
Institute of Systems, Molecular and Integrative Biology 

 

Heparin-based Analogues and  

The Control of Vascular Proliferation 

 

Thesis submitted in accordance with the requirements of the 

University of Liverpool for the degree of Doctor in the Philosophy 

(Ph.D.) 

 

by 

  Kai-Wen Wang 

 

03/2021 



1 

 

Abstract   
Heparin-based Analogues and The Control of Vascular Proliferation 

Kai-Wen Wang 

Stent insertion into disease-narrowed arteries often damages blood vessels and triggers 

vascular smooth muscle (VSM) proliferation as a healing response, re-blocking arteries. To 

combat this, anti-proliferative agents can be incorporated into stents, but these delay healing, 

inhibit endothelial cell (EC) re-growth and promote thrombosis. This study aims to identify 

novel heparin-based analogues that inhibit VSM proliferation, promote EC proliferation and 

retain anti-thrombotic activity. In MTT-assays, incubation with naive heparin complexed with 

either Na+, K+, Mg2+ or Ca2+ ions (10 μg/μl for 4 days in normal growth media, GM) significantly 

reduced human coronary artery smooth muscle cell (HCASMC) growth compared to 

incubation in GM alone (P<0.01).  The inhibitory effect ranged from 48 ± 4.5 % (Na-heparin) 

to 28 ± 13.7 % (Mg-heparin). Cation-complexed forms of normal heparin also reduced human 

coronary artery endothelial cell (HCAEC) number but to a lesser extent: 19 ± 0.3% (Na-heparin 

(P<0.01)) to 5.0 ± 3.5% (Ca-heparin (not significant)).  The ratio of HCAEC:HCASMC cell 

growth thus showed that Na-, K-, Mg- and Ca-heparin have the desired effect of suppressing 

HCASMC proliferation, while having minimal effect on HCAECs. Partially or fully-desulphated 

heparin analogues complexed with either Na+, K+, Mg2+ or Ca2+ also showed promising activity 

profiles; partially-desulphated heparin 4 (predominant repeating structure; I2SA6OHNAc) 

consistently being the best performing analogue across all cations.  In transwell migration 

assays, cationic desulphated heparin analogues significantly delayed HCASMC migration 

(P<0.01), but had no significant effect on HCAECs. These effects were not due to induction of 

apoptosis and, importantly, all cationic desulphated heparins retained their differential effects 

on HCASMC/HCAECs in dual culture systems. Heparins with appropriate activity profiles were 

screened for their effects on blood coagulation and ability to interact with platelet factor 4 

(PF4), a key determinant of heparin-induced thrombocytopenia.  As expected, heavily-

desulphated cationic heparin analogues lost anti-coagulant activity. Native (non-denatured) 

gel electrophoresis followed by silver staining was used to visualise protein complexes formed 

through the interaction of heparin analogues and PF4.  All cationic forms of heparin tested 

formed PF4/heparin complexes. Mechanistically, differential effects of heparin analogues 

likely result from differences in growth factor (GF) signalling. In RT-PCR screens, transcripts 

for platelet-derived growth factor receptors, PDGFRA/B, were expressed only in HCASMCs. 

By growing HCASMCs in different growth factors, however, we determined that signalling via 

PDGFRs is not the primary cause of the differential heparin effects. Here, the anti-proliferative 

effects of heparin analogues were maintained, or enhanced, in media containing only fibroblast 

growth factor (FGF2) or epidermal growth factor (EGF), while anti-proliferative activity was 

decreased in media supplemented with predominantly PDGF. To elucidate differential GF 

signalling, heparin analogue-treated HCASMC lysates were immunoblotted with anti-phospho-

tyrosine antibodies. Here, although immunoreactive band ‘fingerprints’ associated with EGFR 

activation were identified, no clear banding pattern differences were observed in cells treated 

with different heparin analogues. Ultimately, more sophisticated proteomic analysis will be 

required, but the differential effects on HCASMCs/HCAECs likely represents differences in 

signalling downstream of receptor activation, with candidate pathways activated by FGFs and 

EGF. In conclusion, to the best of our knowledge this is the first comprehensive analysis of 

the effects of heparin compounds on human vascular cells. Results highlight partially-

desulphated, Na-heparin 4 and Ca-heparin 4, as potential lead analogues with promising 

activity profiles that may ultimately form the basis for novel, next-generation stent coats. 
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Chapter 1: General Introduction 

1.1 Arterial Structure     

 

The circulatory system is made up of the heart and a network of blood vessels 

including arteries, veins and capillaries, which deliver nutrients and oxygen to cells 

and tissues. Arteries comprise a single layer of endothelial cells (ECs) which form the 

tunica intima, a vascular smooth muscle (VSMC)-rich layer which forms the tunica 

media and an outer layer of connective tissue known as the tunica adventitia or tunica 

externa (Figure 1.1). In healthy vessels, VSMCs are quiescent, proliferate slowly and 

regulate blood flow by changing their degree of contraction (Izzard et al., 2002). The 

contractile activity of VSMCs is determined by autonomic nerve inputs, circulating 

hormones, local metabolites and haemodynamic forces, all of which act to sustain 

tissue perfusion and maintain normal blood pressure (Brozovich et al., 2016; Duncker 

and Bache, 2008). In response to vascular injury, VSMCs down-regulate the 

expression of genes encoding contractile proteins and up-regulate proteins involved 

in proliferation and migration (Garg et al., 2011a). This phenotypic plasticity is a 

normal part of wound healing, but vascular remodelling is also at the heart of the 

pathogenesis of several diseases, including atherosclerosis, pulmonary hypertension, 

the failure of bypass vein grafts, and restenosis after angioplasty (Frismantiene et al., 

2018; Hedin et al., 2004). 
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Figure 1.1. Structure of arteries, veins and capillaries. Image drawn with PowerPoint. 

 

 

1.2 Background of Atherosclerosis 

 

Atherosclerosis is a severe vascular disease that can result in stroke, ischaemic heart 

disease, and myocardial infarction. It is the leading cause of mortality worldwide 

(World Health Organisation, 2018).  

 

1.2.1 Mechanism of Atherosclerosis Development  

 

The development of atherosclerosis is slow, involving chronic inflammation and the 

build-up of lipid-laden plaques in arteries. The disease in its early stages is rarely 

detected, unless thrombosis caused by the erosion and/or rupture of plaque leads to 

blood clots and ischaemic tissue damage. An early event in the development of 

atherosclerosis is damage to the endothelial layer, caused by smoking, hypertension, 

or natural wear of the endothelial layer caused by blood turbulence, particularly at 

points where blood vessels branch (Davies, 2009; Kwak et al., 2014).  As the 

endothelium becomes more permeable, it allows low-density lipoprotein (LDL) 

migration to the underlying layer. LDL particles trapped within the subendothelial 

space are modified, possibly by oxidation, and induce endothelial expression of 

adhesion molecules, which attract monocytes (Steinberg, 2009). Monocytes transform 
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to macrophages and engulf the modified LDL particles through scavenger receptors 

until the macrophages become overloaded with lipid and turn into ‘foam cells’. 

Accumulations of dying foam cells release lipid that forms pools within the arterial wall, 

so-called ‘fatty streaks’ - yellow patches visible on the arterial wall and the first outward 

sign of atherosclerosis  (Gisterå and Hansson, 2017; Park et al., 2009; Skålén et al., 

2002). Further damage occurs when surrounding VSMCs and endothelial cells 

secrete a range of cytokines and growth factors, which induce VSMCs to switch from 

a contractile to a migratory proliferative phenotype.  Migratory VSMCs form a fibrous 

cap over the lipid pool generating a mature atherosclerotic lesion (Schwartz et al., 

2007). This fibrous cap stabilizes the plaque and provides a protective barrier between 

platelets in the blood stream and prothrombotic materials in plaque.  Plaques can 

remain stable for many years causing no or few clinical symptoms (Virmani et al., 

2002). Partial occlusion of arteries feeding the heart muscle can lead to angina 

pectoris, a condition whereby blood/oxygen delivery is sufficient at rest, but 

inadequate during moderate exercise, leading to exercised-induced chest pain. 

However, over-developed atherosclerotic lesions can lead to acute vascular disease. 

The main characteristics of these ‘vulnerable plaques’ include high levels of necrosis 

in the intima, thinning of the fibrous cap and an elevated inflammatory state. This can 

lead to a breakdown of the cap, resulting in platelet activation and acute luminal 

thrombosis (Moore and Tabas, 2011). Depending on the location and severity of the 

arterial occlusion, this can led to myocardial infarction or stroke. 

 

Figure 1.2. The key event in early atherosclerosis is damage to the endothelium. 

When the endothelium becomes more permeable, it allows LDL migration to the 

underlying layer. These modified LDL particles induce endothelial expression of 

adhesion molecules which attract monocytes. Invading monocytes transform to 

macrophages and ingest modified LDL particles, ultimately becoming overloaded with 

lipid and turning into ‘foam cells’.  At the same time, the damage also stimulates 

surrounding VSMC proliferation and migration. Image drawn with PowerPoint. 
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1.2.2 Demography and Risk Factors 

 

Cardiovascular diseases (CVDs) are the most common cause of death globally. 

According to statistics from the World Health Organisation in 2016 (World Health 

Organisation, 2018), there were nearly 17.9 million deaths from CVDs, representing 

31% of all global deaths. Of these, ischaemic heart disease and stroke are the main 

killers. These diseases have remained the leading cause of death in the last decades 

(World Health Organisation, 2018). There are a number of risk factors leading to 

cardiovascular diseases. According to the World Health Organisation, hypertension is 

the most important risks (Table 1.1). The morbidity rate is raised by merging with other 

risk factors.   
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Table 1.1. The risk factors of CVDs and the symptoms of hypertension (World Health 

Organisation, 2018).  
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1.2.3 Therapies   

There are several treatments to combat the symptoms of atherosclerosis.  Balloon 

angioplasty followed by stent implantation (Figure 1.3) is used widely to improve the 

size of the vessel lumen at the site of the lesion. A folding stent is inserted into the 

vessel with a balloon, followed by inflation of the balloon to unfold the stent. The stent 

is left within the blood vessel to maintain the lumen size (Section 1.3). There are also 

some drug-combined treatments before/after surgery.  Currently, the most commonly 

used drugs can be divided into anti-ischaemic, anti-thrombotic and lipid-lowering 

drugs. In anti-ischaemic therapy, carvedilol and Ramipril are used to improve the 

oxygen supply-demand interaction (Koepfli et al., 2004) by decreasing heart rate and 

myocardial contractility, and reduce the risk of congestive heart failure (CHF) by 

suppressing ventricular remodelling (Yousef et al., 2000). Antiplatelet and 

anticoagulant drugs are used to prevent thrombosis after percutaneous coronary 

intervention (PCI), such as aspirin and Fondaparinux (the pentasaccharide sequence 

derived originally from heparin) (Roffi et al., 2016). Lipid-lowering treatments 

(generally with statins) are applied as a long-term management strategy in order to 

reduce the patients’ low-density-lipoprotein (LDL) cholesterol and thereby decrease 

the risk of development of further atheromus (Baigent et al., 2011; Cannon et al., 

2015).   

 

Figure 1.3. Balloon angioplasty and stent implantation. The folding stent is inserted 

into the vessel with a balloon. The stent is unfolded by the inflation of the balloon and 

is left at the site to maintain the shape of vessel. This procedure, however, unavoidably 

injures the inner surface of the blood vessel wall which leads to restenosis. Modified 

from Nucleus Medical Media 2015 (http://www.scvc.com.au/coronary-angioplasty-

and-stents-via-radial-artery.html). Images drawn with Procreate. 

http://www.scvc.com.au/coronary-angioplasty-and-stents-via-radial-artery.html
http://www.scvc.com.au/coronary-angioplasty-and-stents-via-radial-artery.html


20 

 

 

Table 1.2. Management before PCI (Kasper et al., 2015).  

PDE, phosphodiesterase; ADP, adenosine diphosphate 
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Table 1.3. Pharmatherapy after PCI (Kasper et al., 2015). 

ARB, Angiotensin II receptor blockers; ACEI, angiotensin-converting enzyme inhibitor; 

EF, ejection fraction; HF, heart failure. 
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1.3 Mechanisms of Restenosis 

1.3.1 Injury and Pro-inflammatory Factors Lead to Restenosis 

 

Balloon angioplasty followed by stent implantation is used clinically to improve the size 

of the vessel lumen in patients who suffer from coronary artery disease. However, 

following surgery 30-40% of patients are diagnosed with restenosis, the re-blocking of 

the artery due to cell overgrowth or, blood clots (thrombosis) at the site of the stent 

implantation (Alfonso et al., 2003). Thrombosis occurs either early (within days/weeks 

of surgery) due to surgery-induced arterial injury, or late (>30 days after surgery) due 

to interaction between the blood and the stent.  Restenosis is mainly caused by over-

proliferation of vascular smooth muscle cells (VSMCs) triggered by arterial injury. 

Figure 1.4. Scheme of neointima formation caused by blood vessel wall injury.  The 

injury stimulates vascular smooth muscle cells (VSMCs) proliferation, resulting in 

neointimal hyperplasia. Modified from (Carpenter and Schoenfisch, 2012). Image 

drawn with PowerPoint. 

 

 

1.3.2 Cell Signalling Involved in Vascular Hyperplasia 

 

Tissue injury induced by stent implantation causes platelet activation and aggregation 

at the site of damage. The formation of neointima and the proliferation of VSMCs is 

thought to occur due to c-fos expression, a pro-oncogene which promotes cell growth 

(Indolfi et al., 1995) (Figure 1.5). c-fos itself is upregulated in response to thrombin, 

platelet derived growth factor (PDGF) and fibroblast growth factor -2 (FGF2) (Fager, 
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1995). Thrombin, which is formed following tissue injury, is involved in the coagulation 

cascade, and also activates signalling that can change the phenotypes of platelets, 

ECs and other immune cells, resulting in cell migration, angiogenesis, and 

haemostasis (Minami et al., 2004; R Isenovic et al., 2010). Thrombin stimulates 

platelets and VSMCs to produce PDGF (Bitto et al., 2018; Monje et al., 2003; Tsai et 

al., 2012), and endothelial cells to produce both PDGF and FGF2 (Fager, 1995) by 

binding to protease activated receptors (PARs). Growth factor stimulated over-growth 

of VSMCs causes the stent to be buried within the vessel wall and consequently leads 

to re-narrowing of the lumen of the blood vessel (Farb, 2002; Indolfi et al., 2000).   

 

Figure 1.5. Schematic of mitogenesis caused by thrombin and PDGF. PDGF induces 

cell proliferation. When PDGF is absent, thrombin can promote the expression of 

endogenous PDGF. (Bitto et al., 2018; Fager, 1995; Monje et al., 2003) by binding to 

PAR1, PAR2 and PAR4 to activate the downstream signalling. However, heparin can 

block thrombin-induced PAR4 activation, leading to suppression of cell proliferation 

(Lin et al., 2019). PAR, protease activated receptors. Image drawn with PowerPoint. 

 

1.3.3 The Interaction Between Heparin, Growth Factors and Growth Factor Receptors 

Modulates Cell Signalling 

 

The heparin-GFs-GFRs complexes can activate cell signalling to mediate numerous 

biological events. Some growth factor receptors have been identified that bind to 

heparin/HS to regulate downstream signalling. FGFR1 and FGFR2, for example, have 

high affinity with FGFs. The binding of FGFs to FGFR1 or FGFR2 modulates SMC 

and EC proliferation via activation of the signalling, which can be adjusted by 
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interaction with heparin or HS (Yu et al., 2014). Therefore, FGF-FGFR-HS/heparin 

complexes are identified as key regulators in signal transduction (Pellegrini, 2001; 

Pellegrini et al., 2000; Pomin, 2016; Schlessinger et al., 2000). However, their 

interaction/affinity can vary as a consequence of different conformations of complexes 

themselves. Different members of the various FGF families possess different 

combinations of binding domains, altering their affinities with heparin and leading to 

distinct complexes (Li et al., 2016; Ori et al., 2008; Xu et al., 2012). In addition, different 

GAG structures can also induce different GF-GFR complex formation (Guimond et al., 

2009). These different FGF-FGFR-HS/heparin complex structures bring to various 

biological responses – suppression or enhancement of proliferation and differentiation 

(Ori et al., 2008; Pellegrini, 2001; Pellegrini et al., 2000) (more information in Chapter 

5). The structure can also be altered by charge distribution of heparin derivatives. For 

instance, removal of 6-O sulphate groups from the glucosamine residues of heparin 

interrupts the interactions between heparin and FGF2 (Sugaya et al., 2008), and also, 

2-O-desulphated heparin showed low affinity for VEGF (Roy et al., 2011) compared 

to intact heparin. Some papers report that the anti-proliferative activity is less 

dependent on the affinity of heparin binding to growth factors (Letourneur et al., 1995), 

however, heparin binding to SMC surface is required to inhibit SMC proliferation. 

 

1.4 Stent Development 

 

A number of studies have demonstrated that the delivery of anti-proliferative drugs at 

the arterial injury site inhibits restenosis  (Khan et al., 2014; Wykrzykowska et al., 

2009). The first generation of drug-eluting stents (DESs) were made up of a mainly 

stainless steel platform with a slotted-tube appearance. These stents are covered with 

sirolimus (rapamycin), which inhibits proliferation by blocking the mammalian target of 

rapamycin (mTOR), and paclitaxel, which prevents disassembly of microtubules and 

thus disrupts cell division (Khan et al., 2014). Second generation DESs were coated 

with newer rapamycin derivatives (zotarolimus or everolimus) on a cobalt-chromium 

platform, which caused less arterial injury due to thinner struts (Akin et al., 2011). Third 

generation DESs were an extension of the second generation with the platinum-

chromium platform covered in biodegradable polymers as the drug/polymer coating 

was believed to more efficiently control long-term drug release (Kereiakes et al., 

2011). The fourth generation DES, a fully erodible stent consisting of bioabsorbable 

and polymer-free agent, has been developed, however, there is not enough evidence  

regarding its safety or efficiency (Khan et al., 2014).   

Stent coating materials with anticoagulant activity can avoid intrinsic coagulation by 

inactivating platelets (Ollivier et al., 2016), and the materials with antiproliferative 
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activity can provide continued suppression of VSMC proliferation in long-term 

treatment (Khan et al., 2014). Despite DESs significantly decreasing the occurrence 

of in-stent stenosis, the risks of stent failure are still relatively high because of the 

delay of re-endothelialisation (Polyak et al., 2016), which leads to thrombosis. When 

a stent is not covered by endothelial cells, the flow turbulence at the edge of the stent 

drives thrombus information. Thus, early thrombus formation, immediately following 

surgery, is due to vascular injury with fibrin and platelet deposition, whereas the late 

in-stent thrombosis (months to years after implantation) is due to delayed re-

endothelialisation and vessel wall healing caused by coating drugs with anti-

proliferative and/or pro-inflammatory activity (Nakazawa et al., 2008) . Nonetheless, 

some studies have shown that drugs, such as the widely used anticoagulant agent 

heparin and also vitamin K antagonists, can efficiently prevent thrombus formation 

and reduce thrombosis (Hemker and Beguin, 1991). Indeed in multicentre, 

randomized human trials (BENESTENT II and MENTOR), heparin-coated stents 

significantly reduced stent thrombosis, but had no measurable effect on VSMC 

proliferation or restenosis (Serruys et al., 1998; Vrolix et al., 2000). However, subtle 

changes in the structure of heparin can significantly modify its activity, for example, 

increasing/improving its anti-proliferative activity while maintaining or reducing effects 

on coagulation (Chung et al., 2015a; Duckworth et al., 2015). 

 

1.5 The Potential Role of Heparin in Treatment 

 

The polysaccharide heparin is a generally well-tolerated anti-coagulant that also 

inhibits VSMC proliferation (Khorana et al., 2003). Heparin, one of the members of the 

glycosaminoglycan (GAGs) family, is constituted by repeating disaccharide 

sequences of a uronic acid and a glucosamine (Garg et al., 2003). It is a close relative 

of heparan sulphate (HS), which is found on the surface of all eukaryotic cells and 

constitutes a major component of the extracellular matrix (see differences between 

heparin and HS in Figure 1.6). Both heparin and HS play important roles in wound 

healing process (Olczyk et al., 2015). These GAGs can interact with proteins and 

numerous binding ligands, such as growth factors, via their sulphated groups and 

glucuronic acid/iduronic acid residues (Figure 1.7) to regulate cell signalling and 

biological activities.  
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Figure 1.6. Difference between heparin and heparan sulphate (HS). The structure of 

heparin is greater homogeneous compared to HS. Heparin contains more N-sulphated 

groups and more IdoA residue than HS (Olczyk et al., 2015). Images are drawn with 

ChemDraw 18.1. 

 

Cell surface HS interacts with growth factors, particularly fibroblast growth factors 

(FGFs), regulating binding specificity between FGFs and their receptors (Rifkin and 

Moscatelli, 1989). The ability of heparin to act as a proxy for HS underlies much of its 

activity, including its effects on cellular proliferation. Heparin has been reported to 

exhibit anti-proliferative activity efficiently on VSMCs both in vitro (Hoover et al., 1980) 

and in vivo (Guyton et al., 1980). This strong inhibitor of VSMC proliferation, delays 

the G1 phase though cAMP-induced repression of cyclin D1 and cyclin dependent 

kinase (CDK)-2 (Vadiveloo et al., 1997). In contrast, heparin promotes human aortic 

endothelial cell (HAEC) proliferation by modulating the response to vascular 

endothelial growth factor (VEGF) (Weatherford et al., 1996). Heparin is also a well-

established anti-coagulant used in the treatment of thromboembolic diseases, 

because it can bind proteins of the blood clotting cascade to inhibit coagulation 

(Sydow-Plum and Tabrizian, 2008). With its anticoagulant properties, heparin has 

potential to be an attractive candidate for incorporation into stent materials.  Indeed, 

in multicentre, randomized clinical trials, heparin-coated stents significantly reduced 

stent thrombosis, but showed no measurable effect on VSMC proliferation or 

restenosis (Babapulle and Eisenberg, 2002; Serruys et al., 1998; Vrolix et al., 2000). 

However, heparin-based analogues can be modified to minimize unwanted effects 

and maximize desired activities through chemical alteration (Yates et al., 2004). The 

structure of heparin can be changed by altering its charge. Heparin carries negatively 

charged sulphated groups that can readily interplay with those amino acids with 

positive charge on protein, such as lysine and arginine (Guimond et al., 2009; Rudd 

et al., 2007). When the negative charge is decreased, removal of sulphated groups 
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for example, the affinity with protein is also changed, as well as the structure of the 

complex, followed by the alteration of biological activities (Yates et al., 2004). For 

instance, the low sulphated heparin derivatives inhibit circulating galectin-3, which 

promotes cell proliferation and migration, but lose the capacity of anticoagulation 

(Duckworth et al., 2015). Heparin can sometimes cause severe immune responses, 

such as heparin-induced thrombocytopenia (HIT) which is a result of the interaction 

between heparin and platelet factor 4 (PF4) (Aster et al., 2009; Greinacher et al., 

1994). This disease is rare, but with high mortality rate that increases the risks after 

heparin treatment. Therefore, the structure-modified heparin analogues may reduce 

the risk of side effects as the activity is changed. Several low molecule weight heparins 

have been developed to avoid HIT with their shortened sequences, which are unable 

or weakly bind to PF4 forming a huge complex (Rota et al., 2008).  The conformational 

change of heparin can also decrease the risks of other side effects. LMWHs, such as 

Bemiparin and Nadroparin, are developed to prevent thromboembolism after surgery 

and blood clotting in haemodialysis (Chapman and Goa, 2003; Shafiq et al., 2006). 

These LMWH derivatives are commonly applied as the standard of care for the clinical 

management of venous thromboembolism with their strong inhibition of VSMC and 

thrombosis, but some of them also have several disadvantages (i.e. bleeding risks 

and clinical efficacy) (Jeske et al., 2011).   

 

1.6 Aims 

 

Since vascular disease affects 17.9 million people globally each year (World Health 

Organisation, 2018), it is essential to improve its treatment. Heparin is a widely-used 

anti-coagulant with anti-proliferative activity on VSMCs. Unfortunately, severe adverse 

events have been reported in some patients due to their damaged vascular wall or 

immune responses, resulting in restenosis, thrombosis and high risk of death. It has 

been established that heparin-based analogues can be modified to minimize 

unwanted effects and maximize desired activities through chemical alteration. The 

central aim of this project is to identify novel safe polysaccharides that: 

• Inhibit human coronary artery smooth muscle cell (HCASMC) proliferation 

• Promote human coronary artery endothelial cell (HCAEC) proliferation 

• Have anti-thrombotic activity 

• Avoid the side effects, for example, heparin-induced thrombocytopenia (HIT) 

• Can be attached to stent materials and retain these activities 
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Chapter 2: Materials and Methodology 

2.1 Cell Culture 

 

Human coronary artery smooth muscle cells (HCASMCs) and human coronary artery 

endothelial cells (HCAECs) (PromoCell, Heidelberg, Germany) were grown at 37 °C 

with 5% (v/v) CO2. There were two types of media for each cell line: growth media 

(GM) and non-supplemented media (M0). The GM for HCASMCs (PromoCell) 

contained 5 % (v/v) fetal calf serum (FBS), 0.5 ng/ml epidermal growth factor, 2 ng/ml 

fibroblast growth factor-2 and 5 μg/ml insulin. The GM for HCAECs (PromoCell) 

contained 5% (v/v) FBS, 5 ng/ml epidermal growth factor, 10 ng/ml fibroblast growth 

factor-2, 20 ng/ml insulin-like growth factor, 0.5 ng/ml vascular endothelial growth 

factor 165, 1 μg/ml ascorbic acid, and 0.2 μg/ml hydrocortisone.  The M0 is a naïve 

media without the supplements described above. All media included a 1% (v/v) 

penicillin/streptomycin solution to prevent bacterial contamination. The media was 

changed every two days during the culture period. When the density of cells reached 

65% confluence, cells were resuspended with 0.25% (v/v) trypsin, diluted in fresh 

media and put into a new 75 cm2 flask for further incubation.  

 

2.2 Heparin Analogue Preparation 

 

Porcine intestinal mucosal heparin (Celsus, Cincinnati, Ohio, USA). Although the 

detailed cation composition of the starting heaprin was not provided by the 

manufacturer, it is reasonable to expect that the behaviour of heparin from different 

manufacturers will be broadly similar. The preference of various cations to bind 

heparin (from Sigma) has been studied. For example, using heparin in a common salt 

form (tris-ammonium), followed by equilibration with a number of salts of common 

physiological cations, and analysis using atomic absorption spectrometry (Stevic et 

al., 2011). This enabled the order of preference of the cations for heparin to be 

determined as: Mn(II) > Cu (II) > Ca > Zn > Co(II) > Na > Mg > Fe (III) > Ni > Al > Sr. 

These results highlight several important points: (1) it is very likely that heparin prior 

to treatment with cation exchange resin contained numerous physiological cations; (2) 

since the preference for Na ions is not as high as for Mn (II), Cu (II), Ca, Zn and Co(II), 

treating the heparin with sodium ion exchange resin is very likely to have removed a 

proportion of these cations from the heparin starting material. The starting heparin, 

although nominally in the sodium form (since its manufacture involves precipitation in 

sodium buffers) will therefore very likely have a cation composition distinct from that 
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of the sodium heparin that has been generated in this thesis by treatment with sodium 

ion exchange resin. In the work of Zhang et al., (Zhang et al., 2014), Celsus heparin 

was employed and they also demonstrated that different cation forms of this material 

exhibited distinct binding characteristics with FGF-1 and IL-7. Our analogues were 

designed and produced by Dr. Ed Yates (Institute of Systems, Molecular and 

Integrative Biology, University of Liverpool) according to literature methods and 

conformed to the expected structures by NMR (Yates et al., 1996). These derivatives 

1-8 were sulphated or desulphated at different sites on heparin and these 

polysaccharides were labelled with numbers for blind tests.  

 

Table 2.1. Desulphated heparin analogues. 

 

To produce different cation forms of heparin, strong ion exchange beads (Alfa Aesar) 

were exchanged exhaustively with a 1M solution of NaCl, KCl, CaCl2, MgCl2, ZnCl2, 

MnCl2 or FeSO4.  The cation-loaded beads were then recovered by filtration, washed 

extensively with de-ionised water and added to 200 μl of 2 mg/ml heparin solution 

thereby transferring the cation to heparin. The liquid containing the cation form of 

heparin was then collected and was dried using a freeze dryer.  Before use, the cation 

form of heparin was re-dissolved in deionized water and stored in the fridge. 
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2.3 MTT Assay 

 

To investigate the effects of cation forms of heparin on proliferation, cell number was 

determined by an MTT assay. After a four-day incubation in the presence or absence 

of heparin analogues, 5 μl of 5 mg/ml MTT reagent (Sigma-Aldrich) was added into 

each well in the 96-well plate and incubated at 37 °C in the dark for 4 h.  Following the 

production of a purple precipitate, the ‘stop solution’ which contained 10% (w/v) 

sodium dodecyl sulphate (SDS) in 0.01M HCl was added into each well to terminate 

the MTT reaction. The cells were then left in the incubator overnight. The absorbance 

of each well was measured at 450 nm using a spectrophotometer.  

 

2.4 Western Blotting 

 

HCASMCs and HCAECs were incubated with growth medium in the presence or 

absence of heparin analogues (10 μM final concentration). After 48 h treatment, cells 

were incubated for 10 minutes on ice with lysis buffer buffer (250 mM NaCl, 3 mM 

EDTA, 3 mM EGTA and 0.5% (v/v) Triton X100 in 1M Tris-HCl, pH 7.6) containing 1% 

(v/v) protease inhibitor cocktail (Sigma-Aldrich). The whole cell lysate was centrifuged 

at 15,000 x g for 10 mins at 4°C and the supernatant was then transferred to a new 

tube and mixed with 4x SDS-sample buffer (40% (v/v) glycerol, 240 mM Tris/HCl pH 

6.8, 8% (w/v) SDS, 0.04% (v/v) bromophenol blue, 5% (v/v) beta-mercaptoethanol). 

The mixture was heated at 95 °C for 10 mins. The cooled lysate was next loaded at 

25 μg total protein/well onto polyacrylamide gels and proteins within the lysate 

separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) at 130 V for 2 h.   Separated proteins were transferred electrophoretically onto 

nitrocellulose membranes (Hybond ECL, GE Healthcare) at 350 mA for 1 hr on ice in 

transfer buffer (25 mM Tris-Base, 192 mM glycine, 20% (v/v) methanol).  

Subsequently, the membrane was blocked in 10% (w/v) skimmed milk or 5% (w/v) 

bovine serum albumin (BSA) in Tris-buffered saline with Tween-20 (TBST: 20 mM 

Tris-HCl, 137 mM NaCl, 0.1% (v/v) Tween 20, pH 7.6) solution at 4 °C overnight or ~2 

hrs at room temperature. Following incubation with primary antibodies (anti-caspase-

3, anti-cleaved capase-3, anti-p-tyrosine and anti-GAPDH, see details in Table 2.2) in 

TBST at 4 °C overnight, the membrane was washed 3 times with TBST solution for 

10 min each time. This was   followed by incubation with horseradish peroxidase 

(HRP)-conjugated secondary antibody (1:5000, v/v) at room temperature for 1 h.  

Secondaries used were either anti-mouse IgG (H+L) HRP-conjugated polyclonal 
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antibody (Stratech Scientific Ltd., Newmarket, U.K) or anti-rabbit IgG (H+L) HRP- 

conjugated polyclonal antibody (Cell signaling Technology). Membranes were 

subsequently washed three times for 10 m each time in TBST.  Protein bands were 

visualised by addition of ECL Western Blotting Detection Reagent (GE Healthcare) 

and exposure to light-sensitive Hyperfilm (GE Healthcare). 

 

Table 2.2. The details of antibodies. 
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2.5 Transwell Migration Assay 

 

HCASMCs or HCAECs were grown in the upper chamber of a transwell plate (VWR 

International) with 300 μl of serum-free medium (M0 media) (Figure 2.1). The lower 

chamber was filled with supplemented growth media in the presence or absence of 

10 μm/ml of a cation form of heparin. After incubation at 37 °C for 24 h, the upper 

chambers were separated from the lower chambers and all of the media was removed. 

The upper chamber was cleaned with cotton buds to remove excess cells that did not 

migrate through the pores on the membrane. The membrane on the upper chamber 

was then immersed in solution A supplied by a Quickstain Kit (GE Healthcare Life 

Sciences). The chamber (membrane) was subsequently immersed into B solution 

(pink stain) for 3 mins and transferred to C solution (blue stain) for a further 3 mins 

incubation. Migrated cells were counted on the lower chamber side of the membrane 

under a phase contrast microscope. 

 

Figure 2.1. Scheme of transwell migration assay. The cells are seeded into the upper 

chamber in non-serum media while the heparin-containing growth media was placed 

in the lower chamber.  Cells migrated through the membrane separating the two 

chambers and were counted on the lower chamber-side of the membrane. Image  

drawn with PowerPoint. 
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2.6 Cell Co-cultivation and Cell Sorting 

 

HCASMCs and HCAECs were incubated together in 10 cm dish at 37 °C for 24 h. The 

co-cultivation media was a mix of HCASMC growth media and HCAEC growth media 

(1:1 v/v). After incubation, the media was replaced by fresh co-cultivation media with 

100 μg/ml of heparin analogues and incubated for 5 days. The cells were re-

suspended and centrifuged at 300 xg for 3 min to remove the old medium. After 

washing with phosphate buffered saline (PBS), the cells were re-suspended in 0.5 % 

(w/v) paraformaldehyde solution in PBS and incubated at room temperature for 20 

min in dark. The paraformaldehyde was removed and the cells were washed by 0.05 

% (v/v) Tween-20 in PBS with centrifugation 3 times at 300 xg at 4 °C for 5 min. The 

cells were re-suspended in ice-cold PBS containing 10% (v/v) FCS and 1% (w/v) 

sodium azide and a 1:50 dilution (v/v) of the primary antibodies (see Table 2.2), anti-

CD31 (an endothelial cell marker) and anti-α-smooth muscle actin (α-SMA, a smooth 

muscle marker) at room temperature for 1 h in dark. Subsequently, the cells were 

washed 3 times by centrifugation at 300 xg at 4 °C for 5 m in ice cold PBS.  Cells were 

then incubated with secondary antibody (1:2000 v/v) (see Table 2.2) in 3 % BSA/PBS 

for 30 m at 4 °C in dark. The cells were washed 3 times again by centrifugation at 300 

xg at 4 °C for 5 m in ice-cold PBS. Before analysis, the cells were re-suspended 

immediately in 1 ml of ice cold PBS with 3 % (w/v) BSA and 1 % (w/v) sodium azide 

in dark. These samples were analysed by Fluorescent Activated Cell Sorting (FACS) 

using BD FACSCantoTM II Flow Cytometer with BD FACSDivaTM software. 

 

2.7 Coagulation Assay 

 

The effects of the heparin-based polysaccharides on the intrinsic or extrinsic 

coagulation pathways was assessed by determining the activated partial 

thromboplastin time (aPTT) and prothrombin time (PT) respectively. This analysis was 

carried out by Mrs Patricia Procter at the University of Keele.  

 

2.8 HIT Assay 

 

50 ng of cationic heparin analogues (Na+, K+, Mg2+ and Ca2+) or 50 ng unmodified 

heparin (positive control) were treated with 250 ng of recombinant platelet factor 4 

(PF4) protein (ABCam) at 37°C for 4 hours before electrophoresis. The heparin-PF4 
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complexes was analysed by native (non-denatured) gel electrophoresis. The native 

gel was formed by stacking 5%, 10% and 20% (w/v) acrylamide (Sigma-Aldrich) gel, 

followed by electrophoresis at 30 V (~25 mA) for 2 hours on ice. Following 

electrophoresis, protein complexes of PF4 were visualised by silver staining using a 

silver staining kit (Sigma-Aldrich) and following manufacturer’s instructions. 

 

 

 

2.9 Polymerase Chain Reaction (PCR) 

 

Total RNA was extracted from HCASMCs and HCAECs using an RNeasy Mini Kit 

(Qiagen) according to manufacturer’s protocol.  Total RNA was treated with DNase I 

by incubating 8 µl total RNA, 1 µl 10x DNase I buffer and 1µl DNase I (1 U/µl; 

Invitrogen) at room temperature for 15 minutes. 1 µl EDTA (25 mM) was then added 

and the reaction heated at 65°C for 10 minutes. First strand cDNA was synthesized 

using SuperScript® III reverse transcriptase (Invitrogen) according to the 

manufacturer’s instructions.   

Touchdown PCR was carried out using HotStarTaq Master Mix Plus (Qiagen), 

following manufacturer’s instructions.  Primers used to amplify growth factor receptors 

were either from published literature or designed using Primer3Web 

(http://primer3.ut.ee/) which calculated the GC content, melting temperature (Tm) and 

product size (Table 2.3). Each individual primer was then checked for secondary 

structure using NetPrimer (PremierBiosoft) (http://www.premierbiosoft.com). All 

primers were synthesized by Sigma-Aldrich. The PCR protocol involved an initial 

denaturation at 95 °C for 5 m, followed by denaturation at 94°C for 30 s, annealing at 

69 °C to 50 °C (changing by 1 °C for each reaction cycle) for 30 s, extension at 72 °C 

for 1 m, and a final extension at 72°C for 10 m. The PCR products were 

electrophoresed on 3 % (w/v) agarose gels containing Midori Green (1:10,000 v/v; GC 

Biotech) for 1 h at 80V. Bands were excised under ultraviolet light and products 

purified using a QIAquick Gel Extraction kit (Qiagen) according to manufacturer’s 

instructions. Products were verified by sequencing (GATC Biotech, Germany).  
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Table 2.3. The list of the primers used in this project. “Start” corresponds to the 

number of the base in the human mRNA; “Len” is the length in base pairs. 

 
Tm 

(°C) 
Sequence Start Len Ref. 

FGFR1 57.7 5’- AGAGGACAATGTGATGAAGATA -3’ (fwd) 1851 22 
(Saucedo et al., 

2015) 
(128 bp) 64.8 5’- GGTCAAATAATGCCTCGGGT -3’ (rev) 1978 20 

FGFR2 64.9 5’ - AGGACGCTGGGGAATATACG -3’ (fwd) 1183 20  

(219 bp) 64.8 5’- CTGGCTTCTTGGTCGTGTTC -3’ (rev) 1401 20  

FGFR3 63.6 5’- AGCAGCTCACCTTCAAGGAC -3’ (fwd) 1799 20  

(533 bp) 64.2 5’- CGACAGGTCCAGGTACTCGT -3’ (rev) 2331 20  

FGFR4 73.0 5’- CGCGGCGTCCACCACATT -3’ (fwd) 1958 18 
(Saucedo et al., 

2015) 
(100 bp) 62.8 5’- GTGTGTACACCCGGTCAAAC -3’ (rev) 2057 20 

VEGFR1 63.9 5’- GGAACAAGGCAAGAAACCAA -3’ (fwd) 3096 20 
(Fiedler et al., 

2005) 
(216 bp) 63.8 5’- CGATGAATGCACTTTCTGGA -3’ (rev) 3311 20 

VEGFR2 63.9 5’- ATCCCTGTGGATCTGAAACG -3’ (fwd) 2863 20 
(Fiedler et al., 

2005) 
(196 bp) 63.9 5’- CCAAGAACTCCATGCCCTTA -3’ (rev) 3058 20 

VEGFR3 67.5 5’- GCTGCTGGAGGAAAAGTCTG -3’ (fwd) 2169 20  

(228 bp) 69.0 5’- AGGACCCAGAAGAAGACAGC -3’ (rev) 2396 20  

PDGFRA 63.9 5’- ATCAATCAGCCCAGATGGAC -3’ (fwd) 1817 20 
(Chong et al., 

2013) 
(891 bp) 63.5 5’- TTCACGGGCAGAAAGGTACT -3’ (rev) 2707 20 

PDGFRB 66.7 5’- GGCAAAAGGGACAAAGAGGG -3’ (rev) 4974 20  

(164 bp) 63.3 5’- GCCACCTCTCACATCCTTCT -3’ (rev) 5137 20  

Tie1 66.8 5’- GCCATGATCAAGAAGGACGG-3’ (fwd) 2602 20 
(Uchida et al., 

2000) 
(243 bp) 64.3 5’- GTTCTCTCCGACCAGCACAT-3’ (Rev) 3006 20 
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Tie2 51.6 5’- CCTTAGTGACATTCTTCC-3’ (fwd) 2047 18 
(Zhang et al., 

2001) 
(243 bp) 61.6 5’- GCAAAAATGTCCACCTGG-3’ (Rev) 2289 18 

TGFR1 65.7 5’- CTTTGGACCCAGGAAACAGC -3’ (fwd) 1745 20  

(168 bp) 63.7 5’- ATGATCTCCAGCACAGCAGA -3’ (rev) 1912 20  

TGFR2 64.8 5’- TCCTTCAAGCAGACCGATGT -3’ (fwd) 1656 20  

(241 bp) 61.3 5’- AGCACTCAGTCAACGTCTCA -3’ (rev) 1896 20  

TGFR3 62.9 5’- CCTAAGTGTGTGCCTCCTGA -3’ (fwd) 2503 20  

(211 bp) 67.3 5’- CAATGCCCATCACGGTTAGG -3’ (rev) 2713 20  

EGFR 75.4 5’- GGACGACGTGGTGGATGCCG-3’ (fwd) 3207 20 
(Chia et al., 

1995) 
(208 bp) 75.7 5’- GGCGCCTGTGGGGTCTGAGC-3’ (rev) 3414 20 

IGF1R 67.8 5’- GAATTTCCTTCCGCTCGTGG -3’ (fwd) 576 20  

(214 bp) 64.0 5’- CTTCCATGTGTCCCCTGTCT -3’ (rev) 789 20  

GAPDH 65.0 5’- GAGTCCACTGGCGTCTTCAC -3’ (fwd) 365 20 
(Fiedler et al., 

2005) 
(188 bp) 64.1 5’- GGTGCTAAGCAGTTGGTGGT -3’ (rev) 604 20 

 

 

2.10 Statistical Analysis 

Results are expressed as the mean ± S.D. Intergroup differences were analysed using 

repeated measures one-way ANOVA followed by Tukey post-hoc test, for simple 

comparisons; levels of significance were * p < 0.05, § p < 0.01. 
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Chapter 3: Differential Activities of Heparin 

Analogues on hVSMC/hEC proliferation & 

migration 

 

3.1 Introduction 

 

Stent insertion into disease-narrowed arteries often damages the blood vessel and 

triggers VSMC proliferation as a healing response. This vascular hyperplasia, which 

is caused by increased cell proliferation and migration, re-blocks arteries leading to 

tunica intimal formation. There are several different cell types involved in hyperplasia, 

including adventitia-derived stem cell, smooth muscle progenitor cells, endothelial 

precursor cells and bone marrow-derived cells (Moonen et al., 2015; Saiura et al., 

2001; Tanaka et al., 2003). However, VSMCs and ECs play the most important roles 

(see Section 1.3). It is believed that inhibition of VSMC proliferation and migration 

may be a useful strategy for preventing neointimal formation. To combat hyperplasia, 

anti-proliferative agents can be incorporated into stents, but these significantly delay 

healing and inhibit EC re-growth leaving pro-thrombotic stent surfaces exposed. The 

polysaccharide heparin is a generally well-tolerated anti-coagulant that also inhibits 

VSMC proliferation (Khorana et al., 2003). It is thus an attractive candidate for 

incorporation into stent materials.  Indeed, in multicentre, randomized clinical trials, 

heparin-coated stents significantly reduced stent thrombosis, but showed no 

measurable effect on VSMC proliferation or restenosis (Serruys et al., 1998; Vrolix et 

al., 2000). However, changing heparin’s structure through desulphation and/or 

complexing heparin with cations is known to alter the molecule’s charge distribution, 

geometry, and conformation and ultimately modifies heparin’s biological activity (Rudd 

et al., 2007). This interaction between heparin and FGFs mainly relies on 

electrostatics, therefore, alteration of charge distribution on heparin changes the 

affinity with these binding proteins, as well as the structure of FGF-FGFR-heparin 

complex. Consequently, this conformational change leads to different biological 

activity (Guimond et al., 2009; Pellegrini et al., 2000). Therefore, the aim of this chapter 

was to identify novel heparin-based analogues that had a differential effect on 

HCASMC and HCAEC proliferation. I also assessed effects on migration and ability 

to induce apoptosis.  
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3.1.1 Heparin Derivatives (Sulphated and Cation Forms) Affect Heparin-Protein 

Interaction  

 

Heparin, as a highly sulphated glycosaminoglycan (GAG), is involved in numerous 

biological processes, including blood clotting, cell growth, and immunological 

responses, through its interaction with different proteins (Beamish et al., 2009; Capila 

and Linhardt, 2002; Gu et al., 2010). It is structurally similar to HS in that it is composed 

of repeating disaccharide units of uronic acid and D-glucosamine (Figure 3.1).  

However, it has a distinct, more heavily sulphated, and homogenous repeating pattern 

compared to HS (Garg et al., 2011a). In addition, it is used widely as an experimental 

proxy for HS because of its underlying structural similarity to HS and relative 

abundance as a commercially-available anti-coagulant. 

 

Figure 3.1. Structural features of HS and heparin. (A) Possible substitution patterns 

in heparin/HS. (B) The major disaccharide unit of heparin, differences exist between 

sources (C) The major repeating disaccharide unit of HS. Considerable variation in 

HS composition also occurs between species and tissues (Casu and Lindahl, 2001; 

Garg et al., 2011a). Images drawn with ChemDraw 18.1. 

 

The structure of heparin relates to the interaction with protein binding 

The biological activity of a heparin derivative on a cell type depends upon the 

interaction between the derivatives, growth factors (GFs) and growth factor receptors 

(GFRs). For instance in VSM, anti-proliferative activity depends on the interaction 

between GFs-GFRs-heparin/HS (Garg et al., 2003). Fibroblast growth factors (FGFs) 
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and their receptors are typical elements involved in FGF-FGFR-heparin complex 

which regulates many bioactivities. This ternary complex is principally constructed 

through ionic interactions. Heparin carries strong negative charge due to numerous 

sulphated groups on glucosamine residues and thereby, it can regulate biological 

activity by binding to positively charged amino acids on specific proteins (Singh et al., 

2019). This binding interaction is widely involved in the regulation of cell growth, anti-

coagulant action and other biological events, moreover, it possesses a high degree of 

specificity (Xu et al., 2012). FGFs from different FGF-subfamilies show distinct 

secondary structures when complexed with heparin, whereas members from within 

the same subfamilies present similar secondary structures when complexed with 

heparin. This is due to the similarity of the type and number of heparin binding sites 

more closely resembling each other within sub-families than between sub-families  (Li 

et al., 2016; Xu et al., 2012). The diversity of FGFs contributes to the diversification of 

signaling systems and signaling capacities (Xu et al., 2012).  

 

Cation binding also changes the structure of heparin-protein 

Since HS and heparin carry negatively charged sulphate groups, they can readily 

complex with cations. This can alter the charge distribution and modify heparin’s 

conformation and activity (Guimond et al., 2009; Rudd et al., 2007). For example, the 

affinity of Na+-bound heparin to FGF1 is decreased relative to heparin, while 

interaction with FGF2 are unaltered (Xu et al., 2012). Furthermore, the acetyl-rich 

heparin converts its activity from supporting FGF-1/FGFR1c signalling to being 

suppressing in Baf3 cells when the coordinated cation is changed from sodium to 

copper (Guimond et al., 2009). In addition, each sulphated group on heparin can only 

neutralise one of the charge of a divalent cation. Therefore, a divalent cation can bind 

two sulphates (or a sulphate and a carboxylate) and this can influence the orientation 

and conformation of adjacent residues and the intervening glycosidic linkages (Rudd 

et al., 2007). However, it is distinct for different cations with their ionic radii, charge 

and coordination. The different structures of diverse cationic form heparin analogues 

exhibit specific NMR spectra (Rudd et al., 2007). More discussion of complex roles 

played by GFs/GFRs in both VSMCs and ECs can be found in Chapter 5.  

 

3.1.2 Modifications of Heparin Alter Its Activities 

 

Structural modifications of heparin can lead to characteristic changes in its biological 

action: for example totally desulphated heparin loses its anti-proliferative activity 

(Castellot et al., 1984). The loss of negative charge might be expected decrease the 

ionic interaction between heparin and its binding proteins. Therefore, the sulphation 
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of heparin can be expected to be important for interaction with GFs/GFRs to induce 

anti-proliferative activity in VSM (Castellot et al., 1984). O-sulphation of heparin is 

required for anti-proliferation and anti-coagulation, as the removal of 6-O-sulphation 

and the substitution of hexosamine decrease anti-proliferative activity, whereas the 

over-O-sulphation of heparin/HS enhances SMC anti-proliferation (Danishefsky et al., 

1977; Garg et al., 2011b; Garg et al., 2003).  

Size-modified heparin also induces different effects on SMC proliferation. One of the 

low-molecular-weight-heparins (LMWHs), SR 80258A (Sanofi Recherche), blocks 

serum-induced, but not PDGF-BB–induced, SMC proliferation and migration in culture 

(Geary et al., 1995). Another similarly modified heparin, Astenose, however, has no 

effect on SMC proliferation (Wilcox et al., 1994). This size dependent inhibition also 

relies on specific heparin fragments (Kazi et al., 2002). The hexasaccharides and 

large fragments retain anti-proliferative activity while tetrasaccharides and 

disaccharides are inactive (Castellot et al., 1981). Pentasaccharides also retain anti-

proliferative activity and here, 6-O-sulphation on the internal glucosamine residue has 

been held to be essential (Castellot et al., 1986; Garg et al., 2003). The majority of 

experimental evidence supports the idea that there are several sequences within HS 

or heparin capable of binding a given protein, but that not all sequences bind.  

Furthermore, a range of binding affinities exists within these binding structures and 

some of these can be relatively high (Kd ~10 nM for fibroblast growth factors; FGFs) 

(Deepa et al., 2002). Cations are also important for the interaction between heparin 

and anti-coagulation factors. For example, the activity of heparin-antithrombin binding 

to thrombin is significantly reduced in the absence of Ca2+ (Speight and Griffith, 1983) 

(See details in Chapter 4). 

In addition to heparin having anti-proliferative and anti-coagulant activity, it may also 

have apoptotic effects on several cell lines. For instance, heparin induces apoptosis 

by Akt suppression in oral squamous cell carcinoma (Ueda et al., 2009). It also leads 

to apoptosis in lymphoblasts (Erduran et al., 1999) and nasopharyngeal tumour cells 

(Li et al., 2001). Furthermore, sulphated GAGs are also involved in the modulation of 

the apoptotic process, and modifications of GAG chains are likely relevant to the 

sensitivity of tumour cells to apoptosis (Kozlowski and Pavao, 2011). Conversely, 

heparin prevents Zika virus-induced apoptosis and necrosis in human neural 

progenitor cells (Ghezzi et al., 2017). It is reported that unfractioned heparin increases 

apoptosis in human oral squamous cell carcinoma (Ueda et al., 2009). However, low 

molecular weight heparin (LMWH)-induced apoptosis is controversial (Zhang et al., 

2016b). Furthermore, unmodified heparin has been observed to have a protective 

effect in some cases in which apoptosis is involved, although the mechanism is not 

clear (Ghezzi et al., 2017). Therefore, given their potential effects on cell 
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number/proliferation, whether heparin analogues trigger cell apoptosis is an important 

question. 

 

3.1.3 Apoptosis 

 

Cell death is an event whereby a cell permanently loses its biological function due to 

stimuli such as damage or death signals. The phenomenon can be roughly divided to 

programmed and non-programmed cell death. Programmed cell death, such as 

apoptosis, is a protease cascade-regulated cell death. Non-programmed cell death, 

as known as necrosis, is generally caused by a traumatic injury. In this section, we 

only focus on programmed cell death – apoptosis. 

 

Extrinsic and intrinsic pathways 

Apoptosis is cell programmed death which is activated via both extrinsic and intrinsic 

pathways. The extrinsic pathway, or so-called receptor-dependent pathway, is 

induced by the binding of death signals to cell surface receptors (Güneydaş and 

Topçul, 2016).  Death ligands such as tumour necrosis factor (TNF), Fas ligand, Apo-

2 ligand, and TNF-like ligand 1A bind to their respective receptors (the death 

receptors, DRs), for instance the Fas/Apo-1/CD95 receptor or DR4/5 (Huang et al., 

2016; McIlwain et al., 2013; Nikoletopoulou et al., 2013).  Ligand binding induces 

receptor oligomerization and the recruitment of a multi-protein complex (the death-

inducing signalling complex or DISC) to intracellular portions of the receptors. The 

complex forms through interaction between death domains on the receptors and the 

FAS-associated death domain (FADD) or TNFR-associated death domain (TRADD) 

on adaptor protein, and leads to the recruitment and activation of caspase-8 (McIlwain 

et al., 2013; Miao et al., 2011).  Active caspase-8 promotes the downstream activation 

of caspase -3, -6 and -7 thereby inducing apoptosis. Active caspase-8 can also induce 

the intrinsic pathway.  

Typically, the intrinsic pathway is initiated by multiple cellular stress stimuli such as 

DNA damage, endoplasmic reticulum (ER) stress, hypoxia or metabolic stress. These 

trigger cytochrome c release from mitochondria, leading to apoptosome formation 

(McIlwain et al., 2013) The release of cytochrome C from mitochondria is controlled 

by the Bcl-2 family of proteins (Huang et al., 2016). The BH3-domain-only protein, Bid, 

is one of Bcl2 family members which is also known as a cytosolic pro-apoptotic factor 

(Huang et al., 2016). After cleavage by active caspase-8, cleaved Bid (cBid) remains 

as a complex of two fragments (the p7 fragment and the tBid fragment) due to 

hydrophobic interactions (Figure 3.2) (Shamas-Din et al., 2013). On interaction with 
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the mitochondrial membrane, these fragments separate, allowing the truncated Bid 

(tBid) to insert into the mitochondria outer membrane (Lovell et al., 2008).  tBid 

subsequently recruits the pro-apoptotic Bax protein, resulting in mitochondrial 

membrane permeabilization and cytochrome C release (Billen et al., 2009; Kim et al., 

2017; Peixoto et al., 2017).   

 

Figure 3.2. Scheme of the main apoptosis pathways. The extrinsic pathway is induced 

by receptor activation whereas the intrinsic pathway is introduced by various cellular 

stress stimuli (McIlwain et al., 2013). Both of them activate the downstream caspase 

cascade, leading to apoptosis. Image drawn with PowerPoint. 
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Figure 3.3. Bid and Bax insert into membrane of mitochondria, resulting in apoptosis. 

After cleavage by caspase-8, cBid remains as a complex until reaching the membrane 

of mitochondria. The inserted tBid recruits Bax to the mitochondrial membrane results 

in pore formation and the release of cytochrome C (Billen et al., 2009). Image drawn 

with PowerPoint. 

 

Released cytochrome c forms the apoptosome with Apaf-1 and pro-caspase-9 (Misiti 

et al., 2008; Nam et al., 2016), leading to caspase-9 activation. Active caspase-9 

subsequently activates caspase-3, -6, -7, resulting in apoptosis (McIlwain et al., 2013). 

During apoptosis, the dying cells are observed as shrunken, rounded and condensed. 

The plasma membrane forms blebs and the cytoskeleton and DNA in the nucleus 

collapse and break into fragments resulting in the formation of apoptotic bodies which 

can be phagocytosed and degraded (Alberts et al., 2013; Lemasters, 2018). Apoptosis 

is not inflammatory and there is no adaptive immune response (Miao et al., 2011). 

However, if these apoptotic bodies are not cleared by macrophages, they can lyse 

leading to secondary necrosis (Fink and Cookson, 2005). 

To date, there is no evidence that heparin may cause apoptosis on SMCs or ECs. 

However, as mentioned above, heparin may have pro-apoptotic activity on several 

cell lines (Erduran et al., 1999; Li et al., 2001; Ueda et al., 2009), and some of the 

modified heparin analogues induce apoptosis in tumour cells (Kozlowski and Pavao, 

2011; Ueda et al., 2009). Since the properties of our modified heparins have been 

changed, they may have the potential to trigger apoptosis. Therefore, we need to 

investigate whether any heparin analogue-induced reduction in cell number observed 

in MTT assays is actually caused by apoptosis.  
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3.1.4 Aim of This Chapter  

 

As the activity of heparin can be altered, the purification of pharmaceutical heparin 

from crude heparin and modification of that heparin to develop novel heparin 

analogues is possible. The aim of this chapter is to assess how these different heparin 

analogues impact on HCASMCs and HCAECs cell number in vitro.  To ensure that 

any effects on cell number are through changes in proliferation as opposed to changes 

in apoptosis, the question of whether some heparin analogues induce apoptosis is 

also assessed. In addition, the influence of heparin analogues on cell migration, which 

relates to wound healing, is investigated. 

 

3.2 Results 

3.2.1 Desulphated Heparin Analogues Have Differential Effects on HCASMC/HCAEC 

Proliferation and Migration 

 

Proliferative activity 

The desulphated heparin analogues were selected from our in-house library. These 

polysaccharides were all labelled with numbers 2-8 (Figure 3.4). To assess the effect 

of desulphated heparin analogues on cell proliferation, cells were seeded (a density 

of 5×103 cells per well for HCASMCs and 2.5×103 cells per well for HCAECs) in a 96-

well plate in normal growth media (GM). Cells were incubated in either GM alone 

(control) or GM containing heparin or different heparin analogues (10 μg/μl) at 37 °C 

for 4 days.   An MTT assay was subsequently used to determine cell growth. Figure 

3.5 shows that in HCASMCs, unmodified heparin significantly reduced cell growth 

against normalized control (reduction on 24.8 ± 7.3 %, p<0.05). In contrast, the 

heparin analogue-3 significantly increased HCASMC proliferation (113.2 ± 6.5 %, 

p<0.05). All other analogues showed no significant effect.  For HCAECs, heparin 

analogue-5 and -8 significantly reduced cell growth (reduction on 15.8 ± 4.6 % and 

11.9 ± 1.9 % against normalized control, respectively, p<0.05).   
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Figure 3.4. Desulphated heparin analogues produced by Dr. Ed Yates (Institute of 

Systems, Molecular and Integrative Biology, University of Liverpool). Images drawn 

with ChemDraw 18.1. 
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Figure 3.5. Effect of desulphated forms of heparin on HCASMC and HCAECs cell 

number. Results were expressed as mean ± S.D. Results from N=3 experimental 

repeats with n=8 repeats within each experiment.  * P<0.05 compared to control (no 

heparin treatment) with statistical significance determined by a one-way ANOVA 

followed by Tukey post-hoc test. The cell growth of control group is set at 1.  

 

Figure 3.6. The differential growth index for these analogues was calculated as mean 

EC numbers divided by mean SMC numbers for each analogue (HCAEC/HCASMC). 

Here a desirable activity profile would show values > 1 (i.e. suppresses VSMC 

proliferation relative to EC proliferation). These data indicate that only unmodified 

heparin has this effect. 
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3.2.2 The Effects of Cationic Heparin Analogues on HCASMC/HCAEC Proliferation and 

Migration 

 

Cation forms of heparin have differential effects on HCASMC/HCAEC 

proliferation 

Since none of the desulphated heparin analogues produced a desirable differential 

activity profile, we next assessed the effects of different cation forms of normal 

heparin.  Again, cells were seeded in a 96-well plate and incubated with either GM 

alone (control) or GM containing heparin or different cation forms of heparin (10 μg/ml) 

at 37 °C for 4 days.   An MTT assay was again used to determine cell number. The 

results show that all the cation forms of heparin significantly reduced HCASMC 

number compared to control (Figure 3.7; P<0.05). In HCAECs, these analogues also 

significantly suppressed cell proliferation except for Ca-heparin (Figure 3.7).  The anti-

proliferative activity of Na-, K-, Mg- and Ca-forms of heparin on HCAECs was not as 

marked as the effects on HCASMCs.  This is made clearer when the ratio of 

HCAEC:HCASMC cell number is calculated (Figure 3.8). This growth index shows 

that Na-, K-, Mg- and Ca- heparin have the desired effect of suppressing HCASMC 

proliferation, while having less effect on HCAEC proliferation. 

 

Figure 3.7. Effect of cation-forms of heparin on HCASMC and HCAECs cell number. 

Results were expressed as mean ± S.D. Results from N=3 experimental repeats with 

n=8 repeats within each experiment. * P<0.05 and § P<0.001 compared to control (no 

heparin treatment) with statistical significance determined by a one-way ANOVA 

followed by Tukey post-hoc test. Ctrl, control (normalized to 1.0); Na, sodium-heparin; 

K, potassium-heparin; Mg, magnesium-heparin; Ca, calcium-heparin; Zn, zinc-hep 
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Figure 3.8.  The differential of growth index for cation forms of heparin for HCAECs 

and HCASMCs. Values over 1.0 indicate potentially interesting compounds that inhibit 

HCASMC proliferation while having less effect on HCAECs. Ctrl, control; Na, sodium-

heparin; K, potassium-heparin; Mg, magnesium-heparin; Ca, calcium-heparin; Zn, 

zinc-heparin; Mn, manganese-heparin; Fe, iron-heparin. 

 

The anti-proliferative activity of cationic heparin is not caused by apoptosis 

To determine whether the reduction in cell number seen in MTT assays was due to 

the induction of apoptosis by the cation forms of heparin, lysates of HCASMCs and 

HCAECs were immunoblotted with antibodies against caspase 3, an important inducer 

of apoptosis (Güneydaş and Topçul, 2016, Mohamed et al., 2010). Activation 

(cleavage) of caspase 3 to smaller fragments (17 and 19 KDa) indicates the induction 

of apoptosis and antibodies against caspase-3 and cleaved caspase-3 were used. 

Staurosporine, a protein kinase inhibitor that can quickly induce cell apoptosis, was 

used as a positive control (Zheng et al., 2000). Figure 3.9 shows that none of the 

cation forms of heparin (10 μg/ml for 2 days) induced caspase 3 cleavage in 

HCASMCs and HCAECs. 
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Figure 3.9. Cation forms of heparin do not induce apoptosis in HCASMCs or 

HCAECs. HCASMCs (A) or HCAECs (B) were grown in (10 μg/ml) heparin analogues 

for 4 days before being lysis and proteins within the lysates separated by SDS-PAGE.  

Separated proteins were immunoblotted for caspase 3 and cleaved (activated) 

caspase 3, an indication of the induction of apoptosis. Cells were incubated with 1 μM 

of staurosporine for 3 hr as a positive control. Ctrl, control; ST, staurosporine; Na, 

sodium-heparin; K, potassium-heparin; Mg, magnesium-heparin; Ca, calcium-

heparin. Bar, 10 μm. Images of whole blots are in Appendix 4. 
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3.2.3 Cationic Heparin Analogues Showed Differential Effects on HCASMC/HCAEC 

Migration 

 

Vascular cell migration plays a key role in restenosis. After vascular wall injury caused 

by stent implantation, the proliferation and migration of SMC leads to neointima 

formation which underlies restenosis.  A migration assay was used to assess the 

effects of the cation forms of heparin on both HCASMCs and HCAECs.  Cells were 

seeded into the upper chamber of the transwell plate and treated with different cation 

forms of heparin (10 μg/ml) for 24 hr at 37 °C.  All the cells migrating though the 

membrane to the lower chamber were counted under a phase contrast microscope. 

The results show that Na-, Mg- and Ca- heparin significantly suppressed HCASMC 

migration (Figure 3.10; One-way ANOVA: F5,36 = 4.56, P < 0.05, n=7) and K-heparin 

had no effect. There was no marked difference between different cation-heparin 

treatments on HCAECs except for Mg-heparin (One-way ANOVA: F5,36 = 1.37, P = 

0.26).  There was however significant variation within the results. 

 

Figure 3.10. Boxplot diagrams for cell migration. The Na-, and Ca-heparin significantly 

reduced HCASMC migration. All the cells passing through the transwell membrane 

were counted. Results from N=2 experimental repeats with n=3 technical repeats.  * 

P<0.05, n=7. Means are represented by the value. Ctrl, control; Na, sodium-heparin; 

K, potassium-heparin; Mg, magnesium-heparin; Ca, calcium-heparin.  
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3.2.4 Effects of Heparin Analogues in Co-cultures of hVSMC/hECs 

 

Within intact arteries in vivo, ECs continuously communicate with SMCs via hetero-

cellular junctions and signalling molecules to mediate contractile state, metabolism, 

proliferation and differentiation of SMCs (Parkington, 2008; William, 2005). In addition, 

EC/SMC interaction is vital for maintaining the appropriate microenvironment of blood 

vessels including ECM composition, pericyte function, and the response to shear 

stress induced by blood flow (Davies, 1988; Hartmann, 2007; Wang, 2009).  To 

generate a more physiological assessment of the effects of the heparin analogues, 

we used fluorescence-activated cell sorting (FACS) to determine cell numbers 

following incubation with the analogues when SMCs and ECs were co-cultured 

together. Figure 3.11 shows the results of these experiments.  Although the Na-, K- 

and Ca-heparin analogues showed promising activity profiles on HCASMCs and 

HCAECs in the single-culture system, Na- and Ca-heparin analogues had no 

significant effect compared to control in co-culture. The K-heparin showed a weaker 

activity profile in the co-culture system, but Mg-heparin showed a similar activity to 

heparin. Thus, co-cultivation appears to identify active compounds  missed in single 

cultivation screens.  

 

Figure 3.11. The growth ratio of HCAEC/HCASMCs in co-cultivation system. Values 

over 1.0 indicate potentially interesting compounds that inhibit HCASMC proliferation 

while having less effect on HCAECs. 
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3.2.5 Effects of Cationic Desulphated Heparin Analogues in VSMC/ECs 

 

Since the results of the SMC/EC co-culture experiments contradicted the possible 

utility of the cation forms of heparin, the above experiments were repeated using a 

new set of analogues where cations (Na+, K+, Mg2+, Ca2+) were complexed to the 

desulphated forms of heparin. 

 

Proliferative activity of cation-desulphated heparin analogues 

HCASMCs and HCAECs are grown separately in 96-well plate and treated with 10 

μg/ml heparin analogues for 4 days. The results of the subsequent MTT assays are 

shown in Figures 3.12 and 3.13. 

Figure 3.12. Effect of cation-desulphated forms of heparin on HCASMC proliferation. 

Results were expressed as mean ± S.D. Results from N=3 experimental repeats with 

n=8 technical repeats. * P<0.05 and § P<0.001 compared to control (no heparin 

treatment) with statistical significance determined by a one-way ANOVA followed by 

Tukey post-hoc test. Ctrl, control (normalized to 1.0). Ctrl, control (normalized to 1.0); 

Na, sodium; K, potassium; Mg, magnesium; Ca, calcium;1-8, different levels of 

desulphated heparin analogues. 
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Figure 3.13. Effect of cation-desulphated forms of heparin on HCAEC proliferation. 

Results were expressed as mean ± S.D. Results from N=3 experimental repeats with 

n=8 repeats within each experiment. * P<0.05 and § P<0.001 compared to control (no 

heparin treatment) with statistical significance determined by a one-way ANOVA 

followed by Tukey post-hoc test. Ctrl, control (normalized to 1.0). Na, sodium; K, 

potassium; Mg, magnesium; Ca, calcium;1-8, different levels of desulphated heparin 

analogues. 

 

Figure 3.14. The growth ratio of HCAEC/HCASMCs treated with cationic desulphated 

heparin analogues. Values >1 indicate potentially interesting compounds that inhibit 

HCASMC proliferation while having less effect on HCAECs.  
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Proliferative activity of cation-desulphated heparin analogues in co-cultivation 

system 

Since some of the cationic desulphated heparins showed promising activity profiles in 

terms of inhibiting SMC proliferation while promoting EC proliferation, eight high-

performing analogues (Na-3, Na-4, K-3, K-4, Mg-3, Mg-4, Ca-3 and Ca-4) were 

selected to be assessed in the co-culture system. These analogues were incubated 

with co-cultured HCASMCs and HCAECs for 4 days. Cells were then separated using 

a primary antibody (anti-α-SMA antibody for HCASMCs and anti-CD31 antibody for 

HCAECs) and conjugated secondary antibody label (Alexa Fluor® 488 for anti-α-SMA 

antibody and Alexa Fluor® 647 for anti-CD31 antibody), followed by analysis with 

FACS. The growth index shows that all of these analogues retained their differential 

effects on SMC and EC growth when SMC and ECs were cultured together (Figure 

3.15).   

 

Figure 3.15. The EC/SMC ratio of cationic desulphated heparin analogues in co-

cultivation. Values >1 indicate potentially interesting compounds that inhibit HCASMC 

proliferation while having less effect on HCAECs. Ctrl, control; Hep, heparin; Na, 

sodium; K, potassium; Mg, magnesium; Ca, calcium; 3,4, different levels of 

desulphated heparin analogues. 
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Migration activity of HCASMCs and HCAECs treated with cation-desulphated 

heparin analogues 

The effects of these new cationic desulphated heparins analogues on cell migration 

were also assessed. As previously, HCASMCs or HCAECs were seeded into the 

upper chamber of the transwell plate. Cells were then treated with different cation 

forms of desulphated heparin (10 μg/ml) for 24 h at 37 °C.  Cells migrating though the 

membrane to the lower chamber were counted under a phase contrast microscope. 

The results reveal that all of these analogues significantly delay HCASMC migration, 

but have no significant effect on HCAECs (Figure 3.16; One-way ANOVA: F11,24 = 

18.971, P < 0.01, n=3).  

 

Figure 3.16. Cation-desulphated heparin analogues significantly delay HCASMC 

migration but have no effect on HCAECs. The Na-, and Ca-heparin significantly 

reduced HCASMC migration. All the cells passing through the transwell membrane 

were counted. Results from N=3 experimental repeats with n=3 technical repeats. * 

P<0.05, n=3. Means represented by the value. Ctrl, control; Na, sodium-heparin; K, 

potassium-heparin; Mg, magnesium-heparin; Ca, calcium-heparin. 
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The anti-proliferative activity of cationic desulphated heparins is not caused by 

apoptosis 

The cationic desulphated heparin analogues significantly reduce HCASMC number in 

MTT assays both in isolated single culture and in SMC/EC co-culture systems. To 

determine whether this reduction in cell number is caused by suppression of 

proliferation as opposed to an increase in apoptosis, treated lysates of HCASMCs and 

HCAECs were immunoblotted with antibodies against caspase 3.  The apoptosis-

inducer, staurosporine (1μM) was again used as a positive control. The results 

demonstrate that that none of the cation forms of desulphated heparin (10 μg/ml for 2 

day) induced caspase 3 cleavage in HCASMCs and HCAECs (Figure 3.17).   

 

Figure 3.17. The cation-desulphated heparin candidates do not induce apoptosis in 

HCASMCs. The lysates of HCASMCs were analysed by SDS-PAGE. Separated 

proteins were immunoblotted for caspase 3 and cleaved caspase 3. The cells were 

incubated with 1 μM of staurosporine for 3 h as a positive control. Ctrl, control; ST, 

staurosporine; Na, sodium-heparin; K, potassium-heparin; Mg, magnesium-heparin; 

Ca, calcium-heparin; The numbers -3 and -4, refer to the heparin analogue used (see 

detail in Figure 3.4). Images of whole blots are in Appendix 5.  
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3.3 Discussion  

 

The results of this chapter show that chemically modified forms of heparin have 

differential effects on VSMC and EC proliferation. For instance, Ca-heparin has no 

effect on HCAEC proliferation whereas zinc-heparin inhibits HCAEC growth.   

Several previous studies have reported that chemical or enzymatic modification of 

heparin can change not only the structure and molecular weight of heparin, but also 

its properties and characteristics (Duckworth et al., 2015; Garg et al., 2011b). Our 

desulphated heparin derivatives alter the anti-proliferative capacity of HCASMCs and 

the pro-proliferative activity of HCAECs, but none of the analogues demonstrated the 

desired effect of repressing SMC growth and enhancing EC growth. However, they 

may exhibit other desirable activities such as cell migration or anti-thrombotic activity. 

For instance, 2-O, 3-O-desulphated heparin is known to inhibit P-selectin-mediated 

cell adhesion (Wei et al., 2004).   Next, the effects of fully-sulphated heparin 

complexed with different cations (Guimond et al., 2009, Rudd et al., 2007) were tested. 

The data show that Na+, K+ and Ca2+ -complexed forms of heparin have promising 

activity profiles in terms of differential effects on HCASMC/HCAEC 

proliferation/migration (summarised in Table 3.1). These effects are not due to the 

induction of cell death and may relate to the expression of different growth factor 

receptors on the cell surface. 

 

Table 3.1. Summary of the capacity of heparin cation form to prevent neointimal 

formation. ↓, inhibition; ↓↓, high inhibition; -, no significant effect; /, no testing. 
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The biological activities of heparin such as anti-proliferation and anticoagulation rely 

on their interaction with proteins. This interaction can be affected by metal ion binding 

(Seo et al., 2011). For instance, the interaction between FGFs and their receptors is 

enhanced by heparin/HS which are required for the formation of functional FGF-FGFR 

signalling complexes (see more details in Chapter 5). The binding selectively is 

modulated by a combination of charge density, charge distribution and conformational 

change. Higher levels of sulphation (higher negative charge density) on heparin leads 

to stronger binding to FGFs via multivalent interactions (Minsky et al., 2017). Cationic 

ions with higher charge density contribute a stronger interaction as divalent cations 

are able to bind two sulphates on the polysaccharide (Rudd et al., 2007). However, 

some polysaccharides with similar charge densities but different sulphation patterns 

interact differently with FGFs (Li et al., 2016). In addition, different charge densities 

sometimes drive similar conformations – Fe3+ and Mn2+ -bound heparins had similar 

structures when studied using synchrotron radiation circular dichroism (SRCD) (Rudd 

et al., 2007), which may be due to their similar effective ionic radii (0.61–0.77 nm and 

0.67–0.82 nm, respectively) (Bell, 1977).  

The alteration of heparin-protein interactions also mediate its anti-coagulant 

activity  

Heparin is widely used as an anticoagulant drug due to its interaction with anti-

thrombin III and suppression of blood coagulation factors (i.e. thrombin and factor Xa) 

(Rubin et al., 1996). Generally, heparin electrostatically binds to positively-charged 

residues on coagulation-related heparin binding proteins, although hydrogen bonds 

and van der Waals interactions also contribute to heparin-protein interactions (Bolten 

et al., 2018) (see details in Chapter 4). These electrostatic interactions can be 

changed via removal of sulphation or addition of cations. N-sulphation is required for 

anticoagulation. N-desulphated heparin is completely unable to interact with 

antithrombin-III (AT-III), resulting in inactive thrombin and antithrombin, which are two 

of the key coagulant factors (Danishefsky et al., 1977; Garg et al., 2011b), whereas 

6-O-desulphated heparin loses the activity of factor Xa inhibition (Atha et al., 1987). 

Factor XIIa can interact with a plethora of negatively-charged substrates (i.e. heparin), 

thus depletion of sulphation on GAGs reduces Xlla binding (Wujak et al., 2015). The 

affinity of heparin binding to coagulant factors can not only be changed by charge 

distribution but also by the size of heparin. Fondaparinux, a synthetic pentasaccharide 

drug, can bind to factor Xa, but has no activity against thrombin because the fragment 

(1.7 k.Da) is too short to bridge antithrombin to thrombin (Holmer et al., 1981; Oosta 

et al., 1981).  Although both anticoagulant and non-anticoagulant fragments of heparin 

can inhibit VSMC proliferation in vivo (Clowes, et al., 1985), anti-proliferative activity 

is unrelated to anticoagulant activity (Azizkhan et al., 1980). It has been argued that 

the biological activities of HS and of heparin reside in specific sequences, although 
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there is little experimental evidence for this (Meneghetti et al., 2015). Indeed, even the 

supposedly highly-specific interaction between the heparin pentasaccharide 

sequence (Hook et al., 1976; Lam et al., 1976) and anti-thrombin is now thought to be 

more somewhat more relaxed (see more details in Chapter 4). The effects of the 

same heparin analogue on HCASMCs and HCAECs can also be different. For 

instance, Ca-heparin inhibits HCASMC proliferation, whereas it has no effect on 

HCAEC proliferation. These different effects on two cell types may be caused by the 

distribution of growth factor receptors which activate diverse signals and results in 

various biological responses (see details in chapter 5).  

Some of the chemically modified heparin analogues provide the desired activities, 

however, these promising activities are changed in the co-cultivation system.  The 

value of K-heparin in the growth ratio of HCAEC/HCASMC is 1.4 in the single cell type 

cultivation system but it drops to 0.9 in the co-cultivation system. Interestingly, most 

of the cationic heparin analogues have no significant effect on HCAECs while others 

enhance the anti-SMC proliferative activity. Communication between VSMCs and 

VECs is fundamental to normal behaviour in vascular tissue and supported by 

considerable in vitro and in vivo evidence. Aside from paracrine signaling from ECs 

that controls the contractile state of SMC (for example nitric oxide signaling), other 

pathways control SMC growth and development, for instance, ephrin receptor tyrosine 

kinases (Eph), which are a large family of transmembrane proteins activated by ephrin 

ligand binding. This eph-ephrin axis induces endothelial-smooth muscle cell 

communication during vessel formation (Li et al., 2018). In addition, EC-expressed 

Jagged1 interacts with NOTCH3 on adjacent SMCs, followed by activation of NTOCH 

signalling and enhancement of NTOCH3 expression in the SMCs (Liu et al., 2009). It 

is also revealed in rats that damaged VSMCs switch to a synthetic phenotype and 

activate PKCδ and STAT3 to recruit ECs to the injury site for re-endothelialisation 

(Gomez and Owens, 2012; Ren et al., 2019). Furthermore, HS mediates ephrin/Eph 

receptor signalling by binding to ephrin-A3 in Chinese hamster ovary (CHO) cells (Irie 

et al., 2008) and heparin downregulates NOTCH signalling in human stromal cells (ref 

Laner-Plamberger, 2019). Therefore, the co-cultivation system is a better model to 

mimic in vivo circumstances.  

In this chapter, we have conducted preliminary screens of the anti-proliferation and 

anti-migration activities of various heparin analogues on HCASMCs and HCAECs. 

Those analogues with promising activities, such as Na-desulphated, K-desulphated, 

and Ca-desulphated heparins, will be examined for their anti-thrombotic activity and 

coagulant activity in the following chapter.  
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Chapter 4: Effects of Heparin Analogues on 

Blood Coagulation 

4.1 Introduction 

 

Among heparin’s physiologically relevant activities is the ability to influence the activity 

of proteins within the coagulation cascade and reduce blood clotting.  Heparin is thus 

well-established as the major anti-coagulant in the treatment of thromboembolic 

diseases.  Until recently, its anti-coagulant activity and the possibility (in a small, but 

significant proportion of users) of heparin-induced thrombocytopenia, a decrease in 

platelets which arises from an immune response to heparin usage (Aster et al., 2009), 

has tended to limit its use in other areas, including as an anti-proliferative agent.  In 

this chapter we assess the effects of heparin analogues on blood coagulation and 

their potential to induce thrombocytopenia. 

Damage to blood vessels triggers the process of haemostasis to stop bleeding.  The 

process involves three distinct phases: 1) vasoconstriction of the damaged vessel to 

limit blood flow and loss; 2) formation of a platelet ‘plug’ (primary haemostasis); and 

3) coagulation or blood clot formation (so-called secondary haemostasis, although 

primary and secondary haemostasis occur simultaneously) (Austin, 2017; Gale, 

2011). A platelet plug, also known as haemostatic plug, is an aggregation of platelets 

in early haemostasis in response to injury. When platelets are recruited to the damage 

site, they start to accumulate and adhere to each other, resulting in platelet plug 

formation to stop bleeding (Gale, 2011). The formation of a platelet plug occurs before 

fibrin clot formation, which is a more permanent resolution to injury. Thus, this process 

is considered as primary haemostasis. Meanwhile, during coagulation, activation of 

coagulant factors and thrombin cause the blood to change from a liquid into a gel 

through the conversion of fibrinogen to fibrin which strengthens the platelet plug. 

These coagulant factors are named by Roman numerals according to the date of their 

discovery, additionally, using “-a” to indicate the activated form. 
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Figure 4.1. The key components of haemostasis. Haemostasis consists of four main 

steps: 1) vasoconstriction refers to blood vessel narrowing; 2) primary haemostasis 

refers to the activity of platelets that helps clot formation; 3) secondary haemostasis 

refers to the activity of coagulant proteins that interact with platelets to help blood 

clotting; 4) clot dissolution refers to the process of wound healing and degradation of 

clots (fibrinolysis) (Austin, 2017; Gale, 2011). Image drawn with PowerPoint.     

 

4.1.1 Coagulation Cascade 

 

The coagulant cascade of secondary haemostasis can be divided into the contact 

activation pathway (also known as the intrinsic pathway) and the tissue factor pathway 

(also called the extrinsic pathway). Both feed into a common pathway ending in the 

thrombin-dependent formation of fibrin strands (Figure 4.2).  

 

Contact activation pathway  

The contact activation pathway is a parallel pathway for factor XII-induced thrombin 

activation. This activation is mainly mediated by factor XIIa binding to collagen. The 

damaged vascular endothelium induces exposure of haemostatic components, such 

as tissue factor and collagen (van der Meijden et al., 2009). Collagen fibrils, with 

negative charge, are the main proteins of the extracellular matrix (Bailey and Paul, 

1999). When factor XII binds to collagen, it triggers auto-activation of XII (van der 

Meijden et al., 2009; Wu, 2015). Meanwhile, the exposure of collagen also leads to 

adhesion and activation of platelets (Nieswandt and Watson, 2003), resulting in the 

release of Ca2+ from platelets  (van der Meijden et al., 2009). GAGs, such as HS and 
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heparin, also provide negative charge that triggers factor XII activation, which is 

reviewed in Renne, 2012 (Renné et al., 2012; Samuel et al., 1992). The active form 

of factor XII activates  factor XI which in turn activates factor IX (Achneck et al., 2010; 

Palta et al., 2014).  Active factor IX (IXa) interacts with its cofactor factor VIIIa to form 

a tenase complex on the phospholipid surface of activated platelets, following by 

activation of factor X in the presence of Ca2+ (Achneck et al., 2010; Hemker et al., 

1983; Mann, 2003). Factor X leads into the common pathway. 

 

Figure 4.2. Scheme of the coagulation cascade. Coagulation can be divided into the 

contact activation pathway and the tissue factor pathway, both leading to the common 

pathway. Thrombin and factor Xa are the most sensitive to the inhibitory effect of the 

antithrombin/heparin complex. The inhibitory activity of antithrombin can be enhanced 

by heparin binding. AT, antithrombin (Oduah et al., 2016). Image drawn with 

PowerPoint.   
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Tissue factor pathway 

The tissue factor pathway is considered to be the first step in plasma-mediated 

coagulation activated by tissue factors presented in the subendothelial tissue (Lasne 

et al., 2006). When the blood vessel endothelium is damaged, factor VII leaves the 

circulation and comes into contact with tissue factor expressed on the surface of 

stromal fibroblasts and leukocytes. This forms an activated tissue factor-factor VIIa 

complex which converts factor X to Xa (Owens III and Mackman, 2010). Factor Xa 

can be inhibited by linking to tissue factor inhibitor, followed by generation of tissue-

factor-inhibitor/Xa complexes. These complexes can subsequently bind to tissue-

factor/VIIa, leading to a larger complex (tissue-factor-inhibitor/Xa/ tissue-factor/VIIa) 

that simultaneously suppresses both factor VIIa and Xa (Dahm et al., 2008). In 

addition, protein S can enhance this interaction in the presence of calcium and 

phospholipid (Ezihe-Ejiofor and Hutchinson, 2013).  

 

Common pathway  

The final common pathway begins with the activation of factor X. This can be via factor 

IXa from the contact activation pathway or VIIa from the tissue factor pathway. Xa and 

its cofactors (factor Va, tissue phospholipids, platelet phospholipids and Ca2+) forms 

prothrombinase which converts prothrombin (factor II) to thrombin (IIa) (Kumar et al., 

2014; Palta et al., 2014). Thrombin, a serine protease, converts fibrinogen into 

insoluble fibrin and activates factor XIII, which crosslinks fibrin polymers to generate 

a network for clot stabilisation (Kumar et al., 2014).  Antithrombin, a serine protease 

inhibitor (serpin), functions to inactivate thrombin and factor X.  Its activity is 

substantially increased through interaction with heparin (Palta et al., 2014).  
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Table 4.1. Information of clotting factors and proteins (Palta et al., 2014).  

Number Clotting factor name Function 

I Fibrinogen Clot formation 

II Prothrombin 
Activation of I, V, VII, VIII, XI, XIII, 

protein C, platelets 

III Tissue factor Co-factor of VIIa 

IV Calcium 
Facilitates coagulation factor binding to 

phospholipids 

V Proacclerin, labile factor 
Co-factor of X-prothrombinase 

complex 

VI - - 

VII Stable factor, proconvertin Activates IX, X 

VII Antihaemophilic factor A Co-factor of IX-tenase complex 

IX Antihaemophilic factor B Activates X by interaction with VIII 

X Stuart-Prower factor 
Prothrombinase complex with V to 

activate thrombin 

XI Plasma thromboplastin antecedent  Activates IX 

XII Hageman factor Activates XI, VII and prekallikrein 

XIII Fibrin-stabilising factor Crosslinks fibrin 

XIV Prekallikrein Serine protease zymogen 

XV High molecule weight kininogen Co-factor 

XVI vWF 
Binds to VIII, mediates platelet 

adhesion 

XVII Antithrombin III Inhibits IIa, Xa and other proteases  

XVIII Heparin co-factor  Inhibits IIa 

XIX Protein C Inactivates Va and VIIIa 

XX Protein S Cofactor for activated protein C 
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4.1.2 Anticoagulant Activity of Heparin 

 

Antithrombin suppresses the activation of serine proteases, factor IXa, Xa, TF-VIIa 

and thrombin, by forming an antithrombin-protease complex that blocks substrate 

access to the protease’s active sites (Elmisbah and Aiderous, 2018). Formation of the 

inhibitory complex requires interaction between the protease and an exposed reactive 

site loop (RSL) or reactive centre loop (RCL), on the surface of the antithrombin 

molecule.  This inhibitory activity is increased in the presence of heparin or heparan 

sulphate through both the formation of stable heparin-antithrombin-protease 

complexes (Li et al., 2004) and through conformational changes induced in the RSL 

(Whisstock et al., 2000). The conformational changes involve amino acids P14 

(Ser380) and P15 (Gly379) within the N-terminal region of RSL, which is called the 

hinge region (Desai, 2004). This conformational change in the hinge region caused by 

heparin binding leads to expulsion of P14 and P15 from the body of antithrombin 

(Whisstock et al., 2000). This allosteric system has been held to promote the activity 

of antithrombin to inactivate factor IXa and factor Xa. However, in the absence of 

heparin, the amino acids P14 and P15 on RSL are embedded in the top of beta sheet 

A within antithrombin (Izaguirre et al., 2014). Antithrombin can still inactivate factor Xa 

and IXa without heparin, but heparin enhances the inhibitory activity of antithrombin 

several thousand-fold (Izaguirre et al., 2014). The strongest activation of antithrombin 

by heparin occurs through unusual pentasaccharide sequences, based on GlcNAc6S-

GlcA-GlcNS3S6S-IdoA2S-GlcNS6S- containing a scarce, central GlcNS,3S,6S 

residue. The conformational change of antithrombin binding to pentasaccharide is 

shown in Figure 4.3 (Capila and Linhardt, 2002; Olson et al., 2002; Skinner et al., 

1997).  

Heparin binding to antithrombin causes a conformational change of antithrombin, 

leading to serpin-protease interaction (i.e. antithrombin to factor Xa) by protease 

binding to the extend helix D (Dementiev et al., 2013; Li et al., 2004; Olson and Björk, 

1991). Specific residues on antithrombin found to be important for the interaction are 

the basic residues Lys 114, Lys 125 and Arg129 (Garg et al., 2011a) (Rashid et al., 

2014). In addition, crystal structures of a ternary complex between antithrombin, 

thrombin and heparin show antithrombin and thrombin bound to the same linear 

heparin chain (Izaguirre et al., 2014; Olson and Björk, 1991; Petitou et al., 2003). This 

enables close contact between the two proteins and stabilises extensive interactions, 

thereby increasing antithrombin’s inhibitory activity (Li et al., 2004; Olson et al., 2004). 

However, thermal stabilization experiments, linked to anticoagulation assays and 

protein secondary structure measurements using circular dichroism spectroscopy, 

showed that those polysaccharides with high anti-Xa activity did not necessarily induce 

the same conformational change in AT as heparin, rather, thermal stabilization of the 
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AT-polysaccharide complex correlated with anticoagulant activity (Lima et al., 2013). 

This indicates that conformational change is less important to anti-coagulant activity. 

 

Figure 4.3. Conformational changes of antithrombin bound by heparin.  Structures of 

(A) native (unbound) antithrombin (1E05) and (B) antithrombin in complex with 

heparin pentasaccharide (PDB: 1E03) are depicted in diagrammatic form. The heparin 

binding sites on antithrombin (C) are Lys-11 and Arg-13 in the N-terminus of 

antithrombin; Arg-46 and Arg-47 in the helix A (dark grey); and Lys-114, Phe-121, 

Phe-122, Lys-125 and Arg-129 in the region of the helix D (Beige). Heparin binding to 

antithrombin triggers expulsion of P14 (purple) and P15 (pink) from sheet A, 

enhancing the inhibitory activity of antithrombin to factor IXa and Xa (Izaguirre et al., 

2014; Rashid et al., 2014). More perspectives of antithrombin structure are in 

Appendix 6. Images are drawn with PyMOL. 

 

Although heparin is a well-known anticoagulant drug, it is found naturally in the body 

in secretory granules in mast cells, which regulate inflammation and immunity 

(Forsberg et al., 1999). It is worth noting that physiologically, the heparin produced by 

mast cells is not the principal activator of antithrombin. Instead, heparan sulphate, 

which is found extensively on the surface of vascular cells, has been proposed as the 

physiological mediator of the above effects (Casu and Lindahl, 2001). 
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4.1.3 The Influence of Modified Heparin Analogues on Antithrombin Binding 

 

The molecular weight of the heparin chains affects its interaction with antithrombin 

(Cosmi, 1997). To form a ternary complex with antithrombin and thrombin, 

oligosaccharides of more than 18 units are required (Hirsh et al., 2001). 

Unfractionated heparin (UFH) and LMWH have weak ability to inactivate thrombin due 

to their short fragments, however, LMWH is effectively enriched with high affinity 

pentasaccharides able to interact with Xa (Hirsh et al., 2001). This high affinity 

pentasaccharide is often considered as the primary antithrombin binding site due to 

its direct electrostatic and hydrogen-bonding for the interaction between 3-O-

sulphated groups and antithrombin (Desai et al., 1998). Furthermore, several reports 

revealed that net charge plays an important role in the interaction between heparin 

and antithrombin (Chavante et al., 2014; Lima et al., 2013; Seyrek et al., 2007). For 

instance, heparin-like glycosaminoglycan with higher proportions of sulphated 

disaccharide units show subtle differences in conformational change compared to 

heparin when binding to antithrombin in NMR (Meneghetti et al., 2015). The inhibitory 

effect of antithrombin-heparin on thrombin is dose-dependently enhanced by 

monovalent cations, such as Li+, Na+ and K+ (Griffith et al., 1980). In the absence of 

heparin, these cations can also enhance the inactivation of thrombin with antithrombin. 

However, with the exception of Li+, which has no effect, these monovalent cations may 

also influence the interaction of heparin and antithrombin (Griffith et al., 1980).  

 

4.1.4 Evaluation of Coagulation  

  

Several methods are available to assess the function of the coagulation cascade. 

These include measurement of activated partial prothromboplastin time (aPTT), 

prothrombin time (PT), thrombin time (TT), as well as the quantitative determination 

of fibrinogen levels. Of these, aPTT and PT assays are commonly used as a coagulant 

screen in clinical diagnosis (Goel and Ness, 2016). The aPTT test measures the 

activity of the contact activation and common pathways, and the PT test the activity of 

the tissue factor pathway (Figure 4.2). Other evaluation methods of coagulation, take 

ultra-specific thrombin generation tests for example, are more sensitive and can reflect 

the real hemostasis state of the individual patient much better, allowing an earlier 

diagnosis of abnormal coagulation. However, aPTT and PT assays are well 

established and they provide means of screening for abnormalities in intrinsic 

coagulation pathway factors IX, XI, XII, extrinsic pathway factors VII and common 

pathway factors II, V, X and fibrinogen (Oduah et al., 2016; Thomas et al., 2015).  
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Prothrombin time, PT: measuring activity of the tissue factor pathway 

In this assay phospholipid and CaCl2 are added to citrated plasma in the presence of 

tissue factor and thrombin to stimulate coagulation (Goel and Ness, 2016; Jenny et 

al., 2006). The time measured is from the addition of Ca2+ to clot formation. This is 

normally 11 - 14 seconds. 

 

Activated partial prothromboplastin time, aPTT: measuring activity of the 

contact activation pathway 

The aPTT assay measures activity of the contact activation pathway (intrinsic 

pathway), which is initiated by blood interaction with negatively charged surfaces.   

Here, phospholipid and CaCl2 are added to citrated plasma in the presence of 

activators of the contact activation pathway such as micronized silica and ellagic acid 

or kaolin (Ignjatovic, 2013). In general, time between Ca2+ addition and clot formation 

is normally around 30 - 40 seconds.  

 

4.1.5 Side Effects of Heparin: Heparin-Induced Thrombocytopenia  

 

A potential side effect of prolonged heparin usage is heparin-induced 

thrombocytopenia (HIT), a decrease in platelets which arises from an immune 

response to the complex formed between platelet factor 4 (PF4) and heparin (Aster et 

al., 2009). It is rare (5 -15 % of patients) and transient, but it raises the mortality rate 

in post-surgery patients. HIT is defined as a syndrome that causes a decrease in 

platelet number of more than 50% and/or thrombotic complications detected 5 -10 

days after vascular surgery. After surgery or infection, the activation of platelets 

induces PF4 release from α-granules (Figure 4.4).  PF4 can bind to polyanions, such 

as heparin, or polyanions on the surface of bacteria (Greinacher, 2015), forming PF4-

polyanion-complexes (Kreimann et al., 2014). PF4 binds to negative-charge-rich 

heparin with high affinity but it is size-dependent since small heparin fragments (less 

than 6 saccharides) are ineffective at bridging PF4 tetramers (Rauova et al., 2005) 

although a previous study claimed the smallest heparin fragment for PF4 binding is 

20 saccharides (Stringer and Gallagher, 1997). In response to these complexes, 

activated B lymphocytes generate anti-PF4-polyanion IgGs (so called HIT antibodies), 

which recognise the neoepitopes on the positively-charged PF4 within PF4-polyanion-

complexes (Brandt et al., 2014; Zheng et al., 2013). The Fc portion of these IgGs can 

also bind to Fc RIIa receptors on platelets and induce Fc receptors clustering, resulting 

in severe platelet activation and aggregation (Arman and Krauel, 2015; Kasthuri et al., 

2012). Moreover, these immune complexes can cross-link to Fc RI receptors on 
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monocytes to activate them, followed by tissue factor expression on active monocytes 

(Cines et al., 1987). These activated platelets and monocytes stimulate thrombin 

formation which acts upon endothelial cells (ECs). Activated ECs then express tissue 

factors which enhance thrombin generation (Cines et al., 1987).  Furthermore, the 

high levels of intravascular platelet activation and aggregation leads to a sharp 

decrease of platelet number and an increase in the production of platelet-derived 

microparticles, which accelerates thrombin formation (Greinacher, 2015).  

 

Figure 4.4. HIT is caused by IgG antibodies formed in response to complexes of 

PF4/heparin. It results in platelet aggregation and thromboembolic events. PF4, 

platelet factor 4; HIT, heparin-induced thrombocytopenia (Greinacher, 2015). Image 

drawn with PowerPoint. 

 

4.1.6 Aim of This Chapter: 

  

The aim of this chapter was to use aPTT and PT assays to assess the effects of our 

novel heparin analogues on blood coagulation. We also investigated the ability of the 

heparin analogues to form complexes with PF4 as a means of assessing their 

potential to induce thrombocytopenia. 
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4.2 Results 

 

Since structural modifications to heparin result in changes in the way it interacts with 

growth factors/growth factor receptors (Chapter 3), we reasoned that it may also alter 

the interaction with antithrombin. Therefore, to assess whether anticoagulant activity 

is preserved in our heparin analogues, we used human plasma in the aPTT assay to 

measure the activity of the contact activation and common pathways, and the PT 

assay to measure activity of the tissue factor pathway. aPTT and PT assays were 

conducted in collaboration with Patricia Procter at the University of Keele, UK. 

 

4.2.1 Coagulant Activity – aPTT Assay 

 

The aPTT assay was conducted in the presence of 1mg/ml of the cation-forms of 

(fully-sulphated) heparin and cation-desulphated forms of heparin (see Table 4.2). 

Time to coagulation for each of the analogues and for unmodified heparin is shown in 

Figure 4.5 below. A time of 32 seconds was taken as normal blood coagulation time 

(i.e. in the absence of heparin) (Hernaningsih and Butarbutar, 2019). The maximum 

assay time was set at 120 seconds. The cationic heparin analogues and cation-

desulphated heparin analogues numbers 2-4 retained their anticoagulant activity, as 

well as the Mg-6 (cation form of the derivative number 6 (see Figure 4.5B) and 

calcium-6 desulphated forms. The anticoagulant activity of the remaining cationic 

forms of derivatives 5-8 was significantly reduced (P < 0.01). Interestingly, the 

analogue 1 (untreated heparin, Section 2.2) is normally in the sodium form. Thus, the 

results of untreated heparin and Na-1 heparin should be similar. However, our data 

showed the different effect between untreated heparin and Na-1 heparin in Figure 4.5 

A. The data may indicate that the untreated heparin is somehow different from Na-1 

heparin, and this needs further investigation.  
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Table 4.2. Desulphated heparin analogues. Images are drawn with ChemDraw 18.1. 
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Figure 4.5. The anti-coagulant activity of cation-desulphated heparin analogues in 

aPTT assay. (A) Raw data of dose response curve for the analogues. (B) The 

summary histogram of the anti-coagulant activity of 1 mg/ml heparin analogues. 

Results were expressed as mean ± S.D. Results from n=3 experimental repeats within 

an experiment. § P<0.001 compared to control (untreated plasma) with statistical 

significance determined by a one-way ANOVA followed by Tukey post-hoc test. NS, 

no significant, P>0.05. Na, sodium-binding; K, potassium-binding; Mg, magnesium-

binding; Ca, calcium-binding. 

 

4.2.2 Coagulant Activity – PT Assay 

 

To determine effects on the tissue factor pathway, time to coagulation was also 

measured for the same analogues using PT assays (Figure 4.6). A time of 15 seconds 

was taken as normal blood coagulation time (i.e. in the absence of heparin). Here, 

anticoagulant activity was absent or significantly reduced in cation-exchanged 

analogues 2, 5, 6 and 8.  Cation forms of naive heparin retained anticoagulant activity. 

Cation-exchanged analogues 3 and 4, K-3 and Ca-4, retained anticoagulant activity, 

while all other cation forms of these analogues showed a significant reduction in 

activity.  
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Figure 4.6. The anti-coagulant activity of cation-desulphated heparin analogues in PT 

assay. (A) Raw data of dose response curve for the analogues. (B) The summary 

histogram of the anti-coagulant activity of 1 mg/ml heparin analogues. Results were 

expressed as mean ± S.D. § P<0.001 compared to control (untreated plasma) with 

statistical significance determined by a one-way ANOVA followed by Tukey post-hoc 

test, n=3. NS, no significant, P>0.05. Na, sodium-binding; K, potassium-binding; Mg, 

magnesium-binding; Ca, calcium-binding. 

 

4.2.3 HIT Assay 

 

To assess the potential of the heparin analogues to form complexes with PF4, we 

used native (non-denatured) gel electrophoresis to measure the size of heparin-PF4 

complexes. 50 ng of heparin analogues or 50 ng unmodified heparin (positive control) 

were treated with 250 ng of recombinant PF4 protein at 37°C for 4 hours before 

electrophoresis. The native gel was constructed by stacking 5%, 10% and 20% (w/v) 

acrylamide gels, following by electrophoresis at 30 V for 2 hours on ice. Following 

electrophoresis, protein complexes of PF4 were visualised by silver staining. All the 

cationic forms of heparin showed the formation of PF4/heparin complexes.  Na-

heparin seemed to form less robust structures compared to heparin and K-, Ca-forms, 

whilst Mg-heparin seemed to form a large complex trapped at the top of gel. 
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Figure 4.7. Silver stained native gels (A) and the densitometry of gels (B) showing 

the presence of heparin-PF4 complexes. Recombinant PF4 protein were incubated 

with 50 ng of heparin analogues to form PF4/heparin complexes. Arrows show the 

difference compared to naive heparin.   
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4.3 Discussion 

 

The results in this chapter reveal that chemically modified heparin analogues have 

different effects on coagulation (summarised in Table 4.3). For example, in the aPTT 

assay, the fully-desulphated analogues lose their activity, whilst most of the slightly 

desulphated analogues retain activity which is similar to unmodified heparin. Several 

studies have reported that net charge affects the interaction between antithrombin and 

heparin which are the key mediators of anti-coagulation (Chavante et al., 2014; Lima 

et al., 2013; Seyrek et al., 2007). Moreover, the stabilisation of heparin-antithrombin 

is essential for anti-coagulant activity (Lima et al., 2013). Our PT assay results show 

that the anti-coagulant activity of slightly desulphated heparins are generally reduced, 

except for the analogue K-3 and analogue Ca-4. The aPTT assay measures effects 

on the contact activation pathway and common pathway, whereas PT assay 

measures effects on the tissue factor pathway and common pathway (see Figure 4.2). 

It may be surmised that desulphation probably affects interactions with several 

coagulation-relevant proteins and to different extents. Many heparin-binding serpins 

have been identified, such as antithrombin, protein C inhibitor, protease nexin (PN) -

1, protein Z-dependent protease inhibitor (ZPI) and heparin cofactor II (HCII) (Figure 

4.8) (Whisstock et al., 2000). These serpins are also regulators in the coagulant 

cascade (Bhakuni et al., 2016). Heparin interacts with the positive residues on these 

serpins to activate their anti-coagulant activity. Similar to antithrombin, the region for 

target protease binding on serpins is on their RSL which is extended and unfolded by 

heparin binding (Khan et al., 2011; Whisstock et al., 2000). However, these serpins 

can inhibit other pro-coagulation proteases. Take PN-1 for example, its efficient 

inhibitory activity towards thrombin, factor Xa and factor XIa is dependent on heparin 

(Bhakuni et al., 2016; Knauer et al., 2000). Protein C inhibitor can act as a pro-

coagulant or an anti-coagulant serpin. It regulates anti-coagulant activity by forming a 

ternary complex with heparin and proteases such as thrombin and factor Xa (Bhakuni 

et al., 2016; Neese et al., 1998). Nevertheless, heparin enhances the inhibitory effect 

of protein C inhibitor on factor Xa only in the presence of Ca2+. This is because the 

exosite of factor Xa is exposed by Ca2+ binding to the negatively-charged domain of 

factor Xa where it forms a ternary complex with heparin and serpins (Bhakuni et al., 

2016). Since the structures of these enzymatic and/or chemical modified analogues 

are changed, as well as their charge contribution (Rudd et al., 2007), their interaction 

with other serpins may also be altered, as well as their inhibitory activity to pro-

coagulant factors.  
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Table 4.3. Summary of the results in aPTT and PT assay. 
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Figure 4.8. Potential regulatory roles of serine protease-heparin complexes in 

coagulation. AT, antithrombin; PCI, protein C inhibitor; PN-1, protease nexin -1; ZPI, 

protein Z-dependent protease inhibitor; HCII, heparin-cofactor II (Bhakuni et al., 2016). 

Image is drawn with PowerPoint.  

  

The affinity of heparin for antithrombin may influence the inhibitory activity to factor Xa 

and thrombin. Heparin binds to antithrombin in a two-step process: (1) formation of a 

heparin-antithrombin complex with weak interaction (Kd ~20 μM); (2) conformational 

change of antithrombin to a compact and high-affinity complex with heparin (Kd ~20 

nM) (Bhakuni et al., 2016; Schreuder et al., 1994). The interaction between heparin 

and antithrombin is regulated by ionic and non-ionic residues in helix A and helix D of 

antithrombin, as well as residues in the N-terminal regions (see Figure 4.3) (Bhakuni 

et al., 2016; Desai, 2004). In principle, the important heparin binding sites on 

antithrombin are Lys-11, Arg-13 in N terminal, Arg46, Arg47 in helix A, Lys 114, Lys 

115, Arg 129 in helix D, which are positively-charged regions (Bhakuni et al., 2016; 

Rashid et al., 2014). The 2-O, 3-O desulphated heparin derived from UFH shows low 

affinity for antithrombin, resulting in low inhibitory activity to factor Xa and factor IIa 

(Rao et al., 2010).  Therefore, it is considered that the charge of heparin is an 

important factor in determining its affinity to antithrombin. However, thethe key is 

complementarity between the surfaces of the protein and sugar that engage. This is 



80 

 

affected by the sulphation of the sugar and but its coordination of cations. Thus, it can 

be assumed that the affinity of our cationic and/or desulphated heparin analogues to 

antithrombin may also altered not only due to the presence of less negative charge, 

but also due to changes in the shape of the sugar surface and the position in space 

of groups that engage the protein.      

In general, heparin mainly influences blood coagulation through interaction with 

antithrombin, resulting in the inactivation of pro-coagulant factors. There is some 

evidence showing that the antithrombin-heparin complex interacts and inhibits other 

factors in the coagulant cascade, such as factor Xa, factor IXa, factor XIa and factor 

XIIa (Onishi et al., 2016; Stead et al., 1976). Thus, although the administration of 

heparin interferes predominantly with the activation of factor Xa in the common 

pathway, it still mediates the activation of proteases in the contact activation pathway 

(Croizat et al., 2000).  For this reason, the aPTT assay is primarily used clinically to 

monitor heparin therapy, although in cases of heparin overdose the tissue factor 

pathway may also be affected (Ichikawa et al., 2017). Clinically, the aPTT/PT test 

results are used to indicate deficiencies in specific coagulant factors (Table 4.4). Our 

aPTT/PT data may provide a strategy to identify which coagulant factors are affected 

by our analogues. In addition, it is unclear how chemical or enzymatically-modified 

heparin analogues interact with serine proteases other than antithrombin to inactivate 

coagulant factors such as factor VIIa, IXa, XIa and XIIa (Bhakuni et al., 2016). 

However, our data suggests that the heparin analogues have distinct effects on anti-

coagulation which may be caused by the alteration of affinity to various serpins that 

suppress different coagulant factors. 

 

Table 4.4. The interpretation of aPTT/PT results in clinical treatment (Thomas et al., 

2015).   

  Description  

PT ↑ aPTT – Deficiency of factor VII 

PT – aPTT ↑ Deficiency of VIII, IX, XI, XII; in the presence of heparin 

PT ↑ aPTT ↑ Inhibition of factor Xa, prothrombin; overdose of heparin 

PT ↓ aPTT ↓ Risk of thrombin formation ↑ 

 

The molecular weight (chain length) of heparin analogues affects the anti-coagulant 

activity via interactions with coagulant factors other than antithrombin. For instance, 

Fondaparinux, a synthetic heparin pentasaccharide, has been developed for clinical 
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treatment as a highly selective anticoagulant. It inhibits activation of factor Xa, yet has 

no activity against thrombin (factor IIa) because its sequence is too short to bridge 

antithrombin and thrombin (Cheng, 2002; Holmer et al., 1981; Oosta et al., 1981; 

Thomas et al., 2015). In addition, different molecular weight LMWHs exhibited 

different levels of factor-Xa/factor-IIa inhibitory ratios (Gerotziafas et al., 2007; 

Thomas et al., 2015). 

 

Table 4.5. Different LMWHs show diverse anti-Xa/XIIa ability (Thomas et al., 2015).  

Agent Molecular weight (k.Da.) Anti-Xa/IIa (anti-Xa IU/mg) Ratio 

Unfractionated 

heparin (UFH) 
15 193/193 1 

Tinzaparin 6.8 90/45 2 

Dalteparin 6.0 130/52 2.5 

Enoxaparin 4.2 100/25 3.9 

Fondaparinux 1.7 930/0 - 

 

 

Heparin can also interact with PF4, causing a severe immune reaction. Our data 

(Figure 4.7) indicates the formation of PF4-heparin complexes with four cationic 

heparin analogues, Na+, K+, Ca2+ and Mg2+. Native gel electrophoresis suggest that 

Na-heparin in particular caused slightly less aggregation than unmodified heparin. 

Since the heparin binding site on PF4 contains positively charged Arg-20, Arg-22, His-

23, Thr-25, Lys-46 and Arg-49, which regulate the electrostatic interaction between 

heparin and PF4 (Mayo et al., 1995; Rao et al., 2010), it is considered that the affinity 

of PF4 binding to heparin depends largely on how “negatively charged” the saccharide 

is. In addition, heparin binding to PF4 also depends on the size of heparin. The shorter 

heparin chains (less than 6 saccharides) are insufficient to bridge PF4 tetramers 

(Rauova et al., 2005; Stringer and Gallagher, 1997). PF4 presents high affinity for 

negatively charged molecules and can also interact with low-sulphated 

glycosaminoglycans, such as HS, with low affinity (Nader, 1991; Rauova et al., 2006). 

Therefore simplistically, the generally lower levels of formation of PF4/heparin 

complexes in our Na-heparin and K-heparin data may be because the monovalent 

cations on heparin analogues neutralise some of the negative charge from original 

heparin, decreasing the interaction with PF4. Unexpectedly however, the Ca-heparin 

analogue, which carries less negative charge and should thereby lead to less 
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aggregation compared to monovalent cationic heparin analogues, had a similar effect 

on PF4-heparin accumulation as unmodified heparin. It may indicate the occurrence 

of the cation-induced conformational change of PF4-heparin complex because of the 

charge distribution on heparin altered by cation binding. Moreover, the other divalent 

cationic heparin – Mg-bound heparin, exhibits a larger PF4-heparin complex 

compared to the other heparin analogues. The divalent cations – Mg2+ and Ca2+ exhibit 

stronger coordination with the heparin as the negative charged sulphation or 

carboxylation groups from heparin can replace two of these oxygens from water when 

they bind the ion (Seo et al., 2011). In addition, hydration also leads to geometry 

changes, especially for carboxylate and sulphate groups. Divalent cations have a 

greater impact on saccharide dehydration than monovalent ones (Teychené et al., 

2018). As a consequence, the interaction between divalent cations and heparin 

causes an overall compaction of structure (Figure 4.9). Since cation-bound heparin 

displays a relatively compact sugar chain, it may affect PF4 binding. Some reports 

observed that amino acids Thr-25 and Asn 47 on PF4 provide hydrogen bonds to 

heparin (Mayo et al., 1995). Hydrogen bonds are proposed between the sulphamate 

(NHSO3(-)) proton and the 3-O-sulphated group of the 3,6-O-sulphated N-

sulfoglucosamine residue, and an additional hydrogen bond in the C3-OH groups of 

glucuronic acid and 2-O-sulphation of iduronic acid residues in the pentasaccaride 

(Beecher et al., 2014; Mayo et al., 1995). Furthermore, 2-O sulphation of iduronic acid 

of heparin is required for PF4 binding (Rao et al., 2010). As a result of these studies, 

it is speculated that hydrogen bonding may be involved in divalent cationic interaction 

with PF4. However, there is not enough information to explain the interaction between 

PF4 and the divalent cationic heparins.  

Figure 4.9. Relative size of Na+, K+, Mg2+, Ca2+ and their typical coordinations. (A) 

Sizes of atoms and ions in pm. (B) Typically, monovalent cation shows six-fold 

coordination (left) and eight-fold coordination for divalent cations (right). Each cation 

is typically coordinated by either six oxygen atoms (usually from water) for Na+ and 

K+, or eight oxygen atoms for Mg2+and Ca2+. Images are drawn with MolView 

(http://molview.org/). 

http://molview.org/
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PF4 is a tetrameric chemokine with four cysteines which forms two disulphide bonds. 

Both X-ray and NMR studies reveal that all of the monomeric subunits in tetrameric 

PF4 consist of a region of extended loops (N-terminal regions) followed by three-

stranded antiparallel β-sheet domains with α-helix laying across (Huynh et al., 2019; 

Zhang et al., 1994). The tetrameric structure of PF4 (assembled by monomers A, B, 

C and D) is stabilised by a salt bridge within the AB/CD interface and by the antiparallel 

β-sheet-type hydrogen interaction between AC/BD dimers (Zhang et al., 1994). There 

are three interactions involved in this energy stabilisation: electrostatic interaction, 

hydrogen bonding, and van der Waals forces. The dominating energetic forces are 

provided by electrostatic interaction and hydrogen bonding (Zhang et al., 1994). In 

addition, the tetrameric structure of PF4 is essential for formation of the large heparin-

PF4 complexes that HIT antibodies recognise. However, the anti-PF4/heparin 

antibodies can also identify PF4 in complex with polyanions (Greinacher, 2015). When 

PF4 binds to heparin, the structure is changed, exposing the neoepitopes which leads 

to anti-PF4/heparin antibody production (Kreimann et al., 2014). In addition, the 

conformational change of PF4 binding to heparin requires energy, which is provided 

by two PF4 tetramers clustering together (Huynh et al., 2019). PF4 has strong positive 

charge and the repulsive force can be neutralised by the negative charge of long chain 

heparin (Greinacher and Delcea, 2015; Kreimann et al., 2014). When two PF4 

molecules approach each other, two clouds of positive charges fuse into one cloud. 

This process releases energy for conformational alteration of PF4, resulting in HIT 

antigen exposure (Sauerborn et al., 2013). In summary, charge alteration may 

mediate the affinity of heparin to other proteins and influences the interaction within 

heparin-activated complexes. This conformational change then leads to different 

biological responses. 

In this chapter, we have accessed the anti-coagulant and anti-thrombotic activities of 

various heparin analogues. Our results suggest that the structural modification of 

heparin changes their activities in biological events and it is conceivable that these 

alterations will associate with cell signalling. Therefore, we will investigate the 

expression of growth factor receptors and assess how these modified analogues 

influence cell signalling in the next chapter. 
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Chapter 5: Elucidating Signalling Effects of 

Heparin Analogues on HCASMCs and HCAECs  

 

Heparan sulphate (HS) belongs to the glycosaminoglycan (GAG) family and is found 

on the cell surface and in the extracellular matrix attached to proteins to form heparan 

sulphate proteoglycans (HSPGs).  HS regulates cell signalling by interacting with a 

large number of extracellular proteins, including growth factors and growth factor 

receptors, known collectively as the heparan sulphate interactome (Beamish et al., 

2009; Gu et al., 2010; Ori et al., 2008). Heparin and its analogues, which are more 

sulphated compared to HS, act as a proxy for HS and interact with proteins by binding 

to specific amino-acid sequences via both ionic interaction and non-ionic interaction 

(Garg et al., 2011a; Olczyk et al., 2015; Thompson et al., 1994a). In general, heparin-

binding proteins comprise regions of positively-charged basic residues, such as lysine, 

arginine and histidine, whereas heparin contains a highly negative charge density. 

Many studies have revealed that these basic residues determine the properties of 

heparin binding, with arginine showing the highest affinity for heparin and histidine the 

lowest (Rudd et al., 2017). In addition to basic residues, hydrophobic residues, which 

are usually next to individual basic amino acids, are also essential for heparin-protein 

stabilisation because they can contribute non-electostatic interactions (such as 

hydrogen bonding and van der Waals bonds) (Bolten et al., 2018) and therefore 

provide binding energy (see energy of binding in Table 5.1), for example in the case 

of heparin-thrombin and heparin-antithrombin (Fromm et al., 1995; Rudd et al., 2017). 

In the case of GF-GFR-heparin complexes, the negatively-charged regions on heparin 

can bind to cationic sites on proteins, resulting in conformational change (i.e. FGF-

FGFR-heparin) and modulation of downstream signal transduction (Beamish et al., 

2009; Rifkin and Moscatelli, 1989; Zhang, 2010).  For the formation of heparin-serpin 

complexes, non-ionic interactions such as hydrogen bonding, hydrophobic 

interactions and van der Waals provide additional binding force in addition to ionic 

interactions (Bolten et al., 2018; Thompson et al., 1994a). Since it has been reported 

in FGF2-heparin binding, non-electrostatic interactions may also be involved in the 

formation of other GF-GFR-heparin complexes (Raman et al., 2003). In the above 

analyses, the energetic contribution of the non-covalent interactions of protein and 

sugar have not been separated from that of conformational change in the protein 

induced by sugar binding. The latter will account for most of the free energy change 

associated with hydrophobic bonding and likely for a good proportion of the hydrogen 

bonding. 
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Table 5.1. The energy of non-covalent binding  (Campbell and Farrell, 2008). 

 Energy 

Type of bond (kJ mol-1) (kcal mol-1) 

Ionic interaction > 85 > 20 

Hydrogen bond 20 5 

Hydrophobic interaction 4-12 1-3 

Van der Waals interaction 4 1 

 

5.1 Interaction between Heparin and GF-GFRs 

 

Several growth factors and their receptors interact with heparin/HS to regulate the 

downstream signalling, resulting in different biological responses. 

 

Fibroblast growth factors (FGFs) 

FGFs represent a family of 23 heparin-binding growth factors that activate cell 

proliferation by binding to their receptor and HS. The HS/heparin interaction is 

required for FGF-FGFR complex stabilizing to modulate biological function (Guglieri 

et al., 2008).  Specific patterns along the HS chains have been identified as important 

in the formation of FGF-FGFR-HS/heparin complexes: 6-O-sulphation is required for 

interaction with FGF1, FGF4, FGF7, FGF10 and PDGFs (El Masri et al., 2017), 2-O-

sulphation has high affinity with FGF2, whereas both 2-O- and 6-O-sulphation are 

required for FGF4 and FGF7 binding (Ashikari-Hada et al., 2004; El Masri et al., 2017). 

However, later research using an assay that doesn’t depend on electrostatic 

interactions showed that FGF4 has a preference for 2-O sulphation and N-sulphation 

and less so for 2-O or N-sulfation paired with 6-O sulphation (Li et al., 2016). FGF8 

has weak binding with two types of octasaccharide, which are an oligosaccharide 

composed of HexA(2S)-GlcNSO3(6S) and an oligosaccharide composed of HexA-

GlcNSO3 (Ashikari-Hada et al., 2004). In addition, the sequence domain between β-

strand 10 and 12 of FGFs encoded in exon 3 is important for the interaction of FGFs 

with the heparin-FGFR complex (Luo et al., 1998). The nine residues between β-

strand 10 and 12 represent a XBXGXXBBG pattern (X, any residue; B, basic residue; 

G, glycine) which are called the “glycine box” (Ashikari-Hada et al., 2004; Luo et al., 

1998). The glycine box (positive charge) commonly exists in the FGF family (Ashikari-

Hada et al., 2004) (Table 5.2), but can only be considered to contribute in part to the  

canonical, primary, heparin binding sites of the FGF family (li al al 2016) 
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Table 5.2. Essential O-sulphation for FGF binding. The red square represents the 

glycine box, which is defined as a dominant sequence (XBXGXXBBG) for FGF binding 

to the heparin-FGFR complex (Ashikari-Hada et al., 2004; Luo et al., 1998).  

 

FGFRs are canonical receptor tyrosine kinases consisted an extracellular ligand 

binding domain (with three subunits – domain 1 (D1), domain 2 (D2) and domain 3 

(D3)), a transmembrane helix and an intracellular domain (Johnson and Williams, 

1992; Pomin, 2016). Mechanistically, the conformation and charge distribution of 

cation forms of heparin affects the affinity and/or the structure of FGF-FGFR-heparin 

complexes (Guimond et al., 2009; Rudd et al., 2007). With different subtypes of FGF 

ligand and different FGFRs, there are diverse conformations of FGF-FGFR-heparin 

complexes and, FGF1-FGFR2-heparin and FGF2-FGFR1-heparin are widely known 

to have a 2:2:1 (asymmetric) and 2:2:2 (symmetric) stoichiometry, respectively 

(Pellegrini, 2001; Pellegrini et al., 2000) (Figure 5.1). Oligosaccharide sequences with 

a certain sulphate group pattern can also form a temporary 1:1:1 complex by cross-

linking to the ligand and receptor (Pellegrini, 2001), followed by formation of 2:2:2 

complex. Thus, the FGF-FGFR-heparin complexes produced by different ligands, 

different receptors and different polysaccharides (HS or heparin) lead to different 

conformations which can therefore alter the biological outcome. In the symmetric FGF-

FGFR model, the dimers are regulated by the protein-protein contacts between two 

adjacent FGF-FGFR complexes, and interaction is enhanced through the interaction 

between heparin/HS and FGF-FGFR, and the FGF interaction from D2 of the other 

FGF-FGFR half. Moreover, the individual heparin binding domains on these two FGFs 

and FGFRs are associated into one heparin binding region where two heparins unite, 

enhancing the affinity of heparin with FGF-FGFR (Mohammadi et al., 2005; Pellegrini, 

2001; Pellegrini et al., 2000). On the other hand, there is no direct protein-protein 

contact between the two FGF-FGFR complexes in the asymmetric model. The dimer 
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is formed solely by the ability of heparin to dimerise the FGFs (Pellegrini et al., 2000). 

However, the difference of biological functions between these two structures remains 

unknown. 

 

Figure 5.1. The structure of FGFR and the scheme of FGF-FGFR-heparin complexes. 

(A) A FGFR consists a ligand binding domain, a transmembrane and a tyrosine kinase 

domain. (B) There are two ternary FGF-FGFR-heparin models. FGF dimerization 

produces a stable 2:1:1 complex prior to receptor dimerization. Heparin induces FGF-

FGF dimerization and leads to an asymmetric 2:2:1 complex. An 1:1:1 complex in the 

symmetric model recruits another 1:1:1 ternary complex via receptor dimerization, 

resulting in a biologically active symmetric 2:2:2 complex that activates FGF-

dependent signalling (Pomin, 2016). Images are drawn with PowerPoint. 

 

Vascular endothelial growth factors (VEGFs) 

HS/heparin also influences the receptor binding of VEGFs. There are four isoforms of 

VEGFA, VEGF121, VEGF165, VEGF189 and VEGF206, sharing the same receptor binding 

region.  VEGFA binding to HS, as for all heparin-binding proteins, controls its diffusion 

and, in the case of VEGF, provide spatially restricted stimuli which trigger vascular 

formation (Ruhrberg et al., 2002). VEGF165, VEGF189 and VEGF206 bind with increasing 

affinity to heparin, which means they form increasingly steep gradients from their 

source cell. Binding to heparin augments the affinity for their receptors, forming, 

analogously to FGFs, a VEGFA-VEGFR2-heparin ternary complex, which enhances 
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VEGF signal transduction in endothelial cells (Jakobsson et al., 2006; Keck et al., 

1997). In addition, to heparin enhancing the interaction of VEGF165 with VEGFR2 it 

also binds to VEGFR1, neuropilin (NRP)-1 and NRP-2, which are considered as co-

receptors that increase the stability of the VEGF-VEGFR complex (Xu et al., 2011). 

The VEGF dimer requires more than just sulphation on heparin/HS, such as 

sulphation on 2-O, 6-O and N position to support VEGF binding (Ferreras et al., 2012). 

Thus, N-sulphation and 6-O-sulphation on heparin are required for VEGF165 to interact 

with VEGFR2 while 6-O-sulphation and 2-O-sulphation are required for heparin to bind 

to VEGFR1 (Teran and Nugent, 2015). However, VEGF165 is unable to bind to 2-O-

sulphated or 6-O-sulphated groups on octasaccharides although it can bind to these 

groups on native heparin (Ashikari-Hada et al., 2004). This result indicates that a 

longer binding domain is required for VEGF165 binding, consistent with a single sugar 

chain engaging both heparin biding sites in the VEGF dimer. While VEGF121 is unable 

to interact with heparin due to the lack of a heparin binding domain (Keck et al., 1997), 

HS and heparin can still regulate the interaction between VEGF121 and VEGFR1 by 

binding to the receptor without binding to the ligand (Cohen et al., 1995; Jakobsson et 

al., 2006). Nevertheless, VEGF121 and VEGF165 binding to VEGFR1 is reduced in the 

presence of exogenous heparin (Krilleke et al., 2009). Furthermore, both HS and 

heparin are unable to mediate the interaction between VEGF121 and VEGFR2 (Gitay-

Goren et al., 1996; Teran and Nugent, 2015). The heparin-binding VEGFA complexes 

have additional functions beyond the endothelium, supporting endothelial cell survival 

and proliferation (Krilleke et al., 2009).  

 

Figure 5.2. Scheme of human VEGFA isoforms depicted as monomers. VEGF121, 

without heparin binding domain, is unable to bind to heparin. Exon domains are not 

drawn to scale (Keck et al., 1997; Krilleke et al., 2009). Images drawn with PowerPoint. 
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Epidermal growth factors (EGFs) and EGF-like growth factors (HB-EGFs) 

The binding of heparin with epidermal growth factor (EGF)-like growth factors (HB-

EGFs) and EGF receptors (EGFRs) is found on smooth muscle cells. Binding of 

ligands, EGFs and HB-EGFs, to EGFRs cause receptor homo- or hetero- dimerization 

and auto-phosphorylation (Schreier et al., 2013; Tzahar et al., 1996).  The pro-

proliferative activity of EGFs and HB-EGFs promotes SMC and macrophage 

proliferation and migration and atherosclerotic plaque formation (Lamb et al., 2004; 

Miyagawa et al., 1995), moreover, HB-EGF has high affinity for EGFRs and enhances 

cell division and migration (Vinante and Rigo, 2013). Unlike EGF and TGF, HB-EGF, 

like the majority of the EGF family, is a heparin-binding protein. The heparin binding 

site on HB-EGF is primarily located at the N-terminal of the EGF-like domain which 

contains three sequences for heparin recognition that do not match the XBBBXXBX 

and XBBXBX sequences often used to predict such sites, that were derived from 

collagen (Besner et al., 1992; Thompson et al., 1994b). Ligands from the EGF family 

share amino acid sequences (around 40 – 45 residues) containing six cysteine 

residues, which are considered the EGF-like domain, leading to formation of a 

CX7CX4CX10CXCX8C consensus sequence (Raab and Klagsbrun, 1997). In addition 

to the 21-amino acid extension from amino acid 93 to 113 in the heparin binding 

domain, the sequence KRKKK93-97, KKR103-105 and RKYK110-113 are the most able to 

interact with heparin (Takazaki et al., 2004). The HSPG on the cell surface can 

regulate the activity and the binding of HB-EGF. When the amount of HSPGs on SMCs 

is reduced, the activity of HB-EGF is decreased to the level of EGF and TGFα (Raab 

and Klagsbrun, 1997). HB-EGF activates EGFR1 and EGFR4 with binding to HSPGs 

on the cell surface, however, some reports show that it also activates EGFR2 via 

receptor transactivation (Holbro and Hynes, 2004). The EGFR signalling transduction 

can also be activated by cross-talk with non-tyrosine kinase receptors such as G 

protein-coupled receptors (GPCRs), which trigger HB-EGF binding to EGFRs 

(Liebmann, 2011; Schreier et al., 2013). 

 

Figure 5.3. Basic structure of the transmembrane form of HB-EGF. The mature region 

contains a hydrophilic domain and an EGF-like domain. The hydrophilic domain holds 

the cationic (basic) sequences, involved in interactions with heparin and HSPGs. The 
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heparin-binding domain of HB-EGF (in bold and coloured) is rich in basic amino acid 

residues - arginine (R) and lysine (K).  Exon domains are not drawn to scale (Paizis 

et al., 1998; Verstovsek et al., 2017; Vinante and Rigo, 2013). Image drawn wtih 

PowerPoint. 

 

5.2 Cell Signalling in Proliferation 

 

Ultimately, the effect of a heparin derivative on the proliferation of a cell type will 

depend upon the interaction between the derivative, growth factors (GFs) and growth 

factor receptors (GFRs).  The affinity of protein binding to heparin affects subsequent 

signal transduction. This depends on the charge and conformation of heparin 

derivatives, which can be altered by chemically modified desulphation or cation 

binding. In the context of this project it is therefore important to understand the 

complex roles played by GFs-GFRs in both smooth muscle cells (SMC) and 

endothelial cells (EC).  

 

Growth factor receptors associated with vascular hyperplasia  

SMC proliferation and migration plays a key role in atherosclerosis and/or restenosis. 

The VSMC switch from quiescent contractile smooth muscle to the proliferative 

(synthetic) phenotype, which is associated with plaque stability, is mediated by several 

growth factor receptors, including fibroblast growth factors receptors (FGFRs), 

platelet-derived growth factor receptor β (PDGFRβ) and insulin-like growth factor-1 

receptor (IGF1R) (Alexander and Owens, 2012; Cai et al., 2015; Chen et al., 2016a; 

Jan et al., 2011; Owens et al., 2004). In contrast, activation of transforming growth 

factor beta receptors (TGFβRs) can switch synthetic cells back to contractile state to 

inhibit hyperplasia (Chen et al., 2016a).  The situation is complicated by cross-talk 

between the signalling pathways (Figure 5.4).  

 

Platelet-derived growth factor receptor B (PDGFRB)  

Both PDGF-BB and PDGFRB are essential in neointimal hyperplasia as they regulate 

VSMC migration and proliferation (Andrae et al., 2008; Raines, 2004). The binding of 

PDGF-BB to PDGFRB induces VSMC migration through phosphorylation of Src and 

activation of the focal adhesion kinase (FAK) pathway (Son et al., 2014), and 

stimulates VSMC proliferation via Erk1/2 MAPK and Akt/mTOR pathways (Choudhury 

et al., 1997; Choudhury et al., 2006; Silvestre-Roig et al., 2013). However, 

overexpression of FAK inhibits PDGF-BB-induced VSMC proliferation and migration 

(Taylor et al., 2001). PDGFRB pathway activation is followed by leukocyte 
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accumulation and advanced plaque formation in mice (He et al., 2015). Many growth 

factors and cytokines are released by invading inflammatory cells. PDGFs are 

secreted from those inflammatory cells and also endothelial cells at the site of injury, 

attracting VSMC migration to the intima and proliferation (Andrae et al., 2008).  PDGF-

BB facilitates VSMC proliferation, in contrast, blocking the PDGFR pathway causes 

significant inhibition of VSMC proliferation. The downstream signalling of PDGFRs 

includes Ras/Erk, Src, phosphoinositide-3 kinase (PI3K)/Akt, phosphatases C and 

JAK/STATs which are important for VSMC proliferation. Heparin inhibits VSMC 

proliferation via PDGF-induced, but not EGF-induced Erk activation (Pukac et al., 

1998). It is suggested that other heparin-binding growth factors may be involved in the 

response to PDGFs (Millette et al., 2005; Pukac et al., 1998). FGF2 and FGFR1 

mediate the proliferative activity of PDGF-BB. It is observed that early Erk activation 

induced by PDGF-BB is independent of FGF2, but continued Erk activation relies on 

FGF2-FGFR1, whereas FGF2 and FGFR1 are not involved in PDGF-BB-induced 

PI3K activation (Millette et al., 2005). Heparin can also inhibit SMC proliferation 

through suppression of protein kinase C α-isoenzyme activity, which correlates to 

SMC proliferation and differentiation (Herbert et al., 1996).  

Similar to PDGFs, FGF2 promotes SMC proliferation and migration, as well as the 

SMC phenotypic switch (Chen et al., 2016a).  
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Figure 5.4. Signalling pathways in SMC proliferation during neointimal formation. 

Ligands binding induces phosphorylation of tyrosine kinase on receptors and activate 

downstream signalling. FGF signalling regulates the TGFβ signalling in smooth 

muscle cells and endothelial cells: FGFR inhibition improves TGFβ/TGFR signal 

transduction, leading to the SMC phenotypic switch (synthetic to contractile) and 

suppression of SMC proliferation. In endothelial cells, the TGFβ/TGFR signalling 

transduction enhances neointima formation (Chen et al., 2016b). PDGF- and EGF-

dependent regulation also involves neointimal hyperplasia. The Ras/Raf pathway and 

the PI3K/Akt pathway activated by growth factors (i.e. PDGF, bFGF, EGF) are the 

vital pathways in neointimal formation. In addition, NFκB pathway also links to the 

PI3K/Akt pathway, leading to cell division and inflammatory gene expression (Koeppel 

and Schober, 2016). Image drawn with PowerPoint. 

 

EC proliferation is equally important in vascular repair. Interaction between vascular 

endothelial growth factor (VEGF) and its receptor (VEGFR) can promote endothelial 

progenitor cells to repair the arterial damage (Yang et al., 2015). Although early VEGF 

activity is linked to EC restoration, its long-term activity promotes SMC proliferation 

and plaque formation/restenosis which causes failure of coronary artery bypass 

grafting (Kusumanto et al., 2006; Podemska-Jedrzejczak et al., 2018). Specific 

structures within heparin/HS chains are required for VEGF binding: octasaccharides 

(oligosaccharides with a degree of polymerization (dp)8) are the minimum size for 

VEGF binding and tetradecasaccharides (oligosaccharides with dp14) present the 

most effective binding with VEGF165, an VEGFA isoform, compared to unfractionated 
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heparin (Zhao et al., 2012). VEGFA, a dominant mediator of angiogenesis, can bind 

to both VEGFR1 and VEGFR2, but the main signal transduces though VEGFR2 

(Jakobsson et al., 2006; Peach et al., 2018), leading to endothelial cell proliferation, 

survival and migration.  These studies also indicated that the affinity of VEGF is based 

on the conformation and the level of sulphate of heparin/HS (effective nuclear charge 

roughly -7.1 ± 0.40 Zeff for native heparin) (Kenrick, 2019). HSPGs and NRP-1 are 

also identified as co-receptors which enhance the affinity and stability of heparin/HS 

binding to the VEGF165-VEGFR complex (Jakobsson et al., 2006; Peach et al., 2018; 

Teran and Nugent, 2015; Zhao et al., 2012) (Figure 5.5). Recently, PDGF binding to 

VEGFR2 has been discovered on ECs. The PDGF cross-family binding augments 

VEGFR2 activation and amplifies the signalling when the concentration of PDGFs is 

at least 25-fold greater than VEGFs (Mamer et al., 2017). However, the mechanism 

of PDGF-VEGFR cross-family signalling in the regulation of vascular hyperplasia is 

unclear. 

The transmembrane tyrosine kinase receptors, Tie1 and Tie2, are also important in 

angiogenesis, proliferation and migration of endothelial cells (Fiedler and Augustin, 

2006). The interaction between the ligand, angiopoietin (Ang), and Tie2 regulates the 

proliferative state of the endothelium. For instance, Ang-1-mediated Tie2 activation 

leads to endothelial quiescence, whereas activation of Tie2 by Ang-2 results in 

inflammation and EC proliferation (Fiedler and Augustin, 2006; Fujikawa et al., 1999) 

(Figure 5.6).   

 

 

The major role of VEGF-VEGFRs in SMCs and ECs is summarized in Table 5.3. 

In this chapter we explore which growth factor signalling pathways are impacted in 

SMCs and ECs with a view to explaining the differential effect of heparin analogues 

on VSMC and EC proliferation.   



94 

 

Figure 5.5. Scheme of VEGF-VEGFR2-NRP1-HS-induced signalling in ECs. The 

synergistic complex composed of VEGF, VEGFR2, neuropilin-1 (NRP-1), heparin and 

heparan sulphate proteoglycan (HSPG) regulates proliferation, survival, migration and 

permeability in ECs (Jakobsson et al., 2006; Teran and Nugent, 2015). Image drawn 

with PowerPoint. 

Figure 5.6. Scheme of Ang-1 and Ang-2 signalling pathways leading to EC 

quiescence and proliferation. EC proliferation is regulated by Ang-1 (activation) or 

Ang-2 (inhibition) stimuli through Tie2 signalling (Fiedler and Augustin, 2006). Image  

drawn with PowerPoint. 
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Table 5.3. Summary of the major roles of growth factor receptors in SMCs and ECs. 

GFRs Event Involved Ref. 

FGFRs 

SMC migration and proliferation + 

Plaque formation + 

SMC switch (contractile to synthetic) 

(Chen et al., 2016a) 

Interaction with heparin and HS (Wujak et al., 2015; Yu et al., 2014) 

VEGFRs 

SMC proliferation + 

EC proliferation + 

(Kusumanto et al., 2006; Podemska-

Jedrzejczak et al., 2018; Yang et al., 

2015) 

EC migration 

Interaction with heparin 

(Jakobsson et al., 2006; Krilleke et 

al., 2009) 

PDGFRβ 

SMC migration and proliferation + 

Plaque formation + 

(Andrae et al., 2008) 

Leukocyte accumulation + (He et al., 2015) 

SMC phenotypic switch (contractile to synthetic) (Chen et al., 2016a) 

IGF1Rs 

SMC phenotypic switch (contractile to synthetic) (Cai et al., 2015; Jan et al., 2011) 

SMC proliferation + 

SMC migration + 

(Zhang et al., 2017) 

EGFRs 

SMC proliferation + 

inflammation 

(George et al., 2013; Yogi et al., 

2011);) 

Interaction with heparin  

TGFRs 

Smads 2 and 3 activation (angiogenesis) 
(Mack, 2011; Shi and Massague, 

2003) 

SMC phenotypic switch (synthetic to contractile) (Chen et al., 2016a) 

Plaque formation (on SMCs) ˗ (Chen et al., 2016a) 

Tie2 

Inflammation 

EC phenotypic switch 

(Fiedler and Augustin, 2006; 

Fujikawa et al., 1999) 

+, positive correlation; ˗, negative correlation 
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5.3 Results 

 

The effect of heparin and its analogues on proliferation/migration of a particular cell 

type will likely reflect the types of growth factor receptor expressed on the cell surface. 

As a starting point, we used reverse transcription PCR (RT-PCR) to identify transcripts 

of growth factor receptors in HCASMCs and HCAECs. 

 

5.3.1 GFRs in HCASMCs and HCAECs: Differential Expression 

 

The differential effects of the cation forms of heparin on HCASMC and HCAEC 

proliferation/migration may be due to the differential expression of growth factor 

receptors (GFRs) between these two cell types.  To investigate this, a RT-PCR screen 

was undertaken (Figure 5.7). These cells express a range of GFRs.  Key differences 

were that PCR products for VEGFR1, 2, 3 were obtained from HCAECs while products 

for only VEGFR1, 2 were obtained from HCASMCs.  In contrast PCR products for 

both PDGFRA and PDGFRB were obtained in HCASMCs, but not from HCAECs.  

 

Figure 5.7. RT-PCR analysis of cDNA isolated from HCASMCs and HCAECs using 

primers against major growth factor receptors. All PCR products were purified and 

confirmed by sequencing. * indicates a non-specific amplification product. 

 



97 

 

5.3.2 Proliferative Activity of Heparin is affected by Different Growth Factors 

 

A key difference between HCASMCs and HCAECs in terms of transcript levels is the 

presence of PDGFRs in SMCs.  Activation of PDGFRs in SMCs mediates proliferation 

(Andrae et al., 2008) and thus these receptors may represent the target of the heparin 

analogues that induce differential proliferation in SMCs compared to ECs. To 

investigate this further, HCASMCs were grown in normal fully supplemented growth 

media, or basal media (no growth factors) supplemented with either FCS (~40 ng/ml 

PDGF) or FGF2 (10 ng/ml) or EGF (10 ng/ml) in the presence of heparin and the 

different cation forms of heparin (Na+, K+, Mg2+, Ca2+, 100 μg/ml) (Kwon et al., 2016). 

Following four days incubation, HCASMC number was assessed using MTT assays. 

Data were normalized relative to cell number for HCASMCs grown in fully 

supplemented GM in the absence of heparin (Figure 5.8).  It was hypothesised that if 

PDGFRs mediate the differential effect, the anti-proliferative activity of the cation 

forms of heparin should be maintained in fully supplemented GM and in basal media 

supplemented with FCS (PDGF), but lost in basal media containing only FGF2 or 

EGF.  

For unmodified heparin, HCASMC proliferation was significantly higher in basal media 

containing only FGF2 or EGF compared to fully supplemented GM (Figure 5.8).  This 

is consistent with the idea that the differential effect is mediated via the activation of 

PDGFRs. Interestingly, for the cation forms of heparin, the anti-proliferative activity 

was maintained or enhanced in basal media containing only FGF2 or EGF, while anti-

proliferative activity was decreased for Mg2+ and Ca2+ forms in basal media 

supplemented with FCS (predominantly PDGF).  One of the most striking effects was 

the significant enhancement of anti-proliferative activity in EGF-containing media for 

the Ca2+ forms of heparin. 
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Figure 5.8. Addition of different growth factors affects the action of cation forms of 

heparin on HCASMC proliferation. Cell number in the control group (grown in fully 

supplemented GM without heparin) is set at 1.0. GM, fully supplemented growth 

media; FCS, basal media with fetal calf serum (mainly PDGFs); FGF2, basal media 

with 10 ng/ml of fibroblast growth factor-2 (FGF2); EGF, basal media with 10 ng/ml of 

epidermal growth factor. * P<0.05, § P<0.001 compare to GM in each group; n=8; 

Tukey test.  

 

5.3.3 Effect of Heparin Analogues on Signalling Pathways Downstream of GFRs 

 

Activation of GFRs can be monitored by immunoblotting cell lysates with antibodies 

against phosphorylated tyrosine. We thus exposed HCASMCs in fully supplemented 

GM or fully supplemented GM containing 10g/mL of various heparin analogues.  

HCASMCs were subsequently lysed, proteins within the lysates separated by SDS-

PAGE and immunoblotted with antibodies against phospho-tyrosine. Immunoreactive 

banding patterns were analysed to determine which analogues altered the banding 

patterns, indicating potential changes in GFR signalling.    
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Figure 5.9. Immunoblot analysis using phospho-tyrosine-specific antibodies reveals 

little change in growth factor-stimulated signalling in HCASMCs in the presence of 

non-desulphated cation form heparin analogues. The cells were incubated with 10 

μg/ml heparin analogues in GM for 10 min after one hour serum starvation. The 

lysates of HCASMCs were analysed by 10% SDS-PAGE gel. Squares and arrows in 

(A) immunoblot and (B) densitometry show the difference compared to control 

(incubation in fully supplemented growth media (GM)). 

 

The result of this experiment suggests no clear change in immunoreactive banding 

patterns among the non-desulphated cationic heparin analogues compared to control 

(fully supplemented GM) and only minor differences between unmodified heparin and 

control compared to fully supplemented GM (Figure 5.9).  Our proliferative assays 

(Figure 5.8) suggest that EGF-mediated signalling pathways may be responsible for 

the anti-proliferative response. In an attempt to identify which band/s in the fully 

supplemented GM come from activation of EGFRs we also exposed HCASMCs to 

EGF (10 ng/ml) alone before lysing the cells and immunoblotting the lysates. Results 

showed an enhanced immunoreactive band at ~180 kDa in the presence of EGF alone 

compared to fully supplemented GM, suggesting that this band indicates activation of 

the EGFR. There was no clear evidence of any changes in intensity of this band in the 

presence of either sulphated (Figure 5.9) or desulphated (Figure 5.10) cationic 

heparin analogues. 
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Figure 5.10. Immunoblot analysis using phospho-tyrosine-specific antibodies reveals 

little change in growth factor-stimulated signalling in HCASMCs in the presence of 

cation-desulphated heparins. HCASMCs were activated by cation-desulphated 

heparin analogues for 10 minutes in growth media (GM) after one hour serum 

starvation.  The cell lysates were analysed by 10% SDS-PAGE gel. Squares and 

arrows show the differences compared to control (GM). 

 

5.4 Discussion 

 

The differential effects of heparin analogues on HCASMC and HCAEC proliferation 

likely results from differences in signalling through growth factor-mediated pathways 

between these two cells types. Our PCR results indicate that HCASMCs and HCAECs 

have a number of GFRs in common, but there are some differences, notably: (1) 

transcripts for VEGFR3 were only found in HCAECs; (2) transcripts for PDGFRA and 

PDGFRB were expressed on HCASMCs but not on HCAECs.  Differences in the 

presence of cell surface receptors is however not the whole story since there is also 

clear evidence of cell-specific signalling downstream of receptor activation. For 

example, while both HCASMCs and HCAECs express EGFRs, the same stimuli to 

these receptors results in different outcomes. EGF-heparin interacts with EGFRs and 

HSPGs on the SMC surface, leading to cell growth and hyperplasia (Raab and 

Klagsbrun, 1997), however, heparin inhibits SMC proliferation and migration via 
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suppression of HB-EGF-induced EGFR activation (Kalmes et al., 2000) while heparin 

shows no effect to the same pathway on EC (Arkonac et al., 1998).    

Mechanistically, it seems likely that the shape of the different cation forms heparin will 

affect the affinity and/or the structure of the GF-GFR-heparin complex.  Alteration of 

charge distribution on heparin has been shown to affect heparin’s conformation and 

its affinity to FGFs. The different conformations of different cationic heparins were 

studied by NMR (Rudd et al., 2007) and these different conformations influence FGF 

binding (Xu et al., 2012) and brings about different biological outcomes (Rudd et al., 

2007).  Despite the fact that heparin-induced anti-VSMC proliferation has been studied 

for more than three decades, the full mechanism of how heparin suppresses VSMCs 

remains unknown (Gilotti et al., 2014). To date, it has been reported  that heparin 

inhibits VSMC proliferation by suppression of mitogenic protein kinase C (PKC)-

dependent c-fos induction and mitogen-activated protein kinase (MAPK) pathway 

activation (Hedin et al., 1998). In addition, heparin also reduces  the activity of cyclin 

dependent kinase (CDK)-2 by increasing levels of protein p27kip1 to prevent  cell cycle 

transition from G1 phase to S phase (Fasciano et al., 2005; Sakakibara et al., 2005). 

Moreover, p27kip1 is negatively regulated by PDGF-BB in VSMCs via the ERK-

dependent pathway (Sakakibara et al., 2005). 

The expression of PDGFRs in HCASMCs, but not HCAECs, makes these receptors 

possible candidates for the differential anti-proliferative effects we see with our heparin 

analogues. A chemically modified heparin called LHT7, which is a low-molecular 

weight heparin conjugated with seven taurocholates, has been shown to inhibit PDGF-

BB-induced angiogenesis by suppression of the tyrosine phosphorylation of PDGFR, 

leading to an effective suppression of tumour growth. In addition, this suppression of 

proliferation is effectively inhibited by combination of PDGF and FGF2 (Chung et al., 

2015b).  However, our data obtained by growing HCASMCs in different growth factors 

(Figure 5.5) suggest that signalling via PDGFRs is not the primary cause of the 

differential heparin proliferation effects. Here the anti-proliferative effects of the cation 

forms were maintained or enhanced in basal media containing only FGF2 or EGF, 

while anti-proliferative activity was generally decreased in basal media supplemented 

with FCS (predominantly PDGF).  The clearest effects in these experiments was 

observed for the Ca2+ forms of heparin where there was the significant reduction in 

anti-proliferative activity in HCASMCs grown in media supplemented only with FCS 

(predominantly PDGFs) and a significant enhancement in anti-proliferative activity for 

cells grown in media supplemented with EGF alone. Previous research revealed that 

heparin inhibits VSMC proliferation through suppression of PDGF-induced Erk 

activation, but not EGF-induced Erk activation (Pukac et al., 1998). This may indicate 

that the Ca2+ forms of heparin mediate their effects through the Erk/MAPK pathway. 

Since HCASMCs and HCAECs both express EGFRs this is likely to reflect differences 

in signal transduction once these receptors are activated. In VSMCs, G-protein-



102 

 

coupled receptors (GPCRs) are activated by thrombin, leading to cleavage of pro-HB-

EGF (George et al., 2013; Prenzel et al., 1999). The active HB-EGFs stimulate EGFR 

phosphorylation by interaction with HSPGs and receptors, resulting in activation of 

downstream signalling such as the MAPK pathway, phosphoinositide-3 kinase (PI3K) 

and phospholipase C (PLC) (Holbro and Hynes, 2004; Makki et al., 2013). However, 

HB-EGF-induced EGFR activation is blocked by heparin binding (George et al., 2013). 

In endothelial cells, EGF binding and EGFR phosphorylation activates ERK1/2, 

leading to cell proliferation. In addition to this, the interaction between EGFs and 

PDGFRs induces phosphorylation of tyrosine residues on their receptors, creating 

binding sites for phospholipase C which associates and produces the factors for 

protein kinase C activation (Margolis et al., 1989; Monteiro et al., 2018; Nishizuka, 

1992). Furthermore, VEGF expression also depends on the activation of  EGFRs, 

especially after hypoxia stimuli (Monteiro et al., 2018). Hypoxia provokes 

angiogenesis by signalling through hypoxia-inducible transcription factors, which 

regulate many angiogenic genes, of which the induction of VEGF is the most 

significant (reviewed in Carmeliet, 2003).    

We also attempted to elucidate differential activation and modification of GFRs in 

HCASMCs by immunoblotting treated cell lysates with anti-phosphotyrosine 

antibodies.  Here, although we identified immunoreactive band ‘fingerprints’ 

associated with the activation of the EGFR, we saw no clear differences in banding 

patterns in cells treated with different heparin analogues. Thus, ultimately more 

sophisticated techniques such a global phospho-proteomics will be required to 

determine the intracellular signalling pathways through which heparin analogues 

suppress HCASMC proliferation. Although we did not show how these cationic heparin 

analogues influence GF-GFR signalling, our immunoblots (Figure 5.10) show some 

differences in the patterns of tyrosine phosphorylation in response to cationic heparin 

analogues. This may support this idea that these cations not only alter the shape of 

heparin but also alter (1) the affinity to GFs and GFRs, and (2) the shape of GF-GFR-

heparin complexes, resulting in different signalling activation. Since GF signalling is 

complex within these cell types, with considerable cross-over between pathways, 

differences in transcripts for GFRs between HCASMCs and HCAECs may also govern 

the proliferative differences we see for the same heparin treatment. 
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Chapter 6: General Discussion   

6.1 Summary of Novel Findings  

 

The aim of this project was to identify heparin-based analogues that could ultimately 

be used as novel biocompatible stent coating materials. Ideal compounds would be 

ones that maintain anti-thrombotic activity and minimize vascular smooth muscle cell 

growth while having enhancing, or having no effect, on endothelial cell proliferation. 

To this end we have assessed the effect of a range of desulphated and cation-

complexed forms of heparin on human coronary artery smooth muscle cell (HCASMC) 

and human coronary artery endothelial cell (HCAEC) proliferation and migration. To 

the best of our knowledge this is the first comprehensive analysis of the differential 

effects of these compounds on these important cell types (Summarised in Table 6.1 

and 6.2). Candidate compounds with the appropriate activity profile in 

HCASMC/HCAECs were screened for their effects on blood coagulation pathways 

and their ability to interact with platelet factor 4 (PF4), a key determinant of heparin-

induced thrombocytopenia.  We also explored the molecular basis of the differential 

effects of heparin analogues on HCASMC/HCAECs signalling. The novel findings are 

that: 

 Naive heparin complexed with either Na+, K+, Mg2+ or Ca2+ suppresses 

HCASMC proliferation while having minimal effects on HCAEC activity; 

 None of the desulphated heparin analogues demonstrated this desired activity 

profile on HCASMCs/HCAECs; 

 A range of desulphated heparins complexed with either Na+, K+, Mg2+ or Ca2+ 

showed promising activity profiles (Na1-6; K1-8; Mg2-5; Ca1-2 and Ca4-8); 

desulphated heparin 4 (predominant repeating structure; I2SA6OHNAc) 

consistently being the best performing analogue in terms of its differential 

proliferation effects across all cations.   All cationic desulphated heparins 

tested retained their differential effects on HCASMC/ HCAEC proliferation in 

dual culture systems; 

 Candidate compounds K-3 and Ca-4 maintained anti-thrombotic activity; 

 The differential effects of the heparin analogues on HCASMC and HCAEC 

proliferation likely represents differences in signalling downstream of GFRs. 

Key candidate signalling cascades are those activated by FGFs and EGF. 
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Table 6.1. The summary results of cell proliferative activity of desulphated heparin. , 

inhibition (P<0.05); , strong inhibition (P<0.01); NS, no significant effect. 

 

Analogues Proliferation 

 SMC EC 

HEP  NS 

DS-1 NS NS 

DS-2 NS NS 

DS-3 NS NS 

DS-4 NS NS 

DS-5 NS  

DS-6 NS NS 

DS-7 NS NS 

DS-8 NS  
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Table 6.2. The summary results of cell proliferation, migration, apoptosis and anti-

coagulant activity. , enhance (P<0.05); , strong enhance (P<0.01); , inhibition 

(P<0.05); , strong inhibition (P<0.01); NS, no significant effect; blank, no testing. 

 

Analogues Proliferation Migration 
Co-cultured 

proliferation 
Apoptosis 

Anti- 

coagulation 

 SMC EC SMC EC SMC EC SMC EC aPTT PT 

Hep  NS    NS     

Na     NS NS NS NS   

K     NS  NS NS   

Mg     NS NS NS NS   

Ca  NS   NS NS NS NS   

Zn           

Mn           

Fe           

Na-2 NS NS        NS 

Na-3  NS  NS   NS    

Na-4    NS   NS    

Na-5  NS        NS 

Na-6  NS        NS 

Na-7           

Na-8 NS NS        NS 

K-2 NS NS        NS 

K-3  NS  NS   NS    

K-4  NS  NS   NS    

K-5  NS        NS 

K-6 NS NS        NS 

K-7  NS         

K-8  NS        NS 

Mg-2          NS 

Mg-3  NS  NS  NS NS    

Mg-4  NS  NS  NS NS    

Mg-5  NS        NS 

Mg-6           

Mg-7           

Mg-8         NS NS 

Ca-2 NS NS        NS 

Ca-3 NS NS  NS  NS NS    

Ca-4  NS  NS   NS    

Ca-5 NS NS        NS 

Ca-6 NS NS         

Ca-7  NS         

Ca-8  NS       NS NS 
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6.2   Chemically Modified Forms of Heparin Have Differential Effects on 

VSMC and EC Proliferation 

 

The repeating disaccharide units of uronic acid and D-glucosamine in the heparan 

sulphate (HS) chain mediate binding with numerous proteins at the cell surface – the 

so-called ‘HS interactome’ (Gómez Toledo et al., 2021; Olsen et al., 2003; Ori et al., 

2008; Reizes et al., 2001; Witt and Lander, 1994). This interaction usually occurs 

between positively-charged amino acids on target proteins, such as growth factors, 

and negatively-charged sulphated groups in HS.  Heparin is structurally similar to HS, 

but has a distinct, more heavily sulphated, and homogenous repeat pattern.  Because 

ionic interaction plays a key role between protein and heparin/HS, alteration of 

sulphated groups in heparin/HS affects its affinity for growth factors and other proteins 

(Greinacher and Delcea, 2015; Krauel et al., 2012; Xu and Esko, 2014). The structures 

of these chemically modified heparin analogues are also changed by alteration of 

charge distribution (Guimond et al., 2009; Rudd et al., 2007). In addition, the negative 

charge of these analogues, and thus structure and function, is further altered by 

complexing with cations (Remko and von der Lieth, 2006; Seo et al., 2011). The ionic 

radii and ionic valence of each metal ion plays important roles in the conformational 

change of heparin, the  number of metal ion adducts also contributes to the overall 

structure (Rudd et al., 2007; Seo et al., 2012).  However, the structure-function 

relationship of these macromolecular structures needs to be further investigated.  

In addition to electrostatic interactions between heparin and proteins, non-ionic 

interactions, such as hydrogen bonding and van der Waals contacts, contribute 

additional energy to stabilise the heparin-protein complex (Raman et al., 2003). The 

heparin binding sites on proteins mainly consist of positively-charged basic residues, 

which provide ionic interaction (Rudd et al., 2017). However, biophysical analysis  of 

the interaction of FGF2 with heparin demonstrate that pure ionic interactions 

contribute only 30 % of binding energy associated with complex formation (Thompson 

et al., 1994a). While H-bonding will at least in part be directly consequent on the bonds 

formed in binding, hydrophobic interactions and at least some of the H-bonding will 

occur due to changes in the protein conformation, that results from binding. 

Our results show that normal heparin complexed with Na+, K+, Mg2+ and Ca2+ have 

promising activity profiles in terms of differential effects on HCASMC/HCAEC 

proliferation/migration (Chapter 3).  These initial findings were obtained in a single 

culture system (i.e., each cell type grown alone) and when HCASMCs and HCAECs 

were cultured together to more closely mimic the physiological conditions within an 

artery, these differential effects were only retained for the Mg2+ analogue (see detail 
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in Appendix 1). A caveat to these results is that analysis of these early co-culture 

experiments were performed by imaging of HCASMCs and HCAECs, and it is difficult 

to differentiate between the cells. In later co-culture experiments, cells were separated 

and analysed by fluorescent activated cell sorting (FACS), which is likely to increase 

the accuracy of the data.   We also conducted a comprehensive screen of a range of 

desulphated heparins complexed with Na+, K+, Mg2+ and Ca2+. Interestingly in single 

culture systems, desulphated heparin 4 (I2SA6OHNAc), which had no significant effect 

on HCASMC or HCAEC proliferation, was consistently the best performing analogue 

in terms of its differential effects when complexed with Na+, K+, Mg2+ and Ca2+. 

Importantly, in co-cultures, all cationic desulphated heparins tested retained their 

differential effects on HCASMC/ HCAEC proliferation. It should be noted that under 

physiological conditions “uncomplexed heparin” is, in fact, usually complexed with 

mostly Na+ and some Ca2+ or other cations (personal communication E.A. Yates), 

thereby might be expected to have similar activities with Na-heparin. However, our 

data show different effects on SMC migration and EC proliferation between Na-

heparin and uncomplexed heparin. This may be due to the conformational differences 

between the pure Na+ form and the mixed-cation form heparin caused by coordination 

difference, although this needs to be further investigated. 

Metal ions play important roles within biological systems. For instance, divalent Mg2+ 

and Ca2+ regulate cell growth and enzyme-catalysed processes through interaction 

with numerous proteins/enzymes (Da Silva and Williams, 2001; Kahl and Means, 

2003; Pasternak et al., 2010). In addition, heparin has high affinity with a range of 

metal ions, which have significant effects on heparin/HS interactions with proteins. 

FGF1 binding to heparin/HS is reduced in the presence of 10 μM K+, Mg2+ and Ca2+ 

but unaffected by the presence of Zn2+ in SMCs (Zhang et al., 2014), though this is not 

the same as using cation coordinated forms of the sugar (Guimond et al., 2009; Rudd 

et al., 2008; Rudd et al., 2007). In Figure 3.7 K-, Mg- and Ca-heparin are shown to 

have greater inhibitory effect on HCASMC proliferation compared to Zn-heparin. This 

would indicate that conformational change induced by Zn coordination is insufficient 

or geometrically incorrect to elicit a large effect . Divalent cations, such as Mg2+ and 

Ca2+, are important in many heparin-protein interactions and also in the affinity and 

stability of the complex. The carboxylate group in the iduronate residue of heparin is 

required for Ca2+ specific binding (Chevalier et al., 2004; Rabenstein et al., 1995). 

Since cation binding triggers conformational change of heparin (Rudd et al., 2007), 

the affinity, specificity and stability of modified heparin-protein complexes are also 

changed, resulting in different signalling (Chevalier et al., 2004; Srinivasan et al., 

1975). Yet the signalling outcomes induced by metal ion association with heparin/HS 

remains unclear. Furthermore, NMR, FTIR and EPR spectroscopies indicate that 

copper preferentially binds between the iduronate residue and the adjacent 6-O-
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sulphated glucosamine (Rudd et al., 2008). This may also suggest that the position of 

sulphated group could affect the binding preference of cations. 

 

 

 

6.3 Modified Forms of Heparin Have Differential Effects on Blood 

Coagulation 

 

The charge alteration of heparin can also affect the affinity to other proteins, for 

example, antithrombin (AT). In blood coagulation, heparin binds to antithrombin 

forming a heparin-antithrombin complex. The heparin-binding sites on antithrombin 

are Lys-11 and Arg-13 in the N-terminus; Arg-46 and Arg-47 in the helix A; and Lys-

114, Phe-121, Phe-122, Lys-125 and Arg-129 in the region of the helix D (Jin et al., 

1997). Moreover, heparin interacts with thrombin mainly via electrostatic binding, as 

well as with antithrombin. While it have been claimed that heparin binds to 

antithrombin-III mainly through non-electrostatic interactions (Heuck et al., 1985; 

Nahain et al., 2018), this may confound primary points of interaction, the sugar-protein 

interface and new non-covalent bonds formed within the protein due to the substantial 

conformational change it undergoes upon heparin binding. Thus, non-ionic 

interactions contribute to the stability of the heparin-protein complex. In the case of 

heparin-thrombin interaction, 86 % of heparin binding energy is from ionic interactions 

and only 14 % from non-ionic interactions, consistent with thrombin undergoing more 

modest conformational change than antithrombin III. In contrast, in the heparin-

antithrombin-III interaction only 40 % of the binding energy is from ionic interactions 

and non-ionic interactions with non-polar residues are therefore considered to play a 

key role in heparin binding (Olson and Björk, 1991). Many of these will from the 

considerable conformational change that occurs in antithrombin III upon heparin 

binding (Fig. 4.3). The heparin binding site on proteins usually consists of cationic 

basic residues and nearby-non-polar hydrophobic residues. These hydrophobic 

residues induce the contact of phenyl rings to non-polar stems of cationic heparin-

binding residues, resulting in extensive and specific ionic and non-ionic interaction for 

pentasaccharide binding (Jairajpuri et al., 2003). Thus, changes in charge distribution 

and conformation of the heparin analogues affect anti-coagulation properties of the 

molecules.  

Promising candidates were assessed for potential side-effects particularly their anti-

coagulant activity, and ability to interact with platelet factor 4 (PF4) which can lead to 

an immune response and heparin-induced thrombocytopenia (HIT) (Chapter 4).  
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In aPTT assays, which measures the activity of the contact activation and common 

pathways in the blood coagulation cascade, Na+, K+, Mg2+ and Ca2+-complexed 

desulphated heparin analogues 2, 3 and 4 retained their anticoagulant activity, as well 

as the Mg2+ and Ca2+-complexed desulphated heparin analogue 6. The anticoagulant 

activity of Na+, K+, Mg2+ and Ca2+-complexed desulphated heparins 5 and 8 was 

significantly reduced compared to unmodified heparin. In PT assays (tissue factor 

pathway), anticoagulant activity was absent or significantly reduced in Na+, K+, Mg2+ 

and Ca2+-desulphated heparin analogues 2, 5, 6 and 8. These results indicate that 

heavy desulphated heparins may lose their inhibitory activity on Xa or thrombin, 

resulting non-coagulation. Furthermore, desulphated heparin analogues 3 and 4 in PT 

assay showed a mixed response dependent upon which cation they were complexed 

with.  K-3 and Ca-4 retained anticoagulant activity, while all other cation forms of these 

analogues showed a significant reduction in anticoagulant activity compared to 

unmodified heparin.  Thus, candidate compounds K-3 and Ca-4 appear to have the 

best activity profiles in terms of differential effects on HCASMC/ HCAEC proliferation 

while maintaining anti-thrombotic activity.  These findings are novel. It may also be 

advantageous under certain conditions to utilize heparin derivatives with reduced anti-

coagulant activity, and here the differential effects of the cation-complexed 

desulphated heparins on the coagulation cascade may be useful in tailoring a given 

response.   Our data regarding interaction with platelet factor 4 (PF4) is inconclusive. 

We had hoped that by using native (non-denatured) gel electrophoresis we might see 

a clear difference in the formation of high molecular weight complexes when the 

heparin analogues were incubated with recombinant PF4.   Here we were only able 

to assess cation-complexed non-desulphated heparin, but no substantive difference 

could be detected in protein banding patterns on silver-stained gels. It is of note that 

the sulphated domains of heparin, in both glucosamine and uronic acid residues, are 

associated with high affinity binding to PF4 (Stringer and Gallagher, 1997). In addition, 

PF4 binds to heparin more strongly than 2-O, 3-O desulphated heparin (partially 

desulphated heparin) because of a combination of charge and conformational effects. 

A minimum heparin chain length of 6 monosaccharides is required for PF4-heparin 

interaction (Maccarana and Lindahl, 1993; Rauova et al., 2005) and the chain length 

of ∼12 saccharide units is required to form PF4-polyanion complexes for anti-PF4-

heparin antibodies recognition and binding (Visentin et al., 2001). Furthermore, the 

binding efficiency of PF4 to heparin is increased by chain length and the extent of 

sulphation (Krauel et al., 2012; Zucker and Katz, 1991). Thus desulphated heparin 

analogues may pose less risk in terms of HIT than unmodified heparin.  
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6.4 The molecular basis of the differential effects of heparin 

analogues on HCASMCs/HCAECs 

 

The effect that a given heparin derivative has on a cell proliferation will depend upon 

the interaction between the derivative, growth factors (GFs) and the cell’s growth 

factor receptors (GFRs).  This will depend on the conformation of the derivative, which 

can be altered by changes in sulphation patterns and/or complexing with different 

cations (Rudd et al., 2007), the availability of different GFs and the presence and 

downstream signalling capabilities of different classes of GFRs. In many cases it is 

likely that the heparin derivatives disrupt native binding between heparan sulphate 

(HS) and GF-GFRs. Although the FGF-FGFR-heparin complex is more stable than 

the complex with HS, presumably because of higher sulphated domains (negative 

charge) on heparin (Xu and Esko, 2014), our modified heparin analogues may alter 

their affinity to FGF-FGFR complex, thereby, native binding of HS may affect the 

results. There are three basic approaches to avoid this interference: (1) using BaF3 

cells which are naturally devoid of HS, (2) using heparanase-treated cells or, (3) 

employing an inhibitor of sulphation, such as chlorate, in the cell culture medium to 

inhibit HS biosynthesis. 

To explore how heparin analogues might affect signalling, we examined the differential 

expression of GFR transcripts between HCASMCs and HCAECs in Chapter 5.  Key 

differences are that PCR products for VEGFR3 were obtained only from HCAECs, 

while PCR products for both PDGFRA and PDGFRB were obtained only in HCASMCs 

(See Figure 5.7). Since PDGFRs couple via Ras/Raf pathway and PI3K/Akt pathways 

to cell proliferation (Choudhury et al., 1997; Choudhury et al., 2006; Silvestre-Roig et 

al., 2013), block of signalling at these receptors may explain the anti-proliferative 

effects of heparin analogues on HCASMCs.  However, the anti-proliferative effect of 

the cation-complexed heparin analogues (particularly Ca-heparin) was significantly 

reduced if HCASMCs were grown in basal media containing fetal calf serum (FCS, 

which contains mainly PDGFs – roughly 40ng/ml (Kwon et al., 2016)) compared to 

fully supplemented growth media (containing FCS, bFGF, EGF and insulin). This 

result suggests that the anti-proliferative effects of the heparin analogues are not 

associated with PDGFs. Anti-proliferative effects were maintained if HCASMCs were 

grown media supplemented with FGF2 or EGF alone, suggesting that the presence 

of these factors is in some way important for maintaining the inhibitory effect of the 

heparin analogues.  Activation of both FGFRs and EGFRs couple to proliferation in 

SMCs and FGFRs have been shown to interact with heparin and HS (Pellegrini, 2001; 

Vinante and Rigo, 2013).   Although we detected no difference in the presence of 

transcripts for FGFRs1-4 or EGFR between HCASMCs and HCAECs, it should be 

remembered that due to differences in downstream coupling (Section 5.2), activation 
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of a GFR can trigger different biological responses in ECs and SMCs.  For instance, 

due to FGFR/TGFβR crosstalk, FGF/FGFR signalling leads to TGFβ/TGFβR-

dependent atherogenesis in ECs, but decreases atherogenesis in SMCs (Chen et al., 

2016b).  

We went on to screen which signalling pathways were impacted by the heparin 

analogues. We chose to use EGF as a positive control. Here, we stimulated 

HCASMCs with heparin analogues prior to lysing cells and separating proteins within 

the lysate with SDS-PAGE. We then immunoblotted treated lysates with antibodies 

against phosphorylated tyrosine to produce a distinct immunoreactive banding pattern 

(‘fingerprint’) associated with activation of the EGFR. This was used as a reference 

pattern against which we could compare HCASMCs that had been serum-starved, 

grown in normal fully supplemented growth media (control), or grown in normal growth 

media containing different heparin analogues. Perhaps not surprisingly this approach 

produced a ladder multiple phosphorylated proteins with no clear differences between 

control and heparin-treated cells. More sophisticated phosphoproteomic approaches 

will be required to define the signalling pathways in HCASMCs impacted by heparin 

treatment. 

 

6.5 Limitations and Future Directions 

 

Heparin coating 

Since the ultimate goal is to attach heparin analogues onto stent materials, preliminary 

experiments were conducted to assess whether heparin analogues maintain their 

activity when physically attached to surfaces.  We tried to attach heparin to the 

surfaces by incubating different concentrations of heparin (negative charge) with 

plastic culture plates pre-coated with either poly-D-lysine or poly-L-lysine (positive 

charge) or with commercially available amine-coated plates (from VWR). The 

preliminary heparin-coated plate data (see Appendix 2) showed these cationic 

heparins may be able to keep their anti-HCASMC-proliferative activity after 

attachment to a surface. However, the quantity of heparin attached to the surface was 

variable due to the abundance of heparin lost in the washing procedure (see 

Appendix 3) and additionally, the inability to quantify the amount of heparin attached 

to the plate surface. Recently, several methods for polysaccharide measurement have 

been developed, such as the Periodic acid-Schiff (PAS) stain and fluorescent probe 

assays, although their accuracy is controversial (Firshman et al., 2006; Hui et al., 

2017). Furthermore, polysaccharides often possesses multiple binding sites for a 

single protein, and proteins have preferences for specific positions of sulphate groups 

and sugars. Therefore, to keep this “biofunctional surface” for interaction with protein 
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is a complicated issue (Powell et al., 2004). Because of these reasons, we are 

currently seeking appropriate ways for heparin coating, as well as quantification of the 

amount of heparin attached to surfaces. 

 

Table 6.3. List of methods for heparin quantification in collagen scaffolds (Lammers 

et al., 2011). 

METHOD MECHANISM SENSITIVITY LIMITATION 

FACTOR XA 

ASSAY 

Surplus factor Xa hydrolyses to 

chromogenic substrate and releases 

chromophere p-nitroaniline 

(absorbance measured at 405 nm) 

after heparin-AT-III-induced 

inactivation of Xa. 

ng 
Anti-coagulant activity is 

required 

FARNDALE 

ASSAY 

Absorbance changed of 

dimethylmethylene blue in the 

presence of multiple sulphated groups 

(absorbance measured at 525 nm) 

μg 

Long procedure (2 days), 

polysulphated groups are 

required 

HEXOSAMINE 

ASSAY 

Glucosamine is converted to pyrroles 

by acetyl acetone and pyrroles are 

condensed to a coloured product. 

(absorbance measured at 525 nm) 

μg 
Long procedure (3 days), 

robust test 

URONIC ACID 

ASSAY 

Acid hydrolysis of uronic acid 

generates coloured hydroxybiphenyl 

(absorbance measured at 450 nm) 

ng 

Collagen interference, 

hazardous chemicals (hot 

80% H2SO4) 

 

With reference to National Institute for Health and Care Excellence (NICE) guidelines, 

acute myocardial infarction patients should be offered an ACE inhibitor, dual 

antiplatelet therapy (i.e. aspirin with a second antiplatelet agent, such as clopidogrel 

or ticagrelor), beta blocker and statins (National Institute for Health and Care 

Excellence, 2020).  Heparin can also be offered after cardiac surgery for several days 

to prevent thrombosis of the coronary artery during the recovery period (National 

Institute for Health and Care Excellence, 2020). Therefore, the biocompatibility of 

heparin analogues and these prescription medicines also needs to be further 

assessed. 

Moreover, several stents have been developed with biomaterial coatings (scheme of 

heparin coating on stent is shown in Figure 6.1 and commercial heparin coating 

techniques are shown in Table 6.4). The first generation of drug-eluting stents (DESs), 

for example, were coated with rapamycin to inhibit VSMC proliferation (Khan et al., 

2014) and the second generation of DESs are covered with newer rapamycin 

derivatives to reduce restenosis (Akin et al., 2011). The incidence rate of restenosis 
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with drug-coated stents is lower than bare stents, however, these patients still need 

to be offered antiplatelet therapy for more than 6 months after surgery to prevent 

clotting. Taking into consideration the efficiency of anti-stenosis and clotting 

prevention, these coating stents are developed to release specific chemical stably and 

continually (6-12 months, or more) (Akin et al., 2011; Khan et al., 2014).  

 

Figure 6.1. Schematic of Stents with Heparin Coatings. (A) The Ti-O/APP stent is 

coated with biotin and streptavidin, followed by heparin/biotin incubation to generate 

poly layers of heparin/biotin/ streptavidin (Weng et al., 2012); (B) The 3D-printed 

bioresorbable PLA stent is coated with PDA and immobilised with PEI, followed by 

heparin grafting (Lee et al., 2019); (C) Titanium stent is activated by NaOH to create 

a hydrophilic surface followed by polylysine incubation for an amino surface. The stent 

is immersed in heparin and type IV collagen repeatedly to generate poly layers (Zhang 

et al., 2016a). Image drawn with PowerPoint. 
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Table 6.4. Commercial heparin coating technologies (Biran and Pond, 2017). 

Name Company Technique  

BioInteractions ASTUTE® 

Advanced Heparin 

Coating/Medtronic 

Trillium® Biosurface 

BioInteractions Ltd 

Heparin, polyethylene oxide chains, and 
sulphonate groups covalently bonded to a 
hydrophilic priming layer 

 

AMC THROMBOSHIELD® 

Treatment 
Edwards Lifesciences, LLC 

Heparin ionically bonded with 

benzalkonium chloride 

Atrium HYDRAGLIDE® Atrium Medical (Maquet Getinge 
Group) 

Covalently bonded heparin complex 

CARMEDA® BioActive Surface 
(CBAS® Heparin Surface) 

Carmeda AB (Carmeda AB is a 
wholly owned subsidiary of W.L. 
Gore & Associates, Inc.) 

Heparin covalently bonded by endpoint 

attachment to a base matrix 

 

CORLINE® Heparin Surface 
(CHS™) 

Corline Systems AB (Swedish 

company) 

Macromolecular complex of heparin 

with polyamines. Layers of positively charged 
polyethyleneimine (PEI) and negatively charged 
dextran sulphate (DS) polymers comprise the 
base matrix.  

DURAFLO II® Edwards Lifesciences, LLC 
Heparin ionically bonded with 

benzalkonium chloride 

Flowline BIPORE® Heparin Surface Jotec GmbH Heparin covalently and ionically bonded 

Surmodics Photolink® Heparin 
Coating 

Surmodics, Inc. 
Heparin covalently bonded by light 

activated chemistry 

Perouse POLYMAILLE® Flow Plus 
Heparin 

Perouse Medical (French 
company) 

Heparin covalently bonded 

Maquet BIOLINE® Coating Maquet Cardiovascular, LLC 
Heparin ionically and covalently bonded 

to an albumin priming layer 

Medtronic Hepamed™ Heparin 
Coating 

Medtronic plc Heparin covalently bonded to a matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.biointeractions.com/pdfs/astute_technical.pdf
http://www.biointeractions.com/pdfs/astute_technical.pdf
http://www.biointeractions.com/pdfs/astute_technical.pdf
http://www.biointeractions.com/pdfs/astute_technical.pdf
http://www.surmodics.com/assets/uploads/documents/SurModics_Durable_Drug_Delivery_0513.pdf
http://www.surmodics.com/assets/uploads/documents/SurModics_Durable_Drug_Delivery_0513.pdf
http://perousemedical.com/products/cardiovascular/polymaille-c/
http://perousemedical.com/products/cardiovascular/polymaille-c/
https://www.maquet.com/int/products/bioline-coating/
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Development of bioresorbable stents 

Despite their many benefits, DESs exhibit several disadvantages, such as late stent 

thrombosis, challenges on adaptive/expansive vascular remodelling and influence on 

multi-slice computed tomography (CT) imaging (Amabile et al., 2014). To combat 

these drawbacks, some companies are seeking the development of bioresorbable 

stents. Similar to metal stents, bioresorbable stents are able to restore blood flow, but 

then are gradually resorbed and eliminated afterwards, resulting in natural 

reconstruction of vascular wall and functional restoration (Yee et al., 2020).  The key 

healing period of blood vessels is in the first 3 – 9 months after cardiovascular 

intervention (Yee et al., 2020). Therefore, bioresorbable stents are expected to 

support vessels during this period and then be removed from of body when they are 

no longer required. 

Bioresorbable stents can be classified broadly into metal-based and polymer-based. 

Magnesium-based scaffold, as one of the metal-based bioresorbable stents, has been 

approved in several countries. It consists of magnesium alloy and 95% can be 

degraded within one year (Li and Zheng, 2013).  In spite of harmless degradation, the 

functional degradation of magnesium-based scaffold is around 30 days, which is much 

shorter than the healing period (3 – 9 months) year (Li and Zheng, 2013; Yee et al., 

2020). Therefore, the following studies pay more attention to alloying or coating to 

reduce the corrosion rate of bioresorbable stents. Some of our heparin analogues can 

facilitate wound healing by enhancing HCAEC proliferation. For example, Na-3, Na-4 

and Ca-4 showed pro-HCAEC-proliferative activity in co-cultivation systems. They 

may assist vascular wound healing and decrease the healing period to improve the 

functionality of short-lived bioresorbable stents. 

Polymer-based bioresorbable stents, primarily based on poly-L-lactide, are also 

approved in several countries. These can maintain a stable scaffold and degrade into 

lactic acid, a natural by-product of metabolism (Gogas et al., 2012). However, these 

have been reported to incur severe problems, especially regarding safety 

performance, including a higher risk of thrombosis (Montone et al., 2017). Conversely, 

these polymers combined with heparin analogues which can reduce the incidence of 

restenosis may enhance the safety of polymer-based bioresorbable stents.  
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Three-dimensional (3D) cell cultivation 

Traditional two-dimensional (2D) cell culture is not entirely representative of the 

natural cell environment, as it does not allow cells to grow in all directions in vitro. As 

cells can only grow in a flat monolayer on a plate (Lovitt et al., 2014). In order to mimic 

in vivo conditions, several cell co-cultivation methods have been developed. For 

example, three-dimensional (3D) cultivation is believed to mimic a physiologic 

environment. The 3D cultivation can be classified into scaffold 3D culture and scaffold-

free 3D culture. Scaffold 3D culture provides a supporting scaffold to allow cell growth 

in all directions, such as hydrogels and inert matrices, imitating the in vivo environment 

(Sadat-Shojai, 2018). The former is a polymeric material comprising a network of 

cross-linked polymers, whereas the latter is a sponge-like membrane made of 

polystyrene (Sadat-Shojai, 2018). ECM is generally used as a scaffold in scaffold 3D 

cell culture, allowing cells to differentiate into spatial 3D structures (Geckil et al., 2010; 

Haycock, 2011; Jensen and Teng, 2020). Scaffold-free 3D culture mainly relies on cell 

self-assembly into clusters on low adhesion plates, hanging drop plates and 

micropatterned surfaces (Alghuwainem et al., 2019; Napolitano et al., 2007). These 

techniques have been utilised widely for tumour cells, osseous tissue, neuronal cells 

and cardiomyocytes (Haycock, 2011; Lovitt et al., 2014). Compared to 2D cultures, 

3D cell cultures much more accurately predict the efficacy or toxicity of drug treatment 

(Lovitt et al., 2014).   

 

In conclusion, the polysaccharide heparin and heparin-related compounds have long 

been known to have a profound inhibitory effect on VSMC proliferation (Clowes and 

Karnowsky, 1977; Hedin et al., 2004). This coupled with its activity as major anti-

coagulant makes it an attractive candidate for incorporation into stent materials.  

Indeed, in the multicentre, randomized human trials, BENESTENT II and MENTOR, 

heparin-coated stents significantly reduced stent thrombosis, but disappointingly, 

showed no measurable effect on VSMC proliferation or restenosis (Serruys et al., 

1998; Vrolix et al., 2000). We show here that changes in the complex structure of 

heparin, by chemical modification and/or by forming complexes with various cations, 

modify its activity with regard to HCASMCS and HCAECs.  Further investigation of 

lead heparin analogues that suppress vascular smooth muscle cell growth, while 

having no effect on endothelial cell proliferation, may ultimately yield novel next-

generation stent coats. 
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Appendix  

Appendix 1. The FACS raw data of HCASMC/HCAEC co-cultivation. 

 

EC      

 Ctrl Na K Mg Ca 

 5806 6360 5333 4095 3957 

 7465 6449 6206 6926 6474 

 6579 7587 6454 6758 6432 

Mean 6616.67 6798.67 5997.67 5926.33 5621.00 

S.D. 830.14 684.17 588.82 1588.20 1441.22 

      

SMC      

 Ctrl Na K Mg Ca 

 4982 5125 5478 3030 2983 

 5861 4716 5481 5088 5155 

 4833 6770 5563 4845 5059 

Mean 5225.33 5537.00 5507.33 4321.00 4399.00 

S.D. 555.52 1087.22 48.23 1124.62 1227.23 

      

EC/SMC      

 Ctrl Na K Mg Ca 

 1.17 1.24 0.97 1.35 1.33 

 1.27 1.37 1.13 1.36 1.26 

 1.36 1.12 1.16 1.39 1.27 

  

 Normalised cell number 

  

 1.00 1.06 0.84 1.16 1.14 

 1.00 1.07 0.89 1.07 0.99 

 1.00 0.82 0.91 1.02 0.93 

      

Mean 1.00 0.99 0.88 1.08 1.02 

S.D. 0.00 0.14 0.04 0.07 0.11 
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Appendix 2. Heparin-coated plate data.  

Heparin attached to plate surfaces retains its anti-proliferative activity on HCASMCs. 

96-well plates were treated in the presence or absence (C) of poly-D-lysine (A) or poly-

L-lysine (B), incubating overnight until dry, followed treatment with heparin solution at 

indicated concentration. HCASMCs were then added to plates and allowed to grow 

for 3 days. HCASMCs were then quantified by MTT assays. * P<0.05; NS, no 

significance; n=8; Tukey test. 
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Appendix 3. Coated heparin lost in the washing procedure. 

Heparin was coated to plate surfaces overnight. The surface was washed using 

sterilised water, followed by incubating HCASMCs for 3 days. HCASMCs were then 

quantified by MTT assays. * P<0.05; n=8; Tukey test. 
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Appendix 4. The intact image of western blot shown in Figure 3.9 

 

The whole image of western blot for HCAECs (A-C) and HCASMCs (D-F). Separated 

protein were immunoblotted for caspase-3 (A,D,E),cleaved caspase-3 (B) and 

GAPDH (C,F).  
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Appendix 5. The intact image of western blot shown in Figure 3.17 

 

 

The whole image of western blot for HCASMCs treated with heparin analogues. 

Separated protein were immunoblotted for caspase-3 (A,B,D,E) and GAPDH (C,F).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



140 

 

Appendix 6. Conformation of native antithrombin and active 

antithrombin binding with heparin. 

 

The different perspectives of (A) native (unbound) antithrombin (1E05) and (B) 

antithrombin in complex with heparin pentasaccharide (1E03). 

 

 

 

 

 

 

 


