
ALGORITHMIC TRADING and

REINFORCEMENT LEARNING
Robust methodologies for AI in finance

※

thomas spooner

July 2021

They say that “he who flies highest, falls farthest” – and who am I to argue?

But we can’t forget that “he who doesn’t flap his wings, never flies at all.”

And with that, I’ll stop trying to convince myself that I can’t fail;

how dull the whole thing would be if that were true.

— Hunter S. Thompson [174]

The way you not fall off, is you remain a student of the game.

At all times, in anything that you doing.

— Freddie Gibbs [64]

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede and Ivo Pletikosić. The style was inspired by Robert
Bringhurst’s seminal book on typography “The Elements of Typographic Style”.
classicthesis is available here:

https://bitbucket.org/amiede/classicthesis/

Algorithmic Trading and Reinforcement Learning,

© July 2021, Thomas Spooner

https://bitbucket.org/amiede/classicthesis/

Dedicated to the loving memory of my grandfather Robert “Papa” Pill.

1922 – 2014

ACKNOWLEDGMEN TS

Taking on a PhD is an enormous undertaking, mentally, emotionally and, at times,
physically. At the beginning, I’m not sure that I knew exactly to what extent nor
what I was getting myself into. Catalysing naïve enthusiasm into a finished product
is a non-trivial process and requires time and persistence. But, above all else, this
thesis could not have been achieved without the support of a wonderful group of
friends, family and colleagues. There is no doubt in my mind that this wouldn’t have
been possible without them.

First and foremost, I would like to thank my advisor and mentor Rahul Savani

who has helped me beyond measure both in and out of academia. The patience and
stoicism he has afforded me cannot be understated. His drive for excellence and
precision has formed the foundations of my own principles as a researcher. And the
opportunities and trust he has placed in me over these four years has been humbling.
I am eternally grateful for the path you have now set me on. I only hope that I can
repay the favour in kind as we continue to collaborate in the future. Alongside my
advisor, John Fearnley was one of the first people whom I collaborated with —
going back as far as my Master’s project. His advice and support at these early stages
of my development and during the PhD itself have been pivotal. I cannot thank him
enough for this.

A number of other staff at the University of Liverpool have also helped me a
great deal. On the academic side: my secondary advisor, Karl Tuyls; collaborator
and inspiration, Frans Oliehoek; advisor, Martin Gairing. I have also greatly
appreciated being a part of the Economics and Computation group. On the support
side, I’d like to thank Paddy Colleran, Alison Goodyear, Dave Shield, and Elaine

Smith for putting up with me these four years. I literally couldn’t have done it
without you all. My work with the Institute of Infection and Global Health (an
enjoyable tangent from finance) was a wonderful experience as well. To Matthew

Baylis, Anne Jones and Joanne Turner: it was a pleasure to work with you. I
learnt a great deal about the value of interdisciplinary research, and the importance
of collaboration. On a similar vein, I’d like to mention Sam Devlin and Nolan Bard

for their company at conferences. I will always appreciate having friends who are
willing to talk about things other than our work at these events.

Fellow students — Greg, Argy, James, Jacopo, alongside many others — pro-
vided invaluable emotional and technical support that I couldn’t have done without.
They’re willingness to listen to my moaning and diatribes over the years will not be
forgotten. Similarly, I would not have managed without the friendships and welcome
distraction that the UoL Karate club provided me. Ash, Josie, Harry, Matthew,
Michael, and again, many others — you’ve been great. I cannot wait to compete
with you again or, for that matter, against you. Oss!

The various colleagues during my time as a consultant also taught me a great
deal. Not only about industry, startups, the world of work and research, but also
about humility and the importance of self reflection. My thanks go to Andreas

Koukorinis for affording me the opportunity to learn from the amazing team that
was at Stratagem. Many of these people are still good friends of mine today: Simon,
Caelin, Tony, Thomas and Nicolas, to name some.

Now, in more recent times, I have began my new journey at JP Morgan’s AI
Research group. To Sammy, Josh and Mahmoud: I cannot thank you enough for
seeing something in me at ICML and the opportunity you have given me. My team
is wonderful, and finishing my thesis with your support has meant a great deal to

v

me. Sumitra, you have been, and are, an incredible manager who has made me feel
welcome and valued; I am truly excited about the future. Similarly, Daniele, you
have made working with the London team a joy. There are so many other I want
to thank, but in particular: Nelson and Mengda; Danial and Cecilia; Prashant,
Tucker and Manuela.

Outside of work and research entirely, I have relied on many a person for moral
and emotional support. To my friends Oba and Eduardo: you know exactly how
much you mean to me. My life will forever be the better for meeting you both. This
includes the rest of you too: Bo, Justin and Ryan. To poor John who’s had to put
up with me since undergraduate: you’ve been there consistently and unwaveringly,
and I cannot thank you enough. I thank all my friends and amazing flat mates in
London, both old and new: Alan, Manon, Niall and Tash; Francis, Nadia and
Rachel. I cannot wait for what 2021 brings with the whole London crew, you’re
all wonderful people: Sarah (thanks for letting me couch surf), James, Mathilde,
Esteban, Adam, Lara and Lolly. All my friends back home.

Finally, I would like to thank my parents — Stuart and Chris — who have sup-
ported me throughout the PhD and encouraged me to pursue my ambitions. Without
them I know for certain that I wouldn’t be where I am today. As a firm believer that
nurture triumphs over nature, the responsibility and my gratitude is with you. And,
of course, last but not least, my two sisters, Molly and Florence, who have been
there for me on many occasions when I’ve needed advice. I love you all.

To everyone, mentioned above or not: thank you.

ABSTRACT

The application of reinforcement learning (RL) to algorithmic trading is, in many
ways, a perfect match. Trading is fundamentally a problem of making decisions
under uncertainty, and reinforcement learning is a family of methods for solving
such problems. Indeed, many researchers have explored this space and, for the most,
validated RL, its ability to find effective solutions and its importance in studying the
behaviour of agents in markets. In spite of this, many of the methods available today
fail to meet expectations when evaluated in realistic environments. There are a num-
ber of reasons for this: partial observability, credit assignment and non-stationary
dynamics. Unlike video games, the state and action spaces are often unstructured
and unbounded, which poses challenges around knowledge representation and task
invariance. As a final hurdle, traders also need RL to be able to handle risk-sensitive
objectives with solid human interpretation to be used reliably in practice. All of
these together make for an exceptionally challenging domain that poses fascinating
questions about the efficacy of RL and the techniques one can use to address these
issues. This dissertation makes several contributions towards two core themes that
underlie the challenges mentioned above. The first, epistemic uncertainty, covers
modelling challenges such as misspecification and robustness. The second relates
to aleatoric risk and safety in the presence of intrinsic randomness. These will be
studied in depth, for which we summarise, below, the key findings and insights
developed during the course of the PhD.

The first part of the thesis investigates the use of data and historical reconstruction
as a platform for learning strategies in limit order book markets. The advantages
and limitations of this class of model are explored and practical insights provided.
It is demonstrated that these methods make minimal assumptions about the mar-
ket’s dynamics, but are restricted in terms of their ability to perform counterfactual
simulations. Computational aspects of reconstruction are discussed, and a highly
performant library provided for running experiments. The second chapter in this
part of the thesis builds upon historical reconstruction by applying value-based RL
methods to market making. We first propose an intuitive and effective reward func-
tion for both risk-neutral and risk-sensitive learning and justify it through variance
analysis. Eligibility traces are shown to solve the credit assignment problem observed
in past work, and a comparison of different state-of-the-art algorithms (each with
different assumptions) is provided. We then propose a factored state representation
which incorporates market microstructure and benefits from improved stability and
asymptotic performance compared with benchmark algorithms from the literature.

In the second part, we explore an alternative branch of modelling techniques
based on explicit stochastic processes. Here, we focus on policy gradient methods,
introducing a family of likelihoods functions that are effective in trading domains
and studying their properties. Four key problem domains are introduced along with
their solution concepts and baseline methods. In the second chapter of part two, we
use adversarial reinforcement learning to derive epistemically robust strategies. The
market making model of Avellaneda and Stoikov [11] is recast as a zero-sum, two
player game between the market maker, and the market. We study the theoretical
properties of a one-shot projection, and empirically evaluate the dynamics of the
full stochastic game. We show that the resulting algorithms are robust to discrepan-
cies between train and test time price/execution dynamics, and that the resulting
strategies dominate performance in all cases. The final results chapter addresses
the intrinsic risk of trading and portfolio management by framing the problems

vii

explicitly as constrained Markov decision processes. A downside risk measure based
on lower partial moments is proposed, and a tractable linear bound derived for
application in temporal-difference learning. This proxy has a natural interpretation
and favourable variance properties. An extension of previous work to use natural
policy gradients is then explored. The value of these two techniques is demonstrated
empirically for a multi-armed bandit and two trading scenarios. The results is a
practical algorithm for learning downside risk-averse strategies.

CON TEN TS

I prologue
1 introduction 3

1.1 Motivation . 4
1.1.1 Pioneers . 5

1.2 The Thesis . 5
1.3 Structure . 6
1.4 Published Material . 7

1.4.1 Papers . 7
1.4.2 Code . 9

2 reinforcement learning 11
2.1 Markov Decision Processes . 11

2.1.1 Policies . 12
2.1.2 Stationary Distributions . 13
2.1.3 Performance Criteria . 14
2.1.4 Value Functions . 14
2.1.5 Optimality . 16

2.2 Function Approximation . 17
2.2.1 Local Representations . 17
2.2.2 Global Representations . 19
2.2.3 Extensions . 20

2.3 Policy Evaluation . 21
2.3.1 Temporal-Difference Methods 22
2.3.2 Eligibility Traces . 24
2.3.3 Least-Squares Methods . 25

2.4 Policy Optimisation . 26
2.4.1 Value-Based Methods . 26
2.4.2 Policy Gradient Methods . 27
2.4.3 The Actor-Critic Architecture 28
2.4.4 Natural Policy Gradients . 29

3 algorithmic trading 31
3.1 Financial Markets . 31

3.1.1 Electronic Markets . 32
3.2 A Calculus for Trading . 32

3.2.1 Interactions . 33
3.2.2 Time Discretisation . 36

3.3 Limit Order Books . 36
3.3.1 Matching . 38
3.3.2 Revenue . 40

3.4 Desiderata . 40

II data-driven trading
4 limit order book simulation 45

4.1 Outline . 45
4.2 Data . 45
4.3 Reconstruction . 46
4.4 Indicators . 47

4.4.1 Price . 47
4.4.2 Volume . 48

ix

x contents

4.4.3 Hybrid . 49
4.5 Counterfactuals . 49

4.5.1 Market Impact . 50
4.5.2 Queues . 50

5 rl ∩ data-driven trading 53
5.1 Outline . 53
5.2 Related Work . 54
5.3 Problem Specification . 55

5.3.1 Desiderata . 55
5.3.2 Simulation . 56

5.4 The Strategy . 58
5.4.1 Discrete Encoding . 59
5.4.2 Trading Clocks . 60

5.5 Benchmarks . 61
5.5.1 Randomised Pricing with Clearing 61
5.5.2 Fixed-Symmetric Pricing with Clearing 61
5.5.3 Online Pricing . 62

5.6 Risk-Neutral Behaviour . 63
5.6.1 Credit Assignment . 65
5.6.2 Average Reward vs. Discounted Reward 66
5.6.3 Bias-Variance Reduction . 68

5.7 Constrained Behaviour . 68
5.8 State Augmentation . 72

5.8.1 Factored Representation . 73
5.9 Consolidation . 73
5.10 Conclusions . 75

III model-driven trading
6 rl ∩ model-driven trading 79

6.1 Outline . 79
6.2 Policy Classes . 80

6.2.1 Supported on R . 80
6.2.2 Supported on Half-Bounded Intervals of R 81
6.2.3 Supported on Bounded-Intervals of R 84
6.2.4 Supported on N . 86
6.2.5 Supported on Product Spaces 86

6.3 Optimal Execution . 86
6.4 Market Making . 88
6.5 Portfolio Optimisation . 92
6.6 Optimal Consumption . 94

7 invariance to epistemic risk 97
7.1 Outline . 97
7.2 Related Work . 98
7.3 Trading Games . 99

7.3.1 Single-Stage Analysis . 99
7.3.2 Multi-Stage Analysis . 104

7.4 Adversarial Training . 104
7.5 Experiments . 105

7.5.1 Fixed Setting . 106
7.5.2 Randomised Setting . 106
7.5.3 Strategic Setting . 108

7.6 Conclusions . 110
8 robustness to aleatoric risk 113

contents xi

8.1 Outline . 113
8.2 Related Work . 114
8.3 Constrained MDPs . 114

8.3.1 Reward Constrained Policy Optimisation 115
8.4 Downside Risk Measures . 115

8.4.1 Partial Moments . 116
8.5 Policy Evaluation . 118

8.5.1 Convergence . 118
8.5.2 Variance Analysis . 118

8.6 Policy Optimisation . 120
8.6.1 Convergence . 121

8.7 Experiments . 122
8.7.1 Multi-Armed Bandit . 123
8.7.2 Portfolio Optimisation . 124
8.7.3 Optimal Consumption . 124

8.8 Conclusions . 126

IV epilogue
9 conclusion 131

9.1 Looking Back . 131
9.2 Looking Ahead . 133

9.2.1 Data-Driven Trading . 133
9.2.2 Model-Driven Trading . 134

bibliography 136

L I S T OF F IGURE S

Figure 1.1 Chapter dependence diagram illustrating the suggested
routes to be taken through the thesis. This diagram was
heavily inspired by the excellent thesis of Grondman [73]. . 8

Figure 1.2 Dependency diagram for the ecosystem of crates developed
during the course of the PhD. 8

Figure 2.1 Backup diagram of Vπ(s) [162]. Empty nodes represent
states, solid nodes represent actions, and paths correspond
to transitions/agent decisions. 15

Figure 2.2 Collection of function basis representations approximat-
ing the 6th Bukin function, f(x,y) = 100

√
|y− 0.01x2|+

0.01|x+ 10|, learnt using stochastic gradient descent. 18
Figure 2.3 An example illustration of the tile coding representation.

Three tilings are shown, for which the activated tiles are
highlighted around the point state instance. 18

Figure 2.4 Illustration of two least squares approximations of a discon-
tinuous polynomial function. The stacked basis combines
the polynomial basis with a standard, uniform partitioning. 20

Figure 3.1 Illustration of a price process drawn for the assets in Equa-
tion 3.2 with the associated wealth series of four sample
inventories weights. 34

Figure 3.2 Snapshot of a limit order book with multiple price levels
occupied by bid or ask orders and a total volume. 37

Figure 3.3 Illustration of book walking sequences, ω̃k, for k ∈ {0, . . . , 4}
and five initial sizes. The limiting values here define the
total consumed volume by each market order (MO). 39

Figure 4.1 Illustration of queue approximation for a simulated order
of size 10 under a volume-weighted cancellation scheme.
At each stage, some combination of placement/cancellation
requests are parsed and the subsequent queue estimate shown. 51

Figure 5.1 Illustration of a spread-skew market making strategy in an
limit order book (LOB). 58

Figure 5.2 Distributions of daily out-of-sample PnL and mean inven-
tory for increasing values of the damping factor, η, evalu-
ated on HSBA.L using the asymmetric reward variant. . . . 71

Figure 5.3 Rolling mean and standard deviation of the average episodic
reward during training for increasing values of the damping
factor, η, evaluated on HSBA.L. 71

Figure 5.4 Rolling mean (period 50) of the average episodic reward for
basic, damped (asymmetric), joint-state and consolidated
agents training (HSBA.L). 74

Figure 5.5 Out-of-sample equity curve and inventory process for the
basic (naïve) and consolidated agents, evaluated on HSBA.L. 75

Figure 6.1 Illustration of the level sets of the score function with re-
spect to µ and σ for a policy parameterised with a Normal
distribution. 82

xii

list of figures xiii

Figure 6.2 Illustration of the level sets of the score function with re-
spect to µ and σ for a policy parameterised with a folded
Normal distribution. 83

Figure 6.3 Illustration of the level sets of the score function with re-
spect to α and β for a policy parameterised with a Beta
distribution. 85

Figure 6.4 Learning performance of different policy classes on the
optimal liquidation problem. The time-weighted average-
price benchmark is illustrated in both cases alongside the
terminal reward and cash attained by the strategies derived
with reinforcement learning (RL). Each point corresponds
to the sample mean over 1000 evaluation episodes with a
(negligible) confidence window formed of the corrected,
sample standard deviation. 89

Figure 6.5 Learning performance of the NAC-S(λ) algorithm on the
market making problem for η ∈ {0, 0.5}. The Avellaneda
and Stoikov [11] solution (with γ = 0.1) is provided as a
benchmark. Each point corresponds to the sample mean
over 1000 evaluation episodes with a confidence window
formed of the corrected, sample standard deviation. 92

Figure 6.6 Learning performance of the NAC-S(λ) algorithm on the
portfolio optimisation problem. Fixed passive and aggres-
sive strategies are provided as a benchmark. Each point cor-
responds to the sample mean over 1000 evaluation episodes
with a confidence window formed of the corrected, sample
standard deviation. 94

Figure 7.1 Trinomial tree of the multi-stage Market Making game with
initial inventory of Ω0 = 0. Three stages of the game are
depicted (for t ∈ {0, 1, 2}) with state-transition probabilities
annotated along the edges. 100

Figure 7.2 The MM’s payoff (Equation 7.1) as a function of the price
offsets for the ask, δ+, and bid, −δ− sides of the book. Each
sub-figure corresponds to one of three values of b. The
concave intervals (as derived in Lemma 1) are illustrated
by the dashed line, and the optimal solution for the MM by
the dotted line. 102

Figure 7.3 Most probable (modal) action for the risk-averse Gaussian
policy learnt using NAC-S(λ) with η1 = 0 and η2 = 0.01.
Time is measured as a proportion of the time limit (i.e.
0.8 corresponds to 80% of the episode), and inventory is
measured as a signed fraction of imposed upper/lower bounds.107

Figure 7.4 Policy learnt by the adversary for manipulating price against
the market maker with η1 = η2 = 0. The solution takes the
form of continuous approximation of the binary solution
derived in Theorem 3. 108

Figure 7.5 Sample rollout of an adversarially trained market making
strategy. Quoted ask (red) and bid (blue) prices are shown
around the mid-price. Executions are illustrated using ar-
rows and the resulting inventory process is illustrated in
the lower plot. 109

Figure 7.6 Oscillatory behaviour in the best response dynamics be-
tween directionally biased market making strategies in
the early stages of training in the Strategic setting. Each
curve corresponds to the evolution of the modal value of
the policy’s skew factor, η2, during training for the state
s = (0,Ω). Three cases are considered: when the agent’s
inventory is neutral Ω = 0 (grey), bullish Ω = 5 (red) or
bearish Ω = −5 (blue). 110

Figure 8.1 Simple MDP with two actions and 7 states; the terminal
state is omitted. 117

Figure 8.2 Moments of the return G generated by the MDP in Fig-
ure 8.1. The x-axis corresponds to θ1 ∈ [0, 1], and the y-axis
to θ2 ∈ [0, 1]. Higher values are in yellow, and lower values
in dark blue. 117

Figure 8.3 Evolution of Boltzmann policies’ selection probabilities for
armsA (red), B (blue) andC (purple). Each curve represents
a normalised average over 100 independent trials. 123

Figure 8.4 Performance of portfolio optimisation solutions for varying
thresholds ν ∈ [0, 1]. Each point was generated by evaluat-
ing the policy over 104 trials following training. 125

Figure 8.5 Evolution of performance of optimal consumption solutions
for ν ∈ {0.05, 0.1,∞}. Each curve was generated by evalu-
ating the policy for 100 trials every 100 training episodes,
with a simple moving average of period 100 applied for
clarity. 127

L I S T OF TABLE S

Table 3.1 Portfolio characteristics for the four instances illustrated
in Figure 3.1. Each value is computed using 10000 Monte-
Carlo samples. In order, we have mean and variance on
the portfolio value, the first lower partial moment, and the
Sharpe ratio, respectively. 41

Table 5.1 The security tickers comprising the full dataset with their
associated company name and sector. 56

Table 5.2 Reference of stock exchanges indexed by the ticker suffix. . 56
Table 5.3 Default parameters as used by the learning algorithm and

the underlying trading strategy. 57
Table 5.4 Discrete encoding of the limit order (LO)/MO market maker

(MM) strategy. 60
Table 5.5 Performance attributes for a set of fixed and random bench-

mark instances of the strategy with boundary-based in-
ventory clearing, evaluated on HSBA.L; ND-PnL refers to
normalised daily profit and loss, and MAP refers to mean
absolute position. 62

Table 5.6 Out-of-sample normalised daily PnL (ND-PnL) and mean
absolute positions (MAP) of the follow-the-leader (FTL)
benchmark strategy derived from [3]. 63

xiv

Table 5.7 Mean and standard deviation on the normalised daily PnL
(given in units of 104) for Q(λ) and SARSA(λ) using the
incremental mark-to-market reward function and the algo-
rithm parameters specified in Table 5.3. 66

Table 5.8 Mean and standard deviation on the normalised daily PnL
(given in units of 104) for the off- and on-policy variants of
the R(λ) algorithm, both evaluated over the whole basket
of securities. 67

Table 5.9 Mean and standard deviation on the normalised daily PnL
(given in units of 104) for two double-estimator techniques
and a variance reduced estimator, each evaluated over the
whole basket of securities. 69

Table 5.10 Mean and standard deviation on the normalised daily PnL
(given in units of 104) for Q-learning and SARSA using
non-damped PnL reward function and agent-state. 70

Table 5.11 Mean and standard deviation on the normalised daily PnL
(given in units of 104) for SARSA(λ) using the risk-neutral
reward and either the joint- or factored-state representation. 72

Table 5.12 Mean and standard deviation of ND-PnL (given in units of
104) and MAP for SARSA(λ) using the consolidated agent. . 74

Table 7.1 Performance and characteristics of market makers trained
and evaluated against the fixed adversary. 106

Table 7.2 Performance and characteristics of market makers trained
against the random adversary and evaluated in the fixed
environment. 107

Table 7.3 Performance and characteristics of market makers trained
against the strategic adversary (with varying degrees of
control) and evaluated in the fixed environment. 108

ACRONYMS

LO Limit Order

MM Market Maker

MO Market Order

NE Nash Equilibrium

RL Reinforcement Learning

TD Temporal-Difference

ARL Adversarial Reinforcement Learning

LOB Limit Order Book

LPM Lower Partial Moment

MDP Markov Decision Process

RCPO Reward Constrained Policy Optimisation

MMMW Market-Making Multiplicative Weights

NRCPO Natural Reward Constrained Policy Optimisation

xv

Part I

PROLOGUE

1I N TRODUCT ION

Finance is the most pervasive global industry today, and it is in the throws of a
technological renaissance that is largely driven by the advent of machine learning. Perez [126] classified

this as one of five key

technological

revolutions, likening it

to the industrial

revolution.

Indeed, many of the major banks are now investing heavily in artificial intelligence
research, driven by the complexities observed in real-world problems. This is a
powerful idea — historically speaking, some of the most important discoveries
in science have come from solving practical problems rather than focusing on
abstractions in isolation. Pasteurisation contributed to the germ theory of disease,
Bayesian statistics and causal modelling challenged the frequentist dogma of Francis
Galton and Karl Pearson, revolutionising our understanding of probability, and
Robert Brown’s study of Clarkia pulchella pollen lead to the development of the
Wiener process which is at the core of stochastic processes today. All of these It is believed that

Thomas Bayes first

proposed conditional

probability as a

means of proving the

existence of “the

Deity” [14, 124].

examples support a key conclusion: that a “top-down” approach to science is a vital
element of research.

One of the most relevant fields of finance where this is true is option pricing. There,
the industry faced the question of how to uniquely value derivative products which
were growing in prevalence during late 1900s. The contributions towards this pursuit
of Fischer Black, Myron Scholes and Robert C. Merton (BSM) [23, 113] — as well as
Louis Bachelier before them [12] — cannot be understated. Before this landmark,
eponymous result, options were traded in a mostly heuristic fashion by experienced
traders, and while it has been shown that these markets were comparably efficient
to those we have nowadays (relative to the BSM value) [39, 117], the logic driving
decision-making was somewhat opaque. Reliance on human operators is severely
limiting and even dangerous in certain circumstances, much in the same way that
human drivers pose undue risk to pedestrians. One would be right to conclude, then,
that BSM paved the way towards increased automation in finance, replacing abstract
intuition with concrete, verifiable methodology. Of course, option pricing is not the
only domain in finance that has experienced a transition towards scientific rigour.

Trading has, over the last 30 years, become a powerhouse of computational
ingenuity, and algorithmic trading now reigns supreme over the traditional methods
of exchange. Yet, despite the advances in high-frequency trading platforms and their
systematisation, trading as a whole is still exposed to two key forms of human bias:

(i) The classic form of bias is driven by direct, human interaction in which the

operator controls a large part of the process itself ; i.e. using machine learning to
derive signals, but leaving the decision-making and implementation entirely
to the trader.

(ii) The more subtle — and far more dangerous — source of human bias enters
in the form of mechanistic assumptions made during the development of a

strategy. Whether this be assuming that prices evolve in a particular way, or
that transactions occur with a given probability, the result is anything but
transparent and often leads to unexpected results. This problem can often be
traced back to weak backtesting, or even the “brainchild” effect in which a
proponent of a strategy has an emotional bias towards having it rolled out.

This presents a dichotomy. On the one hand, increased automation reduces the bias
and risk due to explicit human error, but on the other hand algorithmic trading
strategies are entirely dependent on the assumptions underlying the model, which
were again chosen by a human. If these are incorrect, or the model parameters are

3

4 introduction

poorly calibrated, then the discrepancy between the expected market and the true

market — i.e. the epistemic uncertainty — will be great. Fixed strategies are also
incapable of adapting to new market conditions that were not expressly anticipated
in advance, a task which humans are very much capable of. What, then, can we do
to minimise these sources of bias in the journey towards automation?

In this thesis, we explore the intersection of reinforcement learning (RL) and
algorithmic trading. The emphasis will be on robustness, both in terms of model
specification, and in terms of the objective used to define “optimality”. In doing
so, the aim is to provide an answer to the questions posed above by first building
intuition — theoretical and empirical — and then proposing a suite of methods that
address the limitations of past approaches. Unsurprisingly, we will take a “top-down”
approach, posing problems, exploring the space of solutions and providing a practical
guide to researchers and practitioners alike.

1.1 motivation

The vast majority of literature on trading over the last 20+ years — for market
making, optimal execution and inter-temporal portfolio selection — relies on the
theory of optimal control. Problems are described using stochastic processes and
are solved using some variant of dynamic programming [31]. The solutions are
often exact, but the underlying models themselves are only ever approximations of
the true market dynamics. This choice of model is always constrained by solubility
which limits and, arguably, introduces a fundamental bias in the space of research.
One can’t help but ask questions such as:

(i) What would the solutions look like if we had access to a more realistic model?

(ii) Is the language of mathematics currently equipped with the tools for exploring
this question?

(iii) Can we remove the need to specify a model in the first place?

(iv) And is it possible to bridge the gap between analytical methods and simulation-
based methods?

The answer to the latter two is, for the most part, yes, and it is precisely these themes
that we will explore in the course of the thesis.

Another key motivator for this work is to address the distinct lack of simplicity
in many related papers. To quote Einstein [56]:

It can scarcely be denied that the supreme goal of all theory is to make
the irreducible basic elements as simple and as few as possible without
having to surrender the adequate representation of a single datum of
experience.

This is a classic rendition of the principles underlying Occam’s razor, and the varia-
tions therein of Claudius Ptolemy, Isaac Newton and Bertrand Russel, to name a few.
Put in my own words: the hallmark of true science is in the distillation of complexity
into simplicity. That is not to say that the process of discovery itself is easy — as
it rarely is — but rather that the end result teach something new in an effective
way. The more convoluted an approach becomes, the less insight it provides and the
less practical the solution. This is incredibly important in top-down research where
the purpose is to solve a well-defined problem. In this thesis, I aim to do exactly
this: provide insight alongside concrete, performant solutions that are simple to
implement without sacrificing value or merit.

1.2 the thesis 5

1.1.1 Pioneers

Two papers in particular inspired the thought processes behind this work. The first
was the pioneering work of Chan and Shelton [40] who, to the best of our knowledge,
were the first to explore the use of reinforcement learning (RL) for systematic market
making. Their paper proposed a simplified model of the market and experimented
with a selection of state-of-the-art-at-the-time learning techniques. While the work
suffered from the same limitations that we highlighted previously, their methodology
was novel and paved the way towards greater application of approximate dynamic
programming in this space. The second paper, published some 5 years after, was
authored by Nevmyvaka, Feng, and Kearns [119] and focused instead on optimal
execution. Unlike its predecessors, this work took a direct, data-driven approach,
opting to use limit order book (LOB) reconstruction to replay past event sequences
that were known to have occurred. They demonstrated remarkably good results and
helped catapult RL into the mainstream attention of financiers. To this day, their
work and methodology is considered a template for research in this area.

Together, these two papers set the stage for a now rapidly growing field of re-
search. Not only did they demonstrate the power of RL, but they also highlighted
just how interesting this domain is, and it’s value for analysing the performance
of our learning algorithms. Non-stationary environment dynamics, high variance
and delayed reward signals, knowledge representation, model misspecification and
epistemic uncertainty, to name a few, are all challenges that are intrinsic to the inter-
section of RL and algorithmic trading. Taken independently, each of these examples
are known in the artificial intelligence community to be hard to address and have
yet to be solved as a result. While in this thesis we do not consider all of these, we
aim to address some of the important issues and build upon the innovative and
influential contributions of Chan and Shelton, and Nevmyvaka, Feng, and Kearns,
as well as the many others who have since moved this field and our understanding
forwards significantly.

1.2 the thesis

The problems with existing work, as discussed above fall under two main topics:

(i) model discrepancy; and

(ii) validity and interpretability of objectives.

Here “validity” refers to the degree to which the solution matches human notions
of risk-sensitivity. While addressing these core themes, we shall discover that the
two topics can also be grouped under epistemic and aleatoric sources uncertainty,
respectively. This gives rise to an axis of sorts, with the former on the x-axis, and
the latter on the y-axis. The objective of this thesis is to cover all four quadrants of
the matrix, and in so doing answer the following research questions:

6 introduction

Aleatoric Uncertainty

E
p

i
s
t
e
m

i
c

U
n

c
e
r
t
a

i
n

t
y

Q1: How do we exploit data
in LOB reconstruction to min-
imise train-test model ambigu-
ity?

Q2: What techniques are re-
quired to apply RL to re-
alistic settings and promote
risk-sensitivity via the reward
function?

Q3: Is is possible to derive
epistemically robust strate-
gies from improperly speci-
fied models?

Q4: Can risk-sensitive RL be
extended to support human-
interpretable objectives that
aren’t possible to specify in
the reward?

The questions posed above are largely independent. For example, both Q2 and
Q4 could be applied in either data-driven or model-driven learning. We maintain
this separation, which gives rise to Part II and Part III of the thesis (each covering
one column of the matrix), due to

(i) their suitability with respect to the class of algorithms used in each setting;

(ii) the monotonic increase in complexity of the contributions throughout the
thesis, which largely follows the ordering of Q1 to Q4; and

(iii) the chronology of the research conducted and (in some cases) published during
the course of the PhD.

1.3 structure

The first part of the thesis is focused on providing the technical background needed
to understand the contributions presented herein. Chapter 2 first introduces the
family of methods known of as reinforcement learning (RL) and the algorithms that
we build upon for solving decision-making problems. This includes the theoretical
foundations used to define value functions and optimality, and the two main sub-
fields of prediction and control. Chapter 3 then covers algorithmic trading and
quantitative finance, outlining a general framework for how to define portfolios,
assets and strategies in both discrete- and continuous-time. We then contextualise
the role played by RL as a modern approach to deriving strategies for many of the
important problems studied in finance.

The remainder of the thesis is broken up into two mostly independent parts, one
tackling data-driven approaches, the other covering model-driven approaches.

data-driven trading

Chapter 4 provides a thorough decomposition of the computational methods
associated with LOB reconstruction. We begin by presenting a set of techniques for
“replaying” historical events as they would have happened in the LOB. A family of
indicators is then introduced for defining predictors of future market states. This
sets the scene for engineering and evaluating trading strategies.

Chapter 5 explicates the use of RL for learning automated market making strate-
gies in LOB markets. We propose and validate a novel reward function that pro-
motes robust behaviour, and a factored knowledge representation to stabilise
learning. A consolidation of these techniques is presented and shown to produce

1.4 published material 7

effective market making strategies, outperforming a recent approach from the
online learning community.

model-driven trading

Chapter 6 explores some of the key models in quantitative finance and the
intersection with RL. Parallels are drawn between solution methods and a formal-
ism presented for translating stochastic optimal control representations into the
language of artificial intelligence and RL. This includes an analysis of policy distri-
butions and their stability when used in trading applications with gradient-based
methods.

Chapter 7 addresses the concern of epistemic risk in model-driven trading. The
market making problem is re-framed as a zero-sum game between the market
maker and the market. An instantiation of adversarial reinforcement learning
(ARL) is then used to train robust strategies which outperform their traditional
counterparts. We prove in several special cases that a one-shot variant of the
full stochastic game exhibits Nash equilibria that correspond to those observed
empirically.

Chapter 8 focuses on the problem of aleatoric risk in model-driven trading.
A solution based on partial moments — a more “human” measure of risk — is
proposed, theoretically justified and empirically validated on three benchmark
domains. This takes the form of a bound on the general value function used to
estimate risk, and a novel extension of risk-sensitive RL methods to use natural
gradients.

The main content of the thesis concludes with Part IV which binds the contribu-
tions together, providing context and final remarks in Chapter 9. This final chapter
includes a discussion of a number of key future research directions that would be of
great interest and value to study going forward. An illustration of the flow of the
thesis can be found in Figure 1.1.

1.4 published material

1.4.1 Papers

The central themes and contributions put forward in this thesis were derived pri-
marily from the following papers (published and preprint):

Chapter 5 Thomas Spooner, John Fearnley, Rahul Savani, and Andreas Kouko-
rinis. ‘Market Making via Reinforcement Learning’. In: Proc. of AAMAS. 2018,
pp. 434–442

Chapter 7 Thomas Spooner and Rahul Savani. ‘Robust Market Making via
Adversarial Reinforcement Learning’. In: Proc. of IJCAI. Special Track on AI in
FinTech. July 2020, pp. 4590–4596

Chapter 8 Thomas Spooner and Rahul Savani. ‘A Natural Actor-Critic Algo-
rithm with Downside Risk Constraints’. url: https://arxiv.org/abs/2007.
04203

Miscellaneous

Not all the research conducted during the course of the PhD fits within the scope of
this thesis. Other projects, including the study of some game-theoretic aspects of

https://arxiv.org/abs/2007.04203
https://arxiv.org/abs/2007.04203

8 introduction

Chapter 1
Introduction

Chapter 2
RL

Chapter 3
Finance

Chapter 4
LOBs

Chapter 6
Model-Driven

Chapter 5
Data-Driven

Chapter 7
Epistemic Risk

Chapter 8
Aleatoric Risk

Chapter 9
Conclusion

Figure 1.1: Chapter dependence diagram illustrating the suggested routes to be taken through
the thesis. This diagram was heavily inspired by the excellent thesis of Grondman
[73].

generative adversarial networks, as well as an application of Bayesian optimisation
to epidemiological control, are mentioned here for posterity. The latter also yielded
a publication which we mention below:

Thomas Spooner, Anne E Jones, John Fearnley, Rahul Savani, Joanne
Turner, and Matthew Baylis. ‘Bayesian optimisation of restriction zones
for bluetongue control’. In: Scientific Reports 10.1 (2020), pp. 1–18

spaces

domainslfa rstat

rsrl derive

Figure 1.2: Dependency diagram for the ecosystem of crates developed during the course of
the PhD.

https://github.com/tspooner/spaces
https://github.com/tspooner/rsrl/tree/master/rsrl_domains
https://github.com/tspooner/lfa
https://github.com/tspooner/rstat
https://github.com/tspooner/rsrl
https://github.com/tspooner/rsrl/tree/master/rsrl_derive

1.4 published material 9

1.4.2 Code

During the PhD, time was spent developing a robust ecosystem for reinforcement
learning (RL) research in the Rust programming language [141]. What began as a side-
project rapidly became something of an obsession and has since grown considerably.
All of the results presented in Part III, for example, were generated using this suite
of tools. To date, a total of six packages — amongst some other minor contributions
— have been published on the Rust crate registry at https://crates.io with a total of
∼ 20k downloads. The core crate, rsrl, has even been featured in a book [21] on
practical use of Rust for machine learning and on a data science podcast [140]. A
dependency diagram between all six crates is illustrated in Figure 1.2, and a brief
description of their purposes below:

spaces provides set/space primitives for defining machine learning problems
akin to the gym.spaces module used ubiquitously in the Python community.

lfa is a set of native Rust implementations of linear function approximators. It
includes various basis functions and highly efficient, type-generalised (i.e. trait-
level) implementations.

rstat is a crate containing implementations of probability distributions and
statistics in Rust, with integrated fitting routines, convolution support and mix-
tures.

rsrl is a fast, extensible reinforcement learning framework in Rust. It supports
both value-based and policy gradient methods, as well as efficient code for both
prediction and control. The framework revolves around an actor system, such
that each agent can be deployed and interacted with through the same interface.
It includes a number of sub-crates:

domains contains toy domains for RL research with collection primitives for
transitions and trajectories; this crate, too, is very similar to that of gym.

derive is a core (under-the-hood) crate with procedural macros for simpli-
fying many aspects of the rsrl codebase.

https://crates.io

2RE IN FORCEMEN T LEARN ING

2.1 markov decision processes

Markov decision processes (MDPs) are a parsimonious framework for describing
decision-making problems in which an agent interacts with an environment in order
to achieve some goal. At each time t ∈ {0}∪N the agent observes the current state
of the system st and selects a new action to take at. At the next time step, t+ 1,
the agent receives a scalar numerical reward rt+1, and arrives in a new state st+1.
This series of decisions and innovations gives rise to temporal sequences called
trajectories (or histories) denoted by

ht:(t+n)
.
= (st,at, st+1, . . . , st+n−1,at+n−1, st+n) , (2.1)

with ht
.
= ht:∞. Formally, this description is known as an infinite-horizon MDP

in discrete-time [134], comprising: a state space s ∈ S, (state-dependent) action Continuous-time

MDPs exist but are

considerably more

involved. See e.g.

Bertsekas and

Tsitsiklis [19].

space a ∈ A(s) ⊆ A, set of rewards r ∈ R ⊆ R, and corresponding space of n-step
trajectories given by the product ht:(t+n) ∈ Hn = (S,A)n × S, with H

.
= H∞.

In this thesis we assume that the state space is continuous — i.e. S ⊆ RN for
some N > 0 — but allow for either discrete or continuous action spaces as required.
The behaviour of such an MDP is described by two key properties: an initial state
distribution with density function d0 : S→ R+, for which we require the integral
condition

∫
S d0(s) ds = 1 ∀ s ∈ S; and a dynamics function p : S×R×S×A→ R+

which defines a joint distribution over the set of successor states and rewards for any
state-action pair. As with the initial state distribution, we require that the dynamics
process is well-defined, such that∫

S

∫
R

p
(
s ′, r

∣∣ s,a) drds ′ = 1 ∀a ∈ A(s), s ∈ S.

The probability of transitioning from a state st−1 to a state st in the region St ⊆ S, By virtue of S being

continuous, the

probability of

transitioning to any

single state s ′ is zero.

See Section 5.1

of Dekking,

Kraaikamp, Lopuhaä,

and Meester [51].

following an action at, may thus be expressed as

Pr{st ∈ St | st−1 = s, at−1 = a} =

∫
St

p(st | s,a) dst, (2.2)

where we denote by p(s ′ | s,a) the state-transition kernel (see Klenke [92])

p
(
s ′

∣∣ s,a) = ∫
R

p
(
s ′, r

∣∣ s,a) dr. (2.3)

This function maps each state-action pair to a probability measure defined on the
state-space. A key property of (2.3) is that there is no direct dependence on states or
actions preceding s and a. This means that the probability of transitioning into a
new state s ′ is independent of the history (i.e. the path leading up to s), conditioned
on the present,

Pr
{
st ∈ St

∣∣∣h0:(t−1)} = Pr{st ∈ St | st−1 = s, at−1 = a} . (2.4)

This is known as the Markov property. Hence Markov
decision process.From these core definitions, we can derive just about any quantity needed in RL.

Of particular relevance are reward functions, which are defined as expectations over
rewards with respect to the transition dynamics and policy distribution. For example,

11

12 reinforcement learning

r : S×A× S→ R defines the average reward generated by a given state-action-next
state triple:

r(s,a, s ′) .
=

∫
R

p
(
r, s ′

∣∣ s,a) r dr, (2.5)

We can then define a function which maps state-action pairs to expected rewards,
r : S×A→ R, by marginalising over the possible successor states, leading to the
integral equation

r(s,a) .
=

∫
S

r(s,a, s ′)p
(
s ′

∣∣ s,a) ds ′ = Es ′∼p(· |s,a)
[
r(s,a, s ′)

]
. (2.6)

These quantities all feature prominently in the literature and are used as a local
gauge of performance.

2.1.1 Policies

The behaviour of an agent acting in an MDP is characterised by a policy π ∈ Π.
These functions can depend explicitly on time or even the entire history of states,
actions and rewards. In this thesis we restrict our searches to the class of stationaryThis generalises the

notion of stationary

deterministic policies

since any function

π : S→A may be

represented as a Dirac

distribution.

(Markovian), stochastic policies Πs ⊂ Π, such that π : S → ∆(A) for π ∈ Πs,
and ∆(A) denotes the set of probability measures on A; i.e. when A is absolutely
continuous, π(a | s) is a probability density function over actions in a given state s.
Policies of this kind do not depend on time (stationarity), and are randomised with
respect to their input (stochasticity). It is also well known that, for a wide class of
models — including discounted and average reward optimality criteria — there exists
at least one deterministic optimal policy which is captured by Πs [134]. For brevity,
we will refer to these “stationary policies” as simply “policies” herein.

It is now possible to define a probability distribution over the space of trajectories
by evaluating π(a | s) at each step along a temporal sequence:

p
(
ht:(t+n)

∣∣∣ st, π) =

n−1∏
k=0

p(st+k+1 | st+k,at+k) π(at+k | st+k) . (2.7)

Given the distribution of initial states d0(·), we may also extend (2.7) above to
express a distribution over histories as the product

p(h0 |d0, π) = d0(s0) p(h0 | s0,π) . (2.8)

The explicit dependence on π is typically omitted from these expressions when it
is clear from context, such that p

(
ht:(t+n)

∣∣∣ st) = p
(
ht:(t+n)

∣∣∣ st, π). Similarly,
we may now extend the reward function definitions, (2.6) and (2.5), to a function
r : S→ R by marginalising over the paths from one state to the next:

rπ(s)
.
=

∫
A

r(s,a)π(a | s) da = Ea∼π(· |s)[r(s,a)] , (2.9)

= Es∼p(· |s,a),a∼π(· |s)
[
r(s,a, s ′)

]
.

An important subclass of behaviours that features prominently in this thesis —
and indeed the wider literature — is the set of stationary, parameterised policies
Πs,θ

.
=

{
πθ ∈ Πs : θ ∈ R|θ|

}
. A parameterised policy πθ(a | s) is a continuouslyClearlyΠs,θ ⊂ Πs

by construction. differentiable function with respect to the weights θ. While Πs,θ does not enjoy the
same theoretical performance guarantees as Πs, there is overwhelming evidence
that this is not generally a problem in practice [85]. Indeed the set Πs,θ forms the
foundation of the policy gradient methods covered in Section 2.4.2.

2.1 markov decision processes 13

2.1.2 Stationary Distributions

Take an MDP and a fixed policy, and define the function

p
(
s ′

∣∣ s) .
=

∫
A

p
(
s ′

∣∣ s,a) π(a | s) da. (2.10)

This describes the probability of transitioning from a state s to a state s ′ in a single
step, weighted by the likelihood of each path under π. With this definition we have
essentially reduced the MDP-policy pair into a Markov chain (i.e. an uncontrolled
sequence of states with Markovian transition dynamics). This is a crucial insight as
it allows us to leverage the notion of transition kernels and stationary distributions in
RL. Specifically, the n-step transition kernel — i.e. the probability of transition from
a state st to a state st+n in exactly n steps — is given by the integral equation

Knπ(st, st+n)
.
=

∫
At

∫
S

∫
At+1

. . .

∫
S

∫
At+n−1

p
(
ht:(t+n)

∣∣∣ st)
dat dst+1 dat+1 . . . dat+n−1 dst+n−1, (2.11)

where the action integrals are being evaluated over the subsetsAt
.
= A(st). Unrolling

the trajectory distribution, we find that this expression reduces to an integral over
products of 1-step kernels:

Knπ(st, st+n) =
∫
S

. . .

∫
S

n−1∏
k=0

Kπ(st+k, st+k+1)dst+1 . . . dst+n−1

where Kπ(s, s ′)
.
= K1π(s, s ′) = p(s ′ | s). With some manipulation, this equation can

be expressed in a recursive form,

Kn+1π (s, s ′′) =
∫
S

Knπ(s, s
′)Kπ(s

′, s ′′)ds ′, (2.12)

which is a special case of the Chapman-Kolmogorov equations [134].
Equation 2.12 is important because it allows us to analyse, more rigorously, the

long-term behaviour of the Markov chain induced by an MDP-policy pair. For any
given start state s0 ∼ d0(·), we are now able to define the probability of arriving at
any other state after any number of time steps. As a result, we can also define the
average state distribution,

dπ(s)
.
= lim
n→∞ 1

n

∫
S

d0(s0)

n∑
t=0

Ktπ(s0, s)ds0, (2.13)

as the mean occupancy of a state, and, similarly, the discounted average state distri-

bution

dγπ(s)
.
=

∫
S

d0(s0)

∞∑
t=0

γtKtπ(s0, s)ds0, (2.14)

where 0 < γ < 1 is known as the discount factor. Note that (2.13) and (2.14) are both
finite by construction, since Knπ(s, s ′) outputs probabilities (i.e. values in [0, 1]), and
either γ < 1 or the MDP has an absorbing state (by assumption) [134]. These feature
prominently in policy gradient literature as a natural way of defining optimisation
objectives.

14 reinforcement learning

2.1.3 Performance Criteria

The goal of any agent in RL is to identify a policy that maximises the expected value
of some function of the sequence of rewards generated while following said policy.
This value can be expressed as

J(π)
.
= Ed0,π[g(h)] =

∫
H

p(h |d0, π) g(h)dh (2.15)

where g(·) can be any bounded function of trajectories. This is typically given
by either a discounted sum or an average over rewards to define a “reward-to-go”

objective. In this thesis we only concern ourselves with the former, for which weMost results in RL can

be easily translated

between the two

regimes.

define the n-step return, starting from time t, by the summation

Gt:(t+n)
.
=

n∑
k=0

rt+k+1 = rt+1 +G(t+1):(t+n), (2.16)

and the discounted return by the geometric series

G
γ
t:(t+n)

.
=

n∑
k=0

γkrt+k+1 = rt+1 + γG
γ
(t+1):(t+n)

, (2.17)

where γ ∈ [0, 1] is the discount rate,Gγt
.
= Gγt:∞ andGγ .

= Gγ0 ; equivalent definitionsThe discount factor

may actually be any

function of state

γ(s), subsuming the

constant form

presented here.

for the undiscounted return are assumed. Note that, when γ = 1, Equation 2.17 is
bounded only if there is a probability 1 of reaching an absorbing/terminal state. Such
a state emits a reward zero and only transitions back to itself, regardless of the chosen
action. The reward-to-go objective in this case now reduces to J(π) = Ed0,π[G

γ],
which may also be expressed in terms of the discounted state distribution,

J(π) = Edγπ,π[r(s)] =

∫
S

dγπ(s)

∫
A(s)

π(a | s) r(s,a)dads. (2.18)

2.1.4 Value Functions

Value functions measure the total expected reward that would be accumulated under
a policy at any a given state. They are an invaluable set of tools for evaluating the
performance in an MDP and date back to the seminal work of Bellman [17], forming
the backbone of dynamic programming and many of the techniques used in RL.
Indeed, the fields of both prediction (Section 2.3) and control (Section 2.4) revolve
around estimating these functions from interactions with an environment. The two
main value functions used in RL are the state-value functionTaking the limit here

stresses the need for

convergent sequences

if the value functions

are to be well defined.

Vγπ (s)
.
= lim
n→∞ Eπ

[
G
γ
t:(t+n)

∣∣∣ st = s] , (2.19)

= lim
n→∞ Eπ

[
n∑
k=0

γkr(st+k,at+k)

∣∣∣∣∣ st = s
]

,

and the action-value function

Qγπ(s,a)
.
= lim
n→∞ Eπ

[
G
γ
t:(t+n)

∣∣∣ st = s,at = a] , (2.20)

= lim
n→∞ Eπ

[
n∑
k=0

γkr(st+k,at+k)

∣∣∣∣∣ st = s,at = a
]

,

where the undiscounted value functions are denoted by Vπ
.
= V1π and Qπ

.
= Q1π,

respectively. Both Vγπ and Qγπ have the interpretation of being scalar potential
functions over the spaces S and S×A, respectively.These are analogous

to the potentials

arising in such as

electromagnetism (i.e.

Maxwell’s equations).

2.1 markov decision processes 15

s

a

s ′

r

π

p

Figure 2.1: Backup diagram ofVπ(s) [162]. Empty nodes represent states, solid nodes represent
actions, and paths correspond to transitions/agent decisions.

bellman equations An important property of the state- and action-value
functions is that they can be defined recursively. In other words, the quantities Vγπ
andQγπ may be written as functions of themselves at future states. This derives from
the recursive nature of the return sequences (2.16) and (2.17), and the linearity of
expectation. For example, the latter satisfies a consistency condition of the form:

Qγπ(s,a) = r(s,a) + γ
∫
S

p
(
s ′

∣∣ s,a) ∫
A(s ′)

π
(
a ′

∣∣ s ′) Qγπ(s ′,a ′)da ′ ds ′,

(2.21)

= r(s,a) + γ
∫
S

p
(
s ′

∣∣ s,a) Vγπ (s ′)ds ′,

= r(s,a) + γE [Vγπ (st+1) | st = s,at = a] .

Here we have written the action-value function as a combination of the expected
reward (Equation 2.6) and the value at possible successor states, weighted under the
policy π and transition kernel. The state-value function has a similar decomposition:

Vγπ (s) =

∫
A

π(a | s)

(
r(s,a) + γ

∫
S

p
(
s ′

∣∣ s,a)Vγπ (s ′)ds ′
)

da, (2.22)

= Eπ[r(s,at) + γVγπ (st+1) | st = s] ,

= rπ(s) + γEπ[V
γ
π (st+1) | st = s] .

Equations 2.22 and 2.21 are known as the Bellman equations, and an illustration of
the relationship for Vγπ (s) is given in Figure 2.1.

advantage function Another important quantity is the advantage function,
defined as the difference between the action-value and the state-value,

Aγπ(s,a)
.
= Qγπ(s,a) − V

γ
π (s). (2.23)

This quantity features prominently in policy gradient methods (Section 2.4.2) due to
the fact that it maintains the same ordering over actions, This is evident from

the fact that (2.23) is

a monotonic

transformation.

Qγπ(s,a) ⩾ Q
γ
π(s,a

′) ⇐⇒ Aγπ(s,a) ⩾ A
γ
π(s,a

′) ∀ s ∈ S; a,a ′ ∈ A,

and because the state-dependent offset has been removed, such that the expected
value of the advantage function in any state s is zero; i.e.∫

A

π(a | s) Aγπ(s,a)da = 0,

which follows trivially from (2.21) and (2.22). As we shall see later, this function arises
in many value-based control methods (Section 2.4.1), and leads to some favourable
properties compared with (2.20) that improves learning efficiency in both policy
gradient and actor-critic methods (Section 2.4.3).

16 reinforcement learning

2.1.5 Optimality

As stated in Section 2.1.3, the goal of any agent is to maximise some expected quantity
derived from the sequences of rewards. In the case that we want to maximise the
expected value of (2.17), we now see that the objective J(π) reduces to

J(π) = Ed0,π[V
γ
π (s0)] . (2.24)

The importance of value functions should now be clear: they define a total partial
ordering over policies, such that

π ⪰ π ′ ⇐⇒ Vγπ (s) ⩾ V
γ
π ′(s) ∀s ∈ S. (2.25)

An optimal policy π⋆ is then defined such that the associated state- and action-value
functions are maximal for all s ∈ S and a ∈ A(s):

Vγ⋆ (s)
.
= max

π
Vγπ (s) = V

γ
π⋆

(s), (2.26)

and

Qγ⋆ (s,a)
.
= max

π
Qγπ(s,a) = Q

γ
π⋆

(s,a). (2.27)

These are known as the optimal state-value and optimal action-value functions,
respectively. For a large class of MDPs, it is well understood that there exists at least
one optimal stationary policy satisfying these criteria, and that these optimal values
are indeed unique; see e.g. Section 6.2 of Puterman [134]. What’s more, at least one
of these optimal behaviours must be deterministic. This, however, says nothing of
policy uniqueness, and indeed there may be more than one policy producing Vγ⋆
and Qγ⋆ ; i.e. it is a necessary but not sufficient condition. We refer to any optimal
policy by π⋆.

bellman optimality equations As in Section 2.1.4, we require that the
optimal value functions be self-consist. For the state-value function this gives rise to
a Bellman optimality equation of the form

Vγ⋆ (s) = max
a∈A(s)

Qγπ⋆
(s,a),

= max
a∈A(s)

E [r(s,a) + γVγ⋆ (st+1) | st = s,at = a] , (2.28)

and for the action-value function, the condition

Qγ⋆ (s,a) = E

[
r(s,a) + γ max

a ′∈A(st+1)
Qγ⋆ (st+1,a ′)

∣∣∣∣ st = s,at = a] . (2.29)

These derive directly from the definitions (2.26) and (2.27), and the recursive property
of value functions. In general, unique solutions to these equations can be shown
to exist in both finite and continuous (state/action/time) MDPs under mild technical
conditions [118, 134].

optimal policies It is clear from (2.28) and (2.29) that an optimal policy is one
which chooses actions yielding the highest value in every state s ∈ S. Given the
action-value function Qγ⋆ (s, ·) and a state s, the choice over which action to select
reduces to an optimisation problem over A(s). Note that we need only consider aIn discrete action

spaces this can be

implemented via

enumeration in linear

time. In continuous

action spaces it is not

quite so simple.

single step of the MDP, and thus the problem is essentially one of one-step search.
A policy that acts according to this metric is said to be greedy with respect to the
value function Vγ⋆ (s). For example, a stochastic greedy policy can be defined as

π⋆(a | s)
.
= δ (a ∈ A⋆(s)) =

1

|A⋆(s)|
if a ∈ A⋆(s),

0 otherwise,
(2.30)

2.2 function approximation 17

where A⋆(s)
.
= {a ∈ A(s) : Qγ⋆ (s,a) = maxa ′∈A(s)Q

γ
⋆ (s,a ′)} is the subset of opti- Clearly if there is a

state s for which

|A⋆(s)| > 1, there

exist an infinite

number of optimal

policies.

mal actions for each state s, and |A⋆(s)| denotes the size of this set. The deterministic
variant of (2.30) would simply choose between one of the actions in A(s) using some
fixed decision rule, leaving probability density on a single value. More generally,
any policy that places its probability mass only on elements of A⋆(s) is optimal.

2.2 function approximation

In MDPs with discrete state- and action-spaces, the value functions Vγπ andQγπ may be
represented trivially as matrices; i.e. for each state (respectively, state-action pair), we
simply assign a unique real scalar. While this setting comes with its own challenges
— revolving mainly around inefficiency and scaling (the curse of dimensionality)
— the use of a lookup table allows for exact recovery of the true value functions.
For continuous domains, however, we must resort to approximate methods since
there is no feasible way of representing the entire space of value functions without
reconstruction error. In general, any approximation will likely lead to a phenomenon
known as “perceptual aliasing” [43] in which indistinguishable states with respect to
the approximation require different actions. This pathology arises often when there
are discontinuities in the state-space such as walls or other imposed constraints.

In this thesis we restrict ourselves to the space of linear (in-the-weights) functions.
These are expressed as the inner product between a finite set of weights and a
collection of basis functions, such as ϕi : S→ R or ϕi : S×A→ R. In this setting,
approximators for the state-value function are expressed as

V̂v(s)
.
= ⟨v,ϕ(s)⟩ =

m∑
i=1

viϕi(s), (2.31)

and for the action-value function by

Q̂w(s,a) .
= ⟨w,ϕ(s,a)⟩ =

m∑
i=1

wiϕi(s,a), (2.32)

where ϕ(s) and ϕ(s,a) map inputs intom-dimensional column vectors, and v,w ∈
Rm are m-dimensional row vectors; note the circumflex is used more generally to
mark function approximators. This choice leads to simple learning algorithms and
amendable error surfaces, despite the fact that the basis functions themselves may
be arbitrarily complex. Exactly how one constructs these basis functions for a given Indeed, this is the

main argument in

favour of models that

automatically extract

features, such as deep

neural networks.

problem, however, is a non-trivial question that depends on the properties of the
problem domain.

In the following sub-sections, we present some of the standard techniques used
throughout the literature, and those used in the research presented herein. We will
focus only on functions of the form in Equation 2.31, and assume that the state space
is defined on the n-dimensional set of real values; i.e. S = Rn. A state s ∈ S will
thus be denoted by the vector s = [s1, . . . , sn]. The last sub-section will then cover
methods for representing action-value functions when A is discrete/ordinal.

2.2.1 Local Representations

partitioning Perhaps the simplest way of representing functions in a contin-
uous space is to use a piecewise-constant approximation. In this case, the domain Essentially we have

constructed a finite,

partially-observable

MDP to serve proxy.

is partitioned into a finite set of m disjoint boxes. The ith feature in the basis is
then associated with a single box, bi, such that ϕi(s) = 1s∈bi . The key advantage
of this approach is that we can increase the resolution as much as required with
no overhead in computational cost of evaluation — we just perform a table lookup.

18 reinforcement learning

(a) Ground Truth (b) Tile Coding
(|k| = 1)

(c) Tile Coding
(|k| = 16)

(d) RBF Network

(e) 3rd-order Polynomial (f) 5th-order Polynomial (g) 5th-order Fourier (h) 7th-order Fourier

Figure 2.2: Collection of function basis representations approximating the 6th Bukin function,
f(x,y) = 100

√
|y− 0.01x2|+ 0.01|x+ 10|, learnt using stochastic gradient descent.

•

Figure 2.3: An example illustration of the tile coding representation. Three tilings are shown,
for which the activated tiles are highlighted around the point state instance.

As m → ∞, we will able to recover the function exactly; this is just integration.
The memory required to uniformly cover the space, however, scales exponentially
with |S|, and the amount of experience required to estimate the value of each bin
independently — i.e. without generalising — quickly becomes intractable.

tile coding A better approach for sparse representations, which facilitates
generalisation with reduced memory requirements, is tile coding (a form of coarse
coding). In this scheme we construct |k| “tilings,” each of which is a unique parti-
tioning over the state space with ki boxes for a total of m =

∑|k|
i=1 ki features and

the ability to share information across receptive fields; see Figure 2.3. This results in
a “smoothing” of the boundaries between tiles and, in principle, improved estimates
at any one point in the space. As with simple partitioning, the computational cost is
very low — linear in |k| — but now the memory requirements can be controlled by
either refinement (exponential), or by the addition of more tilings (linear).

2.2 function approximation 19

rbf networks Radial basis function networks are one extension of the basic par-
titioning representation to continuous features. In this case, the basis is constructed
from a collection of prototype Normal distributions,

ϕi(s) =
1√

(2π)k detΣ
exp

{
−
1

2

〈
(s− ci) ,Σ−1 (s− ci)

〉}
, (2.33)

where π here should be taken as the mathematical constant. Here, the values ci are
the centres of each node in the state space, and Σ denotes the covariance matrix
between dimensions of S. In the majority of cases, Σ is taken to be a diagonal
matrix which greatly simplifies computations and improves stability during gradient
updates. As illustrated in Figure 2.2, the continuity implied by the distance metric
above leads to a smooth approximation of the value function. This compares to the
previous examples which are more discontinuous.

2.2.2 Global Representations

polynomial basis An important and frequently used linear representation —
first pioneered by Lagoudakis and Parr [96] — is the polynomial basis. In this scheme,
an n-dimensional state s is projected onto an m-dimensional feature-space using
basis functions of the form

ϕi(s) =

n∏
j=1

s
eij
j , (2.34)

where eij denotes the exponent of the jth state-variable along the ith feature di-
mension; the zeroth term is usually taken to be a constant such that e0j = 0 ∀ j ∈
{1, . . . ,n}. The structure of the matrix eij will have a significant bearing on the
relationships between state-variables that can be represented. There is once again a
trade-off between representational capacity, the risk of over-fitting, and the curse of
dimensionality. All of these can be addressed through careful construction of eij, Implementations

should ensure that eij
is a triangular matrix.

such as reducing the number of cross-terms and using domain knowledge to limit
complexity.

fourier basis An important limitation of the polynomial basis is that higher
order terms can be very unstable when the state-variables are not properly scaled. Fourier

transformations arises

frequently in e.g. the

physical sciences and

in signal processing.

An alternative approach is to use the cosine terms of a Fourier series expansion; i.e.
represent the value function as a sum of periodic functions over the interval [0, 1]n.
This choice is motivated in part by the fact that any periodic function (or arbitrary
function defined on the period interval) can be represented this way. The ith feature
of the Fourier cosine basis takes the form

ϕi(s) = cos(π ⟨ci, s⟩) , (2.35)

where ci
.
= (c11, . . . , c1n) is the integer coefficient vector, with cij ∈ {0, . . . ,k}

and 0 ⩽ j ⩽ n; note that π should be taken as the mathematical constant here. As
shown by Konidaris, Osentoski, and Thomas [95], this basis often outperforms both
the polynomial and RBF bases, and even performs competitively on problems with
discontinuities. While it is known to struggle at representing flat landscapes (due to
the Gibbs phenomenon [65]), experimental evidence suggests that this an effective
method for use in RL.

20 reinforcement learning

-0.25 0.0 0.25 0.5 0.75 1.0 1.25

x

-0.5

-0.25

0.0

0.25

0.5

0.75

1.0

1.25

1.5

f
(x

)

Ground Truth
Polynomial
Stacked

Figure 2.4: Illustration of two least squares approximations of a discontinuous polynomial
function. The stacked basis combines the polynomial basis with a standard, uniform
partitioning.

2.2.3 Extensions

2.2.3.1 Stacking

It is worth noting that there are no restrictions on how these representations are
used or combined. As we have seen, each basis comes with it’s own unique set of
merits and limitations. In some cases, these may be mutually beneficial. For example,
one could use a linear basis in tandem with tile coding to combine the benefits
of generalisation that come from global estimation with the precision of localised
features; see Figure 2.4 for an illustration of this point. While this all depends on the
particular problem being solved, the construction of the feature set is tantamount to
the construction of the solution space.

2.2.3.2 Anchoring

In the case of a finite horizon MDP, with horizon 0 < T <∞, we know that the value
at any terminal state is necessarily zero. In many cases, this manifests in the value
function as a discontinuity at the boundary between t < T and t = T . This can lead
to inaccuracy at the boundaries of the estimator. One can improve the stability of
function approximation by explicitly constraining the terminal value to be zero. This
means that the basis, ϕ(s), need not handle the discontinuity itself which greatly
improves performance, especially for global representations. As an example, one
might define the approximator as

V̂v(s)
.
=

⟨v,ϕ(s)⟩ for t < T ,

0 otherwise.

We shall use this construction implicitly throughout the thesis, unless otherwise
stated.

2.2.3.3 Handling actions

So far we have shown that there many ways to construct LFA!s (LFA!s) when the
arguments to the basis functions are real vectors. However, it’s not immediately
clear how these translate to action-value representations when the action space is
discrete or ordinal. For example, it would be highly unnatural — and ill-defined —

2.3 policy evaluation 21

to map actions of the form a ∈ {OpenDoor,MoveToTarget, . . . } directly through a
polynomial basis. This is only valid, in any sense, when the actions themselves are
real vectors. In general, this issue is handled by assigning a set of basis functions to
each of the individual actions such that

ϕ(s,a) =

 | |

1a1 ⊙ϕ(s,a1) · · · 1an ⊙ϕ(s,an)

| |

 , (2.36)

where n = |A| and ⊙ denotes the Hadamard product. The value function would
then be represented as the Hadamard product of an (m×n)-dimensional feature
matrix and an (m×n)-dimensional weight matrix, and summing the values in each
column. The resulting n-dimensional vector would contains the Q-values for each We can implement

this efficiently by

exploiting sparsity.

action. For improved learning efficiency, one can also include an action-independent
baseline term. This facilitates sharing of mutual information between actions.

2.3 policy evaluation

See the excellent

survey by Dann,

Neumann, Peters, et al.

[48] for a thorough

exposition of policy

evaluation methods.

Estimating value functions from (partial) interactions with an environment under-
pins many of the algorithms used in RL. Indeed, the ability to predict quantities
associated with a task is helpful in many domains in and of itself. As we saw in
Section 2.1.4, the two most common cases are that of the state-value function Vγπ and
action-value function Qγπ, but these are by no means exhaustive. Value functions
can be used to estimate risk [150, 159], predict the time before an event occurs, or
answer “what-if” questions about a domain [165].

Consider the problem of learning to estimate the state-value function Vγπ (Equa-
tion 2.19) from interactions generated by a policy π. In this thesis, we assume the This is known as the

on-policy prediction
problem.

model-free setting in which the agent only has access to a black-box simulator of the
environment; when the model is known to the agent, the setting is instead known
as model-based RL. Our objective is to find an approximator, V̂v, that minimises the
distance from the true function, which we express in terms of the mean squared

error,

MSE(v) .
=

∥∥∥V̂v − Vγπ

∥∥∥2
µ
=

∫
S

µ(s)
[
V̂(s) − Vγπ (s)

]2
. (2.37)

The function µ : S → R denotes any stationary distribution over states, which is
usually taken to be dγπ. This is just an instance of a weighted least-squares regression
problem and, if the approximator is continuously differentiable with respect to it’s
weights, v, then the gradient of (2.37) is given by

2∇MSE(v) =
∫
S

µ(s)
[
V̂(s) − Vγπ (s)

]
∇vV̂v(s), (2.38)

= Es∼µ(·)

[[
V̂(s) − Vγπ (s)

]
∇vV̂v(s)

]
,

which follows from Leibniz’s integral rule. Evaluating this integral, however, is
usually intractable since S may be very large. Instead, we exploit the fact this this
expression takes the form of an expectation with respect to the distribution µ, and
use stochastic gradient descent to update the weights incrementally in the direction
of steepest descent in the mean-squared error. This leads to a stochastic sequence of
weights

vt+1 ← vt −αt

[
V̂v(st) − V

γ
π (st)

]
∇vV̂v(st), (2.39)

where the factor 1/2 has been subsumed into the learning rates αt.

22 reinforcement learning

Iterative methods of this form belong to a class of stochastic approximation algo-

rithms that can be solved using the Robbins-Monro procedure [138]. As a result, we
know that the true value function in Equation 2.39 can actually be replaced by any
target,Ut ∈ R, that is an unbiased estimator of Vγπ without affecting the fixed-point.
These stochastic updates are guaranteed to converge to a local optimum under mild
technical conditions, including that the learning rates αt ⩾ 0 satisfy∞∑

t=0

αt = ∞, and
∞∑
t=0

α2t <∞; (2.40)

these are known as the Robbins-Monro conditions. The proof of this result was
shown by Borkar [25] using a beautiful technique, now known as the ODE method.
From similar arguments, concentration with high probability in a neighbourhood
of a fixed point can also be shown for fixed learning rates, but the this result is
clearly much weaker [25]. Perhaps the most natural choice for the target is the
discounted return sequence generated by interacting with the environment, since
Ut

.
= G

γ
t is an unbiased estimator of the true value function by definition (2.19).

Algorithms using this target are known as Monte-Carlo methods and they suffer from
two key limitations: first, they require full trajectory rollouts to generate estimates;
and second, they have variance that scales with the length of the trajectories,

V
[
G
γ
t

]
=

∞∑
i=0

γ2iV [rt+i] +
∑
i ̸=j

γi+jCov
[
rt+i, rt+j

]
.

This presents a dichotomy: while many rollouts are needed to reduce uncertainty,
collecting full return sequences takes an indefinite length of time. The remainder of
this section is dedicated to other choices for Ut that are known to alleviate precisely
these issues.

2.3.1 Temporal-Difference Methods

Monte-Carlo methods, as outlined above, are something of a brute-force approach to
generating estimates of Vγπ . Because they make no use of consolidated information,
they require complete policy trajectories in order to construct a single estimate.
While this leads to unbiased updates, the increased variance of the estimator often
renders the approach impractical. On the other hand, if we were to use our estimate
of the value function in place of the target — i.e. let Ut

.
= V̂w(st) — we would be in

the opposite regime: one of total bias in exchange for zero variance.
The insight of temporal-difference (TD) methods is to note that there exists a

spectrum of algorithms at the intersection of these two extremes that balance bias
and variance. In general, this use of consolidated information in forming an target
for the stochastic approximation scheme is known as bootstrapping. The idea derives
from dynamic programming principles and the recursive definition of the value
function (Equation 2.22) which may be unrolled to form a family of n-step bootstrap
estimates,Ut

.
=

∑n
i=1 γ

i−1rt+i+γ
nV̂v(st+n). Clearly, as n decreases, so too does

the variance at the expense of increasing the bias; note that the Monte-Carlo target
is recovered in the limit as n→∞.

Technically speaking, the n-step bootstrap targets do not yield true gradient
descent updates as we have retrospectively ignored the dependence on v in Equa-
tion 2.38. Instead, they fall under the category of semi-gradient methods which doBaird [13] was the

first to note this,

proposing an

alternative

“residual-gradient”

algorithm, but this

comes with it’s own

challenges.

not converge as robustly — save for a few special cases such as with linear architec-
tures [175] — but have the benefit of fast learning and the ability to do online updates.
One prototypical algorithm, known as TD(0), makes use of the 1-step bootstrap
target, for which we define the canonical Bellman error,

δ
γ
t

.
= rt+1 + γV̂v(st+1) − V̂v(st); (2.41)

2.3 policy evaluation 23

Algorithm 1 Episodic semi-gradient TD(0)

1: procedure TrainEpisode(d0, π, p, V̂v, α, γ)
2: Initialise s ∼ d0(·)
3: while s non-terminal do

4: Sample a ∼ π(· | s) and (r, s ′) ∼ p(·, · | s,a)
5: Compute δγ ← r+ γV̂v(s

′) − V̂(s)

6: Update v← v+αδγ∇vV̂v(s)

7: Innovate s← s ′

8: end while

9: end procedure

Algorithm 2 Episodic semi-gradient SARSA(0)

Require: initial state distribution d0, policy π, transition kernel p and differentiable
function Q̂w with learning rate α

1: Initialise s ∼ d0(·)
2: loop

3: Sample a ∼ π(· | s) and (r, s ′) ∼ p(·, · | s,a)
4: if s ′ non-terminal then

5: Sample a ′ ∼ π(· | s ′)
6: Compute δγ ← r+ γQ̂(s ′,a ′) − Q̂(s,a)
7: Update w← w+αδγ∇Q̂(s,a)
8: Innovate (s,a)← (s ′,a ′)
9: else

10: Compute δγ ← r− Q̂(s,a)
11: Update w← w+αδγ∇Q̂(s,a)
12: Initialise s ∼ d0(·)
13: end if

14: end loop

the corresponding pseudocode is given in Algorithm 1. Of course, this expression
generalises to any n, but the choice of what lookahead to use depends entirely on
the problem setting. In Section 2.3.2 we show how this can be done in a principled
way through the use of eligibility traces.

action-value estimation The extension of the policy evaluation methods
described thus far to action-value functions is trivial. The only difference is that the
prediction targets are now associated with a state-action pair, not just a state. As
before, we can use n-step returns as a target for incremental learning, and, as before,
we are faced with the same trade-off between bias and variance. It follows that we
can define an analogous 1-step Bellman error,

δ
γ
t

.
= rt+1 + γQ̂w(st+1,at+1) − Q̂w(st,at), (2.42)

for which the corresponding algorithm is known as SARSA(0); see Algorithm 2.

expected sarsa In certain special cases we can actually reduce the variance
on the Bellman residual even further by replacing the second term in (2.42) to give

δ
γ
t

.
= rt+1 + γEa ′∼πθ(· |st)

[
Q̂w(st+1,a ′)

]
− Q̂w(st,at), (2.43)

= rt+1 + γV
γ
π (s
′) − Q̂w(st,at).

24 reinforcement learning

When A is discrete, and we are able to effectively enumerate the action-values, then
this reduces to a summation over the values in A, such that

δ
γ
t = rt+1 + γ

∑
a ′∈A

πθ
(
a ′

∣∣ st) Q̂w(st+1,a ′) − Q̂w(st,at).

As shown by Van Seijen, Van Hasselt, Whiteson, and Wiering [177], the resulting
algorithm, known as Expected SARSA, is more stable than SARSA because it
marginalises out the randomness due to the sampling of at+1 ∼ πθ(· | st+1). The
key point to take from this is that the target, Ut, can be engineered to have the
properties we require for a particular problem. In the context of trading, variance
reduction will turn out to be particularly important, as we show in Chapter 5.

2.3.2 Eligibility Traces

So far, only three special cases of the n-step bootstrap targets have been considered:
n ∈ {0, 1,∞}. Yet, there exists an infinite number of possibilities for finite values of
n > 1. Indeed, any convex combination of these targets yields another viable choice;
e.g. Ut = 1

2G
γ
t:t+2 +

1
2G
γ
t:t+5 + V̂

γ(st). All of these trade-off bias against variance,
but the “best” construction to use depends entirely on the problem at hand, and it is
unclear how one establishes this a priori. An alternative approach is to mix between
all of the targets simultaneously using what is known as the λ-return. It is well
understood that this leads to much more efficient learning, and offers a principled
way of interpolating between Monte-Carlo and temporal-difference methods.

The λ-return target is defined formally as the geometric series over all n-step
returns and tail values,

U
γλ
t:t+n

.
= (1−λ)

[
n−1∑
i=1

λi−1G
γ
t:t+i + γ

iVγπ (st+i)

]
+λn−1

[
G
γ
t:t+n + γnVγπ (st+n)

]
,

(2.44)

and Uγλt
.
= U

γλ
t:∞, where λ is the decay rate. For λ ∈ [0, 1], we can show that the

expected value of (2.44) is again that of the true value function, and thus Uγλt is
an unbiased target for stochastic approximation. Combining this with the insights
of Section 2.3.1, we can construct a TD error based on this interpolated target,
δ
γλ
t

.
= U

γλ
t − V̂v(st), where Vγπ (s) in (2.44) is replaced with the biased estimator

V̂v(s). This can now be used in lieu of (2.41) or (2.42) as the error term of our
stochastic approximation. As before, this modified error is biased, but the trade-off
between bias and variance can now be controlled through the choice of decay rate,
λ. For λ = 0, the returns degenerate to the pure bootstrapping regime (n = 1), and
for λ = 1, the Monte-Carlo target is recovered (n = ∞).

This formulation is known as the forward view because it defines the update in
terms of future observations. This, of course, cannot be done in practice since there
is no way of knowing in advance what states and rewards will follow, or how long
an single episode will last. Fortunately, it is understood that there is an equivalent
backward view in which the TD-error is projected back to past states, retrospectively.
This is achieved through the use eligibility traces, which, as the name suggests,
are a technique for assigning credit to states that may have influenced the latest
observation in a temporal sequence. They have the effect of propagating information
back up the Markov chain induced by the policy. When used alongside differentiable
function approximation, the trace may be expressed as the difference relation

e0
.
= ∇vV̂v(s0),

et
.
= γλet−1 +∇vV̂v(st),

(2.45)

2.3 policy evaluation 25

Algorithm 3 Episodic semi-gradient TD(λ)

1: procedure TrainEpisode(d0, π, p, V̂w, α, γ, λ)
2: Initialise s ∼ d0(·) and e← 0 ▷ |w|-dimensional vector
3: while s non-terminal do

4: Sample a ∼ π(· | s) and (r, s ′) ∼ p(·, · | s,a)
5: Update e← γλe+∇V̂(s)
6: Compute δγλ ← r+ γV̂(s ′) − V̂(s)

7: Update w← w+αδγλe

8: Innovate s← s ′

9: end while

10: end procedure

where Equation 2.39 then reduces to vt+1 ← vt +αtδ
γλ
t et. All of these operations

scale linearly with |et|, meaning it can be integrated into the stochastic approxi-
mation framework in a computationally efficient manner. The canonical example
of this, TD(λ), is outlined in Algorithm 3 and is a direct extension of TD(0). An
analogous extension to action-value functions yields SARSA(λ).

2.3.3 Least-Squares Methods

While temporal-difference (TD) methods have demonstrable benefits over Monte-
Carlo policy evaluation, they can still suffer from instability due to the combination
of function approximation, bootstrapping and reliance on stochastic gradient descent. These pathologies are

known components of

Sutton’s “deadly

triad” [162].

This is especially true when complex function approximators are used, such as deep
neural networks. An important class of algorithms, first identified by Bradtke and
Barto [28], improves upon this by casting the prediction problem as a classical linear
least-squares regression problem. These benefit from significantly greater sample
efficiency and improved stability and can even be combined with eligibility traces.

To achieve this, Bradtke and Barto observed that the sum of TD-updates sampled
during learning can be factored into normal equations typically seen in regression
analysis. Denoting ζT

.
=

∑T
t=1Ut for a fixed approximator, V̂v, we can expand the

summation to give:

ζT =

T∑
t=1

ϕtrt+1︸ ︷︷ ︸
bT

−

T∑
t=1

ϕt (ϕt − γϕt+1)
⊤

︸ ︷︷ ︸
AT

v,

where ϕt = ϕ(st+1) and we have used the standard 1-step bootstrap target (see
Equation 2.41). It follows from standard arguments that the optimal choice of pa-
rameters, v, at T according the mean-squared error is given by the solution to the
system of simultaneous equations

vT+1 = A−1
T bT .

This insight yields an immediate algorithm for policy evaluation in which the
solution is recomputed at prescribed intervals. The challenge, however, is that
computing A−1

T requires O(n3) operations, where n is the number of features. A
whole host of algorithms have since spawned from this key insight [26, 27], including
recursive [185] (RLSTD) and incremental [63] (iLSTD) implementations designed to
reduce the complexity of the matrix inversion operation using clever approximations.
We leave further details of this topic to the reader, but note that the iLSTD algorithm
is used in Chapter 6.

26 reinforcement learning

Algorithm 4 Episodic Q-learning

1: procedure TrainEpisode(d0, π, p, Q̂w, α, γ)
2: Initialise s ∼ d0(·)
3: while s non-terminal do

4: Sample a ∼ π(· | s) and (r, s ′) ∼ p(·, · | s,a)
5: Compute δγ ← r+ γmaxa ′ Q̂w(s ′,a ′) − Q̂w(s,a)
6: Update w← w+αδγ∇wQ̂w(s,a)
7: Innovate s← s ′

8: end while

9: end procedure

2.4 policy optimisation

The second key area of RL is concerned with learning a policy that maximises a
chosen objective, J(π), such as the discounted sum of future rewards (Equation 2.24).
As in Section 2.3, we assume the model-free setting where the agent interacts with a
black-box simulator and has no explicit knowledge of the underlying dynamics of
the environment. Such problems are known as learning problems, and the focus is
on algorithmic complexity rather than, say, online performance; i.e. the compute
and memory required to find a solution.

One of the key concepts in policy optimisation — also known as control — is
the exploration-exploitation dilemma. This refers to the problem of balancing the
cost of trying something new (exploration) with the benefit of acting greedily with
respect to the current knowledge of the problem (exploitation). The former is crucial
in helping the agent break out of local optima and has been the subject of much
research in and of itself [1, 41, 89]. In the following sections we will cover some
of the important classes of methods that will be used in this thesis, each of which
involves different approaches to exploration and exploitation.

2.4.1 Value-Based Methods

Greedy/value-based methods work directly in the space of value functions by solving
for the optimal action-value function, Qγ⋆ . In the approximate setting that we study
here, the algorithms can be seen as sample-based equivalents of value iteration in
dynamic programming [17]. In general, the process revolves around generating a
sequence of action-value estimates {Q̂wt }t⩾0 which converge to Qγ⋆ in the limit.
This follows from the Bellman optimality equation in (2.29) and acting greedily with
respect to this function guarantees that the implied policy is optimal (Section 2.1.5).

The most notable algorithm, which exploits the Bellman optimality equation to
find the optimal policy, is known as Watkins’ Q-learning [181]; see Algorithm 4.
This method works similarly to SARSA, only the TD target (2.42) is replaced with

δ
γ
t

.
= rt + γ max

a ′∈A
Q̂w(s ′,a ′) − Q̂w(s,a). (2.46)

Due to the maximisation step, this algorithm is almost exclusively used in MDPs where
the action-space is discrete and enumerable; and where |A| is not too large. DespiteThe alternative is to

use an inner

optimisation routine

to compute the

maximum over

actions as in [142].

this limitation, Q-learning is an exceptionally powerful technique that laid the
foundations for much of RL today. It has enjoyed swathes of experimental success
due to its simplicity and effective performance, and is even known to converge
with probability 1 to a neighbourhood around the optimal solution even when
combined with function approximation; or the exact solution in tabular settings.
These theoretical results are, however, somewhat weak and require a number of strict

2.4 policy optimisation 27

assumptions on the problem itself and/or the function approximator used [106]; see
e.g. [9, 111, 168]. Nevertheless, as we will show in Part II, Q-learning, for suitably
chosen function approximators, can produce good results on the financial problems
we study in this thesis.

stability and off-policy learning The lack of strong theoretical guaran-
tees for convergence with Q-learningwith linear function approximation was later
addressed by Sutton, Maei, Precup, Bhatnagar, Silver, Szepesvári, and Wiewiora [163]
and Maei and Sutton [105]. These methods replace the traditional mean-squared
Bellman error objective with one that takes into account the basis of the approxima-
tion space. The result is a family of “full-gradient” algorithms which have greatly
improved stability in the off-policy setting. This, however, comes at the cost of slower
learning compared with the classical semi-gradient methods such as TD, SARSA and
Q-learning.

maximisation bias Another key issue with traditional Q-learning arises
from the maximisation bias due to the term maxa∈A Q̂w(s,a) in Equation 2.46.
This pathology can lead to very poor performance in domains with highly stochastic
transition dynamics and/or rewards. Specifically, overestimates in the action-value
approximator lead to greedy policies with a positive bias towards actions whose
rewards are highly dispersed. The canonical example used to illustrate this is Black-
jack, where a lucky chance early on in training can lead to policies that repeatedly
bet on highly improbable outcomes. This problem was studied by Hasselt [82] who
proposed a solution in the form of a double estimator. The algorithm, known as
Double Q-learning has been shown to solve this problem in exchange for a small
amount of underestimation. This approach is very simple to implement and remains
linear in update complexity, and will feature later in Chapter 5.

2.4.2 Policy Gradient Methods

At the other end of the spectrum, policy gradient methods work in the space of
explicit, parameterised policies, Πs,θ. Rather than learn a value function and act
greedily with respect to the latest estimate of Qγ⋆ , this family of approaches updates
the parameters of a policy directly. The idea is to move θ in the direction of steepest
ascent with respect to the chosen objective J(θ). This hinges on a key result in RL

known as the policy gradient theorem which expresses this derivative in terms of
the score of the policy and the policy’s action-value function.

Theorem 1 (Policy gradient). Let J(θ) be the objective function defined in Equa-

tion 2.24. The gradient of this quantity with respect to the policy parameters, θ, is given

by

∇θJ(θ) =

∫
S

dγπ(s)

∫
A(s)

Qγπ(s,a)∇θπθ(a | s) dads, (2.47)

where the stationary distribution, d
γ
πθ

(s) is as defined in Equation 2.14.

Proof. See Sutton, McAllester, Singh, and Mansour [164]. ■

Using the log-likelihood trick [183], the policy gradient above can be rewritten as
an expectation,

∇θJ(θ) =

∫
S

dγπ(s)

∫
A(s)

Qγπ(s,a)πθ(a | s)∇θ logπθ(a | s) dads,

= Edγπ,π[Q
γ
π(s,a)∇θ logπθ(a | s)] ,

28 reinforcement learning

for which we can derive sample-based estimators. One of the most famous algorithms
that does precisely this is known as REINFORCE [183] and it uses Monte-Carlo sam-
pling to estimateQγπ(s,a) and compute the policy gradient. Specifically, REINFORCE
exposes a gradient of the form:

∇θJ(θ) = Edγπ,π
[
G
γ
t ∇θ logπθ(at | st)

]
,

which is equivalent since Qγπ(s,a) = Edγπ,π
[
G
γ
t

]
; note that we assume that the

limits in Equation 2.19 exist and are well defined. These methods do not use value
function approximation and thus do not suffer from bias, but they are prone to high
variance. The reason for this is that each episode may yield very different outcomes
for the same policy. The resulting distribution of returns may thus have lots of
dispersion which adversely effects the quality of our estimate of the expected value.

One solution for this problem is to subtract a “baseline” from the estimator, such
that the gradient becomes

∇θJ(θ) = Edγπ,π
[(
G
γ
t − bπ(st)

)
∇θ logπθ(at | st)

]
,

This term acts as a control variate, reducing the variance in the policy gradient
estimate [72] while leaving the bias unchanged. In general, there is no single optimal
baseline such that

bπ(s) = min
b(·)

V
[(
G
γ
t − b(st)

)
∇θ logπθ(at | st)

]
as the solution involves an instance of the policy’s point Fisher information matrix
which can be non-invertible [49, 88, 128]. In practice, one typically uses something
much simpler, such as an estimate of the value function Vγπ (s). This reduces the
inner term, Gγt − Vγπ (s), to something that is equivalent to the advantage function,
A
γ
π(s,a), defined in Equation 2.23. The inclusion of a baseline like this in REINFORCE

greatly reduces the noise in the policy updates, leading to much more stable learn-
ing and allowing for much higher learning rates. However, we can improve upon
this further still by accepting some bias in the gradient estimate and using policy
evaluation to estimate Qγπ(s,a) in parallel.

2.4.3 The Actor-Critic Architecture

Actor-critic methods are a form of generalised policy iteration [162] in which we
alternate between learning an estimate of the value function, and improving the
policy. These combine the principles of both value-based and policy gradient methods
introduced in the previous two sections, forming an important class of algorithms
for optimising continuously differentiable policies, π ∈ Πs,θ. As in Section 2.4.2, we
make use of the policy gradient in Equation 2.47, but replace the function Qγπ with
a learnt estimate. As shown by Sutton, McAllester, Singh, and Mansour [164], this
can be done without introducing bias if the function approximator satisfies certain
conditions.

Theorem 2 (Policy gradient with function approximation). If the action-value

approximator minimises the mean-squared error (2.37) (replacing Vπ with Qπ, and V̂

with Q̂), and is compatible with the policy parameterisation, in the sense that

∇wQ̂w(s,a) =
∇θπθ(a | s)

πθ(a | s)
, (2.48)

then

∇θJ(θ) =

∫
S

dγπ(s)

∫
A(s)

Q̂w(s,a)∇θπθ(a | s) dads, (2.49)

where the stationary distribution, d
γ
π(s) is as defined in Equation 2.14.

2.4 policy optimisation 29

Proof. See Sutton, McAllester, Singh, and Mansour [164]. ■

Generalised policy iteration does not come with the same guarantees as perfect
theoretical policy iteration and may lead to a worse policy after each iteration of
the actor step. As stated by Szepesvári [167], one often observes improvements
early on in learning, but oscillatory behaviour near a fixed point. However, the
actor-critic architecture has shown great empirical performance in many problem
domains. The key advantage is that the critic Q̂w(s,a) has much lower variance
than that of the estimates used in actor-only algorithms. Furthermore, a small
gradient step in policy parameters leads to smoother changes in the policy. This is
compared to greedy methods where a small change in the value function can lead to
discontinuous changes in the policy. A fantastic survey of actor-critic methods was
written by Grondman, Busoniu, Lopes, and Babuska [74] who highlight that there
are a smorgasbord of possible implementations, each with their pros and cons.

2.4.4 Natural Policy Gradients

One problem with “vanilla” policy gradient methods is that they often get stuck in
local optima. This pathology was first identified by Kakade [87] who, inspired by
the work of Amari [7], provide theoretical and empirical evidence that conventional
methods get stuck in plateaus in objective space. Natural gradients on the other
hand, denoted by ∇̃θJ(θ), avoid this by following the steepest ascent direction with
respect to the Fisher metric associated with the policy’s likelihood distribution rather
than the standard Euclidean metric. This accounts for the fact that the parameters
themselves do not occupy a flat manifold in general, but instead have a Riemmanian
geometry. From this, the natural gradient can be expressed as

∇̃θJ(θ)
.
= G−1(θ)∇θJ(θ), (2.50)

where G(θ) denotes the Fisher information matrix

G(θ)
.
= Edγπ,π

[
∂ logπθ(a | s)

∂θ

∂ logπθ(a | s)
∂θ

⊤
]

. (2.51)

Natural gradients have a particularly elegant form when combined with the actor-
critic architecture and compatible function approximation [129]. In this case, the
gradient ∇̃θJ(θ) is exactly equal to the advantage weights of the critic, w; i.e. those
that are associated with the features defined in Equation 2.48. This means that the
policy update steps take the form θ← θ+αw. The fact that we need not explicitly
estimate the stationary distribution dγπ(s) or the Fisher information matrix G(θ)

directly, nor perform the matrix inversion to compute ∇̃θJ(θ) is incredibly powerful.
There are a number of advantages of this approach that have been highlighted by
Peters and Schaal [129].

(i) Natural gradients preserve the convergence guarantees to a local minimum
as for “vanilla” policy gradients.

(ii) Empirical evidence suggests that natural gradients exhibit faster convergence
and avoid premature convergence.

(iii) The natural policy gradient is covariant in the sense that it is independent of
the coordinate frame used to specify the parameters.

(iv) It averages out the stochasticity of the policy and thus requires fewer data
points to obtain a high quality gradient estimate.

30 reinforcement learning

In this thesis we will mostly use the NAC-S(λ) algorithm introduced by Thomas
[173]. This combines the advantages of the natural actor-critic architecture of Peters
and Schaal [129] with the incremental performance of the SARSA(λ) algorithm.
While it is claimed that this unbiased variant can exhibit poor data-efficiency for
small γ, we found it be highly effective in the (mostly) finite time horizon problems
studied herein.

3ALGOR I THM IC TRAD ING

3.1 financial markets

The history of financial markets is one fraught with tales of riches, ruin and con- It’s worth noting that

exchanging goods

through a medium

like money is only one

paradigm of trade.

The notion of

bartering, in which

individuals exchange

only in corporeal

goods and services,

dates back much

further to ancient

times.

troversy. As early as the 1300s, moneylenders based in Venice would trade in debt
between themselves, governments and individual investors. These were, in some
sense, revolutionaries of their time, and pioneered the notion of brokering which
underpins much of the trading activity seen today. Over the 700 years that followed,
markets and exchanges evolved into something much more significant — often born
out of necessity and the demand for globalisation, they became the centre of financial
activity for many nations across the globe. Nowadays, the London Stock Exchange,
New York Stock Exchange, and many other venues, host myriad different markets
in which a dizzying array of goods and services are traded. In a world of incredible
consumption, these financial markets represent one of few viable means of exchange
on a global scale.

Perhaps the most commonly understood type of asset that is traded on financial
markets, besides currencies themselves, is common stock (or simply stock/shares).
Stock represents a claim of partial ownership over a corporation and is typically
leveraged by firms as a means of raising capital for growth. The “fundamental value”
of shares derives from the contract they represent. Owning shares in a company
entitles the holder to a portion of the profits and the right to vote in key decision-
making. For example, holding 1000 units of Vodafone Group plc (costing ∼£1300) Not a

recommendation. . .would have earnt approximately £40 in dividends on the value of the stock in
February 2020. Besides stocks, there are markets for trading commodities, currencies,
debt, futures, derivates, and many other increasingly intangible assets. One can even
buy and sell shared partnership in mutual funds, which are professionally managed
portfolios of assets designed, typically, to track/reflect certain characteristics of
the economy. While this may all seem somewhat bewildering, the cornucopia of
instruments seen on today’s exchanges exists for two key reasons: trading and risk
management.

Trading refers to the activity of market participants in the buying and/or selling of
assets, the motivations of which vary greatly between individual traders. In general,
the literature categorises the behaviour of traders into three classes:

fundamental traders buy and sell based on principled economic factors
that are exogenous to the exchange itself. These are often referred to as noise

traders since their activity is predominantly uninformative on short time-scales.

informed traders leverage information that is inaccessible to the market
and has predictive power over the appreciation/depreciation of an asset.

market makers are passive traders who facilitate transactions between par-
ticipants without any particular preference over the direction, instead exploiting
their ability to execute trades at favourable prices.

When there is sufficient activity on a market, the local interactions between these
heterogeneous agents can lead to the emergence of highly complex phenomena and
regularity. Indeed this is the subject of a great deal of research in economics and
market microstructure.

31

32 algorithmic trading

3.1.1 Electronic Markets

Electronic markets emerged in the late 20th century with the advent of modern
computing and the subsequent demand for increased automation and systematisation
of trading strategies, as well as decentralisation. Nowadays, electronic markets are
by the far the most active trading venues in the world. In Germany, for example, the
Xetra exchange commands over 90% of all securities activity, and 68% of the volume
of German blue-chip stocks on a European level [137]. Other venues such as the
NASDAQ and Chicago Board Options Exchange boast similar dominance across a
host of asset classes.

At their core, electronic markets do two things: they offer a platform for traders
to signal their intentions to buy or sell; and provide a means by which participants
are matched and trades resolved. On the majority of modern, electronic markets
this takes the form of a continuous double auction implemented as a limit order
book (LOB) — or some hybrid variation thereof — in which traders are able to execute
with the level of immediacy they desire.

An important consequence of electronic markets and the rise of algorithmic
trading (for better or worse) is the ability to trade on incredibly short time-scales.
This practice, generally referred to as high-frequency trading, is characterised by the
use of sophisticated algorithms and exceptionally fast, direct access to the exchange.
Their technological advantage allows high-frequency traders to respond to new
information and changes in the market faster than their competition. In manyHigh-frequency

trading is a

double-edged sword —

many believe it to be

responsible for the

2010 Flash Crash [91].

cases, these firms operate as market makers to an exchange, providing liquidity and
facilitating transactions in the process of trading. This has the effect of stabilising a
market, improving efficiency and leading to better prices for both fundamental and
informed traders. The bulk of this thesis focusses on precisely this setting.

3.2 a calculus for trading

Quantitative/mathematical finance is the field of mathematics that studies problems
in financial markets and the modelling challenges therein. One of the most common
uses for this family of techniques is in the derivation of optimal trading strategies
and in the pricing of assets (such as derivatives). Indeed, many of these problems
can be expressed using a formalism (i.e. calculus) that operates in the space of
portfolios of assets. The trader (or, equivalently, the agent) is assumed to operate in
some universe in which there is a single riskless asset, the numéraire, whose value
remains fixed, and n > 0 risky assets whose prices evolve stochastically, such asNote in the real world

there is no such thing

as a riskless asset.

stocks, commodities, futures, etc. For this we define the following two temporal
processes:

Definition 1 (Cash process). Denote by Xt ∈ R the trader’s cash holdings, the

numéraire.

Definition 2 (Inventory process). Let Ω±t ⩾ 0 be the ask (−) and bid (+) components

of the cumulative volume flow arising from interactions between the trader and market.

The trader’s holdings in the n assets at time t are then defined as Ωt
.
= Ω+

t −Ω−
t ,

where

Ωt =
[
Ω

(1)
t Ω

(2)
t · · · Ω

(n)
t

]⊤
.

For n = 1, we define the scalar notation Ωt
.
= Ωt ∈ R.

These quantities, along with the corresponding prices for the n assets, defined
below, form the foundation of mathematical finance in the sense that they define
the space over which strategies are optimised. Trading itself is merely the act of

3.2 a calculus for trading 33

converting between two or more of these “units of measure” at an exchange rate
given by said prices relative to the numéraire.

Definition 3 (Asset prices). Let Zt ∈ Rn+ define an n-dimensional column vector of

non-negative asset prices,

Zt =
[
Z
(1)
t Z

(2)
t · · · Z

(n)
t

]⊤
.

For n = 1, we define the scalar Zt
.
= Zt ∈ R+.

The goal of the trader is to interact with the market(s) by buying and selling thesen
instruments such that it’s objective is maximised. In the case of portfolio optimisation,
for example, the agent must choose a vector Ωt that achieves the most appreciation
in value; hence why predicting Zt is such an important topic in algorithmic trading.
But how do we define the overall value of this agent’s holdings? Typically, we define
this quantity under the assumption of perfect liquidity which, while seldom true in
practice, yields the simple expression given below in Equation 3.1.

Definition 4 (Portfolio value). The mark-to-market portfolio value of the agent’s

holdings is defined as

Υt
.
= Xt + ⟨Ωt,Zt⟩ . (3.1)

example As an illustration of these core concepts, consider a scenario in which
there are three risky assets whose prices evolves according to the following stochastic
differential equation:

dZt =

−0.5

0.5
(
1.5−Z(2)

t

)
3

 dt+

 515
25

 ◦ dWt, (3.2)

where Wt is a standard 3-dimensional Wiener process. The first and last entries are
simple random walks, and the second is an Ornstein-Uhlenbeck process. Figure 3.1
shows one sample path of these random processes with the wealth trajectories (i.e.
Υt) of four possible portfolios, Ωt. Observe how the portfolios — each an element
of a linear subspace over assets — can give rise to very different wealth sequences.
Finding a good portfolio becomes increasingly difficult as n grows and the individual Even defining what is

a “good” portfolio is

fundamentally

non-trivial.

dynamics processes become more complex.

3.2.1 Interactions

Up until this point we have not considered how the agent actually interacts with the
market. For this, we first define the trading rate as the rate of change of the agent’s
inventory process over time.

Definition 5 (Trading rate). Let ν±t
.
= dΩt

±

dt and define the trading rate as νt
.
=

dΩt
dt = ν+

t − ν−
t , with νt

.
= νt in the unidimensional case.

Remark. The trading rate ν±t is rarely well behaved in practice. Not only is trading in

continuous-time highly ineffective in the presence of trading costs (and also practically

impossible), but we also know that the inventory process Ωt tends to exhibit jumps and

non-linearities from batch transactions. It may therefore be more natural to talk about

sub-derivatives when translating real algorithms into the nomenclature, but we leave

this to treatises on pure mathematical finance.

34 algorithmic trading

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0

1.0

2.0

3.0

4.0

P
ri

ce

Z(1)

Z(2)

Z(3)

(a) Prices split in 1D.

Asset 1 Price

-0.6 -0.5 -0.4
-0.3

-0.2
-0.1

0.0 Asse
t 2 Pric

e

0.0
0.2

0.4
0.6

0.8

A
ss

et
3

P
ri

ce

0.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) Prices together in 3D.

0.0 0.2 0.4 0.6 0.8 1.0

Time

-1.0

0.0

1.0

2.0

3.0

4.0

W
ea

lt
h

Ω(1) = [0.2, 0.4, 0.4]

Ω(2) = [−0.4, 0.8, 0.6]

Ω(3) = [0.2,−0.5, 1.3]

Ω(4) = [0.5, 0.9,−0.4]

(c) Wealth curve for example portfolios.

Figure 3.1: Illustration of a price process drawn for the assets in Equation 3.2 with the associ-
ated wealth series of four sample inventories weights.

3.2 a calculus for trading 35

If |νt| > 0, then, assuming the price is non-zero, there must be a corresponding
change in cash. For example, if one intended to purchase k units of AAPL, then
there would be an exchange between the two parties of shares and cash. The rate of
change of cash over time may thus be defined in terms of the trading rates, ν±t .

Definition 6 (Cash flow). Define the rate of change of cash as υt
.
= dXt

dt , the break-

down by asset as υt, and the further refinement υ±t ⩾ 0 as the positive/negative cash

flow arising from trading, such that dXt
.
=

〈
1,υ+

t − υ−
t

〉
dt = ⟨1,υt⟩ dt.

It follows from the definition above and the chain rule of differentiation that the
cash flow may be expressed as

υt =

〈
dXt
dΩt

,
dΩt
dt

〉
=

〈
νt,

dXt
dΩt

〉
.

This leads us to define a further quantity: the effective transaction prices, dXt
dΩt

,
express the sensitivity of the market’s prices, Zt, to the agent’s trading rate. In
general, this value can be separated into the combination of both temporary and
permanent price impact. The latter corresponds to irreversible, hysteretic changes
in the prices Zt and may be expressed as the n×n matrix of derivatives

dZt
dνt

=

∂Z

(1)
t

∂ν
(1)
t

. . .
∂Z

(1)
t

∂ν
(n)
t

...
. . .

...
∂Z

(n)
t

∂ν
(1)
t

. . .
∂Z

(n)
t

∂ν
(n)
t

 . (3.3)

The former — i.e. the premium paid which does not have any long-lasting impact on
prices — is then given by the difference

dXt
dΩt

−
dZt
dνt

1︸ ︷︷ ︸
S

, (3.4)

where 1 is an n× 1 sum vector. Here S is a vector containing the sum over each
row in the permanent impact matrix; i.e. the total impact on each asset due to νt.
One typically assumes that the permanent price impact matrix is diagonal such that
trading on one asset has negligible impact on another. This would correspond to the
special case where S = diag dZt

dνt
.

self-financing strategies In a perfect, frictionless market the effective
transaction prices are necessarily equal to the market prices: dXt

dΩt
= Zt. This

implies that the permanent impact matrix contains only zeros, and that there is
no temporary premium for trading. In other words, the cash, Xt, and stock, Ωt,
can be exchanged perfectly, such that dXt = − ⟨νt,Zt⟩ dt. A strategy νt that
satisfies this constraint is known as a self-financing strategy, and the tuple (Xt,Ωt)
is called a self-financing portfolio. A direct consequence of this requirement is that
the evolution of the mark-to-market portfolio value (Equation 3.1) must satisfy the
stochastic differential equation

dΥt = dXt + ⟨νt,Zt⟩ dt+ ⟨Ωt, dZt⟩ ,
= ⟨Ωt, dZt⟩ . (3.5)

Satisfying this relation means that there can be no exogenous infusion or withdrawal
of money from the system. Changes in the value of the portfolio may only be derived
from the change in the value of the underlying assets; i.e. changes in Zt. The
implications of this are the same as that of the First Law of Thermodynamics, that

36 algorithmic trading

energy can be neither created nor destroyed. This, of course, is only true in the
frictionless case. Less idealised markets, such as LOB markets (Section 3.3), or those
with transaction fees, have similar constraints but they are never quite so simple.
Transactions between assets must be financed only by the sale or purchase of another
within the portfolio.

Remark. If one treats the market itself as an agent, then it is clear to see that there

are two conserved quantities during interactions: (i) the total value and; (ii) the total

outstanding of each asset. This follows from the fact that transactions are zero-sum with

respect to the current market prices. This is equivalent to the notions of mass and energy

in Physics, and suggests that the numinous insights of Noether [120] hold weight even

in financial settings. Put simply, these two conserved quantities give rise to exactly two

symmetries in the dynamics of the system and thus a frictionless market can always

be formulated as a symmetric, zero-sum game. Indeed, any financial market can be

symmetrised into a zero-sum game by the inclusion of an extra “environmental” player.

3.2.2 Time Discretisation

While continuous time representations are certainly more elegant, the majority of
problems discussed in this thesis are in the discrete-time setting. Indeed RL is, for
the most part, constrained to operate in discrete intervals. To this end, we outline a
framework for translating from the former to the latter which will prove especially
important in Part III. First, we define the change in a time-dependent function ft
from t→ t+ 1 by the notation

∆ft
.
= ft+1 − ft.

Note that there is some abuse of notation here which is introduced for the sake
of notational clarity. First, time points are now treated as discrete indices — i.e.
t ∈N∪ {0} — but have thus far been treated as a real values. Second, the term ∆f

can technically refer to any change in the function f, not just in time. The presence
of a subscript t will be used to disambiguate when necessary.

The difference operator defined above satisfies a number of the same important
properties as the conventional derivative. For example, the difference in time of a
time-independent function or constant is clearly zero: ∆x = 0. The difference in
the product of two or more functions can be expressed as the sum over the scaled
changes of each term independently and the one cross-term,

∆ (f g) = g∆f+ f∆g+∆f∆g.

The anti-derivative is also intuitively defined as the summation. The list goes on, and
we refer the reader to the excellent work of Graham, Knuth, Patashnik, and Liu [71]
for further details on discrete calculus. As an example, one can use the properties of
the finite derivative to express the change in portfolio value in discrete time as

∆Υt = ∆Xt +∆ ⟨Zt,Ωt⟩ ,
= ∆Xt + ⟨∆Zt,Ωt⟩+ ⟨Zt+1,∆Ωt⟩ ,

which is almost identical to the continuous-time variant. The key difference is that
the final term includes the price at the next time step, Zt+1.

3.3 limit order books

The vast majority of electronic markets operate as continuous double actions with a
limit order book (LOB) as the matching mechanism. The purpose of this object is to

3.3 limit order books 37

Price Ask

101.00 12

100.50 13

100.25

35 100.00

3 99.75

11 99.50

Bid

Figure 3.2: Snapshot of a limit order book with multiple price levels occupied by bid or ask
orders and a total volume.

match the buyers and sellers of a given asset. An example is illustrated in Figure 3.2
which depicts six price levels of an LOB instantiation. The book has two sides (hence
double auction): one for asks (sell requests); and one for bids (buy requests). Each of
the levels in the two books are unique and have an associated volume corresponding
to the cumulation of all passive requests to buy/sell at said price. Prices are, in effect,
discrete because there is a minimum increment between each value called the tick Prices are almost

always defined as

rational numbers in

practice.

size, ι, which is specified by the exchange; in Figure 3.2, ι .
= 1/4.

In the following we present a mathematical formulation of an LOB for the case
of a single asset (n = 1); this will closely follow the excellent survey of Gould,
Porter, Williams, McDonald, Fenn, and Howison [70]. The extension to multiple
assets is trivial but the subscripts can get unwieldy which detracts from the purpose
of this section. To begin, we define the fundamental building blocks of limit order
book (LOB) markets.

Definition 7 (Limit order). A limit order, o, is a tuple containing the time of submission,

size and price: o
.
= (to,ωo, zo).

Definition 8 (Limit order book). An LOB, Bt, is the set of all active orders in the

market at time t.

The evolution of the LOB is a strictly càdlàg process such that an order o placed
at to is present in the book at to, o ∈ Bto , but not before: o /∈ limt ′↑to Bt ′ ; where
limt ′↑to denotes the left limit. This ensures that an order submitted at time to
does not appear chronologically in the book until precisely to. The LOB collection
can be partitioned into subsets of ask and bid orders, B+

t
.
= {o ∈ B, ωo > 0} and

B−
t

.
= {o ∈ B, ωo < 0}, respectively. Given a non-empty instance Bt, a market

order (MO) is then defined as a special case of the LO tuple.

Definition 9 (Market order). An ask (bid) market order, o
.
= (to,ωo, zo), is a special

case of an LO with price zo
.
= mino ′∈B−

t
zo ′ (maxo ′∈B+

t
zo ′ , respectively).

As required, the definition above for market orders (MOs) is only valid when there
are active LOs on the opposing side of the book. That is, an ask (respectively, bid) MO

can only be executed — or is even well-defined — when there are bid (ask) LOs in Bt.

prices The occupied prices in an LOB form a highly important set of values for
many algorithmic trading strategies. Here, we define a price level as being occupied
if there is at least one order with the given price and a non-zero volume. From this
we may define two key quantities that describe the arrangement of active orders in
the book. The most important of these definitions is that of the two best prices.

38 algorithmic trading

Definition 10 (Best prices). Let Bt be an LOB instance at time t. The best ask and bid

prices are then defined, respectively, as

Z+
t

.
= min
o∈B+

t

zo, and Z−
t

.
= max
o∈B−

t

zo. (3.6)

The levels associated with the prices Z±t are often referred to as the top of the book

and they facilitate the definition of two fundamental properties from the market
microstructure literature: the market mid-price and bid-ask spread. The former is
most commonly used as an estimate of the latent price of an asset, Zt; though there
are many others one can construct. The latter is used as a measure of the liquidity
contained in a book. In general, larger values imply that passive traders are seeking
a greater premium against which to offset the risk. In highly liquid markets, this
becomes very tight since trades rarely have a significant impact on price; we will
see more of this in the next section.

Definition 11 (Mid-price). The market mid-price is defined as the average between

the best ask and bid prices:

Z̃t
.
=
Z+
t −Z−

t

2
. (3.7)

Definition 12 (Bid-ask spread). The bid-ask spread is defined as the difference between

the best ask and bid prices:

Dt
.
= Z+

t −Z−
t . (3.8)

volumes The next most important property of the book that is of interest to
algorithmic traders is the volume distribution. For any given price, we define the
available liquidity, formally, as the sum of volumes of each order occupying the
given level. For this, we define the market depth.

Definition 13 (Market depth). LetBt(z)
.
= {o ∈ Bt : zo = z} for any price z ∈ [0,∞)

and book (including subsets). Then, with some abuse of notation, define

ω±t (z)
.
=

∑
o∈B±t (z)

ωo (3.9)

as the total ask/bid volume at a price z and time t.

3.3.1 Matching

When an MO is submitted to an LOB the engine performs a simple operation: walk
the book and consume volume up to the amount specified. This is a well defined
procedure that we will formalise shortly, but, in the case of an LO, this process is
not quite as simple. Consider the book in Figure 3.2 and an incoming ask LO, o, with
price zo

.
= 101 and size ωo

.
= 48. In this case we trivially add the order to the book,

yielding an increase in the volume ω+(z0) from 12 to 60. However, what happens if
this order was instead submitted with a price, zo

.
= 100, overlapping the top of the

bid book? In this case the matching engine applies the procedure below.

(i) Treat the incoming LO as an MO with a limiting price level, k, given by the
price zo and walk the book. In this case, k = 0 as the LO only touches the top
of the bid book.

(ii) If the LO is exhausted then we simply stop the process.

3.3 limit order books 39

0 2 4

Price Level (k) [-]

0.0

10.0

20.0

30.0

40.0

50.0

T
ra

ns
ac

te
d

V
ol

um
e

[-
]

ω = 10
ω = 20
ω = 30
ω = 40
ω = 50

Figure 3.3: Illustration of book walking sequences, ω̃k, for k ∈ {0, . . . , 4} and five initial sizes.
The limiting values here define the total consumed volume by each MO.

(iii) If the remaining volume of the LO is non-zero, then the volume at all levels up
to k must have been consumed and we add the order to the now empty queue
at zo. Note that the new price level will have changed type from bid to ask.

Walking the book starts with an arbitrary market order (MO) of size |ω| > 0. The
cash flow generated by executing this order is computed by incrementally walking
the book and consuming liquidity at each level, starting from the best available price,
until the request is satisfied or no liquidity remains. To define this formally, we first
express the total volume consumed by the sequence:

ω̃0
.
= min

{
ω, ω±(Z±)

}
, (3.10)

ω̃1
.
= min

{
ω, ω̃±0 +ω±(Z± ± ι)

}
,

...

ω̃k
.
= min

{
ω, ω̃±k−1 +ω

±(Z± ± kι)
}

, (3.11)

where the subscript k should not be confused with the time t which has been
dropped here for brevity. This can be seen as a “partial integral” over the volume in
the LOB with a saturation point at ω. Note that since Equation 3.11 is an increasing
function of k, the supremum (i.e. the total volume consumed) is given by the limit
ω̃

.
= supk ω̃k = limk→∞ ω̃k. Intuitively, the total consumed volume ω̃ is the

minimum of ω and the total volume in the book; see Figure 3.3 for instance.
An analogous process is defined for the cash flow generated by the transaction:

x̃0
.
= Z±ω̃±0 , (3.12)

x̃1
.
= x̃±0 +

(
Z± ± ι

) (
ω̃±1 − ω̃±0

)
,

...

x̃k
.
= x̃±k−1 +

(
Z± ± kι

) (
ω̃±k − ω̃±k−1

)
. (3.13)

As with Equation 3.11, the process x̃k takes the form of a (price-weighted) saturated
integral over the LOB, and is again increasing as a function of k. In this case, the limit
x̃

.
= supk x̃k = limk→∞ x̃k defines the total cash generated (positive or negative)

by sequentially consuming liquidity in the book.

40 algorithmic trading

3.3.2 Revenue

Unlike the idealised setting discussed in Section 3.2.1, LOB markets do not satisfy the
traditional self-financing constraint in Equation 3.5. Here, a strategy consists of limit
orders (LOs) and market orders (MOs), not just a continuous trading rate νt. These
orders may be fully or partially executed at any given time, and the price one pays
for transacting is almost surely not equal to the mid-price Z̃t, let alone the latent
price Zt. Altogether, these problems confound, making it very difficult to express
an exact self-financing equation for the LOB setting. Nevertheless, if we assume one
does indeed exists, then we can derive some useful formulae for quantifying the
revenue of a strategy.

Generally, Equation 3.1 may be decomposed into two terms measuring the profit
and loss due to: (a) transacting at prices away from Zt (the spread PnL); and (b)
changes in the value of the holdings Ωt (the inventory PnL). These are derived
trivially by expanding the change in mark-to-market portfolio value and factoring
terms as follows:

dΥt = dXt + ⟨νt,Zt⟩ dt︸ ︷︷ ︸
Execution

+ ⟨Ωt, dZt⟩︸ ︷︷ ︸
Speculation

. (3.14)

In the LOB setting, the implied trading rate νt above will not behave in a simple
manner, and is driven by the processes discussed in the previous section. This
formula will feature prominently in Part II and Part III for defining rewards.

Remark. This problem was studied by Carmona and Webster [30] who performed an

empirical analysis of NASDAQ order book data and arrived at the (uni-asset) condition:

dΥt ≈ Ωt dZt ±
Dtνt√
2π

+ d[Ω,Z]t,

where ± is a + for limit orders and − for market orders, and whenever trading with

LOs the additional constraint that d[Ω,Z]t < 0 is imposed; here [Ω,Z]t denotes the

quadratic covariation between Ωt and Zt. We omit the details here and instead refer

to the reader to the original text. The main takeaway is that describing the evolution of

Υt in a general and consistent way is non-trivial in the high-frequency domain.

3.4 desiderata

In the previous sections we developed a formalism for algorithmic trading in LOBs

and derived expressions for the revenue generated therein. This is crucial for mea-
suring the performance of a trading strategy and establishing an ordering over
possible implementations; this is analogous to the ordering over policies introduced
in Equation 2.25. Indeed, it is quite natural to assert that the best strategies make
the most money; i.e. maximise Υt for some t. This greedy criterion is, however,
a somewhat limited perspective and there exist many other — often conflicting —
desiderata that one must account for when designing trading strategies.

Most quantities of interest are inherently stochastic in nature. The fundamental
challenge for traders is precisely the fact that we don’t know the future. Instead,
we rely on distributional properties to describe how a random variable behaves in
aggregate. These properties, known as the statistical moments, are used to inform
decision-making in most financial contexts. They will be used liberally throughout
the thesis using the standard notation of E [X] and V [X] for the expected value and
variance on the random variable X, respectively.

portfolio value The distribution of a trading strategy’s aggregate portfolio
value by the terminal time step, ΥT , is the most fundamental variable used to

3.4 desiderata 41

Table 3.1: Portfolio characteristics for the four instances illustrated in Figure 3.1. Each value
is computed using 10000 Monte-Carlo samples. In order, we have mean and vari-
ance on the portfolio value, the first lower partial moment, and the Sharpe ratio,
respectively.

E [ΥT] V [ΥT] M− [ΥT] E [ΥT] /
√

V [ΥT]

Ω(1) 1.33 0.12 1.19 3.84

Ω(2) 2.46 0.32 2.24 4.35

Ω(3) 3.51 1.08 3.10 3.38

Ω(4) -0.92 0.22 -1.11 -1.96

gauge performance. In particular, we consider the first and second moments of this
distribution — i.e. E [ΥT] and V [ΥT] — where an agent would generally aim to
maximise the former while minimising the latter. For example, Ω(1)

t in Figure 3.1
yields an mean profit and loss of E

[
Υ
(1)
T

]
= 1.33with a variance of V

[
Υ
(1)
T

]
= 0.12.

sharpe ratio An important metric used in financial literature and in industry
is the Sharpe ratio. This is defined using the first and second moments of ΥT , as
shown below:

E [ΥT] − µRF
V [ΥT]

, (3.15)

where µRF denotes a “risk-free rate” which we typically take to be zero. In essence,
this quantifies the expected amount of wealth that can be earnt per unit of risk.
While larger values are better, it is important to note that the Sharpe ratio is not a
sufficient statistic on its own . Lo [101] provides a

thorough examination

of the subtleties of

using the Sharpe ratio

that is worth reading.

inventory The distribution of terminal inventory, ΩT , tells us about the ro-
bustness of the strategy to adverse price movements. As always, we can describe
this using various moments, such as the expected value, E [ΩT], and the variance,
V [ΩT]. In practice, most trading strategies aim to finish the trading day with small
absolute values for ΩT ; though this is not always a strict requirement.

pricing and efficiency The “competitiveness” of a market maker — a trader
who is characterised simultaneously buying and selling — is often discussed in terms
of the average quoted spread. This is defined as the expected value of the difference
in price between the market maker’s best bid and ask LOs. Tighter spreads imply
more efficient markets since it incurs a lower cost to the counterparty compared
with the (unattainable) market mid-price. Exchanges often provide compensation
in the form of rebates for smaller spreads, and tout this value as a means to attract
traders to their platform.

Example

For example, consider the four wealth curves illustrated in Figure 3.1. While we can
safely say that the fourth portfolio performs the worst out of them all, it is not as
clear cut which one you should pick between the first three; see Table 3.1. Notice
that while the final value is higher for Ω(3), it suffers from greater variability for
the duration of the simulation. So much so, that the relative portfolio value drops
below zero for almost 20% of the episode. This is reflected in a lower Sharpe ratio

42 algorithmic trading

and higher downside risk (measured by the lower partial moment). Portfolios one
and two, on the other hand, are more consistent while still generating significant
profit. In expectation, these strategies may behave very differently — as we shall
see — but this example highlights the notion that humans are naturally risk-averse
(though to different degrees) and that the risk (and other secondary characteristics)
associated with a strategy is an important consideration; see Tversky and Kahneman
[176].

Part II

DATA -DR I VEN TRAD ING

4L IM I T ORDER BOOK S IMULAT ION

4.1 outline

Reconstruction of limit order books (LOBs) is an effective strategy for simulating
financial markets with minimal assumptions on the underlying mechanics governing
the behaviour of the participant agents. Rather than specify the dynamics of the
system in a probabilistic framework, we simply replay the events as they occurred
in the past. Now, while there are some caveats, this type of simulation has been used
extensively in the literature and in practice with great success. The key challenge is
implementation.

In this chapter, we survey some of the computational aspects of limit order book
(LOB) reconstruction. To begin, we cover the three key classes of data that are available
to practitioners and researchers, their pros, cons and applicability. We will then
discuss implementation-level details that are crucial for efficient experimentation,
and define a suite of technical indicators that can be derived from such a framework.
In Section 4.5, we conclude the chapter by discussing some of the limitations of
this approach in terms of factual versus counterfactual simulation, and how we can
remedy this.

4.2 data

In algorithmic trading — especially in the context of quantitative finance — data
is at the core of the development of any strategy. Whether that’s through market
reconstruction (as we discuss in this chapter), or through the estimation of model
parameters (as in Part III). Given our mechanistic assumptions, one key objective
is to ensure that strategies are calibrated to the true market dynamics. However,
not all data is created equal, and there are various “levels” of information available
which come at increasing cost to the consumer. We discuss these below.

level 1 The most primitive type of LOB data contains only the price and volume
available at the top of the book: Z±t and (ω+

t (Z
+
t),ω

−
t (Z

−
t)). This tells us very little

about the overall shape of the book, but allows us to compute statistics such as the
mid-price and spread which are important. In Figure 3.2, for example, L1 data would
constitute only the volume at prices 100 and 100.5. This type of data can be very
noisy due to the overwhelming number of cancellations that occur at the top of
the book [70]. As a result, L1 data provides very few “features” that can be used
to predict changes in price in the mid- to long-term, nor sufficient information to
define an effective observation space for RL. It would be ill-advised, if not impossible,
to base a trading strategy such as market making on this data alone.

level 2 At the next level of fidelity, L2 data — also known as market depth
data — provides the full scope of ask and bid prices in an aggregated format: i.e.
full knowledge of ω±t (·). That is, the total volume at each occupied level in the
book. Whenever an update occurs (transaction, cancellation, placement, etc. . .), the
data will reflect the overall change at the affected levels, but not which orders were
mutated. This amounts to having access to snapshots of the book that look like
Figure 3.2, but not Bt in its entirety. This allows trading algorithms to leverage
information about the shape and distribution of volume in the book. For example,

45

46 limit order book simulation

one can measure the dispersion of volume in the book, or even the skew between
ask and bid. These measures all have use in predicting short-term price changes and
have been used extensively in the literature for designing more effective trading
algorithms [32, 69].

level 3 The last, and most fine-grained type of data — known as L3 or market-
by-order data — provides information about each and every order in the book. This
could be in the form of raw FIX messages, or some proprietary format. The key point
is that L3 data can be used to recall every placement, cancellation and transaction
that transpired in the market. Knowing the content of the queue at every level is an
exceptionally powerful tool when running simulations of LOBs. In general, however,
it is uncommon, even for major institutions, to have access to data at this level of
detail and it is also very expensive. In most cases, we rely on L2 data with some
additional, partial L3 data such as transactions to perform our reconstructions [44].
Unfortunately, this is a lossy process when combined with shadowing (Section 4.5.2),
so one must balance the trade-off between cost and quality.

4.3 reconstruction

It goes without saying that any kind of research on LOBs requires a simulator. Limit
order book reconstruction — often called market replay in the literature [178] —
refers to the family of techniques whereby historical events occurring in an order
book are reconstructed directly from data. This provides a platform for factual

reasoning about the evolution of LOBs in the real world at the time the data was
recorded. This type of simulation, however, comes with a number of computational
challenges which increase as we progress from L1 data to L3 data.

In the simplest case — with L1 data — an implementation is trivial since we
need only monitor two pairs: (Z+

t ,ωt(Z+
t)) and (Z−

t ,ωt(Z−
t)). These values can

be stored on the stack and thus the rate of mutation is limited only by the clock rate
of the available hardware. The most likely constraint is the speed at which the data
itself can be read into memory. In the L2 setting, writing a fast order book simulator
in most languages can also be done very efficiently since there are a fixed number of
observable price levels. Using a stack-allocated array type one can ensure incredibly
fast read and write to the level buffers. This, however, does not extend to the L3 case.

Level 3 Data Example

One key feature of LOBs is that most price levels are unoccupied at any given instant
in time. As a result, it would be highly inefficient, if not entirely intractable, to
represent the volume/order queue at every level using a contiguous array as most of
the entries will be empty. While this would be a computationally effective approach,
due to amortised constant lookup complexity, the memory requirements would grow
unbounded. Even with truncation, data structures of this type are ill-suited to the
problem and represent an extremely naïve approach for reconstruction and simula-
tion. One alternative might be to represent the order book using a map/dictionary
which encodes the sparsity of the LOB object. For example, in Rust, if prices are
defined in ticks such that each value lies in N∪ {0}, then one could use collections
such as the BTreeMap or HashMap to store the order queues. While this would
certainly yield slower lookup times, it bounds the memory requirements such that
they only scale with the number of occupied levels in the book. But we can do better.

When designing LOB implementations, one must always keep in mind the oper-
ations one will be performing on said data. Up until this point we have only been
considering lookup with random access, but processes like walking the book require

4.4 indicators 47

sequential access on two levels: price-by-price in the book and order-by-order in
each queue; this follows from standard price-time priority. These kinds of problems
have been studied in computer science for many years and there is, arguably, no
unique optimal solution. We propose the following structure for a single side of the
book — illustrated in Rust — that balances memory and computational complexity
across all operations:

1 pub struct Book<I, P, V> {

2 pub orders: HashMap<I, Order<P, V>>,

3 pub queues: BTreeMap<P, PtrQueue<Order<P, V>>,

4 }

Here, I denotes an identifier type, P the price type, and V the volume type; note that
both I and P must implement std::hash::Hash. Each order is represented by the
generic type Order<P, V> and is stored in a dictionary with it’s unique identifier
as the key. This allows for rapid lookup based on some hashable identifier type. The
PtrQueue<_> at each occupied price level then maintains the time-ordering over
orders in the queue, where each entry is simply a pointer to the concrete order in-
stance. A complete LOB model would consist of two instances of the Book<_, _, _>

type; one for asks and one for bids. Of course, this is by no means the only possible
choice, and indeed each language will have different functionality that lends itself
to specialised implementations.

4.4 indicators

Equipped with a dataset, and a simulator to reconstruct the book, we now also have
the ability to retrospectively compute market indicators as they occurred in the past.
These form the backbone of many algorithmic trading strategies, especially those
that operate on the intra-day level. Historical replay of these values, therefore, is
crucial in using simulators to assess performance or train machine learning models
that use indicators as features. Below, we introduce a set of important indicators that
are used throughout this work. Note, this exposition barely scratches the surface
on the vast space of choices and we refer the interested reader to the work of, e.g.
Laruelle and Lehalle [97].

4.4.1 Price

Many market indicators are derived directly from observations of the market price.
The value of an asset, as computed through the “hive-mind” that is an LOB, tells us a
great deal of information that may aid in decision-making.

market mid-price The current market mid-price, Z̃t, defined in Equation 3.7,
can be used as an estimate of the latent price of the asset, Zt, which cannot be
observed directly. This tells us about the valuation of the asset based on the aggre-
gation of all participants in the market. Assuming this is relatively efficient, then
this price should be formed based on all the information available up to time t; i.e.
E
[
Z̃t

∣∣∣ Ft] ≈ E [Zt | Ft], where Ft is the natural filtration. If this doesn’t match
the true value, then one can trivially derive a strategy that buys when the asset is
undervalued by the market, and sells when it is overpriced.

mid-price move The change in the market mid-price since the last period is
defined, in discrete-time, as ∆Z̃t = Z̃t+1 − Z̃t. Such a price movement is associated
with a change in the distribution of orders in the book due to cancellations and/or
transactions. The mid-price move may thus be associated with further price move-

48 limit order book simulation

ments in the short-term, or trading momentum. One may choose to normalise this
value using the tick size for a more market-independent measurement, or consider
higher-order lags such as Z̃t+10 − Z̃t.

market spread The market (bid-ask) spread, Dt, is defined as the difference
between the best bid and ask prices; see Equation 3.8. It is often used as a measure
of liquidity, indicating ‘how highly the market values the immediacy and certainty
associated with market orders versus the waiting and uncertainty associated with
limit orders’ [70]. It also provides an estimate of the profit available to a market maker
quoting at the top of the books or, equivalently, the immediate cost of consuming
liquidity.

volatility Volatility is a measure of the dispersion of changes in the price of a
stock, often measured naïvely using the standard deviation of historical price changes.
It is an important consideration for trading strategies since it helps determine the
execution probability of limit orders; higher volatilities have higher associated
execution probability and vice-versa [86]. Further, ‘since volume and volatility are
highly correlated and display strong time series persistence, any variable correlated
with volatility will, inevitably, possess non-trivial forecast power for future volatility.
This is true for bid-ask spreads, the quote intensity, the transaction count, the
(normalized) trading volume. . . ’ [8]. This ability to predict future volatility and thus
the likelihood of execution at some point in the future is an effective tool for market
makers.

relative strength index The relative strength index is a commonly used
counter-trend (predicts over-extensions in a price series) technical indicator. It is
computed as the ratio between the average upward price movements and the average
downward movements, scaled to the range [−1, 1]; note any averaging technique
can be used in lieu of the arithmetic mean. Though there is mixed evidence on
its predictive power when used alone [184], it has been suggested that it may be
predictive when combined with other trading signals.

4.4.2 Volume

Another large class of metrics used to measure the state of the market — i.e. state
features used to render the domain Markovian — can also be computed from the
volume distribution in the LOB. This is a highly intuitive concept since most people
would assume asymmetry in a market indicates some level of asymmetry in the
intents of it’s participants.

order book imbalance The order book imbalance — also known as volume

imbalance — is the normalised ratio of the difference in volume between the ask and
bid books,

It
.
=

∫∞
0 ω

+
t (z) −ω

−
t (z)dz∫∞

0 ω
+
t (z) +ω

−
t (z)dz

∈ [−1, 1]. (4.1)

A significant amount of research has been done into the predictive power of the book
imbalance [36, 99]. For example, Gould and Bonart [69] found that it has a strong
statistical relationship with price movement and is an especially good predictor in
large-tick stocks. It is surely one of the most ubiquitous — and arguably well-justified
— technical indicators for predicting short-term directionality; i.e. it is well correlated
with the state of bull versus bear market.

4.5 counterfactuals 49

order flow imbalance The order flow imbalance — known colloquially as
the signed volume — is defined as the normalised difference between the number of
arriving buy and sell market orders at a given instant in time. Concretely, the signed
volume at time t+ 1 is defined as the fraction∑

o∈Mt
ωo∑

o∈Mt
|ωo|

∈ [−1, 1], (4.2)

where Mt is defined as the set of market orders (both ask and bid) that were submit
at time t; see Definition 9. This quantity has been used successfully in existing
literature [119] to improve the performance of execution algorithms. Research into
market microstructure [104, 123] has also shown that it is associated with the
behaviour of uninformed traders, and may thus hold predictive power over trade
direction in the short-term.

4.4.3 Hybrid

Another important set of indicators lie in-between the two discussed in the previous
sections by including information derived both from prices and volumes. These can
be very effective at reducing the dimensionality of the full LOB state.

market micro-price The market micro-price is an extension of the mid-price
that weights the best prices according to the total volume on either side of the LOB.
This quantity, one can show, may be expressed as a translation of the mid-price:

Z̃
†
t

.
= Z̃t +

ItDt

2
, (4.3)

where It is defined in Equation 4.1, and Dt in Equation 3.8. Observe that Z̃†t is
bounded between

[
Z−
t ,Z+

t

]
since It ∈ [−1, 1]. At these two extremes, the price is

skewed in favour of the sell and buy sides, respectively. Of course, this definition
does not add any new information. If we already know Z̃t, It and Dt. However, it
can be very convenient to work directly with Z̃†t when defining a (relative) market
making strategy that adapts to the state of the LOB.

micro-price move Finally, much as in Section 4.4.1, we can define a micro-price
move as the change in Z̃†t over some finite time horizon. In this case, a change in
value from t to t ′ may indicate a change in the mid-price itself, or a change in the
LOB volume distribution. It follows that a non-zero value of ∆Z̃†t can predict a change
in intention of the participants in aggregate and thus the short-term momentum of
the market.

4.5 counterfactuals

Reconstruction of a limit order book (LOB) as described in Section 4.3 is mostly a
computational problem. But, as of yet, we have not addressed all the challenges
that arise when data-driven simulations of this type are used for training strategies
using RL. For this, we require a number of key ingredients: the state and observation
spaces, the action space, and the transition dynamics. The ability to retrospectively
compute market microstructure indicators, as discussed in the previous section,
answers the first part of the puzzle. The action space, too, can be defined easily.
The real challenge lies in specifying the transition dynamics under counterfactual
scenarios:

(i) How do we account for the market impact due to walking the book?

50 limit order book simulation

(ii) How do we simulate the execution of artificial LOs?

Put simply, how would the market have behaved if some agent (our agent) had
placed a given order in the market? How do we infer the transition dynamics from
this proposed behavioural approximation? And, finally, how do ensure that the
discrepancy between the proposed and true responses are minimised? We argue
that the quality of the solutions that are possible depend strongly on the data you
have available.

4.5.1 Market Impact

As covered in Chapter 3, market impact comes in two flavours: temporary (Equa-
tion 3.4) and permanent (Equation 3.3). The latter, in particular, is a non-trivial
reconstruction challenge because the simulated market will diverge from the his-
torical data following an aggressive action. In this case, the historical transitions
no longer reflect the same market behaviour; the measures have changed. We are
presented with two choices: (i) attempt to interpolate the factual and counterfactual
scenarios; or (ii) assume that the agent’s artificial order is negligible compared with
the liquidity in the book.

The majority of academic work takes the second approach which, for blue chip
stocks and other actively traded assets, is not unreasonable. In effect, we assume that
dZt
dνt

= 0, and treat the temporary impact as implicit. The total impact, dXt
dΩt

, is thus
computed by “imagining” the cost of walking the book without actually mutating
the book. See, for example, the simulated LOB illustrated in Figure 3.2 for which the
cost of executing an MO (i.e. temporary market impact) is depicted in Figure 3.3.

This, of course, is a significant limitation of data-driven approaches. Indeed,
this problem has been cited explicitly in work by Vyetrenko and Xu [179] who
proposed an annealing-based method for rejoining the bifurcated processes. In short,
their approach worked by replacing the simulated prices with the true prices (post
market order) whenever a subsequent aggressive order by the main agent or other
participants moved the market back in the opposite direction. This method, while
certainly not perfect, provides a more realistic simulation against which to train
RL-based agents. However, as of yet, very little work has been done to address this
issue due to the following challenge: how does one assess the quality of a simulation
when there is no ground truth available? This issue has also been acknowledged in
work by Christensen, Turner, Hill, and Godsill [44]. Any future work in this area —
and the techniques developed for analysis — would therefore be of great value to
both researchers and practitioners.

4.5.2 Queues

The second key challenge arises when we only have aggregate information about the
limit orders (LOs) in a book. In this case, we do not know how orders are distributed
in each queue, nor how changes manifest as transactions and cancellations. Consider
Figure 3.2, for example. If the volume at price level 100 increased to 50, we can be
certain that some new orders were placed, but we cannot know if there were also
cancellations or transactions. Indeed, even if no change in volume was observed, one
cannot know with complete confidence whether this was due to an equal balance of
flow from placements and cancellations/transactions, or whether nothing occurred
at all. This problem — as commonly experienced in regression analysis — amounts
to a lack of uniqueness in the space of solutions; i.e. the problem is ill-conditioned.

This becomes a serious issue when simulating the progression of an artificial
order since the simulated execution process is ambiguous. With access to L3 data,

4.5 counterfactuals 51

50t = 1:

1050t = 2:

1030t = 3:

1030 15t = 4:

1010 5t = 5:

5 35t = 6:

5 30t = 7:

30t = 8:

Figure 4.1: Illustration of queue approximation for a simulated order of size 10 under a volume-
weighted cancellation scheme. At each stage, some combination of placement/can-
cellation requests are parsed and the subsequent queue estimate shown.

this would of course not be an issue as one can trivially reconstruct, with complete
certainty, the changes in each queue. Less granular datasets such as L2 and below,
however, do not contain sufficient information to distinguish between events. Instead,
the only means by which to reduce uncertainty is with access to transaction data;
this is not uncommon. With this information, one can disambiguate decreases in
volume that occurred due to transactions from those that derived from cancellations.
Of these two, transactions are especially simple to simulate as this volume change
can only come from the front of the queue. Handling the cancellation of limit orders,
on the other hand, is still not perfectly reconstructible as we do not know where in
the queue these occurred.

To tackle this, we introduce a process we refer to as shadowing in which an RL

agent’s order is played out alongside a simulation in a post hoc fashion. In this case,
we assume that cancellations are distributed uniformly throughout the queue, which
we argue is reasonable. This means that cancellations are computed in a volume-
weighted fashion before and after the location of the simulated order. Consider, for
example, Figure 4.1, which depicts one possible sequence of events with an artificial
order of 10 units located at the back of the queue (at time t = 2). A transaction of
20 units occurs, leaving only 30 units ahead of the agent’s order, followed by an
addition of 15 units from the historical data. At t = 5 we simulate the cancellation
of 30 units of volume, which is split into reductions of 20 and 10. The remaining
changes are all intuitive, ending with the artificial order being fully executed.

It is important to note that while this approach appears fair, we have no way
of validating it’s accuracy. As noted by Christensen, Turner, Hill, and Godsill [44],
without access to complete L3 data, there is no way of assessing the bias of our
estimators. What’s more, we have no means of accounting for any change in market
behaviour that may have occurred if the agent’s order had actually been present
at the time. As with market impact, we must simply ensure that the artificial order
sizes are negligible compared with the distribution of volume in the book.

5RL ∩ DATA -DR I VEN TRAD ING

5.1 outline

Traditional approaches to market making in mathematical finance are based on
stochastic optimal control. A researcher proposes a model of market dynamics — such
as those pioneered by Ho and Stoll [84] or Glosten and Milgrom [66] — and derives
a set of controls that maximise/minimise a chosen objective/utility function. This
is typically achieved using some variant of the Hamilton-Jacobi-Bellman equation
which provides the necessary and sufficient condition for optimality. The problem is
that very few realistic models of the market are soluble, and those that are require
highly advanced mathematics, such as the notion of viscosity solutions. Moreover,
the Hamilton-Jacobi-Bellmanon is a non-linear, partial differential equation. While We need only look at

the 2007-2008

Financial Crisis to

confirm this [102].

these types of results offer deep insight into the structure of a problem, and therefore
hold academic value in and of themselves, they are of limited practical value if the
assumptions do not reflect reality, or if they are used inappropriately.

One of biggest advantages of electronic markets today is the incredible availability
of high-quality historical data; albeit very expensive. As seen in Chapter 4, this can
be used to reconstruct limit order book markets without introducing structural bias, In the literature, the

term “replay” is often

used in place of

“reconstruction”.

and with minimal assumptions on the underlying transition dynamics. These can
then be used to evaluate strategies, explore counterfactual scenarios and even train
RL-based trading agents directly from simulation. They remove the need to specify
and calibrate a model, and are much more flexible in their capacity for handling
exotic control/action-spaces. While these simulation-based approaches do, of course,
have their own limitations (as discussed in Chapter 4), they represent a powerful
and complementary tool that can be used alongside prevailing methods in stochastic
optimal control.

Contributions

The main contribution of this chapter is to evaluate value-based control methods for
deriving market making strategies directly from an LOB reconstruction, with a focus
on the discrete-action setting; more complex approaches are reserved for Part III. We
identify eligibility traces as a solution to the unresolved issues previously associated
with reward attribution and noisy environment dynamics [40]. We then design a
novel reward function and state representation that are shown to be key factors in
the success of the combined approach. An outline of the steps taken to develop this
framework is given below:

(i) We address concerns raised in past work about the efficacy of one-step
temporal-difference (TD) learning, corroborating their results but demonstrat-
ing that eligibility traces are a simple and effective solution.

(ii) We evaluate a wide range of new and old TD learning algorithms, highlighting
the discrepancies in performance and providing qualitative justification for
the observed results.

(iii) We show that a simple risk-neutral reward function does not lead to the best
performance and regularly induces instability during learning. We propose a
solution in the form of an asymmetrically damped reward function which
improves learning stability, and produces higher and more consistent returns.

53

54 rl ∩ data-driven trading

(iv) We explore three different value function representations and propose a fac-

tored representation, which is shown to yield competitive performance and
more stable learning.

(v) We present a consolidation of the best results from the above, showing that
it produces the best risk-adjusted out-of-sample performance compared to
a set of simple benchmarks, a basic RL agent, and a recent online learning
approach [3]. Moreover, it is argued that the performance of the strategies
derived using our proposed method are competitive enough to represent a
viable approach for use in practice.

5.2 related work

Market making has been studied across a number of disciplines, including economics,
finance, artificial intelligence (AI), and machine learning. A classic approach in the
finance literature is to treat market making as a problem of stochastic optimal control.
Here, a model for order arrivals and executions is developed and then control
algorithms for the resulting dynamics are designed [11, 37, 38, 75, 80, 84]. Recent
results in this line of research have studied price impact, adverse selection and
predictability [2], and augmented the problem characteristics with risk measures
and inventory constraints [34, 78].

Another prominent approach to studying market making and limit order book
markets has been that of zero-intelligence (ZI) agents. The study of ZI agents has
spanned economics, finance and AI. These agents do not “observe, remember, or
learn”, but can, for example, adhere to inventory constraints [67]. Newer, more
intelligent variants, now even incorporate learning mechanisms [45, 180]. Here,
agents are typically evaluated in simulated markets without using real market data.

A significant body of literature, in particular in AI, has studied the market making
problem for prediction markets [29, 121, 122]. In this setting, the agent’s main goal is
to elicit information from informed participants in the market. While later studies
have addressed profitability, the problem setup remains quite distinct from the
financial one considered here.

Reinforcement learning has also been applied to other financial trading prob-
lems [114, 145, 152], including optimal execution [119] (a topic we shall cover in
more detail in Section 6.3) and foreign exchange trading [52]. The first case of ap-
plying RL to market making [40] focused on the impact of noise (due to uninformed
traders) on the agent’s quoting behaviour and showed that RL successfully converges
on the expected strategies for a number of controlled environments. They did not,
however, capture the challenges associated with explicitly handling order placement
and cancellation, nor the complexities of using continuous state variables. More-
over, [40] found that temporal-difference RL struggled in their setting, a finding
echoed in [151]. [40] attributed this to partial observability and excessive noise
in the problem domain, despite the relative simplicity of their market simulation.
In follow-up work, [148] used importance sampling as a solution to the problems
observed with off-policy learning. In contrast, we find temporal-difference RL to be
effective for the market making problem, provided that we use eligibility traces and
carefully design our function approximator and reward function.

One of the most recent related works is [3], which uses an online learning approach
to develop a market making agent. They prove nice theoretical results for a stylized
model, and empirically evaluate their agents under strong assumptions on executions.
For example, they assume that the market has sufficient liquidity to execute market
orders entirely at the posted price with no slippage. We use this approach as one of
the benchmarks for our empirical evaluation and address the impact of trading in a
more realistic environment.

5.3 problem specification 55

5.3 problem specification

Consider a canonical market making problem in which an MM agent trades directly
over an LOB. There are two assets: (i) a riskless asset, cash, whose value does not
change over time (our numéraire); and (ii) a risky asset whose price, Zt, evolves
stochastically and exogenously to the market. This price defines the fundamental
value of the risky asset and is treated as a latent variable of the model; i.e. it is not
known exactly by any participant. Noisy estimates of this value, however, can be
computed using various estimators based on the aggregation of orders in the LOB;
see Section 3.3.

At each time t ∈N∪ {0}, the MM sends requests to the market to place new LOs,
possibly replacing those outstanding. It may alternatively choose to place a MO in
order to manage it’s inventory by consuming liquidity from the book. Simultaneously,
the state of the LOB innovates due to new information entering the market and the
corresponding behaviour of all the participants. This gives rise to a combination of
profits for the MM, derived from transactions and from speculation on accumulated
inventory. Note that we make the relatively strong assumption that transactions fees
are negligible. These would typically take the form of a principal cost on any trade
based on volume, as enforced by the exchange. However, it is often the case that large
institutional market makers also receive rebates on these fees under contractual
agreement that they never leave the market. It is precisely this setting that we study
here and thus motivates our choice to ignore fees.

This problem specification can be formally expressed in the language of RL as
a partially-observable MDP. For this, we first define the state at time t as the tuple
(Ωt,Bt,Zt, . . .), where the ellipsis represents an arbitrary number of unknown
properties governing the market dynamics. Given a state st, the MM observes the
values (Ωt,Bt) with probability 1, and chooses an action to take from the set
A

.
= {0, . . . , n} according to it’s policy. The transition probabilities are then dictated

by the data, historical simulation and action at.

5.3.1 Desiderata

As outlined in Section 3.4, the primary quantities used to assess the performance of
a trading strategy are the first and second moments of ΥT . However, in this chapter,
we experiment with a basket of securities which presents a scaling challenge when
trying to compare results. To deal with this, we introduce a normalised daily PnL that
measures a strategy’s ability to capture the market spread. This metric is defined on
a daily basis as the total portfolio value divided by the average market spread which
normalises the profit across different markets: E [ΥT/Et[Dt]]. This equates to the
number of market spreads that would need to be captured in order to obtain a given
profit margin.

As a secondary objective, market makers should attempt to maintain near-zero net
inventories. This is to avoid exposure to risk associated with unanticipated, adverse
price movements. To measure how well our agents achieve this, the mean absolute

position (MAP) held by the agent is quoted as well. High values for this metric may
indicate that the agent has taken a speculative approach to trading. On the other
hand, small values could suggest that the agent relies less on future changes in
market value to derive it’s earnings. A risk-sensitive agent would do the latter and
that is what we intend to derive through careful reward construction.

56 rl ∩ data-driven trading

Table 5.1: The security tickers comprising the full dataset with their associated company
name and sector.

Ticker Company name Sector

CRDI.MI UniCredit SpA Finance

GASI.MI Assicurazioni Generali SpA Insurance

GSK.L GlaxoSmithKline PLC Pharmaceuticals

HSBA.L HSBC Holdings PLC Finance

ING.AS ING Group NV Finance

LGEN.L Legal & General Group PLC Finance

NOK1V.HE Nokia Corp Technology

SAN.MC Banco Santander SA Finance

VOD.L Vodafone Group PLC Technology

Table 5.2: Reference of stock exchanges indexed by the ticker suffix.

Suffix Venue

AS Amsterdam SE

HE Helsinki SE

L London SE

MC Madrid SE

MI Milan SE

5.3.2 Simulation

The market environment itself was implemented as an event-by-event reconstruction
using the methods outlined in Chapter 4. That is, we assumed negligible permanent
market impact, and use shadowing to simulate the execution of artificial orders
generated by the agent; see Section 4.5. The code was written in C++ and is pub-
licly accessible at https://github.com/tspooner/rl_markets under the BSD 3-Clause
License. This includes efficient implementations of LOBs, reinforcement learning (RL)
algorithms and synchronised data streamers.

The dataset used to run the simulation comprised 10 assets traded over 5 venues
and 4 different sectors; see Table 5.1. The venue for each ticker is given by the suffix,
such as AS, each of which is translated in Table 5.2. While all 10 securities were
traded on major exchanges, the liquidity of each varied greatly during the 8 months
(January — August 2010) of recorded data. In each experiment, the market depth
and transaction-level data was split into disjoint training, evaluation and testing
sets, where all of the testing data occurs chronologically later than the evaluation
data, and the same for the evaluation and training data. As per convention, the latter
was used to actually train each agent, the evaluation set was used to measure the
performance of the strategy during any hyper-parameter tuning, and the final set
for comparing algorithms.

https://github.com/tspooner/rl_markets

5.3 problem specification 57

Table 5.3: Default parameters as used by the learning algorithm and the underlying trading
strategy.

Value

Training episodes 1000 days

Training sample size ∼ 120 days

Testing sample size 40 days

Memory size 107

Number of tilings (M) 32

Weights for linear combination of tile codings
(0.6, 0.1, 0.3)

[agent, market, full] (ci)

Learning rate (α) 0.001

Step-size [R-learning] (β) 0.005

Discount factor (γ) 0.97

Trace parameter (λ) 0.96

Exploration rate (ε) 0.7

εFloor 0.0001

εT 1000

Order size (ω) 1000

Min inventory (min Inv) -10000

Max inventory (max Inv) 10000

58 rl ∩ data-driven trading

Price

L
iq

ui
di

ty

(a) Wide and Symmetric.

(b) Tight and Asymmetric (pro-bid). (c) Tight and Asymmetric (pro-ask).

Figure 5.1: Illustration of a spread-skew market making strategy in an LOB.

hyper-parameters The hyper-parameters used in the experiments to follow
we held fixed across all variants. These values are summarised in Table 5.3 and
should be assumed to hold throughout this chapter, unless otherwise stated.

5.4 the strategy

As we know from Chapter 3, market makers are primarily concerned with two things:
pricing and sizing. That is, where should the MM place its orders, and what quantity
and distribution of its desired volume should be placed amongst these orders. All
other considerations, such as inventory management and liquidity provision are
simply derivatives of these core concepts. While simple to state, doing this effectively
is non-trivial and is the subject of a great deal of research.

In this chapter, we consider a standard class of ladder-based market making
strategies that use the principle of spreading and skewing [38]. To keep things simple,
we only consider strategies that place limit orders (LOs) at one ask price and one bid
price, and with the same fixed quantity on each side. This collapses the problem into
one of pricing alone, since we have frozen one dimension of the problem. Now, for
pricing, the idea behind this type of behaviour is that the MM has some notion of
what the fundamental value, Zt, is at any given time. Orders are placed about this
value with some width and skew in accordance with the agent’s need for immediacy
and/or bias in execution, respectively. A high-level illustration of this strategy is
given in Figure 5.1.

To define this more formally, let Ẑt denote the point estimate of the fundamental
value Zt as held by the MM. This can be thought of as the reference price used by
the MM, with all of it’s orders are placed relative to this value. The estimate itself is
typically given by the market mid-price (Equation 3.7), the micro-price (Equation 4.3)
or a smoothed variant thereof; note this list is by no means exhaustive. The MM

5.4 the strategy 59

then selects two controls, δ±t ∈ R2, which define the price offsets away from the
reference Ẑt. The difference between these two values, δ+t − δ−t , is defined as the
quoted spread, a quantity analogous to the market spread,Dt. This is not constrained
by definition, but it is sensible to assume that δ+t − δ−t > 0 in most cases.

At each time step, the MM generates prices, δ±t , which are translated into limit
orders (LOs) that are sent to the LOB:

o+t =

(
t,ω, Ẑt + δ+t

)
if Ωt −ω ⩾ Ω ∧

∣∣∣∆δ+t−1 −∆Ẑt−1∣∣∣ > 0,
(∞, 0, t) otherwise,

(5.1)

and

o−t =

(
t,−ω, Ẑt − δ−t

)
if Ωt +ω ⩽ Ω ∧

∣∣∣∆δ−t−1 +∆Ẑt−1∣∣∣ > 0,
(0, 0, t) otherwise.

(5.2)

These define the ask and bid orders, respectively, and the two conditions under which
they are non-trivial. The first requires that an execution not move the inventory of
the MM beyond the upper/lower limit. The latter requires that the new order be at a
different price compared to the previous time step. Otherwise, the order is empty and
will be ignored. In the case that a new order is created, all of the outstanding orders
created by the MM are cancelled and removed from the book. These constraints and
cancellation mechanism together ensure that the MM has only a single active order
in each side of the book at any one time; and that we do not replace orders at an
already occupied price.

The MM is also allowed to submit an MO in order to aggressively consume liquidity.
This of course incurs a cost from walking the book (see Section 3.3.1), but allows the
agent to quickly reduce inventory exposure when necessary. For this, we introduce
a third control variable ωmt which denotes the volume of the market order at any
given time. As with the LOs, this control is translated into a tuple

omt =

(t,ωmt , 0) for ωmt ⩾ 0,

(t,ωmt ,∞) for ωmt < 0.
(5.3)

When ωmt = 0 the order has no effect, but for any value |ωmt | > 0 the agent will
consume volume from the book.

In summary, the strategy of the MM is specified at each time step by:

δ+t The price offset of the ask LO.

δ−t The price offset of the bid LO.

ωmt The volume of the MO.

5.4.1 Discrete Encoding

Now, in order to optimise this strategy using value-based RL, we must engineer a
discrete encoding of the three control variables, δ±t and ωmt . This poses a challenge
since there is a trade-off between representational capacity and computational
efficiency. If the agent has only a small number of actions (i.e. |A| is small), then
learning will be faster, but the space of solutions may be too restrictive to be effective.
On the other hand, having a larger number of actions incurs a computational cost
due to exploration and the curse of dimensionality, but a better solution is more
likely to exist within the space of representable policies.

60 rl ∩ data-driven trading

Table 5.4: Discrete encoding of the LO/MO MM strategy.

Action ID 0 1 2 3 4 5 6 7 8

Ask (δ−t /βt) 1 2 3 4 5 1 3 2 5

Bid (δ+t /βt) 1 2 3 4 5 3 1 5 2

Action 9 MO with ωmt = Ωt

Table 5.4 outlines our construction for A. It includes the ability to quote wide

or tight with a symmetric or asymmetric skew, and the option place an MO to clear
inventory. Note that the controls δ±t have been normalised by a time-dependent
scale factor, βt, which is given by a simple n-period moving average of the market
spread:

βt
.
=
1

n

n−1∑
i=0

Dt−i, ∀ t ⩾ n− 1, (5.4)

where Dt is defined in Equation 3.8. This allows us to use a single generic action-
space for all assets in the dataset without the need to explicitly recalibrate prices in
each market. To understand why this normalisation is important, consider Figure 5.1.
While this market is liquid and has a tight spread, other, more illiquid markets, may
have a book where the volume is fragmented and thus has a spread of multiple ticks.
Since we do not know a priori what the market liquidity will be, we must either:
define a large enough action-space to cover δ± at many scales; or use an adaptive
encoding as above.

5.4.2 Trading Clocks

In addition to the core strategy constructions, it is important to address time in
the model: what it is and how it is defined. The means by which one aggregates
interactions in an order book, and thus what constitutes an actionable event to a
trader — i.e. what t 7→ t+ 1 actually means in the real world — is a research question
in and of itself. Indeed, the root of this question can be traced back to the 1960s
with the groundbreaking work of Mandelbrot and Taylor [107]. Traditionally, the
standard “wall clock” is used as an appropriate metric: changes in the book areIf, say, a quartz clock,

does this mean that

“rational” behaviour is

defined by the

vibrations of crystals?

grouped into fixed length intervals (days, minutes, seconds, . . .). Updating of beliefs
and strategic decision-making is done chronologically in accordance with the sum
differences across these intervening periods. But this is not the only choice available.

Recent work by Easley, Prado, and O’Hara [55] suggests that, nowadays, many
high-frequency traders instead operate on “intrinsic time,” such as the volume clock.
In this setting, a trading interval is partitioned into bins of equal volume throughput.
It can be shown that that this representation has convenient statistical properties and
is more faithful to the fact that LOBs are, by definition, discretely evolving systems.
Naturally, this principle could be extended to define a clock such that the required
stylised facts are recovered. Events in the book can, and should, be grouped based
on whatever a trader believes is most appropriate for their strategy.

Remark. In some sense, this notion of clocks is equivalent to simple termination

conditions in Semi-MDPs [134, 166]. We have implicitly assumed the existence of an

underlying continuous-time process that drives the latent state; i.e.Zt and the exogenous

properties of the universe. The actual actions taken by the MM — now options — are

then distributed heterogeneously in “real time”. We have substituted the “true” problem

5.5 benchmarks 61

with one that is more amenable to learning. How similar the optimal solutions are in

this new setting to the original problem, however, is unclear.

We take inspiration from existing approaches on event-based clocks and define
time based on innovations in latent space. This is a natural reflection of the core
modelling choice to represent the problem as a partially-observable MDP. It means
that each actionable time point — from the perspective of the MM — occurs only when
a change in the underlying state of the market yields a measurable change in some
subset of elements of the observation. This could be a change in price, volume or in
the arrangement of orders in the book. Here, we require that the market mid-price

(Equation 3.7) changes (in either direction and by any non-zero amount) before the agent

may act again. This helps reduce the number of instances where the MM reacts to
random fluctuations in the market that do not correspond to meaningful transitions
in latent space. While this is a simple choice, we found it to be effective. It remains
an open question as to what the “most effective” clock is, if indeed there even exists
a single, unilaterally optimal model.

5.5 benchmarks

When it comes to measuring performance in trading there are many schools of
thought, but very few absolutes; see Section 3.4. For example, claiming that a strat-
egy earns £1000 a day, or achieves a Sharpe ratio of 1.2 is meaningless on its own.
Without significant domain knowledge, the only way to make sense of these statistics
is in relative terms. For this, we require benchmarks, and in the following sections Domain experts have

their own internalised

benchmark.

we introduce three variants of the trading strategy with increasing levels of so-
phistication that will be used to ground the results presented later on. The last of
these benchmarks is based on a state-of-the-art algorithm from the online learning
literature.

5.5.1 Randomised Pricing with Clearing

The first benchmark is based on a simple randomised policy which uniformly mixes
between all 10 actions in Table 5.4 at each time step, forcibly choosing action 9
when the inventory reaches the upper/lower limit. Clearing inventory like this
helps to reduce exposure to adverse selection in periods of strongly biased volume
flow, but it is clear that randomly selecting prices at which to quote is not an
effective strategy. This is reflected in Table 5.5. Note that the low maximum absolute
position observed is merely an artefact of randomisation and is not a sign of strategic
inventory management. Because the orders at each time step are replaced with high
probability, it is very likely to cancel and replace its LOs and thus occupy the back of
queues for the majority of time steps, thereby decreasing the likelihood of execution.

Remark. Agents could manipulate a simulator and avoid trading altogether by

randomising their actions and thus avoiding execution. It is important to identify these

pathologies and engineer the simulator or strategy to avoid these local, meta-optimal

solutions. In this work, we took the approach of defining the agent’s intrinsic time based

on non-zero changes in the market mid-price. This helped to prevent the agent from

changing its orders too often.

5.5.2 Fixed-Symmetric Pricing with Clearing

The second set of benchmarks quote at fixed, symmetric distances from the reference
price at all times: i.e. δ+t = δ−t at all times t. In effect, each variant is associated with a

62 rl ∩ data-driven trading

Table 5.5: Performance attributes for a set of fixed and random benchmark instances of the
strategy with boundary-based inventory clearing, evaluated on HSBA.L; ND-PnL
refers to normalised daily profit and loss, and MAP refers to mean absolute position.

ND-PnL [104] MAP [units]

Randomised (Table 5.4) −10.82± 5.63 135± 234

Fixed (δ±/β = 1) −20.95± 17.52 3646± 2195
Fixed (δ±/β = 2) 2.97± 13.12 3373± 2181
Fixed (δ±/β = 3) 0.42± 9.62 2674± 1862
Fixed (δ±/β = 4) 1.85± 10.80 2580± 1820
Fixed (δ±/β = 5) 2.80± 10.30 2678± 1981

single action in the range [0, 4] from Table 5.4. Market making strategies of this form
are a special case/simplification of the ladder strategies studied by Chakraborty and
Kearns [38]. While trivially simple to implement, these naturally account for liquidity
in the market by adapting prices to changes in the bid-ask spread, depending on the
choice of the scaling factor βt. In other words, there is some level of intelligence to
the strategy.

A sample of performance for 5 instances is given in Table 5.5 for HSBA.L; the
full set of results are omitted for brevity since agent performance was consistent
across all securities. Fixed strategies with δ±/β > 1 were found to be just profitable
on average, with decreasing MAP as δ± was increased. This already represents
an improvement over the randomised policy. The variance on both ND-PnL and
MAP, however, is significant in terms of scale compared to their mean values — i.e.
risk-adjusted performance is very poor. This may be caused by a lack of inventory
management, as indicated by the consistently high mean average positions; though
this is offered only as a possible, qualitative explanation.

5.5.3 Online Pricing

The final pair of benchmarks are based on an adaptation of the spread-based strate-
gies introduced by Abernethy and Kale [3]. These leverage online learning meta-
algorithms to construct behaviours from sets of simple strategies that are not only
adapted to the market, but also enjoy provably low regret. In this work, we focus on
the market-making multiplicative weights (MMMW) variant which uses the multi-
plicative weights method [10] to pick, in each period, from a class of simple strategies
parametrised by a minimum quoted spread. This set of simple strategies is defined
as the nine unique LO actions in Table 5.4 — it thus includes both symmetric and
asymmetric quotes. Rather than include the MO action as an independent “strategy”,
we opt for automatic clearing as in previous two benchmarks.

The performance of the MMMW benchmark is shown in Table 5.6 alongside the
follow-the-leader variant that was also proposed by Abernethy and Kale [3]. The
latter was included only for reference as the performance was consistently worse
than the MMMW algorithm. These results are less favourable than those presented
in the original paper which found the strategy to be profitable over all dates and
securities considered. This could be attributed to the use of a less realistic market
simulation that did not, for example, track the limit order book to the same level
of precision considered here. Indeed, this may indicate that their results do not
generalise to more realistic markets.

5.6 risk-neutral behaviour 63

Table 5.6: Out-of-sample normalised daily PnL (ND-PnL) and mean absolute positions (MAP)
of the follow-the-leader (FTL) benchmark strategy derived from [3].

MMMW FTL

ND-PnL [104] MAP [units] ND-PnL [104] MAP [units]

CRDI.MI −1.44± 22.78 7814± 1012 −14.93± 25.52 5705± 1565
GASI.MI −1.86± 9.22 5743± 1333 −8.50± 24.00 6779± 1499
GSK.L −3.36± 13.75 8181± 1041 −29.33± 95.39 8183± 1272
HSBA.L 1.66± 22.48 7330± 1059 −4.00± 35.84 8875± 683
ING.AS −6.53± 41.85 7997± 1265 −27.53± 114.97 9206± 981
LGEN.L −0.03± 11.42 5386± 1297 0.29± 12.45 5824± 1512
LSE.L −2.54± 4.50 4684± 1507 −2.60± 4.49 4776± 1615

NOK1V.HE −0.97± 8.20 5991± 1304 −3.47± 8.81 5662± 1533
SAN.MC −2.53± 26.51 8865± 671 −8.80± 50.00 9273± 470
VOD.L 1.80± 22.83 7283± 1579 −1.72± 25.11 8031± 1610

Looking in more detail, this is not entirely surprising given the assumptions
of their model. For example, their analysis relied in the assumption that market
orders are executed perfectly at the mid-price rather than walk the book. While this
does not detract from the validity of the approach, it does suggest that the derived
regret/performance bounds are optimistic. Secondly, they enforce that unexecuted
LOs be cancelled and re-placed at each period. In a simple model this can be done
for mathematical convenience without affecting the results, but in a more realistic
model such as ours, this has a significant impact. When simulating the full queue at
each price, repeated cancellation orders will yield a very low chance of execution.
This relates to our past remark on using intrinsic time to prevent the agent acting too
often and never observing any transactions. Nevertheless, the results are included
here as a benchmark since they still represent an important contribution to the field
and thus also represent a valid comparator.

5.6 risk-neutral behaviour

With this section we begin our evaluation of reinforcement learning (RL) for opti-
mising The Strategy, focussing only, for time being, on the risk-neutral domain. In
this setting the agent’s objective is to maximimise it’s expected profit and loss —
however that may be defined — with no additional constraints on behaviour, such
as risk penalties. To do this, we first define a reward function which captures the
change in the value of the agent’s portfolio from t to t+ 1. There are two possible
definitions one can consider.

The first approach is to define the reward directly as the change in cash, rt
.
= ∆Xt.

If the agent removes it’s LOs at T − 1 and liquidates it’s entire portfolio in the
period T − 1 7→ T , then this will exactly recover the mark-to-market portfolio value
of the agent, ΥT . Indeed, even without these two assumptions, if the liquidation
occurs entirely at ZT−1 (i.e. if Z̄mT−1 = ZT−1), then the terminal cash value again

64 rl ∩ data-driven trading

corresponds to ΥT . To define this formally, observe that the expressions for the cash
generated due to asks and bids, respectively, are given by

∆υ+t
.
=

(
ν+t − max {ω̃mt , 0}

) (
Zt + δ

+
t

)︸ ︷︷ ︸
Ask LO

+max {ω̃mt , 0}Z̄mt︸ ︷︷ ︸
Ask MO

,

and

∆υ−t
.
=

(
ν−t + min {ω̃mt , 0}

) (
Zt − δ

−
t

)︸ ︷︷ ︸
Bid LO

+min {ω̃mt , 0}Z̄mt︸ ︷︷ ︸
Bid MO

.

This allows us to define a “cash flow” reward function by the value

∆Xt =
(
ν+t − max {ω̃mt , 0}

)
δ+t +

(
ν−t + min {ω̃mt , 0}

)
δ−t + ω̃mt Z̄

m
t − νtZt.

While this has a natural interpretation, it is important to note that the values of this
expression scale with the prices, Zt. This means that the rewards may be very large
and may also suffer from high variability when there are many transactions. This
is especially true when those transactions are skewed in favour of bid/ask across a
single time step. This is an undesirable property since market makers, in general,
rely on high volume throughput to generate revenue and are often caught on one
side of the market for multi-step periods.

The alternative approach is to track the change in the mark-to-market portfolio
value directly, such that rt

.
= ∆Υt. Substituting ∆υ±t into (3.1), it can be shown thatδ̄mt equals Zt− Z̄

m
t

if ω̃mt > 0 and

Z̄mt −Zt, otherwise. ∆Υt =
(
ν+t − max {ω̃mt , 0}

)
δ+t +

(
ν−t + min {ω̃mt , 0}

)
δ−t + ω̃mt δ̄

m
t︸ ︷︷ ︸

Spread PnL

+Ωt+1∆Zt,︸ ︷︷ ︸
Inventory PnL

where δ̄mt is the volume-weighted average spread paid by the MO. In this case, we
note that the reward, while exactly equivalent to the previous definition by time T ,
scales only with changes in price. This quantity is lower bounded by the tick size,
but typically registers on the order of 1 to 2 ι. This is a significant reduction (at least
for realistic scenarios) and enjoys a significantly reduced variance as a result. In
other words, using ∆Υt as a reward function defines a path of “least variation” to
the terminal objective. We define this incremental mark-to-market reward function
below.

Definition 14 (Incremental mark-to-market reward). The (risk-neutral) mark-to-

market reward is expressed by the four terms:

rt
.
= r+t + r−t + rmt + rZt , (5.5)

where

r+t
.
=

(
ν+t − max {ω̃mt , 0}

)
δ+t ,

r−t
.
=

(
ν−t + min {ω̃mt , 0}

)
δ−t ,

rmt
.
= ω̃mt δ̄

m
t ,

rZt
.
= Ωt∆Zt.

variance inequalities The difference in variance between the two approaches
can be derived rigorously by identifying the conditions under which V [∆Υt] ⩽
V [∆Xt]. First, note that these terms may be expressed as

V [∆Υt] = V
[
r+t + r−t + rmt

]
+ V [νtZt] + Cov

[
r+t + r−t + rmt ,νtZt

]
,

and

V [∆Xt] = V
[
r+t + r−t + rmt

]
+ V [Ωt∆Zt] + Cov

[
r+t + r−t + rmt ,Ωt∆Zt

]
.

5.6 risk-neutral behaviour 65

Subtracting these two equations, one arrives at the equivalence relation

V [∆Xt] − V [∆Υt] = V [Ωt∆Zt] + Cov
[
r+t + r−t + rmt ,Ωt∆Zt

]
− V [νtZt] − Cov

[
r+t + r−t + rmt ,νtZt

]
.

If we assume that the covariance terms are negligible, then it follows that V [∆Υt] ⩽
V [∆Xt] ⇐⇒ V [νtZt] ⩾ V [Ωt∆Zt]. This means that the difference in variance
between∆Υt and∆Xt depends, approximately, on the difference in variance between
the mark-to-market cash flow term and inventory PnL, respectively. To see when
this is satisfied we can analyse the scale of each term. In general,Ωt and νt are on a
similar scale, but Zt may be many orders of magnitude larger than ι and thus ∆Zt. It
seems apparent that this inequality holds in all realistic scenarios since the variance
on the cash flow term will almost always dominate. One must simply ensure that
Ωt does not grow too large.

approximations In all the definitions above, the reward is computed with
respect to the fundamental value Zt, which is unknown to the simulator. It is latent
not only by construction of the partially-observable MDP itself, but by the fact we
are using data. To handle this, all instances of Zt are replaced with an estimate Ẑt. If
∆Zt = ∆Ẑt, then this transformation has no effect on the value ∆Υt and the derived
estimator, ∆̂Υt, is unbiased. Another subtle challenge with this configuration is that
the objective function, J(π) .

= Ed0,π[ΥT], is itself non-stationary due to the explicit
dependence on the time t and finite length of an episode. To address this, one can
either include time in the observations, or use discounted returns as a proxy for the
true objective. Here we opt for the latter and define the discounted value function

Qγπ(s,a) = Eπ[∆Υt + γQ
γ
π(st+1,at+1) | st = s,at = a] .

Since limγ→1Q
γ
π = Qπ, an arbitrarily close approximation to the original objec-

tive can be recovered by increasing γ. The problem now reduces to one of policy
evaluation, since acting greedily with respect to this quantity will yield and optimal
policy.

Remark. While one must be careful not to re-introduce non-stationarity for large

γ, it is worth noting that our data-driven LOB simulation is unlikely to be perfectly

stationary itself anyway. The challenge in tuning the discount factor is thus three-fold:

reducing variance in the estimator; reducing bias betweenQπ andQ
γ
π; and minimising

the impact of non-stationary from the dependence on time and that inherent to the

environment.

5.6.1 Credit Assignment

Define the action-value estimator, Q̂w(s,a), as in Equation 2.32 with basis functions
given by a hashed tile coding over the space of values (Ω, δ+/β, δ−/β) and action
a; the term β is as defined in Equation 5.4. Clearly the arguments to this function
can be computed from the observations available to the market maker, (Ω,B); the
dimensionality reduction avoids issues of scaling due to the (indefinite) size of the
raw LOB object. More expressive representations are reserved for Section 5.8, and
for now we focus only on the information directly pertaining to the internal state of
the MM: it’s inventory and active orders.

The construction Q̂(s,a) was first learnt using the traditional one-step Q-Learning
and SARSA but, consistent with the findings of past work [40], we were unable
to obtain useful results in either case. Learning is simply too inefficient without
making more effective use of the samples given the limited amount of data. The

66 rl ∩ data-driven trading

Table 5.7: Mean and standard deviation on the normalised daily PnL (given in units of 104)
for Q(λ) and SARSA(λ) using the incremental mark-to-market reward function and
the algorithm parameters specified in Table 5.3.

Q(λ) SARSA(λ)

CRDI.MI 8.14± 21.75 4.25± 42.76
GASI.MI −4.06± 48.36 9.05± 37.81

GSK.L 4.00± 89.44 13.45± 29.91

HSBA.L −12.65± 124.26 −12.45± 155.31
ING.AS −67.40± 261.91 −11.01± 343.28

LGEN.L 5.13± 36.38 2.53± 37.24
LSE.L 4.40± 16.39 5.94± 18.55

NOK1V.HE −7.65± 34.70 −10.08± 52.10
SAN.MC −4.98± 144.47 39.59± 255.68

VOD.L 15.70± 43.55 6.65± 37.26

addition of eligibility traces — producing the Q(λ) and SARSA(λ) algorithms — on the
other hand, improved the agents’ performance and lead to policies that occasionally
generated profits out-of-sample; see Table 5.7.

Broadly speaking, the results in Table 5.7 suggest that there are two key conclu-
sions: (i) that Q(λ) fails to significantly outperform MMMW (the best benchmark) on
average, across all stocks, when we exclude LGEN.L; (ii) and that SARSA(λ) performs
better than both MMMW and Q(λ). Indeed, we found that SARSA(λ) achieved an
average improvement of 139% over Q(λ) in terms of the mean ND-PnL (a proxy for
the risk-neutral objective), and 1043% over MMMW. In the case of SAN.MC, the excess
over Q(λ) was nearly as much as 900%. The analysis also showed that SARSA(λ) was
also more stable during learning and tended to be more sample efficient, especially
early in training. It is plausible that this discrepancy derives from the differences
between on- and off-policy learning algorithms as it is well known that off-policy
learning is likely to cause divergence when combined with function approximation
and bootstrapping [13, 19].

These claims are in agreement with conclusions first drawn by Chan and Shelton
[40] back in 2001. In this case, however, the pathologies are exacerbated by the
addition of eligibility traces as they are known to be less effective at assigning credit
with Q(λ) compared with on-policy methods. This is due to the distinction between
the sampling distributions of the behaviour and target policies [162]; credit can only
be propagated a short way back up the history because exploratory actions are not
drawn from the target distribution and the eligibility trace is reset. While solutions
have been proposed, such as importance sampling [131, 132, 148], there are still veryIS uses likelihood

ratios which are

unstable when the

probability of a

sample under the

proposal distribution

approaches zero.

few simple approaches that can be used without introducing additional instability
issues. As such, it may be that traditional Q(λ) is ill-suited to this domain.

Partial observability is also a major challenge. It is well known that Q-Learning
may not converge on the optimal value function when the observations are not
sufficiently informative [153].

5.6.2 Average Reward vs. Discounted Reward

Market making can clearly be formulated as a finite horizon problem. A trading
day has the natural interpretation as an episode, and market makers often behave

5.6 risk-neutral behaviour 67

Table 5.8: Mean and standard deviation on the normalised daily PnL (given in units of 104)
for the off- and on-policy variants of the R(λ) algorithm, both evaluated over the
whole basket of securities.

Off-Policy R(λ) On-Policy R(λ)

CRDI.MI 5.48± 25.73 0.00

GASI.MI −3.57± 54.79 4.59± 17.27

GSK.L 12.45± 33.95 14.18± 32.30

HSBA.L −22.97± 211.88 9.56± 30.40

ING.AS −244.20± 306.05 18.91± 84.43

LGEN.L −3.59± 137.44 −1.14± 40.68

LSE.L 8.31± 23.50 5.46± 12.54
NOK1V.HE −0.51± 3.22 0.18± 5.52

SAN.MC 8.31± 273.47 25.14± 143.25

VOD.L 32.94± 109.84 16.30± 32.69

with this sequential structure in mind — it is common for MMs to end each trading
day flat (i.e. with ΩT = 0) to avoid overnight changes in price. While this is the
approach taken so far, it is unclear whether this “natural” formulation is necessarily
the best approach from a learning perspective. Here we evaluate the performance
of R-Learning, a variant of the Q-Learning algorithm which optimises the average
long-run return rather than the discounted return [162]. As with Q-Learning, the
R-Learning algorithm can be extended to leverage eligibility traces for improved
credit assignment. The resulting algorithm, R(λ), can then also be adapted to work
on-policy such that it takes the form of an average-reward equivalent of SARSA(λ).
That is, rather than take the maximum over actions in the next state, we simply
sample the current policy.

The performance of the on- and off-policy variants of R(λ) on each of the 10
securities is quoted in Table 5.8. From these empirical results we can make the
following comparisons:

(i) The on-policy variant of R(λ) achieves an out-of-sample ND-PnL with an
average excess of 71% over the off-policy variant.

(ii) The pessimistic behaviour of the on-policy variant leads to much lower vari-
ance on ND-PnL.

(iii) Off-policy R(λ) outperforms Q(λ) by an average of 24%.

(iv) On-policy R(λ) outperforms SARSA(λ) by an average of 36%.

This suggests two things: first, that the on-policy/off-policy discrepancy observed
previously translates to the average-reward setting; and second, that both variants
of R(λ) outperform their discounted return counterparts on average. This does not
necessarily mean that a finite-horizon perspective is incorrect. It is hard to draw
strict conclusions as to the cause, but it is plausible that the long-run average term in
the R(λ) update may aid learning. For example, there could be a regularising and/or
variance reducing effect — much like the baseline in actor-critic methods — due
to the fact that it will converge faster to it’s value Ed0,π[G0]. This is because the
long-run average is independent of states/actions and thus uses all observed samples
rather than a subset based on the state visitation distribution d(s).

68 rl ∩ data-driven trading

5.6.3 Bias-Variance Reduction

As we have seen thus far, limit order books (LOBs) in high-frequency regimes are
subject to a great deal of microstructure noise which increases the variance in our
estimate of Qπ(s,a). This frequently leads to unstable learning, especially when
using off-policy evaluation, and more generally for sampling based algorithms in
which the TD-target is computed from a single transition. While eligibility traces
clearly improve stability, Table 5.7 and Table 5.8 suggest that there are still major
issues. Assuming the proposition on the regularising effect of R(λ) is true, this would
imply that variance reducing techniques will hold value.

In addition to variance, it is also well understood that algorithms featuring a
max operation in the TD-target computation are susceptible to maximisation/over-
estimation bias. This pathology was first studied by Hasselt [82] who showed that
Q-Learning can perform very poorly in stochastic environments due to the poor
estimates of the maximum expected action-value; see Section 2.4 for more details.
This is highly relevant to the MM problem and contributes yet another source of
error, this time in the form of a bias.

To this end, we introduce three alternative algorithms that address each of the
issues mentioned above. Double Q(λ) and Double R(λ) are both double-estimator
variants of Q(λ) and R(λ), respectively. Expected-SARSA(λ) is then included as it
is known to reduce variance in the estimate of the TD-target by evaluating the
expectation of the value at the next state across all a ∈ A; see Section 2.3 for more
details. A summary of the performance of these algorithms is given in Table 5.9, for
which we can state the following:

(i) Double Q(λ) outperforms Q(λ) by 90% on average, has more positive instances
and appears to exhibit fewer cases of extreme values (ING.AS).

(ii) Double R(λ) similarly outperforms R(λ) by an average of 146%, Q(λ) by 159%,
and again has fewer extremal values.

(iii) Expected-SARSA(λ) only performs slightly better than SARSA(λ) on average
(33%). As with Double Q(λ)/R(λ), this extension has much more consistent
out-of-sample performance across the basket of securities.

Overall, we find no hard evidence that a single algorithm performs best across

all assets. Indeed Table 5.9 suggests that all the proposed extensions perform well,
with Expected-SARSA(λ) being the most consistent. However, it is important to
note that the scale of variance on the distribution of ND-PnL makes it hard to draw
strong conclusions when comparing to, say, regular SARSA(λ). By far the most
congruous observation, as previously stated, is that on-policy methods are more
stable in this domain; though eligibility traces and double-estimation do clearly
improve performance.

5.7 constrained behaviour

In the preceding section we saw how better credit assignment, regularisation and
algorithmic bias/variance reduction can significantly improve performance. The
limitation is that this only considers the expectation of ND-PnL and not higher order
characteristics such as variance. For this we must rethink the risk-neutral objective
and incorporate penalties on behaviour that fails to satisfy our constraints. His-
torically speaking, risk has been integrated into RL through the use of exponential
utility functions, mean-variance criteria or direct penalties on non-zero inventories,
but these techniques often don’t translate well, or require unintuitive tuning pro-

5.7 constrained behaviour 69

Table 5.9: Mean and standard deviation on the normalised daily PnL (given in units of 104) for
two double-estimator techniques and a variance reduced estimator, each evaluated
over the whole basket of securities.

Double Q(λ) (Off-Policy) Double R(λ) Expected-SARSA(λ)

CRDI.MI −5.04± 83.90 19.79± 85.46 0.09± 0.58
GASI.MI 5.46± 59.03 −1.17± 29.49 3.79± 35.64

GSK.L 6.22± 59.17 21.07± 112.17 −9.96± 102.85
HSBA.L 5.59± 159.38 −14.80± 108.74 25.20± 209.33
ING.AS 58.75± 394.15 5.33± 209.34 6.07± 432.89
LGEN.L 2.26± 66.53 −1.40± 55.59 2.92± 37.01
LSE.L 16.49± 43.10 6.06± 25.19 6.79± 27.46

NOK1V.HE −2.68± 19.35 2.70± 15.40 −3.26± 25.60
SAN.MC 5.65± 259.06 32.21± 238.29 32.28± 272.88
VOD.L 7.50± 42.50 25.28± 92.46 15.18± 84.86

cesses. Below we introduce two alternative definitions of reward that use damping

to penalise risky policies without losing interpretability.

Definition 15 (Symmetrically damped reward). Let η ∈ [0, 1] be a constant and

define the symmetrically damped reward as

rt
.
= ∆Υt − ηr

Z
t = r+t + r−t + rmt + (1− η)Ωt∆Zt. (5.6)

Definition 16 (Asymmetrically damped reward). Let η ∈ [0, 1] be a constant and

define the asymmetrically damped reward as

rt
.
= ∆Υt − ηmax

[
0, rZt

]
. (5.7)

The proposed reward damping is applied only to the inventory PnL term, rZt =

Ωt∆Zt, in order to reduce the reward that the MM can earn from speculation on
the future value of Ωt ′>t. The symmetric version targets both profits and losses
from speculation, while asymmetric damping reduces only the profit derived from
speculative positions and keeps losses intact. In both cases, the amount of reward
that can be gained from capturing the spread increases relative to the amount of
reward that can be gained through speculation. This has the effect of encouraging
“good” market making behaviour in the policy. A nice property of this formulation
is that the penalty is in the same units as the reward itself, making η simple to tune
and interpret; e.g. a value η = 0.5 in Equation 5.7 would halve the amount of reward
generated by appreciations in the value of the agent’s inventory Ωt.

Both of the proposed extensions to the risk-neutral reward function were evalu-
ated across the full basket of securities; the performance is summarised in Table 5.10.
While symmetric damping can be seen to exacerbate the flaws in the basic agent,
asymmetric damping of the speculative reward term, with sufficiently high penalty,
produced significantly better risk-adjusted performance in most cases. This is ex-
emplified by Figure 5.2 which shows how the distribution of out-of-sample PnL
and MAP varies with η; note that the PnL converges to a positive, non-zero value.
For example, at η ∼ 0.1 there is an apparent regime shift at which the agent starts
converging on significantly different policies than those found in the risk-neutral
case. This shift in solutions is manifested in a change from holding large, biased

70 rl ∩ data-driven trading

Table 5.10: Mean and standard deviation on the normalised daily PnL (given in units of 104)
for Q-learning and SARSA using non-damped PnL reward function and agent-
state.

Symmetric (η = 0.6) Asymmetric (η = 0.6)

CRDI.MI 12.41± 143.46 0.08± 2.21
GASI.MI 9.07± 68.39 −0.10± 1.04

GSK.L 30.04± 135.89 9.59± 10.72
HSBA.L −11.80± 214.15 13.88± 10.60
ING.AS 90.05± 446.09 −6.74± 68.80
LGEN.L 5.54± 119.86 4.08± 7.73
LSE.L 8.62± 27.23 1.23± 1.80

NOK1V.HE −4.40± 84.93 0.52± 3.29
SAN.MC 27.38± 155.93 5.79± 13.24
VOD.L 8.87± 93.14 9.63± 6.94

inventories towards small, neutral positions, and a reduction in the dispersion of
the distribution of PnL. Though the point at which this occurs does vary between
securities, the impact of asymmetric damping is clear and provides strong evidence
that the inventory term, rZt , is the leading driver of risky behaviour. This result
corroborates the use of inventory penalising terms in value functions in stochastic
optimal control [34, 35] and is a key contribution of this chapter.

In addition to better asymptotic performance, the asymmetrically damped reward
function also exhibited improved stability during learning. Figure 5.3 shows how the
mean and standard deviation of episodic reward varied with increasing values of the
damping factor, η. Observe how the standard deviation for η = 0 (i.e. risk-neutral)
diverges as the mean reward grows. This implies that a small increase in the mean
PnL comes at the cost of a large increase in the risk. Correspondingly, we find that
while the mean reward is reduced for η ∈ {0.05, 0.1} compared with η = 0, they come
with much greater stability during learning and out-of-sample results. This, however,
does not appear to translate to η = 0.7 which outperforms the other instances both
in terms of the mean and variance on profit and loss. This is likely due to a reduction
in variance of the reward signal, leading to more stable learning.

These results initially seemed to be unintuitive, but we discovered empirically that
this was caused by sub-optimality in the solutions found for η < 0.7. Specifically, the
inventory component rZt in Equation 5.5 not only drives risky behaviour, but is also
the main source of instability during learning. Increasing the value of ηwas found to
yield better and more consistent performance. In other words, the penalty acts not
only as a constraint on behaviour, but also as a regulariser much like the average-
reward term in R(λ); see also the work of Spooner, Vadori, and Ganesh [160] who
exploit this ex ante knowledge of improved performance in policy gradient methods.
Since the majority of uninformative randomness derives from ∆Zt, it follows that
the damping has the effect of reducing variance in the estimator Q̂(s,a); this effect
should scale quadratically with η. The benefits of the asymmetrically damped reward
function are clearly two-fold.

5.7 constrained behaviour 71

Figure 5.2: Distributions of daily out-of-sample PnL and mean inventory for increasing values
of the damping factor, η, evaluated on HSBA.L using the asymmetric reward
variant.

−3

−2

−1

0

M
ea

n
[-]

0 200 400 600 800 1000

Episode [days]

0.5

1.0

1.5

2.0

2.5

3.0

S
ta
nd

ar
d
de

vi
at
io
n
[-] 0.0

0.05
0.1
0.7

Figure 5.3: Rolling mean and standard deviation of the average episodic reward during training
for increasing values of the damping factor, η, evaluated on HSBA.L.

72 rl ∩ data-driven trading

Table 5.11: Mean and standard deviation on the normalised daily PnL (given in units of 104)
for SARSA(λ) using the risk-neutral reward and either the joint- or factored-state
representation.

Joint-State Factored-State

CRDI.MI −31.29± 27.97 −5.32± 52.34
GASI.MI −35.83± 13.96 5.92± 40.65

GSK.L −31.29± 27.97 5.45± 40.79
HSBA.L −84.78± 31.71 −0.79± 68.59
ING.AS −189.81± 68.31 9.00± 159.91
LGEN.L −14.39± 9.38 6.73± 22.88
LSE.L −6.76± 11.52 3.04± 5.83

NOK1V.HE −9.30± 23.17 −2.72± 19.23
SAN.MC −144.70± 104.64 52.55± 81.70
VOD.L −21.76± 17.71 7.02± 48.80

5.8 state augmentation

Thus far we have defined the observations of the MM by tuples of the form (Ω, δ+/β, δ−/β),
but this ignores many of the features of the order book, B, that can help decision
making. For example, it is well known that the imbalance of volume between the
bid and ask is a good short-term predictor of price [32, 99]. One would conjecture
that incorporating other market information into the state representation would
yield a better estimator, Q̂(s,a), of the true value Qπ(s,a). The key challenge is
balancing expressivity with informational value and avoiding Bellman’s curse of
dimensionality. Drawing on the extensive literature on market microstructure, we
propose to extend the agent-state with the following indicators (for more details see
Section 4.4):

(i) Market spread.

(ii) Mid-price move.

(iii) Volume imbalance.

(iv) Signed volume.

(v) Volatility.

(vi) Relative strength index.

While these are by no means the only choice, we argue that it is a natural selection
of indicators for the equities setting considered here.

The mean out-of-sample ND-PnL of this extended observation construction —
which we label the joint-state representation — with the risk-neutral objective is
quoted in Table 5.11. Notice that all securities lost money on average, suggesting that
SARSA(λ) failed to find a performant instance of the strategy at all. Since the MM still
has access to the agent-state, it would seem that the extended representation either
introduces too much noise, or is too large to effectively explore given the limited
amount of data. Contrary to intuition, we did not even observe any considerable im-
provement in performance with increased training. Instead, the agent was regularly
seen to degrade and even diverge (both in episodic reward and TD-error); this may

5.9 consolidation 73

correspond to the induced non-stationary in the conventional Bellman operator as
identified by Bellemare, Ostrovski, Guez, Thomas, and Munos [16].

At this point, one might perform an ablation study and/or sensitivity analysis to
gauge the contribution of each of the 6 predictors. This is very time consuming and
requires extensive meta-optimisation; which again requires more data. Instead, we
propose a factored representation.

5.8.1 Factored Representation

Assume that there areNQ independent tile coding bases, each using some set of quan-
tities derived from the raw observation (Ω,B). Now, let Q̂i(s,a)

.
= ⟨ϕt(s,a),wi⟩

denote the value estimate of the state, s, given by the ith set of basis functions, ϕi.
The total value of a state is then defined as the sum:

Q̂(s,a) =
NQ∑
i=1

ciQ̂i(s,a) =
NQ∑
i=1

ci ⟨ϕi(s,a),wi⟩ , (5.8)

where wi are the weight vectors of the ith approximator and the ci factors are
constrained such that

∑NQ
i=1 ci = 1. This approach amounts to learning an ensemble

of value functions, each of which is updated using the same TD-error but a different
basis. Related approaches involve using multiple sets of basis functions with varying
granularity [50], but using the same set of state variables, and specific applications to
dimension mapping for dynamics modelling [54, 76]. It has been argued that a coarse
representation improves learning efficiency of a high resolution representation by
directing the agent towards more optimal regions of policy space. The justifica-
tion here is the same, the crucial difference is that we exploit the (approximate)
independence between variables.

Here we consider an instance of the factored value function construction in
Equation 5.8 with NQ = 3, with basis functions for: (i) the agent-state; (ii) the
market-state; and (iii) the joint-state. A comparison between the performance of the
original joint-state approach and this proposed factorisation is provided in Table 5.11;
note again these were evaluated only on the risk-neutral objective. Evidently, the
factored approach performs better, and indeed it enjoys an 18% improvement in the
ND-PnL on average over the agent-state SARSA(λ) algorithm (see Table 5.7). Inter-
estingly, we also find that the variance on the out-of-sample ND-PnL is significantly
reduced in a number cases, including HSBA.L and GSK.L.

This approach is particularly relevant for problems in which a lot of domain-
specific knowledge is available a priori. For example, consider a trading agent
holding an inventory of, say, 100 units of a stock. Though the expected future
value of the holdings are surely conditional on the state of the market, the most
important factor for the agent to consider is the risk associated with being exposed
to unpredictable changes in price. Learning the value for the agent-, market- and
joint-state representations independently and in parallel enables the agent to learn
this concept much faster as it doesn’t rely on observing every permutation of the
joint-state to evaluate the value of it’s inventory. We claim that this helps the agent
converge to better solutions by guiding the agent away from local optima in policy
space.

5.9 consolidation

Up until now we have treated each contribution in isolation. These have addressed
bias/variance in the TD updates, risk sensitivity, and how to incorporate additional

74 rl ∩ data-driven trading

0 200 400 600 800 1000

Episode [days]

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

M
ea

n
re

w
ar

d
pe

r s
 e

p
[-]

Basic
Asymmetric dampening
Full-state
Consolidated

Figure 5.4: Rolling mean (period 50) of the average episodic reward for basic, damped (asym-
metric), joint-state and consolidated agents training (HSBA.L).

Table 5.12: Mean and standard deviation of ND-PnL (given in units of 104) and MAP for
SARSA(λ) using the consolidated agent.

ND-PnL [104] MAP [units]

CRDI.MI 0.15± 0.59 1± 2
GASI.MI 0.00± 1.01 33± 65

GSK.L 7.32± 7.23 57± 105
HSBA.L 15.43± 13.01 104± 179
ING.AS −3.21± 29.05 10± 20
LGEN.L 4.52± 8.29 229± 361
LSE.L 1.83± 3.32 72± 139

NOK1V.HE −5.28± 33.42 31± 62
SAN.MC 5.67± 13.41 4± 9
VOD.L 5.02± 6.35 46± 87

information without succumbing to the curse of dimensionality. For completeness,
we now evaluate the performance of an algorithm combining:

(i) SARSA(λ);

(ii) the asymmetrically damped reward function; and

(iii) a factored Q̂(s,a) function.

The learning curves for this algorithm and it’s precursors are illustrated in Figure 5.4
which demonstrates the stability advantage of our consolidated approach. In the
majority of cases, this agent was found to generate slightly lower returns than the
best individual variants seen thus far — see Table 5.12 — but achieves significantly
improved out-of-sample consistency. We also observe that the instances of this
strategy tended to hold smaller inventories, which may have been a contributing
factor towards the reduced variance on ND-PnL. Though the results vary slightly
across the basket of securities, this consolidated agent was found to produce superior
risk-adjusted performance over the basic agent and extended variants overall.

For example, Figure 5.5 compares the equity and inventory processes for the basic
and consolidated agents’ out-of-sample tests. Both time series illustrate that there

5.10 conclusions 75

−200000

−100000

0

100000

200000

P
ro
fit
 [G

B
p]

Basic
Consolidated

0 40

Episode [days]

−10000

−5000

0

5000

10000

In
ve

nt
or
y
[u
ni
ts
]

Figure 5.5: Out-of-sample equity curve and inventory process for the basic (naïve) and con-
solidated agents, evaluated on HSBA.L.

is a profound difference in behaviour between the two instances of the strategy.
Where the former is highly volatile, the latter is stable. The naïve agent regularly
holds a non-zero inventory, exposing itself to changes in the security’s value for
extended periods of time, leading to the noise observed in the equity curve. For the
consolidated agent, it appears that the learnt policy targets a near-zero inventory, The processΩt is

effectively described

by an integer-valued

autoregressive process.

relying less on speculative trading and thus yielding the consistency one expects
from a good market making strategy.

5.10 conclusions

In this chapter we have developed a suite of techniques to improve upon past
RL-based methods in data-driven simulations of market making. The result is an
algorithm that produces competitive out-of-sample performance across a basket of
securities. We first developed a highly realistic simulation of the problem domain and
then showed how eligibility traces solve the problems raised in past work around
credit assignment and reward stochasticity. A range of different learning algorithms,
reward functions and state representations were evaluated. Insight was provided
through empirical analysis and variance analyses. We conclude by showing that
a consolidation of the best techniques into a single agent yielded superior risk-
adjusted performance across the whole dataset. To summarise: a combination of
factored value function representations, well calibrated reward functions and on-
policy learning algorithms help address the significant challenges highlighted in
past research.

Part III

MODEL -DR I VEN TRAD ING

6RL ∩ MODEL -DR I VEN TRAD ING

6.1 outline

In Part II we saw how RL can be used to derive market making strategies directly from
historical reconstructions of an LOB market. This approach offers a powerful means
by which to reduce the discrepancy between train-time and test-time dynamics.
And the motivation is clear: a policy derived from real data should, in principle,
translate more effectively to the actual market with comparable performance. To
do this, however, relies on access to (very) high-quality and reliable data which is
not only expensive, but time consuming and complex to process; as discussed in
Chapter 4. Anything less than total access to all levels in the book and every event
will lead to reconstruction errors and thus an epistemically biased policy. It is also
very challenging to simulate market responses to artificial orders [179], and harder
still to validate our approximations and assumptions — if possible at all — without
incurring significant financial risk.

In this part of the thesis we explore a different direction. Rather than treat the
environment as an actual black-box, we revert to using the models traditionally seen
in the mathematical finance literature. These are typically expressed as stochastic
differential equations as introduced in Chapter 3. In this context, RL has the interpre-
tation as an approximate replacement for analytical dynamic programming. There
are a number of advantages to this approach, such as:

(i) reduced computational cost;

(ii) interpretability; and

(iii) transparency.

Of course, there are also limitations of this type of approach. If the model is
incorrectly specified, or the parameters therein are poorly calibrated, then the
solution will also be wrong with respect to the true market dynamics. Indeed, one
of the most important areas of financial modelling is precisely in the estimation
of model parameters from data so as to reduce the gap between simulations and
the real world. However, this is non-trivial and many would argue that one cannot
fully capture the behaviour of the financial markets with parametric assumptions.
Nevertheless, model-driven trading is an incredibly important paradigm, both for
research and practical applications. What’s more, we will show in Chapter 7 that this
problem of invariance to epistemic risk can be addressed using adversarial RL, and
that robustness to downside aleatoric risk can be tackled naturally via extensions to
standard methods in Chapter 8.

The purpose of this chapter is thus to set the scene for the contributions of
Chapter 7 and Chapter 8. We begin by introducing a set of policy classes that
will be used throughout to represent different trading behaviours. These will be
crucial to effectively tackle problems in which the action space is both continuous
and restricted, and highlight the flexibility of reinforcement learning (RL). We then
define the proposed models for four important problems in algorithmic trading:
optimal liquidation, market making, portfolio optimisation and optimal control.
Demonstrations of applying RL to these problems will be provided, as well as some
non-standard extensions, and discussions about the challenges presented by each
settings.

79

80 rl ∩ model-driven trading

6.2 policy classes

Stochastic policies fall under two categories — discrete and continuous — for which
there are canonical probability distributions used to define the likelihood of an action.
In discrete action-spaces, it is common to use a variant of the greedy (deterministic)
policy, such as epsilon-greedy, with value-based methods, or a Gibbs distribution with
policy gradient approaches. In continuous action-spaces, one typically uses a Normal
distribution. For the most part, these choices are sensible and often perform very
well, but they have limitations. In the following sections we introduce a taxonomy of
policy classes that can be used to model a rich set of problems by taking into account
the geometry of the underlying action space. While this list will not be exhaustive
— and indeed we only present the univariate cases (though all generalise to multi-
dimensional action-spaces) — we do cover key classes that give good empirical
performance.

Specifying a probability distribution to use as the likelihood of an action requires
a few key quantities as outlined in Section 2.4. To derive the vanilla policy gradient,
we need be able to compute the score of a distribution and compute it’s derivative.
For continuous policies, this is given by the logarithm of the probability density

function. For discrete policies, this is given by the logarithm of the probability mass

function. We also, clearly, require that the score be continuously differentiable with
respect to the parameters; i.e. the score function is of class C1.

For understanding the advantage of natural gradients, it is also interesting to
study second derivatives and the Fisher information of a policy distribution. The
Cramér-Rao bound [46, 136] tells us that there is a minimum value for the variance
of any unbiased estimator θ̂ of θ. That is, V[θ̂] ⩾ 1/I(θ), where I(θ) is the Fisher
information. This means that the variance on finite-sample MLE estimators scales
inversely with I, and thus the updates used in stochastic gradient descent should
account for this by adjusting the per-parameter learning rates. A policy that exhibits
extrema in the values of I can otherwise lead to gradient saturation or even numerical
instability and divergence. For example, as we shall see next, the gradient of the
score function for the Normal distribution with respect to the mean explodes as the
variance tends to zero. The value of natural gradients cannot be understated and
building intuition into why likelihoods are susceptible/stable is key.

6.2.1 Supported on R

The Normal distribution is by far the most prominent likelihood to use in problem
domains where A is continuous. Arguably, the main reason for this is its ubiquity,
amenable properties and relative simplicity. A policy of this type has the probability
density function

πθ(a | s) =
1

σ̂
√
2π
e

−(a−µ̂)2

2σ̂2 , (6.1)

where µ̂ = µ̂θµ(s) and σ̂ = σ̂θσ(s) are parameterised functions of state yielding
the mean (location parameter) and standard deviation (scale parameter) of the
distribution. The score function of a Normal policy with respect to its parameters,
θµ and θσ, is then given by

∂

∂θµ
lnπθ(a | s) =

a− µ̂

σ̂2
∂µ̂

∂θµ
, (6.2)

and
∂

∂θσ
lnπθ(a | s) =

[
(a− µ̂)2

σ̂3
−
1

σ̂

]
∂σ̂

∂θσ
. (6.3)

6.2 policy classes 81

An illustration of the score surface — of which the policy gradient is proportional —
for different instances and action samples is given in Figure 6.1.

It is important to observe that while the shape of the surfaces for µ and σ are very
similar, the scale for σ is much larger as a consequence of the higher exponents in the
derivative. As a result of this, the learning rate (and indeed other hyperparameters)
used in policy gradient methods must be tuned to take into account the potential
instability arising from actions sampled in the tails of the distribution. This can be
seen from the diagonal terms of the Fisher information matrix

I(µ,σ2) =

 1
σ2

0

0 1
2σ4

 .

In other words, the lower bound on the variance of σ̂ (assuming it is unbiased) scales
with σ4, two orders of magnitude greater than for µ. This also highlights a source
of instability that can be introduced if the variance estimate is allowed to decrease
to zero. In this regime, the score functions grow very large very quickly and, in
a computational setting, one often gets divergence and instability without careful
tuning of the learning rate. A better solution is to use methods that take into account
the shape of this manifold, such as NAC [129] or PPO [144].

6.2.2 Supported on Half-Bounded Intervals of R

In many problem settings there is some lower/upper bound on the value an action
can take; e.g. for A = R+. This is usually dealt with by “clipping” the sampled
action and using either the original value or the transformed value to compute the
policy gradient update. As noted by Fujita and Maeda [60], however, both of these
approaches introduce bias that is detrimental to learning. In some sense, the former
treats the environment as a black-box in which we only know that the action-space
is some subset of the reals. The issue is that any actions falling outside the bounds
are indistinguishable with respect to the dynamics, but the corresponding updates
may be very different. In the latter case, a sampling bias is introduced since the limit
inherits all the lost probability density. The approach of Fujita and Maeda [60] is to
use the CDF of the policy distribution at the boundary of the action-space to perform
a correction; this is independent of the policy distribution itself. Alternatively, one
can simply choose a policy class that is supported, by construction, on semi-infinite
intervals.

Given a Normal random variable X ∼ N(µ,σ2) with mean µ and variance σ2,
the random variable Y ∼ |X| is said to have a folded Normal distribution. This new
variable Y has support on the non-negative reals, R+. A policy of this form has a
probability density function given by

πθ(a | s) =

√
2

πσ̂2
e

−(a2+µ̂2)

2σ̂2 cosh
(
µ̂a

σ̂2

)
, (6.4)

where, as before, µ̂ = µ̂θµ(s) and σ̂ = σ̂θσ(s). The score of the policy then takes
values

∂

∂θµ
lnπθ(a | s) =

1

σ̂2

[
a tanh

(
µ̂a

σ̂2

)
− µ̂

]
∂µ̂

∂θµ
, (6.5)

and
∂

∂θσ
lnπθ(a | s) =

1

σ̂3

[
µ̂2 + σ̂2 + a2 − 2µ̂a tanh

(
µ̂a

σ̂2

)]
∂σ̂

∂θσ
(6.6)

for which an illustration is provided in Figure 6.2. Note that these derivatives are
almost identical to those of the Normal distribution. The key difference is the addition

82 rl ∩ model-driven trading

-4.0 -2.0 0.0 2.0 4.0

µ

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σ

∇µ log π(a|s)

-4.0 -2.0 0.0 2.0 4.0

µ

σ

∇σ log π(a|s)

−87.5

−75.0

−62.5

−50.0

−37.5

−25.0

−12.5

0.0

0

320

640

960

1280

1600

1920

2240

2560

(a) a = −4

-4.0 -2.0 0.0 2.0 4.0

µ

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σ

∇µ log π(a|s)

-4.0 -2.0 0.0 2.0 4.0

µ

σ

∇σ log π(a|s)

−50.0

−37.5

−25.0

−12.5

0.0

12.5

25.0

37.5

50.0

0

100

200

300

400

500

600

700

800

(b) a = 0

-4.0 -2.0 0.0 2.0 4.0

µ

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σ

∇µ log π(a|s)

-4.0 -2.0 0.0 2.0 4.0

µ

σ

∇σ log π(a|s)

0.0

12.5

25.0

37.5

50.0

62.5

75.0

87.5

0

320

640

960

1280

1600

1920

2240

2560

(c) a = 4

Figure 6.1: Illustration of the level sets of the score function with respect to µ and σ for a
policy parameterised with a Normal distribution.

6.2 policy classes 83

-4.0 -2.0 0.0 2.0 4.0

µ

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σ

∇µ log π(a|s)

-4.0 -2.0 0.0 2.0 4.0

µ
σ

∇σ log π(a|s)

−50.0

−37.5

−25.0

−12.5

0.0

12.5

25.0

37.5

50.0

0

100

200

300

400

500

600

700

800

(a) a = 0

-4.0 -2.0 0.0 2.0 4.0

µ

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σ

∇µ log π(a|s)

-4.0 -2.0 0.0 2.0 4.0

µ

σ

∇σ log π(a|s)

−40

−30

−20

−10

0

10

20

30

40

0

60

120

180

240

300

360

420

480

(b) a = 1

-4.0 -2.0 0.0 2.0 4.0

µ

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σ

∇µ log π(a|s)

-4.0 -2.0 0.0 2.0 4.0

µ

σ

∇σ log π(a|s)

−40

−30

−20

−10

0

10

20

30

40

0

60

120

180

240

300

360

420

480

(c) a = 4

Figure 6.2: Illustration of the level sets of the score function with respect to µ and σ for a
policy parameterised with a folded Normal distribution.

84 rl ∩ model-driven trading

of a multiplicative correction: tanh (µ̂a/σ̂2). This has the effect of saturating the
derivative near the origin. As with the Normal distribution, we find that the score
with respect to θσ is much greater than for θµ. This makes sense given that the
folded Normal distribution is just a transformed variant of the Normal distribution.
What’s interesting here, is that the score now exhibits asymmetric (respectively,
symmetric) behaviour about the origin for θµ (and θσ). This derives from the
symmetry about zero of the absolute function, and might suggest that µ̂(s) should
be kept strictly non-negative to prevent ringing about the origin.

Remark. There is a wide range of distributions with support on semi-infinite intervals:

the Gamma, Fréchet and Weibull distributions to name a few. In some sense theseExtreme exploratory

actions may not

always be a bad thing.

Indeed, a Laplace

distribution may be

an interesting choice

over a Normal in some

problem settings.

seem more “natural” as they are defined on [0,∞), or (0,∞), by construction. However,

these more “natural” distributions often suffer from very wide tails and significant

asymmetry (skew) which — in the vast majority of applications — are inappropriate

and lead to extreme exploration. An advantage of the folded Normal is that it inherits

most of the properties of the Normal distribution, and is essentially identical when

µ > 3σ.

6.2.3 Supported on Bounded-Intervals of R

Another common setting for reinforcement learning (RL) problems are those with a
bounded action space; i.e. A = [b, c] with b and c finite. For example, actions could
represent probabilities, torque values of a robot arm or limit orders under inventory
constraints. For this class of policy we follow the work of Chou, Maturana, and
Scherer [42] and make use of the Beta distribution, a well understood distribution
which has found great value in probabilistic modelling. This yields a policy with
probability density function

πθ(a | s) =
1

B(α̂, β̂)
aα̂−1 (1− a)β̂−1 (6.7)

where α̂ = α̂θα(s) and β̂ = β̂θβ(s) are parameterised function approximators. The
normalisation term, B(α,β) = Γ(α)Γ(β)/Γ(α+β), is defined in terms of the gamma
function Γ(u) =

∫∞
0 x

u−1e−x dx for u > 0. The corresponding score function is
then given by the column vector composed of

∂

∂θα
lnπθ(a | s) =

[
ln (a) + ψ̃(α,α+β)

] ∂α̂

∂θα
,

and
∂

∂θβ
lnπθ(a | s) =

[
ln (1− a) + ψ̃(β,α+β)

] ∂β̂

∂θβ
,

where ψ̃(x,y) .
= ψ(y) −ψ(x), and ψ(u) = d

du ln (Γ(u)) is the digamma function.
Unlike for Normal and folded Normal policies, the Beta distribution has a clear
symmetry between score with respect to θα and θβ. This is exemplified in Figure 6.3.

As pointed out by Chou, Maturana, and Scherer [42], the Beta distribution suffers
from issues deriving from the curvature of the likelihood function as with the Normal
distribution. In this case, however, we observe the reverse problem. While the Normal
distribution is prone to overshoot when the variance tends to zero, the gradient of
the Beta likelihood reduces to zero with increasing determinism. Specifically, the
Fisher information matrix of a Beta distributed random variable, X ∼ B(α,β), is
given by:

I(α,β) =

[
V [lnX] Cov[lnX, ln (1−X)]

Cov[lnX, ln (1−X)] V [ln (1−X)]

]
.

6.2 policy classes 85

2.0 4.0 6.0 8.0 10.0

α

2.0

4.0

6.0

8.0

10.0

β

∇α log π(a|s)

2.0 4.0 6.0 8.0 10.0

α
β

∇β log π(a|s)

−2.4

−1.8

−1.2

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

(a) a = 0.1

2.0 4.0 6.0 8.0 10.0

α

2.0

4.0

6.0

8.0

10.0

β

∇α log π(a|s)

2.0 4.0 6.0 8.0 10.0

α

β

∇β log π(a|s)

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

(b) a = 0.5

2.0 4.0 6.0 8.0 10.0

α

2.0

4.0

6.0

8.0

10.0

β

∇α log π(a|s)

2.0 4.0 6.0 8.0 10.0

α

β

∇β log π(a|s)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

−2.4

−1.8

−1.2

−0.6

0.0

0.6

1.2

1.8

2.4

3.0

(c) a = 0.9

Figure 6.3: Illustration of the level sets of the score function with respect to α and β for a
policy parameterised with a Beta distribution.

86 rl ∩ model-driven trading

It thus follows directly from the Cramér-Rao bound that the policy gradient will
essentially vanish later in training as the agent becomes more confident. Again, a
standard way to deal with this in the literature is to use trust-region methods such
as natural gradients.

6.2.4 Supported on N

The final class of problems with importance in RL are those settings with a discrete
action space where A = {1, . . . ,n} ⊂N and n <∞ is the number of actions. For thisI’m sure this makes

computer scientists

uncomfortable, but

rest assured

A = {0, . . . ,n− 1}

is allowed too.

we adopt the conventional choice of using a softmax selection rule corresponding to
a Gibbs (or Boltzmann) distribution over the actions, such that

πθ(a | s) =
ef̂(s,a)∑

a ′∈A e
f̂(s,a ′)

.

Here the function f̂(s,a) .
= f̂θ(s,a) is a continuously differentiable function of state

and action, the interpretation of which is that of a potential (or energy) associated
with the action a. The denominator is thus a partition function over the action space
A. As before, we can derive the score function of a policy with a Gibbs distribution
by taking the logarithmic derivative:

∂

∂θ
lnπθ(a | s) =

∂f̂(s,a)
∂θ

−
∑
a ′∈A

πθ
(
a ′

∣∣ s) ∂f̂(s,a ′)
∂θ

,

=
∂f̂(s,a)
∂θ

− Eπ

[
∂f̂(s, ·)
∂θ

]
. (6.8)

The latter expression shows how the score function is given by the excess compared
to the probability-weighted average for each action.

6.2.5 Supported on Product Spaces

In some cases, an action space has different structure in each dimension; e.g. A =

[b, c]× [d,∞). For this it is not as simple as extending one of the previous distri-
butions to the multivariate case as this will introduce boundary bias in one of the
dimensions. A simple solution that we make use of later in the thesis is to define
an independent product of distributions. Take A defined above, for this particu-
lar space one could combine a Beta distribution with a folded Normal. In general,
the probability density function for an n-dimensional action space is defined as
πθ(a | s) =

∏n
i=1 π

(i)
θi

(a|s) (under the assumption of independence), where θ is a
column vector of weights. The score function then reduces to a simple summation:

∂

∂θ
lnπθ(a | s) =

n∑
i=1

∂

∂θ
lnπ(i)θi

(a|s).

With this we can derive the policy gradient for any combination of distributions and
model potentially very complex action spaces in a natural way. That is, in a way
that adheres to the basic geometry of the space.

6.3 optimal execution

In this thesis, the optimal execution problem is modelled using the framework
originally proposed in the seminal work of Almgren and Chriss [5]; see also [36].
In this setup, the agent is challenged with specifying a trading strategy, νt, that

6.3 optimal execution 87

minimises the cost of execution (equivalently, maximises profit). We consider the
special case of linear price impact, both temporary and permanent, and define the
price process by the following difference equation:

Zt+1 = Zt + btνt∆t+ σtWt. (6.9)

In this expression, the value bt — i.e. the permanent impact factor — is the rate of
change of price as a function of the agent’s trading rate at a given time; the value σ2t
describes the volatility of the process; and Wt is a sequence of independent Normal
random variates with mean zero and variance ∆t. The change in the agent’s cash as
a result of trading at the rate νt is then given by

Xt+1 = Xt − (Zt + ktνt)︸ ︷︷ ︸
Execution Price

νt∆t, (6.10)

where kt is a temporary impact factor on price. This captures the notion that
market orders incur a cost from having to walk the book, where kt represents the
premium paid for immediacy; note that in continuous-time, trading at νt is not
strictly equivalent to trading with market orders in an LOB. Importantly, in this
model, we assume that executions occur deterministically and that the market has
sufficient liquidity to fulfil any order, though the price paid may be at a significant
premium.

In the most general sense, one can think of the optimal execution problem as
finding a “path of least resistance” between a starting inventory, Ω0, and some
target terminal inventory, ΩT . In most cases the target inventory is taken to be
zero, with ΩT

.
= 0. Optimal execution using this setup has two variants: liquidation

and acquisition. The former refers to the case where Ω0 > ΩT , and the latter to
Ω0 < ΩT . The strategy, νt, can be seen as the gradient of this path. But what is
meant precisely by a path that has minimal resistance?

Consider the optimal liquidation setting and define the implementation shortfall

of a strategy asΩ0Z0 −XT . This quantity measures the difference between the cash
generated through trading versus the mark-to-market value of the starting inventory.
When this quantity is positive it implies that trading has incurred a cost, and when
it is negative, that we have executed favourably. This idea translates to optimal
acquisition by simply reversing the signs. Much of the literature is concerned with
minimising this quantity, but there are other considerations. For example, a risk
sensitive trader may desire a path that minimises exposure to the market, or heavily
penalises any strategy that falls short of the target, even if it comes at a shortfall
premium. To formalise these ideas, we define the following objective function as
the condition for optimality in liquidation: XT −ΩT (ZT − η1ΩT) − η2

∑T
t=0Ω

2
t ;

where η1,2 are constants. The first term here is the terminal cash generated through
trading; the second term is a quadratic penalty on any existing inventory at the
terminal timestep; and the final term is a running penalty on holding a non-zero
inventory.

Translating the liquidation problem into a formulation suitable for RL follows
trivially. First, define the action space as A

.
= R+ with values representing the

trading rate: at
.
= −νt. Next, define the state space as S .

= [0, 1]2, where states are
given by the be tuples st

.
= (t/T ,Ωt/Ω0). The objective for a policy, π, can now be

expressed in the form:

J(π)
.
= Ed0,π

[
XT +ΩT (ZT − η1ΩT) − η2

T∑
t=0

Ω2t

]
. (6.11)

We note that the term Ω0Z0 from the implementation shortfall does not appear
in the objective. This is done without loss of generality since both Ω0 and Z0 are

88 rl ∩ model-driven trading

known a priori and act only as a constant; they have no bearing on the optimal
solution. The corresponding reward function is then given by

rt
.
= ∆Xt − η2Ω

2
t +ΩT (ZT − η1ΩT) 1t=T , (6.12)

This particular representation derives from Equation 6.10 and Equation 6.11, but
it is by no means unique — there are many possible ways one can define reward.
Indeed, in later sections we will see examples of reward formulations that exploit
the mark-to-market portfolio value (Equation 3.1). For γ = 1, we require only that
the sum of rewards equals the term inside the expectation of Equation 6.11.

Example

Consider an instance of the optimal liquidation problem with the following pa-
rameterisation: an initial inventory of Ω0

.
= 10 and price of Z0

.
= 100 with time

increments of ∆t .
= 0.005. The volatility of the price process is taken as σt

.
= 2 ∀t

with constant temporary and permanent impact factors kt
.
= 0.1 ∀t and bt

.
= 0.01 ∀t,

respectively. A terminal penalty of η1
.
= 1.0 and running penalty of η2

.
= 0.1 were

applied to the objective function.
For a continuous problem such as this, we propose to learn a policy with the NAC-

S(λ) algorithm using a folded Normal likelihood (Equation 6.4). The critic in this
case was represented using a polynomial basis of 3rd order stacked over the policy’s
compatible features. Since it is known a priori that the problem is finite horizon,
and that the time is included in st, we are free to choose a discount factor γ .

= 1.
The eligibility trace is constructed using an accumulating scheme with decay rate
λ

.
= 0.9, and a learning rate of αCritic

.
= 2× 10−5. The parameters of the policy itself

were given by linear function approximators, also using 3rd order polynomial bases;
all weights (including for the critic) were arbitrarily initialised with zeros. The policy
gradient updates were applied every 20 steps with a learning of αPolicy

.
= 10−5.

The learning performance of the proposed methodology using a folded Normal
policy is presented in Figure 6.4. We find that the policy improves in terms of both
terminal cash and reward up until episode ∼ 138. At this point, the total cash earnt
matches that attained by a time-weighted average price execution strategy; this is
illustrated only to aid comparison — we do not suggest that time-weighted average
execution is a good strategy. From this point onwards the strategy begins to diverge
from the benchmark, increasing reward at the cost of the expectation of cash. This
corresponds to a more aggressive strategy that avoids holding large positions in
order to minimise the impact of η2, and ensuring that all inventory is liquidated by
T to mitigate the terminal penalty.

Interestingly, as claimed in Section 6.2, the use of a “natural” policy that respects
the structure of A appears to yield improvements in learning efficiency. Figure 6.4
also shows the learning curve for a standard Gaussian policy in contrast with
the folded Normal construction. Observe, in particular, the two vertical lines that
highlight the points at which the two policies surpassed the cash benchmark. It
took the Gaussian policy some ∼ 400× 104 episodes more to reach this level. It is
plausible that this is caused by the boundary effects near zero due to improperly
handled action clipping.

6.4 market making

We next consider market making, and propose to use the seminal model of Avellaneda
and Stoikov [11] which has been studied by many others including Cartea, Donnelly,

6.4 market making 89

0 200 400 600 800 1000

Training Episode [104]

-75.0

-50.0

-25.0

0.0

25.0

50.0

75.0

V
al

ue
[-

]

Reward (TWAP)

Reward (RL)

Cash (TWAP)

Cash (RL)

(a) Folded Normal policy.

0 200 400 600 800 1000

Training Episode [104]

-100.0

-75.0

-50.0

-25.0

0.0

25.0

50.0

75.0

V
al

ue
[-

]

Reward (TWAP)

Reward (RL)

Cash (TWAP)

Cash (RL)

(b) Gaussian policy.

Figure 6.4: Learning performance of different policy classes on the optimal liquidation problem.
The time-weighted average-price benchmark is illustrated in both cases alongside
the terminal reward and cash attained by the strategies derived with RL. Each point
corresponds to the sample mean over 1000 evaluation episodes with a (negligible)
confidence window formed of the corrected, sample standard deviation.

90 rl ∩ model-driven trading

and Jaimungal [31]. In this framework, the MM must trade a single asset for which
the price, Zt, evolves stochastically. In discrete-time,

Zt+1 = Zt + µt∆t+ σtWt, (6.13)

where µt and σt are the drift and volatility coefficients, respectively. The randomness
in this process comes from the sequence of independent, Normally-distributed
random variables, Wt, each with mean zero and variance ∆t; i.e. a random walk.
The process begins with initial value Z0 and continues until time T is reached.

The market maker interacts with the environment at each time by placing limit
orders around Zt to buy and sell a single unit of the asset. The prices at which the
MM is willing to buy (bid) and sell (ask) are denoted by p+t and p−t , respectively,
and may be expressed as offsets from Zt:

δ±t = ±[p±t −Zt]; (6.14)

these may be updated at each timestep at no cost to the agent. In general, δ±t ⩾ 0 in
order to ensure that the MM generates positive revenue from executing transactions,
but this is not necessarily a hard constraint; see Section 3.3.2. Equivalently, we may
define:

ψt
.
= δ+t + δ−t , (6.15)

and

ξt
.
=
1

2

(
p+t + p−t

)
−Zt =

1

2

(
δ+t − δ−t

)
, (6.16)

called the quoted spread and skew, respectively. These relate to the MM’s need for
immediacy and bias in execution (i.e. ν+ − ν−) and have the advantage of greater
interpretability.

In a given time increment, the probability that one or both of the agent’s limit
orders are executed depends on the liquidity in the market and the values δ±t .
Transactions occur when market orders arriving at random times have sufficient size
to consume one of the agent’s limit orders. In this case, these interactions, which
are captured by ν±t in our nomenclature (Chapter 3), are modelled by independent
Poisson processes with intensities

λ±t (x)
.
= A±t e

−k±t x, (6.17)

where we define the shorthand notation λ±t
.
= λ±t (δ

±
t), and A±t ,k±t > 0 to describe

the rate of arrival of market orders and distribution of volume in the book, respectively.
In the discrete setting, it follows that the probability of the agent’s inventory chang-
ing in either direction is given by the values λ±t . This particular form derives from
assumptions and observations on the structure and behaviour of limit order books
which we omit here for brevity; see Avellaneda and Stoikov [11], Gould, Porter,
Williams, McDonald, Fenn, and Howison [70], and Abergel, Anane, Chakraborti,
Jedidi, and Toke [2] for more details. The dynamics of the agent’s inventory process,
or holdings, Ωt (Definition 2), are then captured by the difference between these
two point processes and Ω0, which is known. The values of Ωt ∈

[
Ω,Ω

]
are also

constrained such that that trading stops on the opposing side of the book when
either limit is reached.

In this discrete-time setting, the evolution of the market maker’s cash is given by
the difference relation:

Xt+1 = Xt − p
+
t ν

+
t + p−t ν

−
t ,

= Xt + δ
+
t ν

+
t + δ−t ν

−
t −Ztνt.

(6.18)

6.4 market making 91

When expressed in terms of the controls δ±t , the cash flow can be interpreted as a
combination of the profit derived from charging the counterparty a premium of δ±t ,
and the mark-to-market value of transacting the aggregate volume of νt. We can
similarly derive a difference equation for the mark-to-market value of the agent’s
inventory. Noting the equivalence Ωt+1Zt+1 = (Ωt + νt)(Zt + ∆Zt), a simple
expansion yields the recursive process:

Ωt+1Zt+1 = ΩtZt +Ωt∆Zt + νtZt + νt∆Zt. (6.19)

As introduced in Equation 3.1, the total (mark-to-market) value of the MM’s portfolio
may be expressed as Υt = Xt +ΩtZt. Combining this with (6.18) and (6.19) above,
it follows that the change in value of the MM’s portfolio from t 7→ t+ 1 is given by

∆Υt = δ
+
t ν

+
t + δ−t ν

−
t︸ ︷︷ ︸

Spread-PnL

+ Ωt+1∆Zt︸ ︷︷ ︸
Inventory-PnL

. (6.20)

This equation has a very similar form to the mark-to-market relation derived for
the data-driven model in Section 5.6. Indeed, conceptually speaking they are indis-
tinguishable, the only difference is in the spread term which no longer requires a
correction for MOs.

Translating this framework into an MDP is accomplished by defining the state
space S ∈ R2 with st

.
= (t,Ωt), and action space A

.
= R2, where at

.
= (ψt, ξt).

For improved generalisation we may also apply a transformation of the state to
(t/T ,Ω†t) for Ω† .

= (Ωt −Ωt)/(Ωt −Ωt). The objective is then defined to be

J(π)
.
= Ed0,π

[
ΥT − η1Ω

2
T − η2

T∑
t=0

Ω2t

]
, (6.21)

which includes two penalty terms as in optimal liquidation problem. The first pun-
ishes strategies that reach T with a non-zero inventory, and the second disincentivises
exposure to large inventory at each timestep. This is equivalent to having a reward
function of the form: For studies using

alternative definitions

of reward see, e.g.

Ganesh, Vadori, Xu,

Zheng, Reddy, and

Veloso [61] and

Moody, Wu, Liao, and

Saffell [116] or Part II.

rt
.
= ∆Υt − η2Ω

2
t − η1Ω

2
T1t=T . (6.22)

In the special case that η1 = η2 = 0, this function yields a risk-neutral optimality
criterion. Any non-zero penalty terms will give rise to risk-averse behaviour due to
explicit sensitivity to inventory.

Remark. One can quite legitimately view market making as a passive extension of

the optimal execution problem. When η2 > 0, the market maker is faced repeatedly

with volatile execution targets whenever |Ωt| > 0. Similarly, when η1 > 0 and T is

finite, the agent must liquidate or acquire stock by the terminal time much in the same

was as in Section 6.3. The additional challenge for a MM is that they must effectively

interpolate between execution and profit generation simultaneously, whilst also quoting

both ask and bid prices at all times.

Example

Consider an instance of the market making problem with zero initial inventory,
Ω0

.
= 0, and prices evolving from Z0

.
= 100 with volatility σt

.
= 2 ∀t and time

increment ∆t .
= 0.005. The execution model is initialised with At = 140 ∀t and

kt = 1.5 ∀t— the same parameters as originally used by Avellaneda and Stoikov [11]
— with constraints on trading to ensure thatΩt ∈ [−50, 50] for all timesteps. To solve
this MDP, we use the same fundamental algorithm as with the example in Section 6.3,

92 rl ∩ model-driven trading

-200.0

-100.0

0.0

100.0

200.0

R
ew

ar
d

[-
]

0 200 400 600 800 1000

Training Episode [104]

-150.0

-100.0

-50.0

0.0

50.0

100.0
C

as
h

[-
]

η = 0
η = 0.5
Benchmark

Figure 6.5: Learning performance of the NAC-S(λ) algorithm on the market making problem
for η ∈ {0, 0.5}. The Avellaneda and Stoikov [11] solution (with γ = 0.1) is provided
as a benchmark. Each point corresponds to the sample mean over 1000 evaluation
episodes with a confidence window formed of the corrected, sample standard
deviation.

but replace the policy likelihood with an isotropic, bivariate Gaussian distribution.
Actions are then sampled as (ψ, ξ) ∼ πθ(· | s) in any given state s. The parameters
were kept mostly the same, save for reduced learning rates of αCritic

.
= 2× 10−6

αPolicy
.
= 10−6.

Learning performance of the algorithm is illustrated in Figure 6.5 for two cases:
η1 = 0 (risk-neutral) and η1 = 0.5 (risk-averse). Observe how the RL approach
converges asymptotically to solutions that closely match the performance of the
optimal strategy derived by Avellaneda and Stoikov [11] for exponential utilities;
the small discrepancy is most likely caused by the stochastic nature of the policies
and the subtle difference in objectives. As expected, the penalised strategy (i.e. for
η1 > 0) yields a lower variance on terminal wealth, but does so at the cost of a (very)
small reduction in the mean.

6.5 portfolio optimisation

For portfolio optimisation, we consider an extended version of the model first
proposed by Tamar, Di Castro, and Mannor [170]. This setup also features in the
subsequent works of Bisi, Sabbioni, Vittori, Papini, and Restelli [22] and Spooner and
Savani [159] (see Chapter 8), which present different perspectives on risk-sensitivity,
and has become a standard test-bed for risk-sensitive RL. While simple, it highlights
some of the key pathologies of portfolio optimisation that carry over to more realistic
instances of the problem; such as the need for risk-sensitivity.

In this setting, the agent’s portfolio consists of two types of asset: (i) a liquid asset
such as cash holdings with a growth rate gL; and (ii) an illiquid asset with time-de-
pendent interest rate gI

t ∈ {gI,gI} that switches between two values stochastically;
e.g. options. Unlike the original formulation of Tamar, Di Castro, and Mannor [170],

6.5 portfolio optimisation 93

we do not assume that gI
t switches symmetrically. Instead, for added complexity,

the illiquid growth rate is treated as a switching process with two states and fixed
transition probabilities of p↑ and p↓. The sequence of values it takes thus forms a
stochastic process:

gI
t+1

.
=

gI w.p. p↑ if gI

t = g
I,

gI w.p. p↓ if gI
t = g

I,

gI
t otherwise.

(6.23)

At each timestep the agent chooses an amount, up to M, of the illiquid asset to
purchase at a fixed cost per unit, c. At maturity, after N steps, this illiquid asset
either defaults, with probability pD, or is sold and converted into cash. We denote For options, this would

also involve

liquidating (or

repurchasing) the

underlying and

converting the

investment into cash.

by Ω(i)
t the investment in the illiquid asset with maturity in i timesteps; i.e. Ω(2)

t

will mature in 2 steps. By this definition we are treating each instance of the illiquid
asset as unique depending on the maturity horizon. The evolution of this process,
for 1 ⩽ i < N, is thus given by

Ω
(i)
t+1

.
=

(
1+ gI

t

)
Ω

(i+1)
t ,

and Ω(N)
t+1

.
= at for i = N. At any given time, the total investment at risk is given

by the sum
∑N
i=1Ω

(i)
t . The cash process then updates stochastically according to

a liquid growth rate and the outcome of the Bernoulli random variable governing
defaults:

Xt+1 =
(
1+ gL

)
Xt − cat +

Ω
(1)
t w.p. 1− pD,

0 w.p. pD.
(6.24)

The problem specification above can now be cast explicitly into an MDP. The state
space of the problem is embedded in S

.
= RN+2, where the first entry denotes

the allocation in the liquid asset, the next N are the allocations in the non-liquid
asset class, and the final entry takes the value g†t

.
= gI

t − Et ′<t
[
gI
t ′
]
. This last

term determines which interest regime is active in the MDP in terms of the excess
away from the expected value up to the current time t. This allows for better
generalisation across different parameterisations of the problem while remaining an
adapted process. Analytically, this is defined as

st
.
=

[
Xt,Ω⊤t ,g†t

]⊤
. (6.25)

The actions are then given by the M discrete choices over possible purchase orders,
and the reward at each timestep is given by the log-return in the liquid asset in the
interval t 7→ t+ 1,

rt
.
= ln (Xt+1) − ln (Xt), (6.26)

as chosen by Bisi, Sabbioni, Vittori, Papini, and Restelli [22].

Example

As an example, let there be an instance of the portfolio problem where gL .
= 0.005,

gI .
= 0.05 and gI .

= 0.25; with initial value gI
0

.
= gI. The illiquid growth rate then

switches with probabilities p↓
.
= 0.6 and p↑

.
= 0.1. We will allow the agent to

purchase up to M .
= 10 units of the asset at a cost of c .

= 0.2/M each; this gives rise

94 rl ∩ model-driven trading

0 50 100 150 200 250

Training Episode [104]

50.0

100.0

150.0

200.0

250.0

300.0

R
et

ur
n

[%
]

Benchmark (at = 1∀t)
Benchmark (at = 10∀t)
RL

Figure 6.6: Learning performance of the NAC-S(λ) algorithm on the portfolio optimisation
problem. Fixed passive and aggressive strategies are provided as a benchmark.
Each point corresponds to the sample mean over 1000 evaluation episodes with a
confidence window formed of the corrected, sample standard deviation.

to an action space of cardinality 11. The maturity horizon is set to N = 4 with a
default probability of pD

.
= 0.1. Each episode of the problem terminates at T = 50

with probability 1.
In this example, for the sake of variety, we make use of a different learning

algorithm: traditional actor-critic using the TD-error as an estimate of the advantage
function [143]; see Chapter 2. This is a highly standard approach and can often be
seen in combination with deep function approximation in the literature. Here, we
use a linear basis (i.e. a polynomial of order 1) over the state space for f̂θ(s,a) in
the policy, with repeated and independent weights for each action:

ϕ(s,a) .
=

[
ϕ(s)⊤ ◦ 1⊤a=1, . . . ,ϕ(s)⊤ ◦ 1⊤a= |A|

]⊤
, (6.27)

where ◦ denotes the Hadamard product, and the state-dependent basis is given
by ϕ(s)

.
= [1, s1, s2, . . . , sN]. Updates for the policy were then performed using

a learning rate of αPolicy
.
= 5× 10−4. The value function approximator used in

compute the TD-error was then defined as V̂v(s)
.
= ⟨v,ϕ(s)⟩. This estimator was

learnt in tandem with the policy using the iLSTD algorithm of Geramifard, Bowling,
and Sutton [63], a learning rate of αCritic

.
= 2× 10−6, and a discount factor of γ = 1;

see Section 2.3.3 for details on least-squares methods.
The performance of this algorithm during training is illustrated in Figure 6.6 in

terms of the return on investment. We find that the policy converges on a highly
aggressive strategy that buys the maximum quantity of the asset at each timestep.
Indeed, Figure 6.6 shows clearly that the agent achieves a mean and standard devia-
tion of financial returns that are equal to the simple benchmark where at

.
= 10∀t.

This suggests that the optimal strategy under the risk-neutral reward function (Equa-
tion 6.26) is simple. In Chapter 8 we extend these results to show that one can
account for the downside risk of trading yielding a risk-sensitive strategy.

6.6 optimal consumption

Our final problem setting is known as Merton’s optimal consumption problem [112]
and it is a special case of intertemporal portfolio optimisation. This domain is closely
related to the previous example, but now the agent must also consume it’s cash, Xt,
in a optimal manner while simultaneously managing it’s investment portfolio. This

6.6 optimal consumption 95

particular case has been largely unstudied in the RL literature in spite of the fact that To the best of our

knowledge, the work

of Weissensteiner

[182] is the only prior

example.

it represents a broad class of real-world problems, such as retirement planning. As
before, the agent’s portfolio consists of two assets. The first is an illiquid, risky asset
whose price, Zt, evolves stochastically according to a discrete-time analogue of an
Itô diffusion:

Zt+1 = Zt + µt∆t+ σtWt, (6.28)

whereWt is random walk with zero mean and variance of ∆t. The second is a liquid
(riskless) asset, cash, whose price grows at a fixed rate of 1+ gL. Here, however, the
agent must specify two controls: (i) the proportion of it’s wealth to invest between the
risky and riskless assets; and (ii) an amount of it’s cash to consume and permanently
remove from the portfolio. The former quantity is expressed by the fraction

Ξt
.
=

Ωt

ZtXt +Ωt
, (6.29)

and the latter we denote by Ct. The total value of the agent’s portfolio can thus be
expressed by the following difference equation:

Υt+1
.
= Υt +

[
ΩtZt+1 +Xt

(
1+ gL

)]
∆t−Ct. (6.30)

The problem terminates when all the agent’s wealth is consumed (i.e. when Υt = 0)
or the terminal timestep is reached. In the latter case, any remaining wealth that
wasn’t consumed is lost.

To highlight downside risk within the domain, we also extend the traditional
model above to include the possibility of defaults. At each decision point there is
a non-zero probability pD that the risky asset’s underlying “disappears”, the risky
investment is lost, the problem terminates, and the remaining wealth in the liquid
asset is consumed in it’s entirety. It is precisely this setting that we study in detail in Similar variations on

the original problem

have been considered

in the literature by,

e.g. Puopolo [133].

Chapter 8.
This problem, both for pD = 0 and pD > 0, can once again be formulated as

an MDP. First, observe that the state space of the problem is given by S
.
= R2+,

where each state is given by the current time and the agent’s remaining wealth:
st

.
= (t/T ,Xt/X0). The action space is defined as A(st) = [0, 1]× [0,Xt], yielding

the two controls at
.
= (Ξt,Ct/Xt). The reward is then defined as the amount of

cash consumed at each timestep: rt
.
= Ct/Xt. In principle, one could instead use

negative log-returns of {Xt} as in the portfolio optimisation setting, but as long as
the total is bounded we are free to make this choice.

7I N VAR IANCE TO EP I S TEM IC R I SK

7.1 outline

Market making behaviour is synonymous with the act of providing liquidity to a
market. This notion was introduced in Chapter 3 and studied in depth in Part II,
so it is well established that an MM achieves this by continuously quoting prices
to buy and sell an asset. The goal of an MM is thus to repeatedly earn the quoted
spread by transacting in both directions. Of course, they cannot do this without
exposing themselves to risk in the form of adverse selection. This derives from “toxic”
agents exploiting technological and/or informational advantages, transacting with
the MM such that its inventory is exposed to adverse price moves. This phenomenon,
known ubiquitously as inventory risk, has been the subject of a great deal of research
in optimal control, artificial intelligence and reinforcement learning (RL) literature;
including the work presented in Part II. Yet, there are also other types of risk that
are epistemic in nature.

A standard assumption in past work has been to suppose that the MM has perfect
knowledge of market conditions, but this is clearly not the case. One must estimate
a model’s parameters from data, and in most cases (though, we posit all), any
parametric model is an incomplete representation of market dynamics. Indeed, these
are precisely the criticisms made in Part II of model-driven methods. Robustness
to this type of model ambiguity has only recently received attention, with Cartea,
Donnelly, and Jaimungal [31] extending optimal control approaches for the market
making problem to address the risk of model misspecification. This chapter deals
with the same type of epistemic risk, but taking a game theoretic approach. Rather
than treat the environment as a static construct, we allow the parameters of the
model to vary both inter- and intra-episode. We then train market making agents that
are robust to strategically chosen market conditions through the use of adversarial
RL.

The starting point of this work is the well-known single-agent mathematical
model of market making of Avellaneda and Stoikov [11], which has been used
extensively in quantitative finance [31, 36, 77, 78], and was specified in Chapter 6.
Now the model is extended to introduce a “market player”, the adversary, that can
be thought of as a proxy for other market participants that would like to profit at the
expense of the MM. The adversary controls the dynamics of the market environment
— i.e. the values of bt, A±t and k±t (see Section 6.4) — in a zero-sum game against the
market maker. These parameters govern price and execution dynamics, and would
naturally be expected to vary over time in real markets; or indeed react adversarially.
We thus go beyond the fixed parametrisation of existing models — henceforth called
the Fixed setting — with two extended learning scenarios:

randomised Episodes are initialised with an instance of the model whose
parameters have been chosen independently and uniformly at random from the
support.

strategic A setting in which the MM competes against an independent “mar-
ket” learner whose objective is to select parameters from the support so as to
minimise the performance of the market maker in a zero-sum game.

The Randomised and Strategic settings are, on the one hand, more realistic than
the Fixed setting, but on the other hand, significantly more complex for the market

97

98 invariance to epistemic risk

making agent to learn in. In the following we show that market making strate-
gies trained in each of these settings yield significantly different behaviour, and
demonstrate striking benefits of our proposed Strategic learning scenario.

Contributions

The key contributions of this chapter are as follows:

(i) Introduce a game-theoretic adaptation of a standard mathematical model of
market making. The adapted model is shown to be useful for training and
evaluating MM strategies that are robust to epistemic risk (Section 7.3).

(ii) Propose an algorithm for adversarial RL in the spirit of RARL [130], and
demonstrate its effectiveness in spite of the well known challenges associated
with finding the Nash equilibria of Markov games [100] (Section 7.4 and
Section 7.5).

(iii) Investigate the impact of three environmental settings (one adversarial) on
learning market making. We show that training against a Strategic adversary
strictly dominates the other two settings (Fixed and Randomised) in terms of
a set of standard desiderata, including the Sharpe ratio (Section 7.5).

(iv) Prove that, in several key instances of the Strategic setting, the single-stage
instantiation of our game has a Nash equilibrium resembling that found
by adversarial training in the multi-stage game. We then confirm broader
existence of (approximate) equilibria in the multi-stage game by empirical
best response computations (Section 7.3 and Section 7.5).

7.2 related work

optimal control and market making. The theoretical study of market
making originated from the pioneering work of Ho and Stoll [84], Glosten and
Milgrom [66] and Grossman and Miller [75], among others. Subsequent work focused
on characterising optimal behaviour under different market dynamics and contexts.
Most relevant is the work of Avellaneda and Stoikov [11], who incorporated new
insights into the dynamics of the limit order book to give a new market model,
which is the one used in this chapter. They derived closed-form expressions for the
optimal strategy of an MM with an exponential utility function when the MM has
perfect knowledge of the model and its parameters. This same problem was then
studied for other utility functions, including linear and quasilinear utilities [33, 36,
59, 77, 78]. As mentioned above, Cartea, Donnelly, and Jaimungal [31] study the
impact of uncertainty in the model of Avellaneda and Stoikov [11]: they drop the
assumption of perfect knowledge of market dynamics, and consider how an MM
should optimally trade while being robust to possible misspecification. This type of
epistemic risk is the primary focus of our chapter.

machine learning and market making. Several papers have applied AI
techniques to design automated market makers for financial markets. Chan and
Shelton [40] focussed on the impact of noise from uninformed traders on the quoting
behaviour of a market maker trained with reinforcement learning. Abernethy and
Kale [3] used an online learning approach. More recently, Guéant and Manziuk
[79] addressed scaling issues of finite difference approaches for high-dimensional,
multi-asset market making using model-based RL. While the approach taken in this
paper is also based on RL, unlike the majority of these works, our underlying market
model is taken from the mathematical finance literature. There, models are typically

7.3 trading games 99

analysed using methods from optimal control. To the best of our knowledge, we are
the first to apply adversarial reinforcement learning (ARL) to derive trading strategies
that are robust to epistemic risk.

A separate strand of work in AI and economics and computation has studied
automated market makers for prediction markets, see the thesis of Othman [121] for
example. While some similarities to the financial market making problem pertain, the
focus in that strand of work focusses much more on price discovery and information
aggregation.

risk-sensitive reinforcement learning. Risk-sensitivity and safety in
RL has been a highly active topic for some time. This is especially true in robotics
where exploration is very costly. For example, Tamar, Di Castro, and Mannor [170]
studied policy search in the presence of variance-based risk criteria, and Bellemare,
Dabney, and Munos [15] presented a technique for learning the full distribution
of (discounted) returns; see also Garcıa and Fernández [62]. These techniques are
powerful, but can be complex to implement and can suffer from numerical instability.
This is especially true when using exponential utility functions which, without care-
ful consideration, may diverge early in training due to large negative rewards [103].
An alternative approach is to train agents in an adversarial setting [127, 130] in the
form of a zero-sum game. These methods tackle the problem of epistemic risk by ex- The problem of

robustness has also

been studied outside

of the use of

adversarial learning;

see, e.g., [135].

plicitly accounting for the misspecification between train- and test-time simulations.
This robustness to test conditions and adversarial disturbances is especially relevant
in financial problems and motivated the approach taken in this paper.

7.3 trading games

The market dynamics defined in Section 6.4 give rise to a zero-sum Markov game
between the market maker (MM) and an adversary that acts as a proxy for all other
market participants, and controls the parameters of the model. This construction
forms the basis for the results presented in this chapter.

Definition 17 (Market Making Game). The (undiscounted) Markov game between

the MM and an adversary has T stages. At each stage, the MM chooses δ±t and the

adversary {bt,A±t ,k±t } based on the state st with transition dynamics as defined in

Section 6.4. The resulting stage payoff is given by expected change in MtM value of the

MM’s portfolio: E [ΥT −Υ0]. The total payoff paid by the adversary to the MM is the

sum of the stage payoffs.

An illustration of the market making game for t ∈ {0, 1, 2, . . . } is given in Figure 7.1,
where each node depicts a state and each edge a possible transition. From this we
can see clearly that the game has a (trinomial) tree structure due to the three possible This concept often

arises naturally in

option pricing, so it’s

not unsurprising it

showed up here.

innovations of the inventory of the MM: increase/decrease by one, or remain the
same. Note, however, that the trinomiality only occurs while Ω ∈ (Ω,Ω). When
either the upper/lower boundary is reached, there are only two possible branches:
remain the same, move away from the limit by one.

7.3.1 Single-Stage Analysis

Consider an instance of the market making game (Definition 17) with T = 1 — i.e.
a single-stage variant of the game. This setting has the property of being stateless
and zero-sum since both t and Ω0 are given. As such, the payoff reduces to E [∆Υ0]

100 invariance to epistemic risk

(2, 2)

(1, 1) (2, 1)

(0, 0) (1, 0) (2, 0)

(1,−1) (2,−1)

(2,−2)

λ
+ (1

−λ
−)

(1−λ+)(1−λ−)

(1−λ+
)λ−

[
λ
+ (1

−λ
−)
]2

[
(1−λ+

)λ−]
2

. . .

Figure 7.1: Trinomial tree of the multi-stage Market Making game with initial inventory
of Ω0 = 0. Three stages of the game are depicted (for t ∈ {0, 1, 2}) with state-
transition probabilities annotated along the edges.

which can be expanded into E [Υ1 −Υ0] = f
(
δ±;b,A±,k±

)
, where the function

over strategy profiles is defined as

f
(
δ±;b,A±,k±

) .
= A+(δ+ − b)e−k

+δ+ +A−(δ− + b)e−k
−δ−︸ ︷︷ ︸

Spread PnL

+ bΩ.︸︷︷︸
Inventory PnL

(7.1)

This expression is simply an expectation over the transition probabilities of the first
three edges between t = 0 to t = 1 in Figure 7.1. As in the previous chapters, we
recover the characteristic breakdown into spread for ask and bid, and the inventory
PnL. Now, note that for certain parameter ranges, this function f(·) is concave in δ±

for which we introduce the following lemma.

Lemma 1 (Payoff Concavity in δ±). The payoff function (Equation 7.1) is a concave

function of δ± for δ± ∈
[
0, 2
k± ∓ b

]
, and strictly concave for δ± ∈

[
0, 2
k± ∓ b

)
.

Proof. The first derivative of the payoff function (Equation 7.1) w.r.t. δ± may be
derived as follows:

∂f

∂δ±
=

∂

∂δ±
λ±

(
δ± ∓ b

)
,

= λ± +
(
δ± ∓ b

) ∂λ±
∂δ±

, by the chain rule

= λ±
[
1+ k±(δ± ± b)

]
. (7.2)

Noting that the cross-derivatives go to zero, and then repeating a similar process to
above then admits the diagonal Hessian matrix

H =

[
k+λ+ [k+ (δ+ − b) − 2] 0

0 k−λ− [k− (δ− + b) − 2]

]
. (7.3)

7.3 trading games 101

A sufficient condition for Equation 7.1 to be concave is that H is negative semi-
definite, which is satisfied for δ± ∈

[
0, 2
k± ∓ b

]
. For strict concavity we require that

H is negative definite, which is satisfied by extension for δ± ∈
[
0, 2
k± ∓ b

)
. This

concludes the proof. ■

It is clear also that this payoff function is linear in both b and A±, implying that
Equation 7.1 is both concave and convex with respect to these four variables. From
this one can show that there exists an Nash equilibrium (NE) when δ± and b are
controlled strategically, and both A± and k± are fixed (i.e. constants of the game).

Theorem 3 (NE for fixedA±, k±). There is a pure strategy Nash equilibrium (δ±⋆ ,b⋆)
for (δ+, δ−) ∈ [0, 2

k+
− b]× [0, 2

k−
+ b] and b ∈ [b,b] (with finite b,b),

δ±⋆ =
1

k±
± b⋆; b⋆ =

b Ω > 0,

b Ω < 0,
(7.4)

which is unique for |Ω| > 0. When Ω = 0, there is an equilibrium for every value

b⋆ ∈ [b,b].

Proof. Lemma 1 provides the conditions for which the payoff is a quasi-concave
function: the intervals δ± ∈

[
0, 2
k± ∓ b

]
. This implies that any stationary points will

be maxima and thus equating Equation 7.2 to zero gives the two possible solutions:

λ± = 0, or k±
(
δ± ± b

)
= 1.

The former is ruled out immediately since the exponential function is strictly positive
on the concave intervals; it is also clearly a minimum and only occurs in the limit as
δ± →∞. It follows that the maximum is achieved at the values in Equation 7.4.

To prove that these correspond to a pure strategy NE of the game we show that
the payoff is quasi-concave (resp. quasi-convex) in the MM’s (resp. adversary’s)
strategy and then apply Sion’s minimax theorem [154]. This is satisfied for the MM
by Lemma 1, and by the linearity of the adversary’s payoff with respect to b. As
a result, there is a unique solution for |Ω| > 0, and when Ω = 0, there exists a
continuum of solutions, all with equal payoff. ■

The solution given in Equation 7.4 has a similar form to that of the optimal strategy
under a linear utility with terminal inventory penalty [59], or equivalently that of a
myopic agent with running penalty [33]. Figure 7.2 provides some intuition into the
nature of the MM strategy for three fixed values of b. The (restricted) concavity —
and thus uniqueness of the NE — as well as the impact of the adversary’s attack is
clear from this diagram. The former follows from uni-modality of a function with
real codomain, and the latter from the skewing effect seen for b ∈ {−1, 1}. It can
also be shown that the extension of Theorem 3 to an adversary with control over all
five model parameters {b,A±,k±} yields a similar result.

Theorem 4 (NE for general case). Take the game in Theorem 3 and add A± ∈
[
A,A

]
and k± ∈

[
k,k

]
to the adversary’s strategy profile (with finite bounds). In this extension,

there exists a pure strategy Nash equilibrium (δ±⋆ , {b⋆,A±⋆ ,k±⋆ }) of the MM game

for (7.4), A±⋆ = A and k±⋆ = k. For |Ω| > 0 this equilibrium is unique, and for Ω = 0

there exists an equilibrium for every value b⋆ ∈ [b,b].

Proof. For (δ±⋆ , {b⋆,A±⋆ ,k±⋆ }) to be an NE, both δ±⋆ and {b⋆,A±⋆ ,k±⋆ } must be best
responses with respect to the opposing strategy in the profile. For the MM, we have
from Theorem 3 that, for any fixed strategy played by the adversary, the optimal
choice is given by δ±⋆ in Equation 7.4. For the adversary, we must show that the

102 invariance to epistemic risk

-2.0 -1.0 0.0 1.0 2.0

Price Offset [-]

-1.5

-1.0

-0.5

0.0

0.5

1.0

P
ay

off
[-

]

Ask
Bid
Limit
NE

(a) b = 0.

-2.0 -1.0 0.0 1.0 2.0

Price Offset [-]

-1.5

-1.0

-0.5

0.0

0.5

1.0

P
ay

off
[-

]

(b) b = −1.

-2.0 -1.0 0.0 1.0 2.0

Price Offset [-]

-1.5

-1.0

-0.5

0.0

0.5

1.0

P
ay

off
[-

]

(c) b = 1.

Figure 7.2: The MM’s payoff (Equation 7.1) as a function of the price offsets for the ask, δ+,
and bid, −δ− sides of the book. Each sub-figure corresponds to one of three values
of b. The concave intervals (as derived in Lemma 1) are illustrated by the dashed
line, and the optimal solution for the MM by the dotted line.

7.3 trading games 103

strategy {b⋆,A±⋆ ,k±⋆ } yields a payoff at least as high as any other strategy {b,A±,k±}.
Concretely, we must show that the inequality

A
(
δ+ + b⋆

)
e−kδ

+
+A

(
δ− − b⋆

)
+ e−kδ

−
+ b⋆Ω ⩽

A+
(
δ+ + b

)
e−k

+δ+ +A−
(
δ− − b

)
e−k

−δ− + bΩ

holds for all b ∈ [b,b], A± ∈ [A,A] and k± ∈ [k,k]. A sufficient condition for this
is that

b⋆Ω ⩽ bΩ, (7.5)

and

A(δ± ± b⋆)e−kδ
±
⩽ A±(δ± ± b)e−k±δ± (7.6)

are both true.
The first of these requirements is always satisfied, since: b⋆ = b ⩽ b for Ω > 0

and b⋆ = b ⩾ b for Ω < 0; and clearly 0 ⩽ 0. The same is also true of (7.6), since
A ⩽ A±, e−k ⩽ e−k

±
and δ± ± b⋆ ⩽ δ± ± b are satisfied for all Ω ∈ [Ω,Ω]. We

thus have that no unilateral deviation from the strategy profile (δ±⋆ , {b⋆,A±⋆ ,k±⋆ })

can yield a higher payoff for either player, and thus the profile constitutes an NE.
For uniqueness, we inherit the claims of Theorem 3 and need only show that

A±⋆ and k±⋆ are unique. Inspecting (7.6), we can see that the inequality is strict for
all A± ∈ (A,A] and k± ∈ [k,k). Thus, the strategy {b⋆,A±⋆ ,k±⋆ } is unique and the
proof is complete. ■

The uniqueness of the NE derived in Theorem 4 also tells us about the nature of
the solution. In particular, we can show that the NE is stable to perturbations in the
strategy profile.

Corollary 4.1. The pure strategy Nash equilibrium prescribed in Theorem 4 for |Ω| > 0

is stable to perturbations in the profile itself. The equilibria for Ω = 0 are not.

Proof. Stability of an NE is satisfied if, for a small perturbation of a player’s profile,
the following both hold: (i) the perturbed player achieves a strictly lower payoff;
and (ii) the opposing player’s best response is unchanged. By this definition, there
is no unique solution for the adversary for Ω = 0, and thus the first requirement
is not met. For |Ω| > 0, the conditions are met due to the concavity/convexity of
the payoff (Lemma 1) and the uniqueness of the NE strategy profile, respectively,
concluding the proof. ■

This has an interesting interpretation in the context of RL. That is, if a learning
method successfully converges, approximately, to the NE, then small exploratory
actions about this point will not lead to divergence in terms of the equilibrium. This
is important since convergence is typically guaranteed only under the assumption
that the policy explores sufficiently, even in the limit.

104 invariance to epistemic risk

7.3.2 Multi-Stage Analysis

Consider another special case of the market maker (MM) game in which T = 2 (see
Figure 7.1) and the total expected payoff for the MM is given by:

f
(
δ±;b,A±,k±

)
= b0Ω0 + b1E [Ω1] +

1∑
t=0

λ+t (δ
+
t − bt) + λ

−(δ−t + bt),

= b0Ω0 + b1
[
Ω0 + λ

−
0 (1− λ

+
0) − λ

+
0 (1− λ

−
0)

]︸ ︷︷ ︸
Inventory PnL

+

1∑
t=0

λ+t (δ
+
t − bt) + λ

−(δ−t + bt)︸ ︷︷ ︸
Spread PnL

.
(7.7)

Here we see for the first time how spread PnL depends only on the time t, and is thus
independent of the inventory Ωt or it’s future values. The optimal choice — ignoring
momentarily the inventory PnL — thus depends only on the adversary’s strategy
and can be solved at each timestep entirely myopically. Multi-step planning is only
required because of the inventory term which couples the strategy played at time t
with the state and strategy played at subsequent timesteps t ′ > t. This speaks to the
intuition around inventory risk and why adverse selection is an important topic in
the study of market making.

In terms of equilibria, we can clearly deduce from the single-state analysis that
there exists at least one subgame perfect NE in the full multi-stage game (i.e. for any
T) whereby both players simply play (7.4) at each stage. This follows from standard
backwards induction arguments. Enumerating all possible NE for a Markov game
with large T , however, is computationally hard and numerical methods only have
guarantees for verifying their existence and reachability in special cases; let alone
assert with any confidence what equilibria may exist at all. We leave it as interesting
future work to expand on these theoretical results and whether any guarantees can
be established for the multi-stage setting.

7.4 adversarial training

As outlined in the previous section, a single-stage analysis is informative but unre-
alistic. On the other hand, the multi-stage analysis quickly becomes non-trivial to
probe analytically and the results that can be derived are not particularly deep or
insightful. In this section we investigate a range of multi-stage settings with different
restrictions on the adversary, and explore how adversarial training (a numerical
method) can be used to find market making strategies that are robust to strategic
attacks in the environment dynamics. In so doing, we will show that adversarial
training is an effective method for deriving trading strategies that are epistemically
robust.

First, let us define the following three environments (Markov games), each of
which, in turn, afford increasing freedom to the adversary to control the market’s
dynamics:

Definition 18 (Fixed adversary). The simplest possible adversary always plays the

same fixed strategy: bt = 0, A±t = 140 and k±t = 1.5 for all times t ∈ [0, T); these

values match those originally used by Avellaneda and Stoikov [11]. This amounts to a

single-agent learning setting with stationary transition dynamics.

Definition 19 (Random adversary). The second type of adversary instantiates each

episode with parameters chosen independently and uniformly at random from the

7.5 experiments 105

ranges: bt = b ∈ [−5, 5], A±t = A ∈ [105, 175] and k±t = k ∈ [1.125, 1.875]; note that

these intervals are centred on the values for the fixed adversary with diameters driven

by experimentation. These are chosen at the start of each episode and remain fixed until

the terminal (actionable) timestep, T − 1. This is analogous to single-agent RL with
non-stationary transition dynamics.

Definition 20 (Strategic adversary). The final type of adversary chooses the model

parameters {bt,A±t ,k±t } (bounded as in Definition 19) at each step of the game. This

represents a fully-adversarial and adaptive learning environment, and unlike the

models presented in the related work [31], the source of risk here is exogenous and

reactive to the quotes of the MM.

The principle of adversarial learning — as with other successful applications [68]
— is that if the MM plays a strategy that is not robust, then this can (and ideally will,
in training) be exploited by the adversary. If an NE strategy is played by the MM,
then their strategy is robust and cannot be exploited. While there are no guarantees
that an NE will be reached using ARL, we show in Section 7.5 via empirical best
response computations that our approach consistently converges to reasonable
approximations thereof. Moreover, we show that the derived strategies consistently
outperform past approaches in terms of absolute performance and robustness to
model ambiguity.

Robustness of this kind (through the use of ARL) was first introduced by Pinto,
Davidson, Sukthankar, and Gupta [130] who demonstrated its effectiveness across
a number of standard OpenAI gym domains. We adapt their RARL algorithm to
support incremental actor-critic based methods and facilitate asynchronous training,
though many of the features remain the same. The adversary is trained in parallel
with the market maker, is afforded the same access to state — including the inventory

of the MM, Ωt — and uses the same (actor-critic) algorithm for learning. In effect,
we make the assumption that the market is highly efficient and able to recover a
information from its interactions with the MM. This is a more interesting setting
to study since it explores the impact of inventory risk in the adversarial setting.
This approach is similar to the stochastic fictitious play method of Pérolat, Piot, and
Pietquin [127] for multi-stage games.

7.5 experiments

Both the MM and adversary agents use the NAC-S(λ) algorithm, a natural actor-
critic method [173] for stochastic policies (i.e. mixed strategies) using semi-gradient
SARSA(λ) [139] for policy evaluation. The value functions are represented by com-

patible [129] radial basis function networks of 100 (uniformly distributed) Gaussian
prototypes with accumulating eligibility traces [162]. For more details on these
methods we refer the reader back to Chapter 2.

The MM learns a bivariate Normal policy for ψt (Equation 6.15) and ξt (Equa-
tion 6.16) with a diagonal covariance matrix. The mean and variance vectors are
modelled by linear function approximators using 3rd-order polynomial bases [96].
Both variances and the mean of the spread term, ψt, are kept positive via a softplus
transformation. The adversary learns a Beta policy [42], shifted and scaled to cover
the market parameter intervals. The two shape parameters are learnt the same as
for the variance of the Normal distribution above, with a translation of +1 to ensure
unimodality and concavity.

In each of the experiments to follow, the value function was pre-trained for 1000
episodes (with a learning rate of 10−3) to reduce variance in early policy updates.
Both the value function and policy were then trained for 106 episodes, with policy
updates every 100 time steps, and a learning rate of 10−4 for both the critic and

106 invariance to epistemic risk

Table 7.1: Performance and characteristics of market makers trained and evaluated against
the fixed adversary.

η1 η2 Terminal wealth Sharpe ratio Terminal inventory Average spread

0.0 0.0 49.9± 15.3 3.26 0.53± 7.54 1.42± 0.02

1.0 0.0 53.8± 9.1 5.88 −0.04± 1.19 1.76± 0.02
0.5 0.0 53.6± 11.8 4.39 0.03± 1.24 1.66± 0.03
0.1 0.0 55.4± 11.0 5.01 −0.17± 1.87 1.42± 0.02
0.01 0.0 51.6± 13.9 3.70 0.88± 4.37 1.42± 0.02

0.0 0.01 60.6± 6.7 9.02 0.01± 1.44 1.60± 0.02
0.0 0.001 60.2± 7.6 7.94 0.14± 2.97 1.44± 0.02

policy. The value function was configured to learn λ = 0.97 returns. The starting
time was chosen uniformly at random from the interval t0 ∈ [0.0, 0.95], with starting
price Z0 = 100 and inventoryΩ0 ∈ [Ω = −50,Ω = 50]. Innovations in Zt occurred
with fixed volatility σ = 2 for the interval [t0, 1] with increment ∆t = 0.005.

7.5.1 Fixed Setting

We first trained MMs against the Fixed adversary; i.e. a standard single-agent learning
environment. Both the risk-neutral and risk-averse formulations of Equation 6.22
were used with risk parameters η1 ∈ {1, 0.5, 0.1, 0.01} and η2 ∈ {0.01, 0.001}. Ta-
ble 7.1 summarises the performance for the resulting agents. To provide some further
intuition, we illustrate one of the learnt policies in Figure 7.3. In this case, the agent
learnt to offset its price asymmetrically as a function of inventory, with increasing
intensity as we approach the terminal time.

7.5.2 Randomised Setting

Next, MMs were trained in an environment with a Randomised adversary; a simple
extension to the training procedure that aims to develop robustness to epistemic risk.
To compare with earlier results, the strategies were also tested against the Fixed
adversary — a summary of which, for the same set of risk parameters, is given in
Table 7.2.

The impact on test performance in the face of model ambiguity was then evaluated
by comparing market makers trained on the Fixed adversary with those trained
against the Randomised adversary. Specifically, out-of-sample tests were carried
out in an environment with a Randomised adversary. This means that the model
dynamics at test-time were different from those at training time. While not explicitly
adversarial, this misspecification of the model represents a non-trivial challenge
for robustness. Overall, we found that market makers trained against the Fixed
adversary exhibited no change in average wealth creation, but an increase of 98.1%
in the variance across all risk parametrisations (see Table 7.1). On the other hand,
market makers originally trained against the Randomised adversary yielded a lower
average increase in the variance of 86.0%. The Randomised adversary clearly helps,
but the sensitivity to changes in market dynamics in both cases are significant and
would lead to strategies with a Sharpe ratio that is half its originally quoted value.
As we will see next, this is not the case for strategies trained using a Strategic
adversary.

7.5 experiments 107

(a) Quoted skew 2ζ(t,Ωt) = δ+(t,Ωt)− δ−(t,Ωt) (see Section 6.4).

(b) Quoted spreadψ(t,Ωt) = δ+(t,Ωt)+ δ−(t,Ωt) (see Section 6.4).

Figure 7.3: Most probable (modal) action for the risk-averse Gaussian policy learnt using
NAC-S(λ) with η1 = 0 and η2 = 0.01. Time is measured as a proportion of the
time limit (i.e. 0.8 corresponds to 80% of the episode), and inventory is measured
as a signed fraction of imposed upper/lower bounds.

Table 7.2: Performance and characteristics of market makers trained against the random
adversary and evaluated in the fixed environment.

η1 η2 Terminal wealth Sharpe ratio Terminal inventory Average spread

0.0 0.0 49.6± 14.9 3.33 0.36± 7.14 1.36± 0.05

1.0 0.0 53.6± 8.0 6.72 0.02± 1.09 1.87± 0.02
0.5 0.0 55.5± 8.9 6.21 −0.03± 1.21 1.68± 0.02
0.1 0.0 55.1± 10.7 5.16 −0.18± 1.56 1.46± 0.03
0.01 0.0 54.2± 11.8 4.60 −0.63± 3.93 1.47± 0.02

0.0 0.01 61.3± 6.7 9.15 −0.07± 1.32 1.60± 0.02
0.0 0.001 607± 7.3 8.30 −0.07± 2.62 1.44± 0.02

108 invariance to epistemic risk

Figure 7.4: Policy learnt by the adversary for manipulating price against the market maker
with η1 = η2 = 0. The solution takes the form of continuous approximation of
the binary solution derived in Theorem 3.

Table 7.3: Performance and characteristics of market makers trained against the strategic
adversary (with varying degrees of control) and evaluated in the fixed environment.

Adversary η1 η2 Terminal wealth Sharpe ratio Terminal inventory Average spread

{b} 0 0 61.2± 6.9 8.87 0.05± 2.14 1.43± 0.01
{A±} 0 0 47.1± 16.8 2.80 2.51± 7.72 1.46± 0.02
{k±} 0 0 48.5± 16.1 3.02 0.60± 7.91 1.45± 0.02

{b,A±,k±} 0 0 61.6± 6.6 9.30 −0.05± 1.93 1.44± 0.02

{b,A±,k±}

1.0 0 57.4± 6.7 8.51 −0.02± 0.97 1.75± 0.02
0.5 0 60.2± 6.8 8.84 −0.07± 1.04 1.60± 0.01
0.1 0 61.5± 6.6 9.25 −0.05± 1.37 1.49± 0.02
0.01 0 61.7± 6.6 9.28 −0.09± 1.89 1.49± 0.01
0 0.01 60.6± 6.6 9.11 −0.03± 1.19 1.65± 0.02
0 0.001 61.22± 6.5 9.45 0.0± 1.71 1.44± 0.01

7.5.3 Strategic Setting

First consider an adversary that controls the drift bt only — a direct multi-stage
extension of the game instance analysed in Theorem 3. With risk-neutral rewards,
we found that the adversary learns a time-independent binary policy (Figure 7.4) that
is identical to the strategy in the corresponding single-stage game; see Section 7.3.
We also found that the strategy learnt by the MM in this setting generates profits and
associated Sharpe ratios in excess of all other strategies seen thus far when tested
against the Fixed adversary (see Table 7.3). This is true also when comparing with
tests run against the Randomised or Strategic adversaries, suggesting that the
adversarially trained MM is indeed more robust to test-time model discrepancies.

This, however, does not extend to Strategic adversaries with control over either
only A±t or only k±t . In these cases, performance was found to be no better than
the corresponding MMs trained in the Fixed setting with a conventional learning
setup. The intuition for this again derives from the single-stage analysis. That is,
the adversary almost surely chooses a strategy that minimises A±t (equivalently
maximises k±t) in order to decrease the probability of execution, thus decreasing
the profits of the MM derived from execution and its ability to manage inventory
effectively. The control afforded to the adversary must be coupled in some way with

7.5 experiments 109

Figure 7.5: Sample rollout of an adversarially trained market making strategy. Quoted ask (red)
and bid (blue) prices are shown around the mid-price. Executions are illustrated
using arrows and the resulting inventory process is illustrated in the lower plot.

sources of variance — such as inventory speculation — in order for robustness to
correspond to practicable forms of risk-aversion.

The natural subsequent question to pose is whether an adversary with simul-
taneous control over {bt,A±t ,k±t } produces strategies outperforming those where
the adversary controls bt alone. This is certainly plausible since combining all five
model parameters could lead to more interesting strategies, such as driving inventory
up/down only to switch the drift at the peak (i.e. pump and dump). We investigated
this by training an adversary with control over all five parameters and the resulting
performance can be found in Table 7.3. This shows an improvement in the Sharpe
ratio of 0.27 and lower variance on terminal wealth. Interestingly, these MMs also
quote tighter spreads on average — the values even approaching that of the risk-
neutral MM trained against a Fixed adversary. This indicates that the strategies are
able to achieve epistemic risk aversion without charging more to counterparties. An
example rollout of the strategy is given in Figure 7.5.

Exploring the impact of varying risk parameters of the reward function, η1 and η2
(Equation 6.22), we found that in all cases MM strategies trained against a Strategic
adversary with a risk-averse reward outperformed their counterparts in Table 7.1
and Table 7.2. It is unclear, however, if changes to the reward function away from
the risk-neutral variant actually improved the strategy in general. Excluding when
η2 = 0.001, all values appear to do worse than for an adversarially trained MM with
risk-neutral reward. It may well be that the addition of inventory penalty terms
actually boosts the power of the adversary and results in strategies that try to avoid
trading at all, a frequent problem in this domain.

training dynamics Closer examination of the evolution of the market maker’s
policy during training also reveals some intriguing properties about how the two
agents drive one another’s behaviour. Figure 7.6 illustrates an example in which
the price skewing of the MM oscillates in the early stages of learning. To begin, the
agent quotes prices that are independent of it’s inventory, and simply increases the
probability of executing on one side of the market. After a few timesteps this yields

110 invariance to epistemic risk

Figure 7.6: Oscillatory behaviour in the best response dynamics between directionally biased
market making strategies in the early stages of training in the Strategic setting.
Each curve corresponds to the evolution of the modal value of the policy’s skew
factor, η2, during training for the state s = (0,Ω). Three cases are considered:
when the agent’s inventory is neutral Ω = 0 (grey), bullish Ω = 5 (red) or bearish
Ω = −5 (blue).

an inventory at the upper/lower limit depending on the sign of the adversary’s
chosen drift, b. If the adversary chooses a positive drift, so then the MM exploits
this by accumulating a positive inventory and speculating on future price changes.
Around episode 75000, the policy enters a new regime in which the strategy is robust
to any drift the adversary can throw at the MM. This takes the form of a skewing
strategy that protects against adverse price movements and induces mean reversion
in the inventory process. It is in this regime that the MM begins converging directly
towards to subgame perfect NE derived in Section 7.3.

verification of approximate equilibria Holding the strategy of one
player fixed, we empirically computed the best response against it by training.
We found consistently that neither the trader nor adversary deviated from their
policy. This suggests that our ARL method were finding reasonable approximate Nash
equilibria. While we do not provide a full theoretical analysis of the stochastic game,
these findings are corroborated by those in Section 7.3, since, as seen in Figure 7.4,
the learned policy in the multi-stage setting corresponds closely to the equilibrium
strategy from the single-stage case that was presented in Section 7.3.

7.6 conclusions

In this chapter we have introduced a new approach for learning trading strategies
with ARL. The learned strategies are robust to the discrepancies between the market
model in training and testing. We show that our approach leads to strategies that
outperform non-adversarially trained strategies in terms of PnL and Sharpe ratio,
and have comparable spread efficiency. This is shown to be the case for out-of-sample
tests in all three of the considered settings: Fixed, Randomised, and Strategic. In

7.6 conclusions 111

other words, our learned strategies are not only more robust to misspecification, but
also dominate in overall performance.

In some special cases we show that the learned strategies correspond to Nash
equilibria of the corresponding single-stage game. More widely, we empirically show
that the learned strategies correspond to approximate equilibria in the multi-stage
Markov game.

Finally, we remark that, while our paper focuses on market making, the approach
can be applied to other trading scenarios such as optimal execution and statistical
arbitrage, where we believe it is likely to offer similar benefits. Further, it is important
to acknowledge that this methodology has significant implications for safety of RL

in finance. Training strategies that are explicitly robust to model misspecification
makes deployment in the real-world considerably more practicable.

8ROBUSTNES S TO ALEATOR IC R I SK

8.1 outline

rl! (rl!) solves the problem of how to act optimally in a potentially unknown envi-
ronment. While it does this very well in many cases, it has become increasingly
clear that uncertainty about the environment — both epistemic and aleatoric in na-
ture — can have severe consequences on the performance of our algorithms. While
many problems can be solved by maximising the expected returns alone, it is rarely
sufficient, and shies away from many of the subtleties of the real-world. In fields
such as finance and health, the mitigation of risk is absolutely foundational, and the
lack of practical methods is one of the biggest roadblocks in wider adoption of RL.
Now, recent developments in risk-sensitive RL have started to enable practitioners
to design algorithms to tackle their problems. However, many of these approaches
rely on full trajectory rollouts, and most only consider variance-related risk criteria
which:

(i) are not suited to all domains; and

(ii) are often non-trivial to estimate in an online setting.

One rarely has the luxury of ready access to high-quality data, and humans’ definition
of risk is highly nuanced [146, 176].

This observation is not unique and indeed many fields have questioned the use
of symmetric risk measures to correctly capture human preferences. Markowitz
himself noted, for example, that “semi-variance seems a more plausible measure of
risk than variance, since it is only concerned with adverse deviations” [109]. Yet,
apart from Tamar, Chow, Ghavamzadeh, and Mannor [169], who introduced semi-
deviation as a possible measure of risk, very little work has been done to address
this gap in RL research. Furthermore, of those that do, even fewer still consider the
question of how to learn an incremental approximation, instead opting to directly
estimate policy gradients with Monte-Carlo sampling.

Contributions

The first contribution of this chapter lies in the development of the lower partial
moment (LPM) — i.e. the expected value of observations falling below some threshold
— as an effective downside risk measure that can be approximated efficiently through

temporal-difference (TD) learning. This insight derives from the sub-additivity of
the max {·, ·} function and enables us to define a recursive bound on the LPM that
serves as a proxy in constrained policy optimisation. We are able to prove that
the associated Bellman operator is a contraction, and analyse the variance on the
transformed reward that emerges from the approximation to gain insight into the
stability of the proposed algorithm.

The second key contribution is to show that the reward-constrained policy
optimisation framework of Tessler, Mankowitz, and Mannor [172] can be extended
to use natural policy gradients. In so doing, we show that the classical policy gradient
of Sutton, McAllester, Singh, and Mansour [164] can be generalised to an arbitrary
linear combination of estimators, each individually satisfying the compatible function
approximation requirements. While multi-objective problems in RL are notoriously

113

114 robustness to aleatoric risk

hard to solve [108], natural gradients are known to address some of the issues
associated with convergence to local minima; we posit that this is particularly
effective in the multi-objective setting. The resulting algorithm, used alongside our
LPM estimation procedure and generalised compatibility result is easy to implement
and is shown to be highly effective in a number of empirical problem settings.

8.2 related work

Past work on risk-sensitivity and robustness in RL can be split into those that tackle
epistemic uncertainty, and those that tackle aleatoric uncertainty – which is the
focus of this chapter. Aleatoric risk (the risk inherent to a problem) has received
much attention in the literature. For example, in 2001, Moody and Saffell devised
an incremental formulation of the Sharpe ratio for on-line learning. Shen, Tobia,
Sommer, and Obermayer [149] later designed a host of value-based methods using
utility functions (see also [98]), and work by Tamar, Di Castro, and Mannor [171] and
Sherstan, Bennett, Young, Ashley, White, White, and Sutton [150] even tackle the
estimation of the variance on returns; a contribution closely related to those in this
chapter. More recently, a large body of work that uses policy gradient methods for
risk-sensitive RL has emerged [22, 169, 170, 172]. Epistemic risk (the risk associated
with, e.g. known model inconsistencies) has also been addressed, though to a lesser
extent [93, 130] (see also Chapter 7). There also exists a distinct but closely related
field called “safe RL” which includes approaches for safe exploration; see the excellent
survey by Garcıa and Fernández [62].

8.3 constrained mdps

Constrained MDPs are a generalisation of MDPs to problems in which the policy is
subject to a secondary set of optimality criteria which encode behavioural require-
ments beyond the expected return [6]. These constraints are represented by a penalty
function c(s,a) (akin to the reward function), and constraint functions

Cγπ(s) = lim
n→∞ Eπ

[
n∑
k=0

γkc(st+k,at+k)

∣∣∣∣∣ st = s
]

, (8.1)

and

Cγπ(s,a) = lim
n→∞ Eπ

[
n∑
k=0

γkc(st+k,at+k)

∣∣∣∣∣ st = s,at = a
]

, (8.2)

over the realised penalties (with some abuse of notation). These two functions are
equivalent to the discounted value functions defined in Equation 2.19 and Equa-
tion 2.20 in which the discounted return has simply been replaced with the dis-
counted sum of the penalty function realisations. As in Tessler, Mankowitz, and
Mannor [172], we denote the objective associated with the constraint function by the
“penalty-to-go”: Jc(π) = Edγπ,π[c(s,a)]. The problem of optimising a policy π ∈ Πs
thus becomes constrained optimisation problem with mean-risk flavour,

max
π∈Πs

Jr(π),

subject to Jc(π) ⩽ ν,
(8.3)

where ν ∈ R is a user-specified threshold parameter.
Constrained optimisation problems of this type are typically recast as saddle-point

problems by Lagrange relaxation [18] to give

min
λ⩾0

max
π

L(λ,π) = min
λ⩾0

max
π

[Jr(π) − λ (Jc(π) − ν)] , (8.4)

8.4 downside risk measures 115

where L(λ,π) denotes the Lagrangian, and λ ⩾ 0 the Lagrange multiplier. Feasible

solutions are those that satisfy the constraint — e.g. those for which Jc(π) ⩽ ν — the
existence of which depends on the problem domain and choice of the penalty c(s,a)
and threshold ν. Any policy that is not a feasible solution is considered sub-optimal.

Approaches to solving problems of this kind revolve around the derivation and
estimation of the gradients of L(λ,πθ) with respect to the parameters of a continu-
ously differentiable policy πθ ∈ Πs,θ and the multiplier λ [20, 24]. That is, we restrict
ourselves to a class of policies that can be updated through stochastic gradient de-
scent and derive the corresponding policy gradient update. For the model specified
above, the Lagrangian L(λ,θ) (note we have replaced π with θ) has derivatives

∇λL(λ,θ) = ν−Cγπ(s), (8.5)

and

∇θL(λ,θ) = Eπ[[V
γ
π (s) − λC

γ
π(s)]∇θ lnπθ(a | s)] , (8.6)

which are obtained using the log-likelihood trick [172, 183].

8.3.1 Reward Constrained Policy Optimisation

Recent work by Tessler, Mankowitz, and Mannor [172] extended previous methods
for constrained problems like (8.4) to handle general constraints without prior knowl-
edge while remaining invariant to reward scaling. Their algorithm, named reward
constrained policy optimisation (RCPO), uses samples obtained through simulations
of the MDP to estimate (8.5) and (8.6), and update λ and θ using multi-timescale
stochastic approximation:

λk+1 ← Γλ [λk −αλ(k)∇λL(λ,θ)] , (8.7)

and

θk+1 ← Γθ [θk −αθ(k)∇θL(λ,θ)] , (8.8)

where Γθ projects the weights onto a compact, convex set, and Γλ projects λ into [0, λ].
When the policy update is performed at a faster rate than for λ (as well as other
standard Robbins-Monro assumptions [138] — see Assumptions 1 through 3 in [172]),
then by Theorem 1 and Lemma 1 of Tessler, Mankowitz, and Mannor [172], the
iterates converge to a local optimum almost surely and this fixed point is a feasible
solution.

The reward constrained policy optimisation framework offers a powerful method-
ology for optimising behaviours in a contrained MDP. Most importantly, it allows
us to express the learning objective naturally in terms of the constraint functions,
and it removes the need to perform laborious scaling and tuning of the rewards and
penalties; this is a key advantage of dual approaches. As we will show in Section 8.6,
this algorithm may also be extended to leverage natural gradients (see Section 2.4.4)
which further improves the stability and performance of the approach.

8.4 downside risk measures

In general, the definition of the penalty function, c(s,a), depends on the problem
setting and desired behaviour. This need not always be motivated by risk. For
example, in robotics problems, it may take the form of a cost applied to policies
with a large jerk or snap in order to encourage smooth motion. In economics and
health problems, the constraint is typically based on some measure of risk/dispersion
associated with the uncertainty in the outcome, such as the variance. In many real
world applications, it is particularly appropriate (and natural) to consider downside

116 robustness to aleatoric risk

risk, such as the dispersion of returns below a target threshold, or the likelihood of
Black Swan events. Intuitively, we may think of a general risk measure as a measure of
“distance” between risky situations and those that are risk-free, when both favourable
and unfavourable discrepancies are accounted for equally. A downside risk measure,
on the other hand, only accounts for deviations that contribute unfavourably to
risk [47, 53].

8.4.1 Partial Moments

Partial moments were first introduced as a means of measuring the probability-
weighted deviations below (or above) a target threshold τ. These feature prominently
in finance and statistical modelling as a means of defining (asymmetrically) risk-
adjusted metrics of performance [57, 147, 155, 161]. Our definition of partial moments,
stated below, follows the original formulation of Fishburn [58].

Definition 21. Let τ ∈ R denote a target value, then the mth
-order partial moments

of the random variable X about τ are given by

Mm
+ [X|τ]

.
= E

[
(τ−X)m+

]
and Mm

− [X|τ]
.
= E

[
(X− τ)m+

]
, (8.9)

where (x)+
.
= max {x, 0} and m ∈ [1,∞).

The two quantities Mm
− [X|τ] and Mm

+ [X|τ] are known as the lower and upper

partial moments (LPM/UPM), respectively. When the target is chosen to be the
mean — i.e. for τ = E [X] — we refer to them as the centralised partial moments, and
typically drop τ from the notation for brevity. For example, the semi-variance is
given by the centralised, second-order LPM, M2

− [X].
Unlike the expectation operator, the partial moment operators in (8.9) are non-

linear functions of the input and satisfy very few of the properties that make expected
values well behaved. Of particular relevance to this work is the fact that they are
non-additive. This presents a challenge in the context of approximation since we
cannot directly apply the Robbins-Monro algorithm [138]. As we will show in
Section 8.5, however, we can estimate an upper bound for the first partial moment,
for which we introduce the following key properties in Lemma 2 and Lemma 3 below.
These are well known mathematical facts and we repeat the proofs here merely for
completeness.

Lemma 2 (Max/min decomposition). The maximum of two terms, max {x,y}, can

be expressed as f(x,y) .
= (|x− y|+ x+ y) /2. Similarly, min {x,y} = g(x,y) .

=

(x+ y− |x− y|) /2.

Proof. Recall that |z| = z if z ⩾ 0, and |z| = −z if z < 0. Thus, if x ⩾ y then
|x− y| = x− y, f(x,y) reduces to x and g(x,y) reduces to y; similarly, if x < y, then
|x− y| = y− x, then f(x,y) takes the value y and g(x,y) becomes x. This means
that both f(x,y) and g(x,y) satisfy the properties of the max and min and thus the
proof is complete. ■

Lemma 3 (Subadditivity of partial moments). Consider a pair of real-valued random

variables X and Y, and a fixed, additive target τ
.
= τX + τY . Then for m = 1, the

partial moment is subadditive in X and Y, with

M±[X+ Y | τ] ⩽ M±[X | τX] + M±[Y | τY] . (8.10)

Proof. Consider the lower partial moment, expressing the inner term as a function
of real and absolute values [|τ−X− Y|+ τ−X− Y] /2 (follows from Lemma 2). By
the subadditivity of the absolute function (triangle inequality), it follows that:

(τ−X− Y)+ = (τX −X+ τY − Y)+ ⩽ (τX −X)+ + (τY − Y)+ . (8.11)

8.4 downside risk measures 117

s0 s→

s→↓
r = −1

s→↑
r =

1

r = 1
s←

s←↑ r = 1

s←↓ r =
−1

r = −1

Figure 8.1: Simple MDP with two actions and 7 states; the terminal state is omitted.

(a) V [G] (b) E[G] − V [G] (c) M−[G | 0] (d) E[G] − M−[G | 0]

(e)∇ (E[G] − V [G]) (f)∇ (E[G] − M−[G | 0])

Figure 8.2: Moments of the return G generated by the MDP in Figure 8.1. The x-axis corre-
sponds to θ1 ∈ [0, 1], and the y-axis to θ2 ∈ [0, 1]. Higher values are in yellow, and
lower values in dark blue.

By the linearity of the expectation operator, we arrive at (8.10). This result may also
be derived for the upper partial moment by the same logic. ■

motivating example. Why is this so important? Consider the MDP in Fig- The extremal values

correspond to the three

minima in variance

seen in Figure 1

of Tamar, Di Castro,

and Mannor [170].

ure 8.2, with stochastic policy parameterised by θ ∈ [0, 1]2 such that πθ(→ | s0)
.
= θ1

and πθ(↑ | s←) = πθ(↑ | s→)
.
= θ2. As shown by Tamar, Di Castro, and Mannor

[170], even in a simple problem such as this, the space of solutions for a mean-
variance criterion is non-convex. Indeed, Figure 8.2 shows that the solution space
exhibits local-optima for the deterministic policies θ1,2 ∈ {(0, 0), (1, 0), (0, 1)}. On
the other hand, the lower partial moment only exhibits a single optimum at the
correct solution of θ1 = θ2 = 1. While this of course says nothing of the general
case, it does suggest that partial moments have a valid place in risk-averse RL, and
may in some instances lead to more intuitive results; especially in terms of human
motivations.

118 robustness to aleatoric risk

8.5 policy evaluation

Our objective in this section is now to derive an incremental, temporal-difference (TD)
prediction algorithm for the first LPM of the return distribution, Gt. To begin, letThe same follows for

the UPM, though it’s

validity in promoting

risk-sensitivity is

unclear.

ρ[τ](s,a) denote the first LPM of Gt with respect to a target function τ(s,a), starting
from state-action pair (s,a):

ρ[τ](s,a) .
= M−[Gt | St = s,At = a, τ] , (8.12)

where the centralised moments are shortened to ρ(s,a). For a given target, this
function can be learnt trivially through Monte-Carlo (MC) estimation using batches
of sample trajectories. Indeed, we can even learn the higher-order moments using
such an approach. However, while this yields an unbiased estimate of the LPM, it
comes at the cost of increased variance and decreased sample efficiency [162] —
something we want to avoid. This is especially pertinent in risk-sensitive RL which is
often concerned with (already) highly stochastic domains. The challenge is that (8.12)
is a non-linear function of Gt which does not have a direct recursive form amenable
to TD-learning.

Rather than learn the LPM directly, we propose to learn a proxy in the form of an
upper bound. To begin, we note that by Lemma 3, the LPM of the return distribution
satisfies

ρ[τ](s,a) ⩽ M−[rt+1 | τr(s,a)] + γM−

[
Gt+1

∣∣ Eπ
[
τ(s ′,a ′)

]]
, (8.13)

for τ(s,a) = τr(s,a) +γEπ[τ(s
′,a ′)]. Unravelling the final term ad infinitum yields

a geometric series of bounds on the reward moments. This sum admits a recursive
form which we define as

ρ[τ](s,a) .
= M−[rt+1 | τr] + γρ[τ](s

′,a ′), (8.14)

which is, precisely, an action-value function with non-linear reward transformation:
g(r) = (τr − r)+. This means we are now free to use any prediction algorithm toThis bears a

resemblance to the

reward-volatility

objective of Bisi,

Sabbioni, Vittori,

Papini, and Restelli

[22].

perform the actual TD updates, such as SARSA(λ) or GQ(λ) [105]. We need only
choose τr to satisfy the requirements of the problem; perhaps minimising the error
between (8.12) and (8.14). For example, a fixed target yields the expression τr(s,a) =
(1− γ)τ. Alternatively, a centralised variant would be given by τr(s,a) = r(s,a).
This freedom to choose a target function affords us a great deal of flexibility in
designing downside risk metrics.

8.5.1 Convergence

As observed by Hasselt, Quan, Hessel, Xu, Borsa, and Barreto [83], Bellman equations
with non-linear reward transformations (as in Equation 8.14) carry over all standard
convergence results under the assumption that the transformation is bounded. This
is trivially satisfied when the rewards themselves are bounded [19]. This means that
the associated Bellman operator is a contraction, and that the proxy (8.14) converges
with stochastic approximation under the standard Robbins-Monro conditions [138].

8.5.2 Variance Analysis

To study the variance of the proposed proxy action-value function we first analyse
the variance on functions of random variables. Specifically, one can show that the
variance on the absolute value of a random variable is at most that of the original,
untransformed quantity.

8.5 policy evaluation 119

Lemma 4 (Variance bound for absolute values). For any random variable X we have

that V [|X|] ⩽ V [X].

Proof.

V [X] − V [|X|] = E
[
X2

]
− E [X]2 − E

[
|X|2

]
+ E [|X|]2

= E [|X|]2 − E [X]2 |X|2 = X2

= (E [|X|] − E [X]) (E [|X|] + E [X])

⩾ 0 E[|X|] ⩾ E[X]

■

This result also means that the covariance between the transformed and original
random variable is bounded to the interval [−V [X] , V [X]].

Corollary 4.2 (Covariance bound for absolute values). The covariance between any

random variableX and it’s absolute value |X| is bounded:−V [X] ⩽ Cov[|X|,X] ⩽ V [X].

Proof. By the Cauchy-Schwarz inequality we have that Cov[|X|,X]2 ⩽ V [|X|]V [X],
and from Lemma 4 we know that V [|X|] ⩽ V [X]. The claim follows. ■

Lemma 4 can now be used to show that the variance on the positive part of a
random variable — i.e. X+

.
= (c−X)+ — is also bounded.

Lemma 5. For any random variable, X, with support on a subset of the real line,

suppX ⊆ R, we have that V
[
(c−X)+

]
⩽ V [X] for arbitrary constant c ∈ suppX.

Proof. Recall that, by Lemma 2, the term (c−X)+ may be decomposed into the sum
(|c−X|+ c−X) /2. From the standard definitions of variance, we have that

V [(c−X)+] = V [|c−X|] /4+ V [c−X] /4+ Cov[|c−X|, c−X]/2.

Using the result of Lemma 4 and Lemma 5, we can bound each individual value in this
expression. This means that V [(c−X)+] ⩽ V [c−X], and thus that V [(c−X)+] ⩽
V [X] since c is a constant and V [−X] = V [X]. ■

The outcome of Lemma 5 can be used to show that the non-linear reward term in
Equation 8.14 exhibits a lower variance than that of the original reward: V [(τr − r)

+] ⩽
V [r]. By the same logic, we must have that the variance on the positive part of
the return is also bounded, such that V

[
(c−G)+

]
⩽ V [G]. We posit that in most

realistic cases, this implies that the variance on the learning procedure for the LPM

proxy is at most that of the Q̂(s,a) function. Since the Bellman equations are con-
tractions, we know then that SARSA(λ), for example, converges asymptotically
and globally to the correct values under standard conditions (greedy in the limit
of infinite exploration, and the Robbins-Monro conditions). As noted by Pendrith
and Ryan [125], this means that the Bellman targets for Q̂(s,a) and ρ̂(s,a) will be
dominated by the reward terms. This can bee seen in the expression below:

V
[
r+ γf̂

]
= V [r] + γ2V

[
f̂
]
+ 2γCov

[
r, f̂

]
.

In the limit as f̂(s,a)→ E [f(s,a)], so the variance on the estimator f̂(s,a) decreases
to zero and the only remaining term is V [r]. By Lemma 5, the variance on the
Q̂(s,a) target will therefore be greater than for ρ̂(s,a) as training proceeds and the
estimates converge. This suggests that the estimate for the LPM proxy will be stable
and will converge at a rate bounded by the same algorithm estimating Q̂(s,a).

120 robustness to aleatoric risk

8.6 policy optimisation

In the previous section we saw how the upper bound on the LPM of the return can
be learnt effectively in an incremental fashion. Putting this to use now requires that
we integrate our estimator into a constrained policy optimisation framework. This
is particularly simple in the case of RCPO, for which we incorporate (8.14) into the
penalised reward function introduced in Definition 3 of Tessler, Mankowitz, and
Mannor [172]. Following their template, we may derive a whole class of actor-critic
algorithms that optimise for a downside risk-adjusted objective. Crucially, if the
two value function estimators Q̂(s,a) and ρ̂[τ](s,a) are compatible with the policy
parameterisation [164], then we may extend RCPO to use natural policy gradients
(see Chapter 2). We call the resulting algorithm natural reward constrained policy
optimisation (NRCPO) for which the existence hinges on Theorem 5 below.

Theorem 5 (Additive policy gradient). Consider an objective given by the weighted

sum of n state-action functions, J(θ)
.
=

∑n
i=1 ciJi(θ)

.
= Ed0,πθ

[∑n
i=1 cifi(s,a)

]
,

where ci are constants. Then, for a corresponding set of approximators, f̂i(s,a), if the

following conditions hold:

(i) that all f̂i(s,a) are compatible with the policy, such that

∂f̂i(s,a)
∂wi

=
1

πθ(a | s)

∂πθ(a | s)

∂θ
, (8.15)

(ii) and that each f̂i(s,a) minimises the mean-squared error

Ei
.
= Eπ

[(
f̂i(s,a) − fi(s,a)

)2]
, (8.16)

then ∫
S

dπθ
(s)

∫
A(s)

∂πθ(a | s)

∂θ

n∑
i=1

cif̂i(s,a) da ds (8.17)

is an unbiased estimate of the policy gradient ∇θJ(θ).

Proof. Let f(s,a) be an arbitrary function of state and action and let there exist a
corresponding approximator f̂(s,a) with weights wf. The MSE between the true
function and the approximation is given by

Ef =

∫
S

dπθ
(s)

∫
A(s)

πθ(a | s)
[
f̂(s,a) − f(s,a)

]2
da ds. (8.18)

If f̂(s,a) fulfils requirement (8.15), then the derivative of the MSE is given by

∂Ef
∂wf

= 2

∫
S

dπθ
(s)

∫
A(s)

πθ(a | s)
∂f̂(s,a)
∂wf

[
f̂(s,a) − f(s,a)

]
da ds,

= 2

∫
S

dπθ
(s)

∫
A(s)

∂πθ(a | s)

∂θ

[
f̂(s,a) − f(s,a)

]
da ds.

If we then assume that the learning method minimises the MSE defined above (i.e.
requirement (8.16)), then the weights wf yield the unique stationary point of the
MSE. Equating the derivative above to zero thus results in the equality∫
S

dπθ
(s)

∫
A(s)

∂πθ(a | s)

∂θ
f(s,a) da ds =

∫
S

dπθ
(s)

∫
A(s)

∂πθ(a | s)

∂θ
f̂(s,a) da ds,

8.6 policy optimisation 121

which implies that the true value functions in the policy gradient can be replaced
with the MSE-minimising approximations without introducing bias. This is simply
the classic result of Sutton, McAllester, Singh, and Mansour [164].

Now, for an additive objective function of the form J(θ) =
∑n
i=1 ciJi(θ), we have

that

∂J(θ)

∂θ
=

n∑
i=1

ci
∂Ji(θ)

∂θ
(8.19)

which follows from the linearity of differentiation. From the policy gradient theo-
rem [164], and the compatible function approximation result above, we know that
each of the differential terms may be expressed by an integral of the form

∂Ji(θ)

∂θ
=

∫
S

dπθ
(s)

∫
A(s)

∂πθ(a | s)

∂θ
f̂i(s,a) da ds. (8.20)

Combining (8.19) and (8.20), it follows from the linearity of integration (sum rule)
that the policy gradient of J(θ) is given by (8.21) and the proof is complete. ■

This result states the conditions under which the individual functions, fi(s,a),
in the gradient of an additive objective may be replaced by approximators, f̂i(s,a),
without introducing bias in the estimate. A large class of problems fall under this
umbrella and, as such, many different policy gradients may be derived. In the case of
RCPO, the gradient can be recovered by instantiating Theorem 5 as in the corollary
below.

Corollary 5.1. The policy gradient ∇θL(λ,θ) may be expressed as

∂L(λ,θ)
∂θ

=

∫
S

dπθ
(s)

∫
A(s)

∂πθ(a | s)

∂θ

[
Q̂(s,a) − λĈ(s,a)

]
da ds, (8.21)

where Q̂(s,a) and Ĉ(s,a) are function approximators satisfying the conditions of

Theorem 5.

Proof. Instantiate Theorem 5 with f1(s,a) = Qπ(s,a), c1 = 1, f2(s,a) = Cπ(s,a)−
ν and c2 = −λ. ■

The updates for NRCPO may now be derived by combining Corollary 5.1 with the
NAC [129] framework. This amounts to replacing ∇θL(λ,θ) with ∇̃θL(λ,θ) in
Equation 8.8, which can then be expressed as

θk+1 ← Γθ

[
θk +αθ(k)∇̃θL(λ,θ)

]
︸ ︷︷ ︸

θk+αθ(k)(wq−λwC)

.

This algorithm is simple to implement and is also computationally efficient since
∇̃θ(λ,θ) can be calculated, for any k, with a single vector-vector addition; i.e. the
complexity is linear in |θ|. As a final step, we can integrate the action-value intro-
duced in Section 8.5 into this formulation by assigning Cπ(s,a) = ρπ(s,a). The
result is a family of downside risk-averse policy optimisation algorithms, parame-
terised simply by ν and τr(s,a).

8.6.1 Convergence

The convergence of vanilla RCPO, in the absence of function approximation, was
proven by Tessler, Mankowitz, and Mannor [172] in the following Theorem.

122 robustness to aleatoric risk

Theorem 6 (Tessler, Mankowitz, and Mannor [172]). Assume that the learning

rates satisfy

∑∞
k αθ(k) =

∑∞
k αλ(k) = ∞,

∑∞
k

[
αθ(k)

2 +αλ(k)
2
]
< ∞ and

αλ(k)/αθ(k)
k→∞−−−−→ 0. Then, under standard assumptions of iterates and bounded

noise [25], the iterates (θk, λk) converge to a fixed point almost surely.

Proof. See the original proof of Tessler, Mankowitz, and Mannor [172]. The result
derives from standard two-timescale stochastic approximation arguments and the
analysis by Borkar [25]. ■

This result can be extended by the same arguments, and the definition of natural
gradients [7], to the NRCPO framework. We show this formally in Corollary 6.1 below
which also asserts that replacing the vanilla gradient with the natural gradient does
not change the solution set, and therefore it even has the same set of fixed points.

Corollary 6.1. With ∇̃θL(λk,θk) in place of ∇θL(λk,θk) in Equation 8.8, the

iterates (θk, λk) converge to a fixed point almost surely under the same assumptions

as Theorem 6. Futher, the solution set remains the same.

Proof. Under the two-timescale assumption of Tessler, Mankowitz, and Mannor
[172], we can assume that λ is constant. The ODE for θ now takes the form

∇tθt = Γθ
[
∇̃θL(λ,θt)

]
,

where Γθ projects the weights onto the set Θ .
=

∏k
i=1

[
θi, θi

]
. Following the stan-

dard arguments of Borkar [25], we can consider the learning process as a noisy
discretisation of the ODE above, where

θk+1 = Γθ

[
θk + ηθ(k)∇̃θL(λ,θk)

]
. (8.22)

Under stochastic approximation arguments [25], and the fact that the natural gradient
here is the steepest ascent direction (see Theorem 1 of Amari [7]), this process
converges to a local optimum in the asymptotic limit. The remainder follows directly
from the original proof of Tessler, Mankowitz, and Mannor [172], showing that the
two-timescale algorithm converges to a local saddle point.

To prove that the solution set is the same, we need only look at the definition of
the natural gradient. First, note that ∇̃θJ(θ) = G

−1(θ)∇θJ(θ), where G−1(θ) is
the inverse of the Fisher information matrix under the parameterised policy. We
know that the fixed points of this approximation scheme, if they exist, are located
at the points where ∇̃θJ(θ) = 0. Thus, pre-multiplying by G(θ), we arrive back at
the same condition as for the vanilla policy gradient and have thus shown that the
solution set is invariant to this transformation. ■

It follows from similar logic to Lemma 1 of Tessler, Mankowitz, and Mannor
[172] that NRCPO, a second-order method, also converges on a fixed point that is
a feasible solution, assuming: (i) the value vπ(s) is bounded for all policies π ∈ Π;
and (ii) every local minimum of Jc(θ) is a feasible solution. Indeed, following the
claims in Corollary 6.1, all results presented by Tessler, Mankowitz, and Mannor
[172] carry over to NRCPO under the same conditions.

8.7 experiments

We now present evaluations of the proposed NRCPO algorithm on three experimental
domains using variations on τ(s,a) in the LPM proxy (Equation 8.14). In all cases,
the hyper-parameters were chosen through a combination of intuition and trial-and-
error.

8.7 experiments 123

(a) J(θ) = E[r] (b) J(θ) = E[r] − 2M−[r] (c) J(θ) = E[r] − M2
−[r]

Figure 8.3: Evolution of Boltzmann policies’ selection probabilities for arms A (red), B (blue)
and C (purple). Each curve represents a normalised average over 100 independent
trials.

8.7.1 Multi-Armed Bandit

The first problem setting — taken from Tamar, Chow, Ghavamzadeh, and Mannor
[169] — is a 3-armed bandit with rewards distributed according to: rA ∼ N(1, 1);
rB ∼ N(4, 6); and rC ∼ Pareto(1, 1.5). The expected rewards from each of the arms
are thus 1, 4 and 3, respectively. The optimal solution for a risk-neutral agent is to
choose the second arm, but it is apparent that agents sensitive to negative values
should choose the third arm since the Pareto distribution’s support is bounded from
below.

In this experiment we considered a Gibbs policy of the form

πθ(a | s) =
eθa∑
a ′ e

θa ′
,

where each action corresponded to a unique choice over the three arms a ∈ A
.
=

{A,B,C}. The value functions were then represented by linear function approxima-
tors of the form

Q̂(s,a) =
〈
wQ,∇θ lnπθ(a | s)

〉
+ vQ,

and

ρ̂(s,a) =
〈
wρ,∇θ lnπθ(a | s)

〉
+ vρ,

which are compatible with the policy by construction. The canonical SARSA algo-
rithm was used for policy evaluation with learning rate αCritic

.
= 0.005. The policy

updates were performed every 100 samples with a learning rate of αPolicy
.
= 0.001.

results The proposed methods were evaluated by training and evaluating three
different Boltzmann policies on the multi-armed bandit problem. The first (Fig-
ure 8.3a) was trained using a standard variant of NAC, the latter two (Figure 8.3b
and Figure 8.3c) used a stateless version of NRCPO with first and second LPMs as
risk measures, respectively; for simplicity, we assume a constant value for the La-
grange multiplier λ. The results show that after ∼ 5000 samples, both risk-averse
policies have converged on arm C. This highlights: (i) the flexibility of our approach
— changing the particular moment and weight in the objective function is trivial; and
(ii) the improvements in efficiency that can be gained from incremental algorithms
compared to Monte-Carlo methods. See, for example, the approach of Tamar, Chow,
Ghavamzadeh, and Mannor [169] which used 10000 samples per gradient estimate,
requiring a total of ∼ 105 sample trajectories before convergence.

124 robustness to aleatoric risk

8.7.2 Portfolio Optimisation

We now consider the portfolio optimisation problem introduced in Section 6.5
using a very similar setup. The policy’s likelihood function was defined by a Gibbs
distribution and, similarly, we chose a first-order polynomial approximation over the
state, as in Equation 6.27. In this case, however, compatible function approximators
of the form:

Q̂(s,a) =
〈
wQ,∇θ lnπθ(a | s)

〉
+
〈
vQ,ϕ(s)

〉
, (8.23)

and

ρ̂(s,a) =
〈
wρ,∇θ lnπθ(a | s)

〉
+
〈
vρ,ϕ(s)

〉
(8.24)

were used. The canonical SARSA(λ) algorithm was used for policy evaluation
with learning rate αCritic

.
= 0.0001, discount factor of γ .

= 0.99 and accumulat-
ing trace with decay rate λ .

= 1 (forgive the abuse of notation with respect to the
Lagrange multiplier). The policy updates were performed every 200 time steps with
αPolicy = 0.0001 and the value-function and Lagrange multiplier (with learning rate
αLagrange

.
= 0.001) were pre-trained for 1000 episodes against the initial policy for

improved stability.
The portfolio optimisation domain itself was configured as follows: a liquid growth

rate of gL .
= 0.005, illiquid rates gI = 0.25 and gI = 0.05, and switching probabilities

p↑
.
= 0.1 and p↓

.
= 0.6. The probability of default was set to pD

.
= 0.1. Orders sizes

were capped at M .
= 10 with a cost per unit of c .

= 0.2/M and maturity time of
N

.
= 4 steps. Every episode length was simulated for 50 time steps. These are the

same parameters as used previously, repeated here for convenience.

results Figure 8.4 shows how the performance of our LPM variant of NRCPO

performed on the portfolio optimisation problem; in this case the centralised LPM was
used as a target, i.e. let τr(s,a)

.
= r(s,a). We observe the emergence of a “frontier” of

solutions which trade-off maximisation of the expected return with minimisation of
the risk term in the objective. As the threshold ν (see Equation 8.3) increases, thereby
increasing the tolerance to risk, so too do we observe a tendency for solutions with
a higher mean, higher LPM and more extreme minima. From this we can conclude
that minimisation of the proxy (8.14) does have the desired effect of reducing the
LPM, validating the practical value of the bound.

8.7.3 Optimal Consumption

The optimal consumption problem defined in Section 6.6 has an action space with
mixed support. To handle this, we used a policy with likelihood function given by
the product of a Normal distribution and a Beta distribution,

πθ(a | s) = π
(1)
θ1

(a1|s) π
(2)
θ2

(a2|s) , (8.25)

where π(1)θ1
(a1|s) and π(2)θ2

(a2|s) are defined in Equation 6.1 and Equation 6.1,
respectively. In this case, µ̂ was represented by a linear function approximator with
third-order Fourier basis, and σ̂, α̂ and β̂ were given by the same as µ̂ but mapped
through a softplus transformation to maintain positivity. Both α̂ and β̂ were also
shifted by a value 1 to maintain unimodality of the Beta distribution.

The value functions associated with πθ(a | s) were represented by linear function
approximators

Q̂(s,a) =
〈
wQ,∇θ lnπθ(a | s)

〉
+
〈
vQ,ϕ(s)

〉
, (8.26)

8.7 experiments 125

(a) Mean vs. the LPM of returns.

(b) Mean vs. the minimum observed log return.

Figure 8.4: Performance of portfolio optimisation solutions for varying thresholds ν ∈ [0, 1].
Each point was generated by evaluating the policy over 104 trials following train-
ing.

126 robustness to aleatoric risk

and

ρ̂(s,a) =
〈
wρ,∇θ lnπθ(a | s)

〉
+
〈
vρ,ϕ(s)

〉
, (8.27)

using the compatible bases of the policy and the same Fourier basis as for the policy.
SARSA(λ) was used for policy evaluation with learning rate αCritic

.
= 0.00001,

discount factor of γ .
= 1 and accumulating trace with decay rate λ .

= 0.97. The
policy updates were performed every 1000 time steps with αPolicy

.
= 0.00001. As in

the previous experiment, the value-function and Lagrange multiplier (αLagrange
.
=

0.0025) were pre-trained for 1000 episodes.
Unlike before, we defined a custom target function by leveraging prior knowledge

of the problem: we set τr(s,a)
.
=Wt ∆t(T − t). This has the interpretation of the

expected reward generated by an agent that consumes it’s wealth at a fixed rate.
Unrolling the recursive definition of τ(s,a), we have an implied target of Wt for
all states. In other words, we associate a higher penalty with those policies that
underperform said reasonable “benchmark” and finish the episode having consumed
less wealth than the initial investment.

The domain itself was configured as follows: a gain of gL .
= 0.05 for the liquid

asset; a risky asset whose price evolved with drift µt
.
= 1, volatility σt

.
= 0.25 and

random walk Wt. The wealth of the agent was initialised with value W0
.
= 1 and

time increment of ∆t .
= 0.005. The probability of default at each time step was then

set to pD
.
= 0.0015.

results Figure 8.5 shows how performance of the NRCPO algorithm evolved
during training. Each curve was generated by sampling 100 out-of-sample trajectories
every 100 training episodes to estimate performance statistics of the learn policy;
both in- and out-of-sample models used the same parameters. As in the previous
section, we observe how decreasing ν leads to increasing risk-aversion in the form
of a lower mean and LPM. In all cases the algorithm was able to identify a feasible

solution and exhibited highly stable learning. An important conclusion to take from
this is that the flexibility to choose τr(s,a) affords us a great deal of control over
the behaviour of the policy. In this case, we only penalise downside risk associated

with losses. Furthermore, NRCPO removes the need for calibrating the multiplier λ,
which can be very hard to tune [4]. This makes the approach highly practical for

many real-world problems.

8.8 conclusions

In this chapter we have put forward two key ideas. First, that partial moments offer
a tractable alternative to conventional metrics such as variance or conditional value
at risk. We show that our proxy has a simple interpretation and enjoys favourable
reward variance. Second, we demonstrate how an existing method in constrained
policy optimisation can be extended to leverage natural gradients, an algorithm
we call NRCPO. The combination of these two developments is a methodology for
deriving downside risk-averse policies with a great deal of flexibility and sample
efficiency. In future work we hope to address questions on computational complexity,
and establish whether these methods could be applied to multi-agent systems. We
also intend to explore the intersection of methods targeting aleatoric risk and those
presented in Chapter 7 for handling epistemic uncertainty to address questions
around whether the risk-sensitivity learnt via this method also performs well under
train-test ambiguity.

8.8 conclusions 127

(a) Jr(θ)

(b) Jc(θ)

Figure 8.5: Evolution of performance of optimal consumption solutions for ν ∈ {0.05, 0.1,∞}.
Each curve was generated by evaluating the policy for 100 trials every 100 training
episodes, with a simple moving average of period 100 applied for clarity.

Part IV

EP I LOGUE

9CONCLUS ION

9.1 looking back

This thesis has demonstrated two core claims:

(i) Epistemic uncertainty — i.e. uncertainty derived from misspecification of
the model compared with reality — can be managed effectively through direct
LOB reconstruction in a computational efficient manner, and through game
theoretic adaptations of parameterised stochastic models; and

(ii) Aleatoric uncertainty — i.e. uncertainty that is intrinsic to the problem do-
main — can be handled through careful construction of reward functions, and
through risk-sensitive RL, while still retaining interpretability and simplicity
of implementation.

These claims are supported by the data-driven and model-driven analyses conducted
in Part II and Part III, respectively. The insights developed were intentionally aligned
with the four questions posed at the beginning of the thesis (Section 1.2 of Part I)
which are repeated below for posterity. A summary of the conclusions drawn from
each chapter as associated with each of the research agendas is then provided in the
sections to follow.

Aleatoric Uncertainty

E
p

i
s
t
e
m

i
c

U
n

c
e
r
t
a

i
n

t
y

Q1: How do we exploit data
in LOB reconstruction to min-
imise train-test model ambigu-
ity?

Q2: What techniques are re-
quired to apply RL to re-
alistic settings and promote
risk-sensitivity via the reward
function?

Q3: Is is possible to derive
epistemically robust strate-
gies from improperly speci-
fied models?

Q4: Can risk-sensitive RL be
extended to support human-
interpretable objectives that
aren’t possible to specify in
the reward?

q1 It is well understood that full order book reconstruction is a highly accurate
method of simulating a financial market. In factual scenarios, there is exactly zero
bias between the true events and the reconstruction; up to the limit given by the
level of data available (Section 4.2). This allows us to compute important quantities
needed to represent the public state of the market and even assess the predictive
power of each feature over various time horizons. The real limitation of this approach
lies in the inability to simulate counterfactual scenarios, as discussed in Section 4.5.
Market impact, in particular, is near impossible to accurately account for due to
the path dependency of the LOB, regardless of the fidelity of the data. This is a
fundamental limitation of market replay. To address this, we proposed a technique
called shadowing which allows us to replay historical transactions against artificial
orders. This can be done pessimistically, optimistically, or in the volume-weighted
scheme — and in scenarios where the ego agent’s orders are small, it can be very

131

132 conclusion

effective. As part of answering this question, we also provided a codebase in C++
that can be used to perform experiments like those conducted in Chapter 5. This
has since been used by a number of academics for further research, and is accessible
here: https://github.com/tspooner/rl_markets.

q2 The second question revolved around algorithmic performance and the han-
dling of aleatoric risk in the data-driven setting covered in Part II. The former is
addressed in Section 5.6 which examined credit assignment, the objective horizon
and bias-variance reduction as a means of improving baseline performance. To
begin, we showed that eligibility traces significantly improve robustness and that,
in highly stochastic domains such as this, off-policy algorithms can behave very
inconsistently; a likely reflection of the deadly triad phenomenon characterised by
Sutton and Barto [162]. Another key contribution here was to show that one can
overcome the variance of value-based methods due to noisy features by means of
factored representations. Through carefully engineered state augmentation — i.e. to
use multiple basis functions with varying feature-complexities — we were able to
generate highly competitive algorithms compared to state-of-the-art benchmarks.

The second part of Chapter 5 studied constrained behaviour with risk-sensitive
reward construction (Section 5.7). The key insight here was to observe that the
inventory term in the mark-to-market decomposition (Definition 14) is the main
driver of risk. We were thus able to demonstrate that Definition 16 — a function
that asymmetrically penalises speculative reward — is a highly effective choice that
targets only the negative part of inventory PnL. This approach provides a granular
method of tuning the strategy to any level of risk aversion and has since featured in
follow-up research, including a paper by Ganesh, Vadori, Xu, Zheng, Reddy, and
Veloso [61]. In summary, we have introduced a practical, effective and interpretable
family of value-based control algorithms for market making in discrete action-spaces.

q3 In the second half of the thesis we focussed on techniques for improving the
epistemic robustness of strategies that were learnt in a model-based simulation. The
real value of this is simple: it allows us to extract as much “bang-for-our-buck” as
possible from the assumed market dynamics. Still, it remained an open question as
to how one does this in a meaningful way. Our contribution, and answer to research
question, was to cast the single-agent learning problem as a zero-sum stochastic
game between the trader and the market. The result, as shown in Chapter 7, is that
any minimax solution — i.e. Nash equilibrium — will correspond to an adversarially
robust trading strategy. A validation was provided by comparing our variant of ad-
versarial reinforcement learning (ARL) to two traditional algorithms, and performing
an analysis of the game theoretical aspects of the problem setting. Concretely, our
method was shown to dominate in all cases and directly corresponds to the solutions
predicted by the single-stage analysis.

q4 The final question of the thesis asked how one incorporates human-intuitive
risk criteria into the objective of an RL agent. Historically the risk-sensitivity in
RL has been tackled using symmetric, variance-based measures which penalise
behaviours that give rise to a large dispersion in the return distribution [170] or
in the stepwise rewards [22]. This, as we have argued, however, fails to align with
“human” concepts of risk in trading in which we are only concerned with downside

deviation. Motivated by the normative concepts of Tversky and Kahneman [176], we
proposed partial moments as a theoretical framework for estimating the expected
losses against an arbitrary benchmark. We show that the non-linearity can be
circumvented using a bound based on the triangle inequality of absolute values. It is
shown that this can be learnt in a stable and incremental manner, can be incorporated

https://github.com/tspooner/rl_markets

9.2 looking ahead 133

into existing algorithms for risk-sensitive RL, and results in a natural extension of
previous methods that is more suitable to the financial setting.

In the course of answering Q4, we were also able to derive an extension of the
policy gradient theorem to linearly decomposable objectives. Assuming each of the
inner terms are compatible function approximators, then we could show that natural
policy gradients translate elegantly to risk-sensitive RL. The resulting algorithm,
NRCPO, is a highly efficient algorithm for learning constrained policies in MDPs.

Altogether, these contributions make a significant step towards improved robust-
ness and interpretability of RL-based trading paradigms. While much remains to be
done, I firmly believe that the techniques developed in this thesis will have practical
use in industry, as well as prompt further interesting research in academia. Some of
these directions are outlined in the following, and final section.

9.2 looking ahead

While we have addressed some important issues at the intersection of algorithmic
trading and reinforcement learning much is still left to be done. The space of ideas is
vast and we cannot hope to possibly cover them all here. Given the time, one would
of course cover a myriad directions. However, there are a number of key areas that
would be of great interest to explore that follow on directly from the contributions
of this thesis. In the two sections below we summarise some of these and how they
relate to the limitations of the work presented over each of the last two parts.

9.2.1 Data-Driven Trading

In the context of data-driven trading, we have covered key questions around credit as-
signment, time horizons, bias-variance trade-offs, risk-sensitivity and state-augmentation.
All of these contributed to a performant final algorithm, but many open questions
remain.

market frictions How do market frictions such as transaction fees and
latency affect both the performance of the algorithm and the nature of the optimal
solution? This is particularly important to practitioners, and even more so to those
that do not operate as a designated market maker. The former has been studied in
detail in the stochastic optimal control literature, but the structure of fees is typically
somewhat simplified. Exploring the impact of realistic, hierarchical fee structures
would provide real insight not only to traders themselves, but also the exchanges
who design the market mechanisms. The latter, on the other hand, has not received as
much attention. This is primarily because fees mostly affect high-frequency traders
who operate at the sub-millisecond level. It stands to reason that building a deep
understanding of the impact of latency using realistic, physical network models
would be of great importance to the field.

counterfactual simulations A key limitation of our data-driven approach
— even with shadowing — is the inability to simulate counterfactual scenarios.
Relaxing the assumption of negligible market impact adds a great deal of complexity
to the simulation. The reason is that path dependency and hysteresis can give rise
to very different market conditions when we condition on both the past market
state and the artificial orders. This is akin to the well-known butterfly effect of
dynamical systems. This problem has been identified in other work [44, 179] but it
remains unclear whether there is exists a truly robust solution. It is possible that an
interpolation-based approach would be effective, but we leave it to future work to
explore these areas.

134 conclusion

hierarchical action-spaces It became increasingly clear during the re-
search that the space of trading strategy is vast. While we maintain that the sim-
plicity of a discrete action-space is valuable, it is also limiting. This was partially
addressed in Part III with the extensions to continuous action-spaces. However,
hierarchical representations would appear to be a much more natural approach. For
example, the agent could choose between different order types at the top-level, and
then have a secondary, conditioned policy that solves for the optimal quantity and
price to trade at. This relates very closely with the research in RL on parameterised
action-spaces [110]. Developing a parsimonious strategy specification that supports
hierarchical decision-making would be a fantastic contribution to the area.

epistemic uncertainty Another important direction of study would be to
explore the application of adversarial RL in a fully data-driven simulation. The
presents a number of key challenges around specification, and would exacerbate the
issues mentioned previously on the mis-match between simulated and true measures
under perturbations. It thus follows that this direction of research could address
some of the more important aspects of the trading and simulation. It would also be of
great interest to rigorously define the market replay setting in a measure-theoretic
framework. This would allows better integration with the insights from Chapter 7
and of Cartea, Donnelly, and Jaimungal [31], of which we postulate there is an
equivalence.

9.2.2 Model-Driven Trading

While some make use of RL as an intelligent numerical solver for optimal control
problems [79], this viewpoint, we argue, is severely short-sighted. As we have seen
in Chapter 7 and Chapter 8, there is a rich space of research directions that spawn
out of the intersection between stochastic modelling and RL. In this thesis we covered
some particularly interesting cases, but we summarise below some extensions to
these, and novel directions that would be especially fascinating to explore.

non-stationarity and agent-based modelling It is clear from Chap-
ter 7 that introducing non-stationarity to the market making problem considerably
increases the complexity of the task, both for theoretical and empirical analysis.
However, in the case of two-player zero-sum stochastic games (as studied here), we
also have a number of crucial guarantees that ensure, for instance, the existence of
equilibria. A fascinating next step would be to look at the dynamics and behaviours
that can be obtained in a full multi-agent system. Does the agent become increasingly
robust to strategic opponents in the market? What can we say about the existence
and stability of solutions in the stochastic game and one-shot projections? A closely
related concept is thus task generalisation.

task generalisation An emerging paradigm of contextual [81] and parame-
terised [94] MDPs facilitate the learning of policies that generalise across tasks. These
tasks may be known explicitly a priori [90], or may even be based on latent states
that the agent must infer [186]. This idea is incredibly powerful, with the latter
setting being especially well suited to the trading domain. For example, one could
design a policy that conditions it’,s behaviour on estimates of a latent regime of the
market, such as the time of day (a simple example) or the reversion dynamics of
prices (less simple).

These research directions, of course, could be applied in the data-driven setting
as well. However, we do suggest that work on these particular questions focus on
the model-driven setting where the true dynamics are known in advance and can be

9.2 looking ahead 135

controlled. This allows us to explore precisely when and how the methods break
down. Once one has established sufficient insight, moving to a data-driven platform
is the logical next step.

non-convex risk-sensitive rl In Chapter 8 we explored risk-sensitive RL

when the risk measure was non-convex due to a rectification operation. To address
this we derived a bound and showed that minimising this proxy was sufficient to
achieve the desired behaviour. However, this leaves a somewhat sour taste in the
mouth. Why can’t we simply learn the true risk measure directly using temporal-
difference (TD) methods? As discussed by Hasselt, Quan, Hessel, Xu, Borsa, and
Barreto [83], Bellman equations can be generalised beyond the linear definitions
we usually consider in the literature. The contraction property in this case relies
on Lipschitz continuity, but can be satisfied. It would be incredibly valuable to the
community to provide a thorough evaluation of methods that are able to learn
risk metrics that are not well-behaved but better model human rationality. In the
same way that Tamar, Chow, Ghavamzadeh, and Mannor [169] generalised policy
gradients to coherent risk measures, is it possible to achieve a similar result while
relaxing these assumptions? Furthermore, how do we perform prediction when the
non-linearities are present in the value functions?

B I B L IOGRAPHY

[1] Pieter Abbeel and Andrew Y Ng. ‘Exploration and Apprenticeship Learning
in Reinforcement Learning’. In: Proc. of ICML. 2005, pp. 1–8.

[2] Frédéric Abergel, Marouane Anane, Anirban Chakraborti, Aymen Jedidi, and
Ioane Muni Toke. Limit Order Books. Cambridge University Press, 2016.

[3] Jacob D. Abernethy and Satyen Kale. ‘Adaptive Market Making via Online
Learning’. In: Proc. of NeurIPS. 2013.

[4] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. ‘Constrained
Policy Optimization’. In: Proc. of ICML. Vol. 70. 2017, pp. 22–31.

[5] Robert Almgren and Neil Chriss. ‘Optimal Execution of Portfolio Transac-
tions’. In: Journal of Risk 3 (2001), pp. 5–40.

[6] Eitan Altman. Constrained Markov Decision Processes. Vol. 7. CRC Press, 1999.

[7] Shun-Ichi Amari. ‘Natural Gradient Works Efficiently in Learning’. In: Neural

Computation 10.2 (1998), pp. 251–276.

[8] Torben G Andersen and Oleg Bondarenko. ‘Reflecting on the VPIN Dispute’.
In: Journal of Financial Markets 17 (2014), pp. 53–64.

[9] András Antos, Csaba Szepesvári, and Rémi Munos. ‘Learning near-optimal
policies with Bellman-residual minimization based fitted policy iteration and
a single sample path’. In: Machine Learning 71.1 (2008), pp. 89–129.

[10] Sanjeev Arora, Elad Hazan, and Satyen Kale. ‘The multiplicative weights
update method: a meta-algorithm and applications’. In: Theory of Computing

8.1 (2012), pp. 121–164.

[11] Marco Avellaneda and Sasha Stoikov. ‘High-frequency trading in a limit
order book’. In: Quantitative Finance 8.3 (2008), pp. 217–224.

[12] Louis Bachelier. ‘Théorie de la spéculation’. In: Annales scientifiques de l’École

normale supérieure. Vol. 17. 1900, pp. 21–86.

[13] Leemon Baird. ‘Residual Algorithms: Reinforcement Learning with Function
Approximation’. In: Machine Learning. Elsevier, 1995, pp. 30–37.

[14] Thomas Bayes. ‘LII. An essay towards solving a problem in the doctrine of
chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a
letter to John Canton, AMFR S’. In: Philosophical Transactions of the Royal

Society of London 53 (1763), pp. 370–418.

[15] Marc G Bellemare, Will Dabney, and Rémi Munos. ‘A Distributional Perspec-
tive on Reinforcement Learning’. In: Proc. of ICML. 2017.

[16] Marc G Bellemare, Georg Ostrovski, Arthur Guez, Philip S Thomas, and
Rémi Munos. ‘Increasing the Action Gap: New Operators for Reinforcement
Learning’. In: Proc. of AAAI. 2016.

[17] Richard Bellman. Dynamic Programming. Priceton University Press, 1957.

[18] Dimitri P Bertsekas. ‘Nonlinear Programming’. In: Journal of the Operational

Research Society 48.3 (1997), p. 334.

[19] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, 1996.

137

138 bibliography

[20] Shalabh Bhatnagar and K Lakshmanan. ‘An Online Actor-Critic Algorithm
with Function Approximation for Constrained Markov Decision Processes’.
In: Journal of Optimization Theory and Applications 153.3 (2012), pp. 688–708.

[21] Joydeep Bhattacharjee. Practical Machine Learning with Rust: Creating Intel-

ligent Applications in Rust. Apress, 2019.

[22] Lorenzo Bisi, Luca Sabbioni, Edoardo Vittori, Matteo Papini, and Marcello
Restelli. ‘Risk-Averse Trust Region Optimization for Reward-Volatility Re-
duction’. In: arXiv preprint arXiv:1912.03193 (2019).

[23] Fischer Black and Myron Scholes. ‘The pricing of options and corporate
liabilities’. In: Journal of Political Economy 81.3 (1973), pp. 637–654.

[24] Vivek S Borkar. ‘An actor-critic algorithm for constrained Markov decision
processes’. In: Systems & Control Letters 54.3 (2005), pp. 207–213.

[25] Vivek S Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint.
Vol. 48. Springer, 2009.

[26] Justin A Boyan. ‘Least-Squares Temporal Difference Learning’. In: Proc. of

ICML. Citeseer. 1999, pp. 49–56.

[27] Justin A Boyan. ‘Technical Update: Least-Squares Temporal Difference Learn-
ing’. In: Machine Learning 49.2-3 (2002), pp. 233–246.

[28] Steven J Bradtke and Andrew G Barto. ‘Linear least-squares algorithms for
temporal difference learning’. In: Machine Learning 22.1-3 (1996), pp. 33–57.

[29] Aseem Brahma, Mithun Chakraborty, Sanmay Das, Allen Lavoie, and Malik
Magdon-Ismail. ‘A Bayesian market maker’. In: Proc. of EC. New York, New
York, USA, 2012, pp. 215–232.

[30] René Carmona and Kevin Webster. ‘The self-financing equation in limit
order book markets’. In: Finance and Stochastics 23.3 (2019), pp. 729–759.

[31] Álvaro Cartea, Ryan Donnelly, and Sebastian Jaimungal. ‘Algorithmic Trad-
ing with Model Uncertainty’. In: SIAM Journal on Financial Mathematics 8.1
(2017), pp. 635–671.

[32] Alvaro Cartea, Ryan Donnelly, and Sebastian Jaimungal. ‘Enhancing Trading
Strategies with Order Book Signals’. In: Applied Mathematical Finance 25.1
(2018), pp. 1–35.

[33] Álvaro Cartea and Sebastian Jaimungal. Order-Flow and Liquidity Provision.
Working Paper. 2015.

[34] Álvaro Cartea and Sebastian Jaimungal. ‘Risk Metrics and Fine Tuning of
High-Frequency Trading Strategies’. In: Mathematical Finance 25.3 (2015),
pp. 576–611.

[35] Álvaro Cartea, Sebastian Jaimungal, and Damir Kinzebulatov. ‘Algorithmic
Trading with Learning’. In: International Journal of Theoretical and Applied

Finance 19.04 (2016).

[36] Álvaro Cartea, Sebastian Jaimungal, and José Penalva. Algorithmic and High-

Frequency Trading. Cambridge University Press, 2015.

[37] Álvaro Cartea, Sebastian Jaimungal, and Jason Ricci. ‘Buy Low Sell High: A
High Frequency Trading Perspective’. In: SIAM Journal on Financial Mathe-

matics 5.1 (2014), pp. 415–444.

[38] Tanmoy Chakraborty and Michael Kearns. ‘Market Making and Mean Re-
version’. In: Proc. of EC. 2011, pp. 307–314.

bibliography 139

[39] David Chambers and Rasheed Saleuddin. ‘Commodity option pricing effi-
ciency before Black, Scholes, and Merton’. In: The Economic History Review

73.2 (2020), pp. 540–564.

[40] Nicholas Tung Chan and Christian Shelton. An Electronic Market-Maker.
Working Paper. 2001.

[41] Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. ‘Intrinsically
Motivated Reinforcement Learning’. In: Proc. of NeurIPS. 2005, pp. 1281–1288.

[42] Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. ‘Improving Stochastic
Policy Gradients in Continuous Control with Deep Reinforcement Learning
Using the Beta Distribution’. In: Proc. of ICML. 2017.

[43] Lonnie Chrisman. ‘Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach’. In: Proc. of AAAI. Vol. 1992. Citeseer. 1992,
pp. 183–188.

[44] Hugh L Christensen, Richard E Turner, Simon I Hill, and Simon J Godsill.
‘Rebuilding the limit order book: sequential Bayesian inference on hidden
states’. In: Quantitative Finance 13.11 (2013), pp. 1779–1799.

[45] Dave Cliff. ‘ZIP60: an enhanced variant of the ZIP trading algorithm’. In:
IEEE International Conference on E-Commerce Technology. 2006.

[46] Harald Cramér. Mathematical Methods of Statistics. Vol. 9. Princeton Univer-
sity Press, 1946.

[47] Jon Danielsson, Jean-Pierre Zigrand, Bjørn N Jorgensen, Mandira Sarma, and
CG de Vries. Consistent Measures of Risk. Working Paper. 2006.

[48] Christoph Dann, Gerhard Neumann, Jan Peters, et al. ‘Policy Evaluation
with Temporal Differences: A Survey and Comparison’. In: JMLR 15 (2014),
pp. 809–883.

[49] Peter Dayan. ‘Reinforcement comparison’. In: Connectionist Models. Elsevier,
1990, pp. 45–51.

[50] Peter Dayan and Geoffrey E Hinton. ‘Feudal reinforcement learning’. In: Proc.

of NeurIPS. 1993, pp. 271–278.

[51] Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, and
Ludolf Erwin Meester. A Modern Introduction to Probability and Statistics:

Understanding Why and How. Springer Science & Business Media, 2005.

[52] M. A H Dempster and V. Leemans. ‘An automated FX trading system using
adaptive reinforcement learning’. In: Expert Systems with Applications 30.3
(2006), pp. 543–552.

[53] Jan Dhaene, Steven Vanduffel, Qihe Tang, Marc Goovaerts, Rob Kaas, and
David Vyncke. Solvency capital, risk measures and comonotonicity: a review.
Working Paper. 2004, pp. 1–33.

[54] Pei-yong Duan and Hui-he Shao. ‘Multiple Hyperball CMAC Structure for
Large Dimension Mapping’. In: Proc. of International Federation of Automated

Control 32.2 (1999), pp. 5237–5242.

[55] David Easley, Marcos M López de Prado, and Maureen O’Hara. ‘The Vol-
ume Clock: Insights into the High-Frequency Paradigm’. In: The Journal of

Portfolio Management 39.1 (2012), pp. 19–29.

[56] Albert Einstein. ‘On the method of theoretical physics’. In: Philosophy of

Science 1.2 (1934), pp. 163–169.

[57] Simone Farinelli and Luisa Tibiletti. ‘Sharpe thinking in asset ranking with
one-sided measures’. In: European Journal of Operational Research 185.3
(2008), pp. 1542–1547.

140 bibliography

[58] Peter C Fishburn. ‘Mean-Risk Analysis with Risk Associated with Below-
Target Returns’. In: The American Economic Review 67.2 (1977), pp. 116–
126.

[59] Pietro Fodra and Mauricio Labadie. ‘High-frequency market-making with
inventory constraints and directional bets’. In: arXiv preprint arXiv:1206.4810

(2012).

[60] Yasuhiro Fujita and Shin-ichi Maeda. ‘Clipped Action Policy Gradient’. In:
Proc. of ICML. 2018.

[61] Sumitra Ganesh, Nelson Vadori, Mengda Xu, Hua Zheng, Prashant Reddy,
and Manuela Veloso. ‘Reinforcement Learning for Market Making in a Multi-
agent Dealer Market’. In: arXiv:1911.05892 (2019).

[62] Javier Garcıa and Fernando Fernández. ‘A comprehensive survey on safe
reinforcement learning’. In: JMLR 16.1 (2015), pp. 1437–1480.

[63] Alborz Geramifard, Michael Bowling, and Richard S Sutton. ‘Incremental
Least-Squares Temporal Difference Learning’. In: Proc. of NCAI. Vol. 21. 1.
2006, p. 356.

[64] Freddie Gibbs. Freddie Gibbs | The Bootleg Kev Podcast (Episode 1). Youtube.
2020. url: https://youtu.be/aelpi6tahuI?t=476.

[65] J Willard Gibbs. ‘Fourier’s series’. In: Nature 59.1522 (1898), pp. 200–200.

[66] Lawrence R Glosten and Paul R Milgrom. ‘Bid, Ask and Transaction Prices
in a Specialist Market with Heterogeneously Informed Traders’. In: Journal

of Financial Economics 14.1 (1985), pp. 71–100.

[67] Dhananjay K. Gode and Shyam Sunder. ‘Allocative Efficiency of Markets
with Zero-Intelligence Traders: Market as a Partial Substitute for Individual
Rationality’. In: Journal of Political Economy 101.1 (1993), pp. 119–137.

[68] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. ‘Generative Ad-
versarial Nets’. In: Proc. of NeurIPS. 2014.

[69] Martin D Gould and Julius Bonart. ‘Queue Imbalance as a One-Tick-Ahead
Price Predictor in a Limit Order Book’. In: Market Microstructure and Liquidity

2.2 (2016), p. 1650006.

[70] Martin D Gould, Mason A Porter, Stacy Williams, Mark McDonald, Daniel J
Fenn, and Sam D Howison. ‘Limit Order Books’. In: Quantitative Finance

13.11 (2013), pp. 1709–1742.

[71] Ronald L Graham, Donald E Knuth, Oren Patashnik, and Stanley Liu. ‘Con-
crete Mathematics: A Foundation for Computer Science’. In: Computers in

Physics 3.5 (1989), pp. 106–107.

[72] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. ‘Variance Reduction
Techniques for Gradient Estimates in Reinforcement Learning’. In: JMLR 5
(2004), pp. 1471–1530.

[73] Ivo Grondman. ‘Online Model Learning Algorithms for Actor-Critic Control’.
PhD thesis. Dutch Institute for Systems and Control, 2015.

[74] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. ‘A
survey of actor-critic reinforcement learning: Standard and natural policy
gradients’. In: IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews) 42.6 (2012), pp. 1291–1307.

[75] Sanford J Grossman and Merton H Miller. ‘Liquidity and Market Structure’.
In: The Journal of Finance 43.3 (1988), pp. 617–633.

https://youtu.be/aelpi6tahuI?t=476

bibliography 141

[76] Marek Grzes and Daniel Kudenko. ‘Reward Shaping and Mixed Resolution
Function Approximation’. In: Developments in Intelligent Agent Technologies

and Multi-Agent Systems. 2010. Chap. 7.

[77] Olivier Guéant. ‘Optimal market making’. In: Applied Mathematical Finance

24.2 (2017), pp. 112–154.

[78] Olivier Guéant, Charles-Albert Lehalle, and Joaquin Fernandez-Tapia. ‘Deal-
ing with the Inventory Risk: A solution to the market making problem’. In:
Mathematics and Financial Economics 7.4 (2011), pp. 477–507.

[79] Olivier Guéant and Iuliia Manziuk. ‘Deep reinforcement learning for market
making in corporate bonds: beating the curse of dimensionality’. In: Applied

Mathematical Finance 26.5 (2019), pp. 387–452.

[80] Fabien Guilbaud and Huyen Pham. ‘Optimal High Frequency Trading with
Limit and Market Orders’. In: CoRR abs/1106.5040 (2011).

[81] Assaf Hallak, Dotan Di Castro, and Shie Mannor. ‘Contextual markov deci-
sion processes’. In: arXiv preprint arXiv:1502.02259 (2015).

[82] Hado V Hasselt. ‘Double Q-learning’. In: Proc. of NeurIPS. 2010, pp. 2613–
2621.

[83] Hado van Hasselt, John Quan, Matteo Hessel, Zhongwen Xu, Diana Borsa,
and Andre Barreto. ‘General non-linear Bellman equations’. In: arXiv preprint

arXiv:1907.03687 (2019).

[84] Thomas Ho and Hans R Stoll. ‘Optimal Dealer Pricing Under Transactions
and Return Uncertainty’. In: Journal of Financial Economics 9.1 (1981), pp. 47–
73.

[85] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. ‘Multilayer Feed-
forward Networks are Universal Approximators’. In: Neural Networks 2.5
(1989), pp. 359–366.

[86] Barry Johnson. Algorithmic Trading & DMA: An introduction to direct access

trading strategies. 4Myeloma Press London, 2010.

[87] Sham M Kakade. ‘A Natural Policy Gradient’. In: Proc. of NeurIPS. 2001,
pp. 1531–1538.

[88] Sham M Kakade. ‘A Natural Policy Gradient’. In: Proc. of NeurIPS. 2002.

[89] Michael Kearns and Satinder Singh. ‘Near-optimal Reinforcement Learning
in Polynomial Time’. In: Machine Learning 49.2-3 (2002), pp. 209–232.

[90] Taylor W Killian, Samuel Daulton, George Konidaris, and Finale Doshi-
Velez. ‘Robust and efficient transfer learning with hidden parameter markov
decision processes’. In: Proc. of NeurIPS. 2017, pp. 6250–6261.

[91] Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun. ‘The
flash crash: High-frequency trading in an electronic market’. In: The Journal

of Finance 72.3 (2017), pp. 967–998.

[92] Achim Klenke. Probability Theory: A Comprehensive Course. Springer Science
& Business Media, 2013.

[93] Richard Klima, Daan Bloembergen, Michael Kaisers, and Karl Tuyls. ‘Robust
Temporal Difference Learning for Critical Domains’. In: Proc. of AAMAS.
2019, pp. 350–358.

[94] George Konidaris and Finale Doshi-Velez. ‘Hidden parameter Markov deci-
sion processes: an emerging paradigm for modeling families of related tasks’.
In: Proc. of AAAI. 2014.

142 bibliography

[95] George Konidaris, Sarah Osentoski, and Philip Thomas. ‘Value Function
Approximation in Reinforcement Learning using the Fourier Basis’. In: Proc.

of AAAI. 2011.

[96] Michail G Lagoudakis and Ronald Parr. ‘Least-Squares Policy Iteration’. In:
JMLR 4 (2003), pp. 1107–1149.

[97] Sophie Laruelle and Charles-albert Lehalle. Market microstructure in practice.
World Scientific, 2018.

[98] Germain Lefebvre, Maël Lebreton, Florent Meyniel, Sacha Bourgeois-Gironde,
and Stefano Palminteri. ‘Behavioural and neural characterization of opti-
mistic reinforcement learning’. In: Nature Human Behaviour 1.4 (2017), pp. 1–
9.

[99] Alexander Lipton, Umberto Pesavento, and Michael G Sotiropoulos. ‘Trade
Arrival Dynamics and Quote Imbalance in a Limit Order Book’. In: arXiv

preprint arXiv:1312.0514 (2013).

[100] Michael L Littman. ‘Markov games as a framework for multi-agent reinforce-
ment learning’. In: Proc. of ICML. 1994.

[101] Andrew W Lo. ‘The statistics of Sharpe ratios’. In: Financial Analysts Journal

58.4 (2002), pp. 36–52.

[102] Donald MacKenzie and Taylor Spears. ‘“The formula that killed Wall Street”:
The Gaussian copula and modelling practices in investment banking’. In:
Social Studies of Science 44.3 (2014), pp. 393–417.

[103] C. J. Maddison, D. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih,
A. Doucet, and Y. W. Teh. ‘Particle Value Functions’. In: arXiv preprint

arXiv:1703.05820 (2017).

[104] Ananth Madhavan. ‘Market Microstructure: A Survey’. In: Journal of Finan-

cial Markets 3.3 (2000), pp. 205–258.

[105] Hamid Reza Maei and Richard S Sutton. ‘GQ(λ): A general gradient algorithm
for temporal-difference prediction learning with eligibility traces’. In: Proc.

of AGI. Atlantis Press. 2010.

[106] Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, and Richard S
Sutton. ‘Toward Off-Policy Learning Control with Function Approximation’.
In: Proc. of ICML. 2010.

[107] Benoit Mandelbrot and Howard M Taylor. ‘On the distribution of stock price
differences’. In: Operations Research 15.6 (1967), pp. 1057–1062.

[108] Shie Mannor and John N Tsitsiklis. ‘Algorithmic Aspects of Mean-Variance
Optimization in Markov Decision Processes’. In: European Journal of Opera-

tional Research 231.3 (2013), pp. 645–653.

[109] Harry M Markowitz. ‘Foundations of Portfolio Theory’. In: The Journal of

Finance 46.2 (1991), pp. 469–477.

[110] Warwick Masson, Pravesh Ranchod, and George Konidaris. ‘Reinforcement
learning with parameterized actions’. In: Proc. of AAAI. 2016, pp. 1934–1940.

[111] Francisco S Melo, Sean P Meyn, and M Isabel Ribeiro. ‘An Analysis of Rein-
forcement Learning with Function Approximation’. In: Proc. of ICML. 2008,
pp. 664–671.

[112] Robert C Merton. ‘Lifetime Portfolio Selection under Uncertainty: The Continuous-
Time Case’. In: The Review of Economics and Statistics (1969), pp. 247–257.

[113] Robert C Merton. ‘Theory of rational option pricing’. In: The Bell Journal of

Economics and Management Science (1973), pp. 141–183.

bibliography 143

[114] John E Moody and Matthew Saffell. ‘Reinforcement Learning for Trading’.
In: Proc. of NeurIPS. 1999, pp. 917–923.

[115] John Moody and Matthew Saffell. ‘Learning to Trade via Direct Reinforce-
ment’. In: IEEE Transactions on Neural Networks 12.4 (2001), pp. 875–889.

[116] John Moody, Lizhong Wu, Yuansong Liao, and Matthew Saffell. ‘Performance
Functions and Reinforcement Learning for Ttrading Systems and Portfolios’.
In: Journal of Forecasting 17.5-6 (1998), pp. 441–470.

[117] Lyndon Moore and Steve Juh. ‘Derivative pricing 60 years before Black–
Scholes: evidence from the Johannesburg Stock Exchange’. In: The Journal

of Finance 61.6 (2006), pp. 3069–3098.

[118] Rémi Munos. ‘A Study of Reinforcement Learning in the Continuous Case by
the Means of Viscosity Solutions’. In: Machine Learning 40.3 (2000), pp. 265–
299.

[119] Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. ‘Reinforcement Learning
for Optimized Trade Execution’. In: Proc. of ICML. 2006.

[120] Emmy Noether. ‘Invariante Variationsprobleme’. ger. In: Nachrichten von

der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische

Klasse (1918), pp. 235–257.

[121] Abraham Othman. ‘Automated Market Making: Theory and Practice’. PhD
thesis. CMU, 2012.

[122] Abraham Othman, David M Pennock, Daniel M Reeves, and Tuomas Sand-
holm. ‘A Practical Liquidity-Sensitive Automated Market Maker’. In: ACM

Transactions on Economics and Computation 1.3 (2013), pp. 1–25.

[123] Maureen O’Hara. ‘High Frequency Market Microstructure’. In: Journal of

Financial Economics 116.2 (2015), pp. 257–270.

[124] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause

and effect. Basic Books, 2018.

[125] Mark D. Pendrith and Malcolm Ryan. ‘Estimator Variance in Reinforcement
Learning: Theoretical Problems and Practical Solutions’. In: 1997.

[126] Carlota Perez. Technological revolutions and financial capital. Edward Elgar
Publishing, 2003.

[127] Julien Pérolat, Bilal Piot, and Olivier Pietquin. ‘Actor-Critic Fictitious Play
in Simultaneous Move Multistage Games’. In: Proc. of AISTATS. 2018.

[128] Jan Peters. Policy Gradient Methods for Control Applications. Working Paper.
2002.

[129] Jan Peters and Stefan Schaal. ‘Natural Actor-Critic’. In: Neurocomputing

71.7-9 (2008), pp. 1180–1190.

[130] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. ‘Ro-
bust Adversarial Reinforcement Learning’. In: Proc. of ICML. Vol. 70. 2017,
pp. 2817–2826.

[131] Doina Precup. ‘Eligibility traces for off-policy policy evaluation’. In: Com-

puter Science Department Faculty Publication Series (2000), p. 80.

[132] Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. ‘Off-policy temporal-
difference learning with function approximation’. In: Proc. of ICML. 2001,
pp. 417–424.

[133] Giovanni Walter Puopolo. ‘Portfolio Selection with Transaction Costs and
Default Risk’. In: Managerial Finance (2017).

144 bibliography

[134] Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, 1994.

[135] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey
Levine. ‘EPOpt: Learning Robust Neural Network Policies using Model En-
sembles’. In: Proc. of ICLR. 2017.

[136] C Radhakrishna Rao. ‘Information and the accuracy attainable in the estima-
tion of statistical parameters’. In: vol. 20. 1945, pp. 78–90.

[137] Martin Reck. ‘Xetra: the evolution of an electronic market’. In: Electronic

Markets (2020), pp. 1–5.

[138] Herbert Robbins and Sutton Monro. ‘A Stochastic Approximation Method’.
In: The Annals of Mathematical Statistics (1951), pp. 400–407.

[139] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning Using Connec-

tionist Systems. Working Paper. Department of Engineering, University of
Cambridge, 1994.

[140] "Rust and machine learning #4: practical tools (Ep. 110)". url: https://
datascienceathome.com/rust-and-machine-learning-4-practical-

tools-ep-110.

[141] Rust. url: https://www.rust-lang.org.

[142] Moonkyung Ryu, Yinlam Chow, Ross Anderson, Christian Tjandraatmadja,
and Craig Boutilier. ‘CALQ: Continuous Action Q-Learning’. In: arXiv preprint

arXiv:1909.12397 (2019).

[143] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. ‘High-Dimensional Continuous Control using Generalized Advan-
tage Estimation’. In: Proc. of ICLR. 2016.

[144] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. ‘Proximal Policy Optimization Algorithms’. In: arXiv preprint arXiv:1707.06347

(2017).

[145] L. Julian Schvartzman and Michael P. Wellman. ‘Stronger CDA Strategies
through Empirical Game-Theoretic Analysis and Reinforcement Learning’.
In: Proc. of AAMAS (2009), pp. 249–256.

[146] Eldar Shafir and Robyn A LeBoeuf. ‘Rationality’. In: Annual Review of Psy-

chology 53.1 (2002), pp. 491–517.

[147] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures

on Stochastic Programming: Modeling and Theory. SIAM, 2014.

[148] C R Shelton. ‘Importance Sampling for Reinforcement Learning with Multiple
Objectives’. PhD thesis. Massachusetts Institute of Technology, 2001.

[149] Yun Shen, Michael J Tobia, Tobias Sommer, and Klaus Obermayer. ‘Risk-
Sensitive Reinforcement Learning’. In: Neural Computation 26.7 (2014), pp. 1298–
1328.

[150] Craig Sherstan, Brendan Bennett, Kenny Young, Dylan R Ashley, Adam
White, Martha White, and Richard S Sutton. ‘Directly Estimating the Vari-
ance of the λ-return using Temporal-Difference Methods’. In: arXiv preprint

arXiv:1801.08287 (2018).

[151] Alexander A. Sherstov and Peter Stone. ‘Three Automated Stock-Trading
Agents: A Comparative Study’. In: Agent Mediated Electronic Commerce {VI}:

Theories for and Engineering of Distributed Mechanisms and Systems (AMEC

2004). Vol. 3435. 2004, pp. 173–187.

https://datascienceathome.com/rust-and-machine-learning-4-practical-tools-ep-110
https://datascienceathome.com/rust-and-machine-learning-4-practical-tools-ep-110
https://datascienceathome.com/rust-and-machine-learning-4-practical-tools-ep-110
https://www.rust-lang.org

bibliography 145

[152] Alexander A. Sherstov and Peter Stone. ‘Function Approximation via Tile
Coding: Automating Parameter Choice’. In: Abstraction, Reformulation and

Approximation. 2005, pp. 194–205.

[153] Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. ‘Learning Without
State-Estimation in Partially Observable Markovian Decision Processes’. In:
Machine Learning. Elsevier, 1994, pp. 284–292.

[154] Maurice Sion. ‘On General Minimax Theorems’. In: Pacific Journal of Mathe-

matics 8.1 (1958), pp. 171–176.

[155] Frank A Sortino and Lee N Price. ‘Performance Measurement in a Downside
Risk Framework’. In: The Journal of Investing 3.3 (1994), pp. 59–64.

[156] Thomas Spooner, John Fearnley, Rahul Savani, and Andreas Koukorinis.
‘Market Making via Reinforcement Learning’. In: Proc. of AAMAS. 2018,
pp. 434–442.

[157] Thomas Spooner, Anne E Jones, John Fearnley, Rahul Savani, Joanne Turner,
and Matthew Baylis. ‘Bayesian optimisation of restriction zones for blue-
tongue control’. In: Scientific Reports 10.1 (2020), pp. 1–18.

[158] Thomas Spooner and Rahul Savani. ‘Robust Market Making via Adversarial
Reinforcement Learning’. In: Proc. of IJCAI. Special Track on AI in FinTech.
July 2020, pp. 4590–4596.

[159] Thomas Spooner and Rahul Savani. ‘A Natural Actor-Critic Algorithm with
Downside Risk Constraints’. url: https://arxiv.org/abs/2007.
04203.

[160] Thomas Spooner, Nelson Vadori, and Sumitra Ganesh. ‘Causal Policy Gradi-
ents: Leveraging Structure for Efficient Learning in (Factored) MOMDPs’. In:
arXiv preprint arXiv:2102.10362 (2021).

[161] SM Sunoj and N Vipin. ‘Some properties of conditional partial moments in
the context of stochastic modelling’. In: Statistical Papers (2019), pp. 1–29.

[162] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduc-

tion. MIT Press, 2018.

[163] Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David
Silver, Csaba Szepesvári, and Eric Wiewiora. ‘Fast Gradient-Descent Methods
for Temporal-Difference Learning with Linear Function Approximation’. In:
Proc. of ICML. 2009, pp. 993–1000.

[164] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Man-
sour. ‘Policy Gradient Methods for Reinforcement Learning with Function
Approximation’. In: Proc. of NeurIPS. 2000.

[165] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick
M Pilarski, Adam White, and Doina Precup. ‘Horde: A Scalable Real-time
Architecture for Learning Knowledge from Unsupervised Sensorimotor In-
teraction’. In: Proc. of AAMAS. 2011, pp. 761–768.

[166] Richard S Sutton, Doina Precup, and Satinder Singh. ‘Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learn-
ing’. In: Artificial Intelligence 112.1-2 (1999), pp. 181–211.

[167] Csaba Szepesvári. ‘Algorithms for Reinforcement Learning’. In: Synthesis

Lectures on Artificial Intelligence and Machine Learning 4.1 (2010), pp. 1–103.

[168] Csaba Szepesvári and William D Smart. ‘Interpolation-Based Q-Learning’.
In: Proc. of ICML. 2004, p. 100.

https://arxiv.org/abs/2007.04203
https://arxiv.org/abs/2007.04203

146 bibliography

[169] Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor.
‘Policy Gradient for Coherent Risk Measures’. In: Proc. of NeurIPS. 2015,
pp. 1468–1476.

[170] Aviv Tamar, Dotan Di Castro, and Shie Mannor. ‘Policy Gradients with
Variance Related Risk Criteria’. In: Proc. of ICML. 2012.

[171] Aviv Tamar, Dotan Di Castro, and Shie Mannor. ‘Learning the Variance of
the Reward-To-Go’. In: JMLR 17.1 (2016), pp. 361–396.

[172] Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. ‘Reward Constrained
Policy Optimization’. In: Proc. of ICLR. 2019.

[173] Philip Thomas. ‘Bias in Natural Actor-Critic Algorithms’. In: Proc. of ICML.
2014.

[174] Hunter S. Thompson. The Proud Highway: Saga of a Desperate Southern

Gentleman. Vol. 1. Bloomsbury, 2011.

[175] John N Tsitsiklis and Benjamin Van Roy. ‘An analysis of temporal-difference
learning with function approximation’. In: IEEE Transactions on Automatic

Control 42.5 (1997), pp. 674–690.

[176] Amos Tversky and Daniel Kahneman. ‘Prospect Theory: An Analysis of
Decision Under Risk’. In: Econometrica 47.2 (1979), pp. 263–291.

[177] Harm Van Seijen, Hado Van Hasselt, Shimon Whiteson, and Marco Wiering.
‘A Theoretical and Empirical Analysis of Expected Sarsa’. In: IEEE Sympo-

sium on Adaptive Dynamic Programming and Reinforcement Learning. 2009,
pp. 177–184.

[178] Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial
Dervovic, Manuela Veloso, and Tucker Hybinette Balch. ‘Get Real: Realism
Metrics for Robust Limit Order Book Market Simulations’. In: arXiv preprint

arXiv:1912.04941 (2019).

[179] Svitlana Vyetrenko and Shaojie Xu. ‘Risk-Sensitive Compact Decision Trees
for Autonomous Execution in Presence of Simulated Market Response’. In:
arXiv:1906.02312 (2019).

[180] Perukrishnen Vytelingum, Dave Cliff, and Nicholas R Jennings. ‘Strategic
Bidding in Continuous Double Auctions’. In: Artificial Intelligence 172.14
(2008), pp. 1700–1729.

[181] Christopher JCH Watkins and Peter Dayan. ‘Q-Learning’. In: Machine Learn-

ing 8.3-4 (1992), pp. 279–292.

[182] Alex Weissensteiner. ‘A Q-Learning Approach to Derive Optimal Consump-
tion and Investment Strategies’. In: IEEE Transactions on Neural Networks

20.8 (2009), pp. 1234–1243.

[183] Ronald J Williams. ‘Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning’. In: Machine Learning 8.3-4 (1992),
pp. 229–256.

[184] Wing-Keung Wong, Meher Manzur, and Boon-Kiat Chew. ‘How rewarding
is technical analysis? Evidence from Singapore stock market’. In: Applied

Financial Economics 13.7 (2003), pp. 543–551.

[185] Xin Xu, Han-gen He, and Dewen Hu. ‘Efficient reinforcement learning using
recursive least-squares methods’. In: Journal of Artificial Intelligence Research

16 (2002), pp. 259–292.

bibliography 147

[186] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal,
Katja Hofmann, and Shimon Whiteson. ‘VariBAD: A Very Good Method for
Bayes-Adaptive Deep RL via Meta-Learning’. In: arXiv preprint arXiv:1910.08348

(2019).

	Colophon
	Dedication
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms

	 Prologue
	1 Introduction
	1.1 Motivation
	1.1.1 Pioneers

	1.2 The Thesis
	1.3 Structure
	1.4 Published Material
	1.4.1 Papers
	1.4.2 Code

	2 Reinforcement Learning
	2.1 Markov Decision Processes
	2.1.1 Policies
	2.1.2 Stationary Distributions
	2.1.3 Performance Criteria
	2.1.4 Value Functions
	2.1.5 Optimality

	2.2 Function Approximation
	2.2.1 Local Representations
	2.2.2 Global Representations
	2.2.3 Extensions

	2.3 Policy Evaluation
	2.3.1 Temporal-Difference Methods
	2.3.2 Eligibility Traces
	2.3.3 Least-Squares Methods

	2.4 Policy Optimisation
	2.4.1 Value-Based Methods
	2.4.2 Policy Gradient Methods
	2.4.3 The Actor-Critic Architecture
	2.4.4 Natural Policy Gradients

	3 Algorithmic Trading
	3.1 Financial Markets
	3.1.1 Electronic Markets

	3.2 A Calculus for Trading
	3.2.1 Interactions
	3.2.2 Time Discretisation

	3.3 Limit Order Books
	3.3.1 Matching
	3.3.2 Revenue

	3.4 Desiderata

	 Data-Driven Trading
	4 Limit Order Book Simulation
	4.1 Outline
	4.2 Data
	4.3 Reconstruction
	4.4 Indicators
	4.4.1 Price
	4.4.2 Volume
	4.4.3 Hybrid

	4.5 Counterfactuals
	4.5.1 Market Impact
	4.5.2 Queues

	5 RL Data-Driven Trading
	5.1 Outline
	5.2 Related Work
	5.3 Problem Specification
	5.3.1 Desiderata
	5.3.2 Simulation

	5.4 The Strategy
	5.4.1 Discrete Encoding
	5.4.2 Trading Clocks

	5.5 Benchmarks
	5.5.1 Randomised Pricing with Clearing
	5.5.2 Fixed-Symmetric Pricing with Clearing
	5.5.3 Online Pricing

	5.6 Risk-Neutral Behaviour
	5.6.1 Credit Assignment
	5.6.2 Average Reward vs. Discounted Reward
	5.6.3 Bias-Variance Reduction

	5.7 Constrained Behaviour
	5.8 State Augmentation
	5.8.1 Factored Representation

	5.9 Consolidation
	5.10 Conclusions

	 Model-Driven Trading
	6 RL Model-Driven Trading
	6.1 Outline
	6.2 Policy Classes
	6.2.1 Supported on R
	6.2.2 Supported on Half-Bounded Intervals of R
	6.2.3 Supported on Bounded-Intervals of R
	6.2.4 Supported on N
	6.2.5 Supported on Product Spaces

	6.3 Optimal Execution
	6.4 Market Making
	6.5 Portfolio Optimisation
	6.6 Optimal Consumption

	7 Invariance to Epistemic Risk
	7.1 Outline
	7.2 Related Work
	7.3 Trading Games
	7.3.1 Single-Stage Analysis
	7.3.2 Multi-Stage Analysis

	7.4 Adversarial Training
	7.5 Experiments
	7.5.1 Fixed Setting
	7.5.2 Randomised Setting
	7.5.3 Strategic Setting

	7.6 Conclusions

	8 Robustness to Aleatoric Risk
	8.1 Outline
	8.2 Related Work
	8.3 Constrained MDPs
	8.3.1 Reward Constrained Policy Optimisation

	8.4 Downside Risk Measures
	8.4.1 Partial Moments

	8.5 Policy Evaluation
	8.5.1 Convergence
	8.5.2 Variance Analysis

	8.6 Policy Optimisation
	8.6.1 Convergence

	8.7 Experiments
	8.7.1 Multi-Armed Bandit
	8.7.2 Portfolio Optimisation
	8.7.3 Optimal Consumption

	8.8 Conclusions

	 Epilogue
	9 Conclusion
	9.1 Looking Back
	9.2 Looking Ahead
	9.2.1 Data-Driven Trading
	9.2.2 Model-Driven Trading

	 Bibliography

