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Abstract

By considering a flavour expansion about the SU(3)-flavour symmetric
point, we investigate how flavour-blindness constrains octet baryon ma-
trix elements after SU(3) is broken by the mass difference between quarks.
Similarly to hadron masses we find the expansions to be constrained along
a mass trajectory where the singlet quark mass is held constant, which pro-
vides invaluable insight into the mechanism of flavour symmetry breaking
and proves beneficial for extrapolations to the physical point. Expansions
are given up to third order in the expansion parameters. Considering
higher orders would give no further constraints on the expansion parame-
ters. The relation of the expansion coefficients to the quark-line-connected
and quark-line-disconnected terms in the three-point correlation functions
is also given. As we consider Wilson clover-like fermions, the addition of
improvement coefficients is also discussed and shown to be included in the
formalism developed here. As an example of the method we investigate
this numerically via a lattice calculation of the flavour-conserving matrix
elements of the vector first class form factors.
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1 Introduction

Understanding the pattern of flavour symmetry breaking and mixing, and the ori-
gin of CP violation, remains one of the outstanding problems in particle physics.
The big questions to be answered are (i) What determines the observed pattern
of quark and lepton mass matrices and (ii) Are there other sources of flavour
symmetry breaking? In [1, 2] we have outlined a programme to systematically
investigate the pattern of flavour symmetry breaking. The program has been
successfully applied to meson and baryon masses involving up, down and strange
quarks. In this article we will extend the investigation to include matrix elements.

The QCD interaction is flavour-blind. Neglecting electromagnetic and weak
interactions, the only difference between flavours comes from the quark mass
matrix. We have our best theoretical understanding when all three quark flavours
have the same masses, because we can use the full power of flavour SU(3). The
strategy is to keep the average bare quark mass m̄ = (mu +md +ms)/3 constant
and expand the matrix elements about the flavour symmetric point mu = md =
ms. Thus all the quark mass dependence will be expressed as polynomials in
δmq = mq − m̄, q = u, d, s. It should be mentioned that this is a completely
different approach for studying the manifestations of low-energy QCD than chiral
perturbation theory. It is a complementary method and based on group theory
rather than effective field theory.

The programme has been successfully applied to meson and baryon masses
in [1, 2] including an extension to incorporate QED effects [3, 4, 5]. Besides con-
straining the quark mass dependence of hadron masses, which helps in extrap-
olations to the physical point, it provides valuable information on the physics
of flavour symmetry breaking. For example, the order of the polynomial can be
associated with the order of 1/Nc corrections, [6]. Furthermore, similar to the
analysis of Gell-Mann and Okubo [7, 8], the order of the polynomial classifies
the order of SU(3) breaking, [1, 2]. As opposed to the conventional method of
keeping the strange quark mass fixed, our method has the further advantage that
flavour singlet quantities which are difficult to compute can now be disentangled
in the extrapolation, and are largely constant on the m̄ constant line.

In this article we shall concentrate on matrix elements for the baryon octet
as sketched in the Y – I3 plane in the left hand panel of Fig. 1. It is easy to
translate the results to octet mesons sketched in the right hand panel of Fig. 1.
Furthermore we restrict ourselves to the case of nf = 2 + 1, i.e. the case of
degenerate u and d quark masses, mu = md ≡ ml. (Initial results were given
in [9].) However our method is also applicable to isospin breaking effects arising
from non-degenerate u and d quark masses. We postpone this analysis to a
separate paper, including electromagnetic effects, [10]. The formalism is general.
In our application we consider for definiteness just local currents, but covering
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Figure 1: Left panel: The baryon octet. Right panel: The meson octet.

all possible Dirac gamma matrix structure1.
While of intrinsic interest in itself, an obvious application of this formalism

is the determination of semileptonic decay form factors and the associated CKM
matrix element, |Vus|. In general disentangling quark mass and momentum de-
pendencies is helpful for determining generalised form factors of baryons, as de-
scribed for example in the forthcoming Electron Ion Collider (EIC) programme,
[11].

The structure of this article is as follows. In section 2, we discuss all possible
currents (which we call ‘generalised currents’ here) and also their splitting into
‘first’ class and ‘second’ class currents. Then in sections 3, 4, 5 we discuss the
group theory. In section 3 we define our expansion parameter, δml and the
general structure of our expansions. Also discussed there (and at the beginning of
section 5.1) are simple cases which have previously been determined. In particular
the singlet case will be used later in this article. The next section, section 4 gives
our sign conventions (commonly employed in chiral perturbation theory). As we
have mass degenerate u and d quarks then there is an SU(2) isospin symmetry.
We then use the Wigner-Eckart theorem to give the reduced matrix elements,
contrasting the difference here to the usual conventions. Then in section 5, after
discussing the group theory classification of SU(3) tensors, we determine those
relevant to our study (with complete tables being given in Appendix A), and
then in section 6.1 give the LO expansions. Higher-order terms are given in
section 6.2. These sections giving the expansion coefficients form the heart of
this report. This is followed by section 7 where we briefly restrict ourselves to a
discussion of the amplitudes at the symmetric point.

Continuing with the main thread, in section 8 linear combinations of the
matrix elements are constructed for the various baryons, leading to functions

1It can also easily be extended to currents including covariant derivatives.
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that all have the same value at the SU(3) flavour symmetric point. Four different
‘fan’ plots are constructed, two detailed in section 8 and a further two given in
Appendix B.

Lattice QCD determinations of matrix elements involve the computation of
3-point correlation functions, which fall into two classes – quark-line connected
diagrams and quark line disconnected diagrams. In section 9, we discuss the
implications of this splitting for the SU(3) symmetry flavour breaking expansions
at LO. In particular for the connected terms, there are further constraints on
the expansion coefficients. In section 10 this is applied to the baryon-diagonal
matrix elements (and as a special case to the electromagnetic current). The
quark-line connected expansions are given there with the general expressions
described in Appendix C while the quark-line disconnected expansions are given
in Appendix D.

In section 11 we discuss improvement coefficients for the currents, see e.g. [12],
and show that they lead to (small) modifications of the SU(3) flavour symmetric
breaking expansion coefficients. Using the vector current as an example, we show
how we can determine two improvement coefficients (and the renormalisation
constant). Section 12.1 briefly describes how matrix elements (i.e. form factors)
are computed from the ratios of 3-point to 2-point correlation functions. In
section 12.2, we describe our nf = 2 + 1 flavour Wilson clover action used and
provide some numerical details. In section 13, specialising to the vector current
again we give some flavour singlet ‘X’-plots, showing their constancy for the F1

and F2 form factors. This is followed by some fan plots revealing SU(3)-breaking
effects. The momentum transfer (Q2) dependence of the expansion coefficients is
also investigated. The numerical values of two improvement coefficients are also
determined. Finally in section 14 we give our conclusions.

2 Baryon matrix elements and generalised cur-

rents

We take here ‘generalised currents’ to be

JF (M) = qFγ(M)q ≡
3∑

f1,f2=1

Ff1f2 qf1
γ(M)qf2 , (1)

where q is a flavour vector, q = (u, d, s)T , F is a flavour matrix and γ(M) is
some Dirac gamma matrix. In particular we have γ(M) = γ(M)µ, γ(M)µγ(M)

5 , I,
iγ(M)

5 and σ(M)µν for the vector V (M)µ, axial A(M)µ, scalar S(M), pseudoscalar P (M)

and tensor T (M)µν generalised currents respectively. The further generalisation
to operators including covariant derivatives is straightforward. With our gamma
matrix conventions, we obviously have

JF(M)† = q̄F Tγ(M)q , (2)

7



and so are Hermitian if the flavour matrix, F , is symmetric and anti-Hermitian
if F is antisymmetric.

We use Minkowski space2, and to emphasise this we use the superscript: (M).
The expansion described later will be valid whether we are working in Minkowski
or Euclidean space (when we will drop the superscript). We wish to compute
matrix elements for B → B′

A(B → B′) = 〈B′, ~p ′, ~s ′|JF(M)(q)|B, ~p,~s 〉 ≡ AB̄′FB , (3)

where B and B′ belong to the baryon octet, the members of which are shown in
Fig. 1 (the quark content of each baryon is also depicted there). This can thus
include scattering processes for example Be→ Be or semi-leptonic (or β-decays)
B → B′eν̄e from a parent baryon, B, to a daughter baryon B′. For semi-leptonic
decays in the standard model, neutral currents are flavour diagonal, and hence
there is an absence of flavour-changing neutral currents (FCNCs), i.e. s → d
transitions. In addition ∆S = ∆Q violating modes are not seen. From Fig. 1
we see that this means that transitions from right to the left in the picture are
suppressed or absent. For example twelve allowed non-hyperon and hyperon β-
decays, are listed in Table 1 of [13]. Of course the present formalism does not
incorporate these constraints, but this can motivate our choice of independent
matrix elements, which are transitions from the left to the right in Fig. 1.

Momentum transfer p(M) − p(M)′ is more natural to take for semi-leptonic
decays, as this is the momentum carried by the lepton and neutrino. However
for scattering processes p(M)′ − p(M) is more natural. We wish to adopt a unified
notation here, so we define the momentum transfer as

q(M) = p(M)′ − p(M) = (EB′(~p
′)− EB(~p), ~p ′ − ~p ) . (4)

The decompositions of the matrix elements in eq. (3) are standard, and we write

〈B′, ~p ′, ~s ′|JF(M)(q)|B, ~p,~s〉 = ūB′(~p
′, ~s ′)J (M)(q)uB(~p,~s) , (5)

with for J (M)

V (M)µ = γ(M)µF1 + iσ(M)µνq(M)

ν

F2

MB +MB′
+ q(M)µ

F3

MB +MB′
,

A(M)µ =

(
γ(M)µG1 + iσ(M)µνq(M)

ν

G2

MB +MB′
+ q(M)µ

G3

MB +MB′

)
γ(M)

5 ,

S (M) = gS ,

P (M) = iγ(M)

5 gP , (6)

T (M)µν = σ(M)µνh1 + i(q(M)µγ(M)ν − q(M)νγ(M)µ)
h2

MB +MB′

2The conventions used include ηµν = diag(1,−1,−1,−1), γ(M)µ † = γ(M)0γ(M)µγ(M)0, γ(M)
5 =

iγ(M)0γ(M)1γ(M)2γ(M)3 and σ(M)µν = i/2[γ(M)µ, γ(M)ν ].
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+i(q(M)µP (M)ν − q(M)νP (M)µ)
h3

(MB +MB′)2

+i(γ(M)µ
/q

(M)γ(M)ν − γ(M)ν
/q

(M)γ(M)µ)
h4

MB +MB′
,

where P (M) = p(M) + p(M) ′. Fi ≡ F B̄′FB
i , Gi ≡ GB̄′FB

i , gS ≡ gB̄′FB
S , gP ≡ gB̄′FB

P

and hi ≡ hB̄′FB
i are the form factors and are functions of q(M) 2 and the masses of

the baryons (or alternatively the quark masses). Each combination in eqs. (5, 6)
represents a current times a form factor (i.e. the coefficient). For example the
first term for the vector current reads ūB′(~p

′, ~s ′)γ(M)µuB(~p,~s)×F B̄′FB
1 (q(M) 2). The

goal of this article is to establish ways in which these form factors depend on the
transition taking place and on the quark masses.

From eqs. (2, 3) we have

A∗
B̄FTB′ = AB̄′FB , (7)

and we now apply this to eq. (5) with individual terms defined by eq. (6). Consider
first the current pieces. For example for the vector currents we find that the
first and second terms (i.e. currents) are unaltered, (ūBγ

(M)µuB′)
∗ = ūB′γ

(M)µuB,
(ūB′iσ

(M)µν(−q(M)
ν )uB)∗ = ūBiσ

(M)µνq(M)
ν uB′ while the third current changes sign,

(ūB(−q(M)µ)uB′)
∗ = −ūB′q(M)µuB. Strong interactions are invariant under T -

parity and from this it can be shown that the form factors can be chosen to be
all real. Hence from eq. (7) we must have

F B̄FTB′

1 = F B̄′FB

1 , F B̄FTB′

2 = F B̄′FB

2 , (8)

but

F B̄FTB′

3 = −F B̄′FB

3 . (9)

F1 and F2 are called first class form factors while F3 is called a second class form
factor. This can be applied to all the further currents. These properties of the
form factors thus give rise to the notation, [14]

first class F1, F2, G1, G3, gS, gP , h1, h2, h3

second class F3, G2, h4
, (10)

(with the meaning given by eqs. (8, 9)). Note that when B′ = B, then the
second class currents (i.e. form factors) vanish. This occurs, either for a scattering
process (i.e. a diagonal current in flavour space, so the matrix F is symmetric
and the current is Hermitian) or for semi-leptonic processes at the quark mass
symmetric point.

We now consider the flavour structures, i.e. the possible flavour matrices in
eq. (1). In Table 1 we give the possible octet states, i = 1, . . . , 8 and in addition
the singlet state, labelled by i = 0. As we are primarily concerned with the

9



Index Baryon (B) Meson (F ) Current (JF)

1 n K0 d̄γs
2 p K+ ūγs
3 Σ− π− d̄γu
4 Σ0 π0 1√

2

(
ūγu− d̄γd

)
5 Λ0 η 1√

6

(
ūγu+ d̄γd− 2s̄γs

)
6 Σ+ π+ ūγd
7 Ξ− K− s̄γu
8 Ξ0 K̄0 s̄γd

0 η′ 1√
3

(
ūγu+ d̄γd+ s̄γs

)
Table 1: Our numbering and conventions for the generalised currents. For example,
B3 = Σ−, F3 = π−, JF3 ≡ Jπ

−
. We use the convention that current (i.e. operator)

numbered by i has the same effect as absorbing a meson with the index i. γ represents
an arbitrary Dirac matrix.

flavour structure of bilinear operators, we use the corresponding meson name for
the flavour structure of the bilinear quark currents. So for example the i = 5
current is given by the flavour matrix Fη = diag(1, 1,−2)/

√
6. We shall use the

convention that the current i has the same effect as absorbing a meson with the
same index. In the operator expressions q is the annihilation operator and q̄ the
creation operator. As an example, we note that absorbing a π+ annihilates one
d quark and creates a u quark. That is

Jπ
+|0〉 ∝ |π+〉 , (11)

while 〈p|ūγd|n〉 = 〈p|Jπ+ |n〉 represents p = π+n.
As an example of this (current) notation the quark electromagnetic current

can be written by defining an appropriate flavour matrix F or alternatively as

Jemµ =
2

3
ūγµu−

1

3
d̄γµd−

1

3
s̄γµs

≡ 1√
2
V π0

µ +
1√
6
V η
µ . (12)

Furthermore the charged W s currents are a mixture of the charged π and K
currents, while the Z current is diagonal and thus a mixture of the π0, η and η′

currents. The K0 current is a FCNC, so only contributes to beyond the standard
model (BSM) or higher-order processes.

The previous discussion on first and second class currents can now be refor-
mulated in terms of these flavour matrices and isospin rotations3. The diagonal

3This discussion follows [15].
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currents, and hence diagonal matrix elements, discussed here are given by i = 4,
5 and 0 with Fπ0 , Fη and Fη′ respectively. As a result F3, G2, gP , h2 and h3 all
vanish for these currents. For the off-diagonal currents consider the SU(3)-flavour
symmetric point. As all the quark masses have the same mass, and in particular
the u and d quarks then we first consider isospin, I, invariance. Isospin rota-
tions are d-u rotations and relate off-diagonal currents to diagonal currents. (For
example 〈p|Jπ+ |n〉 is related to 〈p|Jπ0|p〉, see section 4.2.) Similarly for U -spin
rotations s-d, and V -spin rotations s-u. Hence we expect that for transitions
within a given multiplet (whether I, U or V ) at the SU(3)-flavour symmetric
point then again F3, G2, gP , h2 and h3 all vanish. Between isospin multiplets
they need not vanish when SU(3) flavour symmetry is broken. We later discuss
this in more detail and our coefficient tables, for example Table 6, reflect these
results.

3 Quark mass expansions

3.1 Choice of quark masses

As mentioned already, we follow the strategy used in [2] of holding constant the
average bare quark mass

m̄ =
1

3
(mu +md +ms) . (13)

This greatly reduces the number of mass polynomials which can occur in Taylor
expansions of physical quantities, and relates the quark-mass dependencies of
hadron masses or matrix elements within an SU(3) multiplet. Since we expand
about the symmetric point where all three quarks have the same mass, it is useful
to introduce the notation

δmq ≡ mq − m̄ , q = u, d, s , (14)

to describe the ‘distance’ from the SU(3) flavour symmetry point. Note that it
follows from the definition that we have the identity

δmu + δmd + δms = 0 , (15)

so we can always eliminate one of the δmq. In this article we concentrate on the
nf = 2 + 1 case, i.e. we keep

mu = md ≡ ml . (16)

All our expansion coefficients are functions of m̄. The methods developed here
can be generalised to the case of nf = 1 + 1 + 1 non-degenerate quark-mass
flavours. For this case eq. (15) reduces to

2δml + δms = 0 , (17)
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which we use to eliminate δms. Thus, all mass dependences will be expressed as
polynomials in the single variable δml. At the physical point ml � m̄, so δml is
negative. However on the lattice in principle we are free to choose δml positive,
and look at matrix elements on both sides of the symmetric point.

3.2 Matrix elements

In the following we want to use group theory in flavour space to calculate the
possible quark-mass dependence of baryonic form factors. However for simplicity
of notation we shall continue to discuss matrix elements and amplitudes, but
it should be noted that for form factors the Lorentz/Dirac structure has been
factored out. So we shall consider the quark mass expansion for

〈Bi|JFj |Bk〉 ≡ AB̄iFjBk . (18)

The indices i and k will run from 1 to 8 for octet hadrons (or 1 to 10 for decuplets).
The currents/operators we are interested in are quark bilinears, so the index j will
run from 1 to 8 for non-singlets, or 0 for the singlet. In the following the singlet
will be considered separately. When i 6= k we get transition matrix elements;
when i = k within the same multiplet, we get operator expectation values. This
has already been indicated in Table 1.

The allowed quark mass Taylor expansion for a hadronic matrix element must
follow the schematic pattern

〈Bi|JFj |Bk〉 =
∑

(singlet mass polynomial)× (singlet tensor)ijk

+
∑

(octet mass polynomial)× (octet tensor)ijk (19)

+
∑

(27-plet mass polynomial)× (27-plet tensor)ijk

+ · · · .

The mass polynomials have been determined and given in Table III of [2]. The
relevant part of this table is given in Table 2 where we classify all the polynomials
which could occur in a Taylor expansion about the symmetric point, δmq = 0,
q = u, d, s up to O(δm3

q). The tensors in eq. (19) are 3-dimensional arrays
of integers and square-roots of integers; objects somewhat analogous to three-
dimensional Gell-Mann matrices. We recover the standard results for unbroken
SU(3) by only keeping singlet tensors on the right-hand side of eq. (19). Adding
higher dimensional flavour tensors tells us the allowed mass dependences of matrix
elements. The dots in eq. (19) represent terms that are cubic or higher in δmq.

We now need to classify the three-index tensors according to their group
transformations, using the same techniques we used for masses [2]. The new
cases to look at will be 8⊗ 8⊗ 8 and 10⊗ 8⊗ 10 for octet and decuplet hadrons
respectively, 10⊗ 8⊗ 8 for transitions between octet and decuplet baryons, and

12



Polynomial SU(3)
1 1
δms 8

(δmu − δmd) 8
δm2

u + δm2
d + δm2

s 1 27
3δm2

s − (δmu − δmd)
2 8 27

δms(δmd − δmu) 8 27
δmuδmdδms 1 27 64

δms(δm
2
u + δm2

d + δm2
s) 8 27 64

(δmu − δmd)(δm
2
u + δm2

d + δm2
s) 8 27 64

(δms − δmu)(δms − δmd)(δmu − δmd) 10 10 64

Table 2: All the quark-mass polynomials up to O(δm3
q), classified by symmetry prop-

erties.

3 ⊗ 8 ⊗ 3 for quark matrix elements, useful for considering renormalisation and
improvement of quark bilinear operators. We shall only consider the octet (and
singlet) baryon cases here.

3.3 Simple cases I: Decay constants fπ and fK

The vacuum is a singlet, so vacuum to meson, M , matrix elements or decay
constants 〈0|JFj |Mk〉, j = 1, . . . , 8 are proportional to 1⊗ 8⊗ 8 tensors, i.e. 8⊗ 8
matrices. So again the allowed mass dependence of fπ and fK is similar to the
allowed dependence of M2

π and M2
K , as given in [2]. Results using this approach

are given in [16]. For example to LO we have

fπ = F0 + 2Gδml ,

fK = F0 −Gδml . (20)

The same argument applies in principle to hyperon distribution amplitudes qqq,
and to baryon decays via qqqe 4-fermi grand unified theory (GUT) interactions,
but in this work we shall only consider bilinear operators.

4 Method for matrix elements

Recall from eq. (3) that we have used the notation for the matrix element tran-
sition B → B′ of

AB̄′FB = 〈B′|JF |B〉 , (21)

where JF is the appropriate operator from Table 1 and F denotes the flavour
structure of the operator. But note that as we are suppressing the Lorentz struc-
ture, this includes first and second class form factors as given in eq. (10).

13



4.1 Sign conventions: Octet operators and octet hadrons

In the case of a nf = 2+1 simulation we only need to give the amplitudes for one
particle in each isospin multiplet, and can then use isospin symmetry to calculate
all other amplitudes in (or between) the same multiplets. So, for example, we
can calculate the Σ− and Σ0 matrix elements if we are given all the Σ+ matrix
elements. Similarly, given the Σ+ → p transition amplitude, we can find all the
other Σ → N transition amplitudes. All the symmetry factors will be listed in
section 4.2.

In the next section we will calculate the allowed quark-mass dependencies of
the amplitudes between the baryons. Within this set there are 7 diagonal matrix
elements, and 5 transition amplitudes making 7+5 = 12 in total. The 7 diagonal
elements are

AN̄ηN , AΣ̄ηΣ , AΛ̄ηΛ , AΞ̄ηΞ and AN̄πN , AΣ̄πΣ , AΞ̄πΞ , (22)

because there are four I = 0 amplitudes, one for each particle, but only three
I = 1 amplitudes, because isospin symmetry rules out an I = 1, Λ0 ↔ Λ0

amplitude. There are only 5 transition amplitudes

AΣ̄πΛ and AN̄KΣ , AN̄KΛ , AΛ̄KΞ , AΣ̄KΞ , (23)

because no octet operator changes strangeness by ±2, so there is no p ↔ Ξ0

transition amplitude. See the forthcoming Tables 3 and 4 for the explicit results.
To discuss transition matrix elements, we need to specify the hadron states

carefully. If we do not, then the phases and signs of transition matrix elements
become ambiguous. (This is not a problem with masses, or diagonal matrix
elements such as 〈p|J |p〉.)

We follow a convention commonly used in chiral perturbation theory4, e.g.
[18, 19] where the mesons transform under SU(3) rotations like the 3× 3 matrix

M =

 1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 , (24)

and octet baryons like the matrix

B =

 1√
2
Σ0 + 1√

6
Λ0 Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ0 n

Ξ− Ξ0 − 2√
6
Λ0

 ,

4However some papers use different definitions, e.g. in chapter 18 of [17] the meson matrix
M is defined the same way as in eq. (24), but in the baryon matrix B the Ξ− appears with a
minus sign in comparison to eq. (25). Using the Gasiorowicz convention, [17], would give the
opposite sign to all transition matrix elements to or from the Ξ−.
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(25)

B̄ =

 1√
2
Σ̄0 + 1√

6
Λ̄0 Σ̄− Ξ̄−

Σ̄+ − 1√
2
Σ̄0 + 1√

6
Λ̄0 Ξ̄0

p̄ n̄ − 2√
6
Λ̄0

 .

So for example π+, π0, π− are represented by the matrices 0 1 0
0 0 0
0 0 0

 ,

 1√
2

0 0

0 − 1√
2

0
0 0 0

 ,

 0 0 0
1 0 0
0 0 0

 , (26)

respectively. Under an SU(3) rotation the M , B and B̄ matrices transform as

M → UMU †, B → UBU †, and B̄ → UB̄U † . (27)

4.2 SU(2) relations

As discussed previously we use the convention that operator number i, repre-
senting an appropriate flavour matrix, has the same effect on quantum numbers
as the absorption of a meson with the index i. So for example, from Table 1
operator 6 annihilates a d quark and creates a u, and hence changes a neutron
into a proton, i.e.

〈p|ūγd|n〉 ≡ 〈p|Jπ+|n〉 ≡ 〈B2|JF6 |B1〉 . (28)

In Tables 3 and 4 we list the isospin relationships between all of the allowed
matrix elements in the octet, and our standard 7 + 5 = 12 matrix elements.

Making the choice given in eqs. (24, 25) which is conventional in chiral pertur-
bation theory, the isospin raising and lowering operators do not follow the usual
Condon–Shortley sign convention. The Wigner–Eckart theorem applies, but the
signs are not always the ones from the standard Clebsch–Gordan coefficients.

To demonstrate this, consider the transformations given in eq. (27) with U =
exp(iαiλ

i). Infinitesimal transformations (αi → 0) correspond to commutators of
the type [λi, B] or [λi,M ]. The isospin operations are constructed from the first
three λ matrices

I3 = 1
2
λ3 ,

I+ = 1
2
(λ1 + iλ2) , (29)

I− = 1
2
(λ1 − iλ2) .

I3 has the expected result

Î3M = 1
2
[λ3,M ] =

 0 π+ 1
2
K+

−π− 0 − 1
2
K0

−1
2
K− 1

2
K̄0 0

 , (30)

15



I

0 〈n|Jη|n〉 AN̄ηN
0 〈p|Jη|p〉 AN̄ηN

0 〈Σ−|Jη|Σ−〉 AΣ̄ηΣ

0 〈Σ0|Jη|Σ0〉 AΣ̄ηΣ

0 〈Σ+|Jη|Σ+〉 AΣ̄ηΣ

0 〈Λ0|Jη|Λ0〉 AΛ̄ηΛ

0 〈Ξ−|Jη|Ξ−〉 AΞ̄ηΞ

0 〈Ξ0|Jη|Ξ0〉 AΞ̄ηΞ

I

1 〈n|Jπ0|n〉 −AN̄πN
1 〈p|Jπ0|p〉 AN̄πN
1 〈n|Jπ−|p〉

√
2AN̄πN

1 〈p|Jπ+ |n〉
√

2AN̄πN

1 〈Σ−|Jπ0|Σ−〉 −AΣ̄πΣ

1 〈Σ0|Jπ0|Σ0〉 0

1 〈Σ+|Jπ0|Σ+〉 AΣ̄πΣ

1 〈Σ−|Jπ−|Σ0〉 AΣ̄πΣ

1 〈Σ0|Jπ− |Σ+〉 −AΣ̄πΣ

1 〈Σ0|Jπ+ |Σ−〉 AΣ̄πΣ

1 〈Σ+|Jπ+|Σ0〉 −AΣ̄πΣ

1 〈Λ0|Jπ0|Λ0〉 0

1 〈Ξ−|Jπ0|Ξ−〉 −AΞ̄πΞ

1 〈Ξ0|Jπ0|Ξ0〉 AΞ̄πΞ

1 〈Ξ−|Jπ−|Ξ0〉 −
√

2AΞ̄πΞ

1 〈Ξ0|Jπ+ |Ξ−〉 −
√

2AΞ̄πΞ

Table 3: The isospin relations connecting the set of octet matrix elements with our
standard subsets AB̄FB (each independent set separated by horizontal lines). Left
table: The I = 0 diagonal relations; right table: the I = 1 transition relations within
the same isospin multiplet.

Î3B = 1
2
[λ3, B] =

 0 Σ+ 1
2
p

−Σ− 0 − 1
2
n

− 1
2

Ξ− 1
2

Ξ0 0

 . (31)

For example regarding π− as the matrix in eq. (26) gives

Î3π
− =

 0 0 0
−1 0 0
0 0 0

 = −π− , (32)

(see Fig. 1). Similarly for the baryons, for example Î3n = −1
2
n, etc... .

However Î+ and Î− produce results at odds with the Condon-Shortley or CS
phase convention, which has positive coefficients for the non-zero matrix elements
of the raising and lowering operators.

Î+M = 1
2
[λ1 + iλ2,M ] =

 π− −
√

2π0 K0

0 −π− 0
0 −K− 0

 . (33)

16



I

1 〈Σ−|Jπ−|Λ0〉 AΣ̄πΛ

1 〈Σ0|Jπ0|Λ0〉 AΣ̄πΛ

1 〈Σ+|Jπ+|Λ0〉 AΣ̄πΛ

1
2
〈n|JK+|Σ−〉 AN̄KΣ

1
2
〈n|JK0|Σ0〉 −AN̄KΣ /

√
2

1
2
〈p|JK+|Σ0〉 AN̄KΣ /

√
2

1
2
〈p|JK0 |Σ+〉 AN̄KΣ

1
2
〈n|JK0 |Λ0〉 AN̄KΛ

1
2
〈p|JK+|Λ0〉 AN̄KΛ

1
2
〈Λ0|JK+|Ξ−〉 AΛ̄KΞ

1
2
〈Λ0|JK0|Ξ0〉 AΛ̄KΞ

1
2
〈Σ−|JK0|Ξ−〉 AΣ̄KΞ

1
2
〈Σ0|JK+|Ξ−〉 AΣ̄KΞ /

√
2

1
2
〈Σ0|JK0 |Ξ0〉 −AΣ̄KΞ /

√
2

1
2
〈Σ+|JK+|Ξ0〉 AΣ̄KΞ

I

1 〈Λ0|Jπ+ |Σ−〉 AΛ̄πΣ

1 〈Λ0|Jπ0|Σ0〉 AΛ̄πΣ

1 〈Λ0|Jπ− |Σ+〉 AΛ̄πΣ

1
2
〈Σ−|JK−|n〉 AΣ̄K̄N

1
2
〈Σ0|J K̄0|n〉 −AΣ̄K̄N /

√
2

1
2
〈Σ0|JK−|p〉 AΣ̄K̄N /

√
2

1
2
〈Σ+|J K̄0|p〉 AΣ̄K̄N

1
2
〈Λ0|J K̄0|n〉 AΛ̄K̄N

1
2
〈Λ0|JK− |p〉 AΛ̄K̄N

1
2
〈Ξ−|JK−|Λ0〉 AΞ̄K̄Λ

1
2
〈Ξ0|J K̄0|Λ0〉 AΞ̄K̄Λ

1
2
〈Ξ−|J K̄0|Σ−〉 AΞ̄K̄Σ

1
2
〈Ξ−|JK− |Σ0〉 AΞ̄K̄Σ /

√
2

1
2
〈Ξ0|J K̄0|Σ0〉 −AΞ̄K̄Σ /

√
2

1
2
〈Ξ0|JK−|Σ+〉 AΞ̄K̄Σ

Table 4: The isospin relations connecting the transition set of octet matrix elements
with our standard subsets AB̄′FB (each independent set separated by horizontal lines).
Left table: The ‘forward’ I = 1 and 1

2 relations; right table: the inverse relations.

Again using the π− as an example and comparing this result with eq. (24) we see
that we have

Î+π
− =

 1 0 0
0 −1 0
0 0 0

 =
√

2π0 . (34)

Listing all the relations gives

Î+π
− =

√
2π0 ,

Î+π
0 = −

√
2π+ , (35)

Î+K
0 = K+ ,

Î+K
− = −K̄0 .

Similarly

Î+Σ− =
√

2Σ0 ,

Î+Σ0 = −
√

2Σ+ , (36)

Î+n = p ,

Î+Ξ− = −Ξ0 .
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The action of Î− is similar. Since these relations are not those usually used to cal-
culate the Clebsch-Gordon coefficients, we need to tabulate the isospin relations
within each multiplet. The signs of the Î+ matrix elements follow directly from
the choice of signs in the chiral perturbation theory representation of the meson
and baryon octets as 3× 3 matrices in eqs. (24, 25). The guiding principle is to
make the off-diagonal entries there positive. However this tidy choice of matrix
leads to a non-standard phase convention within isospin multiplets.

In the CS convention all the coefficients in eqs. (35, 36) would be positive.
Looking at the baryon results, eq. (36), we see that the neutron and proton are
consistent with that convention, while, for example, the Ξ− and Ξ0 are not. The
minus sign tells us that one of the Ξ states must have the opposite phase to the
CS convention. Since only relative phases are observable, we could choose the Ξ0

to have the CS phase, and the Ξ− to have the flipped phase. (Making the other
choice would not change the final result.) Similarly looking at the Σ baryons we
could choose the Σ+ to have the CS phase, and the Σ− and Σ0 to have flipped
phase (or vice versa).

One choice of phases that would match eqs. (35, 36) would be to choose the n,
p, Σ+ and Ξ0 as standard, and the Σ−, Σ0 and Ξ− as flipped, and the equivalent
choice for the meson currents (i.e. π−, π0, K− flipped). If we look in Tables 3
and 4 we see that matrix elements involving an even number of hadrons from the
flipped group, the Clebsch-Gordon factor is the same as that in the usual tables,
if an odd number of flipped hadrons are involved, the sign is the opposite to that
in the usual tables.

As an example of the use of Table 3, we show how the unbroken SU(2) symme-
try can be used to find the transition amplitude 〈p|Jπ+|n〉 from the corresponding
diagonal amplitude 〈p|Jπ0|p〉. From the table

〈p|Jπ+|n〉 =
√

2AN̄πN =
√

2 〈p|Jπ0|p〉 , (37)

giving

〈p|ūγd|n〉 = 〈p|(ūγu− d̄γd)|p〉 , (38)

which is again the simple example showing the relation between off-diagonal and
diagonal currents briefly discussed in section 2.

5 Mass dependence of amplitudes

We first consider the simple singlet case (operators with the η′ flavour structure,
i = 0, see Table 1) and then consider the octet states.

5.1 Simple cases II: Flavour-singlet operators

For matrix elements involving singlet currents, 〈Bi|JF0|Bi〉 ≡ 〈Bi|Jη′|Bi〉, we
need the SU(3) analysis of 8 ⊗ 1 ⊗ 8 tensors. These are just the 8 ⊗ 8 matrices
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already analysed in [2]. The conclusion is thus that matrix elements of flavour
singlet operators follow the same formulae as the hadron masses. An example of
a flavour singlet operator is the quark component to the baryon spin, ∆Σ. For
example the LO expansion is given by

AN̄η′N = a0 + 3a1δml ,

AΛ̄η′Λ = a0 + 3a2δml , (39)

AΣ̄η′Σ = a0 − 3a2δml ,

AΞ̄η′Ξ = a0 − 3(a1 − a2)δml ,

with higher orders given in [2].

5.2 Group theory classification: Flavour-octet operators

To find the allowed mass dependence of octet matrix elements of octet hadrons
we need the SU(3) decomposition of 8⊗ 8⊗ 8. Using the intermediate result

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27 , (40)

we find

8⊗ 8⊗ 8 (41)

= 1⊕ 1⊕ 8⊕ 8⊕ 8⊕ 8⊕ 8⊕ 8⊕ 8⊕ 8⊕ 27⊕ 27⊕ 27⊕ 27⊕ 27⊕ 27⊕ 64

⊕ 10⊕ 10⊕ 10⊕ 10⊕ 10⊕ 10⊕ 10⊕ 10⊕ 35⊕ 35⊕ 35⊕ 35 .

With three unequal quark masses, the nf = 1 + 1 + 1 case, I3 and Y are both
‘good’ flavour quantum numbers, so the tensors in eq. (19) will satisfy I3 = 0,
Y = 0, i.e. they will be the central locations (spots) in each multiplet in Fig. 2.
Thus in a full nf = 1 + 1 + 1 flavour calculation (three different quark masses)
we would see contributions from all the representations in eq. (41).

Fortunately in the nf = 2 + 1 case the good flavour quantum numbers are I
and Y , giving us the stronger constraint that only tensors with I = 0, Y = 0
enter into eq. (19). The 10, 10, 35 and 35 do not contain any I = 0, Y = 0
operators, so they no longer contribute in the 2 + 1 case, which means that we
can neglect those representations at present [17, 20]. For example for the Y = 0
line for the octet, we have an isospin triplet and singlet of states and similarly for
the 27-plet (isospin 5-plet, triplet and singlet) and 64-plet (isospin 7-plet, 5-plet,
triplet and singlet). However for the 10-plet we have just an isospin triplet and
for the 35-plet a 5-plet and triplet. In both cases there is no Y = 0 isospin singlet.

We have already seen this phenomenon in [2] for the case of the 10 and 10. The
simplest quark-mass polynomial with 10, 10 symmetry was (δms − δmu)(δms −
δmd)(δmu−δmd) (see Table 2), which vanishes if any two quark masses are equal.
The 10 and 10 only appeared in two quantities we have considered, the violation
of the Coleman-Glashow mass relation, and in Σ0 – Λ0 mixing [21], both of which
are isospin violating.
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Figure 2: I3, Y plots for some of the SU(3) multiplets which appear in the decom-
position of 8⊗ 8⊗ 8. The left-hand plot illustrates the octet, 27-plet and 64-plet rep-
resentations (clockwise). The right-hand plot shows the 10 and 35-plets (left to right).
The number of spots in the central location gives the number of flavour-conserving
operators in each multiplet.

5.3 The SU(3) symmetry-breaking expansions

5.3.1 Basis

Because 8 × 8 × 8 tensors are easier to think about than 3 × 3 × 3 × 3 × 3 × 3
tensors we switch to regarding baryons and mesons as vectors of length 8. We
have used the ordering 

n
p

Σ−

Σ0

Λ0

Σ+

Ξ−

Ξ0


and



K0

K+

π−

π0

η
π+

K−

K̄0


. (42)

The 8 generators of SU(3) are now a set of 8× 8 matrices, chosen so that λB in
the matrix-vector notation has the same effect as [λ,B] in the 3×3 matrix-matrix
notation. We have

λ1 =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0

√
2 0 0 0 0

0 0
√

2 0 0 −
√

2 0 0
0 0 0 0 0 0 0 0
0 0 0 −

√
2 0 0 0 0

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0


,
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λ2 =



0 i 0 0 0 0 0 0
−i 0 0 0 0 0 0 0
0 0 0 i

√
2 0 0 0 0

0 0 −i
√

2 0 0 −i
√

2 0 0
0 0 0 0 0 0 0 0
0 0 0 i

√
2 0 0 0 0

0 0 0 0 0 0 0 −i
0 0 0 0 0 0 i 0


,

λ3 =



−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1


,

λ4 =
1√
2



0 0 −
√

2 0 0 0 0 0
0 0 0 −1 −

√
3 0 0 0

−
√

2 0 0 0 0 0 0 0
0 −1 0 0 0 0 1 0
0 −

√
3 0 0 0 0

√
3 0

0 0 0 0 0 0 0
√

2
0 0 0 1

√
3 0 0 0

0 0 0 0 0
√

2 0 0


,

λ5 =
1√
2



0 0 i
√

2 0 0 0 0 0
0 0 0 i i

√
3 0 0 0

−i
√

2 0 0 0 0 0 0 0
0 −i 0 0 0 0 −i 0
0 −i

√
3 0 0 0 0 −i

√
3 0

0 0 0 0 0 0 0 −i
√

2
0 0 0 i i

√
3 0 0 0

0 0 0 0 0 i
√

2 0 0


,

λ6 =
1√
2



0 0 0 1 −
√

3 0 0 0
0 0 0 0 0 −

√
2 0 0

0 0 0 0 0 0
√

2 0
1 0 0 0 0 0 0 −1
−
√

3 0 0 0 0 0 0
√

3
0 −

√
2 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0
0 0 0 −1

√
3 0 0 0


,
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λ7 =
1√
2



0 0 0 −i i
√

3 0 0 0
0 0 0 0 0 i

√
2 0 0

0 0 0 0 0 0 −i
√

2 0
i 0 0 0 0 0 0 i

−i
√

3 0 0 0 0 0 0 −i
√

3
0 −i

√
2 0 0 0 0 0 0

0 0 i
√

2 0 0 0 0 0
0 0 0 −i i

√
3 0 0 0


,

λ8 =
√

3



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1


. (43)

These 8× 8 λ matrices follow similar relations to the familiar 3× 3 matrices,[
λi, λj

]
= 2if ijkλk , Tr(λiλj) = 12 δij , (44)

and

I3 =
1

2
λ3 , Y =

1√
3
λ8 , (45)

with the difference that the 3×3 matrices tell us about I3 and Y for the individual
quarks, but the 8 × 8 matrices give the quantum numbers of the octet baryons
or octet mesons.

5.3.2 Transformations

Under an SU(3) rotation the tensors on the right-hand side of eq. (19) transform
according to

T ′ijk = U †iaTabcUbjUck . (46)

The change in T under an infinitesimal transformation by the generator λα is

ÔαT ≡ −λαiaTajk + Tibkλ
α
bj + Tijcλ

α
ck . (47)

The Casimir operator for the SU(3) representation is

ĈT = 1
4

∑
α=1,8

ÔαÔαT , (48)

while the Casimir for the SU(2) isospin subgroup is

Î2T = 1
4

∑
α=1,3

ÔαÔαT . (49)
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The nf = 2 + 1 mass matrix commutes with λ1, λ2, λ3 (the generators of isospin)
and λ8 (hypercharge). We are looking for tensors which obey these symmetries,
so we require

ÔαT = 0 , α = 1, 2, 3, 8 . (50)

The Casimir operator has the following eigenvalues for the representations occur-
ring in 8⊗ 8⊗ 8, see for example chapter 4 of [20] or chapter 7 (exercise 7.12) of
[22]

representation 1 8 10 10 27 35 35 64
Casimir eigenvalue 0 3 6 6 8 12 12 15

. (51)

We now want to construct tensors which are eigenstates of the Casimir operator,
and which satisfy the conditions in eq. (50). This is analogous to constructing
an eigenvector if we know the eigenvalues. We have a large number of simultane-
ous linear equations involving the numbers Tijk. The solutions tend to be sparse
with the conditions in eq. (50) forcing many entries to be zero. We calculate
the tensors of a given symmetry with the help of Mathematica, [23]. We begin
with a completely general tensor Tijk with 83 entries, and impose the conditions
eq. (50). This forces many entries to be zero, as it eliminates all entries in which
the flavour quantum numbers of the ‘outgoing’ particle i is not the sum of the
flavours of j and k (for example 〈Ξ0|Jπ+|p〉 = 0 because charge and strangeness
do not balance). The conditions eq. (50) are also sufficient to force all the re-
lations in Tables 3 and 4 to hold. After imposing eq. (50) we have reduced the
initial general tensor with 83 = 512 entries down to a tensor with only 17 inde-
pendent parameters. From the decomposition of 8 ⊗ 8 ⊗ 8 as given in eq. (41)
we can work out how many solutions there are of each symmetry. The repre-
sentations 1, 8, 27 and 64 each have a single state satisfying eq. (50), while the
10, 10, 35 and 35 have no states compatible with eq. (50) because they do not
have a Y = 0, I2 = 0 central state, see Fig. 2 and the related discussion. The
17 linearly independent tensors remaining after imposing eq. (50) can now be
further classified as eigenstates of the Casimir operator. Finding these tensors is
a simple matter of solving simultaneous equations, analogous to determining an
eigenvector once the eigenvalue is known.

As in the case of degenerate eigenvalues, there is a degree of choice in choos-
ing which linear combinations of the eigenstates we choose as our basis. Often
there are interchange operations which we can choose to be even or odd. In par-
ticular we can choose our tensors to be first class or second class depending on
the symmetry or antisymmetry when the baryons are switched, as discussed in
section 2.

We can see this by introducing a reflection matrix R which inverts each octet,
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leaving the central two states unchanged

R =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


. (52)

For the mesons this is the charge conjugation operation. We note that R2 = I
(the unit matrix), so R can only have the eigenvalues ±1, hence we can classify
states according to whether they are even or odd under operations involving R.
Tensors can be divided into first or second class depending on the symmetry

first class Tijk = +TkaiRaj ,

second class Tijk = −TkaiRaj , (53)

in which the baryon order is reversed, and R applied to the current (meson)
index. Furthermore the definition of first/second class tensors in eq. (53) agrees
with the previous discussion: in eqs. (8, 9) we interchanged B and B′ and took
the transpose of the flavour matrix, F . This latter operation is easily seen to be
equivalent to the reflection, R in eq. (53).

We can further classify tensors by the symmetry when R is applied to all three
indices

d−like Tijk = +RiaTabcRbjRck ,

f−like Tijk = −RiaTabcRbjRck . (54)

As can be seen from eq. (41) there must be two singlet eigenstates, eight
octets, six 27-plets and one 64-plet, 17 in total. All tensors, T , are classified by
their symmetry properties, according to whether first or second class, eq. (53),
and whether they are f−like or d−like, eq. (54), and are given by

SU(3) T , 1st class T , 2nd class
d−like f−like d−like f−like

1 d f
8 r1, r2, r3 s1, s2 t1, t2 u1

27 q1, q2 w1, w2 x1 y1

64 z

. (55)

Furthermore in Appendix A we list all non-zero elements for all 17 tensors, to-
gether with their values. For example in eq. (56) we give the non-zero elements
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of the tensors T = r1 and t1,

T Tijk ijk

r1 1 151 252 353 454 555 656 757 858

t1 1 115 225 335 445 665 775 885
−1 518 527 536 544 563 572 581

. (56)

The values of the non-zero Tijk elements are given in the second column, while
their position is given in the third block. In particular we see that the r1 tensor
only has 8 non-zero entries, all identical in value, in the positions Ti5i, where i
can take any value from 1 to 8. It can easily be checked, for example, that the
tensors r1 and t1 with non-zero elements as given in eq. (56) are first and second
class tensors, respectively.

The ri tensors are d-like and can be regarded as responsible for the quark-mass
dependence of the d coupling (see the d-fan in section 8), while the si tensors are
f -like and act as quark-mass-dependent additions to the f coupling (as seen in
the f -fan – see section 8).

We are now finally in a position to present the SU(3) flavour-symmetry-
breaking expansions. As we are considering only the isospin limit, eq. (16), then
Table 2 reduces to Table 5. For example, let us consider 〈p|Jπ+|n〉 ≡ 〈B2|JF6 |B1〉,

Polynomial SU(3)
1 1
δml 8
δm2

l 1 27
δm2

l 8 27
δm3

l 1 27 64
δm3

l 8 27 64

Table 5: All the quark-mass polynomials in the isospin limit up to O(δm3
l ), classified

by symmetry properties.

eq. (28). From Table 3, this is
√

2AN̄πN . Hence from eq. (19), and using Table 5
and Appendix A (for the non-zero 261 component of the appropriate tensor) and
using the same notation for the expansion coefficients as for the tensor gives the
LO expansion

√
2AN̄πN = 1× (

√
2f +

√
6d) + δml × (−2

√
2r3 + 2

√
2s1) . (57)

At higher orders, we also need in addition the non-zero elements of the 27- and
64-plet. Further examples are given in the next section in eqs. (61, 62).
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6 Coefficient tables

We use the same notation for the expansion coefficients as for the tensor. For
example the r1 tensor (with components Ti5i) has expansion coefficient r1.

6.1 Leading-order coefficient tables

The SU(3) singlet and octet coefficients in the mass Taylor expansion of operator
amplitudes are tabulated in Table 6. These coefficients are sufficient for the linear

1, 1st class 8, 1st class 8, 2nd class
O(1) O(δml) O(δml)
f d d d d f f d d f

I AB̄′FB f d r1 r2 r3 s1 s2 t1 t2 u1

0 N̄ηN
√

3 −1 1 0 0 0 −1 0 0 0

0 Σ̄ηΣ 0 2 1 0 2
√

3 0 0 0 0 0
0 Λ̄ηΛ 0 −2 1 2 0 0 0 0 0 0

0 Ξ̄ηΞ −
√

3 −1 1 0 0 0 1 0 0 0

1 N̄πN 1
√

3 0 0 −2 2 0 0 0 0

1 Σ̄πΣ 2 0 0 0 0 −2
√

3 0 0 0

1 Ξ̄πΞ 1 −
√

3 0 0 2 2 0 0 0 0

1 Σ̄πΛ 0 2 0 1 −
√

3 0 0 1 0 0

1 Λ̄πΣ 0 2 0 1 −
√

3 0 0 −1 0 0
1
2 N̄KΣ −

√
2

√
6 0 0

√
2

√
2 0 0

√
2

√
6

1
2 N̄KΛ −

√
3 −1 0 1 0 −

√
3 1 1

√
3 −1

1
2 Λ̄KΞ

√
3 −1 0 1 0

√
3 −1 −1 −

√
3 −1

1
2 Σ̄KΞ

√
2

√
6 0 0

√
2 −

√
2 0 0 −

√
2

√
6

1
2 Σ̄K̄N −

√
2

√
6 0 0

√
2

√
2 0 0 −

√
2 −

√
6

1
2 Λ̄K̄N −

√
3 −1 0 1 0 −

√
3 1 −1 −

√
3 1

1
2 Ξ̄K̄Λ

√
3 −1 0 1 0

√
3 −1 1

√
3 1

1
2 Ξ̄K̄Σ

√
2

√
6 0 0

√
2 −

√
2 0 0

√
2 −

√
6

Table 6: Coefficients in the mass Taylor expansion of AB̄′FB operator amplitudes:
SU(3) singlet and octet, for both first-class and second-class currents. The first row
gives whether singlet or octet and first or second class, and the second row gives the
order in δml. The third row gives whether the associated tensor is f−like or d−like
according to the definition given in eq. (54). These coefficients are sufficient for the
linear expansion of hadronic amplitudes.

expansion of hadronic amplitudes on the constant m̄ line. (If m̄ were not kept
constant there would be two more linear terms.)
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The table is to be read: for first-class currents the f and d terms are indepen-
dent of the quark mass, while the r1, r2, r3 and s1, s2 coefficients are the leading
order (LO) or δml terms. For second-class currents, as discussed previously, there
are no leading f and d terms, the expansion starts at O(δml) for the off-diagonal
currents or completely vanishing for the diagonal currents.

Thus for example to first order in δml (i.e. LO) we can read off from Tables 3,
4 and 6

〈p|Jη|p〉 = AN̄ηN =
√

3f − d+ (r1 − s2)δml ,

〈n|JK+ |Σ−〉 = AN̄KΣ = −
√

2f +
√

6d+ (
√

2r3 +
√

2s1)δml ,

〈Σ+|Jη|Σ+〉 = AΣ̄ηΣ = 2d+ (r1 + 2
√

3r3)δml , (58)

for first-class currents (for example for the vector current the form factors F1 and
F2 from eq. (10)) and

〈n|JK+|Σ−〉 = AN̄KΣ = (
√

2t2 +
√

6u1)δml ,

〈Σ−|JK−|n〉 = AΣ̄K̄N = −(
√

2t2 +
√

6u1)δml , (59)

for second-class currents (for example for the F3 vector form factor).
A notational comment: we shall usually suppress arguments and indices, but

each coefficient in Table 6 is a function of the (momentum transfer)2, Q2, as
well as being renormalised or not. Thus for example for the renormalised vector
current, the f coefficient in Table 6 is to be understood as f → fV R(m̄,Q2).

Note that the clean separation of amplitudes and form factors into first and
second class depends on the fact that we have defined our amplitudes in ways
that treat the parent and daughter baryons symmetrically. If we had used an
unsymmetric definition, for instance always normalising amplitudes in terms of
the parent baryon’s mass, we would find ti and u1 coefficients appearing in the
expansions of quantities which ‘should’ only involve the symmetric terms.

6.2 Higher-order coefficient tables

For completeness in Table 7 we detail the additional quadratic and cubic coef-
ficients in the mass Taylor expansion of the operator amplitudes for the 27 and
64-plets.

For first-class currents in Table 5 the singlet terms do not contribute at the
linear O(δml) level, but are present at the quadratic O(δm2

l ) and cubic O(δm3
l )

levels. Similarly the octet terms are missing at the O(1) level, but are present
at higher orders. Hence these terms are also present at the higher orders in the
SU(3) flavour-breaking expansion. There are 5 + 7 = 12 amplitudes, and at
the O(δm2

l ) level 11 free parameters, so there is one constraint. (Alternatively
at the O(δm2

l ) level one can have all possibilities which are orthogonal to the
64-plet, so there is again just one constraint.) At the O(δm3

l ) level one has 12
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27, 1st class 64, 1st 27, 2nd class
O(δm2

l ) O(δm3
l ) O(δm2

l )
d d f f d d f

I AB̄′FB q1 q2 w1 w2 z x1 y1

0 N̄ηN 9 3 0 3
√

3 3
√

3 0 0

0 Σ̄ηΣ −6 −10 0 0 −
√

3 0 0

0 Λ̄ηΛ −18 18 0 0 −9
√

3 0 0

0 Ξ̄ηΞ 9 3 0 −3
√

3 3
√

3 0 0

1 N̄πN −5
√

3
√

3 4 −1 1 0 0
1 Σ̄πΣ 0 0 −4 2 0 0 0

1 Ξ̄πΞ 5
√

3 −
√

3 4 −1 −1 0 0

1 Σ̄πΛ 14 −6 0 0 −
√

3 4 0

1 Λ̄πΣ 14 −6 0 0 −
√

3 −4 0
1
2 N̄KΣ 0 2

√
6 −3

√
2 2

√
2

√
2

√
6

√
2

1
2 N̄KΛ −6 0 3

√
3 0 3

√
3 −3 3

√
3

1
2 Λ̄KΞ −6 0 −3

√
3 0 3

√
3 3 3

√
3

1
2 Σ̄KΞ 0 2

√
6 3

√
2 −2

√
2

√
2 −

√
6

√
2

1
2 Σ̄K̄N 0 2

√
6 −3

√
2 2

√
2

√
2 −

√
6 −

√
2

1
2 Λ̄K̄N −6 0 3

√
3 0 3

√
3 3 −3

√
3

1
2 Ξ̄K̄Λ −6 0 −3

√
3 0 3

√
3 −3 −3

√
3

1
2 Ξ̄K̄Σ 0 2

√
6 3

√
2 −2

√
2

√
2

√
6 −

√
2

Table 7: Additional coefficients in the mass Taylor expansion of operator amplitudes:
SU(3) 27-plet and 64-plet. These additional terms first appear at the quadratic and
cubic levels respectively. The same notation as for Table 6.

free parameters for the 12 amplitudes (11 previous and one extra one from the
64-plet, the z term). Hence there are now no more constraints available at this
and higher orders in δml.

For second-class currents, there are constraints at the O(δml) order as we have
5 amplitudes, but only 3 expansion coefficients. However at the next O(δm2

l )
level we have additional 2 parameters, so there are no more constraints available.
Hence for second-class operators there is no point in going higher than linear in
the quark mass in the SU(3) flavour-breaking expansion.

Thus, for example, from Tables 6 and 7 we would have for the first-class
current

〈p|Jη|p〉 = AN̄ηN

=
√

3f − d+ (r1 − s2)δml (60)

+(
√

3f x − dx + rx

1 − sx

2 + 6q1 + 3q2 + 3
√

3w2)δm2
l
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+(
√

3f xx − dxx + rxx

1 − sxx

2 + 6qx

1 + 3qx

2 + 3
√

3wx

2 + 3
√

3z)δm3
l ,

where f , d is the leading coefficients, and f x, f xx and dx, dxx are the additional
subdominant coefficients of the same form as the LO singlet, see Table 5. (We
use x and xx superscripts to distinguish them.) Similarly for r1, s2, q1, q2 and w2

and the octet. For the second-class current

〈n|JK+|Σ−〉 = AN̄KΣ (61)

= (
√

2t2 +
√

6u1)δml + (
√

2tx2 +
√

6ux

1 +
√

5x1 +
√

2y1)δm2
l .

However as just discussed the O(δm3
l ) term for the first-class currents and the

O(δm2
l ) term for the second-class currents have no constraints between the coef-

ficients and hence contain no new information.
From eqs. (40, 41) and as previously discussed we see that there is one 64-

plet in the decomposition of 8 ⊗ 8 ⊗ 8, but none in 8 ⊗ 8 and therefore 64-plet
quantities only show up at O(δm3

l ) as shown in Table 5. In [2] we have seen
that the 64-plet combination of decuplet baryon masses is extremely small and
we should probably expect that the 64-plet combination of amplitudes will also
remain very small all the way from the symmetric point to the physical point.
By using Mathematica we construct the 64-plet flavour tensor, and find that it
corresponds to the combination

Q64 ≡ 2AN̄ηN − AΣ̄ηΣ − 3AΛ̄ηΛ + 2AΞ̄ηΞ + 2√
3

(AN̄πN − AΞ̄πΞ)

− (AΣ̄πΛ + AΛ̄πΣ) + 2 (AΛ̄KΞ + AN̄KΛ + AΛ̄K̄N + AΞ̄K̄Λ)

+
√

2
3

(AN̄KΣ + AΣ̄KΞ + AΞ̄K̄Σ + AΣ̄K̄N)

= O(δm3
l ) , (62)

and as expected the linear and quadratic terms in δml vanish. We also note that
this quantity should be zero at the 1-loop level in chiral perturbation theory [6].

In the remainder of this article we shall not consider these next-to-leading-
order (NLO) and next-to-next-leading-order (NNLO) higher orders further.

7 Amplitudes at the symmetric point

We now further discuss amplitudes at the symmetric point. From eq. (41) there
are two octets and one singlet in the decomposition of 8⊗ 8, so there will be two
singlets in 8⊗ 8⊗ 8. This means that at the symmetric point there are two ways
to couple an octet operator between octet baryons. These correspond to the first
two columns of Table 6. These two couplings are traditionally given the letters
F and D. The F coupling has a pattern related to the SU(3) structure constant
fijk and the D coupling is related to dijk. In terms of the 3× 3 matrices, the F
coupling is proportional to Tr(M [B̄, B]), the D coupling to Tr(M{B̄, B}).
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Let us first look at the pattern of amplitudes at the symmetric point (with
no breaking of SU(3) flavour symmetry). We can read off the corresponding
hadronic matrix elements from Table 6 and can construct many matrix element
combinations which have to be equal at the symmetric point, for example

√
3

2
〈p|Jη|p〉+

1

2
〈p|Jπ0|p〉 = 〈Σ+|Jπ0|Σ+〉

= −
√

3

2
〈Ξ0|Jη|Ξ0〉+

1

2
〈Ξ0|Jπ0 |Ξ0〉

= 2f , (63)

−1

2
〈p|Jη|p〉+

√
3

2
〈p|Jπ0|p〉 = 〈Σ+|Jη|Σ+〉

= −〈Λ0|Jη|Λ0〉

= −1

2
〈Ξ0|Jη|Ξ0〉 −

√
3

2
〈Ξ0|Jπ0|Ξ0〉

= 2d .

These relations become more transparent if we write the operators out in q̄γq
form, following Table 1 giving

1√
2
〈p|(ūγu− s̄γs)|p〉 =

1√
2
〈Σ+|(ūγu− d̄γd)|Σ+〉

=
1√
2
〈Ξ0|(s̄γs− d̄γd)|Ξ0〉 (64)

= 2f ,

from the first line of eq. (63). Written out in this form, it is clear why these three
matrix elements have to be the same at the symmetric point. The u content of
the proton is the same as the u content of the Σ+ or the s content of the Ξ0,
because in each case it is the ‘doubly represented’ valence quark. Likewise the
s in the proton is the same as the d in the Σ+ or the d in the Ξ0 because in
each case it is the non-valence flavour. So the relations in eq. (64) are simple
consequences of flavour permutation (the S3 subgroup of SU(3)). Similarly, the
second line of eq. (63) implies

1√
6
〈p|(ūγu+ s̄γs− 2d̄γd)|p〉 =

1√
6
〈Σ+|(ūγu+ d̄γd− 2s̄γs)|Σ+〉

=
1√
6
〈Ξ0|(s̄γs+ d̄γd− 2ūγu)|Ξ0〉 (65)

= 2 d .

All these matrix elements have the same pattern, ‘doubly represented + non-
valence −2× singly represented’, so again we can understand why they all have
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to be the same at the symmetric point. Note that the operator in the d equation,
eq. (65), is always orthogonal to the operator in the f equation, eq. (64). We
could also look at the pattern ‘doubly represented − singly represented’, which
is just a linear combination of eq. (64) and eq. (65). Thus

1√
2
〈p|(ūγu− d̄γd)|p〉 ≡ 1√

2
〈Σ+|(ūγu− s̄γs)|Σ+〉

≡ 1√
2
〈Ξ0|(s̄γs− ūγu)|Ξ0〉 (66)

= f +
√

3 d .

Of course we can not deduce the full structure at the symmetric point from
flavour permutations alone, identities such as

AΣ̄ηΣ = −AΛ̄ηΛ = AΛ̄πΣ , (67)

connecting diagonal matrix elements to transition amplitudes require more gen-
eral SU(3) rotations to establish them.

8 Mass dependence: ‘fan’ plots

If we move away from the symmetric point, keeping m̄ fixed, non-singlet tensors
can contribute to eq. (19). To first order in δml we only need consider the octets,
so we can then read the mass terms off from Table 6 with an example being given
in eq. (58). We can examine the violation of SU(3) symmetry caused by the
ms − ml mass difference by constructing quantities which must all be equal in
the fully symmetric case, but which can differ in the case of nf = 2 + 1 quark
masses.

We now discuss two so–called ‘fan’ plots – the d-fan plot and the f -fan plot. In
Appendix B we discuss some further fan plots (called there the doubly represented
– singly represented fan plots, namely the P -fan plot and the V -fan plot).

8.1 The d-fan

Using Table 6 we can construct seven quantities, Di, which all have the same
value (2d) at the symmetric point, but which can differ once SU(3) is broken

D1 ≡ −(AN̄ηN + AΞ̄ηΞ) = 2d− 2r1δml ,

D2 ≡ AΣ̄ηΣ = 2d+ (r1 + 2
√

3r3)δml ,

D3 ≡ − AΛ̄ηΛ = 2d− (r1 + 2r2)δml ,

D4 ≡
1√
3

(AN̄πN − AΞ̄πΞ) = 2d− 4√
3
r3δml , (68)
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D5 ≡ AΣ̄πΛ = 2d+ (r2 −
√

3r3)δml ,

D6 ≡
1√
6

(AN̄KΣ + AΣ̄KΞ) = 2d+
2√
3
r3δml ,

D7 ≡ −(AN̄KΛ + AΛ̄KΞ) = 2d− 2r2δml .

Plotting these quantities gives a fan plot with seven lines, but only three slope
parameters (r1, r2 and r3), so the splittings between these observables are highly
constrained. Of course, these seven quantities are not a unique choice, other
linear combinations of them could be chosen. At the next order (quadratic) in
δml there is one constraint, from eq. (62). In terms of the Di this reads

−2D1 −D2 + 3D3 + 2D4 − 2D5 + 4D6 − 4D7 = O(δm3
l ) . (69)

In the d-fan we can thus choose six independent quadratic coefficients, and fix
the seventh from this constraint.

A useful ‘average D’ can be constructed from the diagonal amplitudes

XD ≡
1

6
(D1 + 2D2 + 3D4) = 2d+O(δm2

l ) , (70)

chosen so that the O(δml) coefficient vanishes. Other average D quantities are
possible if we also incorporate transition matrix elements. These average quan-
tities can be useful for helping to set the lattice scale, [24].

It is useful to construct from this fan plots of Di/XD. However for our later
example of the vector current, XD vanishes at Q2 = 0 and is always small, so we
consider alternatively here D̃i ≡ Di/XF .

8.2 The f-fan

Again using Table 6 we can construct five quantities Fi, which all have the same
value (2f) at the symmetric point, but which can differ once SU(3) is broken.

F1 ≡
1√
3

(AN̄ηN − AΞ̄ηΞ) = 2f − 2√
3
s2δml ,

F2 ≡ (AN̄πN + AΞ̄πΞ) = 2f + 4s1δml ,

F3 ≡ AΣ̄πΣ = 2f + (−2s1 +
√

3s2)δml , (71)

F4 ≡
1√
2

(AΣ̄KΞ − AN̄KΣ) = 2f − 2s1δml ,

F5 ≡
1√
3

(AΛ̄KΞ − AN̄KΛ) = 2f +
2√
3

(
√

3s1 − s2)δml .

Plotting these quantities gives a fan plot with 5 lines, but only two slope param-
eters (s1 and s2), so the splittings between these observables are again highly
constrained. At quadratic and higher level there are no constraints between the
coefficients for the f -fan.
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Again a useful ‘average F ’ can be constructed from the diagonal amplitudes

XF ≡
1

6
(3F1 + F2 + 2F3) = 2f +O(δm2

l ) , (72)

and again we can we can construct fan plots of F̃i ≡ Fi/XF .
The f -fan has the nice property that, to linear order, there is no error from

dropping quark-line-disconnected contributions. This is because r1 is the only
parameter with a quark-line-disconnected piece, and none of the ri parameters
appear in the f -fan. We shall prove and expand on this point in the following
sections by considering the connected and disconnected expansions separately.

9 Quark-line-connected and -disconnected dia-

grams

In lattice QCD for the three point function and its associated matrix element (see
section 12.1 for some further details) we have two classes of diagrams to compute:
quark-line connected (left panel of Fig. 3) and quark-line disconnected (the right

τ

t 0

B′ B

t 0

τ

B′ B

Figure 3: The three point quark correlation function for a baryon. The cross rep-
resents the current insertion. Left panel: the quark-line-connected piece; right panel:
the quark-line-disconnected piece.

panel of Fig. 3). We first write

〈B′|JF |B〉 = 〈B′|JF |B〉con + 〈B′|JF |B〉dis , (73)

corresponding to the left and right panels of Fig. 3 respectively. Note that an
alternative notation for the quark-line-connected piece is the valence matrix ele-
ment 〈B′|JF |B〉con ≡ 〈B′|JF |B〉val. However we shall usually just say connected
matrix element.

The quark-line-disconnected diagrams cannot occur for transition matrix el-
ements, B′ 6= B, but can for diagonal matrix elements B′ = B. From Table 1
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we see that disconnected diagonal matrix elements can only happen for the cur-
rents Jπ

0
, Jη and Jη

′
(indices 4, 5 and 0 respectively). As we are only considering

mass degenerate u and d quarks then for the Jπ
0

operators, the u-loop and d-loop
quark-line-disconnected pieces always cancel. Thus apart from the singlet oper-
ator Jη

′
, this leaves only the Jη operator to consider. At the symmetric point,

the disconnected contribution to Jη will cancel. If one moves to ms 6= ml, then
disconnected η contributions will become non-zero, as twice the strange loop will
not be equal to the u loop + d loop. However, at leading order, this effect is
going to be the same for all baryons, so it has the pattern only of r1 in Table 6.
Hence r1 must have a disconnected piece.

More explicitly first consider the flavour diagonal amplitudes. In each baryon
the disconnected u and d terms are equal (as mu = md), so

〈p|Jπ0 |p〉dis , 〈Σ+|Jπ0|Σ+〉dis , 〈Ξ0|Jπ0|Ξ0〉dis , (74)

all vanish. Hence

f dis +
√

3ddis = 0 , f dis = 0 , f dis −
√

3ddis = 0 (75)

and

−rdis

3 + sdis

1 = 0 , −2sdis

1 +
√

3sdis

2 = 0 , rdis

3 + sdis

1 = 0 (76)

giving

f dis , ddis , rdis

3 , sdis

1 , sdis

2 = 0 . (77)

This was briefly considered for the axial current in [25] but the results here are
more general than given there.

Consider now the transition amplitudes. As stated previously disconnected
terms cannot cause a transition that changes flavour. In particular considering K
current transitions they must all be connected, so from Table 6 this again shows
that all the above coefficients in eq. (77) have no disconnected piece, together
with the additional result

rdis

2 = 0 , (78)

which means that indeed only rdis
1 contributes. Thus in future we need only dis-

tinguish between connected and disconnected contributions for the r1 coefficient.
Differences between the disconnected pieces in different baryons will therefore
first contribute at quadratic order in the SU(3) flavour-symmetry-breaking ex-
pansion.

We shall now develop and make these considerations more explicit in the
following section.
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10 Mass dependence: flavour-diagonal matrix

elements

In the previous sections we have developed SU(3) flavour-breaking expansions
for 〈B′|JF |B〉, which are sufficient for transition matrix elements. However for
diagonal matrix elements we need the additional expansion 〈B|Jη′|B〉 as discussed
in section 5.1. This will now enable all diagonal matrix elements to be given for
each individual quark flavour.

From Table 1 we see that the diagonal flavour states are given by π0 (index
4) and η (index 5), together with the singlet flavour state, η′ (index 0). These
can be inverted to give ūγu, d̄γd and s̄γs in terms of Jη

′
, Jπ

0
and Jη as

ūγu =
1√
3
Jη
′
+

1√
2
Jπ

0

+
1√
6
Jη ,

d̄γd =
1√
3
Jη
′ − 1√

2
Jπ

0

+
1√
6
Jη , (79)

s̄γs =
1√
3
Jη
′ −
√

2

3
Jη .

As discussed previously in section 5.1, the additional expansion for the singlet
current Jη

′
is the same as the mass expansion presented in [2]. We shall only

consider LO here (higher orders are also given in [2]). We take the expansion as
already given in eq. (39).

Using eq. (79), together with eq. (39) and Tables 3 and 6 allows us to give
the SU(3) flavour-breaking expansion for flavour diagonal matrix elements. In
Appendix C we give this expansion to LO for the representative octet baryons p,
Σ+, Λ0 and Ξ0 (the others n, Σ−, Σ0 and Ξ− can be similarly determined).

While it appears from eq. (39) that we now have extra coefficients a0, a1

and a2 that have to be determined, this can be somewhat ameliorated when the
quark-line-connected and -disconnected matrix elements are considered. There
was a general discussion in section 9. We now consider this in more detail by
considering separate expansions for both the connected and disconnected pieces.
So the previous equations are doubled, as given in eq. (73). For example

〈p|ūγu|p〉 = 〈p|ūγu|p〉con + 〈p|ūγu|p〉dis , (80)

corresponding to the left and right panels of Fig. 3 respectively. There are now
some additional constraints.

For completeness we list the disconnected matrix element results in Ap-
pendix D, using adis

0 , adis
1 , adis

2 and eqs. (77, 78).

10.1 Connected terms

For p(uud), Σ+(uus) and Ξ0(ssu) there are no connected pieces for 〈p|s̄γs|p〉,
〈Σ+|d̄γd|Σ+〉 and 〈Ξ0|d̄γd|Ξ0〉. Thus there are now conditions on acon

0 , acon
1 and
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acon
2 from the previous expansion parameters. We find

acon

0 =
√

6f −
√

2d ,

3acon

1 =
√

2rcon

1 −
√

2s2 , (81)

3acon

2 =
1√
2
rcon

1 +
√

6r3 +
√

6s1 −
3√
2
s2 .

(These consistently satisfy all the previous equations.) Using these expressions
for acon

0 , acon
1 and acon

2 gives for the octet baryons p, Σ+, Λ0 and Ξ0

〈p|ūγu|p〉con = 2
√

2f +

(√
3

2
rcon

1 −
√

2r3 +
√

2s1 −
√

3

2
s2

)
δml , (82)

〈p|d̄γd|p〉con =
√

2
(
f −
√

3d
)

+

(√
3

2
rcon

1 +
√

2r3 −
√

2s1 −
√

3

2
s2

)
δml ,

〈Σ+|ūγu|Σ+〉con = 2
√

2f +
(
−2
√

2s1 +
√

6s2

)
δml ,

〈Σ+|s̄γs|Σ+〉con =
√

2
(
f −
√

3d
)

(83)

+

(
−
√

3

2
rcon

1 − 3
√

2r3 −
√

2s1 +

√
3

2
s2

)
δml ,

〈Λ0|ūγu|Λ0〉con = 〈Λ0|d̄γd|Λ0〉con

=
√

2

(
f − 2√

3
d

)
+

(√
2

3
rcon

1 +

√
2

3
r2 +

√
2r3 +

√
2s1 −

√
3

2
s2

)
δml , (84)

〈Λ0|s̄γs|Λ0〉con =
√

2

(
f +

1√
3
d

)
+

(
− 1√

6
rcon

1 −
4√
6
r2 +

√
2r3 +

√
2s1 −

√
3

2
s2

)
δml ,

and

〈Ξ0|ūγu|Ξ0〉con =
√

2(f −
√

3d) +
(

2
√

2r3 + 2
√

2s1

)
δml ,

〈Ξ0|s̄γs|Ξ0〉con = 2
√

2f +

(
−
√

3

2
rcon

1 +
√

2r3 +
√

2s1 −
√

3

2
s2

)
δml . (85)

Without Λ0 there are six equations, together with six parameters, so no con-
straint. Adding the Λ0 gives two more equations and one extra parameter, so
this is now constrained. In addition off-diagonal matrix elements would also give
more constraints.
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10.2 The electromagnetic current

Using the previous results of this section, we can also give the results for the
electromagnetic current, eq. (12). Using this equation we find, for example, that
for the octet baryons p, Σ+, Λ0 and Ξ0

〈p|Jem|p〉con =
√

2f +

√
2

3
d+

(
1√
6
rcon

1 −
√

2r3 +
√

2s1 −
1√
6
s2

)
δml ,

〈Σ+|Jem|Σ+〉con =
√

2f +

√
2

3
d+

(
1√
6
rcon

1 +
√

2r3 −
√

2s1 −
√

3

2
s2

)
δml ,

〈Λ0|Jem|Λ0〉con = −
√

2

3
d+

(
1√
6
rcon

1 +

√
2

3
r3

)
δml , (86)

〈Ξ0|Jem|Ξ0〉con = −2

√
2

3
d+

(
1√
6
rcon

1 +
√

2r3 +
√

2s1 +
1√
6
s2

)
δml ,

for the quark-line-connected terms, and for the quark-line-disconnected terms

〈p|Jem|p〉dis = 〈Λ0|Jem|Λ0〉dis = 〈Σ+|Jem|Σ+〉dis = 〈Ξ0|Jem|Ξ0〉dis =
1√
6
rdis

1 δml .(87)

Similar expansions hold for the n, Σ0, Σ− and Ξ− electromagnetic matrix ele-
ments.

11 Renormalisation and O(a) improvement for

the vector current

11.1 General comments

The computed matrix elements are bare (or lattice) quantities and must be renor-
malised and O(a) improved. We would expect that the effect of the O(a) improve-
ment terms is simply to modify the SU(3) flavour-breaking expansion coefficients.
In this section we shall show that this expectation is indeed correct. Again, for
illustration, we shall only consider the diagonal sector (B′ = B) of the vector
current here. By using the results and notation in [12] (see also [26]) we have for
on-shell improvement

V π0 R

µ = ZV
[
1 + (bV + 3b̄V )m̄+ bV δml

]
Vπ0

µ ,

V η R

µ = ZV

[(
1 + (bV + 3b̄V )m̄− bV δml

)
Vηµ +

√
2(bV + 3fV )δmlVη

′

µ

]
,

V η′ R
µ = ZV rV

[(
1 + (dV + 3d̄V )m̄

)
Vη′µ + 2

√
2dV δmlVηµ

]
. (88)
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where V for the local vector current denotes

VFµ = V F
µ + icV ∂νT

F
µν , (89)

with T Fµν = q̄Fσµνq and ∂µφ(x) = [φ(x+ µ̂)− φ(x− µ̂)]/2. This additional term
only plays a role in non-forward matrix elements. Note that all the improvement
coefficients bV , dV , b̄V , d̄V and cV are just functions of the coupling constant, g0

5.
Thus we do not have to be precisely at the correct (physical) m̄ to determine the
coefficients. The rV parameter accounts for the fact that the singlet renormali-
sation is different to the non-singlet renormalisation, ZV (g0). rV also depends on
the chosen scheme and scale. Tree level gives for the relevant coefficients

bV (g0) = 1 +O(g2
0) , fV (g0) = O(g2

0) , cV (g0) = O(g2
0) , (90)

(together with ZV (g0) = 1 + O(g2
0) and dV (g0) = O(g2

0)) where b̄V (g0), d̄V (g0),
being connected with the sea contributions are ∼ O(g4

0), and are usually taken
as negligible. Furthermore we can write

V π0 R

µ = ẐV

[
1 + b̂V δml

]
Vπ0

µ ,

V η R

µ = ẐV

[
(1− b̂V δml)Vηµ +

√
2(b̂V + 3f̂V )δmlVη

′

µ

]
,

V η′ R
µ = ẐV r̂V

[
Vη′µ + 2

√
2d̂V δmlVηµ

]
, (91)

where for constant m̄ we have absorbed these m̄ terms into the renormalisation
constant and improvement coefficients. For example we have6

ẐV = ZV (1 + (bV + 3b̄V )m̄) ,

b̂V = bV (1 + (bV + 3b̄V )m̄)−1 ,

f̂V = fV (1 + (bV + 3b̄V )m̄)−1 . (92)

We take eq. (91) as our definition of the improvement coefficients, as the SU(3)
flavour-breaking expansion coefficients are already functions of m̄. To avoid con-
fusion with the previous SU(3) flavour-breaking expansion coefficients we have
denoted them with a caret. Note that in any case we have also numerically
that |m̄δml| � 1 and m̄2 � 1 so the improvement coefficients are effectively
unchanged.

5There is a further improvement coefficient, g20 → ĝ20 = g20 (1 + bgm̄), where bg is a function
of g20 . Little is known about the value of bg, however perturbatively it is very small, so we shall
ignore it here. Note that as we always consider m̄ = const., then the value of g20 is only slightly
shifted by a constant.

6Similarly r̂V = rV (1+(dV +3d̄V )m̄)(1+(bV +3b̄V )m̄)−1 and d̂V = dV (1+(dV +3d̄V )m̄)−1.
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11.1.1 V π0 R
µ

Let us first consider V π0 R
µ in eq. (91), together with (for example) 〈p|V π0

4 |p〉R,

〈Σ+|V π0

4 |Σ+〉R, 〈Ξ0|V π0

4 |Ξ0〉R. From the expansion for F = π0 given in Table 6
for AN̄πN , AΣ̄πΣ and AΞ̄πΞ we see that as expected the effects of the expansion
coefficients simply change their value slightly

s1 → s′1 = s1 +
1

2
f b̂V ,

s2 → s′2 = s2 +
√

3f b̂V ,

r3 → r′3 = r3 −
√

3

2
db̂V . (93)

Furthermore, as a reminder, from eq. (77) the disconnected pieces for f , d, r2,
r3, s1, s2 all vanish, which implies that b̂V also has no disconnected piece. In
particular this means that the results for V π0 R

µ remain valid when just considering
the connected matrix elements.

11.1.2 V η R
µ

We can repeat the process for V η R
µ , which gives in addition to the results of

eq. (93), the further results

r1 → r′1 = r1 + db̂V +
√

2a0(b̂V + 3f̂V ) ,

r2 → r′2 = r2 + db̂V . (94)

In addition splitting r1 into rcon
1 and rdis

1 pieces gives upon using acon
0 from eq. (81)

rcon

1 → rcon ′
1 = rcon

1 + 2
√

3f(b̂V + 3f̂ con

V )− d(b̂V + 6f̂ con

V ) ,

rdis

1 → rdis ′
1 = rdis

1 + 3
√

2adis

0 f̂
dis

V . (95)

11.1.3 V η′ R
µ

Lastly, considering V η′ R
µ , we find

a1 → a′1 = a1 + 2

√
2

3

(
f − 1√

3
d

)
d̂V ,

a2 → a′2 = a2 −
4

3

√
2d d̂V . (96)

11.1.4 Concluding remarks

As expected, all improvement coefficients are terms in the SU(3) symmetry
flavour-breaking expansion, and indeed upon inclusion leads to slightly modi-
fied expansion coefficients, as given in eqs. (93, 94, 96). We anticipate that the
additional improvement term, ĉV , is also of this form.
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11.2 Determination of ẐV and b̂V , f̂ con

V

There is an exact global symmetry of the lattice action, q → e−iαqq, valid for each
quark separately. Using Noether’s theorem this leads to an exactly conserved
vector current, CVC. Practically the operator counts the number of u quarks
and the number of d quarks in the baryon. The local current considered here is
not exactly conserved, so that VCVC = V + O(a). We can use this to define the
renormalisation constant and several improvement terms. (A similar method was
used for two flavours and quenched QCD in, e.g., [27].) Thus we shall see that
imposing CVC is equivalent to determining some improvement coefficients.

Practically here we restrict our considerations to the forward matrix elements
for V4 at Q2 = 0 (no momentum transfer, so there is no additional ĉV term).

11.2.1 V π0 R
4

First for the CVC, we consider the representative matrix elements

〈p|V π0

4 |p〉R = AR

N̄πN =
1√
2

(2− 1) ,

〈Σ+|V π0

4 |Σ+〉R = AR

Σ̄πΣ =
1√
2

(2− 0) ,

〈Ξ0|V π0

4 |Ξ0〉R = AR

Ξ̄πΞ =
1√
6

(1− 0) . (97)

Using this together with V π0

4 in eq. (91) gives

f =
1√
2ẐV

, d = 0 . (98)

One possibility is thus to determine f from XF at Q2 = 0, see eq. (72) as

ẐV =

√
2

XF

. (99)

Also from eq. (93) and due to the lack of O(δml) terms in eq. (97) we have s′1 = 0,
s′2 = 0 and r′3 = 0 or

s1 = −1

2
f b̂V , s2 = −

√
3f b̂V , r3 = 0 . (100)

Using s̃i = si/XF , which to leading order is si/(2f), gives directly the b̂V im-
provement coefficient.

40



11.2.2 V η R

4

Additionally using the equivalent results from eq. (97) but now for V η R

4 namely

〈p|V η
4 |p〉R = AR

N̄ηN =
1√
6

(2 + 1− 0) ,

〈Σ+|V η
4 |Σ+〉R = AR

Σ̄ηΣ =
1√
6

(2 + 0− 2) ,

〈Ξ0|V η
4 |Ξ0〉R = AR

Ξ̄ηΞ =
1√
2

(1 + 0− 4) , (101)

not only gives consistency with the previous results eqs. (98, 99), but in addition
we have rcon ′

1 = 0, r′2 = 0 or from eqs. (94, 95)

rcon

1 = −2
√

3f
(
b̂V + 3f̂ con

V

)
, r2 = 0 . (102)

Again using r̃con
1 = rcon

1 /XF = rcon
1 /(2f) automatically eliminates f . We observe

that once ẐV , b̂V (and f̂ con
V ) have been determined then by using eq. (92) and

varying m̄, then it is in principle possible to determine ˆ̄bV .

11.2.3 The Ademollo–Gatto theorem

The Ademollo–Gatto theorem [28] (see also [29, 13]) in the context of our flavour-
breaking expansions states that the O(δml) terms vanish for the F B̄′FB

1 form
factor at Q2 = 0 and B′ 6= B. This means that r2, r3, s1, s2 vanish at Q2 = 0
(or the primed versions if we include the improvement coefficients). This agrees
with the results of this section.

12 Lattice computations of form factors

12.1 General discussion

We now need to determine the matrix elements from a lattice simulation which
computes two- and three-point correlation functions. For completeness as well as
form factors with B = B′, we are developing a formalism for semileptonic decays,
B 6= B′ so we first consider the general method here.

The baryon two-point correlation function is given by

CB
Γ (t; ~p) =

∑
αβ

Γβα
〈
Bα(t; ~p)B̄β(0; ~p)

〉
, (103)

while the three-point correlation function generalises this and is given by

CB′B
Γ (t, τ ; ~p, ~p ′; J) =

∑
αβ

Γβα
〈
B′α(t; ~p ′)J(τ ; ~q)B̄β(0; ~p)

〉
, (104)

41



with J at time τ either the vector, axial or tensor current, and where the source
is at time 0, the sink operator is at time t and

Γ ≡ Γunpol = 1
2
(1 + γ4) , or Γ ≡ Γpol = 1

2
(1 + γ4)iγ5~γ · ~n , (105)

where ~n is the polarisation axis.
To eliminate overlaps of the source and sink operators with the vacuum, we

build ratios of 3-point to 2-point correlation functions. More explicitly let us set

RΓ(t, τ ; ~p, ~p ′; J)

=
CB′B

Γ (t, τ ; ~p, ~p ′; J)

CB′

Γunpol(t; ~p ′)

√
CB′

Γunpol(τ ; ~p ′)CB′

Γunpol(t; p ′)C
B
Γunpol(t− τ ; ~p)

CB
Γunpol(τ ; ~p)CB

Γunpol(t; ~p)C
B′

Γunpol(t− τ ; ~p ′)
. (106)

This is designed so that any smearing for the source and sink operators is cancelled
in the ratios, e.g. [30, 31]; of course smearing the baryon operators improves the
overlap with the lowest-lying state, so the relevant overlaps for the two- and
three-point correlation functions must match.

Inserting complete sets of unit-normalised states in eq. (106) and for 0� τ �
t� 1

2
T gives

RΓ(t, τ ; ~p, ~p ′; J) =

√
EB(~p)EB′(~p ′)

(EB(~p) +MB) (EB′(~p ′) +MB′)
F (Γ,J ) , (107)

with

F (Γ,J ) =
1

4
tr Γ

(
γ4 − i

~p ′ · ~γ
EB′(~p ′)

+
MB′

EB′(~p ′)

)
J
(
γ4 − i

~p · ~γ
EB(~p)

+
MB

EB(~p)

)
(108)

(with J being given from the Euclideanised version of eq. (5)). The transferred
(Euclidean) momentum from the initial, B, to final, B′ state is given by Q =
(i(EB′(~p

′)− EB(~p)), ~p ′ − ~p) so

Q2 = −(MB′ −MB)2 + 2 (EB′(~p
′)EB(~p)−MB′MB − ~p · ~p ′) . (109)

To illustrate the previous SU(3) flavour symmetry-breaking results, we shall now
consider here only the vector current. Furthermore in general for arbitrary mo-
menta geometry, the kinematic factors can be complicated; in this article we shall
only be considering the simpler case ~p ′ = ~0. The technical reason is that in the
lattice evaluation, it requires less numerical inversions and is hence computation-
ally cheaper. (Physically, of course it is more natural to start with a stationary
baryon, but computationally of course it does not matter.) Evaluating Q2 in this
frame, eq. (109), shows that for flavour diagonal matrix elements form factors Q2

is always positive, while for semileptonic decays for small momentum it can also
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be negative. For the vector current with ~p ′ = ~0 this gives7.

RΓunpol(t, τ ; ~p, 0;V4) =

√
EB
~p +MB

2EB
~p

[
F B̄′FB

1 −
EB
~p −MB

MB +MB′
F B̄′FB

2

−
EB
~p −MB′

MB +MB′
F B̄′FB

3

]
,

RΓunpol(t, τ ; ~p, 0;Vi) = − ipi√
2EB

~p (EB
~p +MB)

[
F B̄′FB

1 −
EB
~p −MB′

MB +MB′
F B̄′FB

2

−
EB
~p +MB

MB +MB′
F B̄′FB

3

]
, (110)

RΓpol(t, τ ; ~p, 0;Vi) =
(~p× ~n)i√

2EB
~p (EB

~p +MB)

[
F B̄′FB

1 + F B̄′FB
2

]
,

RΓpol(t, τ ; ~p, 0;V4) = 0 .

In particular for ~p = 0 then the only non-zero ratio is

RΓunpol(t, τ ; 0, 0;V4) = F B̄′FB
1 − MB −MB′

MB +MB′
F B̄′FB

3 , (111)

so we see that in this case for B′ 6= B then we cannot disentangle F B̄′FB
1 from

F B̄′FB
3 . However to LO (i.e. O(δml) effects in the matrix elements) and as MB −
MB′ ∝ δml then from eq. (111) we can write

RΓunpol(t, τ ; 0, 0;V4) = F B̄′FB
1 +O(δm2

l ) , (112)

for all B and B′, where the O(δm2
l ) term is not present when B′ = B.

12.2 Lattice details

As a demonstration of the method we apply the formalism outlined in the previous
sections to the form factors published in [33, 34]. Further details of the numerical
simulations can be found there. The simulations have been performed using
nf = 2+1, O(a) improved clover fermions [35] at β ≡ 10/g2

0 of 5.50 and on 323×64
lattice sizes, [2]. Errors given here are primarily statistical (using ∼ O(1500)
configurations).

As discussed previously and particularly in section 3.1 our strategy is to keep
the bare quark-mass constant. Thus once the SU(3) flavour degenerate sea quark
mass, m0, is chosen, subsequent sea quark-mass points ml, ms are then arranged

7We use the Euclideanisation conventions given in [32]. In particular V4 = V (M)0, Vi =
−iV (M)i with γ4 = γ(M)0, γi = −iγ(M)i, γ5 = −γ(M)

5 , σµν = i/2[γµ, γν ].
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in the various simulations to keep m̄ (= m0) constant. This then ensures that
all the expansion coefficients given previously do not change. In [2], masses were
investigated and it was seen that a linear fit provides a good description of the
numerical data on the unitary line over the relatively short distance from the
SU(3) flavour symmetric point down to the physical pion mass. This proved
useful in helping us in choosing the initial point on the SU(3) flavour symmetric
line to give a path that reaches (or is very close to) the physical point.

The bare unitary quark masses in lattice units are given by

mq =
1

2

(
1

κq
− 1

κ0c

)
with q = l, s , (113)

and where vanishing of the quark mass along the SU(3) flavour symmetric line
determines κ0c. We denote the SU(3) flavour symmetric kappa value, κ0, as
being the initial point on the path that leads to the physical point. m0 is given
in eq. (113) by replacing κq by κ0. Keeping m̄ = constant = m0 then gives

δmq =
1

2

(
1

κq
− 1

κ0

)
. (114)

We see that κ0c has dropped out of eq. (114), so we do not need its explicit value
here. Along the unitary line the quark masses are restricted and we have

κs =
1

3
κ0
− 2

κl

. (115)

So a given κl determines κs here. This approach is much cleaner than the more
conventional approach of keeping (the renormalised) strange quark mass constant,
as this necessitates numerically determining the bare strange quark mass. In
addition the O(a) improvement of the coupling constant is much simpler, in our
approach as it only depends on m̄, [2]. Thus here, the coupling constant remains
constant and hence the lattice spacing does not change as the quark mass is
changed. In the more conventional approach this can be problematical as you
must in principle monitor the changing of the coupling constant as the quark
masses vary.

An appropriate SU(3) flavour symmetric κ0 value chosen here for this action
was found to be κ0 = 0.120900, [2]. The constancy of flavour-singlet quantities
along the unitary line to the physical point [2], leads directly from Xπ to an
estimate for the pion mass of ∼ 465 MeV at our chosen SU(3) flavour symmetric
point and from XN an estimation of the lattice spacing of aN(κ0 = 0.120900) =
0.074 fm.

Specifically as indicated in Table 8 we have generated configurations, [33, 34],
at the (κl, κs) values listed, all with κ0 = 0.120900.

Eqs. (110, 112) are used to determine from the ratio, R, the appropriate form
factor. As described in [33, 34], we bin Q2 to directly compare each configuration
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κl κs Mπ MeV
0.120900 0.120900 465
0.121040 0.120620 360
0.121095 0.120512 310

Table 8: Outline of the ensembles used here on the 323×64 lattices together with the
corresponding pion masses.

and using the bootstrapped lattice configurations, we set up a weighted least
squares to extract the linear fit parameters and weighted errors at each Q2 value.
The lattice momenta used here in this study in units of 2π/32 are given by a~q =
(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0), (2, 1, 0), (2, 1, 1), (2, 2, 0) together
with all permutations (where different) and all possible ± values.

13 Results

We now illustrate some of the features that we have described in previous sections,
using our lattice calculations and the ensembles in Table 8.

13.1 X plots

We first consider the lattice quantities XF1 con

D , XF1
F and XF2 con

D , XF2
F . As discussed

previously we only consider diagonal form factors to construct the Xs, i.e. the
equations: Dcon

1 , Dcon
2 and D4 in eq. (68) and F1, F2 and F3 in eq. (71)8. Using

the method of section 12.2 allows us to create the appropriate Dcon
1 , Dcon

2 and
D4 defined in eq. (68) and hence XF1 con

D , XF2 con

D in eq. (70) or F1, F2 and F3 in
eq. (71) and thus again XF1

F , XF2
F in eq. (72). In Fig. 4 we consider XF1 con

D and
XF1
F for the F1 form factor for Q2 = 0 and 0.49 GeV2 9. First, as we expect they

are constant and show little sign of O(δm2
l ) or curvature effects. Although not

so relevant on this plot, as an indication of how far we must extrapolate in the
quark mass from the symmetric point to the physical point, we also give this,
using the previous determination, [21], of δm∗l = −0.01103. Note also as shown
in eq. (98) for Q2 = 0, XF1 con

D vanishes as d = 0, which we also see on the plot.
This constancy of X does not depend on the form factor used. In Fig. 5

we show similar plots, but now for the F2 form factors: XF2 con

D and XF2
F , for

Q2 = 0.25 10 and 0.49 GeV2. Again these are all constant, within our statistics.

8We note that care needs to be taken to distinguish the Fi corresponding to a form factor
and the Fi defined in eq. (71).

9This corresponds to a lattice momentum of a~q = (2π)/32 (1, 1, 0).
10This corresponds to a lattice momentum of a~q = (2π)/32 (1, 0, 0).
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panel. The lower filled circles in each plot are XF1 con

D , the upper filled triangles are

XF1
F . The dashed lines are constant fits and the stars represent the physical point.
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(We can only determine XF2 con

D at Q2 = 0 via an extrapolation, so we show
Q2 = 0.25 GeV2 instead.)

Finally we can plot the dependence of X on Q2. In Fig. 6 we show XF1 con

D

and XF1
F and similarly for XF2 versus Q2 (using the previously determined fitted

values). This gives the Q2 dependence of d and f respectively. For XF1
F , d is

initially zero and remains small for larger Q2, while f drops monotonically. We
expect d and f to drop like ∼ 1/Q2 for large Q2 for all the form factors.

13.2 Fan plots

We now turn to ‘fan’ plots, as defined by eqs. (68) and (71). Note that again we
only consider lattice quantities, the improved operator would have small changes
to the SU(3) flavour-breaking expansion, as discussed in section 11.1. Again
we only consider diagonal form factors in these equations: Dcon

1 , Dcon
2 and D4

in eq. (68) and F1, F2 and F4 in eq. (71). We construct the system of linear
equations in eq. (68) with parameters rcon

1 , r3 and d for the d-fan and eq. (71)
with parameters s1, s2 and f for the f -fan. In Fig. 7 we show D̃F1

i = DF1
i /XF

for i = 1, 2 and 4 and F̃ F1
i = F F1

i /XF for i = 1, 2 and 3. Note that as d vanishes
for the F1 form factor at Q2 = 0, and even away from Q2 = 0 it remains small,
see the lower panel of Fig. 4, then dividing by XF1

D is not possible or very noisy,
so we use XF1

F . Although for XF2
D this is not the case (as seen in Fig. 5) however

for consistency we still use XF2
F . The only change in these cases is that the value

at the symmetric point is no longer one.
The lines shown in Fig. 8 correspond to linear fits to the DF1 con

i using eq. (68)
(upper plot) and F F1 con

i using eq. (71) (lower plot). The fits to DF1 con

i determine
rcon

1 , r3 using three fits and are hence constrained. Furthermore determining these
two parameters also allows us to plot the off-diagonal hyperon decays for i = 6,
which is also shown. Similarly for F F1

i , we first determine the constrained fit
parameters s̃1 = s1/XF , s̃2 = s2/XF and then plot the off-diagonal hyperon
decays for i = 4, 5.

Similarly in Fig. 8 we show the equivalent results for F2. As previously we
have normalised the parameters, r̃con

1 = rcon
1 /XF , r̃3 = r3/XF and s̃1 = s1/XF ,

s̃2 = s2/XF . Again we have some constraints. In addition off-diagonal hyperon
decays for i = 6, d-fan plot and i = 4, 5, f -fan plot are also shown.

From these fan plots at various Q2 we can determine the dependence of the
expansion coefficients as a function of Q2. In Fig. 9 we show the expansion
coefficients rcon

1 , r3, s1, s2 for the F con
1 and F2 form factors as function of Q2. As

discussed previously in section 11.1, at Q2 = 0 the expansion coefficients for F con
1

vanish, which determines the improvement coefficients bV , f con
V . Thus in the top

panel of Fig. 9 the negative values of the rcon
1 , s1, s2 are a clear indication of the

nature of the improvement coefficients. For rather small Q2, these all change sign
rather quickly and also their order inverts. We have (approximately) |r3|, |s1| ≈ 0
and |rcon

1 | is a factor of 2–4 larger than |s2|. For F2 the expansion coefficients tend
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to be flatter. Also s2 ≈ 0, indicated in Fig. (8) by the small difference between
F̃ F2

3 and F̃ F2
4 .

13.3 Estimating ẐV and b̂V , f̂ con

V

XF1
F at Q2 = 0 determines the renormalisation constant ẐV via eq. (99). The

constant fit described in eq. (72) and shown in Fig. 4, see also Fig. 6, leads to
f = 0.814(1) or

ẐV = 0.869(1) . (116)

Our previous non-perturbative estimates of ZV at β = 5.50 are given in [36, 37]
of 0.863(4), 0.857(1) respectively, and are quite close to ẐV in eq. (116). Note
that the different determinations can have O(a) differences. Also ẐV has been
measured rather than ZV . The difference is ∼ 1 + bV m̄. Here we have bV ∼ O(1)
and m̄ ∼ 0.01 (using the κ0c found in [2]), so there a further possible difference
(and reduction from the ẐV value) of ∼ 1%.

From Fig. 9, the Q2 = 0 value for r3 is 0.06(2), which compared to other
values is compatible with zero. The Q2 = 0 values for s1, s2 are s1 = −0.479(22)
and s2 = −1.643(44), respectively. The ratio is s2/s1 = 3.42, which is in good
agreement with the theoretical value for the ratio from eq. (100) of 2

√
3 ∼ 3.46.

Similarly, using eq. (100), we find a weighted average of

b̂V = 1.174(21) , (117)

which is about a 15% increase from the tree-level value. Although a strict com-
parison with other determinations of this improvement coefficient is not possible,
it is interesting to note that compared to other computations , e.g. [26] and for
nf = 0, 2, [27] the value determined here is much closer to its tree-level value
eq. (90). This suggests that improvement coefficients are small, including possibly
ĉV .

Using the value of b̂V from s1, s2 and using eq. (102) together with rcon
1 =

−3.65(8) gives a weighted average of

f̂ con

V = 0.041(4) . (118)

As expected this is quite small.

13.4 Electromagnetic form factor results

With a knowledge of f , d and rcon
1 , r3, d, s1, s2 we can find the electromagnetic

Dirac form factor F con
1 (Q2) and Pauli form factor F con

2 (Q2) using the electromag-
netic current J con

emµ (see section 10.2) and results of eq. (86). Also we shall use

ẐV , b̂V and f̂ con
V (i.e. equivalent to CVC) from section 13.3.
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It is interesting to determine the various contributions to the form factors
from the expansion coefficients. For illustrative purposes, we shall just consider
F con

1 here and for p and Ξ0. From eq. (86) we can write

〈p|Jem|p〉con R =
XF (Q2, m̄)

XF (0, m̄)

[
1 +

2√
3
d̃(Q2, m̄) + ε̃ ′p(Q

2, m̄)δml

]
,

〈Ξ0|Jem|Ξ0〉con R = −XF (Q2, m̄)

XF (0, m̄)

[
4√
3
d̃(Q2, m̄)− ε̃ ′Ξ0(Q2, m̄)δml)

]
, (119)

with

ε̃ ′p =
1√
3

(r̃con ′
1 − s̃ ′2) + 2(s̃ ′1 − r̃ ′3) ,

ε̃ ′Ξ0 =
1√
3

(r̃con ′
1 + s̃ ′2) + 2(s̃ ′1 + r̃ ′3) , (120)

where, for example, r̃con ′
1 = rcon ′

1 (Q2, m̄)/XF (Q2, m̄) and similarly for the other
expansion coefficients. The prime includes the improvement terms, see eqs. (93,
94). In this form, we can investigate the contributions to the form factors. In
Fig. 10 we show the results for the terms of eq. (119): XF (Q2)/XF (0) and d̃. In
Fig. 11 we show r̃con ′

1 , s̃ ′2, r̃ ′3 and s̃ ′1. All the interpolation formulae (fits) are of
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the form

AQ2

1 +BQ2 + C(Q2)2
. (121)

From Fig. 10 and the leading term in eq. (119) for the proton form factor, the
dominant contribution comes from XF (Q2)/XF (0) – the f term, while there is
a small contribution from the d term (as d̃). Furthermore from Fig. 11 we see
that for the ε̃ coefficients, r̃ ′3 and s̃ ′1 are essentially negligible and most of the
contribution comes from r̃con ′

1 and s̃ ′2.
We illustrate this for the F1 form factor for the p and Ξ0. In Fig. 12 we show

F con R
1 for these baryons at the physical point δm∗l = −0.01103. i.e. a small and

negative value. The dashed line is XF (Q2)/XF (0), The dashed-dotted lines are
the complete leading terms: XF (Q2, m̄)/XF (0, m̄)(1 + 2/

√
3d̃(Q2, m̄)) for p and

XF (Q2, m̄)/XF (0, m̄) × 4/
√

3d̃(Q2, m̄)) for the Ξ0, while the full lines are the
complete expressions in eq. (119).

We see that for the proton the f term (represented by XF (Q2, m̄)/XF (0, m̄))
gives a result very close to the numerical result; the addition of the d̃ term pulls
it slightly away in the +ve direction. The inclusion of the O(δml) term, being
−ve pushes it back. However the additional terms to the f term contributes
very little (only a few percent) to the final result. For the Ξ0 the O(δml) term
improves the agreement.
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in eq. (119).

14 Conclusions and outlook

In this article we have outlined a programme for investigating the quark-mass
behaviour of matrix elements, for nf = 2 + 1 quark flavours starting from a point
on the SU(3) flavour symmetric line when the u, d and s quarks have the same
mass and then following a path keeping the singlet quark-mass constant. This is
an extension of our original programme for masses, [1, 2], using a generalisation
of the techniques developed there.

When flavour SU(3) is unbroken all baryon matrix elements of a given oper-
ator octet can be expressed in terms of just two couplings (f and d), as is well
known. We find that when SU(3) flavour symmetry is broken, at LO and NLO,
the expansions are constrained (but not at further higher orders). By this we
mean that there are a large number of relations between the expansion coeffi-
cients. Our main results for the expansions are contained in sections 6.1 and 6.2.
Although we concentrated on the nf = 2 + 1 case, in which symmetry breaking
is due to mass differences between the strange and light quarks our methods are
also applicable to isospin-breaking effects coming from a non-zero md−mu along
the lines of [38, 21].

The results here parallel those for the mass case. Firstly, for example we have
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constructed ‘singlet-like’ matrix elements – collectively called X here – where
the LO term vanishes. As noted in [2] these can be extrapolated to the physical
point, using a one-parameter constant fit. In this article we constructed several
of these X functions, and indeed can isolate the constant as either the f or d
coupling. Secondly again in analogy to the mass expansions we constructed ‘fan’
plots, each element of which is a linear combination of matrix elements, where at
the SU(3) flavour symmetric point all the elements have a common value, and
then radiate away from this point as the quark masses change. This is slightly
more complicated than for the mass case as we now have two couplings, f and d.
Indeed the ‘fan’ plot expansions can be constructed involving either f or d alone
at the SU(3) flavour symmetric point (more generally we have some combination
of them).

Technically important for lattice determinations of matrix elements is the
difference between quark-line-connected and quark-line-disconnected terms in the
calculation of the three-point correlation functions. (The quark-line-disconnected
terms are small, but difficult to compute using lattice methods, due to large gluon
fluctuations.) Applying the SU(3) flavour breaking expansion to these cases
separately, we have identified which expansion coefficient(s) have contributions
coming from the quark-line-disconnected terms. We found that at LO there is
just one expansion coefficient which has a quark-line-disconnected piece.

As numerically we are using Wilson clover improved fermions, then for O(a2)
continuum expansions, improvement coefficients need to be determined. The
general structure for nf = 2 + 1 flavours of fermions has been determined, see
e.g. [12]. We showed here these coefficients are equivalent to modifications to
the expansion parameters. Using the subsidiary condition that the relation be-
tween the local and conserved vector current is O(a) allowed us to determine two
improvement terms (together with the renormalisation constant).

To demonstrate how the expansions work, we discussed numerical results
using the vector current and diagonal matrix elements. However these can be
extended to include transition hyperon decays (a phenomenological review is
given in [13]). These would allow an alternative method to the standard K`3

decays of determining |Vus|, e.g. [39, 13, 40]. Earlier quenched and nf = 2
results for Σ− → n`ν and Ξ0 → Σ+`ν can be found in [41, 42], and nf = 2 + 1
results have been obtained in [43, 44]. The latter reference also investigates the
possibility of non-linear effects in the quark-mass, which in the SU(3) symmetry
flavour-breaking expansion means including terms from Table 7.

Future theoretical developments include extending the formalism to partially
quenched quark masses, when the valence quark mass, δµq, does not have to
be the same as the sea or unitary quark mass. Then eq. (14) is replaced by
δµq = µq − m̄. In this case the generalisation of eq. (17) does not hold. This
allows the determination of the expansion coefficients over a larger quark mass
range than is possible using the unitary quark masses (and allows, for example,
the charm quark to be included, [45]). Furthermore expansions for ‘fake’ hadrons

57



would be useful. Possible are a ‘nucleon’ with three mass degenerate strange
quarks and a ‘Lambda’ with two mass degenerate strange quarks. Although they
are not physical states, they can be measured on the lattice, and do not introduce
any more SU(3) mass flavour-breaking expansion coefficients, so simply add more
constraints to the coefficient determination. An example of this for the baryon
octet masses is given in [21].

Another extension of the SU(3) mass flavour breaking method is to the baryon
decuplet with 10⊗ 8⊗ 10 tensors, and also to the meson octet. While the latter
extension is straightforward, there are some extra constraints, as due to charge
conjugation, the particles in the meson octet are related to each other.

Furthermore generalised currents can be evaluated between quark states. This
leads to a SU(3) mass flavour-breaking expansion involving 3⊗8⊗3 tensors. This
will help when considering the non-perturbative RI ′ −MOM scheme which de-
fines the renormalisation constants (and improvement constants) by considering
the generalised currents between quark states. Useful would also be to consider
the axial current improvement coefficients using a partially conserved axial-vector
current (PCAC) along the lines of [12].

Finally, a more distant prospect is to include QED corrections to the matrix el-
ements, [10], along the lines of our previous studies of the SU(3) flavour-breaking
expansion for masses, [3, 4, 5].

Acknowledgements

The numerical configuration generation (using the BQCD lattice QCD program
[46])) and data analysis (using the Chroma software library [47]) was carried out
on the IBM BlueGene/Q and HP Tesseract using DIRAC 2 resources (EPCC,
Edinburgh, UK), the IBM BlueGene/Q (NIC, Jülich, Germany) and the Cray
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Appendix

A Non-zero tensor elements

The non-zero elements of the tensors Tijk are listed in Tables 9 – 13.

tensor value position

2 334 463 646
−2 343 436 664√

3 151 252 518 527 775 885

f −
√

3 115 225 572 581 757 858√
2 132 261 317 628 783 876

−
√

2 123 216 371 682 738 867
1 114 242 427 481 774 848
−1 141 224 418 472 747 884
√

6 123 132 216 261 317 371
628 682 738 783 867 876

2 335 353 445 454 536 544 563 656 665
d −2 555√

3 224 242 427 472 747 774

−
√

3 114 141 418 481 848 884
−1 115 151 225 252 518 527

572 581 757 775 858 885

Table 9: Flavour-singlet first-class non-zero elements of the f and d tensors.

B Alternative fan plots

B.1 The doubly represented − singly represented fan, the
P -fan

The traditional way of expressing the two ways of coupling octet operators to
octet hadrons are the f and d couplings. In terms of hadron structure, this
choice is perhaps more natural for octet mesons than it is for octet baryons.
Consider the eqs. (64, 65). In the K+, with quark content us̄ the f combination
〈K+|(ūγu − s̄γs)|K+〉 is very natural (the difference between the two valence
quarks), and the d combination 〈K+|(ūγu + s̄γs − 2d̄γd)|K+〉 is also a natural-
looking symmetric combination. For the Λ, the d combination is also the natural
non-singlet operator to consider, d ∝ 〈Λ|(2s̄γs− ūγu− d̄γd)|Λ〉 because the u and
d in the Λ have the same structure functions, while the s structure is different
(even before breaking SU(3)).
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tensor value position

r1 1 151 252 353 454 555 656 757 858

r2 2 555
1 115 225 335 445 518 527 536

544 563 572 581 665 775 885

2
√

3 353 454 656

−2
√

2 132 261 738 867
2 141 848

r3 −2 242 747

−
√

3 335 445 536 544 563 665√
2 123 216 317 371 628 682 783 876
1 224 427 472 774
−1 114 418 481 884

2
√

2 132 261

−2
√

2 738 867
2 242 343 436 664 848
−2 141 334 463 646 747

s1

√
3 518 527 775 885

−
√

3 115 225 572 581√
2 123 216 371 682

−
√

2 317 628 783 876
1 224 418 472 884
−1 114 427 481 774
√

3 334 463 646

s2 −
√

3 343 436 664
1 115 225 572 581 757 858
−1 151 252 518 527 775 885

Table 10: First-class octet non-zero elements of the r1, r2, r3 and s1, s2 tensors.

But in the proton, it might be a bit more natural to choose the combinations
(ūγu− d̄γd) and (ūγu + d̄γd− 2s̄γs) instead. The first combination is the non-
singlet combination normally considered in discussions of proton structure, the
second is almost (but not exactly) a measure of the total valence contribution,
because the quark-line-disconnected (sea) contribution to (ūγu+ d̄γd− 2s̄γs) is
zero at the symmetric point, and will probably stay small if the nucleon’s sea is
approximately SU(3) symmetric.

We can therefore construct a fan plot for the doubly represented − singly
represented quark.

P1 =
√

2AN̄πN =
(√

2f +
√

6d
)
− 2
√

2(r3 − s1)δml ,
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tensor value position

t1 1 115 225 335 445 665 775 885
−1 518 527 536 544 563 572 581
√

3 115 225 775 885

−
√

3 518 527 572 581

t2
√

2 123 216 783 876

−
√

2 317 371 628 682
1 224 418 481 774
−1 114 427 472 884
√

6 123 216 317 628

−
√

6 371 682 783 876

u1

√
3 224 427 481 884

−
√

3 114 418 472 774
1 572 581 775 885
−1 115 225 518 527

Table 11: Second-class octet non-zero elements of the t1, t2 and u1 tensors.

P2 =
1√
2

(AΣ̄πΣ +
√

3AΣ̄ηΣ) =
(√

2f +
√

6d
)

+
1√
2

(√
3r1 + 6r3 − 2s1 +

√
3s2

)
δml ,

P3 = − 1√
2

(AΞ̄πΞ +
√

3AΞ̄ηΞ) =
(√

2f +
√

6d
)

(122)

− 1√
2

(√
3r1 + 2r3 + 2s1 +

√
3s2

)
δml ,

P4 = AΣ̄KΞ =
(√

2f +
√

6d
)

+
√

2(r3 − s1)δml .

We have based this fan plot on the doubly − singly represented structure, so
several of the observables have very simple quark structures.

P1 = 〈p|(ūγu− d̄γd)|p〉 ,
P2 = 〈Σ+|(ūγu− s̄γs)|Σ+〉 , (123)

P3 = 〈Ξ0|(s̄γs− ūγu)|Ξ0〉 ,
P4 = 〈Σ+|ūγs|Ξ0〉 .

This P fan only includes the ‘outer’ octet baryons. The natural plot for the Λ
structure is the d-fan. There are two linear constraints on the P -fan,

1

3
(P1 + P2 + P3) = (

√
2f +

√
6d) +O(δm2

l ) ,

1

3
(P1 + 2P4) = (

√
2f +

√
6d) +O(δm2

l ) . (124)
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tensor value position

−18 555
14 335 445 536 544 563 665

−5
√

6 132 261 738 867
q1 9 151 252 757 858

5
√

3 141 848

−5
√

3 242 747
−6 115 225 353 454 518 527

572 581 656 775 885

18 555
−10 353 454 656
−6 335 445 536 544 563 665

2
√

6 123 216 317 371 628 682 783 876

q2 2
√

3 224 427 472 774

−2
√

3 114 418 481 884
3 151 252 757 858√
6 132 261 738 867√
3 242 747

−
√

3 141 848

4
√

2 132 261

−4
√

2 738 867

3
√

3 115 225 572 581

−3
√

3 518 527 775 885

w1 3
√

2 317 628 783 876

−3
√

2 123 216 371 682
4 242 343 436 664 848
−4 141 334 463 646 747

3 114 427 481 774
−3 224 418 472 884

3
√

3 151 252

−3
√

3 757 858

2
√

2 123 216 371 682

−2
√

2 317 628 783 876
w2 2 224 334 418 463 472 646 884

−2 114 343 427 436 481 664 774√
2 738 867

−
√

2 132 261
1 141 747
−1 242 848

Table 12: First-class 27-plet non-zero elements of the q1, q2 and w1, w2 tensors.
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tensor value position

−9
√

3 555

3
√

3 115 151 225 252 518 527
572 581 757 775 858 885

z −
√

3 335 353 445 454 536 544 563 656 665√
2 123 132 216 261 317 371

628 682 738 783 867 876
1 224 242 427 472 747 774
−1 114 141 418 481 848 884

4 335 445 665
−4 536 544 563

3 518 527 572 581
x1 −3 115 225 775 885√

6 123 216 783 876

−
√

6 317 371 628 682√
3 224 418 481 774

−
√

3 114 427 472 884

3
√

3 115 225 518 527

−3
√

3 572 581 775 885

y1

√
2 123 216 317 628

−
√

2 371 682 783 876
1 224 427 481 884
−1 114 418 472 774

Table 13: First-class 64-plet and second-class 27-plet non-zero elements of the z and
x1, y1 tensors.

A fan with just the four lines from eq. (123), P1, P2, P3, P4, is a four-line plot with
just two independent slope parameters, (r3 − s1) and (

√
3r1 + 4r3 +

√
3s2).

The advantage of this fan plot is that some of the quantities are of immediate
physical interest, for example in the weak decay case P1 gives the neutron decay
constant, while P4 gives the semileptonic decays Ξ0 → Σ+l−ν̄l, Ξ− → Σ0l−ν̄l.
The disadvantages are that there are fewer constraints than the d-fan. Also, the
d-fan and f -fan are independent – they involve different parameters, and there
are no constraints that mix Fi and Di quantities. A first attempt to show this
fan plot for the fraction of the baryon’s momentum carried by a quark, i.e.〈x〉, is
given in [48].

Finally it is again often useful to note from eq. (124) that for example

XP =
1

3
(P1 + P2 + P3) = (

√
2f +

√
6d) +O(δm2

l ) , (125)

and to consider the quantities Pi/XP .
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B.2 The V -fan

The other natural non-singlet to look at in the proton is 〈p|(ūγu+ d̄γd−2s̄γs)|p〉.
This is approximately the total valence distribution, the quark-line-disconnected
(sea) contribution to (ūγu+ d̄γd− 2s̄γs) is zero at the symmetric point, and will
probably stay small if the nucleon’s sea is approximately SU(3) symmetric.

V1 =
√

6AN̄ηN =
√

6(
√

3f − d) +
√

6(r1 − s2)δml ,

V2 =
3√
2
AΣ̄πΣ −

√
3

2
AΣ̄ηΣ , =

√
6(
√

3f − d)

− 1√
2

(√
3r1 + 6r3 + 6s1 − 3

√
3s2

)
δml ,

V3 =
3√
2
AΞ̄πΞ −

√
3

2
AΞ̄ηΞ =

√
6(
√

3f − d) , (126)

− 1√
2

(√
3r1 − 6r3 − 6s1 +

√
3s2

)
δml ,

V4 =
√

2(AN̄πN + 2AΞ̄πΞ) =
√

6(
√

3f − d) + 2
√

2(r3 + 3s1)δml ,

V5 = (AΣ̄KΞ − 2AN̄KΣ) =
√

6(
√

3f − d)−
√

2(r3 + 3s1)δml .

We have the two constraints
1

3
(V1 + V2 + V3) =

√
6(
√

3f − d) +O(δm2
l ) ,

1

3
(V4 + 2V5) =

√
6(
√

3f − d) +O(δm2
l ) , (127)

and can again construct an XV from either combination, for example set

XV =
1

3
(V1 + V2 + V3) , (128)

and again consider ratios such as Vi/XV .

C LO flavour diagonal matrix elements

To leading order we have for the representative octet baryons p, Σ+, Λ0 and Ξ0

〈p|ūγu|p〉

=
1√
3

(
a0 +

√
6f +

√
2d
)

+
1√
3

(
3a1 +

1√
2
r1 −

√
6r3 +

√
6s1 −

1√
2
s2

)
δml ,

〈p|d̄γd|p〉 (129)

=
1√
3

(
a0 − 2

√
2d
)

+
1√
3

(
3a1 +

1√
2
r1 +

√
6r3 −

√
6s1 −

1√
2
s2

)
δml ,

〈p|s̄γs|p〉
=

1√
3

(
a0 −

√
6f +

√
2d
)

+
1√
3

(
3a1 −

√
2r1 +

√
2s2

)
δml ,
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〈Σ+|ūγu|Σ+〉

=
1√
3

(
a0 +

√
6f +

√
2d
)

+
1√
3

(
−3a2 +

1√
2
r1 +

√
6r3 −

√
6s1 +

3√
2
s2

)
δml ,

〈Σ+|d̄γd|Σ+〉 (130)

=
1√
3

(
a0 −

√
6f +

√
2d
)

+
1√
3

(
−3a2 +

1√
2
r1 +

√
6r3 +

√
6s1 −

3√
2
s2

)
δml ,

〈Σ+|s̄γs|Σ+〉
=

1√
3

(
a0 − 2

√
2d
)

+
1√
3

(
−3a2 −

√
2r1 − 2

√
6r3

)
δml ,

〈Λ|ūγu|Λ〉 = 〈Λ|d̄γd|Λ〉 ,

=
1√
3

(
a0 −

√
2d
)

+
1√
3

(
3a2 +

1√
2
r1 +

√
2r2

)
δml ,

〈Λ|s̄γs|Λ〉 =
1√
3

(
a0 + 2

√
2d
)

+
1√
3

(
3a2 −

√
2r1 − 2

√
2r2

)
δml , (131)

and

〈Ξ0|ūγu|Ξ0〉

=
1√
3

(
a0 − 2

√
2d
)

+
1√
3

(
−3(a1 − a2) +

1√
2
r1 +

√
6r3 +

√
6s1 +

1√
2
s2

)
δml ,

〈Ξ0|d̄γd|Ξ0〉
=

1√
3

(
a0 −

√
6f +

√
2d
)

(132)

+
1√
3

(
−3(a1 − a2) +

1√
2
r1 −

√
6r3 −

√
6s1 +

1√
2
s2

)
δml ,

〈Ξ0|s̄γs|Ξ0〉
=

1√
3

(
a0 +

√
6f +

√
2d
)

+
1√
3

(
−3(a1 − a2)−

√
2r1 −

√
2s2

)
δml .

D LO disconnected flavour diagonal matrix el-

ements

From eqs. (77, 78) we have f dis, ddis, rdis
2 , rdis

3 , sdis
1 and sdis

2 all vanishing at LO and
only rdis

1 contributing. Thus we have

〈N |ūγu|N〉dis = 〈N |d̄γd|N〉dis

=
1√
3
adis

0 +

(√
3adis

1 +
1√
6
rdis

1

)
δml , (133)

〈N |s̄γs|N〉dis =
1√
3
adis

0 +

(
√

3adis

1 −
√

2

3
rdis

1

)
δml ,
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(for n, p),

〈Σ|ūγu|Σ〉dis = 〈Σ|d̄γd|Σ〉dis

=
1√
3
adis

0 +

(
−
√

3adis

2 +
1√
6
rdis

1

)
δml , (134)

〈Σ|s̄γs|Σ〉dis =
1√
3
adis

0 +

(
−
√

3adis

2 −
√

2

3
rdis

1

)
δml ,

(for Σ+, Σ0, Σ−),

〈Λ|ūγu|Λ〉dis = 〈Λ|d̄γd|Λ〉dis

=
1√
3
adis

0 +

(√
3adis

2 +
1√
6
rdis

1

)
δml , (135)

〈Λ|s̄γs|Λ〉dis =
1√
3
adis

0 +

(
√

3adis

2 −
√

2

3
rdis

1

)
δml ,

(for Λ0) and

〈Ξ|ūγu|Ξ〉dis = 〈Ξ|d̄γd|Ξ〉dis

=
1√
3
adis

0 +

(
−
√

3(adis

1 − adis

2 ) +
1√
6
rdis

1

)
δml , (136)

〈Ξ|s̄γs|Ξ〉dis =
1√
3
adis

0 +

(
−
√

3(adis

1 − adis

2 )−
√

2

3
rdis

1

)
δml ,

(for Ξ0, Ξ−).
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G. Schierholz, A. Schiller, H. Stüben, R. D. Young and J. M. Zanotti [CSSM
and QCDSF and UKQCD Collaborations], J. Phys. G46 (2019) 115004,
[arXiv:1904.02304 [hep-lat]].

[6] E. E. Jenkins, A. V. Manohar, J. W. Negele and A. Walker-Loud, Phys. Rev.
D81 (2010) 014502, [arXiv:0907.0529 [hep-lat]].

[7] M. Gell-Mann, Phys. Rev. 125 (1962) 1067.

[8] S. Okubo, Prog. Theor. Phys. 27 (1962) 949.

[9] A. N. Cooke, R. Horsley, Y. Nakamura, D. Pleiter, P. E. L. Rakow, G. Schier-
holz and J. M. Zanotti PoS LATTICE 2012 (2012) 116, arXiv:1212.2564
[hep-lat].

[10] QCDSF Collaboration, in preparation.

[11] A. Accardi et al., Eur. Phys. J. A52 (2016) 268, [arXiv:1212.1701
[nucl-ex]].

[12] T. Bhattacharya, R. Gupta, W. Lee, S. R. Sharpe and J. M. S. Wu Phys.
Rev. D73 (2006) 034504 [arXiv:hep-lat/0511014].

[13] N. Cabibbo, E. C. Swallow and R. Winston, Ann. Rev. Nucl. Part. Sci. 53
(2003) 39, [arXiv:hep-ph/0307298].

[14] S. Weinberg, Phys. Rev. 112 (1958) 1375.

[15] H. Georgi, Weak Interactions and Modern Particle Theory, Ben-
jamin/Cummings (1984).

[16] V. G. Bornyakov, R. Horsley, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L.
Rakow, G. Schierholz, A. Schiller, H. Stüben, and J. M. Zanotti [QCDSF–
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