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Abstract—We propose a comprehensive scheme for realizing
a massive multiple-input multiple-output (MIMO) system with
dual-polarized antennas in frequency division duplexing (FDD)
mode. Dual-polarized arrays are commonly employed due to
the favorable property that, in principle, they can double the
number of channel spatial degrees of freedom with a less-
than-proportional increase in array size. However, processing
a dual-polarized massive MIMO channel is demanding due to
the high channel dimension and the lack of Uplink-Downlink
(UL-DL) channel reciprocity in FDD mode. In particular, the
difficulty arises in common channel training and DL precoding
in a multi-user setup . To address this, we develop a unified
framework consisting of three steps: (1) covariance estimation to
efficiently estimate the UL covariance from noisy UL pilots; (2)
a UL-DL covariance transformation method that obtains the DL
covariance from the estimated UL covariance, eliminating the
need for DL channel covariance training via pilot transmission;
(3) a joint multi-user DL channel training method, which enables
the BS to estimate effective DL channels given any protocol-
specific pilot dimension and to use them for interference-free
DL beamforming and data transmission. Through extensive
simulations, we show that our scheme is applicable to a variety
of communication scenarios in terms of the number of antennas,
UL and DL pilot dimensions, and angular scattering properties.
Unlike the common trend in the literature, we do not make
strong structural assumptions about the wireless channel (such as
angular sparsity), ensuring a general treatment of the problem.

Index Terms—Active channel sparsification, Channel covari-
ance estimation, Dual-polarized FDD massive MIMO, Multi-user
channel training, Uplink-Downlink covariance transformation.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) antenna
systems promise high data rates as well as link reliability in
prospective generations of wireless communication systems
[1, 2]. The characteristic property of these systems is the
deployment of a large number (M � 1) of antennas at the base
station (BS), resulting in substantial improvements in terms of
beamforming and multiplexing gains, while also increasing
the array size. Since most wireless networks are currently
based on frequency division duplexing (FDD), implementing
a massive MIMO system in FDD mode is an appealing
proposition. Besides, many network developers consider using
dual-polarized (DP) antenna elements in the array, since this
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offers a doubling of the number of inputs with a less-than-
proportional increase in array size [3, 4]. Using DP antennas
results in UL and DL channels of dimension 2M . In order
to perform DL beamforming, the BS needs to obtain fresh
channel estimates at each time-frequency coherence block
and for all the K users. In a time division duplexing (TDD)
system, this can be obtained from K mutually orthogonal UL
pilots transmitted by the users and exploiting UL-DL channel
reciprocity, which readily yields a DL channel estimate. This is
unfortunately not the case in FDD systems, since UL and DL
transmissions occur over disjoint frequency bands, violating
instantaneous channel reciprocity. Therefore, the BS spends a
fraction Tdl out of the total resource dimension T to broadcast
pilots to the users. Upon receiving the pilots, the users send
their Tdl “measurements” to the BS via closed-loop feedback,
using which the BS estimates the DL channels.

Channel estimation in this way is generally challenging,
since the channel dimension is large (2M � 1) and the
pilot dimension is limited to the size of the coherence block
(Tdl ≤ T ), which is used not only for pilots but also for
data transmission. For example, in a standard LTE setup the
users are scheduled over resource blocks containing 14 OFDM
symbols and 12 subcarriers, making a total of T = 14× 12 =
168 dimensions [5]. With a DP array of, say, M = 100
antennas, the number of coefficients to be estimated amounts
to 2M = 200 which is larger than the block size T = 168
and (much) larger than the pilot dimension. As a result, since
the number of linear channel measurements is less than the
estimand vector, the BS can not obtain the channel state
via conventional methods such as the Least Squares (LS)
estimation. Hence the question is how to efficiently precode
data to the users given a fixed DL pilot dimension that is
small relative to the channel dimension. Our answer to these
questions involves several steps that are outlined as follows.

A. Channel Covariance Estimation

Channel covariance knowledge at the BS either for UL or
DL is crucial not only for designing efficient DL precoders, but
also for a variety of tasks including minimum mean squared
error (MMSE) channel estimation and user grouping . During
UL, each user transmits a number of orthogonal pilots to the
BS, which in turn uses the set of observed channel samples to
estimate the UL channel covariance. The simplest and most
common estimator is the sample covariance. It is well-known
that in scenarios (such as the one in hand with a massive array
M � 1), in which the number of samples (N) is comparable
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to the signal dimension (2M ), the sample covariance can be
substantially improved by taking into account the covariance
structure. There are several ways to exploit the structure in
estimation, including recent methods that consider low-rank
and sparse covariance models. For example, methods based on
rank minimization or nuclear norm minimization (for low-rank
covariances), and `0-pseudo-norm or `1-norm minimization
(for sparse covariances) or combinations thereof are proposed
[6–8].

In this paper we do not assume the DP channel covariance
to be low-rank or sparse as is postulated in many works
in the literature in similar problems [9–12], but as we will
show it follows a Kronecker-type form and is given by an
integral transform involving a positive semidefinite matrix-
valued function of the angle of arrival (AoA). This function,
coined as the dual-polarized angular spread function (DP-
ASF), represents the channel angular power density in H
and V polarizations as well as the cross-correlation between
the two. Our approach to covariance estimation is based
on a parametric representation of the DP-ASF in terms of
a linear combination of elementary, limited-support density
functions, whose coefficients are estimated given independent
DP channel samples {hul(i)}Ni=1. This parametric model is
general, in that, it incorporates specular as well as diffuse
angular scattering and does not assume unverified polarization
properties. The estimation is carried out via a convex program,
which enforces the positive semidefinite property on the so-
lution. After estimating the DP-ASF, an estimate of the UL
covariance is readily given by a simple integral transform.

B. Uplink-Downlink Channel Covariance Transformation

In addition to the UL covariance, the BS needs to obtain
an estimate of the DL covariance for all users both to obtain
a reliable estimate of user DL channels and to design a DL
precoder for multi-user data transmission. In an FDD system,
UL and DL covariances are different and therefore the DL
covariance has to be estimated via DL training and UL closed-
loop feedback. This process is not efficient since the overhead
of transmitting DL pilots, receiving feedback from the users
and then estimating the DL covariance is too large. In order to
estimate the DL covariance, we propose a UL-DL covariance
transformation method, which hinges upon a phenomenon
known as angular channel reciprocity: the angular power
density as seen from the array is the same for UL and DL,
resulting in the DP-ASF to be identical during UL and DL. The
concept of angular channel reciprocity is well-established in
the literature (e.g., [13, 14]) considered for the single-polarized
array, and what we propose here is its natural extension to
the DP array. Having an estimate of the DP-ASF from the
previous step, we use angular reciprocity and a change of the
array response from UL to DL to obtain an estimate of the
DL covariance.

C. Downlink Channel Training and Precoding via Active
Sparsification

In order to achieve the gains of massive MIMO, it is
necessary for the BS to estimate (train) instantaneous user

DL channels and perform interference-free DL beamforming.
While channel training is an easy task with small MIMO ar-
rays, it becomes increasingly challenging when the number of
antennas grows large. This is especially an issue in FDD mode,
where instantaneous channel reciprocity does not hold, and UL
and DL channels corresponding to different frequency bands
are virtually uncorrelated random vectors. The DL channels
can not be obtained simply from their UL counterparts and
therefore, the BS has to probe the channel in the DL by
broadcasting pilot symbols, receive feedback from the users
and finally estimate the DL channel. In order to estimate a 2M -
dimensional DP channel with any conventional method and
without assumptions such as channel sparsity, the BS needs to
transmit at least 2M pilot symbols and receive their feedback
in the UL to have “stable” channel estimates. On the other
hand, as explained earlier the time-frequency resources of a
single coherence block are used for both channel training and
data transmission. Dedicating a number Tdl of a total of T
coherence block dimensions to DL training introduces a pre-
log factor of max{0, 1 − Tdl/T} in the sum-rate. When the
pilot dimension is comparable to the large number of antennas,
this factor will be small or in the worst case, equal to zero.

This dimensionality problem is not solved even by resorting
to the channel sparsity assumption and various compressed
sensing (CS) techniques (see e.g. [9] and [10]). First, the chan-
nel sparsity postulate may not be always verified, especially
in rich scattering environments and in the presence of diffuse
scattering (in fact sources such as [15] call this assumption
the sparsity hypothesis). Therefore, CS techniques are always
at the mercy of environmental properties, as to whether the
channel is indeed sparse or not. Second, even if the sparsity
assumption holds, the number of measurements necessary for
accurate sparse recovery might be still high, exceeding the
available DL pilot dimension.

To resolve this issue, we adopt and extend the active channel
sparsification (ACS) approach first proposed by some of the
authors in [13] for single-polarized arrays. Given user DL
covariances and for a given pilot dimension Tdl, the idea of
ACS is to design a sparsifying precoder that jointly reduces the
number of significant angular components of all the user chan-
nels to less than Tdl, while at the same time maximizing the
rank of the sparsified effective channel matrix. This enables, as
it will be shown, stable recovery of the effective user channels
and simultaneously maximizing the system multiplexing gain,
which is proportional to the channel matrix rank. Using the
ACS method, we are not at the mercy of channel’s sparsity
features and we do not make any assumptions thereof. ACS is
deployed via first identifying a set of common virtual beams
among all the users for channel representation and forming
a user-virtual beam bipartite graph. Then we prove a result,
relating the channel matrix rank to the maximal matching size
in the graph. Finally, the sparsifying precoder is given by
selecting a subset of users and virtual beams as the solution
to a mixed integer linear program (MILP). The block diagram
of Fig. 1 summarizes the steps described above.

Perhaps the most relevant work that addresses the FDD
massive MIMO problem is the method proposed in [11]. This
work assumes channels with discrete and sparse multipath
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Fig. 1: Overall block diagram of our scheme.

components and proposes to estimate the channel parameters,
namely the AoAs and complex coefficients of the signal paths
at the user side via a tensor factorization method. This method
suffers from the same shortcoming as CS-based methods in
that its success heavily depends on the sparsity assumption.
In fact the multipath identifiablity bound given in this work
gives guarantees for channels that are extremely sparse even
when the pilot dimensions is large (see Theorem 6 in [11]).
Since parameter estimation is done at the user side, this bound
is yet more restrictive when the number of antennas at the user
side is small, as is the case in today’s smartphones and other
user equipment. In contrast, our method does not depend on
channel sparsity and applies to cases with diffuse as well as
discrete scattering. It is also computationally more efficient,
since it performs computation at the BS side, which has access
to much more computational resources than what is available
in a user’s device.

D. Organization

The paper is organized as follows. In Section II we introduce
the dual-polarized channel model. In Section III we develop
our channel covariance estimator. Section IV discusses UL-DL
covariance transformation. In Section V we elaborate on the
ACS method. Various empirical results in Section VI conclude
the paper.

II. CHANNEL MODEL

We consider a uniform linear array (ULA) of M dual-
polarized antenna elements that communicates with a user that
has one single-polarized antenna. The Uplink (UL) channel
can be represented as

hul =

[
hul,H
hul,V

]
∈ C2M , (1)

where hul,H ∈ CM is the channel vector corresponding to
the M H-polarized antenna ports and hul,V ∈ CM is the
one corresponding to the M V-polarized ports. The channel
for either polarization is a superposition of random gains
along a continuum of AoAs, weighted by the antenna element
response which for antenna m is given by am = e

jπm
2d sin(θ)
λul ,

where d is the antenna spacing, θ ∈ [−θmax, θmax] is the AoA,
θmax is the maximum array angular aperture and λul is the
wave-length of the electromagnetic wave at the UL carrier
frequency. Taking the antenna spacing to be the standard
d = λul

2 sin θmax
and with the change of variables ξ = sin θ

sin θmax
∈

[−1, 1], the antenna element response admits the simpler form

am = ejmπξ, m = 0, . . . ,M − 1, (2)

where ξ is understood as the normalized AoA parameter. Then,
we can express H and V channel vectors as

hul,H =

∫ 1

−1
WH(ξ)aul(ξ)dξ, (3a)

hul,V =

∫ 1

−1
WV(ξ)aul(ξ)dξ (3b)

where a(ξ) = [1, ejπξ, . . . , ejπ(M−1)ξ]T is the array response
vector, and WH and WV are random processes representing the
angular gains along each AoA for H and V polarizations, re-
spectively. We assume WH and WV to be zero-mean, circularly
symmetric, complex Gaussian processes with the following
autocorrelations:

E [WH(ξ)W ∗H(ξ′)] = γH(ξ)δ(ξ − ξ′), (4a)

E [WV(ξ)W ∗V(ξ′)] = γV(ξ)δ(ξ − ξ′), (4b)

where we have adopted the wide-sense stationary uncorrelated
scattering (WSSUS) model, which assumes stationary second-
order channel statistics (over reasonably short time intervals)
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Fig. 2: An example of H and V ASFs as well as the H-V cross-
correlation modulus. The blue shaded function highlights γV(ξ), the
red one highlights γH(ξ) and the black one highlights |ρ(ξ)|.

and uncorrelated angular scattering gains [16]. The functions1

γH and γV are both real and non-negative, representing the
channel power density received along each AoA for H and
V polarizations, respectively. We call these horizontal and
vertical angular spread functions (ASFs) (see Fig. 2). In
practice, the H and V links can not be entirely isolated from
each other and therefore, there exists a leakage of channel
power between the two. This implies that, for each AoA, the
random gains WH(ξ) and WV(ξ) are correlated such that we
have

E [WH(ξ)W ∗V(ξ′)] = ρ(ξ)δ(ξ − ξ′), (5)

where ρ is a generally complex-valued function.
Remark 1: It is conventional in the literature to model the

channel vector explicitly in terms of its line-of-sight (LoS) and
non-line-of-sight (NLoS) components as

hul,(H/V) =
√
αhLoS

ul,(H/V) +
√

1− αhNLoS
ul,(H/V),

for an energy normalization scalar α ∈ [0, 1] [11, 18].
Furthermore, each component is modeled as a superposition
of the array responses to waves impinging from discrete,
separable paths, represented as hLoS

ul,(H/V) = βLoS
ul,(H/V)aul(ξLoS)

and hNLoS
ul,(H/V) =

∑p−1
i=1 β

NLoS
ul,(H/V),iaul(ξNLoS,i), where p is the total

number of paths, ξLoS, {ξNLoS,i}i are the AoAs and βLoS
ul,(H/V),

{βNLoS
ul,(H/V),i}i are complex-valued gains. The model that we use

in (3) includes this decomposition as a special case, in which
the angular gain process has non-zero variance over a finite
set of discrete AoAs corresponding to LoS and NLoS signal
paths. The H and V ASF’s in this case would be delta trains,
where the location of each delta corresponds to an LoS or
NLoS AoA and the positive gains are the corresponding signal
powers. 4

From (1) and (3) the dual-polarized UL channel can be more
conveniently expressed as

hul =

∫ 1

−1

[
aul(ξ) 0

0 aul(ξ)

] [
WH(ξ)
WV(ξ)

]
dξ

=

∫ 1

−1
(I2 ⊗ aul(ξ)) w(ξ)dξ,

(6)

1We use the term “function” with some abuse of terminology. An accurate
term would be “distribution” in the sense of generalized functions [17], since
we also consider Dirac’s delta which is not a function in the conventional
sense.

where ⊗ denotes Kronecker product, and w(ξ) :=
[WH(ξ),WV(ξ)]T. The channel covariance can be computed
according to (6) as

Σul
h = E

[
hulh

H
ul

]
=

∫ 1

−1
Γ(ξ)⊗Aul(ξ)dξ, (7)

where we have defined the rank-1 matrix Aul(ξ) =
aul(ξ)aul(ξ)

H, and the matrix-valued function

Γ(ξ) = E
[
w(ξ)w(ξ′)H

]
=

[
γH(ξ) ρ(ξ)
ρ(ξ)∗ γV(ξ)

]
∈ C2×2, (8)

which is positive semidefinite (PSD) for all ξ ∈ [−1, 1]. We
call Γ(ξ) the dual-polarized angular spread function (DP-
ASF) and we note that, similar to the role played by the ASF
in a single-polarized array, the DP-ASF captures the angular
spectral properties of the channel, i.e. the power density along
H and V links and the power leakage density between the two.

III. UPLINK CHANNEL COVARIANCE ESTIMATION

Suppose that the BS receives N noisy pilots in the UL as

yul(i) = hul(i)xn + z(i), i = 1, . . . , N, (9)

where xi =
√
P is the pilot symbol, z(i) ∼ CN (0, N0I2M )

is the additive white Gaussian noise (AWGN) vector at the i-
th transmission with N0 being the noise variance per element,
and hul(i) is the i-th random channel realization. With orthog-
onal pilot transmission over distinct time-frequency coherence
blocks, we can safely assume that the channel realizations
h(i), n = 1, . . . , N are independent. A simple estimator
of the UL channel covariance Σul

h is given by the sample
covariance matrix

Σ̂
ul
h = Σ̂

ul
y −N0I2M :=

1

N

N∑

i=1

yul(i)yul(i)
H −N0I2M , (10)

The sample covariance is a consistent estimator of the true
covariance and converges to it for relatively large number of
samples (N � 2M ), obtaining which is affordable in the
case of small MIMO channels. However, for a dual-polarized
massive MIMO channel with 2M � 1, this condition is hardly
met and instead, the number of samples is in the order of
the channel dimension (N = O(2M)). In these regimes of
dimensionality, it is well-known that one can considerably
improve the sample covariance estimator, for example by
exploiting the covariance structure. In particular, here we are
interested in covariance matrices that belong to the set of
feasible DP MIMO covariances of a ULA defined as

Cul :=

{∫ 1

−1
Φ(ξ)⊗Aul(ξ)dξ, Φ : [−1, 1]→ S2

+

}
, (11)

where Φ is a generic DP-ASF and S2
+ denotes the set of 2×2

PSD matrices. This structure will be considered in estimation
of the covariance as follows.
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Fig. 3: An example of the discrete component of the ASF corre-
sponding to the H polarization

A. Parametric Representation of the DP-ASF

The DP-ASF of a channel models the received power
density over each AoA. This power density in turn depends on
the scattering properties of the environment: partly it comes
from line of sight (LoS) propagation, specular reflection and
wedge diffraction in the environment that occupy narrow
angular intervals, while the rest of the power comes from
diffuse scattering, occupying wide angular intervals [3] (see
Fig. 2). In order to distinguish between these two types of
multipath effects, we decompose the DP-ASF into “discrete”
and “continuous” (diffuse) components:

Γ = Γd + Γc, (12)

where Γc is the continuous component and Γd is the discrete
component. For the discrete part, the parametric form is simply
given by a train of weighted delta functions:

Γd(ξ) =

[
γdH(ξ) ρd(ξ)
ρ∗d(ξ) γdV(ξ)

]
=

r∑

i=1

Ciδ(ξ − ξi), ξ ∈ [−1, 1],

(13)
where Ci � 0, i = 1, . . . , r are 2× 2 PSD matrices, ξi, i =
1, . . . , r are discrete AoAs, and γdH, γ

d
V, and ρd are discrete

components of the H and V ASF’s and the cross-correlation
term, respectively. Fig. 3 illustrates an example of γdH with
r = 3 discrete AoAs.

In contrast to the discrete component, we can not assume
a parametric description of Γc in terms of delta functions.
Instead, we define a dictionary of n density functions with
small support2

Ψc := {ψi(ξ) ≥ 0∀ ξ, |supp(ψi)| � 1 : i = 1, . . . , n} ,
(14)

using which we approximate Γc as

Γc(ξ) =

[
γdH(ξ) ρd(ξ)
ρ∗d(ξ) γdV(ξ)

]
≈

n∑

i=1

C′iψi(ξ), (15)

for ξ ∈ [−1, 1] where similar to (13) C′i, i = 1, . . . , n are 2×2
PSD matrices. If Ψc is suitably chosen and is large enough
(n � 1), then one can find the coefficients C′i such that the
approximation error in (15) is small. A simple choice for Ψc

is to consider it as a collection of a large number of densities
with non-overlapping support supp(ψi)∩supp(ψj) = ∅, i 6= j.
As we will shortly see, this results in a simple constraint

2The support of a function f on a domain Ω is defined as supp(f) = {x ∈
Ω : f(x) 6= 0}.

1−1

γ̂c
H

γc
H

ξ

Fig. 4: An example of the diffuse component of the ASF corre-
sponding to the H polarization and its approximation with rectangular
densities.

in the estimation of the coefficient matrices. Also there are
various options to choose the densities. Two examples are
rectangular densities3 ψrect

i (ξ) = rect
[−1+ 2(i−1)

n ,−1+ 2i
n ]
, i =

1, . . . , n, and truncated Gaussian densities ψgauss
i (ξ) =

1√
2πσ

exp(− (ξ− 2i−1
n )2

2σ2 )rect
[−1+ 2(i−1)

n ,−1+ 2i
n ]
, i = 1, . . . , n,

for ξ ∈ [−1, 1]. Fig. 4 illustrates an example of approximation
with rectangular densities.

Using (7), (13) and (15), we can derive a similar discrete-
continuous decomposition for the UL channel covariance as

Σul
h = Σul,d

h + Σul,c
h

=

∫ 1

−1
Γd(ξ)⊗Aul(ξ)dξ +

∫ 1

−1
Γc(ξ)⊗Aul(ξ)dξ

≈
r∑

i=1

Ci ⊗Aul(ξi) +
n∑

i=1

C′i ⊗A′ul,i,

(16)

where we have defined A′ul,i =
∫ 1

−1 ψi(ξ)Aul(ξ)dξ ∈ CM×M .
If the discrete AoAs {ξi}ri=1 were known, we could claim via
Eq. (16) that estimating Σul

h is equivalent to estimating the
coefficient matrices {Ci}ri=1 and {C′i}ni=1. In order to make
this strategy plausible, one needs to first estimate the discrete
AoAs {ξi}ri=1.

B. Estimating Discrete AoAs

We propose a heuristic eigenspace method for estimating
discrete AoAs, inspired by the Multiple Signal Classification
(MUSIC) algorithm, which is a well-known spectral estimation
method [19]. In a standard case (e.g. the single-polarized
channel) the pilot measurements covariance is given by a
matrix Σul

y =
∑r
i=1 ciaul(ξi)aul(ξi)

H + Σc where {ci}i are
positive scalars, {ξi}i are discrete AoAs, and Σc is the co-
variance of the part of channel resulting from diffuse scattering
plus the additive noise covariance. MUSIC first computes the
sample covariance Σ̂

ul
y from a set of noisy pilots. Then it

computes the eigen-decomposition of Σ̂
ul
y as ÛD̂ÛH, where

U ∈ CM×M is a unitary matrix and D̂ ∈ RM×M+ is diagonal
with real, non-negative elements that are sorted descendingly.
Define the “noise subspace” as the space spanned by the
last M − r columns of Û. It is shown that under certain
separability conditions on the discrete AoAs, the ratio of
power between the discrete and diffuse parts of the ASF, and
the noise power, MUSIC can recover the discrete AoAs by

3For interval A, rectA is the indicator function over A, i.e. rectA = 1A.
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minimizing the “pseudo-spectrum” η(ξ) =
∥∥UH

noi a(ξ)
∥∥2 over

the candidate AoAs ξ ∈ [−1, 1] [20, 21]. We can extend this
idea to the present case, where the dual-polarized channel
covariance consists of Kronecker-product components of the
form Ci⊗aul(ξi)aul(ξi)

H by defining the pseudo-spectrum as

η(ξ) =
∥∥UH

noi (1⊗ a(ξ))
∥∥2 , (17)

where 1 = [1, 1]T and UH
noi represents the noise subspace

of the DP channel sample covariance, containing the 2M −
2r eigenvectors of the sample covariance associated with its
2M −2r smallest eigenvalues. We estimate the discrete AoAs
as the r minimizers of η in (17) over ξ ∈ [−1, 1] that have
the smallest pseudo-spectrum value.

Note that in practice the number of discrete AoAs (r) is
not given, but it can be learned over time considering the
fact that in large dimensions, the largest eigenvalues of the
channel sample covariance correspond to discrete signal paths
and counting them gives an estimate (r̂) of the number of
such paths. This is not always easy to implement due to
the ambiguity in determining the largest eigenvalues, as this
always depends on a relative measure of the sum-power of
the largest eigenvalues compared to the rest. But we note that,
overestimating the number of spikes is better than underesti-
mating it and should be preferred. If “fake” spikes (i.e., false
positives) appear in the set of estimated discrete AoAs, they
will be eventually associated with small coefficients in the
next coefficient estimation step. However, if a true spike is not
detected, then we may not get an accurate covariance estimate
as no term in the parametric expansion (16) will compensate
for the contribution of the missing spike.

Recalling (16), now we can say that estimating Σul
h is

equivalent to estimating the n + r̂ coefficient parameters,
namely {Ci}r̂i=1 and {C′i}ni=1.

C. Estimating DP-ASF Coefficients

Let us first reformulate the channel covariance parametric
description in a simpler form. Define the known M × M
matrices Sul

i = Aul(ξ̂i) for i = 1, . . . , r̂ and Sul
i = A′ul,i−r̂

for i = r̂+1, . . . , r̂+n. Also define their associated unknown
coefficients as Wi = Ci for i = 1, . . . , r̂ and Wi = C′i−r̂
for i = r̂ + 1, . . . , r̂ + n. Then according to the right-hand-
side of (16) we can formulate the parametric expression of the
covariance as

Σ̃
ul
h({Wi}r̂+ni=1 ) ≈

r̂+n∑

i=1

Wi ⊗ Sul
i . (18)

Now, the problem is to estimate the coefficient matrices
{Wi ∈ S2

+}n+r̂i=1 , given noisy pilot measurements {yul(j)}Nj=1

in (9). Our proposition for performing this task is based on
minimizing the the difference between the channel sample
covariance matrix Σ̂

ul
h and Σ̃

ul
h as a function of the coefficients.

We perform the minimization by constraining the coefficients
to be PSD. Formally, we have the following optimization

problem:

{Ŵi}r̂+ni=1 = arg min
{Wi}r̂+ni=1

‖Σ̂ul
h −

r̂+n∑

i=1

Wi ⊗ Sul
i ‖2F

subject to Wi � 0, i = 1, . . . , r̂ + n.

(19)

We call this problem a positive semi-definite least-squares
(PSD-LS) program. The PSD-LS is convex and can be solved
using standard software. Then we obtain the covariance esti-
mate simply by using (18) and replacing Wi with Ŵi, which
yields

Σul ?
h =

r̂+n∑

i=1

Ŵi ⊗ Sul
i . (20)

Note that solving (19) also provides an estimate of the DP-
ASF using (13) and (15) as

Γ̂(ξ) =
r̂∑

i=1

Ŵi δ(ξ − ξ̂i) +
n∑

i=1

Ŵr̂+i ψi(ξ). (21)

IV. UL-DL COVARIANCE TRANSFORMATION

Estimating DL channel covariance is necessary for MMSE
channel estimation and multi-user common channel training.
Similar to (3), the DL channel for H and V polarizations can
be expressed respectively as

hdl,H =

∫ 1

−1
W dl

H (ξ)adl(ξ)dξ, (22a)

hdl,V =

∫ 1

−1
W dl

V (ξ)adl(ξ)dξ, (22b)

where

adl(ξ) = [1, ejπνξ, . . . , ejπ(M−1)νξ]T ∈ CM (23)

is the DL array response and ν = λul
λdl

= fdl
ful

is the DL to UL
carrier frequency ratio. The factor ν appears in the exponents
because of the change in the wavelength from UL to DL: the
response of antenna element m in DL in terms of the AoA
variable θ is equal to ejπm

2d sin(θ)
λdl . Setting the antenna spacing

to d = λul
2 sin θmax

as before and considering the change of

variables ξ = sin θ
sin θmax

we have ejπm
2d sin(θ)
λdl = e

jπm
λul
λdl
ξ which

results in formula (23) for the DL array response vector. We
assume the H and V random angular gain processes W dl

H and
W dl

V in (22) to be zero-mean complex Gaussian. These process
depend only on the angular location of the scatterers and
their response to the electromagnetic wave. While a random
realization of such a response can be different from UL to
DL, it seems reasonable to assume that their spectral properties
remain the same for UL and DL bands that are not significantly
far from each other. Fortunately, UL and DL bands in an FDD
system are located close to each other in comparison to their
carrier frequencies. For example, in a certain FDD UL-DL
band we have ful = 1920 MHz and fdl = 2110 MHz [5],
which means that we have

normalized UL-DL carrier spacing = |fdl−ful|
(fdl+ful)/2

= 0.0942,
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which is small. Therefore, it is reasonable to assume that
the autocorrelations and cross-correlation of the angular gain
processes remain the same in UL and DL, i.e.

E
[
W dl

H (ξ)W dl ∗
H (ξ′)

]
= γH(ξ)δ(ξ − ξ′), (24a)

E
[
W dl

V (ξ)W dl ∗
V (ξ′)

]
= γH(ξ)δ(ξ − ξ′), (24b)

and E
[
W dl

H (ξ)W dl ∗
V (ξ′)

]
= ρ(ξ)δ(ξ−ξ′). As explained before,

this means that the DP-ASF remains the same in UL and DL,
a property known as angular channel reciprocity [11, 14, 22].
While the DP-ASF is the same for UL and DL, the covariances
are still different. Similar to the calculation in (7), the DL
channel covariance can be expressed as

Σdl
h = E

[
hdlh

H
dl

]
=

∫ 1

−1
Γ(ξ)⊗Adl(ξ)dξ, (25)

where Adl(ξ) = adl(ξ)adl(ξ)
H.

One way to estimate the DL covariance is to send pilots
from the BS to the user, receive measurements via closed-
loop feedback from the user and estimate the instantaneous
channels. Then the BS can accumulate these estimates and
compute the sample covariance. Due to the high channel
dimension, this strategy incurs a large overhead both because
estimating a single channel requires sending many pilots and
that the sample covariance requires many samples to converge.
We solve this issue by estimating the DL covariance from the
UL pilots in (9) and leveraging angular channel reciprocity.
With this approach DL covariance estimation does not require
additional transmission of DL pilots, and in this sense is
estimated for free from the naturally received UL pilots. Recall
that in the previous section we estimated the DP-ASF from UL
pilots, denoted as Γ̂ in (21). Plugging Γ̂ instead of Γ in (25)
we estimate the DL covariance as

Σdl ?
h =

∫ 1

−1
Γ̂(ξ)⊗Adl(ξ)dξ =

n+r̂∑

i=1

Ŵi ⊗ Sdl
i , (26)

where Sdl
i = Adl(ξ̂i) for i = 1, . . . , r̂ and Sdl

i =∫ 1

−1 ψi(ξ)Adl(ξ)dξ for i = r̂ + 1, . . . , r̂ + n.

V. DOWNLINK CHANNEL TRAINING AND MULTI-USER
PRECODING

Besides the problem of covariance estimation, the BS is re-
quired to transmit multiplexed data to several users in the DL.
An interference-free transmission is possible only if the BS has
access to the instantaneous DL channel state information (CSI)
for all users to construct a precoder. Since channel reciprocity
does not hold in FDD mode, the instantaneous DL CSI is
obtained via common DL training (pilot transmission) of the
user channels and feeding back the measurements to the BS
during UL. The challenge is that, for a dual-polarized massive
MIMO system with a channel dimension of 2M � 1, the
number of pilots used for DL training must be large to enable
channel estimation. This results in a substantial reduction of
DL sum-rate, since a large portion of the resources is spent on
channel training and not data transmission. Also feeding back
the measurements to the BS consumes a considerable part of
resources in UL and may result in large delays.

To address this issue, we propose a common training scheme
that enables DL data multiplexing for any pilot dimension.
The point is that the BS does not need to estimate the full-
dimensional channel in order to be able to multiplex data to the
users. It is sufficient that it learns the effective user channels,
namely a low-dimensional projection of the channels. The
effective channels are obtained as a concatenation of the
true channel with a sparsifying precoder that depends only
on the user channel covariances. Here we propose a design
of this precoder for dual-polarized channels, based on the
idea of active channel sparsification (ACS) that was formerly
developed for single-polarized channels in [13].

We can formalize the idea behind ACS as follows. To jointly
train the DL channels, the BS transmits a pilot matrix Ψ of
dimension Tdl×M ′, where Tdl is a fixed pilot dimension such
that each row Ψi,. represents a pilot signal that is transmitted
from the M ′ ≤ 2M inputs of a precoding matrix B of
dimension M ′×2M . The integer M ′ is a suitable intermediate
dimension that, as we will see later, is determined within
the design. The observed training symbols at user k can be
expressed via the Tdl-dimensional vector

ydl,k = ΨBhdl,k + zk = Ψh̃dl,k + zk, (27)

where hdl,k is the DL channel vector of user k for k =
1, . . . ,K, zk ∼ CN (0, N0ITdl) is the AWGN with element-
wise variance N0, and the pilot and precoding matrices are
normalized such that tr(ΨBBHΨH) = TdlPdl, where Pdl is
the BS transmit power resulting in the DL signal-to-noise ratio
(SNR) to be equal to SNR = Pdl

N0
. In (27) we have also defined

the effective channel vector h̃dl,k := Bhdl,k as the concatena-
tion of the precoder with the true channel. In the ACS method,
our intention is to design B as a sparsifying precoder, such that
each vector h̃dl,k, k = 1, . . . ,K is sufficiently sparse and yet
H̃ = [hdl,1, . . . ,hdl,K ] forms an effective channel matrix with
a rank that is as large as possible. In this way, each effective
channel can be estimated using the fixed (and possibly small)
pilot overhead Tdl, but the BS is still able to transmit multiple
data streams in the DL.

A. Necessity of Channel Sparsification

The channel vector of user k admits the Karhunen-Loève
(KL) expansion hdl,k =

∑2M
m=1 gk,m

√
λk,m u

(k)
m , where

gk,m ∼ CN (0, 1) are i.i.d. complex Gaussian variables, u
(k)
m

is the m-th eigenvector of user k DL channel covariance
and λk,m is its associated eigenvalue. Define the vector of
eigenvalues of user k as λk ∈ R2M

+ and define the support of
λk as Sk = {m : λk,m 6= 0} with a size sk = |Sk|, which
specifies the covariance rank. The following lemma yields
necessary and sufficient conditions for the stable estimation
of hdl,k, where by estimation stability we mean that the
estimation error vanishes as the noise variance tends to zero.
The proof can be found in [13].

Lemma 1: Consider the channel vector hdl,k with support
set Sk. Let ĥdl,k denote any estimator for hdl,k based on the
observation ydl,k = Ψhdl,k + zk (note that this coincides
with (27) by replacing B = I2M , i.e., without the sparsi-
fying precoder). Let Re = E[(hdl,k − ĥdl,k)(hdl,k − ĥdl,k)H]
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denote the corresponding estimation error covariance matrix.
If Tdl ≥ sk there exist pilot matrices Ψ ∈ CTdl×2M for which
limN0↓0 tr(Re) = 0 for all support sets Sk : |Sk| = sk.
Conversely, for any support set Sk : |Sk| = sk any pilot matrix
Ψ ∈ CTdl×2M with Tdl < sk yields limN0↓0 tr(Re) > 0. �

Stable channel estimation is necessary in order to achieve
high spectral efficiency in the high-SNR regime. In fact, if
the estimation mean-squared error (MSE) of the user channels
does not vanish as N0 ↓ 0, the system self-interference due
to imperfect channel knowledge grows proportionally to the
signal power and we have an interference-limited multi-user
system, which is undesirable. An implication of Lemma 1 is
that, if Tdl < sk for some user k, then any scheme that relies
on channel sparsity will fail to yield a stable channel estimate.
This includes, for example, the sophisticated compressed sens-
ing (CS) methods, which simply can not stably estimate a sk-
sparse channel from Tdl < sk measurements. Therefore, one
constraint for designing the sparsifying precoder B is that,
once it is applied to the channel vector, the sparsity of the
resulting effective channel is less than or equal to the available
pilot dimension Tdl.

B. Virtual Beam Representation

From the discussion above, we conclude that the user
channels should be sparsified, i.e. they should be transformed
such that their KL expansion contains fewer non-zero eigen-
values. In a multi-user setup this should be done for every
user channel. On the other hand, the KL expansion of the
channels are generally different from each other and there is
no common eigenbasis shared among them. In this case it is
extremely difficult to design a precoder that jointly sparsifies
the user channels. Fortunately, in the case of dual-polarized
ULA channels there exists an approximate common eigenbasis
that enables joint sparsification.

To see this, note that we can express a dual-polarized ULA
covariance as the block matrix

Σ = E[hdlh
H
dl] =

[
ΣHH ΣHV

ΣVH ΣVV

]
, (28)

where ΣHH = E[hdl,HhH
dl,H], ΣVV = E[hdl,VhH

dl,V], and ΣHV =

ΣH
VH = E[hdl,HhH

dl,V], where hdl,H and hdl,V are generic H and
V DL channel vectors, respectively. The diagonal blocks ΣHH

and ΣVV are Hermitian Toeplitz matrices of dimension M . The
well-known Szegö theorem states that for a Hermitian Toeplitz
matrix of dimension M � 1, there exists a circulant matrix
that approximately has the same eigenvalue distribution as the
Toeplitz matrix [23, 24]. On the other hand the eigenvectors of
a circulant matrix are given by the columns of the DFT matrix
of the same size. It follows that, for large dimensions, the DFT
matrix approximately diagonalizes the Toeplitz covariance.
More concretely, we can compute the circulant approximation
of ΣHH and ΣVV by first defining the vectors λ̊H, λ̊V ∈ RM

as

[λ̊H]m = [FHΣHHF]m,m, [λ̊V]m = [FHΣVVF]m,m (29)

where F ∈ CM×M is the DFT matrix with elements [F]m,n =
1√
M
ej2π

(m−1)(n−1)
M , m, n = 1, 2, . . . ,M . Then we can express

the circulant approximations by Σ̊HH = F diag
(
λ̊H

)
FH and

Σ̊VV = F diag
(
λ̊V

)
FH. From the Szegö theorem we have

ΣHH ≈ F diag
(
λ̊H

)
FH, and ΣVV ≈ F diag

(
λ̊V

)
FH. It

follows that the H and V channel vectors admit a (approximate)
representation over the columns of F = [f0, . . . , fM−1] as
hH ≈ FgH, hV ≈ FgV, where gH ∼ CN

(
0, diag

(
λ̊H

))
and

gV ∼ CN
(
0, diag

(
λ̊V

))
are i.i.d complex Gaussian vectors.

From the discussion above we conclude that the dual-
polarized DL channel vector of the k-th user hdl,k is related
to its corresponding channel coefficients as

hdl,k ≈ F̃gk, k = 1, . . . ,K (30)

where we have defined F̃ := I2 ⊗ F ∈ C2M . The columns of
F̃ represent the set of common “virtual beams” for the dual-
polarized channel among all users. For every m, the elements
[gH,k]m and [gV,k]m can be in general correlated, due to the
correlation between horizontal and vertical channels.

C. User-Virtual Beam Bipartite Graph

We now introduce a graphical model that encodes the power
profile of each user along the common virtual beams. Define
G = (V,K, E) as a bipartite graph with two color classes V
and K, where V is a node set of dimension 2M , representing
the set of virtual beams and K is a node set of dimension
K, representing the users. Also (k, v) ∈ E if and only
if [λk]v > 0, where λk := [λT

H,k,λ
T
V,k]T. Therefore, the

biadjacency matrix of this graph is given by a 2M×K binary
matrix A for which [A]v,k = 1 if and only if (v, k) ∈ E .

Recall that the DL channel matrix H = [hdl,1, . . . ,hdl,K ] ∈
C2M×K is related to the matrix of “angular” channel gains
G = [g1, . . . ,gK ] ∈ C2M×K as H = F̃G, where each
column of F̃ is a virtual beam vector. Particularly interesting is
the relation between H and the bipartite graph G, summarized
in Theorem 1. The following definition and lemma are required
for proving this theorem.

Definition 1: [matching] A matching is a set of edges in a
graph that do not share any endpoints. A perfect matching is
a matching that connects all nodes of the graph [25].

Lemma 2: [Rank and perfect matchings] Let Q denote
an r × r matrix with some elements identically zero, and
the non-identically zero elements drawn from a continuous
distribution, such that an element [Q]i,j is independent from
all elements that are not in the same row or column with it (it
may or may not be dependent on elements in the same row or
same column). Consider a bipartite graph Q with biadjacency
matrix Ã such that [Ã]i,j = 1 if [Q]i,j is not identically zero,
and [Ã]i,j = 0 otherwise. Then, Q has rank r with probability
1 if and only if Q contains a perfect matching. �

Proof: The determinant of Q is given by the expansion
det(Q) =

∑
ι∈πr sgn(ι)

∏
i[Q]i,ι(i), where ι is a permutation

of the set {1, 2, . . . , r}, where πr is the set of all such
permutations and where sgn(ι) is either 1 or -1. From the
construction of Q, it is clear that the product

∏
i[Q]i,ι(i) is

non-zero only if the edge subset {(i, ι(i)), i = 1, . . . , r)} is a
perfect matching. Hence, if Q contains a perfect matching,
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then det(Q) 6= 0 with probability 1 (and rank(Q) = r),
since the non-identically zero entries of Q are drawn from a
continuous distribution, such that all elements involved in the
product

∏
i[Q]i,ι(i) are independent (no two elements from

either the same row or the same column are involved in
this product). If it does not contain a perfect matching, then
det(Q) = 0 and therefore rank(Q) < r.

Theorem 1: The rank of H is given, with probability 1,
by the side-length of the largest square intersection sub-matrix
whose associated sub-graph in G contains a perfect matching.
�

Proof: Note that since H = F̃G and F̃ is unitary, the
rank of H is equal to that of G. In addition, the rank of G
is equivalent to the largest order of any non-zero minor in
G,4 i.e. the side-length of the largest non-singular square sub-
matrix of G. The elements of G are either identically zero
or drawn from a Gaussian distribution with zero mean and
a variance [λk]m for some (m, k) ∈ [2M ] × [K]. We also
know that an element in Q can be correlated with (at most)
one element in the same column. Now, according to Lemma
2 any such sub-matrix Q is non-singular (has rank equal to
its side-length) if and only if its associated sub-graph Q ⊆ G
contains a perfect matching. This concludes the proof.

Theorem 1 implies that the rank of the channel matrix is
given, with probability 1, by the size of a certain matching
in the user-virtual beam bipartite graph G. This matching is
contained in a sub-graph of G that specifies the selected users
and virtual beams. In particular, we want to maximize the
size of this matching, since it corresponds to the rank of the
channel matrix and therefore the system multiplexing gain.
On the other hand, the estimation stability criterion induces
a restriction on all candidate sub-graphs: for each user in the
selected sub-graph, the number of virtual beams connected
to it through an edge must be less than the pilot dimension
Tdl so that stable channel estimation is possible according
to Lemma 1 (stability constraint). Also the effective channel
of a selected user should be sufficiently “strong” so that
beamforming data to that user is reasonable and does not
compromise the total sum-rate (power constraint). The trade-
off between the rank objective and these constraints results
in an optimization problem, solving which yields the desired
sparsifying precoder.

D. Active Channel Sparsification

Let G = (V,K, E) denote the user-virtual beam bipartite
graph as previously defined and letM(V ′,K′) denote a match-
ing in G involving node subsets V ′ ⊆ V and K′ ⊆ K. Take Tdl
to be the available DL pilot dimension. Then, maximizing the
effective channel matrix rank subject to stability and power
constraints can be cast as the following optimization problem:

maximize
V′⊆V,K′⊆K

|M (V ′,K′)| (31a)

subject to degG′(k) ≤ Tdl ∀ k ∈ K′, (31b)

4a minor of G is the determinant of some square sub-matrix of G.

∑

m∈NG′ (k)
[W]m,k ≥ P0, ∀ k ∈ K′, (31c)

where G′ is an induced sub-graph of G corresponding to the
node subsets V ′ and K′, degG′(k) denotes the degree of node
k in G′, NG′(k) denotes the set of nodes that are neighbor to k
in G′, and P0 ≥ 0 is a predefined power threshold. Constraint
(31b) ensures that the number of virtual beams contributing to
the effective channel of user k is less than or equal the pilot
dimension Tdl. Recall that this number is equal to the effective
channel dimension and therefore the constraint satisfies the
estimation stability condition (see Lemma 1). Constraint (31c)
is a power constraint, which ensures that if a user is chosen
to be served (i.e., is in the solution sub-graph), then it should
have sufficient total power (at least P0) along the selected
virtual beams.

The optimization in (31) can be seen as a specific selection
of the induced su-graph G′ that contains a “large” perfect
matching. We can model this selection process by assigning
binary variables to the nodes of the user-virtual beam bipartite
graph and solving a mixed integer linear program (MILP). This
program is given as follows:

maximize
xm,yk,zm,k

∑

m∈V

∑

k∈K
zm,k + δ

∑

m∈V
xm (32a)

subject to zm,k ≤ [A]m,k ∀m ∈ V, k ∈ K, (32b)∑

k∈K
zm,k ≤ xm ∀m ∈ V, (32c)

∑

m∈V
zm,k ≤ yk ∀k ∈ K, (32d)

∑

m∈V
[A]m,kxm ≤ Tdlyk + 2M(1− yk) ∀k ∈ K

(32e)

P0 yk ≤
∑

m∈V
[W]m,kxm ∀k ∈ K, (32f)

xm ≤
∑

k∈K
[A]m,kyk ∀m ∈ V, (32g)

xm, yk ∈ {0, 1} ∀m ∈ V, k ∈ K, (32h)
zm,k ∈ [0, 1] ∀m ∈ V, k ∈ K, (32i)

where 0 < δ < 1
2M is a small positive scalar. The binary

variables {xm}2Mm=1 represent the virtual beams and the binary
variables {yk}Kk=1 represent the users. The solution is given by
the set of nodes V? = {m : x?m = 1} and K? = {k : y?k = 1},
with {x?m}2Mm=1 and {y?k}Kk=1 being a solution of (32).

The MILP introduced in (32) can be solved for most
practical array dimensions (for example, up to M = 128)
using standard solvers. We have used the built-in “intlinprog”
routine in MATLAB to perform our simulations, provided in
Section VI. The solution of (32) determines the set of users
as well as virtual beams that are to be probed and served: a
user k is probed and served if and only if y?k = 1; similarly, a
virtual beam m is probed and served if and only if x?m = 1.
Fig. 5 provides a miniature example, in which we have K = 2
users, 2M = 6 virtual beams and Tdl = 2. Here the maximum
matching size is equal to two, and by omitting beams number
2 and 5 (red crosses), the MILP satisfies the constraint (31b),
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Fig. 5: an example of a user-virtual beam bipartite graph with K = 2
users and 2M = 6 virtual beams. The red crosses denote inactive
(i.e., eliminated) beams after solving the MILP with Tdl = 2.

since now each user is connected to 2 (≤ Tdl = 2) active
beams.

E. Common DL Channel Training and Multi-User Precoding

Using the MILP solution, let us define V? = {m : x∗m =
1} := {m1,m2, . . . ,mM ′} as the set of M ′ “active” virtual
beams (with cardinality |V?| = M ′) and K? = {k : y∗k =
1} := {k1, k2, . . . , kK′} as the set of K ′ active users. We
design the sparsifying precoding matrix in (27) as

B = F̃H
V? , (33)

where F̃V? is the 2M ×M ′ matrix consisting of the columns
of F̃ whose indices are in V?. The effective DL channel
vector of user k is given by the concatenation of this pre-
coder with the full-dimensional channel, so that we have
h̃dl,k = Bhdl,k ≈ F̃H

V?F̃gk, where the approximation is only
due to the approximate virtual beam representation in (30).
It is easy to show that, the vector h̃dl,k is of dimension M ′,
and has significantly large components only over a subset of
{1, 2, . . . ,M ′} determined by the intersection of V? and the
support of gk, i.e. by V?∩Jk. Recall that satisfying constraint
(31b) ensures that |V? ∩ Jk| ≤ Tdl, so that one can stably
recover the effective channel vector by taking Tdl linearly
independent pilot measurements via the matrix Ψ (see Lemma
1). A convenient choice is to let the DL pilot matrix Ψ to be
proportional to a random unitary matrix of dimension Tdl×M ′,
such that ΨΨH = PdlITdl . Once user k collects its pilot signal
measurements in the form of the Tdl-dimensional vector ydl,k,
it feeds them back to the BS in Tdl UL channel uses via analog
unquantized feedback (this type of feedback is analyzed in
e.g. [26, 27]). Upon receiving the noisy pilot measurements
ydl,k = ΨBhdl,k + zk for any user k ∈ {1, . . . ,K}, the BS
can obtain the minimum mean squared error (MMSE) estimate
of the 2M -dimensional DP channel hdl,k as

ĥdl,k = Σhy,kΣ
−1
yy,kydl,k, (34)

where Σhy,k = E
[
hdl,ky

H
dl,k

]
= Σdl

kBHΨH and

Σyy,k = E
[
ydl,ky

H
dl,k

]
= ΨBΣdl

kBHΨH +N0ITdl .

F. Beamforming and Data Transmission

Without loss of generality, let us assume that the BS wants
to serve the first K ′ users, using a beamforming scheme
that is ideally interference-free. We consider zero-forcing
beamforming (ZFBF) for this purpose, where the ZFBF matrix
VZF is given by the column-normalized version of the Moore-
Penrose pseudoinverse of the estimated effective channel ma-
trix defined as Ĥeff = BĤ = B

[
ĥdl,1, ĥdl,2, . . . , ĥdl,K′

]
∈

CM
′×K′ , so that we have VZF = Ĥ†effJ1/2, where Ĥ†eff =

Ĥeff

(
ĤH

effĤeff

)−1
and J is a diagonal matrix, normalizing

the columns of VZF. A channel use of the DL precoded data
transmission phase at the k-th user receiver takes on the form

rk = hH
dl,kB

HVZFP1/2s + nk, (35)

where s ∈ CK
′×1 is a vector of unit-energy user data symbols,

P is a diagonal matrix defining the power allocation to the
DL data streams and nk ∼ CN (0, N0) is the AWGN. The
transmit power constraint is given by tr(BHVZFPVH

ZFB) =
tr(VH

ZFVZFP) = tr(P) = Pdl, where we used BBH = IM ′
and the fact that VH

ZFVZF has unit diagonal elements by
construction. We use the simple uniform power allocation
[P]k,k = Pdl

K′ to each k-th user data stream. The received
symbol at user k receiver is given by rk = bk,ksk +∑
`6=k bk,`s` + nk, where the coefficients bk,1, . . . , bk,K′ are

given by the elements of the 1×K ′ row vector hH
dl,kBVP1/2

in (35). In the presence of an accurate channel estimation we
expect that bk,k ≈

√
[J]k,k[P]k,k and bk,` ≈ 0 for ` 6= k.

However, this is not a given, since in general there typically
exists a non-negligible channel estimation error. For simplicity,
in order to calculate the ergodic sum-rate, here we assume that
the coefficients bk,1, . . . , bk,K′ are known to the corresponding
receiver k. Including the DL training overhead, this yields the
rate expression (see [28]):

Rsum =

(
1− Tdl

T

) K′∑

k=1

E

[
log

(
1 +

|bk,k|2

N0 +
∑
`6=k |bk,`|

2

)]
.

(36)

VI. SIMULATION RESULTS

In this section, we empirically examine the performance of
our scheme in different aspects of dual-polarized UL channel
covariance estimation, UL-DL covariance transformation and
common multi-user DL channel training and precoding. We
compare the covariance estimation performance of our method
with the sample covariance estimator in terms of the mean
normalized Frobenius norm error, defined as

ENF = E

{
||Σh − Σ̂h||F
||Σh||F

}
, (37)

where Σh is the true channel covariance and Σ̂h is its estimate
and where the expectation is taken over several sources of
randomness in the channel, namely, random ASFs, random
channel realizations in the sample set and random additive
noise.

We consider a BS equipped with a ULA of M antennas
with λul/2 spacing. To examine the covariance estimation
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performance, we suppose N = 2κM independent samples
of the 2M -dimensional dual-polarized channel are available,
where κ = N

2M denotes the ratio between the sample set size
and the channel dimension. The number of density functions
used to approximate the continuous DP-ASF in (15) is set to
n = 3M . In order to produce semi-random Horizontal and
Vertical ASFs we consider the following generative model:

γH(ξ) =
α

|I1|+ |I2|
(rectI1(ξ) + rectI2(ξ))

+
1− α

2
(δ(ξ − ξ1) + δ(ξ − ξ2)) ,

(38)

where for an interval I ⊂ [−1, 1], we have defined the
rectangular function as rectI(ξ) = 1 for ξ ∈ I and
rectI(ξ) = 0 for ξ /∈ I. The intervals I1 and I2 are
subsets of [−1, 1], each of length |I1| and |I2|, respec-
tively, where the lengths are chosen uniformly at random
between 0.1 and 0.4, i.e. |Ij | ∼ U([0.1, 0.4]), independently
for j = 1 and j = 2. Besides, ξ1, ξ2 ∈ [−1, 1] de-
note discrete AoAs, generated independently and uniformly
at random over [−1, 1]. The scalar α ∈ [0, 1] denotes
what we call the continuous-to-discrete ASF ratio. Basi-
cally, since

∫ 1

−1
1

|I1|+|I2| (rectI1(ξ) + rectI2(ξ)) dξ = 1

and
∫ 1

−1
1
2 (δ(ξ − ξ1) + δ(ξ − ξ2)) dξ = 1, α controls the

contribution of the continuous part versus the discrete part to
the overall ASF: for α = 0 we have a purely discrete ASF, for
α = 1 we have a purely continuous one and for α ∈ (0, 1) we
have a mixture of the two. Similarly, we generate the vertical
ASF as:

γV(ξ) =
α

|I ′1|+ |I ′2|
(
rectI′1(ξ) + rectI′2(ξ)

)

+
1− α

2
(δ(ξ − ξ′1) + δ(ξ − ξ′2)) ,

(39)

Since it is natural for the horizontal and vertical ASFs to
overlap in their support, we assume the discrete AoAs to be
the same, i.e. ξ′1 = ξ1 and ξ′2 = ξ2, and we assume I ′1 and I ′2
to be slightly shifted versions of I1 and I2 as I ′1 = I1 + 0.1
and I ′2 = I2 + 0.1. Finally, we assume the cross-correlation
function ρ(ξ) to take on the form ρ(ξ) = β

√
γH(ξ) γV(ξ),

where β ∈ [0, 1] is a scalar that controls the cross-correlation
level between H and V channels. This is a simplifying as-
sumption on the form of ρ(ξ), which does not undermine the
generality of the DP-ASF, and satisfies the necessary condition
|ρ(ξ)|2 ≤ γH(ξ)γV(ξ) for the DP-ASF Γ(ξ) to be a PSD
matrix-valued function for all ξ ∈ [−1, 1]. In addition, we
can change the cross-correlation between H and V channels
simply by changing β. The larger β is, the more correlated
the polar channels are.

A. UL Covariance Estimation Error

The first experiment compares the UL covariance estima-
tors. We consider a ULA of size M = 32. To perform a
Monte-Carlo simulation, we generate 100 random DP-ASFs
according to the model explained earlier. For each random
DP-ASF, we generate N independent samples of the channel
as hul(1), . . . ,hul(N) and AWGN vectors z(1), . . . , z(N) to
generate the noisy pilot signals yul(i) = hul(i) + z(i), i =

1, . . . , N . We repeat this for 50 different realizations of
channel and noise, each time estimating the covariance given
pilot signals and computing the estimation error. Therefore,
the UL covariance estimation error is eventually averaged over
100×50 = 5000 random instances to empirically compute the
error metric in (37). Fig. 6 compares the normalized Frobenius
norm error as a function of the sampling ratio (left figure) as
well as the SNR (right figure). The error figures show that the
method based on PSD-LS considerably improves estimation
accuracy in comparison to the sample covariance estimator.
The main reason is that, PSD-LS captures the structure of
the dual-polarized covariance (see (19)): it enforces the Kro-
necker structure by adopting the parametric covariance form∑n+r̂
i=1 Wi ⊗ Si and it constraints the coefficients Wi, i =

1, . . . , n+ r̂ to be PSD in accordance with the DP-ASF being
a PSD matrix-valued function.

B. UL-DL Covariance Transformation Error

The second part of our proposed scheme involves UL to DL
covariance transformation as explained in Section IV. Using
the same simulation setup as introduced earlier, we study the
DL covariance estimation error. In order to separately study the
error of covariance transformation and that of UL covariance
estimation from random channel samples, we consider two
cases: in the first case we assume that the true UL covariance
is given, perform the transformation and compute the error. In
the second case, we assume that only the noisy pilot signals
yul(1), . . . ,yul(N) are given. Obviously, the estimation error
is expected to be larger in the second case. Mathematically, in
the first case we replace Σ̂

ul
h with Σul

h in (19) and estimate
the ASF parametric form, whereas in the second case we
compute Σ̂

ul
h as Σ̂

ul
h = 1

N

∑N
i=1 yul(i)yul(i)

H − N0I. Finally,
we also plot the error measures for UL covariance estimation
from the noisy pilots to compare it to the other two other
cases. Fig. 7 illustrates the error vs sampling ratio (left figure)
and error vs SNR curves (right figure). The figures show
that, given a precise estimate of the UL covariance, the
DL covariance can be estimated with a low error. In other
words, the dominant source of error lies not in the UL-DL
covariance transformation module, but in estimating the UL
covariance from noisy pilots. This shows how effective the
covariance transformation algorithm is. It also points to the
more reasonable way of estimating the DL covariance. Col-
lecting DL channel samples and using them to estimate the DL
covariance is inefficient since it consumes too many resources
to gather enough channel samples for a precise estimate of the
covariance, especially since DL pilot measurements must be
sent to the BS via closed-loop feedback. Instead, the BS can
take in a sufficiently high number of UL channel samples,
accurately estimate the UL covariance and perform UL-DL
covariance estimation to obtain the DL covariance with much
less error.

C. Sum-Rate Assessment of ACS

The third part of the implementation developed in this work
was dedicated to an efficient common DL channel training
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Fig. 6: Channel covariance estimation error vs the sampling ratio (left) and SNR (right) for M = 32.
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Fig. 7: Channel covariance transformation error vs sampling ratio (left) and SNR (right) with M = 32. est(X|Y) denotes the
estimate of X given Y.

and multi-user precoding. For any DL pilot dimension, the
ACS approach enables the BS to stably estimate effective
user channel vectors while maximizing the effective channel
matrix rank. In this section we present results to study the
performance of ACS in terms of sum-rate, for various DL pilot
dimensions and SNR values. As a multi-user scenario, we con-
sider K users, with covariances that are generated as follows.
Define the four rectangular functions: I1(ξ) = rect[−0.8,−0.6],
I2(ξ) = rect[−0.45,−0.25], I3(ξ) = rect[0.1,0.3], I4(ξ) =
rect[0.5,0.7]. Each of these functions represents angular power
density of a single scatterer in the environment. We assume
that the DP-ASF components of a single generic user are
(semi-)randomly generated as

γH(ξ) =
α

Z

(
rectIi(ξ) + rectIj (ξ)+

)

+
1− α

2
(δ(ξ − ξ1) + δ(ξ − ξ2)),

(40)

where i, j ∈ {1, 2, 3, 4} are uniformly generated
random indices, α = 0.5 is the continuous-to-discrete
ASF ratio, Z is a normalizing scalar such that∫ 1

−1
1
Z (rectIi(ξ) + rectIi(ξ)) dξ = 1, and ξ1, ξ2 are

discrete AoAs, generated independently and uniformly at

random over [−1, 1]. In order to generate the vertical ASF,
similar to the previous section, we assume that the support of
the continuous part of γV is a slightly shifted version of the
support of the continuous part of γH. We also assume that
they share the same support for their discrete part. Then we
have

γV(ξ) =
α

Z

(
rectI′i(ξ) + rectI′j (ξ)+

)

+
1− α

2
(δ(ξ − ξ′1) + δ(ξ − ξ′2)),

(41)

where I ′i = Ii + 0.1, I ′j = Ij + 0.1 and ξ′1 = ξ1, ξ′2 = ξ2.
Besides, we suppose the H-V cross-correlation function to take
on the form ρ(ξ) = β

√
γH(ξ) γV(ξ).

Assuming a dual-polarized ULA with antennas, we generate
semi-random DP-ASFs for K users as explained above. Then
we compute their covariances using (7). In order to isolate
the effect of sparsification from the other parts of the im-
plementation (UL covariance estimation, UL-DL covariance
transformation), we assume that the true DL covariance for
each user is available at the BS. For a given DL pilot dimen-
sion, we implement ACS by designing the DL precoder via
the MILP in (32) for common training and estimation of the
effective channels. Next the users are served through a ZFBF
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Fig. 8: Effective channel estimation error vs SNR (left figures), and sum-rate vs SNR (right figures) comparison, with M = 64 and K = 8
for the upper row and M = 32 and K = 6 for the lower row. “n-ACS” refers to the non-ACS method, implemented using random pilot
vectors and no sparsification.

scheme and the sum-rate is computed via (36). We compare the
performance of ACS with that of non-ACS training. The latter
case is equivalent to setting the precoder in (27) to B = I2M ,
i.e. not sparsifying the channels. Apart from the sum-rate
metric, we also compute the mean squared error (MSE) of
estimating the effective channels via the following formula:

Eeff =
1

|K?|
∑

k∈K?
E





∥∥∥B
(
hdl,k − ĥdl,k

)∥∥∥
2

‖Bhdl,k‖2





(42)

where we recall that K? is the set of users selected to be served
by the MILP.

See the results of Fig. 8, in which we have plotted the
effective error and sum-rate curves as a function of SNR for
two different system setups, where in one the array size is
M = 32 and serves K = 6 users, and in the other the array
size is M = 64 and serves K = 8 users. In each case, we
illustrate the results for different values of DL pilot dimension
Tdl. First, note that with the ACS method, the effective channel
estimation error decreases linearly with the the increase of
log(SNR) (or the SNR in dBs). In contrast, with n-ACS this
error is saturated to a fixed value and does not decrease by

increasing the SNR. This behavior is a direct outcome of
Lemma 1, which states that if the pilot dimension is less
than the sparsity order of the effective channel Bh, then the
estimation error does not tend to zero with increasing the
SNR. Conversely, a stable estimation is possible if the pilot
dimension is larger than the sparsity order of the effective
channel, which is enabled by ACS through the MILP.

Stable estimation of the effective channel is also important
in achieving an interference-free DL transmission. This can be
seen by comparing the sum-rate curves of the ACS and non-
ACS methods (Figs. 8d and 8b) in the high-SNR regime. With
the non-ACS method, the sum-rate saturates to a fixed value as
SNR increases, demonstrating an interference-limited behav-
ior. However, with ACS the sum-rate increases linearly with
log(SNR), achieving much higher sum-rates in the medium-
to-high-SNR regime.

Fig. 9 illustrates the sum-rate vs pilot dimension curves for
the two setups as before and for various SNR values. The
point of this figure is to show the relationship between the
pilot dimension and the sum-rate. From (36) we note that
the pilot dimension controls a trade-off in consuming time-
frequency resources: increasing the pilot dimension results
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Fig. 9: sum-rate vs pilot dimension curves.

in better channel estimation and therefore less interference,
which increases the argument inside the logarithm in (36), but
it decreases the pre-log factor 1 − Tdl/T and leaves fewer
resources for data transmission. Therefore, we expect that
there exists an optimal pilot dimension which maximizes the
sum-rate for any given setup. This can be seen from the curves
of Fig. 9. Note that in all setups the ACS method achieves
higher sum-rates compared to the non-ACS method for the
same pilot dimension, in some cases achieving almost twice
the sum-rate of the non-ACS method.

VII. CONCLUSION

We proposed a thorough implementation of a multi-user
FDD massive MIMO system with dual-polarized antenna
elements. We addressed the dimensionality challenge of such
systems through a three-step process: (1) UL covariance
estimation from limited, noisy UL channel samples, (2) UL-
DL covariance transformation, and (3) active channel spar-
sification and multi-user precoding for DL channel training
and interference-free beamforming. Using error and sum-
rate metrics we showed that our approach is successful for
implementing dual-polarized FDD massive MIMO systems,
overcoming the curse of prohibitively large dimensions and
limited time-frequency resources.
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