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Introduction: Bacterial meningitis (BM) is a global public health concern that results

in significant morbidity and mortality. Cerebral arterial narrowing contributes to stroke

in BM and may be amenable to intervention. However, it is difficult to diagnose in

resource-limited settings where the disease is common.

Methods: This was a prospective observational study from September 2015 to

December 2019 in sub-Saharan Africa. Children 1 month−18 years of age with

neutrophilic pleocytosis or a bacterial pathogen identified in the cerebrospinal fluid

were enrolled. Transcranial Doppler ultrasound (TCD) of the middle cerebral arteries

was performed daily with the aim to identify flow abnormalities consistent with

vascular narrowing.

Results: Forty-seven patients were analyzed. The majority had Streptococcus

pneumoniae (36%) or Neisseria meningitides (36%) meningitis. Admission TCD was

normal in 10 (21%). High flow with a normal pulsatility index (PI) was seen in 20 (43%)

and high flow with a low PI was identified in 7 (15%). Ten (21%) had low flow. All children

with a normal TCD had a good outcome. Patients with a high-risk TCD flow pattern (high

flow/low PI or low flow) were more likely to have a poor outcome (82 vs. 38%, p= 0.001).

Conclusions: Abnormal TCD flow patterns were common in children with BM and

identified those at high risk of poor neurological outcome.
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Bacterial meningitis (BM) results in significant morbidity
and mortality worldwide (1). Over 1 million individuals
are affected annually, with the highest burden of disease
occurring in children in sub-Saharan Africa (2). Case fatality
rates range from 8 to 15% [3]. In the absence of early
intervention, mortality approaches 50% (3). Half of survivors
are left with permanent neurologic sequelae such as cognitive
impairment, spastic quadriplegia, and/or seizures (4–8). These
poor outcomes are largely attributable to meningitis-related
intracranial complications (7–11).

Ischemic stroke is one such event occurring in 20–25% of
patients with BM (11–13). The predominant pathological change
to the neurovasculature on angiogram in these patients is cerebral
arterial narrowing (10, 13). While the underlying etiology for
this narrowing is still not completely understood, vasculitis,
vasospasm, intra-arterial thrombosis, and external compression
of vessels by purulent material in the subarachnoid space have all
been implicated (8–13).

The early identification of poor or deteriorating cerebral
hemodynamics secondary to vascular narrowing in patients
with BM may create a therapeutic window in which measures
to increase cerebral perfusion pressure (CPP) are undertaken.
The goal of CPP augmentation in this situation would be to
overcome the increased resistance of the cerebral arteries and
provide sufficient substrate delivery to meet metabolic demand,
thus reducing secondary ischemic injury (14, 15). When CPP-
targeted treatment was provided indiscriminately to a group of
children with CNS infection in India, those with BM had a 90-
daymortality reduction from 41 to 10% (p< 0.01) (16). However,
the empiric augmentation of CPP requires significant resources,
is likely not necessary for some patients, and may be dangerous
to others. Thus, identifying patients with compromised cerebral
hemodynamics due to vascular narrowing that are most likely to
benefit from such therapy may be beneficial.

Advanced neuroimaging approaches commonly used to
diagnose pathophysiological changes to the neurovasculature
in developed countries are not widely available in the
regions of the world that are most heavily impacted by BM.
Transcranial Doppler Ultrasound (TCD) is a portable, non-
invasive, inexpensive tool that evaluates cerebral blood flow
velocities (CBFVs) (17–19). It has been used to identify disease-
related arterial narrowing in both adults and children with BM
in Europe and the USA (20–26). Increases in CBFVs in these
studies were associated with lower admission Glasgow Coma
Scores (GCS), stroke, and poor long-term outcome.

There are no reports on TCD findings or associations with
outcomes in children with BM in sub-Saharan Africa. Given
the high burden of disease, the differing causative pathogens,
and the comorbidities in this population, we performed this
prospective, observational study. CBFVs become elevated and
then profoundly reduced as the degree of arterial narrowing
progresses in other disease states (27, 28). We therefore
hypothesized that TCD-derived CBFVs could be categorized
as normal, increased, then significantly reduced in children
with BM. We also hypothesized that high-risk flow patterns
suggestive of severe arterial narrowing would be associated with
poor outcomes.

MATERIALS AND METHODS

Study Population
The study was performed from September 2015 to December
2019 at Kalembe Lembe Children’s Hospital in the Democratic
Republic of the Congo (DRC), L’Hopital General de Reference de
Lodja in the DRC, L’Hopital General de Reference de Nyankunde
in the DRC, and Queen Elizabeth Central Hospital (QECH)
in Blantyre, Malawi. Ethics approval was granted by involved
institutions and parents or guardians signed written consent
before enrollment. Children 1 month−18 years of age were
approached for enrollment when diagnosed with BM according
to the following criteria: (1) Gram stain or culture of the
cerebrospinal fluid (CSF) positive for a bacterial organism OR
(2) CSF with ≥100 leukocytes/mm3 with >60% neutrophils
(culture-negative meningitis).

Children with sickle cell anemia or cerebral malaria were
excluded given the high frequency of abnormal TCD findings in
these children. Given the unknown impact of severe malnutrition
or advanced HIV disease on CBFVs, children diagnosed with one
of these conditions (mid-upper arm circumference <11.5 cm or
known HIV positivity with severe wasting) were excluded.

Demographic data, vital signs, and Blantyre Coma Score
(BCS) at presentation were collected. Finger-prick samples were
analyzed to determine blood glucose and lactate concentration
(EKF Biosen glucose and lactate analyzer, Penarth, England).
Venous blood was drawn to obtain a complete blood count
(Coulter Counter; Beckman Coulter, Indianapolis, IN). CSF was
analyzed using the standard methods for cell count, protein,
Gram stain, and culture.

Transcranial Doppler Ultrasound
Examinations
Primary TCD Measurements
TCD was performed using a commercially available TCD unit
(SonaraTek Digital TCD, CareFusion, Middleton, WI or Lucid
TCD, Neural Analytics, Los Angeles, CA). Daily TCD was
performed through hospital day 8, discharge, or death, whichever
occurred first. In patients with abnormal TCD findings at
day 8, weekly TCD was performed until discharge. Middle
cerebral arteries (MCAs) and extracranial internal carotid arteries
(EC-ICAs) were insonated at 2-mm intervals using previously
described methods (18). Systolic (Vs), diastolic (Vd), and mean
flow velocities (Vm) were recorded.

Ancillary TCD Measurements
Pulsatility index (PI = (Vs – Vd/Vm)), a marker of downstream
cerebrovascular resistance (CVR), was automatically calculated
by the TCD unit at each depth. As distal CVR decreases, diastolic
flow rises and the PI decreases. As distal CVR increases, diastolic
flow falls and the PI increases.

To differentiate causes of high measured CBFVs, the
Lindegaard ratio (LR = MCA Vm/Ex-ICA Vm) was calculated
(19). A LR <3 was considered to represent hyperemia whereas
a LR >3 was considered to represent vascular narrowing, with
progressive increases in the LR considered to be suggestive of
worsening narrowing.
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FIGURE 1 | Explanation of expected changes to transcranial Doppler ultrasound (TCD) flow velocities and patterns as vessel lumen diameter changes.

Autoregulation is the capacity to maintain constant cerebral
blood flow over a wide range of blood pressures. The transient
hyperemic response ratio (THRR = average Vm of 2 beats
after a 10-s carotid compression/average Vm of 5 beats before
compression) was used to interrogate cerebral autoregulation
(29). A THRR <1.1 was considered to represent impaired
autoregulation and ≥1.1 intact autoregulation (29).

Diagnostic Criteria
The definitions used to categorize study patients were:

1. Normal flow—Vs, Vd, and Vm within 2SD of age normative
value (20).

2. High flow—Vs, Vm >2SD above age normative value.

(a) Normal PI—PI ≥0.6 and ≤1.3.
(b) Abnormal PI—PI≤0.5 (low PI) or >1.3 (high PI).

3. Low flow—Vs and Vm <2SD below age normative value.

(a) Normal PI—PI ≥0.6 and ≤1.3.
(b) Abnormal PI—PI ≤0.5 (low PI) or >1.3 (high PI).

An explanation of the basis for the selected diagnostic criteria is
in Figure 1. As this was an observational study, no changes to
the patient’s care were undertaken based on the results of the
TCD examination.

Outcomes
Pediatric cerebral performance category (PCPC) scoring was
performed at hospital discharge (30, 31). Children with a PCPC
of 1 or 2 were considered to have a good outcome while those
with a PCPC of 3–6 were considered to have a poor outcome.

Study Oversight
The study was approved by the ethics committee at the
University of Kinshasa, School of Public Health, DRC. The study
was also approved by the ethics committee at the University
of Malawi College of Medicine Research Ethics Committee

TABLE 1 | Demographics, vital signs, laboratory evaluations of children with

bacterial meningitis (n = 47).

Parameter Value

Age (median, IQR) 45 (20, 115)

Female (total, %) 23 49

Convulsions prior to arrival (total, %) 28 61

Temperature, ◦C (mean, SD) 38.3 1.2

Heart rate, beats/min (mean, SD) 135 25

Respiratory rate, breaths/min (mean, SD) 36 13

Oxygen saturation, % (median, IQR) 97 (94, 98)

Mean BP, mmHg (median, IQR) 76 (61, 87)

Admission BCS (median, IQR) 1 (1, 2)

0 (n, %) 3 6

1 (n, %) 24 50

2 (n, %) 17 39

3 (n, %) 3 6

WBC, ×10−9/L (median, IQR) 7.2 (6.5, 15.9)

Packed cell volume, % (median, IQR) 28.5 (25.5, 34)

Glucose, mmol/L (mean, SD) 107 53

Lactate, mmol/L (median, IQR) 3.6 (1.8, 4.9)

Sodium, mmol/L (median, IQR) 139 (134, 142)

Bicarbonate, mEq/L (median, IQR) 19 (15, 21)

OP on LP, mmHg (median, IQR) 19 (13.5, 24.5)

CSF protein, mg/dL (median, IQR) 210 (100, 300)

CSF cells, WBC/mm3 (median, IQR) 247 (64, 400)

Organism (n, %)

S. pneumoniae 17 36

N. meningitides 17 36

Salmonella sp. 6 13

Culture negative 5 11

Other organism 2 4

Discharge outcome (median, IQR) 2 (1, 4)

Good (n, %) 20 42

Poor (n, %) 27 58

Min, minute; BP, blood pressure; WBC, white blood cells; BCS, Blantyre coma score; OP,

opening pressure; LP, lumbar puncture; CSF, cerebrospinal fluid; Neg, negative.
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(COMREC). All subjects’ guardians provided informed consent
before enrollment.

Statistical Analysis
Primary results are restricted to the first observation per
patient. Categorical variables are summarized using frequencies
and percentages, normally distributed continuous variables
are summarized using means with SDs, and non-normally
distributed continuous variables are summarized using medians
with interquartile range (IQR). Comparisons by organism and
pattern were evaluated using χ

2 or Fisher’s exact test, one-
way ANOVA with a Tukey correction for multiple comparisons,
or Kruskal–Wallis tests with Dwass–Critchlow–Flinger–Steel
corrections for multiple comparisons. Comparisons between
patterns were evaluated using χ

2 or Fisher’s exact tests, two-
sample t-tests, or Wilcoxon rank sum tests. As a sensitivity
analysis, for variables with some longitudinal collection, mixed-
effects models with random subject effects were run to evaluate
comparisons using all available data, while accounting for within-
patient correlation and differences in number of measurements.
Given the sample size, multivariate analysis was not performed.
All analyses were conducted using SAS 9.4 (SAS Institute,
Cary, NC).

RESULTS

Forty-seven patients were included. Demographics, vital signs,
and laboratory variables for participants are in Table 1. The
majority of the patients had Streptococcus pneumoniae (n = 17,

36%) or Neisseria meningitides (n = 17, 36%) meningitis. Fewer
were diagnosed with Salmonella sp. (n = 6, 13%) or culture-
negative meningitis (n = 5, 11%). One child was infected with
Staphylococcus aureus (2%) and one with Escherichia coli (2%).
Children with meningococcal meningitis were more likely to
have convulsions than children infected with other organisms
(n = 14/17 (82%) for N. meningitides vs. n = 10/17 (59%) for
S. pneumoniae vs. n = 1/6 (17%) for Salmonella sp., vs. n = 3/5
(60%) for culture-negative meningitis, p = 0.03). CSF cell count
was significantly different depending on infecting organism
[median of 358 (IQR 127, 800) WBC/mm3 for N. meningitides
vs. 436 (99, 380) WBC/mm3 for S. pneumoniae vs. 1 (0, 2)
WBC/mm3 for Salmonella sp., vs. 100 (100, 180) WBC/mm3 for
culture-negative meningitis, p = 0.007]. Opening pressure was
highest in children with meningococcal meningitis [median of 46
(IQR 32, 51) mmHg, 20 (14, 25) mmHg for S. pneumoniae, 15 (6,
19) mmHg for Salmonella sp. and 16 (12, 19) for culture-negative
meningitis, p = 0.03]. No other variables were different when
evaluated by infecting organism. Children with Salmonella sp.
meningitis had better PCPC at discharge than children infected
with other organisms [PCPC 1 (1, 2) for Salmonella sp., 3 (1, 4)
for N. meningitides, 5 (3, 6) for S. pneumoniae, and 5 (4, 6) for
culture-negative meningitis, p= 0.009].

Admission TCD was normal in 10/47 (21%) children. High
flow with a normal PI was noted in 20/47 (43%) and high
flow with a low PI was noted in 7/47 (15%). Ten of 47 (21%)
children met criteria for low flow. Representative images of
each flow pattern are in Figure 2. In four patients with low
flow and normal PI on admission, the PI increased to >1.3 in

FIGURE 2 | Representative images of each transcranial Doppler ultrasound (TCD) flow pattern. (A) Normal flow—Vs, Vd, Vm within 2SD of age normative value. (B)

High flow/normal PI—Vs, Vm >2SD above age normal value and PI ≥0.6 and ≤1.3. (C) High flow/low PI—Vs, Vm >2SD above age normal value with a PI ≤0.5. (D)

Low flow—Vs, Vm <2SD below age normal value.
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TABLE 2 | Patient characteristics by Transcranial Doppler ultrasonography flow pattern.

Normal (n = 10) High flow, normal PI

(n = 20)

High flow, low PI

(n = 7)

Low flow (n = 10) p-value*

Age (median, IQR) 50 (14, 103) 59 (19, 133) 63 (36, 83) 72 (30, 96) 0.97

Convulsions prior to arrival (n, %) 4 40 11 55 2 29 7 70 0.14

Temperature, ◦C (mean, SD) 38.3 1.2 38.3 1.3 37.7 1.3 38.2 0.9 0.85

Heart rate, beats/min (mean, SD) 140 22 133 24 127 21 138 33 0.79

RR, breaths/min (mean SD) 35 8 36 12 36 12 32 13 0.88

Oxygen saturation, % (median, IQR) 98 (97, 99) 97 (93, 98) 96 (95, 98) 96 (93, 99) 0.30

Mean BP, mmHg (median, IQR) 67 (57, 86) 87 (55, 93) 79 (76, 83) 78 (78, 79) 0.66

Admission BCS (median, IQR) 2 (1, 2) 1 (1, 2) 2 (1, 2) 1 (0, 1) 0.62

WBC, ×10−9/L (median, IQR) 7.3 (5, 11) 9 (6, 21) 11 (8.5, 26) 8.2 (6.2, 10.2) 0.23

Packed cell volume, % (median, IQR) 32 (29, 36) 26 (21, 30) 29 (28, 35) 19 (18, 21) 0.17

Glucose, mmol/L (mean, SD) 90 (84, 101) 117 (114, 119) 114 (112, 117). 131 (122, 177) 0.05

Lactate, mmol/L (median, IQR) 3.3 (2.1, 6.6) 3.7 (1.7, 5) 2.3 (2, 2.9) 3.7 (2.1, 3.6) 0.83

Sodium, mmol/L (median, IQR) 139 (136, 142) 141 (139, 150) 134 (130, 136) 144 (133, 147) 0.56

Bicarbonate, mEq/L (median, IQR) 19 (13, 21) 16 (12, 21) 21 (20, 24) 27 (18, 29) 0.33

OP on LP, mmHg (median, IQR) 19 (13, 21) 17 (14, 23) 23 (20, 24) 17 (6.5, 38) 0.68

CSF Protein, mg/dL (median, IQR) 140 (100, 290) 240 (100, 300) 180 (100, 750) 300 (100, 390) 0.63

CSF cells, WBC/mm3 (median, IQR) 69 (3, 500) 140 (80, 360) 800 (100, 1500) 512 (54, 736) 0.32

Lindegaard ratio (mean, SD) 2 0.7 2.5 1.1 3.8 1.5 1.7 0.69 0.03

Autoregulation (median, IQR) 1.15 (1, 1.1) 1.06 (1.02, 1.09) 0.93 (0.46, 1.09) 1.09 (1.09, 1.13) 0.01

Outcome by PCPC (median, IQR) 1 (1, 2) 3 (1, 6) 5 (3, 5.5) 6 (2.5, 6) 0.007

Good

1 (n, %) 8 80 5 25 – – 1 10

2 (n, %) 2 20 3 15 – – – –

Poor

3 (n, %) – – 2 10 1 14 1 10

4 (n, %) – – 3 15 – – 1 10

5 (n, %) – – 2 10 5 72 1 10

6 (n, %) – – 5 25 1 14 6 60

*p values comparing “normal” to other groups.

PI, pulsatility index; n, number; Min, minute; RR, respiratory rate; BP, blood pressure; WBC, white blood cells; BCS, Blantyre coma score; OP, opening pressure; LP, lumbar puncture;

CSF, cerebrospinal fluid; PCPC, pediatric cerebral performance category.

eight TCD examinations. The increase in PI was identified on
post-admission day 2 (IQR 1, 3). Demographic, vital sign, and
laboratory variable differences between TCD flow types are in
Table 2. Infection with a specific organism was not statistically
associated with increased likelihood of the identification of any
one flow pattern (p= 0.2).

When excluding children who died before the resolution of
abnormal CBFVs, time to normalization varied between groups.
All children with an initial normal TCD remained normal on
subsequent examinations. Children with high flow/normal PI
normalized after a median of 4 days (IQR 3, 6). Children with
high flow/low PI normalized at a median of 10 days (IQR 4,
19). One patient with this flow pattern had persistently abnormal
flows at discharge on day 40. Evaluation of the duration of
abnormality in the low flow group was limited by the high
mortality rate, but in survivors (n = 4), the median duration to
normalization was 4 days (IQR 3, 5).

All children with a normal TCD flow pattern had a good
neurological outcome [median PCPC score of 1 (IQR 1, 2)].
PCPC was worse for patients with an abnormal CBFV pattern

when compared with those with normal CBFVs (Table 2).
If categorizing CBFV patterns as low risk (normal flow or
high flow/normal PI) vs. high risk (high flow/low PI or low
flow), patients with a high-risk pattern were more likely to
have a poor outcome (82 vs. 38%, p = 0.001) (Figure 3).
Poor outcome in survivors was uniformly spastic hemi- or
quadriplegia consistent with multifocal infarct. There were
no other significant clinical or laboratory differences between
children who did well-compared with those who did poorly
(Table 3).

There was notable heterogeneity in the outcomes of children
with high flow/normal PI. There were no differences in the
demographics, vital signs, or laboratory parameters of children
with a good vs. poor outcome with this TCD pattern. While not
significant, children with good outcome were less febrile (mean
temperature 37 ± 1.5◦C vs. 38.9 ± 0.7◦C), had lower peripheral
WBC counts [7 (6, 9)·10−9/L vs. 17 (7, 24)·10−9/L], had lower
lactate [1.8 (1.4, 5) mmol/L vs. 4.3 (2, 4.9) mmol/L], and lower
CSF WBC counts [75 (0, 800) vs. 239 (140, 360) WBC/mm3].
When evaluating the LR, PI, and THRR in children with this
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FIGURE 3 | Discharge outcome by Pediatric Cerebral Performance Category

(PCPC) by transcranial Doppler ultrasound (TCD) flow pattern. All children with

a normal TCD flow pattern had a good neurological outcome. Children with

high flow/normal PI had a median PCPC score of 3 (IQR 1, 6) (p = 0.11 vs.

normal), children with high flow/low PI had a median PCPC score of 5 (IQR 3,

5.5) (p = 0.02 vs. normal), and children with low flow had a median PCPC

score of 6 (IQR 2.5, 6) (p = 0.01 vs. normal).

flow pattern, LR was not significantly different between children
with good (2.24 ± 0.75) vs. poor outcome (2.3 ± 0.66) (p =

0.88). PI was lower in children with a good outcome (0.73 ±

0.19) than in those with a poor outcome (0.97 ± 0.31, p = 0.01).
Autoregulation was significantly better in children with a good
outcome (THRR1.12 ± 0.06) compared with those with a poor
outcome (0.98± 0.05) (p= 0.03).

DISCUSSION

BM is an important cause of long-term neurodisability and
mortality in developing countries (1–8). Beyond the provision
of effective, timely antibiotics, other adjunctive treatments that
have been evaluated in these regions of the world have not had an
impact on outcomes (32–38). Therapy directed at improving CPP
in patients with CNS infection has shown significant promise in
improving long-term functional status in other settings (14–16).
Thus, finding a means by which to identify high-risk children
with BM in sub-Saharan Africa who would benefit from CPP
augmentation may be a first step in reducing the impact of
this disease.

TCD is a portable, non-invasive tool that evaluates the
cerebrovascular hemodynamics (18–20, 39–42). We performed
this study to evaluate the CBFVs in children with BM and found

(1) 21% of children had normal admission CBFVs and ALL of
them had good neurologic outcome, (2) 40% of children had
TCD evidence of cerebral hypoperfusion (high CBFV/low PI or
low CBFV) and the majority of them had poor outcomes (14/17,
82%), and (3) the remaining children had elevated CBFVs with
normal PI and variable outcomes.

Three previous studies report the use of TCD to evaluate the
cerebral vasculature in children with BM outside the neonatal
period (22–24). One did not compare the CBFVs in the children
with BM with either control patients or normative values for
age, making the interpretation of the results difficult (23). Bode
et al. reported a 130–150% increase in MCA Vm in 11/15 (73%)
of children with BM compared with normative values (22). The
children with BM in this work were part of a larger cohort of
children affected by various neurological illnesses beyond CNS
infection. Outcomes were not separated by etiology of illness in
the analysis, making interpretation of the impact of abnormal
CBFVs in children with BM difficult. Ducharme et al. reported
TCD findings in a cohort of children with mixed etiologies of
CNS infection (24). Ten children with BM had TCD performed
in the acute phase of illness (one child with BM had TCD
examination only after day 30). Two children with BM had a
normal TCD (compared with age normative value), seven had
increased CBFVs, and one had low CBFVs. Across the entire
cohort, the presence of hypoperfusion in at least one vessel (Vm
>120 cm/s with LR >3 or absolute Vm >200 cm/s OR low
flow <1SD from age normal) was associated with acquired ICU
morbidity (p = 0.04) and death (p = 0.03). Our findings are
similar to these previously reported works, but in a much larger,
distinct patient population.

For the first time, we also identified clear differences in
neurological outcomes associated with different CBFV patterns
in BM. Children in our study with normal CBFVs likely
represented individuals with no or minimal neurovascular
involvement that fully recovered with antibiotics and supportive
care. CBFVs are elevated when large vessel narrowing occurs.
Children with high CBFVs and a normal PI were found to
have significant variability in outcome. While not statistically
significant, there were differences in vital signs and laboratory
parameters suggesting the children with good outcomes were
less severely ill. There was no difference in the LR between
those with a good vs. poor outcome, suggesting the degree of
vessel obstruction was not different. Rather, TCD measurements
revealed that the PI was lower and autoregulation was more
intact in children with good outcome. This suggests that perhaps
some children in this group had better outcomes because they
were able to sufficiently augment flow to meet demand via
peripheral vasodilation.

An extremely low PI in the setting of elevated CBFVs
represents clear evidence of impaired distal perfusion beyond
a point of flow obstruction. The LR was most significantly
elevated in these children (3.8 ± 1.5, p = 0.03 vs. normal
flow), suggestive of significant vessel diameter reduction. In this
instance, distal vessels maximally vasodilate to reduce resistance
to flow. This results in increased flow during diastole and a
low measured PI. However, as the obstruction is relatively fixed
in BM, flow may not sufficiently increase to meet demand
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TABLE 3 | Differences in characteristics between children with a good vs. poor outcome.

Characteristic Poor outcome Good outcome p-value

Age (median, IQR) 115 (19, 144) 71.5 (24.5, 119) 0.55

Female (n, %) 4 44 3 38 >0.99

Temp, ◦C (mean SD) 38.73 0.91 37.75 1.58 0.13

HR, beats/min (mean SD) 135.67 27.68 127.25 20.89 0.49

RR, breaths/min (mean SD) 38.11 14.97 31.88 6.60 0.35

O2 sat, % (median, IQR) 96 (94, 97) 97 (93.5, 98) 0.77

Mean BP, mmHg (median, IQR) 93 (61, 94) 93.5 (61, 95) >0.99

BCS (median, IQR) 1 (1, 2) 1.5 (1, 2) >0.99

0 (n, %) 0 0 0 0

1 (n, %) 2 67 1 50

2 (n, %) 1 33 1 50

3 (n, %) 0 0 0 0

WBC, ×10−9/L (median, IQR) 13 (7, 24) 7.5 (5.7, 12.75) 0.39

PCV, % (median, IQR) 30 (26, 34) 23.5 (16, 25) 0.08

Glucose, mmol/L (mean, SD) 120.67 26.99 113.00 29.52 0.65

Lactate, mmol/L (median, IQR) 4.3 (2, 5.3) 1.85 (1.4, 4.8) 0.17

Na, mmol/L (median, IQR) 139 (129, 150) 141 (131, 149) 0.98

Bicarbonate, meq/L (median, IQR) 21 (12, 21) 17 (11, 20) 0.76

Convulsions on admission (n, %) 6 67 4 50 0.64

OP on LP, cmH20 (median, IQR) 16 (13, 23) 22 (18, 26) 0.66

CSF Protein, mg/dL (median, IQR) 270 (170, 315) 100 (100, 300) 0.35

CSF Cell count, WBC/mm3 (median, IQR) 178 (80, 360) 140 (0, 800) 0.94

Autoregulation index 1.07 (0.97, 1.2) 1.04 (1.02, 1.07) 0.94

n, number; temp, temperature; HR, heart rate; Min, minute; RR, respiratory rate; O2 sat, oxygen saturation; BP, blood pressure; BCS, Blantyre coma score; WBC, white blood cells;

PCV, packed cell volume; Na, sodium; OP, opening pressure; LP, lumbar puncture; CSF, cerebrospinal fluid.

despite peripheral vasodilation, and secondary ischemic injury
may occur. This likely explains the significant morbidity in these
children. Childrenwith high CBFVs and low PImay be those who
would most benefit from adjunctive interventions to augment
CPP. Future studies could be designed to answer this question.

We identified a significant proportion of children with low

CBFVs. Investigative studies of progressive intracranial vascular

occlusion in other diseases outline a “tipping point” of vessel

lumen diameter reduction where flow becomes so impaired that

measured CBFVs transition from elevated to reduced (27, 28).
Animal studies of BM have identified cortical blood flow initially

increases but then decreases to <30% of baseline values as
illness severity worsens (43). Autopsy studies in humans have
also revealed that progressive inflammation in BM can result in
malignant arteritis obliterans (44). Progressive narrowing may
have contributed to the TCD findings of low flow in our study.
Insufficient flow would result in ischemic injury and subsequent
intracranial hypertension if cerebral edema ensued. In support
of this consideration, poor outcome was nearly uniform in these
children. In addition, only four children had TCD studies where
an increased PI >1.3 was identified and all were in the low
flow group. This finding is strongly suggestive of increased CVR
that is most consistent with intracranial hypertension in this
clinical scenario. Due to poverty, lack of reasonably distanced
health centers, and many other factors, late presentation to
care is common in resource-limited settings (45, 46). The high
proportion of children identified with low CBFVs compared with

other previous reports from other settings may be reflective of
advanced disease at the time of admission. It remains unclear if
these children would have benefit if attempts to augment CPP
would be made.

Overall, while done in a resource-limited setting in Africa,
the findings of this study should be applicable to the care of
children in any setting. TCD is portable, widely available in
centers that care for pediatric patients, and can be performed
repeatedly to evaluate the cerebral hemodynamics of children
with BM. If a high-risk flow pattern is identified, practitioners
could consider further neuroimaging, further investigation
with multi-modal neuromonitoring, and potentially
CPP augmentation.

Limitations
The relatively small sample size limited the number of children
identified with each CBFV pattern. However, the work does
represent the largest cohort of children with BM evaluated
by TCD to date. Even with small sample sizes, there were
significant differences in the PCPC scores between groups.
Thus, it is likely that these associations would continue
to hold true with a larger sample size. Another limitation
is that normative values for TCD measurements do not
exist for African children. As such, the results of the TCD
studies were compared with previously published pediatric
normative values, which were largely Caucasian children.
Future studies are needed to ensure appropriate normative
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values are developed for this patient population given the
possible alterations in expected flow velocities based on
race and common comorbidities. Lastly, neuroimaging
was not available, and thus correlations between clinical
findings concerning for neurologic impairment, TCD
measurements, and abnormal findings on CT or MRI were
not possible.

CONCLUSIONS

TCD can be used to non-invasively evaluate the neurovasculature
of children with BM and identify those at high risk of
poor outcome.
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