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Abstract
Due to the excellent piezoelectric and ferroelectric properties of lead zirconate titanate (PZT), the buckled PZT ribbon-substrate structure has been widely used in the design of wearable electronic devices. However, wearable electronic devices must work in a complex vibration environment and are subjected to random excitations such as irregular human body motion. Hence, the reliability of the buckled piezoelectric ribbon-substrate structure in a dynamic context needs to be ensured. In this paper, Gaussian white noise is introduced to describe the broadband random environment. A voltage is applied to the PZT ribbon to realise the desired wavy configuration of the ribbon to influence the dynamic responses of this structure. Based on the Euler-Bernoulli beam theory and the Lagrange equation, the governing equation of the buckled piezoelectric ribbon-substrate structure is derived. By using a stochastic averaging method, the stationary probability density of stochastic responses of the buckled piezoelectric ribbon-substrate structure is obtained. Several numerical examples are analysed to reveal the effects of the intensity of the Gaussian white noise and the voltage applied to the PZT ribbon on the stochastic responses of this buckled structure. Through these numerical results, it can be found that when the applied voltage is above the critical voltage value, the piezoelectric ribbon would wrinkle into multiple small waves on top of the soft substrate. By increasing the applied voltage while keeping the intensity of noise excitation constant, the static buckling amplitude increases, and the number of transitions between two equilibrium positions decreases, which implies that the stretchability and stability of the ribbon-substrate structure would be improved. The results of this paper would be helpful for the design of robust piezoelectric ribbon-based stretchable electronics.
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1. Introduction 
Different kinds of inorganic thin ribbons adhered onto a soft substrate could form a buckled ribbon-substrate structure, which is used as the main structural part of functional devices (such as power supplies [1], actuators [2, 3], sensors [4, 5] and so on). The ribbon-based buckled wearable electronic devices can allow stretching or twisting without compromising their functionalities. In recent years, due to the excellent piezoelectric properties of the PZT [6], the functional devices in thin PZT ribbon-substrate format have been widely utilised in daily life. However, during the service life of wearable electronics, the flexible piezoelectric structure is inevitably subjected to dynamic loads [7]. For real-world applications, the wearable electronic devices (based on the buckled piezoelectric film/ribbon-substrate structure) are always subjected to random excitation, such as irregular human body motion [8-11]. Such an excitation could lead to disastrous consequences, such as failure of the resonators [12]. Hence, a comprehensive dynamic analysis of the buckled piezoelectric ribbon-substrate structure under random excitation is essential and very useful for the design of wearable electronic devices.
With the development and increasing use of wearable electronic devices, the dynamic behaviours (such as dynamic stability) of these devices have been studied in order to achieve the designed functions. Ou et al. [13] studied the dynamic behaviour of the buckled film/ribbon-substrate structure under a uniaxial step load by employing elliptic functions. Wang et al. [14] analysed the surface effects and piezoelectric effects on the dynamic behaviour of the buckled thin film structure to avoid the resonance in a complicated environment. Wang et al. [15] investigated the nonlinear vibration of a wrinkling nanowire on a compliant substrate with surface effect. Subsequently, Wang et al. [16] studied the dynamic stability of a piezoelectric ribbon-substrate structure without dynamic loadings, and their results showed that as time progressed, the vibration magnitude would decrease to the static buckling amplitude when damping was considered. 
However, most studies on this topic are on the static buckling behaviour of the buckled structure. Though there are several papers on the dynamics of the buckled structures, none involves random excitation. In practical situations, a random excitation is ubiquitous [17-19], and the piezoelectric ribbon-substrate structure experiences random excitation all the time, such as irregular human body motion. For the prediction of stochastic structural responses, stochastic averaging methods have been widely used in the random analysis in engineering [20-22]. A stochastic averaging method could not only simplify the solution of a dynamic system, but also retain some important behaviours of the original system [23-26]. Zhang et al. [27] established an electromechanical model for energy harvesting with Gaussian white noise, and their results showed that the stochastic averaging method could provide satisfactory results for a piezoelectric energy harvester system. For a buckled piezoelectric sandwiched beam, based on the stochastic averaging method, Fokou et al. [28] displayed the stochastic P-bifurcation. Ge et al. [29] studied a cantilever beam with a fatigue crack driven by Gaussian white noise and their results showed that a higher noise density would greatly reduce the reliability of the structure. 
Hence, to design robust and effective ribbon-substrate-type wearable electronic devices, the stochastic responses of the flexible piezoelectric ribbon-substrate structure are studied in this paper. The rest of this work is organized as follows: in section 2, the model of a piezoelectric ribbon bonded to a compliant substrate is presented; in section 3, the governing equation of the wavy ribbon-substrate structure is derived; in section 4, the stochastic averaging method is utilized to obtain the analytical solutions of the governing equation; in section 5, numerical results are analysed; and some key conclusions are summarized in section 6.

2. Description of the model for piezoelectric ribbon on a soft substrate
To make a brittle piezoelectric ribbon form a wavy configuration on a soft substrate, there are two strategies. One strategy is stretching the soft substrate, bonding the piezoelectric ribbon on the compliant substrate, and releasing the substrate. Then, the ribbon would form a wavy configuration on the soft substrate [30]. The other strategy is tuning the voltage applied to the piezoelectric ribbon, which will cause the piezoelectric ribbon to buckle on the soft substrate [31, 32]. In this paper, the second strategy is considered, as shown in Fig. 1. To gain a comprehensive understanding of the dynamic behaviour of the wavy ribbon-substrate structure subjected to the Gaussian white noise excitation, an analytical model is required, which will be established as follows.
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Figure 1. A schematic illustration of the piezoelectric ribbon-substrate structure.
For the wrinkled (also named as buckled) piezoelectric ribbon, the density of its kinetic energy is calculated by,

[bookmark: MTBlankEqn]	 	





where  indicates the density,  is the time, and  denotes the displacement of the piezoelectric ribbon in the corresponding  coordinate.  represent the three perpendicular directions of the length, width, and thickness of the ribbon-substrate structure, respectively, as shown in Fig. 1.
The total electric enthalpy density takes the form of,

	 	






where  and  represent the stresses and the electric displacements;  and  are the strain tensors and the electric fields. For the wavy piezoelectric ribbon, the linear constitutive equations for stresses  and electric displacements  of piezoelectric materials can be expressed as [32-34],

	 	

	 	



where ,  and  are the reduced elastic, piezoelectric and dielectric coefficients [31], respectively. In the absence of free electric charges, the electric displacements have to satisfy the Gauss’ Law,

	 	



In the present study, because the thin piezoelectric plate has a large in-plane dimension to thickness ratio [35],  and  are taken to be zero. Only the electric field in the thickness direction, is considered, which means that, 

	 	

where  is the externally applied electric potential. The electric boundary conditions are taken as,

	 	


where  is the thickness of the piezoelectric ribbon, and  is the applied voltage.
Combining Eqs. (2-7), one can obtain the electric potential as

	 	
3. The governing equation for wavy ribbon on a soft substrate





As the width (in the -direction) of the piezoelectric thin ribbon is much larger than its thickness, the model could be simplified by using the plane-strain hypothesis, following Refs. [31, 36]. Therefore, the problem is taken as a plane strain problem in the - plane in the following study and the one-dimensional model is used to represent the piezoelectric ribbon bound to an elastic compliant substrate. The piezoelectric ribbon is modelled as a Euler-Bernoulli beam with von Karman nonlinear strain. The membrane strain of the piezoelectric ribbon can be defined by the in-plane displacements  and out-of-plane displacement  as,

	 	
The membrane force and stress moment of the piezoelectric ribbon are calculated by,

	 	

where  is the thickness of the piezoelectric ribbon.
The shear traction at the piezoelectric ribbon/substrate interface takes the form of,

	 	

The piezoelectric ribbon would wrinkle in a cosine form on top of the compliant substrate, and the out-of-plane displacement  can be assumed as [15, 37],

	 	


where  is the ‘modal coordinate’ of the wavy piezoelectric ribbon and  is the buckling wavenumber.

Since the piezoelectric ribbon is much stiffer than the compliant substrate, shear stress at the ribbon/substrate interface is taken to be zero [37]. This assumption has been widely used in the analysis of the wavy circuits of stretchable electronics. That assumption requires that the in-plane membrane force is uniform, and the shear traction has a negligible effect on the buckling geometry. By using this assumption and considering the absence of the rigid body displacement of the piezoelectric ribbon, one can get the in-plane displacement  as [38],

	 	
Submitting Eqs. (12-13) into Eq. (1) and Eq. (2), and integrating Eq. (1) and Eq. (2), the kinetic energy and the potential energy of the piezoelectric ribbon can be given as follows, respectively,

	 	

	 	











where , and . , ,,,  and  are the elastic, piezoelectric and dielectric constants, respectively. and  are the piezoelectric ribbon width and length, respectively.
Since the piezoelectric ribbon is bonded to the soft substrate, the elastic energy stored in the substrate has a contribution to the energy of the ribbon-substrate structure. Because the substrate is much thicker than the piezoelectric ribbon, the soft substrate could be modelled as a semi-infinite elastic solid [32, 38]. The elastic energy in the substrate can be calculated by [39],

	 	

where  is the normal stress at the ribbon/substrate interface, and it can be expressed as [39],

	 	

where  is the plane-strain modulus of the compliant substrate.

The work done by the traversal external excitation  takes the form of,

	 	


where  is the traversal external excitation in.

In order to calculate the above energies, the buckling wavenumber  must be determined at first. Thus, defining the Lagrange function,

	 	


then dropping the kinetic energy in this static context, and minimizing that new function with respect to , one can obtain the approximate wavenumber amplitude  as [31, 32],

	 	
In the dynamic context, again by using the extended Lagrange principle and Eq. (19), the governing equation of motion for the wavy ribbon on a soft substrate can be derived by,

	 	
from which one can get,
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where,,.  denotes the first derivative of time, and  is the second derivative of time.
For the sake of convenience, the following nondimensional variables are introduced,

	 	

Linear viscous damping is assumed for the whole structure. After submitting Eq. (23) into Eq., the dimensionless equation of motion for  can be re-expressed as,

[bookmark: ZEqnNum249118]	 	


where  is the damping ratio. The overhead dot from now on denotes the derivative with respect to the nondimensional time.





Since human motion has irregular amplitudes and intervals [40], it can be represented by a broadband random excitation [41]. The random excitation is modelled as Gaussian white noise in this paper. The Gaussian white noise excitation  has a zero mean, which has the statistical property of , where  represents the noise intensity, and  and  are two arbitrary time instants [12]. 
4. Stochastic averaging method
 As the analytical solution of the governing equation Eq.  cannot be obtained, the stochastic averaging method, which is one of the most powerful methods for random analysis, is used. By using this method, the stationary probability distribution of the stochastic responses of the buckled piezoelectric structure can be obtained. 


In order to utilize the stochastic averaging method, the potential energy  of the dynamic equation Eq.  and the Hamilton function of the buckled structure need to be introduced as,
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In terms of  and , the dynamic equations Eq.  of the structure could be rewritten as follows,

	 	


where  is a unit Wiener process. The energy process  of the ribbon-substrate structure is approximated by a Markovian process through the stochastic averaging technique [24]. It is governed by the averaged one-dimensional Itô equation,
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in which andare the drift and diffusion coefficients. They can be calculated by,

	 	

where  is the time average over one quasi-period. 

In the absence of damping and noise, the natural period  of the motion is given as,

	 	




where and  represent the smallest and the largest roots of the algebraic equation  for a given , respectively.
Associated with averaged Itô equation, the averaged Fokker-Planck equation can be derived as,

[bookmark: ZEqnNum880255]	 	
Considering the natural boundary conditions, the non-trivial stationary solution of the Fokker-Planck equation  takes the form of,

	 	



where  is the normalization constant, and it can be determined by the normality condition. Furthermore, the stationary joint probability density function of displacement  and velocity  of the buckled ribbon-substrate structure can be expressed as follows,
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The marginal stationary probability density functions for and can be expressed as, respectively,
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where  and  are the normalization constants.

5. Numerical results and stochastic analysis
In this section, based on the above formulas, several numerical examples are presented to analyse the effects of the applied voltage on the piezoelectric ribbon and intensity of the noise excitation on the stochastic responses of the buckled piezoelectric ribbon-substrate structure.

 The materials and geometric properties used are given in Table 1 [31]. The damping ratio  is taken as 0.05.
Table 1. The material and geometric properties of the ribbon-substrate structure [31]. 
	

	

	

	


	

	

	

	


	

	

	

	


	

	

	

	


	

	

	

	



 
5.1 Numerical verification
In order to validate the analytical solutions obtained by the proposed method, as well as exploring the influence of the applied voltage on the stochastic responses of the piezoelectric ribbon-substrate structure, the analytical results from Eq.  are compared with those obtained by Monte-Carlo simulation. Totally 1000 sets of Gaussian white noise are generated and implemented in Eq. (24), and each set of noise includes 200000 data points. From Fig. 2, it can be found that the results of the joint probability density functions (abbreviated as PDFs) obtained by the stochastic averaging method have good agreement with those by Monte-Carlo simulation. In addition, it can also be found that the applied voltage has a significant influence on the joint PDFs. When the applied voltage is 0.4 V, there is only one peak in the joint PDFs, implying that there is only one equilibrium position. However, when the applied voltage increases to 0.8 V, the number of peaks in the joint PDFs increases to two. 

The structural change of the joint PDFs is induced by the variation of a parameter, which is defined as a stochastic P-bifurcation [42]. From the results in Fig. 2, it can be found that the shape and the analytical expression of the joint PDFs in Eq.  (please note that  is dependent on the applied voltage) are related to the applied voltage. It is also easy to note that by increasing the applied voltage, the structure of joint PDFs changes from unimodality to bimodality, implying that a stochastic P-bifurcation takes place. Here, a stochastic P-bifurcation means that the piezoelectric ribbon-substrate structure wrinkles with the increase of the applied voltage, i.e., the piezoelectric ribbon changes its shape from a straight line on the soft substrate to wrinkling into a multi-wave curve on top of the soft substrate. Hence, to evaluate the influences of the applied voltage and intensity of the noise excitation on the stochastic dynamic behaviour of the piezoelectric ribbon-substrate structure, and to have a good understanding of the structural change of the PDFs, some examples are presented in the next subsection, which are also based on the analytical expressions in Eq.  and Eq. .
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Figure 2. Joint PDFs obtained numerically and analytically with various voltages,, (a, c) Monte-Carlo simulations, (b, d) analytical results.
5.2 Influence of the applied voltage


To reveal how the applied voltage affects the stochastic responses of the piezoelectric ribbon-substrate structure, the marginal stationary PDFs of variables  and , are presented in Fig. 3.



Fig. 3a shows the stationary PDFs of the variable . From Fig. 3a, it is clear that the applied voltage has no influence on the shape of the stationary PDFs, which can be inferred from Eq. . However, the applied voltage has a significant influence on the shape of the stationary PDFs of variable  according to Eq.  (please note that  is dependent on the applied voltage), as shown in Fig. 3b. From the results in Fig. 3b, it is interesting to note that with the increase of the applied voltage, the peak (symmetrical peaks) height of the stationary PDFs decreases (decrease). A higher peak of the stationary PDFs indicates a larger probability that the piezoelectric ribbon-substrate structure would stay closer to equilibrium positions. Furthermore, it is also interesting to note that when the applied voltage is lower than 0.65 V (the line with hollow tetragons in figure 3b), there is a larger probability that the piezoelectric ribbon-substrate structure would stay close to the origin position (0, 0). When the voltage is higher than the critical voltage of 0.65 V (the line with hollow circles in figure 3b), one can find that the maximum probabilities take place around the two peaks. For the vibration of the ribbon-substrate structure, the result of 0.8 V implies that the piezoelectric ribbon-substrate structure would vibrate around one of the two symmetrical peaks, and undergo a transition from one peak point to the other. In other words, the ribbon-substrate structure would not vibrate around the origin position (0, 0). From the results in Fig. 3b, one can also find that by modulating the applied voltage, the structure of the stationary PDFs has also been modified, indicating that the dynamic behaviour of the piezoelectric ribbon-substrate structure has also been modified. 
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Figure 3. The marginal stationary PDFs of  obtained with various voltages at .


To get a qualitative understanding of the effect of the applied voltage on the dynamic behaviour of the piezoelectric ribbon-substrate structure, a bifurcation diagram is plotted in Fig. 4. From Fig. 4, it is clear that the applied voltage has a significant influence on the buckling mode of the piezoelectric ribbon-substrate structure. When the applied voltage is smaller than the critical voltage , the piezoelectric ribbon does not buckle and it would remain flat on the soft substrate. When the applied voltage is greater than the critical voltage , the piezoelectric ribbon would wrinkle into multiple small waves on top of the soft substrate [31]. This kind of mechanical instability phenomenon is named as a wrinkling mode. The analytical expression of the critical voltage is [31],

	 	
For the wavy ribbon, the buckling amplitude can be tuned by the applied voltage so as to accommodate external lateral deformations along with the stiff ribbon. In addition, one can also obtain the analytical expression of the static ‘amplitudes’ of the buckling shape of the ribbon (lines with solid triangles in Fig.4),

	 	
which is related to the applied voltage. The two values of the same absolute magnitude in Eq. (36) reflect the fact that the ribbon can buckle to either side of its original straight-line position. These two shapes represent two possible static equilibrium positions of the ribbon.
[image: ]
Figure 4. Bifurcation diagram of the ribbon-substrate structure. 

From Fig. 4, it is observed that when the applied voltage is smaller than the critical voltage, the buckling mode of the ribbon-substrate structure is flat (no buckling). So its static amplitude  is zero (lines with solid circles in Fig. 4). 


In order to gain a deep understanding of the influence of the applied voltage on the dynamic responses of the ribbon-substrate structure, the time histories of the structure are shown in Fig. 5. From the results in Fig. 5, it is easy to note that when the applied voltage is 0.5 V, which is smaller than the critical voltage , the piezoelectric ribbon does not buckle and it remains flat. However, because of the Gaussian white noise excitation, the ribbon-substrate structure would vibrate in an irregular manner around its origin position (0, 0). When the applied voltage increases to 1 V, which is greater than the critical voltage , the piezoelectric ribbon would wrinkle on the top surface of the compliant substrate, and the buckled ribbon-substrate structure would vibrate far away from the origin position (0, 0). From the discrete phase diagrams in Fig. 6a and Fig. 6b, it is seen that the vibration of the wavy ribbon is around one of the two static equilibrium positions (solid triangles), and the wavy ribbon would also change between the two static equilibrium positions (solid triangles). With the increase of the applied voltage, the vibration amplitude of the out-of-plane ‘deflection’ increases. However, by increasing the applied voltage, the number of transitions between two static equilibrium positions in the dynamic responses decreases, which means that the stability of the wavy structure is improved. 
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Figure 5. The time history of the ribbon-substrate structure with various applied voltages 
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Figure 6. Discrete phase diagrams for different applied voltages
5.3 Effect of the intensity of the Gaussian white noise excitation

To highlight the influence of the noise intensity , which is one of the most important parameters for the Gaussian white noise excitation, on the stochastic behaviour of the flexible piezoelectric structure, Figs. 7, 8, 9 and 10 are presented.



Fig. 7 and Fig. 8 present the discrete phase diagrams for different intensities of the Gaussian white noise excitation at  and . From the results in Fig. 7 and Fig. 8, it is easy to see that noise intensity  has an important effect on the stochastic behaviour of the ribbon-substrate structure. From these two figures, one can also notice that with the increase of the intensity of the noise excitation, the vibration range of the structure is extended, and thus the vibration of the buckled structure appears more random and unpredictable. In addition, when the applied voltage is smaller than the critical voltage, the wavy ribbon would only vibrate around its one equilibrium position.
[image: ][image: ]

Figure 7. Discrete phase diagrams for different noise intensities at .
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Figure 8. Discrete phase diagrams for different noise intensities at .


To explain the above phenomena, the time histories are plotted in Fig. 9 more clearly. From Fig. 9, it is easy to note that when the applied voltage is greater than the critical voltage, the wavy ribbon would vibrate around one of the two static equilibrium positions (solid triangles). At the same time, with the increase of the noise intensity , the vibration amplitude of the wavy ribbon increases. In other words, the noise intensity has no effect on the buckling mode.
 [image: ]  [image: ]
Figure 9. The time history for different noise intensities. 



Fig. 10 and Fig. 11 show the marginal stationary PDFs of variables  and at different applied voltages.


The results of the marginal stationary PDFs of  for 0.4 V and 0.8 V are shown in Fig. 10a and Fig. 10b. From these two figures, it is easy to see that there is only one peak. With the increase of the intensity of the noise excitation, the peak height of the marginal stationary PDFs decreases. Therefore, the intensity of the excitation has a significant influence on the structural shape of the marginal stationary PDFs of , as can be inferred from Eq. .

Fig. 11a and Fig. 11b present the marginal stationary PDFs of  for 0.4 V and 0.8 V. It is easy to find that the applied voltage and the intensity of the excitation have important influences on the structural change of the marginal stationary PDFs. These results can be summarised as follows: with the increase of the noise intensity, the corresponding peak (symmetrical peaks) becomes lower, which implies that the probability that the ribbon-substrate structure would stay closer to the static equilibrium position (one of the two static equilibrium positions) decreases. In other words, with the increase of the noise intensity, the vibration amplitude of the structure would increase and become more unpredictable.
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Figure 10. The marginal stationary PDFs of  obtained with different noise intensities.
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Figure 11. The marginal stationary PDFs of  obtained with different noise intensities.
The above parametric study suggests that for the flexible piezoelectric ribbon-substrate structure, the applied voltage can induce buckling of the ribbon on the soft substrate, which forms one of the two strategies to manufacture wearable electronic devices. Furthermore, with the increase of the applied voltage, the stretchability and stability of the piezoelectric ribbon-substrate structure would be improved. In addition, for the piezoelectric ribbon-substrate structure under Gaussian white noise excitation, with the increase of the noise intensity, the probability of the structure’s vibration staying close to the equilibrium position becomes lower, which could degrade the dynamic stability of wearable electronic devices [43]. These results provide useful guidance information for the design of the piezoelectric ribbon-substrate structure in a complicated noisy environment.

6. Conclusions
In this paper, the stochastic responses of a piezoelectric ribbon on a soft substrate excited by Gaussian white noise are investigated. A voltage is applied to the piezoelectric ribbon to produce the desired wave configuration to achieve flexibility (stretchability), which is one of the two current manufacturing strategies used in the industry. By using Lagrange’s equation, the governing equation of the motion for the ribbon-substrate structure is derived. By utilizing the stochastic averaging method, the governing equation is solved, and the analytical expressions of statistic features of the responses, such as stationary probability density functions, are obtained. In addition, the influences of applied voltage of the piezoelectric ribbon and intensity of the Gaussian white noise excitation on the stochastic responses of the ribbon-substrate structure are analysed. Some key conclusions are summarized as follows:
(1) By tuning the applied voltage of the piezoelectric ribbon, the buckling mode of the piezoelectric ribbon-substrate structure can be modulated. For the wavy ribbon configuration, with the increase of the applied voltage, the static buckling amplitude increases, implying that the stretchability and stability of the ribbon-substrate structure can be improved.
(2) For the stationary PDFs of velocity, the applied voltage has no influence on them. The intensity of the noise excitation has a significant effect on them. The higher the noise intensity reaches, the lower the peak value of the stationary PDFs possess. 
(3) For the stationary PDFs of displacement, both the applied voltage and the intensity of the excitation have important effects on the structural shape of them. With an increase of the applied voltage, a stochastic P-bifurcation occurs. The greater the noise intensity reaches, the lower the peak value of the stationary PDFs possess. In other words, the vibration of the ribbon-substrate structure appears more unpredictable when the noise intensity is greater. In addition, the vibration amplitude of this structure would increase.
The results of this paper provide a comprehensive understanding of the dynamic behaviour of the ribbon-substrate structure and are useful for the design of piezoelectric ribbon-based stretchable electronic devices in a noisy environment. 
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