]. This quantizer is
very easy to implement as it only requires comparing the
adjacent IPI values, which does not involve any complicated
operations [29]. After this stage, Alice and Bob obtains bi-
nary sequence, Kq

A and Kq
B , respectively, which are usually

not identical due to the difference between ∆pA and ∆pB .

4.2 Information Reconciliation and Privacy Amplifica-
tion
We apply information reconciliation to correct the key mis-
match between Alice and Bob. Secure sketch is used [30],
explained in Algorithm 4. Without loss of generality, Alice
acts as the initiator of this process. Alice and Bob will use
the same error correction code (ECC) set, e.g., a BCH codeset
C(n, k, tc) which has a correction capacity of tc/n.

Alice first randomly selects a codeword, c, from C. She
will then mask her key, Kq

A, with c using a simple exclusive-
OR (XOR) operation and will send the syndrome, s, to Bob.
Assuming Bob receives s correctly with the help of channel
coding, he can reveal cB by XORing s with his key, Kq

B .
When the following condition satisfies,

dH(cB , c)

lK
<

tc
n
, (3)

where dH(·, ·) denotes the calculation of hamming distance
and lK is the key length, Bob will obtain c′ = c. He can

Algorithm 4 Information reconciliation - secure sketch

INPUT: Kq
A, Kq

B % Quantized keys of Alice and Bob
INPUT: C % ECC set shared by Alice and Bob
OUTPUT: Kir

A , Kir
B % Reconciled key

1: Alice randomly selects a codeword c from an ECC set C
2: Alice calculates s = XOR(Kq

A, c)
3: Alice transmits s to Bob through a public channel
4: Kir

A = Kq
A

5: Bob receives s
6: Bob calculates cB = XOR(Kq

B , s)
7: Bob decodes cB to get c′

8: Bob calculates Kir
B = XOR(c′, s)

finally reconcile his key by XORing c′ and s. Alice and Bob
will get the same keys, i.e., Kir

A = Kir
B .

In practice, the key agreement can be confirmed by cyclic
redundancy check (CRC). Alice can calculate the checksum
of her key, CRC(Kir

A ), and transmit it to Bob. Bob can also
calculate the checksum of his key, CRC(Kir

B ), and compare
with the received checksum to deduce the key agreement. In
the event that the checksums of Alice and Bob do not match,
key generation fails and Alice and Bob have to restart from
the IPI extraction.

There are information exchanges, namely the syndrome
and CRC checksum, over the public wireless channel dur-
ing information reconciliation, which can be overheard by
eavesdroppers. Therefore, privacy amplification is adopted
to remove the information leakage, which can be achieved
by using a hash function H(·), given as

Ku = H(Kir
u ). (4)

After the privacy amplification, both sensors shall obtain
the same keys. The key generation process is completed.

4.3 Evaluation Metrics

4.3.1 Key Disagreement Rate (KDR)

KDR represents the percentage of the different key bits
between sensor u and sensor v, given as

KDRuv =

∑lK
i |Kq

u(i)−Kq
v(i)|

lK
. (5)

KDR is only used offline to evaluate the key mismatch
during each key generation round. The calculation requires
keys at both devices, i.e., Kq

u and Kq
v , but we are not allowed

to transmit the keys in a practical system.

4.3.2 Uniqueness

Uniqueness evaluates how the heartbeats present different
patterns and the keys deviate from each other, when two
sensors are attached to two persons. As will be explained in
Section 6.1, this can be tested by attaching two PPG sensors
to the fingertips of two volunteers.

We can still use the KDR to evaluate the key uniqueness
when heartbeat signals are captured from two persons.
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4.3.3 Randomness
As the generated key serves for cryptographic algorithms,
e.g., AES, the key should be random. Otherwise, the system
will be vulnerable to brute force attacks.

National Institute of Standards and Technology (NIST)
has provided a randomness test suite to evaluate the true
random number generator and pseudo random number
generator [31]. Each test in the NIST test suite will return
a p-value. When it is larger than a threshold, e.g., 0.01, the
sequence is deemed to pass the particular test. Otherwise,
the sequence is not random. This suite has also been widely
used in the heartbeat-based key generation work [9]–[11],
[27] as well as key generation from wireless channels [26].

4.3.4 Key Generation Rate (KGR)
KGR describes how fast the system can generate the keys,
which is defined as

KGR =
lK
TK

, (6)

where TK is the total time for acquiring the heartbeats.

5 PERFORMANCE EVALUATION ON ECG SIGNALS

5.1 MIT PhysioBank Dataset
MIT PhysioBank is a free and public database which hosts
extensive physiological and clinical data and related soft-
ware [14]. Many heartbeat-based key generation work relies
on this database [10], [12], [15]–[18]. We also used this
extensive resource to evaluate our protocol on ECG signals.
In particular, we used the following databases:

• MIT-BIH Arrhythmia Database (mitdb) [32]
• MIT-BIH Normal Sinus Rhythm Database

(nsrdb) [14]
• MIT-BIH Long-Term ECG Database (ltdb) [14]
• European ST-T Database [33]
• Long Term ST Database (ltstdb) [34]

These databases cover both healthy subjects (nsrdb) and
people with heart diseases (mitdb). In addition, as shown
in Table 2, many datasets have quite long ECG signals, e.g.,
datasets ltdb, ltstdb and nsrdb provide more than 20 hours
ECG signal records. This allows us to evaluate our protocol
against different health conditions and make the analysis
statistically meaningful.

We used the Matlab functions provided by the Phys-
ioBank3 to read the signals from the dataset. Our data
analysis algorithms are implemented in Matlab.

5.2 Results
5.2.1 IPI Extraction and KDR
The IPIs of Alice and Bob are given in Fig. 6, using the
mitdb/101 dataset as an example. Except some anomaly
detected IPIs, these two curves in general match each other
very well. Hence, they can serve the common random
source to generate keys for Alice and Bob.

The performance of our proposed IPI extraction algo-
rithm is given in Table 2. Many MIT PhysioBank databases

3https://archive.physionet.org/physiotools/matlab/wfdb-app-
matlab/html/rdann.html
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Fig. 6. The IPIs of Alice and Bob. Dataset: ECG signal from mitdb/101
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Fig. 7. The distribution of peak detection errors. The error is calculated
as the timestamps differences (in millisecond) between our algorithm
and the annotation. Dataset: ECG signal from ltdb/14046.

provide annotation for the R peaks of the ECG signals. For
example, MIT-BIH Arrhythmia Database is annotated by
two or more cardiologists independently [32]. These annota-
tions are considered correct and used as benchmarks to eval-
uate our algorithm. As shown in Table 2, our algorithm can
detect a high proportion of correct peaks, compared with the
annotated ones, ranging from 81.12% to 96.12%. In addition,
we also compared the timestamps of our detected peaks
of the sensor A with those of the annotation to evaluate
the accuracy of our IPI detection algorithm. We deliberately
selected the worst case and presented the results in Fig. 7;
our algorithm can achieve a high accuracy.

We have also calculated the distribution of the IPIs of the
ECG signals, as exemplified in Figs. 8(a)-(e). We calculated
the mean and variance of the measured IPIs and plotted
curves following the normal distribution with their individ-
ual estimated mean value and variance. As can be observed,
the measured IPIs do not follow a normal distribution.

The benchmark KDR is calculated as follows. We first
directly compare the timestamps of all IPIs of Alice and
Bob and only keep the ones close to each other. In practice,
it is not possible as either device is not able to know
the timestamp of other devices. We then quantize these
refined IPIs and calculate their KDR as the benchmark. As
shown in Table 2, the KDR of our scheme is very close
to the benchmark KDR, which indicates the effectiveness
of our IPI alignment algorithm. In addition, all the KDRs
are smaller than 20%, which are well within the correction
capacity of ECCs. For example, BCH can correct up to 25%
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TABLE 2
IPI Extraction and Alignment Performance.

Dataset Duration
(minutes) fs (Hz)

Nann, # of
Annotated

Peaks

NA, # of
Detected

Peaks at A

NB , # of
Detected

Peaks at B

NAB , # of
Common Peaks

at A and B

NAB/Nann,
Peak Detected

Ratio

Benchmark
KDR KDR

edb/e0103 120 250 7336 7316 7320 7051 96.12% 5.80% 5.90%

edb/e0113 120 250 9173 8846 8945 8111 88.42% 7.90% 8.10%

ltdb/14046 1410 128 115278 106241 108144 93514 81.12% 20.40% 21.10%

ltdb/15814 1333 128 103388 103453 100517 94510 91.41% 20.60% 20.70%

ltstdb/s20011 1373 250 100053 100731 100809 92142 92.09% 10.70% 9.80%

ltstdb/s20231 1406 250 103100 99735 99461 91136 88.40% 13.70% 14.20%

mitdb/101 31 360 1874 1885 1889 1798 95.94% 11.10% 12.80%

mitdb/123 31 360 1519 1552 1601 1449 95.39% 11.80% 12.80%

nsrdb/16272 1500 128 97146 97281 99159 87744 90.32% 14.50% 16.00%

nsrdb/19093 1394 128 83670 88127 88627 78458 93.77% 11.50% 14.10%

PPG 5 225 NA 407 407 379 NA 5.50% 5.90%

ltstdb/s20011

500 1000 1500

IPI (ms)

0

1

2

3

4

5

p
d

f

10-3

(a)

edb/e0103

600 800 1000 1200 1400

IPI (ms)

0

0.005

0.01

p
d
f

(b)

mitdb/101

600 800 1000 1200

IPI (ms)

0

2

4

6

8

p
d
f

10-3

(c)

ltdb/14046

500 1000 1500 2000

IPI (ms)

0

0.005

0.01

p
d

f

(d)

nsrdb/16272

500 1000 1500

IPI (ms)

0

1

2

3

4

p
d
f

10-3

(e)

PPG

600 700 800

IPI (ms)

0

0.005

0.01

0.015

0.02

p
d
f

(f)

Fig. 8. IPI distribution. (a)-(e) describe ECG signals from different
datasets. (f) describes PPG signals from the experiment 1. The red
curves are the normal distribution with the mean and variance of the
data.

mismatch [35]. Hence, the same keys can be generated at
Alice and Bob.

5.2.2 KGR
The generated keys usually serve for cryptographic applica-
tions, which are not required to refresh the keys in real time.

For example, AES has been commonly applied to protect
many networks, including ZigBee, WiFi and LoRaWAN.
The key lengths for AES can be 128-, 192-, or 256-bit. Our
protocol can extract one bit from each heartbeat on average.
When the rate is 60 heartbeats per minute, it takes up to five
minutes to generate a set of 256-bit key, which still meets
the requirements of these protocols.

There have also been research efforts to investigate one-
time pad (OTP) encryption to achieve perfect secrecy, which
encrypts each message bit with a random key bit [15]. As
the keys cannot be reused, OTP encryption requires a fast
KGR. Multiple features of ECG signals have been extracted
to improve KGR, which can generate 16 bits per heartbeat
cycle [17]. However, it is still too slow to transmit bulk data.
For example, the data rate of ZigBee is 250 kps and the
rate of WiFi is in the order of Mb/s. It will only be fea-
sible to exchange confidential and short messages securely
using the OTP, e.g., transmitting vital control signals to the
implantable devices such as pacemakers.

5.2.3 Randomness

Chizari et al. has carried out a comprehensive evaluation
of the randomness of the keys generated from ECG signals
using the IPI trend-based quantization [9]. As this paper also
used the same trend-based quantization method to generate
keys from ECG signals, hence the randomness results are
omitted for simplicity.

Interested readers please refer to [9]–[11], [27] for the
randomness evaluation results when other quantization
methods are used to generate keys from ECG signals.

6 EXPERIMENTAL EVALUATION ON PPG SIGNALS

6.1 Experimental Platform

We created a testbed to collect PPG signals. As shown in
Fig. 9(a) and Fig. 9(b), a PPG sensor-based experimental
system consists of pulse sensors to collect heartbeat signals,
Arduino for analog-to-digital conversion, and PC (Matlab)
for signal processing.

We did two experiments:
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Fig. 9. (a) Pulse sensor worn to a finger. (b) The schematic diagram of
the experimental setup.
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• Experiment 1: Two PPG sensors, Alice and Bob, were
attached to the fingertips of two hands of the vol-
unteer. This experiment represented two legitimate
sensors wishing to generate a common key.

• Experiment 2: Two PPG sensors, Alice and Eve, were
attached to the fingertips of two volunteers. This
experiment evaluated the uniqueness of the key.

Each experiment ran for five minutes. The sampling fre-
quency for both experiments was configured as 225 Hz.
Both sensors captured heartbeat signals simultaneously. The
experiments and data collection have been approved by the
Research Ethics Committees of the University of Liverpool,
Liverpool, UK (reference: 5856). The same Matlab codes for
processing ECG signals were used.

6.2 Results
6.2.1 IPI Extraction and KDR
Regarding the experiment 1, the IPIs of Alice and Bob
measured from PPG signals are given in Fig. 10, which in-
dicates a good agreement. The IPI extraction and alignment
performance of the PPG signals are given in Table 2 (last
row). The distribution of the IPIs measured by PPG signals
is exemplified in Fig. 8(f), which exhibit a good variation.

The KDR between Alice and Bob is 5.9%, which is within
the correction capacity of ECCs, hence the key disagreement
can be corrected and key establishment can be completed.

6.2.2 Uniqueness
Regarding the experiment 2, the IPIs of Alice and Eve
measured from the PPG signals are given in Fig. 11. Their
IPIs varied in totally different manners. The KDR between
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Fig. 11. The IPIs of Alice and Eve. Dataset: PPG signals collected in
experiment 2.

TABLE 3
NIST randomness test results. Keys generated from PPG signals at the

quantization and privacy amplification steps.

Test Quantization Privacy Amplification

Monobit frequency 0.187 0.532

Block frequency 0.245 0.437

Cum. Sums (fwd) 0.300 0.469

Cum. Sums (rev) 0.211 0.946

Run 0.797 0.515

Longest one block 0.073 0.973

Serial 1 0.318 0.825

Serial 2 0.647 0.938

Appro. Entropy 0.279 0.772

DFT 0.093 0.136

the keys at Alice and Eve is 51.6%, which is no better
than a random guess. This demonstrated the uniqueness of
the keys because Eve generates uncorrelated keys and she
cannot deduce the keys of Alice.

6.2.3 Randomness
We evaluated the randomness of the keys of Alice generated
from PPG signals using a Python implementation of the
NIST test suite4. We tested the keys both at the quantization
and privacy amplification steps. When a key at the quan-
tization step is non-random, it might still be able to pass
the randomness test after the privacy amplification [36]. In
this case, the key is not secure as it will be vulnerable to
dictionary attacks [36]. Hence, we need to ensure the keys
at both stages are random.

The results are given in Table 3. All the p-values are
larger than 0.01, hence the generated key sequences pass the
NIST randomness tests. Therefore, PPG signals are suitable
to be extracted as cryptographic keys.

6.3 Prototype and Demonstration

We also created a prototype system, whose schematic di-
agram and photo are given in Fig. 12(a) and Fig. 12(b),
respectively. Raspberry Pi is used for signal processing and

4https://github.com/stevenang/randomness testsuite
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Fig. 12. (a) The schematic diagram of the prototype system. (b) The
photo of the prototype system.

display (with the help of a touchscreen). All the algorithms
are implemented using Python. A guideline of the hardware
connections and codes are provided by the manufacturer5.

Different from the experimental testbed, there is no
physical connection between the two units. Alice and Bob
are running the key generation protocol individually. They
can exchange the required information by WiFi, e.g., the
sequence number SA, the common sequence list SAB , the
syndrome s, and the CRC checksum of Alice CRC(Kir

A ).
A demonstration video has been created and submit-

ted, which exemplified the practicability of our system. As
shown in Fig. 13, we partitioned our system into four parts,
namely signal collection, IPI extraction, key generation and
evaluation. Besides the algorithms introduced in the pre-
vious sections, we implemented an encryption test in the
evaluation part to demonstrate a successful cryptographic
integration. Alice uses her key to encrypt an image using
AES and transmits it to Bob. Once receiving it successfully,
Bob will be able to decrypt the image using his key. Please
refer to our demonstration video for full information.

7 DISCUSSION

There will be multiple wearable devices in the WBAN
exchanging private and/or confidential data, which requires
encryption and decryption for transmissions, e.g., using
AES. Sharing common keys for them is indeed challenging
as they are usually embedded devices with limited com-
putational resources. Key generation from heartbeat is a
promising solution. When the devices are attached to the
same person, they will be able to extract the same IPIs,
and hence generate same keys, which can be observed from

5https://github.com/WorldFamousElectronics/Raspberry Pi/

Fig. 13. The graphic user interface (GUI) of the heartbeat-based key
generation prototyping.

Fig. 6 (for ECG signals) and Fig. 10 (for PPG signals).
The generated common key can be used for symmetric
encryption and decryption.

The generated key is dynamic and random. This is
because IPI varies and any two IPIs will never be identical,
as shown in Fig. 6 (for ECG signals) and Fig. 10 (for
PPG signals). Therefore, the key can be refreshed regularly,
approximately every five minutes for a set of 256-bit key, as
discussed in Section 5.2.2. Even if a key is stolen, a new key
can be generated quickly to replace the revealed key.

8 RELATED WORK

8.1 Heartbeat-based Authentication

Besides key generation, heartbeat signals have also been
used for user authentication, based on the uniqueness of the
human cardiac systems. Arteaga-Falconi et al. used two ECG
electrodes to collect heartbeat signals for authentication [37].
Zhao et al. designed a sophisticated system by using wrist-
worn PPG sensors [38]. The system may be subject to human
movement and the authors developed a motion artifacts de-
tection and mitigation strategy. Different from the previous
work, Wang et al. used a built-in accelerometer on the smart-
phones to capture heartbeat signals [39]. The user simply
presses the phone to the chest and can be identified by using
a few heartbeats. In order to improve the authentication
accuracy, Wu et al. used both the motion sensor and PPG
sensors [40]. All these research efforts have demonstrated
the feasibility of heartbeat-based authentication.

Different from authentication, heartbeat-based key gen-
eration will require further consideration to agree on com-
mon keys based on inaccurate measurements of the heart-
beat signals between two or more sensors, which is the
research focus of this paper.

8.2 Key Generation from Wireless Channels

Besides heartbeat-based key generation, key generation
from wireless channels is also widely investigated for
WBAN, which exploits the unpredictable features of the
wireless channel as the key [26]. This usually occurs be-
tween two wireless devices mounted on two persons [41],
[42], and the protocol extracts the common randomness
from the wireless channel between these two devices.
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TABLE 4
COTS PPG and ECG Chips, Development Kits and Arduino Boards.

Type Chip Evaluation Kit Arduino Board

ECG

TI ADS12926 TI ADS1292ECG kit7 ProtoCentral kit8

AD AD82329 AD8232 Evaluation
Board10

SparkFun
SEN-1265011,
DFROBOT SEN0213 12

MAX3000313 MAX30003WING14 ProtoCentral kit15

PPG

MAX3010116,
MAX8614017 Maxim board 714118 SparkFun SEN-1521919

NA NA Pulse sensors20,
DFROBOT SEN020321

This technique requires wireless transmissions between
two devices to glean channel information, which will intro-
duce additional energy consumption and is not friendly to
many wearable and implantable devices. Ali et al. proposed
to leverage the existing data communications to measure the
channel [41]. However, it is restricted to the users’ mobil-
ity pattern and frequency of data exchanges. As analyzed
in [18], it is affected by the surrounding environments,
e.g., there may be severe interference from other medical
equipment in the hospital.

To this end, it is desirable to extract keys from IPIs of
heartbeats when devices have the capability of measuring
the cardiac signals. On the other hand, there has been exten-
sive research on key generation from wireless channels [26].
While the different randomness sources lead to varied algo-
rithms to harvest entropy, other steps, namely quantization,
information reconciliation, and privacy amplification, can be
borrowed for heartbeat-based key generation, as discussed
in Section 4.

8.3 ECG and PPG Sensors

A detailed description and comparison of ECG and PPG
sensors can be found in [24], [43]. Table 4 presents a non-
exclusive list of the COTS ECG and PPG chips and sensors.
However, many devices usually do not provide application
programming interfaces (APIs) to access the raw data. On
the other hand, there are a number of open source boards
that provide Arduino libraries. These development sensor
boards and their software libraries will allow researchers
to develop prototypes and collect real data. There have
been research attempts using pulse sensor [24], [40], TI
ADS1298 [11] and AD ADAS1000 [20] to establish the
heartbeat-based key generation testbeds.

6http://www.ti.com/product/ADS1292
7http://www.ti.com/tool/ADS1292ECG-FE
8https://www.protocentral.com/analog-adc-boards/783-ads1292r-
ecgrespiration-breakout-board.html

9https://www.analog.com/en/products/ad8232.html
10https://www.analog.com/media/en/technical-documentation/

user-guides/AD8232-EVALZ UG-514.pdf
11https://www.sparkfun.com/products/12650
12https://www.dfrobot.com/product-1510.html
13https://www.maximintegrated.com/en/products/analog/data-

converters/analog-front-end-ics/MAX30003.html
14https://datasheets.maximintegrated.com/en/ds/MAX30003WING.pdf
15https://www.protocentral.com/open-source-health/1149-

protocentral-max30003-single-lead-ecg-breakout-board.html

9 CONCLUSION

In this paper, we designed a robust, generic, and practi-
cal heartbeat-based key generation framework that is ap-
plicable for both ECG and PPG signals. It consists of a
peak detection algorithm to extract pulse peaks and an
IPI alignment algorithm to enable the same indexed IPIs
between legitimate devices. Key establishment protocol in-
volves quantization, information reconciliation and privacy
amplification, which enable legitimate devices to convert
analog IPIs to digital key bits and reconcile on a common
sequence. We carried out extensive evaluation using several
ECG datasets from the public MIT PhysioBank databases.
We also designed a testbed to collect PPG signals and eval-
uated our protocol. Results indicated our framework can
accurately extract IPIs and key generation can be completed
using both ECG and PPG signals. A PPG-based prototype
was also created and a demonstration video was submitted
to show a successful working system. Our future work
will be studying the effect of sensor attachment on the IPI
measurements when e.g., the human is walking.
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