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Abstract
The friction-induced vibration of a novel slider-on-rotating-disc system is studied by a combination of numerical analysis on the theoretical model and experimental investigation on the test rig.  In this system, the rotation of an L-shaped component couples with the friction-induced stick-slip vibration in the tangential direction and produces a state-dependent normal force. The numerical results of the dynamic responses by employing the Coulomb friction model and the friction model with Stribeck effect are both in good agreement with the experimental results, therefore the credibility of the numerical analysis on the theoretical dynamic model is validated. The bi-stability phenomenon, i.e., there is coexistence of a stable pure sliding response and a stable stick-slip limit cycle in a certain parameter range, is not only revealed in the numerical analysis but also observed experimentally. Moreover, a novel approach to constitute a non-uniform friction interface on the disc surface is explored for its efficacy in suppressing the friction-induced stick-slip vibration of the system also by both numerical analysis and experimental testing, namely, the disc surface is divided into sectors assigned with different friction properties. Both the numerical and experimental results show that the non-uniform friction interface of the disc with appropriate friction properties of these sectors can be an effective approach to diminish the range of the operating parameters where the stick-slip vibration occurs and thereby reduce the possibility of occurrence of stick-slip vibration in the system. 
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1. Introduction
Friction-induced vibration (FIV) is widespread in engineering as well as in daily life [1]. For example, the musical sound of string instruments, the stick-slip vibration of drill-strings, the rattling joints of robots and the automobile brake noise are all the results of FIV in mechanical systems. Several main mechanisms for the occurrence of FIV were put forward in previous studies, e.g., mode-coupling instability [2], sprag-slip instability [3], stick-slip vibration [4]. The mode-coupling instability originates from the modal behaviour of the structures in contact. The complex eigenvalue analysis shows that some modes become unstable when coupling with other modes of the friction system. This phenomenon was considered to be mainly responsible for the high-frequency car brake squeal [5-7]. The sprag-slip is not tribological but geometrical instability. That the frictional system has no static solution for certain parameter values could be a sufficient condition for the occurrence of sprag-slip instability [8,9]. The stick-slip vibration features two distinct states of motion, i.e., stick and slip, in which the mechanical system experiences non-smooth transitions between the two states at zero relative velocity during operation. It serves to be the cause of dynamic instability in numerous engineering or daily-life applications, e.g., the sound of string music instruments [10], the squeaking joints of robots [11], the stick-slip oscillation of drill-strings [12], the low-frequency car brake noise [13].
There have been a number of numerical and experimental studies on the stick-slip vibration in mechanical systems. The numerical studies on stick-slip vibration were usually done in lumped models (single or multi-degree-of-freedom systems) or continuous models (elastic beams or discs). Popp et al. [14,15] studied discrete and continuous models exhibiting a stick-slip phenomenon, and rich bifurcation and chaotic behaviours were observed. Thomsen et al. [16] derived the approximate analytical expressions for the conditions, the amplitudes and the base frequencies of friction-induced stick-slip and pure-slip oscillations. Wei et al. [17,18] established low-DoF (degree-of-freedom) dynamic models of a brake system which incorporate pad tangential motion and disc torsional motion, where the bifurcations and chaotic behaviours of the stick-slip responses of the system with the variations of the brake pressure and the parameters of pads were observed. The numerical analysis of stick-slip vibration was also performed in Leine et al. [19], Kang et al. [20,21], Ouyang et al. [22-24], Behrendt et al. [25], Pascal [26], etc. Additionally, some researchers conducted physical experiments to explore the stick-slip phenomenon in mechanical systems and effects of physical and operating parameters (contact surface roughness, properties of pad material, sliding velocity and normal preload, etc), e.g. in Real et al. [27], Neis et al. [28,29], Yoon et al. [30], Faudi et al. [31,32], Tonazzi et al. [33,34], and Du et al. [35], etc. Moreover, experimental studies were carried out to investigate FIV as multi-physics and complex dynamics problems,  e.g., in Massi et al. [36,37], Sinou et al. [38], and Abu Bakar et al. [39,40]. And Sinou et al. [41] investigated the thermal effect on the friction-induced vibration and noise.
 The numerical analysis on theoretical models can be employed to uncover the excitation mechanisms, predict the dynamic behaviours unavailable in experiments and investigate the effects of parameters on the friction-induced dynamics. Nevertheless, the credibility of theoretical results is often questionable without the experimental validation. Therefore, a combination of numerical analysis on the theoretical model and experimental investigation on the test rig will be preferable. In the work [42], Liu et al. conducted both numerical and experimental parametric study on the stick-slip phenomenon encountered in drill-strings. Pilipchuck et al. [43] examined the non-stationary effects in stick-slip vibration of a 2-DoF belt-spring-block model with linearly deceasing velocity of the belt by both numerical analysis and experimental investigation. Wang et al. [44] compared the results of numerical simulation on a 2-DoF theoretical model with the measured stick-slip oscillation on a dual-pin-on-disc test rig and a fairly good agreement was found. However, the work combining numerical and experimental study on the stick-slip FIV is still quite limited.
It has been revealed in several theoretical studies [45,46] that bi-stability occurs in the stick-slip FIV, i.e., there is coexistence of a stable pure sliding response and a stable stick-slip limit cycle in certain parameter range. However, there is little experimental observation on this phenomenon. Besides, most of the physical experiments that have been performed to investigate the stick-slip vibration involved a constant normal force between contacting objects, while in practice the coupling in the normal and tangential degrees of freedom may cause time-varying normal force which can have a significant effect on the stick-slip dynamics of the system. Therefore in this paper, a specially designed  slider-on-rotating-disc test rig is used for the investigation of  the stick-slip FIV, where the rotation of an L-shaped component is coupled with the friction-induced stick-slip vibration in the tangential direction and produces a state-dependent normal force. A similar mechanism was also used in a mass-on-moving-belt model in [43]. On the other hand, there have been studies on the approaches to suppress the adverse stick-slip vibration in mechanical systems, for example, for oil well drill-strings [47-49]. Cochard et al. [50] put forward the approach of normal load modulation to stabilize the frictional system against stick-slip oscillations. Wang et al. [51] studied the effect of damping on the suppression of stick-slip FIV. Zhao et al. [52,53] integrated piezoceramic actuators into a disc brake system to provide harmonic high-frequency excitations to reduce the difference between the coefficients of static and kinetic friction so as to eliminate the stick-slip limit cycle vibration of the system. Nevertheless, there is no universal solution for the suppression of undesirable stick-slip FIV yet. In this work, a new approach is proposed and explored for its efficacy in suppressing the friction-induced stick-slip vibration, in which the disc surface is modified into non-uniform friction interface, namely, a sector of disc surface is assigned with different friction property from that of the rest of the disc surface. Laboratory tests are conducted and numerical simulations on a theoretical model based on the parameters identified from the test rig are performed to present convincing results.
2. Experimental setup and theoretical modelling
2.1 Experimental setup
The test rig consists of two main subsystems, i.e., the disc subsystem and the slider subsystem. A general view of the test rig and zoom-in views of some components are given in Fig. 1. In the disc subsystem, a DC motor (output power: 400W) coupled with a reduction gearbox which can provide low revolution speeds with high torques is used to drive the cast-iron disc (diameter: 211mm, thickness: 10mm) to rotate at specified speeds, via a shaft coupling and a drive shaft for connection. The shaft coupling and drive shaft are designed to have adequately great torsional stiffness so that no torsional motion of the shaft coupling and drive shaft needs to be considered while the disc rotates.
The slider subsystem encompasses three parts. In the first part, a steel pin with hemispherical tip (to make a point contact between the pin and the disc) is clamped on the free end of a vertical cantilever beam, and the other end of the cantilever beam is clamped on a horizontal arm which is then fastened on the leading edge of a cylinder by bolts. The cylinder is allowed to rotate around its own central axis and the rotation of the cylinder is constrained by an extension spring at one end of the horizontal arm. On the trailing edge of the cylinder, another arm is bolted to the cylinder in the vertical direction. The second part of the slider subsystem is a L-shaped component with two equal segments which can rotate around its pivot. An extension spring connecting the vertical arm on the trailing end of the cylinder with one side of the L-shaped component brings the L-shaped component into rotation as the cylinder rotates. The other side of the L-shaped component is connected with the fixture of the pin by a compression spring, therefore the normal force between the pin and disc is changed with the rotation of the L-shaped component. The components including the vertical cantilever beam which holds the pin, the horizontal beam and the vertical arm of the cylinder, and the L-shaped component are specially designed structurally to have great stiffnesses in the directions of vibration considered, which are much greater than those of springs. The third part of the slider subsystem is a circular knob which can be screwed to apply a normal preload between the pin and the disc. Besides, concentrated masses are mounted on the other end of the horizontal arm to render the extension springs pre-stretched and the compression spring pre-compressed. The cylinder will experience stick-slip rotational motion due to the friction force between the pin and the disc, meanwhile the L-shaped component will have rotational motion, which are the two responses to be observed in the experiment. The maximum magnitudes of both rotational angles are assumed to be less than , therefore the responses are measured by two laser displacement sensors, which measure the displacement of one end of the horizontal arm and the displacement of the end of one edge of the L-shaped component, respectively. The normal preload is measured by strain gauges attached on the vertical cantilever beam on which the pin is clamped. All the analogue signals from the laser sensors and  the strain gauges are processed by a data acquisition system Labjack U12 with the sampling frequency 100 Hz. Both the strain gauges and the laser sensors are all calibrated.  
Several types of tests are performed in the experimental study of this work, including the tests to identify the system parameters and the friction-induced vibration tests of the system. All the tests are conducted in a strictly controlled ambient condition ( and  ). For the friction tests ( the tests to identify the coefficients of friction and the vibration tests of the system),  the general procedures are as follows: firstly, the normal preload is applied by turning the circular knob and the value of the preload is acquired from the reading of the strain gauge; secondly, the motor is switched on to make the disc rotate and the rotational speed is controlled by setting the motor driver; thirdly, the readings from the sensors are recorded and displayed on the computer, meanwhile the rotation speed of the motor is also processed by the data acquisition system and recorded on the computer. Before each friction test, the contact surfaces of the pin and the disc are cleaned by brush. For  the friction-induced vibration of the system, trial tests at normal preload of 10, 20, 30 N and disc speed of 1, 2, 5 rpm are conducted. To ensure good repeatability of the experimental results, each test presented in the experimental study is conducted no less than three times.
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Fig. 1 The experimental setup: 1. DC motor with reduction gearbox, 2. shaft coupling, 3. pillow block bearings, 4. cast iron disc, 5. steel pin, 6. compression spring, 7&8. extension springs, 9. L-shaped component, 10. cylinder with attachments, 11. strain gauges, 12. concentrated masses, 13&14. laser displacement sensors, 15. normal loading knob, 16. bracket.
The experimental setup as a dynamic system is sketched in Fig. 2. The components except the three springs in the test rig are assumed to be rigid as the stiffnesses of these components are much larger than those of springs. Therefore, the rotational angles of the cylinder and the L-shaped component are the two DoFs considered in the dynamic system. In addition, the stiffnesses of the springs are assumed to be linear in light of small rotational angles of the cylinder and the L-shaped component.
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Fig. 2 The theoretical dynamic model

2.2 Theoretical dynamic modelling
The equations of motion of the dynamic system as illustrated in Fig. 2 are next derived for the numerical study. Denoting the rotational angles of the cylinder and the L-shaped component by  and  respectively, the kinetic energy of the system can be written as,
                                                            (1)
where  and  are the polar moment of inertia of the cylinder and other attached components about its central axis and the second moment of inertia of the L-shaped component about its pivot, respectively. The potential energy of the system comprises the gravitational potential energy of the system and the elastic potential energy of the springs with stiffnesses ,  and  respectively,  i.e.,
                                                      (2)
The elastic potential energy  is expressed as,
                                          (3)
where  represent the deformation of spring . Denoting the distances from both ends of the horizonal arm where spring  and the concentrated mass m are attached respectively to the central axis as , the distance from the connection point of spring  on the fixture of the pin to the central axis that is also the distance from the pin to the central axis as , the distance from either end of the L-shaped component to the pivot as , the deformations of the springs can be expressed as,
                                      (4)
                (5)
                 (6)
where ,  represent the pre-deformation and the free length of the spring , respectively. By expanding the above expressions into the Taylor series with respect to  and  and neglecting the third and higher order terms, which can be done as the magnitudes of  and  are assumed to be small, it is derived that,
                                                                 (7)
                                                         (8)
                                                            (9)
The gravitational potential energy of the cylinder with attachments due to the rotation of the cylinder is neglected in the case of small rotational angle, therefore  only results from the variation of the gravitational potential energy of the concentrated masses as a result of the cylinder’s rotation, i.e.,
                                                       (10)
The virtual work of external forces includes the work done by the friction force between the pin and the disc and by the rotational damping forces such as bearing resistance and air resistance, i.e.,
                       (11)
where  and  are the damping coefficients,  is the friction force between the pin and disc. By substituting Eqs. (1)-(3), (7)-(11) into the Lagrange’s equations,
                                                        (12)
                                                        (13)
where the generalized forces  , , the equations of motion of the system can be obtained as,
 (14)
                  (15)
There are two distinct states of motion taking place, i.e., relative sliding (or slip) and stick. In the state of slip, the friction force ,,  and  represent the coefficient of friction and the normal force, respectively. There are two types of friction laws commonly used to model the coefficient of friction. One is the Coulomb friction law [54] involving two parameters, namely the coefficient of static friction  and the coefficient of kinetic friction  (). The other is the friction model with Stribeck effect [55] which expresses the coefficient of friction during relative sliding as a continuous and decreasing function of the relative velocity. In this paper, both these two friction laws will be used in numerical simulations and the corresponding results are compared. The temperature variation on the contact surfaces of the pin and the disc is supposed to be insignificant in this study since the contact area is small, the applied normal load and the disc speed are low, therefore the thermal effect on the friction coefficients is not considered. For the Coulomb friction law, the coefficient of friction during relative sliding (is expressed as,
                                                                 (16)
For the friction model with Stribeck effect, a popular expression of  during relative sliding is formulated as an exponential decay function [56], i.e.,
                                                  (17)
where  is the exponential decay factor. In the state of stick (), the following equations are derived,
                                                      (18)
where  is the time when the state of stick starts. Consequently, the equation of motion of the system in the state of stick is a single-DoF equation of motion with respect to . Besides, the friction force during sticking is obtained by the dynamic equation Eq. (14), i.e.,
   (19)
And the condition for the system to stay in the state of stick is,
                                                                 (20)
The normal force  is the sum of the preload  and the normal component of the incremental force of the spring  due to the rotation of the L-shaped component, i.e.,
	                      (21)
Because there are two distinct states of motion that are governed by different equations of motion, the system dynamics is non-smooth. To simulate the dynamic responses of the system, the fourth-order Runge-Kutta method [57] is utilized in either single state while conditions for state transitions are monitored at the end of each time step. Within the time step in which a state transition happens, the bisection method is used to capture the exact transition instant. After the transition point, the state changes and the equations of motion are switched. 
3. Identification of system parameters
The values of the distances ,  and  are measured as ,  and  respectively and the values of , and  are obtained as ,  and  via a simple test. Besides, the values of ,,  are , - and  respectively and the free lengths of the springs are all . The mass mounted on one end of the horizontal arm is .  In the following, the methods to identify , , ,  and coefficients of friction between the pin and the disc are presented.
3.1 Identification of  , , , 
To derive the values of  and , the cylinder with attachments when it is not connected with the L-shaped component and the preload is not applied is also used, as stated in Section 3.1. Then a free vibration experiment is performed by means of a slight impulse applied on one end of the horizontal arm with a rubber-head hammer. The response of the cylinder with attachments is supposed to take the form as [58],
                                        (22)
By fitting the experimental data of the response with Eq. (23), the values of  and can be derived. Subsequently  and  can be calculated as,
                                                                     (23)
                                                               (24)
To derive the values of  and , the cylinder with attachments is fixed by bolt on one end of the horizontal arm and the L-shaped component is connected with the cylinder’s attachments by the spring  in extension and the spring  in compression, as described in Section 3.1. Another free vibration experiment is performed by means of a slight impulse applied on one end of the L-shaped component with the hammer. The response of the L-shaped component is supposed to take the form as,
                                        (25)
By fitting the experimental data of the response with Eq. (26), the values of  and can be derived. Subsequently   and  can be calculated as,
                                                               (26)
                                                       (27)
Based on the results of two free vibration experiments, ,  and ,  are estimated as,
,  and ,                 (28)
Therefore ,  and ,  can be derived from Eqs. (23), (24) and Eqs. (26), (27) respectively as,
,  and ,  (29)
Besides, the modal analysis of the results of the free vibration experiments of the cylinder with attachments and the L-shaped component, in which there is only a single low-frequency peak in the frequency spectra of interest, also supports the assumption that the deformation and vibration of the components in the rig excluding the springs can be omitted during a test.
3.2 Identification of coefficients of friction
To determine the coefficient of static friction between the pin and the disc, the cylinder with attachments when it is not connected with the L-shaped component is used. Then a normal preload is applied and the disc is rotated in the quasi-static way. The pin firstly sticks to the disc and the cylinder rotates accordingly, and the torques of the friction force and the force of the spring  about the central axis are equal due to static balance of the cylinder. The pin will eventually slip on the disc with the increase of the force of the spring  as the cylinder rotates with the disc. The maximum rotation angle at the onset of slip is recorded, from which the force of the spring  and the friction force that is namely the maximum static friction force can be subsequently calculated. The static friction coefficient can be next obtained dividing the calculated maximum static friction force by the applied normal preload.
To determine the coefficient of kinetic friction, the cylinder with attachments when it is not connected with the L-shaped component is also used while the extension spring on one end of the horizontal arm is replaced by a load cell, as shown in Fig. 3. A normal preload is applied and by rotating the disc at various speeds, the friction force at various relative velocities can be calculated from the readings of the load cell. And the friction force at a given speed and normal load is measured three times for the mean value. The coefficient of kinetic friction at a given speed (relative velocity) is then obtained by dividing the friction force by the applied normal preload. Moreover, normal preloads are varied and the obtained coefficients of kinetic friction at various normal preloads are averaged to determine  eventually.
By means of the methods introduced above, the coefficient  of static friction between the pin and the disc is estimated as . And the kinetic friction coefficient at various relative velocities is obtained and plotted in Fig. 4. The experimental data of  is fitted with Eq. (17) and the relevant parameters are therefore estimated as,
,                                                     (30)
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Fig. 3 The setup for identifying the coefficient of kinetic friction 
              [image: ]
[bookmark: _GoBack]Fig. 4 The coefficients of friction obtained from experiment and fitted exponential function of .
4. Experimental and numerical results for the uniform friction interface
In this section, both the experimental and numerical results of the system dynamics are given and compared in order to validate the credibility of the numerical analysis on the theoretical model. The values of basic parameters used in the numerical simulations are identified by the methods introduced in Section 3. It should be noted that the numerical simulations including the third-order terms of the Taylor series of Eqs. (4)-(6) are also done, and it is found that the addition of the third-order terms makes a minimal and negligible difference to the numerical results. Therefore the numerical results employing Eqs. (7)-(9), i.e., only the first-order and second-order terms of the Taylor series of Eqs. (4)-(6) are kept, are used for the comparisons with the experimental results. Fig. 5 shows the results of dynamic responses in time domain and frequency domain obtained by tests and numerical simulations using the friction model with Stribeck effect when the operating parameters are  and . The time-domain results in Fig. 5(a)(b)(c)(d) exhibit a similar trend between the test results and the numerical results. Fig. 5(e)(f) display the frequency spectra of responses, in which the principal frequencies of responses in experiment and numerical simulation are  and , respectively. Moreover, the numerical results of the system dynamics with the Coulomb friction law are depicted in Fig. 6,  which are quite analogous to the results using the friction model with Stribeck effect. 
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Fig. 5 The experimental results (a)(c)(e) and numerical results (b)(d)(f) of the system dynamics when  and : (a)(b) time histories of  and , (c)(d)  versus  and (e)(f) frequency spectra of responses.
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Fig. 6 The numerical results of the system dynamics with the Coulomb’s friction law.
In order to quantify and compare the amplitudes of responses, an index  is defined as,
                                                          (31)
where  is the number of cycles during a time period in the steady state,  and  represent the peak value and the valley value of the response in the ith cycle. The values of  of both experimental and numerical results are computed and listed in Table 1, and the errors of  and the principal frequency of the numerical results relative to the experimental results are also given, where the numerical result 1 and the numerical result 2 represent the numerical results obtained by using the friction model with Stribeck effect and the Coulomb friction model, respectively. By computation, the relative errors of the amplitudes and principal frequency of the numerical result 1 and the numerical result 2 are , ,  and , , , respectively. It is thus concluded that both numerical results are in good agreement with the experimental results. Besides, the experimental and numerical results under many other combinations of operating parameters  and  are also acquired and compared, which all show close agreement between the numerical results and the experimental results. Therefore, the credibility of the theoretical dynamic model can be validated, and the numerical results from both friction models agree well with the experimental results. 
Table 1 The comparisons between the experimental results and the numerical results
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	Experimental result
	
	
	

	Numerical result 1
	
	
	

	Numerical result 2
	
	
	

	Relative error 1 =
	
	
	

	Relative error 2 =
	
	
	


Next the bi-stability phenomenon that occurs in the stick-slip FIV is investigated both numerically and experimentally. In Fig. 7, the value ranges of operating parameters  and  in which two stable responses coexist or a single stable response exists obtained by numerical simulations using both friction models are displayed. In Fig. 7(a) with the result of the friction model with Stribeck effect, the parameter plane is divided into three regions where regions I, II and III contain the parameter combinations corresponding to a single stable steady sliding equilibrium, coexistence of a stable steady sliding equilibrium and a stable stick-slip limit cycle, a single stable stick-slip limit cycle, respectively. In Fig. 7(b) with the result of the Coulomb friction model, the parameter plane is divided into two regions where regions I and II contain the parameter combinations corresponding to a single stable steady sliding equilibrium, coexistence of a stable steady sliding equilibrium and a stable stick-slip limit cycle, respectively. The steady-state responses from different initial conditions under a parameter combination in the region II are shown in Fig. 8. 
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Fig. 7 The value ranges of  in which two stable responses coexist or a single stable response exists obtained by numerical simulations using: (a) the friction model with Stribeck effect, (b) the Coulomb friction model.I 
 II 
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Fig. 8 The steady-state responses when  and  under the friction model with Stribeck effect (a)(b) and the Coulomb friction model (c)(d) from two different initial conditions: (a)(c) far from the steady sliding equilibrium, (b)(d) ) near the steady sliding equilibrium.
By imposing the disc speed in three stages consecutively, i.e., acceleration from zero, constant speed and then deceleration to zero, the time history of  in the experiment under preload of  is shown in Fig. 9. It is observed that the stick-slip limit cycle vibration occurs when the disc speed is lower than  in the acceleration stage and lower than  in the deceleration stage, while the system stays nearly stationary at the steady sliding equilibrium when the disc speed is higher than  in the acceleration stage and higher than  in the deceleration stage. Therefore it can be concluded that there is coexistence of stable stick-slip limit cycle vibration and stable steady sliding equilibrium for the system when the disc speed is in the interval of . Moreover, the bistable ranges of  when the preload is  and  are experimentally determined and regions I, II and III in the experiment are consequently obtained, as exhibited in Fig. 10 (with same definitions of regions I, II and III as those in Fig. 7). The experimental responses of  for the representative parameter combinations in regions I, II and III in both acceleration and deceleration stages are given in Fig. 11, which demonstrates the existence of three parameter regions with different stable responses.  The comparison between Fig. 7 and Fig. 10 shows that the numerical result using the friction model with Stribeck effect is in better agreement with the experimental result than the numerical result using the Coulomb friction model, as region III which corresponds to a single stable stick-slip limit cycle does not exist with the Coulomb friction model.I 
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Fig. 9 Experimental response of  when the disc speed  experiences three stages in a row: acceleration, constant speed, deceleration. The preload .
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Fig. 10 The value ranges of  in which two stable responses coexist or a single stabler response exists obtained by experiment.
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Fig. 11 Experimental responses of  for the parameter combinations in regions I, II and III respectively: (a) , (b)  and (c) . The preload .
5. Experimental and numerical results for non-uniform friction interface
In this section, the dynamics of the system with the non-uniform friction interface, i.e., a sector (its span angle is denoted by ) possesses different a friction property from that of the rest of the disc surface, as shown in Fig. 12(b), is investigated.

friction property 2


friction property 1
friction property 1


                                             (a)                                                                 (b)
Fig. 12 Configurations of disc surfaces: (a) uniform friction interface, (b) non-uniform friction interface.
The samples of discs used in the experiment are shown in Fig. 13, where samples (a), (b), (c) have uniform friction interface with friction property 1,  non-uniform friction interface with friction property 1 and friction property 2 (), non-uniform friction interface with friction property 1 and friction property 2 (), respectively. The coefficients of friction property 1 have been given in the above sections, while friction property 2 created by means of sandblasting is identified as,
, ,                                             (32)
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Fig. 13 Experimental samples of discs with: (a) uniform friction interface, (b) non-uniform friction interface () and (c) non-uniform friction interface ().
By numerical simulations of the dynamic response under the non-uniform friction interface (the friction model with Stribeck effect is employed), the parameter regions with different stable responses can be obtained and the results are presented in Fig. 14, where regions I, II and III denote the parameter combinations corresponding to a single stable pure sliding response, coexistence of a stable pure sliding response and a stable stick-slip response, and a single stable stick-slip response, respectively. The results when  and when  are found to be identical. The steady-state responses of  under the non-uniform friction interface () for the representative parameter combinations in regions I, II and III from two different sets of  initial conditions are shown in Fig. 15. 
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Fig. 14 Parameter regions with different stable responses under the non-uniform friction interface obtained by numerical simulations.
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Fig. 15 Numerical responses of  under the non-uniform friction interface () for the parameter combinations in the region I, II, III respectively: (a) , (b)  and (c) . The preload .
The experiments are performed on the discs with non-uniform friction interface to investigate the stable solutions of system responses also in three speed regimes (acceleration from zero, constant speed and then deceleration to zero). The experimental response with  and  is exhibited in Fig. 16, which demonstrates a single stable response of stick-slip vibration when  , a single stable response of pure sliding when , and two possible steady-state responses (stick-slip vibration and pure sliding) depending on the initial condition when , in the system. In combination with the experimental results with  and , the experimental parameter regions with different stable responses can be obtained, as shown in Fig. 17(a). Besides, the experimental parameter regions with different stable responses under the non-uniform friction interface () are given in Fig. 17(b). 
The parameter regions II and III combined constitute the range in which stick-slip vibration can occur. In Fig. 18, the numerical and experimental results of parameter ranges in which the stick-slip limit cycle vibration occurs in the three cases, i.e., uniform friction interface, non-uniform friction interface with  and , which are the domains above corresponding curves, are presented. It is shown that the ‘stick-slip’ domains under the non-uniform friction interfaces are significantly smaller than that under the uniform friction interface. There are obviously differences between the numerical results and experimental results as displayed in Fig. 18(a) and (b). The main reasons may be omission of some phenomena of the experiments in the theoretical model such as wear and temperature variation of contact surfaces, inaccuracy of the friction laws used, nonlinearities in the system. Sensitivity of the friction-induced vibration to the initial conditions may also be a factor. However, overall, it is both numerically and experimentally demonstrated that modifying a sector of the disc surface with an appropriate friction property can be an effective approach to diminish the parameter range in which the stick-slip vibration occurs and thereby reducing the possibility of occurrence of stick-slip vibration in the system. The theoretical explanation for the effectiveness of this approach is given in the following.
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Fig. 16 Experimental response of  under the non-uniform friction interface () when also imposing three-stage disc speed. The preload .
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Fig. 17 Parameter regions with different stable responses under the non-uniform friction interface with  (a) and  (b) obtained by experiment.
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Fig. 18 The ranges of parameters in which stick-slip vibration can occur under the uniform and non-uniform friction interfaces obtained by numerical simulation (a) and experiment (b).
The range of operating parameters in which the stick-slip vibration occurs under the uniform friction interface with friction property 1 is determined numerically and already exhibited in Fig. 18(a). The parameter range in which the stick-slip vibration occurs under the uniform friction interface with friction property 2 is determined numerically too and illustrated in Fig. 19(a). The difference of the ‘stick-slip’ domain between these two friction properties is shown as the red region in Fig. 19(b). For the combinations of operating parameters in the red region, there is a single stable steady sliding equilibrium under the friction property 2, while a stable steady sliding equilibrium and a stable stick-slip limit cycle coexist under the friction property 1.
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Fig. 19  The parameter range in which the stick-slip vibration occurs under the uniform friction interface with the friction property 2 (a) and the difference of the ‘stick-slip’ domain between the two friction properties (b).
Under the non-uniform friction interface, the pin contacts the sector with friction property 2 and the rest of the disc surface with friction property 1 alternately as the disc rotates. The system response under the non-uniform friction interface for the parameter combinations in the red region is analysed subsequently. Based on the results above, the system has a single stable sliding equilibrium while the pin is in contact with the sector with friction property 2; therefore the system response will always approach the sliding equilibrium ( i.e., the equilibrium point of the system under friction property 2 ) whatever the initial condition is. Meanwhile, there are two possible responses for the system while the pin is in contact with the disc surface with friction property 1, i.e., the sliding equilibrium and the stick-slip limit cycle. Nevertheless, because the state variables of the system at the time instant when the pin slides past the sector with friction property 2 are within the attraction basin of the equilibrium point of the system under friction property 1, the system response will also tend to the sliding equilibrium. As a result, the system under the non-uniform friction interface for the parameter combinations in the red region has a single stable pure sliding response as shown in Fig. 15(a). The analysis in the above sections demonstrates that only a small sector, rather than the whole disc surface, needs to be modified in the friction property in order to diminish the parameter range in which stick-slip vibration can occur. 
As mentioned above, the sector should possess an appropriate friction property in order to achieve the aim of diminishing the parameter range that enables stick-slip vibration of the system. For friction  property 1 used in the above sections, the effective coefficients of  friction property  2 on the sector for the diminution of the ‘stick-slip’ parameter domain are obtained by further numerical simulations and shown to be inside the red closed curve in Fig. 20. Different effective friction property 2 can reduce the ‘stick-slip’ parameter domain of the system to different extent, which can be calculated by numerical simulations and verified by experiments.
[image: ]Effective

Fig. 20 The combinations of  of effective friction property 2 on the sector for the diminution of the ‘stick-slip’ parameter domain. ( of friction property 2 is ).
6. Conclusions
In this paper, the numerical simulation and experimental investigation on the friction-induced vibration (FIV) of a specially designed slider-on-rotating-disc system are carried out. The numerical results of the dynamic responses under the uniform friction interface of disc by employing two types of friction models, i.e., the Coulomb friction model and the friction model with Stribeck effect, are compared with the experimental results. Moreover, a novel approach in which the disc surface is modified into non-uniform friction interfaces, namely, a sector of disc surface is assigned with a different friction property from that on the rest of the disc surface, is explored for its efficacy in suppressing the friction-induced stick-slip vibration of the system also by both numerical analysis and experimental observation. The following conclusions can be reached from this study, 
1. The numerical results of the dynamic responses under the uniform friction interface of disc with both friction models agree well with the experimental results, therefore the credibility of the numerical analysis on the theoretical dynamic model is validated.
2. The bi-stability phenomenon that occurs in the stick-slip FIV is not only revealed in the numerical analysis but also observed in the experiments. The parameter plane of normal force versus disc speed can be divided into three regions (I, II and III) which contain the combinations of these two parameters corresponding to a single stable steady sliding equilibrium, coexistence of a stable steady sliding equilibrium and a stable stick-slip limit cycle, a single stable stick-slip limit cycle, respectively.
3. About the parameter regions with different stable responses, the numerical result using the friction model with Stribeck effect is in better agreement with the experimental result than the numerical result using the Coulomb friction model; notably, region III which corresponds to a single stable stick-slip limit cycle does not exist with the Coulomb friction model.I 
I 

4. It is both numerically and experimentally demonstrated that the non-uniform friction interface of the disc with an appropriate friction property on a disc sector can be an effective approach to diminish the parameter range in which the stick-slip vibration occurs and thereby reducing the possibility of occurrence of stick-slip vibration in the system, and the central angle of the sector is not necessarily large.
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