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Abstract  
 
In the ensuing “post genome era”, genome-wide association studies (GWAS) emerged as a 
powerful and eventually the standard tool for investigating the genetic architecture of 
common human diseases.  Despite the success of the GWAS design, there are inherent 
limitations that initially limited its widespread use, particularly in populations with diverse 
genetic backgrounds due to issues of confounding resulting from population structure and 
admixture.  Current GWAS methodology is limited in its ability to distinguish the genetic 
variants associated with the age-of-onset (AOO) of disease independently of overall risk 
variants.  However, genetic risk scores (GRS), which simultaneously utilize information 
from multiple single nucleotide polymorphisms (SNPs), have the potential to identify 
individuals at risk of early-age-onset (EAO) disease because they are expected to have a 
greater genetic burden.  The focus of the research in this thesis is to evaluate methods for 
detecting associations of AOO of disease with SNPs and GRS in the presence of population 
structure and admixture. 
 
First, a simulation study was undertaken to evaluate the power to detect association 
between SNPs and AOO of disease in an admixed population under an additive genetic 
model in a time-to-event (TTE) framework.  Investigations compared the performance of 
the Cox proportional hazards (PH) model and the general Weibull model. The simulation 
study evaluated the impact of population admixture on statistical power.  Results 
demonstrated that the power of the general Weibull model was largely consistent with that 
of the Cox PH model.  The presence of an inflated type I error rate due to confounding with 
ancestry was evident in the testing of association of AOO of disease with a tag SNP for the 
causal variant, which was addressed with the inclusion of ancestry as a covariate in the 
model.  Additionally, results also suggested that greater levels of admixture have the 
potential to result in reduced power, particularly in situations where the risk allele 
frequency (RAF) is very different between the ancestral populations when testing is based 
on the tag SNP, rather than the causal variant, which is the more common occurrence in 
GWAS. 
 
Second, an investigation of the utility of GRS to detect an association with AOO of disease in 
ancestrally homogenous populations was undertaken, which featured a component of both 
simulation and real data application.  The work entailed the application of GRS to investigate 
the association of AOO of type 2 diabetes (T2D) in two independent GWAS originating from 
the Northwestern University Gene (NUgene) Banking Project and the Wellcome Trust Case 
Control Consortium (WTCCC).  Investigations were centred around three modelling 
approaches: Cox PH, proportional odds, and logistic regression models.  The Cox PH model, 
which considered both cases and controls in a TTE framework assessed AOO at the end of 
the study period, while controls were censored at their current age.  However, within the 
proportional odds model framework, AOO was viewed as an ordinal outcome which 
distinguishes between controls, late-age-onset (LAO) and EAO cases.  Within the binary 
logistic regression framework, contrast was made between cases and controls, irrespective 
of AOO.  Results formulated on the basis of the P-value, as the measure of strength of 
evidence, indicated that the performance of the T2D GRS within the logistic modelling 
framework, which assessed T2D status, was substantially better when compared to the TTE 
modelling framework (Cox PH model), which assessed AOO of T2D.  Consideration was also 
given to the proportional odds modelling framework which encompassed LAO and EAO, 
however, the proportional odds assumption was found not to be valid in both the NUgene 
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and WTCCC datasets.  Further analysis based on GRS simulation studies indicated that when 
there are high levels of censoring, i.e. low proportion of individuals affected by the disease, 
there is little advantage in applying the Cox PH model over the logistic models.  However, 
low levels of censoring seem to favour the Cox PH model, particularly when the magnitude 
of the SNP effect is small, and the RAF is low. 
 
Third, an investigation was undertaken to compare the performance of T2D GRS to detect 
association with AOO of the disease across individuals of European, Asian, and African 
ancestry in the UK Biobank. Overall, the results based on the P-value, which represents a 
measure of the strength of evidence, indicated that the T2D GRS was more strongly 
associated with AOO of T2D in the Cox PH model based on cases and controls (censored at 
their current age) relative to the logistic model, which assessed T2D status. 
 
In conclusion, the research in this thesis has demonstrated that GRS have the potential to 
advance common disease genetic research in relation to AOO of complex diseases. 
Additionally, improvements to methods developed to detect and account for population 
structure is paramount for GWAS discoveries as sample sizes continue to grow and for the 
clinical implementation of risk prediction models based on GRS.  The application of GRS in 
ancestrally diverse or admixed populations is key to the realization of the vision of 
personalized medicine or personalized healthcare for all.  
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Chapter 1: Introduction 

Chapter Outline 
This chapter introduces the genome-wide association study (GWAS) design, which forms the 

basis of the research undertaken in this thesis. Methodological challenges commonly 

encountered in the implementation of the GWAS design are discussed.  The chapter focuses on 

issues affecting the determinants of statistical power and likely sources of false positive findings 

in a GWAS setting attributable to population structure.  The chapter also highlights key issues 

in assessing the relative statistical power of various analysis approaches that form part of the 

thesis research as well as issues surrounding age-of-onset (AOO) GWAS based on single 

nucleotide polymorphism (SNP) and genetic risk score (GRS) association approaches. 

 

1.1.  | Introduction to GWAS  
 

In the ensuing “post genome era”, GWAS emerged as a powerful and eventually the standard 

tool for investigating the genetic architecture of common human diseases and complex traits  

[1-3].    GWAS have evolved from small-scale studies consisting of less than 100 cases of disease 

[4] of primarily single ancestry populations to large-scale international consortium-based 

studies consisting of tens of thousands of cases of disease that are often ascertained from multi-

ancestry populations [5].  With the availability of large-scale population biobanks and advances 

in genotyping technologies, this trend towards larger and larger sample sizes is likely to 

continue.   Owing to the polygenic (disease resulting from the combined action of two or more 

genes) nature of most common diseases requiring large samples to detect the moderate effects 

of associated variants, increasingly large samples have become a feature of common disease 

GWAS [6, 7]. 

 

Since the first application of the GWAS it has experienced remarkable success, though not in the 

way that was originally envisioned. Immediate identification of the causal variant and 

heritability, which refers to the fraction of phenotypic variance explained by genetic variation   

[8], fully accounted for were among the initial expectations of GWAS. However, many identified 

variants have no known biological effects and associated variants were found to account for less 

than 5% to 10% of heritability implied by family (and twin) studies [9].    Even with this initial 

setback, as of 2017, approximately 10,000 robust associations for a wide range of complex traits 
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have been attributed to GWAS [10].  There are also several known or candidate drugs linked to 

genes from GWAS signals of common complex diseases that includes type 2 diabetes (T2D), 

rheumatoid arthritis, osteoporosis, and schizophrenia [10].  Despite the success of the GWAS, 

however, there are inherent limitations that initially limited its widespread use, particularly in 

populations from diverse genetic backgrounds [11]. Originally, GWAS were undertaken in 

homogenous populations due to concerns relating to geographical confounding between the 

disease and SNPs, which can result in inflated type I error rates if not accounted for in the 

association analysis [12].  Adding to this was the likelihood of reduced power to detect 

association due to potential heterogeneity in allelic effects on the disease across diverse genetic 

backgrounds [13]. 

 

To effectively tackle global health challenges, particularly as they relate to common complex 

diseases like T2D, it is essential to investigate the properties (power and type I error rates) of 

statistical methods for GWAS analysis in the presence of population structure. Population 

structure, which refers to the state where sub-populations are distinguishable by observed 

genotypes [14], is especially problematic for common disease genetics as the multiple SNP 

influences are usually of modest genetic effect and as a result can be dwarfed by confounding  

[15]. 

 

The impact of genetics in public health is presently limited in the sense that accurate prediction 

of disease risk at the individual level is still lacking for most common diseases and across 

different ancestry groups  [16, 17].   However, to realise the vision of personalized medicine or 

personalized healthcare, inclusion of diverse populations in genetic research is essential, given 

the potential to use genetics to treat common diseases through better targeted intervention 

strategies.  Exploring the link between genes, environment and lifestyle has the potential to 

provide new insight and a clearer understanding of the mechanisms associated not only with 

disease risk but also AOO of disease and disease progression.  Identifying individuals who may 

have inherited a genetic predisposition to common diseases along with genetic factors that are 

likely to influence the AOO of disease, particularly for common complex diseases, is an 

important consideration in medical research.  Identification of individuals with a likely earlier 

onset of disease and utilizing better targeted screening strategies, based on knowledge of AOO 

of the disease, has the potential to improve patient survival and reduce treatment costs. 
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1.2.  | Mapping strategies in genetic and genomic research 
 

In human genetics and genomic research, several approaches have been developed to identify 

disease risk variants (or risk variants for other health related outcomes).  These approaches to 

mapping disease variants are formulated on the foundation of linkage disequilibrium (LD). With 

the emergence of the GWAS design, alternative mapping strategies applicable to admixed 

populations have also emerged.   

 

1.2.1. | Gene mapping and patterns of linkage disequilibrium 

 

Mapping strategies in genetics takes advantage of an important property of human genomic 

structure, which involves the processes of linkage and allelic association  [18].  Underpinning 

disease gene mapping strategies is linkage disequilibrium (LD). LD refers to the phenomenon 

where two or more alleles at different SNPs are genetically linked and are correlated.  Based on 

this principle, an individual with one particular allele at a genetic locus (location of a variant on 

the genome) are likely to have a specific allele at a second genetic locus [3].  The extent of the 

LD in a population is influenced by a number of factors including rate of recombination, rate of 

mutation, genetic drift, non-random mating, and population structure.   

 

A genetic marker that facilitates association analysis refers to any region of the genome whose 

location on a chromosome or chromosomal DNA can be identified and displays sequence 

variation between individuals of a population [19]. This genetically determined sequence 

variation is usually readily identifiable by direct observation [20].  Chromosomal aberration 

(any abnormal chromosome complement resulting from an alteration in chromosome structure 

or number [19]), a gene, or a locus containing a DNA polymorphism (presence of discreetly 

different forms of a gene or a character  [21]) are examples of different forms of genetic markers  

[19].  The SNP is the most common form of variation in the human genome and is commonly 

used as a marker in genetic association analysis.  The SNP is defined as a single base change in 

a DNA sequence. To date, around 325 million SNPs have been identified in the human genome, 

15 million of which are present at frequencies of 1% or higher across different populations 

worldwide [22, 23]. 

 



 
 

4 
 

LD eliminates the need to genotype every single SNP in the human genome whilst still 

accomplishing near complete coverage of common variation of the human genome.  The LD 

property of the human genome enables a carefully selected representative set of SNPs to 

determine the status of other SNPs [24]. These SNPs are usually referred to as tag SNPs.  In 

association mapping, a tag SNP could be associated with a disease, not because it is biologically 

causal, but because it is statistically correlated with a causal variant.   The most common 

measure used to assess LD is the squared correlation coefficient  (𝐫𝟐), which measures the level 

of correlation between two markers or SNPs.  An   𝐫𝟐 of 1 indicates that the two markers are 

perfectly correlated while an  𝐫𝟐 of 0 indicates that the two markers are completely independent   

[25]. 

 

Genetic investigations in diverse populations require careful consideration regarding the 

structure of LD within different ancestry groups as well as admixed populations.  Ancestral 

populations differ in their degree of LD, therefore the number of marker SNPs needed 

for complete genomic coverage may vary.  As an example, populations of African ancestry are 

older and therefore have shorter stretches of LD, as they have experienced more generations 

for LD to decay, compared to non-African ancestry populations  [26]. Furthermore, population 

bottleneck events (sharp reduction in population size), such as the “out of Africa” exodus, 

resulted in lost haplotypes (reduced genetic diversity), which then results in increased LD in 

non-African ancestry populations  [27].  Therefore, in African ancestry populations, which has 

lower levels of LD relative to European populations, more SNPs is needed to achieve near 

complete genomic coverage.  This property of LD has strong implications for GWAS design [28]. 

 

1.2.2. | Mapping strategies  

 

Before the GWAS era: Prior to 2000, the family-based disease mapping approach, linkage 

analysis, the primary method of investigation at the time, proved highly successful for single 

gene diseases (mendelian diseases) but was not as successful with common and complex 

diseases  [29].   Linkage refers to the tendency for disease causing genes and other genetic 

markers to be inherited together because of their location near one another on the same 

chromosome [30].  The linkage analysis approach was found in general to be more powerful for 

detecting rare genes with large effects [31, 32].   As a result of the limitations of the linkage 

analysis approach,   genetic association analysis, which aims to identify a genetic variant that 
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influences a disease or trait at the population level [33],  has emerged as the central tool applied 

to common, complex diseases. The way in which this gene mapping approach is applied 

depends on two different strategies. One depends on prior biological knowledge that points to 

a particular polymorphism in candidate genes or regions that are applied in candidate gene 

association studies [34].  The other approach requires a very high density of genetic markers 

(described in secton1.2.3) in genomic regions which are used to investigate the entire genome 

and applied to GWAS.  Prior to the GWAS era, the candidate gene approach had become the 

standard tool for common complex disease investigations. However, the candidate gene 

approach was not as successful as the GWAS approach.  The main difficulties with the  candidate 

gene approach related to the fact that: (i) investigations were limited to protein-coding regions 

of genes and therefore the scope of investigations did not consider the impact of neighbouring 

genes; (ii) at the time, sample sizes were often very small, and thus underpowered; and (iii) 

Data quality and analytical protocols at the time were not adequate to address confounding due 

to population structure which resulted in false-positive findings that failed to be replicated   [35, 

36]. 

 

Alternative mapping strategies:  In the context of GWAS, an admixed population refers to 

individuals formed of two or more genetically distinguishable and previously isolated ancestral 

populations [37].  Admixture mapping is the most common alternative gene mapping strategy 

for admixed populations in GWAS.  It is applied to identify disease susceptibility variants in an 

admixed population resulting from a recent mixture of two or more ancestrally distinct 

populations [38].   This approach is most beneficial when the disease susceptibility variant has 

different allele frequencies in the ancestral (parental) populations because of drift or selection.  

Admixture mapping requires a genotyping panel that can differentiate chromosomal segments 

in admixed individuals by their ancestral origins. Additionally, polymorphic markers must 

differ in frequency in the ancestral populations, and there must be at least 10% admixture [39].  

Examples of diseases that show a difference in incidence between the two “ancestral” 

populations includes multiple sclerosis in Africans vs. Europeans (population relative risk 

0.50), or hypertension in Africans vs. Europeans (population relative risk 2.61) [39]. 
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1.2.3. | Emergence of the GWAS design 

 

The success of GWAS in identifying genetic risk factors for diseases and genetic differences in 

drug response (efficacy and adverse reactions to common drugs) – a field known as 

pharmacogenomics - has been gradually paving the way for personalized medicine  [40].  The 

completion of the International HapMap Project in 2003 provided the platform for the 

advancement of GWAS in biomedical research.   Key findings from the project facilitated a 

better understanding of the patterns of human sequence variation, which when coupled with 

advances in genotyping technology, made it feasible to conduct population based GWAS.  This 

has had significant impact on public health strategies as it has allowed the switch in focus from 

mendelian or single gene disease (that is diseases influenced by a single gene) with large 

effects that affect a few families, to multiple gene or complex diseases (that is diseases 

influenced by multiple genes) that affect many in the general population [3]. 

 

Among the first success stories of the GWAS era was a 2005 study of age-related macular 

degeneration (AMD) where the study identified two SNPs in the complement factor H gene 

(CFH) strongly associated with AMD [4].  The 2007 publication by the Wellcome Trust Case 

Control Consortium (WTCCC) marked a pivotal stage in the advancement of GWAS for complex 

diseases.  The study identified 24 association signals across seven diseases: type I diabetes, T2D, 

coronary heart disease, hypertension, bipolar disorder, rheumatoid arthritis and inflammatory 

bowel disease [41].  This study was also instrumental in the development of protocols for 

quality control and association analysis in GWAS that are still widely used today. 

 

The advancement of GWAS methodologies provides the opportunity for genes associated with 

complex diseases to be identified although there are still many challenges that have the 

potential to affect the validity of GWAS findings going forward.  The challenge posed by the 

presence of unaccounted population structure, which can result in false positives in GWAS 

analysis, is the focus of this research. 
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1.3.  | Key stages of the GWAS approach 
 

This section of the thesis gives a general overview of the key stages of a typical GWAS.  These 

stages include the initial discovery stage, which is often followed by replication and validation. 

Other follow-up GWAS approaches often undertaken include meta-analysis and fine mapping 

and are therefore also highlighted here. 

 

1.3.1. | General process of initial GWAS discovery 

 
GWAS, which have been formulated on the premise of the “common disease common variant 

hypothesis”, maintains that common diseases are likely influenced by genetic variants that are 

also common in the population [42].  GWAS can be characterized as a study of genetic variation 

across the human genome that is designed to identify genetic associations with human diseases 

or other health related outcomes. It is in essence, a non-candidate-driven approach 

(“hypothesis free”), which involves rapidly scanning several hundreds of thousands (or 

millions) of genetic markers (most commonly SNPs) across genomes of many people to find 

genetic variations associated with a particular disease or health related outcome [43].  This 

approach, which is primarily a population-based observational approach, involves the 

comparison of the SNPs alleles of individuals with the disease (cases) with similar individuals 

who have not develop the disease (controls).  If a SNP allele is more frequent in individuals with 

the disease, the SNP risk allele is deemed “associated” with the disease (see Figure 1.1).  

Additionally, if a SNP allele is found to be more frequent in controls when compared to case, the 

associated allele may be deemed “a protective allele” from the disease under consideration.  The 

difference in allele frequency between the cases and controls is usually considered significant 

at the genome-wide significance p-value threshold of 5 × 10−8 (this standard threshold was 

originally based on the effective number of independent common SNPs across the human 

genome [~ 1 million with MAF ≥ 5%], which was determined on the basis of the LD block 

structure  in European ancestry populations [44, 45]).    The observed associated SNP serves as 

a marker for the genomic region responsible for the disease or outcome of interest.  However, 

further investigations of the variants within the candidate region are required to identify the 

causal variant [24, 32]. 



 
 

8 
 

 

Figure 1. 1 - Diagram to show typical allele distribution which GWAS seek to identity  

 

1.3.2. | Replication and validation GWAS 

 
Due to the inherent limitations of the GWAS methodology a process of validation is required for 

new discoveries.  GWAS is particularly vulnerable to false positive associations introduced 

through population differences resulting from population structure and/or genetic admixture.  

This is compounded by the requirement for larger sample sizes needed to optimize statistical 

power as the risk of confounding increases in relation to increasing sample sizes[46]. 

Replication of initial GWAS findings in an additional independent sample drawn from the same 

population is the gold standard for validation of GWAS findings [3].  A study that is well-
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powered is also a crucial requirement for undertaking replication GWAS based on the findings 

of a discovery GWAS to facilitate the identification of false-positive findings.  Requirement for a  

larger sample size relative to the initial GWAS is also important to address other potential issues 

including over-estimation of effect size.  Investigations in other geographical populations are 

also conducted after findings have been validated in a replication sample to determine if 

associated SNPs have an ethnic-specific effect. Replicated loci or genomic regions are 

determined on the basis of a genetic effect that is consistent in terms of magnitude and direction 

across both the original discovery dataset and the validation dataset.  All SNPs in high LD with 

the tested SNP are potential replication candidates [3], however, there are researchers who 

believe that replication should only be claimed if the same variant, phenotype and genetic 

model is involved [47]. 

 

Measures to streamline all elements of the GWAS validation and replication process have been 

ongoing, however, there remains areas of concern that are fundamental to GWAS long-term 

success.   Validation and replication in GWAS have suffered inconsistencies in a number of areas, 

particularly as it relates to; (1)  an established criteria for identifying associated SNPs to use in 

replication studies; and standard definition for a proper replication study and criterion for 

refuting the finding based on the replication results [48].  These issues have become even more 

pertinent with the availability of large biobanks, as independent external replication cohorts 

may not be available or possible.  Additionally, the rationale for selecting replication SNPs often 

varies among studies.  Regarding studies that include diverse or admixed populations, there is 

a lack of clarity in terms of the significance threshold applied, because of the underlying LD 

structure which may be quite different to European ancestry populations.  For GWAS based on 

admixed populations thresholds ranging from p < 1 × 10−8  to  p < 1 × 10−9 based on method of 

genotype ascertainment, genetic and variant frequency have been proposed [49]. 
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Source ( [50]) 
Figure 1. 2 - General design and workflow of GWAS 
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1.3.3. | Meta-analysis of GWAS 

 

The realization that sample size is critical to GWAS success saw the formation of major global 

consortia to tackle the genetic basis of many common diseases [7].     The requirement for large 

sample sizes is often beyond the capacity of a single GWAS, as a result meta-analysis is usually 

employed to combine data from multiple studies of relatively small sample sizes, with the 

expectation to detect genes underlying susceptibility loci with greater power (Figure 1.2).  By 

combining summary statistics from individual GWAS, more precise estimates of genetic effects 

are produced and hence provide more convincing conclusions. In genetic research, privacy, data 

access issues and use of different genotyping platforms often result in limitations on 

researchers to directly combine individual datasets [51].  Furthermore, combining and 

analysing raw data from all studies may prove to be very laborious and at the same time offer 

no gains in efficiency when compared to meta-analysis based on summary statistics [1, 52].    

Therefore, meta-analysis of summary statistics provides an avenue to bring into context the 

overall genetic evidence pertaining to a disease outcome in a cost-effective manner  [53].  

 

1.3.4. | Fine mapping in GWAS 

 

After the initial discovery GWAS, further investigations of the variants within the associated 

regions are often required to identify the causal variant (Figure 1.2).  Discovery GWAS primarily 

identifies a tag SNP, which is often not the causal SNP, but rather a SNP in LD with the true 

functional SNP.  With numerous variants now known to be associated with many common 

diseases, this creates a shift in focus in terms of establishing effective strategies for identifying 

the causal gene and thereby the biological mechanisms that underlie these diseases.  With the 

advent of next-generation sequencing, deep sequencing and functional studies provide an 

additional avenue to ascertain the biological mechanisms associated with the causal SNPs.  

However, fine mapping aided by high-density genotype imputation is often undertaken in an 

effort to identify the causal gene.   Through genotype imputation, which estimates the value of 

untyped or unknown alleles, low-density genotyped SNPs, (~ 105 – 106 SNPs) are increased to 

a level of high-density (~ 107 – 108 SNPs) [54].    The end goal is to establish causality, 

functionality and determining effects which can inform strategies for disease diagnosis, 

prognosis, prevention and treatment  [55]. 
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1.4.  | Methodological challenges of the GWAS design 
 

This section highlights the main methodological challenges commonly encountered in the 

conduct of GWAS and its impact on statistical power and the false positive error rate.   The 

different forms of population structure are described and their impact on GWAS is discussed in 

some detail.  The determinants of statistical power are also outlined, as well as potential sources 

of reduced power or false positives that can arise throughout the various stages of the GWAS 

process, are also discussed.  Special attention is given to false positive findings that may be 

attributable to the presence of unaccounted for population structure. 

 

1.4.1. | Population structure and its impact in GWAS 

 

Population structure, distant cryptic relatedness (3rd -9th degree relatives: individuals are 

closely related, but this shared ancestry is unknown) and family structure (1st and 2nd degree 

relatives [56]), are the most prominent confounding issues to consider in the design and 

analysis of genetic or genomic association studies.  As indicated in section 1.1, population 

structure describes the state where populations are distinguishable by observed genotypes, 

which in genetic studies have the potential to result in different forms of confounding.   Large 

samples (N > 5,000) from populations or population cohorts are expected to contain individuals 

who have ancestry originating from different geographical populations [57].   Even in relatively 

genetically homogenous populations different levels of fine-scale substructure have been 

observed  [58, 59].  It has been demonstrated in past research that population structure has the 

potential to create spurious results, particularly when methods rely on large numbers of small 

effects such as polygenic scores  [60], which have been applied to disease risk prediction. 

 

The three main types of population structure that have been distinguished are discrete 

structures, admixed populations and hierarchical structures [61].  Discrete structures refer to 

a population that consists of mutually exclusive distinct subpopulations (assumes a partition of 

the population into “islands” [62]).     An admixed population (described in section 1.2) allows 

individual-specific proportions of ancestry arising from actual or hypothetical ancestral islands.  

Hierarchical structures comprise of both the discrete distinct subpopulations and admixed 

populations. 
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Figure 1. 3 - Confounding due to ancestry 

 

When confounding arises as a result of population structure, ancestry is associated with both 

genotype and the disease investigated (Figure 1.3).  Therefore, associations in GWAS could 

potentially be the result of the underlying structure of the ancestral population and not the 

disease associated locus if population structure is not taken into consideration. Population 

structure is often aligned with geography.  At the continental level, the Caribbean and the 

Americas contains some of the most highly admixed populations [63, 64],   South America, in 

particular, is one of the most ancestrally diverse regions in the world [65].    The ancestry 

landscape of these admixed populations was shaped by complex admixture events arising 

during the era of colonization and the Atlantic Slave Trade. Common examples of admixed 

populations in this region include African Americans, Latin Americans, and African Caribbean 

populations. The ancestral composition of these admixed populations comprises various 

combinations of European, Native American, West African, and East Asian ancestry.  The Uyghur 

population of central Asia with ancestral contributions from European and East Asian 

populations and segments of the South African population who are of African and European 

ancestry are also examples of admixed populations [66, 67].  Over the years, several statistical 

methods and tools have been developed to both detect and account for population structure in 

GWAS.  These methods are discussed in section 1.5. 
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1.4.2. | Determinants of statistical power in GWAS 

 

Statistical hypothesis testing is subject to both type I and type II errors, which have implications 

for statistical power.  The type I error rate refers to the probability of making the error of 

rejecting null hypothesis (𝐇𝟎) when it is true (denoted as  𝜶 ) while the type II error rate refers 

to the probability of failing to reject H0 when it is false (denoted as  𝛃 ).   In a genetic research 

setting, statistical power  (𝟏 − 𝛃)  is defined as the probability of detecting an effect, given that 

the effect is real or alternatively, the probability of correctly rejecting the  (𝐇𝟎) when it is in fact 

false. The (𝐇𝟎) typically refers to  an effect size that signifies no association (example odds ratio 

(OR) = 1 or log OR = 0), whereas the alternative hypothesis (𝐇𝟏)   usually refers to an effect size 

(for a two-sided test) that suggests an association(example OR ≠ 1 or log OR ≠ 0).   Adequate 

statistical power is a requirement for a successful GWAS undertaking.  In GWAS, the main 

determinants of statistical power are sample size, SNP effect size (for binary outcomes, such as 

disease status, this is commonly measured by the OR), minor allele frequency (MAF), 

significance threshold and in  situations where there is a binary outcome, the ratio of cases to 

controls.   Increasing the sample size results in increased power as the accuracy of the estimated 

effect size is improved (i.e. smaller standard error of effect size estimate). A larger effect size 

results in increased power because it increases difference from the  (𝐇𝟎) value.  Significance 

testing in GWAS must adopt stringent significance thresholds to allow for multiple testing, and 

the more stringent (smaller) the critical p-value for rejecting 𝐇𝟎, the lower the statistical power.  

Furthermore, in case-control studies, the proportion of cases moving closer to 0.5 increases 

power because it increases the accuracy of effect size estimation.  At the design stage, the non-

centrality parameter (NCP):a measure as to the degree to which the null hypothesis is incorrect, 

is often used as an intermediate to determine the power of a genetic study for a given 

significance threshold based on available information in respect to these parameters (the 

expected effect size of the SNPs, MAF, ratio of cases to controls (binary outcomes) and sample 

size). 

 

The test statistics given by Equation 1.1, under the  (𝐇𝟎)  of no association which is distributed 

as a chi-square distribution with m degrees of freedom (df) is a central chi-square.  However, 

under the (𝐇𝟏)  it is a non-central chi-square distribution  [52]   where   𝛘𝛂(𝐝𝐟=𝐦)
𝟐

    corresponds 

to the 𝛘𝟐  degrees of freedom in respect to a predetermined significance threshold α and the 

NCP described in Equation 1.2.   
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𝒁𝟐 ~ 𝝌𝜶(𝒅𝒇=𝒎)
𝟐  ((𝜽/𝑺𝑬𝒃𝒊𝒏)𝟐) 

Equation (1.1) 

In biomedical research, statistical power of 80% is widely used as a benchmark to avoid false 

negative associations and to determine a cost-effective sample size [68].  In an effect to acquire 

the appropriate sample of cases and controls that form part of epidemiological studies, a more 

complex sampling design than simple random sampling is often required.  To account for this 

added complexity the effective sample size (ESS) is often applied as a measure to determine the 

minimum sample size that would be required to achieve the same level of precision if the 

samples were a  simple random sample [69].  Here the ESS have been denoted 𝐧𝛑(𝟏 −  𝛑),  

where n corresponds to the total number of cases and controls in the overall sample size and π 

the proportion of cases.  The 𝑁𝐶𝑃𝑏𝑖𝑛 of an additive GWAS model for binary case-control data 

[70, 71] is given by Equation 1.2. 

 

𝑵𝑪𝑷𝒃𝒊𝒏 = (𝜽/𝑺𝑬𝒃𝒊𝒏)𝟐 ≈ 𝟐 ƒ(𝟏 − ƒ) 𝒏𝝅(𝟏 − 𝝅)𝜽𝟐 

 

Equation (1.2) 

 

The 𝑁𝐶𝑃𝑏𝑖𝑛 consists of the estimated true effect size denoted θ and its associated standard error 

denoted 𝑆𝐸𝑏𝑖𝑛. Where 𝑵𝑪𝑷𝒃𝒊𝒏 denotes the non-centrality parameter for an additive GWAS 

model for binary case-control data; total number of cases and controls in the overall sample size 

n; effect size θ, which usually refer to the log OR; MAF ƒ; and proportion of cases π.   

 

1.4.3. | Sources of reduced power or false positives in GWAS 

 

The areas or aspects of the GWAS process that have the potential to give rise to false positive 

findings or reduce power are outlined in this section.  The main aspects of GWAS covered 

include study design issues relating to common disease GWAS; changes in the main 

technological tools for genotyping and imputation (process of imputing missing or untyped 

SNPs genotypes based on observed nearby SNP genotypes in high LD); and established data 

quality control procedures pertaining to genotyped samples from an individual and SNP 

perspective.   The impact of statistical analysis procedures is also discussed. 
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1.4.3.1.  | Issues at design stage of common diseases GWAS  

 

At the design stage of the GWAS, the approach to sample selection, determination of the disease 

or phenotype or its classification and the main factors that may influence the disease outcome 

are of prime consideration. 

 

GWAS samples: Presently, within a public health framework, there is recognition that health 

outcomes are to a great extent influenced by a range of social, cultural, political, economic, 

environmental, behavioural and biological (which encompasses genetics) factors [72]. 

Together, these factors have been termed “the determinants of health”.  In the context of 

common and complex disease genetics, determining the extent of the role of these determinants 

of health in the onset of a disease can be challenging due to the issue of confounding.  The 

underlying demographic characteristics within specific populations can often mask 

associations in the context of disease and health related outcomes. Ethnicity, which is 

essentially the product of cultural, geographical, and biological differences between groups of 

individuals or subpopulations [11], often presents a challenge in the conduct of biomedical 

research.   Additionally, age and gender are often associated with several lifestyle, physical and 

chemical exposures as well as disease and other health related outcomes.  Of these potential 

confounders, ethnicity is linked to the most critical confounding factor in GWAS, population 

structure.  To account for potential confounders, they are usually included at the analysis stage 

as covariates in the model.  However, to address the issue of population structure, different 

study design strategies for ascertaining samples have also been explored. 

 

To reduce the effects of confounding due to population structure, matching cases to controls on 

the basis of ethnicity or ancestry has been regarded as a potential solution.  Additionally, GWAS 

were initially restricted to a single ancestral population.  In this setting, individual populations 

were analysed separately based on self-identified ethnicity or ancestry and combined 

statistically in a meta-analysis.  However, self-identified ethnicity is subject to misclassification 

and adding to this is the fact that the problem of fine scale structure (i.e. structure within an 

ethnic group) remains.  Additionally, there is also the inability to easily match for the levels of 

admixture within admixed individuals [73].  As a result, GWAS based exclusively on family data 

was considered a viable alternative solution.  Data on affected cases and their parents are 

collected in this family-based association design, and a comparison is made between alleles 
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transmitted to the child, and those that are not.  However, this approach has two drawbacks; 

(1) it is less powerful than population-based GWAS as the two parents are required to form a 

single matched control; and (2) parental data may not always be available, particularly for late 

onset diseases, as parents are more likely to be deceased. 

 

Disease classification: Phenotypic misclassification and phenotypic heterogeneity can 

confound the relationship between SNP and disease outcome.   The accuracy of the diagnostic 

criteria used for disease classification have implications for statistical power.  In case-control 

studies, misclassification reduces substantially the power to detect associations [74].  It has 

been noted from past studies that utilizing the International Classification of Diseases (ICD) 

codes alone to define phenotypes via electronic diagnostic code data can result in substantial 

misclassification effects. Furthermore, the accuracy of inferring disease phenotypes from 

electronic diagnostic codes can vary widely across diseases [75].  This may be further 

complicated or compounded by phenotypic heterogeneity (refers to mutations in the same gene 

resulting in similar but different diseases or variation in the expression of the disease 

(expressivity)).  An example of this is dementia, which  is a disease of the brain that is often the 

result of similar complex disorders, the most common of these includes Alzheimer's disease 

(AD), vascular dementia, frontotemporal dementia, dementia with Lewy bodies, and 

Parkinson's disease  [76].  

 

Genetic heterogeneity:  An added challenge to gene discovery in GWAS is genetic 

heterogeneity, which refers to the phenomenon where several distinct genetic variants may 

give rise to the same phenotype [77].  Research pertaining to a wide range of diseases suggest 

that complex diseases are characterized by remarkable genetic heterogeneity.  Furthermore, 

genetic heterogeneity is known to exist between ancestries for a substantial portion of loci 

associated with complex diseases [78].   The effects of genetic heterogeneity can cause a 

reduction in the power of association tests between a single SNP and phenotype [79].  Genetic 

heterogeneity manifests itself on two levels, allelic and locus heterogeneity.  Allelic 

heterogeneity describes the situation where different mutations within a single gene locus 

cause the same disease [80].   In such a situation, a single marker may fail to capture all disease 

variants when they exist on the same gene.   Locus heterogeneity describes the situation where 

genetic variants in completely unrelated gene loci cause a single disease but only one mutant 

locus is needed for the disease to manifest [80].  However, these causal variants may be on a 
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single pathway (signalling, regulatory, metabolic) [81]. This suggests that different 

combinations of multiple genes may independently influence disease risk. However, from a 

single gene perspective, cases and controls may appear to be the same, which has implications 

for statistical power.   As for any specific causal gene only a subset of cases will contain a variant 

in that gene, while other cases will have causal variants in other genes in the pathway [81].  It 

has been suggested that AOO of disease variation and variation in severity of disease may reflect 

underlying genetic heterogeneity [82] or individuals having a higher genetic load of risk 

variants  [83, 84]. 

  

1.4.3.2.  | Main technological tools of GWAS  

 

Advances in genotyping and imputation technologies, though advantageous in the long-term, 

have the potential to impact power.  Differences in genomic coverage and the range of SNPs 

included on genotyping microarrays in terms of MAF are likely to impact power.  Issues relating 

to genotyping and imputation technologies are described in more detail below. 

 

Genotyping technologies:  Genotyping by SNP microarray is the prime instrument that has 

enabled the application of GWAS.  However, errors in genotyping resulting from either the 

genotyping experiment or genotyping calling process is another potential major source of false 

positive GWAS findings [85].    Adding to this is the use of different microarray platforms, 

Affymetrix and Illumina being the most commonly used, which could result in different levels 

of genomic coverage.   Genotype SNP arrays have different genomic coverage therefore, the level 

of power could vary from one SNP array to another. 

 

LD is an important factor in this process and ancestral populations differ in their extent and 

structure of LD, therefore the number of marker SNPs needed for complete genomic coverage 

may vary.  The extent of genomic coverage of GWAS chips is measured on the basis of the 

percent of common SNPs from a reference panel having an r2 of 0.8 or more with at least one 

SNP on the platform.  The different genotype SNP arrays have been shown to have similar power 

in populations of European ancestry but may vary in populations of non-European ancestry.  In 

populations with weaker LD, such as African ancestry populations, power is increased by 

applying denser and ancestry specific SNP array platforms. 
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An additional concern is the level of accuracy in genotype calling which is usually assessed on 

the basis of call rate, signal quality and call accuracy.  Differential genotyping error, which refers 

to the situation where the genotyping error rates in cases and controls are different, resulting 

in the inflation of the type I error rate is another concern [86].  The potential for this type of 

error is more likely in large scale studies where cases and controls may be genotyped at various 

sites. 

 

Table 1. 1 - Most commonly used public reference panels 

Reference 

panel 

Number of 

reference 

samples 

Number of sites 

(autosomes + X 

chromosome) 

Ancestry 

distribution 

Year 

The International 

HapMap Project phase 3 

1,011 1.4 million Multi-ethnic 2010 

1000 Genomes Project 

phase 1 

1,092 28.9 million Multi-ethnic 2012 

1000 Genomes Project 3 2,504 81.7 million Multi-ethnic 2015 

UK10K Project 3,781 42.0 million European  

Haplotype Reference 

Consortium (HRC) 

32,470 40.4 million Predominantly 

European 

2016 

Trans-Omics for 

Precision Medicine 

(TOPMed) 

60,039 239.7 million Multi-ethnic 2017 

Source (Genotype Imputation from Large Reference Panels: Annual Review of Genomics and 
Human Genetics 2018) [87].           
 

Imputation technologies: Genotype imputation, introduced in 2007 [88],  is a mechanism that 

further leverages the correlations between nearby alleles due to LD to predict genotypes at 

SNPs that have not been directly genotyped on an array, but which are available on a high-

density reference panel (such as the 1000 Genomes Project).  Imputation, which involves the 

estimation of unknown alleles based on the observation of nearby alleles in high LD, enables 
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the inclusion of ungenotyped SNPs in association testing and thereby increases power.  

Genotype imputation also facilitates GWAS meta-analysis based on different genotyping 

platforms by generating a common set of variants that can be analysed across all the studies.    

For example, the Illumina 660k array only contains 20% of the SNPs included in the Affymetix 

6.0 SNP array  [87].  Additionally, common SNPs across different generations of the same 

platform or commercial brand can also be generated by genotype imputation. The accuracy of 

genotype imputation is impacted by several factors including sample size and SNP coverage of 

the GWAS.  In addition, the accuracy of the imputation depends on the reference panels 

employed in the process.   The accuracy of genotype imputation is affected primarily by the 

density of the genotyping array and sequencing coverage in the reference panel; MAF; 

haplotype accuracy in both reference and sample being imputed; and the software employed. 

Some of the more widely used software tools for genotype imputation include FastPHASE, 

Beagle, Minimac, IMPUTE, MACH and SHAPEIT,  [87, 89].    

 

Research investigating imputation accuracy indicates that there will be difficulties when 

imputing populations for which there is a limited number of reference individuals.  Therefore, 

the choice of reference panel for samples of different ancestral origins has implications for 

statistical power.  The most commonly used public reference panels are listed in Table 1.1. 

 

1.4.3.3.  | Data quality procedures in GWAS 

 

Standard data quality control procedures have been implemented as part of the GWAS process 

to help mediate the negative impact on power from various potential confounding sources.   

Procedures designed to assess the quality of data in a GWAS from the perspective of individual 

sample quality are outlined.   This is followed by procedures designed to assess the quality of 

individual SNPs. 

 

Sample quality control:  In a standard GWAS, the data quality procedures deployed as part of 

the assessment of individual samples include individual level missingness, sex discrepancy 

(which refers to the difference between the assigned sex and the sex determined based on the 

genotype), heterozygosity rate, cryptic relatedness and ancestry outliers.  As high levels 

of missingness or genotype failure rates within samples is an indication of poor DNA quality or 

technical problems, the level of missingness among individuals is assessed based on a user -
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defined missingness threshold.   Individuals with high rates of genotype missingness are 

removed.  It is recommended that this process is performed in two stages based first on a more 

relaxed threshold (example 0.2) and then a more stringent threshold (example 0.02) after a 

check of SNP specific missingness (described below) [90].    The final user-defined threshold is 

typically in the range of 95%-99% completeness, in keeping with the overall required 

stringency of the quality control  [91].    

 

Additionally, checks for discrepancies in reported sex and sex based on the X chromosome are 

usually undertaken using the heterozygosity/ homozygosity rates for the X chromosome.  The 

X chromosome F statistic provides an indication of the deviation of the observed number of 

heterozygote variants from that expected under Hardy-Weinberg equilibrium 

(HWE).  Typically, the reduction in heterozygosity is assessed with reference to HWE.  HWE 

represents a state within a given population, where the balance in the relative number of alleles 

is maintained from generation to generation assuming (1) mating is random; (2) no natural 

selection; (3) no migration; (4) no mutation: and (5) population is large.   For a genetic locus at 

equilibrium, the Hardy-Weinberg Proportions relating to the genotypes composed of those 

alleles is expressed by p2 + 2pq + q2 =1, where p2 corresponds to the frequency of AA 

(homozygous A), 2pq corresponds to frequency of Aa [heterozygous], and q2 corresponds to the 

frequency of aa [homozygous a])  [92].     Males are expected to have an X chromosome F statistic 

value of > 0.8 and females are expected to have an X chromosome F statistic < 0.2  [90].     

 

The overall heterozygosity rate, excluding the X chromosome, for each individual in the sample 

is also a measure of DNA sample quality.   Genome-wide, excessive, or reduced proportion of 

heterozygote genotypes could potentially be an indication of DNA contamination or inbreeding.  

It is therefore recommended that individuals who deviate ±3 SD from the overall sample 

heterozygosity rate mean should be removed  [90].    The mean heterozygosity rate for each 

individual is given by  (𝐉 − 𝐎/𝐉) , where    𝐉   is the number of non-missing genotypes and  𝐎  is 

the number of observed homozygous genotypes for a given individual  [25].      

 

To address potential issues with cryptic relatedness, identity by descent (IBD), which is 

determined by the proportion of the genome shared by a pair of individuals from a common 

ancestor is commonly applied to remove unknown second-degree relatives or duplicate 

samples.  Conventionally, it is assumed that individuals included in a GWAS are unrelated i.e. no 
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pair of individuals is closely related, where second-degree relatives are treated as sufficiently 

unrelated.  Inclusion of closely related individuals could result in bias of SNP effect size and 

standard errors if not accounted for in the analysis.  Therefore IBD, a measure of how strongly 

pairs of individuals included in a sample are genetically related, is commonly applied.  Pairwise 

identity-by-state (IBS), which is based on the average proportion of alleles shared in common 

at genotyped SNPs (excluding the sex chromosome), can be applied to genome-wide data to 

estimate the degree of recent shared ancestry for a pair of individuals [25, 91].  IBS is calculated 

for each pair of individuals in the sample based on SNPs in low LD (typically r2 < 0.2), where the 

selection of uncorrelated SNPs is referred to as pruning.  If pairs of individuals are found to be 

related, which is usually based on an IBS metric (pi-hat) threshold value > 0.1875 [25], one of 

the related pair is removed from the sample [25]. 

 

To identify individuals who potentially may be considered ancestry outliers principal 

component analysis (PCA) is usually applied to genotyped data to form a relatedness matrix 

where eigen decomposition is performed to generate a smaller set of variables through a few 

linear combinations of the original variables.  At the continental level, most of the variation in 

ancestry is usually explained by the first two PCs, therefore the first two PCs, which can be 

viewed graphically via a scatter plot, are used to identify “ancestry outliers” who are 

subsequently removed from the dataset.  

  

SNP quality control:  Data quality pertaining to the SNPs included in a standard GWAS are 

often assessed based on level of missingness, MAF, deviation from HWE and, for studies that 

undertake genotype imputation, imputation quality.  Assessment of the level 

of missingness within SNPs involves determining the number of samples for which a genotype 

has not been assigned.  To facilitate the identification and removal of low-quality SNPs, 

exhibiting excessive genotype missingness, different genotype calling rate thresholds are 

applied after examination of the overall genotype data. It is typical for the final user-defined 

genotype calling rate threshold to be in the range of 95%-99% [91].    SNPs with low MAF are 

more prone to genotyping errors and standard GWAS analysis methods are not powered to 

detect association with low MAF SNPs. Therefore, only SNPs with a MAF above a user-defined 

(determined after examination of the genotyped data) threshold are included.  Generally, SNPs 

with a MAF of less than 1-5% are excluded, however with advances in imputation this threshold 

has been decreasing [93].    Furthermore, a more stringent genotype calling rate  is sometimes 
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applied for SNPs with a MAF < 5%  [94]. However, the threshold applied may depend on the 

sample size with larger samples applying lower MAF thresholds. For large (100,000) and 

moderate (10,000) samples, thresholds of 0.01 and 0.05 are commonly used [90].  However, for 

large sample studies like the UK Biobank, MAF thresholds as low as 0.1% have been applied  

[95].      

 

Deviation from HWE is an indication of evolutionary selection, however, it is also a 

common indicator of genotyping errors.  Therefore, the samples of controls included in a GWAS 

are assessed for deviation from HWE. Cases are typically not included in this assessment as 

genetic markers are expected to deviate from HWE if there is an association between markers 

and disease. Differences in call rates between the cases and controls are also assessed 

(differential genotyping error) as this can result in inflation of the type I error rate.  

Furthermore, for studies that undertake genotype imputation, assessment of imputation quality 

is an important standard quality control procedure designed to facilitate the removal of poorly 

imputed SNPs. Different imputation quality metrics are associated with each genotype 

imputation software tool.  Among the three most applied software tools the r2, the allelic r2 

metrics are implemented in Minimac and Beagle and the information metric (or info score) is 

implemented in IMPUTE2 [91, 96, 97]. Although there is no consensus on filtering thresholds 

for removing poorly imputed SNPs, an info score greater than 0.4 is generally considered 

acceptable in relation to IMPUTE2 (values range between 0 and 1 where values approaching 1 

is an indication of a SNP imputed with high certainty) [98].  For Minimac and Beagle r2 values  

greater than 0.3 are typically used for filtering  [99].       

 

1.4.3.4.  | Primary statistical analysis procedures in GWAS 

 

In GWAS statistical tests of association are developed primarily within the generalized linear 

modelling (GLM) framework.  The GLM enables or allows for adjustment for clinical covariates 

(and other factors) to be measured and accounted for in the modelling process.  As the primary 

phenotype of common disease GWAS is disease status, where case-control data are often 

obtained, association testing is usually applied via the logistic regression model.  The logistic 

regression model is an extension of linear regression modelling where the outcome (as case 

control data is a binary outcome; affected disease cases versus unaffected controls) of the linear 

model is transformed using a logistic function that predicts the probability of having case status 
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given a genotype class.  The measure of the effect of the genotype SNP on disease outcome, 

adjusted for confounding factors like ancestry, is usually based on the odds ratio (OR) (features 

of the logistic model are described further in section 1.7.4). 

 

The genotypes for a SNP can be grouped into genotype classes or models that reflect an assumed 

relationship between the genotyped SNP and disease outcome.  The choice of model applied in 

the analysis or test can have implications for statistical power.  This is because the degrees of 

freedom for the test may be altered depending on the number of genotype-based groups.  

Additionally, loss of statistical power may also occur if model assumptions regarding the 

relationship between the genotyped SNP and disease outcome are wrong.  These genetic models 

include, the dominant, recessive, multiplicative, or additive models of which the additive genetic 

model is most often applied (see Figure 1.4).  The additive genetic model assumes that the risk 

allele effect is linearly related to the number of risk alleles, while the dominant genetic model 

assumes that the risk allele effect is related to the presence of the risk allele.  Additionally, the 

recessive model assumes that the risk allele effect is related to the presence of both risk alleles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 4 - SNP effect according to genotype phenotypic model   

 

Currently the standard practice in GWAS is to test each SNP that is typed on the GWAS 

genotyping microarray independently of each other to identify associated signals pertaining to 
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the trait or disease under consideration.  This leads to the problem of multiple testing as the 

probability of observing a “significant” result purely by chance increases with the number of 

statistical tests performed.  For example, in a test involving 500,000 SNPs: 5,000 expected to be 

significant at α < .01; 500 expected to be significant at α < .001 and 0.05 expected to be 

significant at α < 10-7.   In association testing, the P-value which is the probability of making a 

type I error is used as a measure of statistical evidence against the null hypothesis, where a 

smaller p-value indicates stronger evidence substantiating the alternative hypothesis.  The p-

value in disease GWAS is an indication of how likely a suspected disease associated variant is 

due to random chance.   In genetic research, different statistical significance p-value thresholds 

have been applied to differentiate true positives from false positives. The genome-wide 

significance P-value threshold of 5 × 10−8 has become a standard for common-variant GWAS 

and is based on patterns of LD in European populations.  The three main methods that have 

been developed to address multiple testing are Bonferroni correction, false discovery rate and 

permutation testing  [90]. 

 

This standard genome-wide significance threshold was formulated on the basis of permutation 

tests applied to International HapMap Consortium (IHC) genotype data in 2005 to estimate the 

number of independent chromosomal segments with MAF ≥ 5%  [45].  Based on the LD 

structure of European ancestry populations, the effective number of independent SNPs across 

the genome was approximated by counting 1 SNP per LD block, plus all SNPs outside of blocks 

(interblock SNPs).  On this basis a typical European ancestry population under study has about 

1 million independent chromosomal segments with MAF ≥ 5%.  The genome-wide significance 

threshold is equivalent to the Bonferroni correction for the approximately one million 

independent tests performed in a GWAS [100]   (Bonferroni correction for m tests set significance 

level to α = .05/m).  In European ancestry populations, the genome-wide significance threshold 

has been shown to adequately control for the number of independent SNPs in the entire 

genome, regardless of the actual SNP density in the population under investigation  [90]. 

Concurrently, SNP genotyping arrays can genotype up to 4 million markers and imputed 

genotyped SNPs increases further the number of tested SNPs [90]. Additionally, African 

ancestry populations are estimated to have around 2 million independent chromosomal 

segments [101].   Due to the greater level of genetic diversity among those individuals of African 

ancestry, a more stringent threshold is required (probably close to 1.0 × 10−8) [90]. 
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1.5.  | Ancestry inference and application in biomedical 
research  

 

This section describes the primary methods applied in genomic research to infer the ancestry 

of human populations based on genotype data. The section focuses on its application to the issue 

of population structure.  Methods for detecting and describing population structure are outlined 

and includes an assessment of their strengths, limitations, and areas for improvement essential 

for the long-term development of the GWAS methodology. 

 

1.5.1. | Ancestry inference in biomedical research 

 

Ancestry inference is an important part of the framework for the analysis of population genetic 

or genomic data.  It has various applications, but in humans it is often applied to account for the 

effects of population structure in genetic studies of traits and common diseases.  Self-reported 

ancestry is usually uninformative for the purpose of classifying individuals into distinct 

population groups based on ancestry  [102].   This is especially so in populations consisting of 

admixed individuals, as it is not possible to account for the degree of admixture within 

individuals based on self-reported ancestry alone.  Technological and computational advances 

in the field of genomics have enabled the development of inference methods based on genotype 

data.  Generally, methods designed to detect or account for population structure have two main 

approaches to inferring genetic ancestry.  Global ancestry inference, the first approach, is 

geared towards estimating the genome level contribution proportions from each ancestral 

population, which provides a global view of admixture in the target population [103].   Global 

ancestry is thus defined as the relative proportion of ancestral blocks from each contributing 

population across the genome [104].  However, in the second approach, local ancestry inference 

is made in regard to the number of copies of chromosomes from a particular population are at 

a given site where local ancestry is defined as the genetic ancestry of an individual at a 

particular chromosomal location, where an individual can have 0, 1 or 2 copies of an allele 

derived from each ancestral population [103, 104]. 

 

Since 2003, several methods for inferring ancestry have been applied that incorporate both 

local and global ancestry, or global ancestry only.  These methods differ primarily in their 

modelling approach.  On a broad level, these methods can be classified into two main 
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approaches: parametric and non-parametric. In parametric approaches, global ancestry 

inference is made on the basis of an ancestry coefficient assuming a specified statistical model. 

Parametric approaches are based on several genetic assumptions about the SNPs including 

HWE and linkage equilibrium (LE).   The most widely used parametric approach is STRUCTURE 

(first proposed in 2000), which relies on Bayesian Markov chain Monte Carlo (MCMC) [105].       

The method can identify subpopulations from genome-wide genotyped samples through the 

detection of allele frequency differences within the data which are then used to assign 

individuals to those discrete sub-populations [106].   The genotype data used to infer ancestry 

is usually based on a selected set of unlinked or uncorrelated genetic markers (null markers) 

that are not associated with the disease or trait of interest.  This approach has limitations that 

include difficulties in assigning individuals to subpopulations when they are a continuous 

mixture of ancestral subpopulations or admixed individuals  [107].   Other approaches which 

have been popularly adapted include ADMIXTURE (first proposed 2009) and FRAPPE (first 

proposed in 2006) [14], which are based on maximum likelihood estimation (MLE).   An 

expectation-maximization (EM) algorithm is used to optimize the likelihood for both allele 

frequencies and fractional group memberships in both methods, however, a faster optimization 

algorithm is utilized by ADMIXTURE.  ADMIXTURE, which has many of the same capabilities of 

STRUCTURE, has the advantage of less computing time while maintaining similar accuracy as 

STRUCTURE [14]. Furthermore, ADMIXTURE has been shown to be more accurate in estimating 

global genetic ancestry than FRAPPE [108] 

 

In the non-parametric approaches, which require no underlying modelling assumptions, 

multivariate analysis techniques are utilized to infer structure in the data.  The most commonly 

applied multivariate analysis techniques applied to ancestry inference include PCA, clustering 

analysis, multidimensional scaling (MDS) and principal coordinate analysis [102].  On a broad 

level these approaches can be  categorised as: (1) dimension reduction–based methods, as they 

typically apply a dimension reduction technique to reduce the dimensions of the space of 

genetic markers before clustering is applied; and (2) distance-based methods that compute 

pairwise similarities/distances between individuals before applying clustering on the 

computed allele-sharing distance matrix to infer population structure [105].  Examples of 

dimension reduction–based methods include PCA, singular value decomposition (SVD) and 

MDS.  Distance-based methods include allele-sharing distance and Ward’s minimum variance 
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hierarchical clustering (AWclust), Spectral Hierarchical clustering for the Inference of 

Population Structure (SHIPS) and NETVIEW  [105]. 

 

In relation to population structure, estimation of genetic ancestry has two main areas of 

application in biomedical research: (1) individual global ancestry can be applied as a genetic 

background covariate for population structure control; and (2) locus-specific ancestry can be 

directly used  to detect association with disease, which is referred to as admixture mapping 

(introduced in section 1.2.2) [109].  Historically, panels of ancestry informative markers (AIM, 

i.e. markers that exhibit marked differences in allele frequencies between two or more 

populations) were commonly employed to infer ancestry [110] for admixture mapping. In order 

to apply admixture mapping procedures, genotyping data are required from both the admixed 

and ancestral populations.  As a result, ancestry specific reference panels have been developed 

that can distinguish between populations with continental differences originating from African, 

Asian, Native Amerindian and European populations.  The first admixture scans were published 

in 2005, and by 2010 high-density mapping panels were constructed for African Americans, 

Latino/Hispanics and Uyghurs populations [111].  Reference panels designed to capture fine-

grained intracontinental admixture are also being developed [109].  Information pertaining to 

genetic ancestry is also needed to facilitate genotype imputation of untyped genotype SNP in 

GWAS which usually require matched ancestral reference panels. 

 

1.5.2. | Accounting for population structure 

 

As the application of the GWAS approach continues to widen geographically and given the ever-

growing size and complexity of genetic data, the availability of accurate and efficient tools to 

detect and/or account for the effects of population structure becomes even more paramount.   

To effectively undertake genetic association analysis in the general population, a clear insight 

into the underlying genetic population substructure is key, particularly in populations 

consisting of individuals originating from diverse geographical backgrounds. Historically, 

global ancestry has been used to control for the effects of population structure in GWAS.   

However, there is increasing recognition that both the effects of local and global ancestry need 

to be accounted for.   As indicated in section 1.4.1, three main forms of population structure 

have been described in the literature: discrete structure; admixed population and hierarchical 

structure (includes both discrete and admixed individuals).  Furthermore, development of 
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computationally efficient and scalable ancestry inference methods is essential for the 

sustainable development of GWAS methodology. 

 

An array of approaches to address population structure in population-based association studies 

have been proposed over the past two decades.  These proposed methods, which utilize 

genotype information from a whole genome set of SNPs or from a set of selected AIM encompass 

or extend across two main strategies: (1) overdispersion of test statistic approach; and (2) 

genetic ancestry inference approach.   The overdispersion of test statistic approach involves 

direct estimation of the level of inflation in the test statistic owing to population structure. 

Based on genome-wide association summary statistics, these approaches use an overdispersion 

model to determine a test statistic appropriate empirical distribution [112, 113].   To correct 

for the inflation due to population structure a uniform correction factor can be applied to the 

original test statistics for each SNP [114],   For the overdispersion of test statistic approach an 

overall genome-wide inflation measure can be applied (i) based on a genomic control measure 

or (ii) based on LD score regression intercept.   

 

The approach formulated on the basis of genetic ancestry inference is designed to minimize 

potential population structure by distinguishing the most plausible underlying subpopulations 

within the overall population. Depending on the assumed form of population structure (discrete 

structure; admixed population and hierarchical structure), some genetic ancestry inference 

methods may assign individuals to a single ancestry while taking into account the effects of 

admixture through local ancestry inference, while other approaches assign individuals to a 

single ancestral population using global ancestry inference without taking into account the 

effects of admixture.  Methods may also differ regarding whether or not they take into account 

the assumed underlying LD structure of the different ancestral populations.  In the context of 

the genetic ancestry inference approach, when correcting for inflation resulting from 

population structure, population membership is viewed as an unmeasured covariate or more 

generally, proportions of ancestry from different populations are seen as unmeasured 

covariates [115].   For the genetic ancestry inference approach, methods applied entail (i) obtain 

ancestry-based covariates to account for the effects of ancestry differences resulting in 

population structure and (ii) linear mixed models for both population structure and cryptic 

relatedness. 
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1.5.2.1.  | Overdispersion of test statistic approaches  

 

Genomic control approach: The genomic control approach is among the earliest statistical 

methods proposed to address population structure [107].    In this approach a genome-wide 

measure is used to adjust the test statistic of all SNPs included in the analysis.   This genome-

wide measure is termed the inflation factor lambda (𝝀) and is assumed to be the same across 

the human genome.  The value for the inflation factor is arrived at by calculating the chi-squared 

statistics for a set of unlinked or uncorrelated genetic markers (null markers) not associated 

with the disease or trait of interest.  The empirical median for this set of chi-squared statistics 

is divided by the median of the chi-squared distribution (with the appropriate degrees of 

freedom for the statistical test) to obtain the value for the inflation factor that is used to adjust 

for the effects of population structure.  This inflation factor is used to adjust the observed p-

values of the candidate SNPs so that the corrected median p-value will be 0.5.  Because the vast 

majority of variants are expected not to be associated with the disease or trait of interest the 

median observed p-value is expected to be close to 0.5 in the absence of population structure. 

This correction is applied by dividing the actual association test chi-square statistics by the 

computed inflation factor value.  The value of the inflation factor can be considered also as a 

measure of the extent of the effects of confounding on the association statistics.  A 𝝀 value of 1 

is an indication of no inflation. However, a 𝝀 value of 1.03 or higher suggests that there may be 

inflation [57].    One of the main limitations of the genomic control measure is its inability to 

handle the effects of admixed populations. 

 

LDscore regression approach:  LD Score regression is one of the more recent developments 

for addressing the issue of population structure based on GWAS summary statistics [116].   It is 

a measure designed to ensure that confounding due to population structure does not inflate the 

number of false positives.  The ability to distinguish inflation due to polygenicity from bias is an 

important issue in GWAS, particularly with the increasing sample sizes of GWAS. LD score 

regression quantifies the contribution of each SNP by examining the relationship between the 

test statistics and LD [117].  Estimates have been found to be a more accurate measure of test 

score inflation when compared to the genome-wide genomic control measure.  The LD score 

regression approach is formulated on the basis that the more genetic variation that a marker 

tags, the higher the probability that it will tag a causal variant.  In contrast, variation due to 
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population structure or cryptic relatedness is not expected to correlate with LD.  The method is 

implemented by regressing the test statistics from GWAS against LD score.  The intercept minus 

one from this regression is an estimator of the mean contribution of confounding to the inflation 

of the test statistics  [118].  The correction  is applied by dividing all the GWAS χ2 statistics by 

the intercept value, which is expected to have the effect of restoring the  average χ2 statistic of 

these null SNPs to the theoretically proper value of unity and  thereby bring the Type I error 

rate close to the targeted level  [116].  

 

1.5.2.2.  | Genetic ancestry inference approaches  

 

Genetically derived ancestry as covariate approach: In genomic research, population 

structure is often accounted for by including ancestry derived from genotype data into the 

model as a covariate.  Within this framework, ancestry is usually based on global ancestry 

inference.   Methods developed or applied to ancestry inference have been described in section 

1.5.1.  Over the past decades, several parametric and non-parametric methods have been 

proposed that utilize these ancestry inference procedures.  The main limitation of parametric 

approaches relates to their sensitivity to sample size, which can affect model assumptions and 

have proven to be impractical for large GWAS datasets.   Furthermore, parametric approaches 

are not applicable to highly structured populations due to limits on the number of 

subpopulations that can be inferred.  In contrast, non-parametric approaches have proven more 

viable owing to the advantage of having more efficient computational costs  [105].   

 

Among the non-parametric approaches applied in biomedical research, PCA is the most cited 

dimensional reduction method [105] used to detect and or mediate the impact of population 

structure.  The PCA approach involves the application of a set of unlinked or uncorrelated 

genetic markers (null markers) not associated with the disease or trait of interest.  Each 

genotyped SNP is modelled as a quantitative variable in the number of copies of the minor allele 

(additive genetic model).  Based on each genotyped marker included in the analysis, the PCA 

determines the pattern of genetic variation over the individuals in the samples, which is 

designed to capture on a broad level the degree of “genetic similarity” among individuals.  Each 

resulting axis explains as much of the genetic variance in the data as possible with the constraint 

that each component is orthogonal to the preceding components.  Ancestry is usually explained 

by the top PCs.  However, it is typical for one to ten PCs to be modelled   [119].     The resulting 
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PCs are included in the statistical analysis to account for the effects of population structure as 

covariates [107].    One of the main limiting factors affecting the PCA method is when population 

structure is very complex because too many PCs are needed  [120].   

 

Mixed modelling approach: Covariate-based approaches generally assume that the 

genotyped samples are unrelated and are therefore only designed to address the issue of 

population structure as it relates to ancestry differences.  However, linear mixed models (LMM) 

are designed to address confounding due to both relatedness and population structure.  The 

level of relatedness is captured in the modelling of the covariance of the genome-wide SNP 

genotype data between individuals [121].   The  linear mixed modelling approach is formulated 

around three main steps: (1) the modelling process builds a genetic relationship matrix (GRM) 

which models genome-wide sample structure; (2) estimates the GRM contribution to 

phenotypic variance using a random effects model with or without additional fixed effects; (3) 

computes association statistics that account for the GRM component of phenotypic variance 

[122].  The mixed model approach is among the more recent approaches that have been 

proposed to address population structure and is currently widely used in GWAS to account for 

population structure and relatedness for both continuous and binary traits.  The increasingly 

routine application of LMM in GWAS of binary phenotypes is owed to LMM flexibility in being 

able to account for population structure, as well as, their computational tractability, when 

compared to logistic mixed models [123].  However, due to concerns regarding population 

structure resulting in a violation of the LMM constant residual variance assumption, a logistic 

mixed model approach for GWAS of binary traits has also been proposed to account for 

population structure [118].  More recently also , protocols relating to the application of linear 

models with binary phenotypes to prevent loss of power, even in the presence of extreme case-

control imbalance have also been proposed [123].  A limitation of LMM when applied to binary 

phenotypes relates to the inability to directly generate ES estimates on the OR scale.  However, 

methods to acquire approximations on the log OR scale have been developed [123]. 
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1.5.2.3.  | Software and tools 

 

As the size of GWAS continues to grow both the effectiveness and efficiency of these ancestry 

inference methods becomes even more pertinent.  Along with the methods proposed for 

correcting population structure, numerous software tools have also been introduced to support 

their application  [14, 103, 105, 108, 124].   In relation to the methods outlined in this section a 

summary of the available tools for global ancestry inference is outlined in Table 1.2. 

  

Table 1. 2 - Summary of global ancestry methods and software 

Program Method Function Related Publications 

Eigensoft PCA Calculate PCA 
from 

genotype 
data 

1) Patterson, N., Price, A.L. and Reich, D., 2006. 
Population structure and eigenanalysis. PLoS genet, 

2(12), p.e190. 
2) Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, 

M.E., Shadick, N.A. and Reich, D., 2006. Principal 

components analysis corrects for stratification in 
genome-wide association studies. Nature genetics, 
38(8), pp.904-909. 

(Link to software download:  
https://reich.hms.harvard.edu/software) 

LASER PCA Calculate PCA 
from 
sequencing 

data (low 
pass) 

3) LASER 1.0 algorithm: Wang, C., Zhan, X., Bragg-
Gresham, J., Kang, H.M., Stambolian, D., Chew, E.Y., 
Branham, K.E., Heckenlively, J., Fulton, R., Wilson, 

R.K. and Mardis, E.R., 2014. Ancestry estimation and 
control of population stratification for sequence-
based association studies. Nature genetics, 46(4), 

pp.409-415. 
4) LASER 2.0 algorithm: Wang, C., Zhan, X., Liang, L., 

Abecasis, G.R. and Lin, X., 2015. Improved ancestry 

estimation for both genotyping and sequencing data 
using projection procrustes analysis and genotype 
imputation. The American Journal of Human 
Genetics, 96(6), pp.926-937. 

5) LASER server: Taliun, D., Chothani, S.P., Schönherr, 
S., Forer, L., Boehnke, M., Abecasis, G.R. and Wang, C., 
2017. LASER server: ancestry tracing with 

genotypes or sequence reads. Bioinformatics, 
33(13), pp.2056-2058. 

(Link to software download:   
http://laser.sph.umich.edu/) 

https://reich.hms.harvard.edu/software
http://laser.sph.umich.edu/
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Program Method Function Related Publications 

FlashPCA PCA Rapid 

calculation of 
PCA 

6) version ≥2: Abraham, G., Qiu, Y. and Inouye, M., 

2017. FlashPCA2: principal component analysis of 
Biobank-scale genotype datasets. Bioinformatics, 
33(17), pp 2776-2778. 

7) version ≤1.2.6: Abraham, G. and Inouye, M., 2014. 

Fast principal component analysis of large-scale 
genome-wide data. PloS one, 9(4), p.e93766. 

(Link to software download:   
https://github.com/gabraham/flashpca) 

PC-AiR PCA PCA in 

samples that 
may contain 
cryptically 

related 
participants 

8) Gogarten, S.M., Sofer, T., Chen, H., Yu, C., Brody, J.A., 

Thornton, T.A., Rice, K.M. and Conomos, M.P., 2019. 
Genetic association testing using the GENESIS 
R/Bioconductor package. Bioinformatics, 35(24), 

pp.5346-5348. 
(Link to software download:   
http://bioconductor.org/packages/release/bioc/html/GEN
ESIS.html) 

PCAmask PCA PCA in highly 
structured 

populations 

9) Martin, A.R., Gignoux, C.R., Walters, R.K., Wojcik, G.L., 
Neale, B.M., Gravel, S., Daly, M.J., Bustamante, C.D. 

and Kenny, E.E., 2017. Human demographic history 
impacts genetic risk prediction across diverse 
populations. The American Journal of Human 
Genetics, 100(4), pp.635-649. 

(Link to software download:   
https://github.com/armartin/ancestry_pipeline) 

PLINK MDS Calculation of 
multi -
dimensional 

scaling 
variables 
from IBD 

distance 
matrix 

10) Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., 
Ferreira, M.A., Bender, D., Maller, J., Sklar, P., De 
Bakker, P.I., Daly, M.J. and Sham, P.C., 2007. PLINK: a 

tool set for whole-genome association and 
population-based linkage analyses. The American 
journal of human genetics, 81(3), pp.559-575. 

(Link to software download:   
http://zzz.bwh.harvard.edu/plink/) 

EMMA Mixed 
model 

Perform 
linear mixed 
model 

analysis for 
quantitative 
traits 

11) Kang, H.M., Zaitlen, N.A., Wade, C.M., Kirby, A., 
Heckerman, D., Daly, M.J. and Eskin, E., 2008. 
Efficient control of population structure in model 

organism association mapping. Genetics, 178(3), 
pp.1709-1723. 

(Link to software download:   
http://mouse.cs.ucla.edu/emma/) 

https://github.com/gabraham/flashpca
http://bioconductor.org/packages/release/bioc/html/GENESIS.html
http://bioconductor.org/packages/release/bioc/html/GENESIS.html
https://github.com/armartin/ancestry_pipeline
http://zzz.bwh.harvard.edu/plink/
http://mouse.cs.ucla.edu/emma/
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Program Method Function Related Publications 

GEMMA Mixed 

Model 

Perform 

linear mixed 
model 
analysis for 
quantitative 

traits 

12) Zhou, X. and Stephens, M., 2012. Genome-wide 

efficient mixed-model analysis for association 
studies. Nature genetics, 44(7), p.821. 

13) Zhou, X. and Stephens, M., 2014. Efficient 
multivariate linear mixed model algorithms for 

genome-wide association studies. Nature methods, 
11(4), pp.407-409. 

(Link to software download:   
http://www.xzlab.org/software.html) 

EMMAX Mixed 

Model 

Perform 

linear mixed 
model 
analysis for 

quantitative 
traits more 
quickly than 

EMMA 

14) Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, 

S.Y., Freimer, N.B., Sabatti, C. and Eskin, E., 2010. 
Variance component model to account for sample 
structure in genome-wide association studies. 

Nature genetics, 42(4), pp.348-354. 
(Link to software download:  
http://genetics.cs.ucla.edu/emmax/) 

LD score 

regression 

LD score 

regression 

Calculate 

genomic 
inflation 
parameters 

accounting 
for LD 

15) Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, 

S., Yang, J., Patterson, N., Daly, M.J., Price, A.L. and 
Neale, B.M., 2015. LD Score regression distinguishes 
confounding from polygenicity in genome-wide 

association studies. Nature genetics, 47(3), pp.291-
295. 

(Link to software download:   
https://github.com/bulik/ldsc) 

PC loading 
regression 

PC loading 
regression 

Improved 
population 

structure 
control 
compared 

with PCA 

16) Bhatia, G., Furlotte, N.A., Loh, P.R., Liu, X., Finucane, 
H.K., Gusev, A. and Price, A.L., 2016. Correcting 

subtle stratification in summary association 
statistics. bioRxiv, p.076133. 

(Link to software download:   
Not yet available) 

Source (Population stratification in genetic association studies, 2017) [14] 

 
 
 

1.6.  | Common disease GWAS 
 

This section provides an overview of the disease areas that have benefited from common 

disease GWAS both in terms of the disease risk variants that have been identified and AOO of 

disease variants.   The prospects of undertaking a common disease GRS GWAS is also discussed. 

http://www.xzlab.org/software.html
http://genetics.cs.ucla.edu/emmax/
https://github.com/bulik/ldsc
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In relation to the GRS, a general overview of some of the most common pseudo R² measures 

that can be used to assess the predictive power and accuracy of GRS or explained variance 

attributable to the GRS is also included.  These pseudo R² measures are compared with the view 

to determining the most appropriate pseudo R² metric that can be applied to assess the relative 

performance of different GRS models. 

 

1.6.1. | Disease risk GWAS 

 

In an epidemiological framework the risk of disease is assessed via longitudinal studies where 

exposures or risk factors are measured at the start of the study period (Figure 1.5).  The 

probability of developing the disease conditional on exposure or risk factors is assessed based 

on the disease status of individuals included in the study.  Through these epidemiological 

studies conducted in the general population the presence of disease within a population is often 

measured on the basis of incidence rates (occurrence of new cases of disease during specified 

time period); prevalence rates (proportion of cases of disease in a population at a given time); 

or survivorship rates (proportion of individuals surviving over a specific period).   Although the 

data obtained from prospective cohort studies are of better quality when compared to case-

control studies, the case-control design is most commonly applied in GWAS.    This is due to the 

fact that case-control studies are less costly and time-consuming when compared to prospective 

cohort studies.   As case-control GWAS are the most applied, regression analysis of binary traits 

or disease are usually undertaken within a logistic regression framework (described in section 

1.7.4).  The primary phenotype of interest is usually disease status; however, the genetic 

determinants of many chronic complex diseases includes an AOO component.  

 

In medical genetics, rare and common diseases are usually characterized by different levels of 

penetrance. Penetrance is defined as the percentage of individuals having a mutation or 

genotype who exhibit clinical signs or phenotype of the associated disorder or genotype [125].  

A highly penetrant allele means that the trait it produces will almost always be apparent in an 

individual carrying the allele (which is often the case for single gene diseases).  On the other 

hand, low penetrant alleles will only occasionally produce the associated trait.  Therefore, with 

low penetrance it is more difficult to distinguish the genetics from environmental factors.  

Furthermore, penetrance at a given allele may be polygenic (i.e allele is modified by the 

presence or absence of polymorphic alleles at other gene loci) [126].  The diseases or trait 
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altering variants discovered by GWAS tend to be common and of low penetrance [127](common 

alleles having small genetic effects).  The proportion of variance of a trait or disease controlled 

by genes is defined as the heritability.  Therefore, heritability is a measure of the genetic 

contribution to phenotypic variation.  If common alleles have small genetic effects (low 

penetrance), but common diseases show heritability (inheritance in families), then multiple 

common alleles must influence disease susceptibility [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 5 - Epidemiological study designs 

 

As indicated in section 1.4.3.1, genetic heterogeneity presents an additional challenge in 

common disease GWAS.  In a clinical setting genetic heterogeneity refers to the presence of a 

variety of genetic defects that cause the same disease  [128].   This is often because of mutations 
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at different loci on the same gene.  Diseases known to experience this phenomenon includes 

Alzheimer’s disease, cystic fibrosis, and polycystic kidney disease. 

 

Despite these challenges, since the introduction of the GWAS design, numerous genetic variants 

associated with the risk of many common diseases have been identified.  Cardiovascular 

disease, many different types of cancers, Alzheimer’s disease, Parkinson’s disease, 

inflammatory bowel disease and T2D are among the more burdensome diseases that have 

benefited most from GWAS.  Before 2007 there were fewer than 20 genetic variants associated 

with the risk of common diseases or traits  [127], but by 2018 this had changed dramatically. 

More than 161 genetic risk loci have been associated with coronary artery disease accounting 

for 15% of the genetic contribution to the disease [129]. Among the four major 

neurodegenerative diseases which includes Alzheimer’s disease and Parkinson’s disease over 

200 loci have been found to be associated with disease risk  [130].   Furthermore, the number 

of risk loci associated with inflammatory bowel disease are in the region of 240 [131]. 

 

1.6.2. | Age-of-onset GWAS 

 
Genetics play a significant role in determining risk to common diseases as well as AOO and for 

some diseases the effect of AOO may be greater than the genetic effect of risk [132].  For 

preventive and therapeutic strategies, a better understanding of the biological mechanisms 

impacting not only disease risk but also AOO of disease is critical.  However, current research 

generally focuses on identifying disease risk variants and to a much lesser extent AOO of 

disease.  This may be because most GWAS are based on the case-control design, therefore it 

would be more difficult to obtain data on AOO retrospectively  [133]   and due to cost constraints 

prospective cohort studies are on the decline.  Additionally, GWAS analysis tools for time-to-

event (TTE) analysis is not as readily available as tools for logistic regression.  

 
Evidence based on heritability studies seem to indicate that the level of heritability (which is 

often wide ranging) attributed to a common disease is influenced by AOO [134].  Earlier AOO 

for some common diseases is associated with increased risk of complication and comorbidities 

as well as more aggressive progression of the disease or severity.  Identification of genetic 

variants associated with AOO independent of disease risk may provide an opportunity for 

improved drug therapies. The first Alzheimer’s disease GWAS focused on identifying genes 
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associated with AOO conducted in 2011 [135].  Additionally, a Parkinson’s disease study in 

2015 found that two loci (GBA and TMEM175/GAK) significantly altered the AOO of Parkinson’s 

disease [136]. 

 

Given the limitations of current GWAS methodology in distinguishing the genetic variants 

associated with the AOO of disease independently of overall risk variants, different approaches 

have been proposed to distinguish early onset individuals from late onset individuals.  This is 

based on the hypothesis that an increased polygenic burden is expected in individuals with an 

earlier onset relative to late onset. This is because earlier onset of disease indicates less 

exposure to lifestyle risk factors, therefore onset of disease is likely to be influence by genetics 

to a much greater extent. 

 

1.6.3. | GRS GWAS 

 
GWAS discoveries have contributed tremendously to the current knowledge of genetics and its 

implication for human health.  Given the interplay of both genetic susceptibility and 

environmental risk factors in common diseases, numerous applications of risk prediction 

models have been explored incorporating both components  [137].    The extent to which genetic 

and non-genetic factors are included depends on the underlying heritability of the disease.   

 

The genetic component of these risk prediction models commonly employs a risk profiling 

approach that incorporates information from multiple variants [83].   Identification and 

analysis of contributing genomic variants associated with many common complex diseases 

have enabled the application of genetically based risk scores.  Given the underlying polygenic 

architecture of most common diseases, single SNP GWAS analysis in isolation lacked the ability 

to simultaneously assess the overall genomic risk of an individual associated with a disease or 

trait.  Risk scores, derived from genetic data, are designed to capture an individual’s overall 

genomic risk to disease by aggregating the number of risk variant alleles present in an 

individual into a single numeric measure of risk.  In some instances, these risk variant alleles 

are weighted in terms of their impact usually estimated by their log OR, which are commonly 

obtained from discovery GWAS summary data. 
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Applications of risk prediction models based on polygenic scores have implemented various 

strategies or approaches for capturing the genetic component of disease risk.  The most 

common of these include the GRS and the Polygenic risk score (PRS) [138].  The primary 

difference between the two approaches is that GRS represents a weighted or unweighted sum 

of risk alleles for a limited number of robustly associated SNPs, ie SNPs showing strong evidence 

of association with the disease (usually genome-wide significant SNPs).  On the other hand, PRS 

represent a weighted or unweighted average of SNP effects across the whole genome.   SNPs 

not significantly associated with the disease are incorporated in the measure and is based on 

the current hypothesis that heritability of disease can be captured by many SNPs which have a 

small effect on disease [57, 138]. 

 

GRS, which is explored further within this thesis, have the potential to identify individuals at 

risk of early age-onset disease because they are expected to have a greater genetic burden.  

Reduced exposure to lifestyle risks factors implies greater genetic burden of disease risk 

variants which would be reflected in higher GRS values.  Therefore, the application of GRS is 

potentially beneficial given the limitation within GWAS in terms of its ability to distinguish the 

genetic variants associated with the AOO of disease independently of overall risk variants.   

 

1.6.3.1.  | Constructing GRS  

 

To undertake risk prediction based on GRS requires information on the SNPs known to be 

associated with the disease or trait.  Information on the associated SNPs as well as their 

associated summary statistics are usually obtained from the largest published GWAS currently 

available.   This published GWAS is usually termed the “discovery or base GWAS”.   Construction 

of the GRS require independent GWAS samples of genotype data. These independent datasets 

in which the GRS are constructed are often termed the “target GWAS”.   The formulas that can 

be used to calculate the GRS for each individual in a target GWAS sample are described in 

Equation 1.3 for a weighted GRS and Equation 1.4 for an unweighted GRS.  The effect size 

weighting for the weighted GRS is usually based on the OR value provided in the base GWAS. 

 

   𝑮𝑹𝑺𝒊𝒘 = ∑ (𝜷𝒋𝒃𝒂𝒔𝒆 × 𝑮𝒊𝒋)
𝑱
𝒋=𝟏     

 

Equation (1.3) 
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   𝑮𝑹𝑺𝒊𝒖 = ∑ 𝑮𝒊𝒋
𝑱
𝒋=𝟏     

 

Equation (1.4) 

 

Where 𝑮𝑹𝑺𝒊𝒘   is the weighted GRS of the ith individual;  𝜷𝒋𝒃𝒂𝒔𝒆  ,  refers to the effect size (log 

OR) for the risk allele in the base GWAS;  𝑮𝒊𝒋  is the genotype dosage (defined as the number of 

copies of the risk allele at each SNP present in an individual) or expected number of risk alleles 

present (0,1 or 2) for SNP (j) of individual ( i) and 𝑮𝑹𝑺𝒊𝒖  is the unweighted GRS of the ith 

individual.   𝑱 refers to the total number of SNPs included in the calculation of the GRS.  The 

weighted or unweighted genotype dosage values associated with each SNP are added up for 

each individual to formulate the overall GRS per individual.   

 

1.6.3.2.  | Measures of predictive power and accuracy 

 

Common disease risk prediction on an individual level within a genetic research framework, 

that incorporates an element of genetic prediction based on combined effects of multiple SNPs 

is increasingly becoming routine.  However, measures to assess their predictive power or 

accuracy are critical before implementation into a clinical setting can be considered.  The 

combined effects of the multiple SNPs included in a risk score can be measured by means of the 

coefficient of determination, denoted R², which is commonly used to quantify the phenotypic 

variance explained by the combined SNPs.  As common diseases are invariably due to the 

combined interplay of genetics and the environment, the heritability of the disease in question 

provides a useful quantification of the importance of the genetic component of the disease.   As 

individual SNPs typically have low penetrance, coupled with environmental impact, the 

estimated heritability provides a useful upper boundary for measuring the relative importance 

of the combined effects of multiple SNPs.  Presently, most common diseases risk scores explain 

between 10% and 20% of the variance in disease risk [139], while heritability typically ranges 

between 30% and 60% [7]. 

 

In ordinary least squares (OLS) regression analysis, R² is the standard statistical measure used 

to assess the goodness of fit of a model. It is an overall measure of the accuracy of the regression 
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model [140].   However, OLS R² are not appropriate for the class of models used to analyse 

binary, ordinal and TTE outcomes, which are common in medical research.  As a result, these 

classes of models used to analyse such data are limited in terms of the ability to compare the 

relative predictive power across models.  Several methods akin to the standard R2 measure used 

in OLS regression models have been proposed as a measure of predictive accuracy or explained 

variation, but none have been adapted as standard for models based on maximum likelihood 

estimation [141].  These measures are often referred to as pseudo R2 measures as they are not 

a true R2 measure in the same sense as the standard OLS R2 measure, but appear to be on the 

same scales, as values range from 0 to 1.   In general, pseudo R2 compares the log-likelihood 

from the null model (model with only an intercept) to the log-likelihood from the full model 

(model with all the covariates included).  Several methods have been proposed for binary and 

other categorical outcome data.  The methods most commonly applied include the Mcfadden  

[142] pseudo R2; Cox and Snell  [143]  pseudo R2; and Nagelkerke [144] pseudo R2.    

The McFadden’s R2 is defined as: 

R2McF = 1 – ln (LM) / ln(L0) 
Equation (1.5) 

 

The Cox and Snell R2 is defined as: 

R2C&S = 1 – (L0 / LM)2/n 
Equation (1.6) 

 

The Nagelkerke R2 is defined as: 

R2N = R2C&S / R2Max 

Equation (1.7) 

In these equations, L is the estimated likelihood, M refers to the model with predictors (full 

model); O refers to the model without predictors (intercept model); n refers to the size of the 

sample.  R2Max for the Nagelkerke R2 is defined by (1 – (L0)2/n). The Nagelkerke measure adjusts 

the Cox and Snell measure for the maximum value so that 1 can be achieved.   Application of the 

different pseudo R2 measures depends to a large extent on the primary objective of the 

assessment, that is: (1) the square of the correlation between predicted and observed values; 

(2) improvement in fitted model from adding predictors to a null model; (3) proportion of 

explained variance in the data by the model. (e.g. R² can be calculated by subtracting the 

unexplained variance from one). Unlike normal generalized linear models, the different 
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definitions of R2 do not coincide or lead to the same quantity in generalized linear models that 

are not normal.  The McFadden’s R2 is regarded as an approach that mirrors more closely 

approach 2 and 3, while both the Cox and Snell R2; and the Nagelkerke R2 is viewed as an 

approach that mirrors approach 2.  However, with the exception of the Nagelkerke R2, a 

maximum value of 1 is unattainable for most pseudo R2 measures.  For this reason, the 

Nagelkerke R2 measure has been applied to genetic risk prediction models as a measure of 

explained variance in genetic research [145, 146].  In this context 1- R2N can be interpreted as 

the proportion of variance unexplained by the genetic variants included in the prediction model  

[146]. 

 

R² is a useful measure for comparing different models and also to determine the contribution 

of a single variable to the overall model.  Nested models are useful for assessing the individual 

contribution of a single variable while controlling for covariates in the model.  The effect of 

adding an additional variable to a model can be assessed by comparing the R2 of two nested 

models.  The larger model is usually referred to as the complete (or full) model, and the smaller 

the reduced (or restricted) model.  The contribution from this additional term can be obtained 

from the coefficient of partial determination (partial R²).  The partial R² measure is defined as 

the percentage of dispersion that can be described by the predictors specified in the fuller 

model but cannot be described in a reduced model [147].  It is important to note that model 

comparison is limited to: (1) comparing different models using the same dataset and outcome 

measure; and (2) the same pseudo R2 must be used across models to facilitate comparison. 

  

1.7.  | Statistical analysis of GWAS 
 

In this section consideration is given to different approaches to undertaking data analysis of 

different outcome measures commonly encountered in biomedical research.  A general outline 

of the three main statistical approaches that are explored throughout this thesis is provided. 

Included are the descriptions of the various model equations and assumptions. 
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1.7.1. | Approaches to statistical analysis in GWAS  

 

A key consideration in the design and analysis of GWAS of complex human disease outcomes or 

pharmacogenetic outcomes is the type of outcome of interest. The spectrum of outcome 

measures typically includes binary outcomes (e.g. presence or absence of disease; dead or 

alive), continuous outcomes (e.g. blood pressure; and pain scale) and TTE outcomes (e.g. time 

to death; AOO of disease; and time from start of drug therapy to first adverse event).  However, 

as indicated in section 1.4.3.4, the most common approach to association testing is the case-

control setup where the allele frequency of each SNP for individuals with the disease (cases) 

and individuals without the disease (controls) is compared.  An estimate of SNP effect size is 

often measured based on the OR via logistic regression.    The effect of the SNP is commonly 

based on the additive genetic model (described in section 1.4.3.4) where it is assumed that 

genotype effect is linearly related to the number of risk alleles (0, 1 or 2).   The logistic 

regression approach assumes a binary outcome (presence or absence of disease), which is 

generally less powerful for outcomes which have a time element as is the case for AOO of 

disease, when compared to other approaches, particularly the TTE analysis approach  [148, 

149].  The TTE analysis approach is generally more powerful as it incorporates information on 

follow-up time span and allows for censoring, i.e.  it considers both censoring and time 

[150](the censoring aspect of TTE analysis is discussed further in section 1.7.2).  Within this 

thesis consideration is given to three of these outcome measures, TTE, ordinal and binary 

outcomes with a view to exploring their relative effectiveness in terms of statistical power in 

the context of AOO of disease GWAS. 

 

1.7.2. | Analysis of TTE outcomes 

 

Data analysis within a TTE analysis framework comprise a set of statistical procedures designed 

to interrogate data that have time as a key outcome of interest  [151, 152].  A unique aspect of 

TTE analysis is that the research interest is typically a combination of whether the event has 

occurred (binary outcome) and when it has occurred (continuous outcome) [153].  Additionally, 

in TTE analysis, only some individuals will have experienced the event by the end of the study, 

which gives rise to the phenomenon of censoring (described in further detail below).  As a result 

of censoring, not all individuals will have an event time, but instead a censoring time if the event 

of interest has not occurred. Censoring is addressed in the modelling process to enable valid 
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inferences regarding the data being analysed [153].  In undertaking TTE analysis, important 

methodological considerations include a clearly defined: (1) outcome variable (time until the 

occurrence of an event); (2) time origin (point as which follow-up begins); (3) time scale (time 

from the beginning of follow-up); and (4) criteria for exiting the study (for censored 

observations a criteria for exiting the study is need). 

 

As the focus of this thesis is to investigate methods for the analysis of AOO of common disease 

in a GWAS setting, the time origin could, for example, refer to age at birth or age at entry into 

the study and time scale AOO of the disease of interest. Regarding censoring, in longitudinal 

epidemiological studies of common diseases, not all individuals under observation will 

experience the occurrence of the disease during the study period.  Additionally, some 

individuals may also be lost to follow-up due to drop out or death due to a cause unrelated to 

the disease of interest.  Both incidents are regarded as right censoring and is the most frequent 

form of censoring encountered in longitudinal studies.  Left censoring, which is less frequent, 

occurs when the event of interest (in this instance occurrence of disease) has occurred before 

enrolment.  Because of censoring, the AOO of disease is unknown for these censored individuals, 

but what is known is that their AOO is greater than the age at which they were last observed, 

their censored age.  This event-free period for the censored individuals contributes information 

that is incorporated into the TTE analysis.  Generally, censored individuals at the end of the 

study period are usually censored at their current age and incorporated into the TTE analysis 

as censored individuals, or controls.   

 

In some situations, however, it may be appropriate to undertake a case only TTE analysis.  In 

this analysis, only individuals who have been confirmed as cases and with a known AOO, if AOO 

is the timescale, are included in the TTE model.  In the context of genetic research, a case only 

approach may be undertaken where for some diseases selection of appropriate controls may 

prove challenging  [154]. 

 

The family of proportional hazards (PH) models is by far the most widely used regression 

specification applied in biomedical research to simultaneously assess the effects of potential 

risk factors and/or covariates on survival or event time (in this context AOO of disease).  The 

hazard function, which describes the instantaneous rate of occurrence over time forms the basis 

of the PH model approach. In these models the Hazard Ratio (HR), which describes the 
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improvement in one group over the other in terms of rate at which events occur is the key 

measure of association for the PH model. These models rely on the fundamental assumption of 

proportionality of the hazards, which implies that potential risk factors or covariates included 

in the model have a constant impact on the hazard or risk over time.  The Cox PH model, the 

most popular PH model,  is characterised as a semi-parametric model because a parametric 

assumption is made concerning the effect of the predictors (and/or covariates) on the hazard 

function [155].   Therefore, the regression component of the model is fully parametric where 

predictors or covariates in the model are linearly related to the log hazard [155].  However, no 

assumption is made regarding the hazard function itself, which is left unspecified. 

 

Although the PH framework has been highly successful in identifying and quantifying major risk 

factors for human disease [156] , nevertheless, there are situations where the PH assumption 

may not be appropriate.  Moreover, there are some circumstances where more accurate 

estimates can be obtained via parametric approaches  [157].  These parametric models are 

distinguished by their distributional form for the survival and hazard function.  Among the most 

important parametric forms applied in biomedical research is the two-parameter Weibull 

distribution, which is more flexible than the Cox PH as the underlying hazard rate is not 

restricted to being constant over time.  In this thesis, both TTE models are used.  In the context 

of AOO of disease, the parametric Weibull model assumes AOO has a Weibull distribution. 

However, the semi-parametric Cox PH do not assume a specific distribution for AOO of disease 

but does assume a specific relationship between predictor (s) and or covariate(s) and the 

outcome (in this context disease status). 

 

In the general Weibull model, the hazard function at time t is given by: 

 

𝒉(𝒕) = 𝝀𝝂𝒕𝝂−𝟏𝒆𝒙𝒑(𝜷𝑿)    

 

Equation (1.8) 

In this model, 𝝀  is the positive scale parameter and 𝝂  is the shape parameter, which determines 

whether the hazard rate decreases (ν<1), increases (ν>1) or remains constant (ν=1) over time.  

The baseline hazard rate is given by  𝝀𝝂𝒕𝝂−𝟏, which is scaled by the function of covariates,  𝑿, 

and corresponding regression coefficients,  𝜷, via    𝒆𝒙𝒑(𝜷𝑿).  In this context, the variable of 
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interest is the genotype of the causal SNP, coded under an additive model by the number of risk 

alleles carried (0, 1 or 2), and   𝜷  is the log HR of the risk allele. 

 

The Cox PH model is a special case of the general Weibull model for which the hazard rate is 

constant over time (i.e. ν=1), such that: 

 

𝒉(𝒕) = 𝝀𝒆𝒙𝒑(𝜷𝑿)    

Equation (1.9) 

 

 

In the presence of censoring two outcome variables are considered.  The first is the observed 

time (Y),  where   𝐭𝐢  denotes age at last disease-free observation (censoring age 𝐂𝐢 ) or AOO of 

disease (𝐓𝐢) for the  𝒊𝒕𝒉  individual.   The second is the censoring variable (𝜹), where 𝜹𝒊=1 

indicates occurrence of the disease for the  𝒊𝒕𝒉  individual; and 𝜹𝒊= 0 indicates that the disease 

has not occurred at the last observed 𝐭𝐢 for the  𝒊𝒕𝒉  individual. 

 

With censoring, the joint partial likelihood (𝐋𝐩) which is used to estimate the model coefficients 

(𝜷) in given by: 

 

𝑳𝑷(𝜷) = ∏ [
𝒆𝒙𝒑𝜷𝑿

∑ 𝒆𝒙𝒑𝜷ꓫ
𝒋 ∈𝓡( 𝒕𝒊)

]

𝜹𝒊𝒏

𝒊=𝟏
 

 
Equation (1.10) 

 

In this equation, 𝜹𝒊 = 𝟎 , if  𝒕𝒊  is a censoring time for the  𝒊𝒕𝒉  individual , while  𝜹𝒊 = 𝟏  if   𝒕𝒊  is 

an event time (AOO) for the  𝒊𝒕𝒉  individual.  Additionally,  𝒏 denotes the total number of 

observations; 𝒋 denotes the number of individuals who experience occurrence of the disease; 

and  ∈ 𝓡( 𝒕𝒊)  denotes the risk set which represents the set of individuals who are at risk of 

developing the disease at age 𝒕. 
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1.7.3. | Analysis of ordinal outcomes 

 

In the second approach AOO is viewed as an ordinal outcome where the proportional odds 

model [158, 159]  is applied to assess the association of AOO of disease with late and early onset 

disease.  Here the median age of cases is often used to distinguish between late and early onset 

disease.  Unaffected individuals, who were considered as censored observations in the TTE 

analysis, are also included here as a third category. The ordinal outcome is therefore comprised 

of unaffected individuals (controls); late age onset (LAO); and early age onset (EAO).  The 

proportional odds model is defined as: 

𝑳𝒐𝒈𝒊𝒕 [ 𝑷 (𝒀𝒊  ≤   𝒅 | 𝑿) ] = 𝒍𝒐𝒈( 
𝝅𝒅(𝑿)

𝟏 −  𝝅𝒅(𝑿)
 ) = ϫ𝒅  −  𝜷′ 𝑿, 𝒅 = 𝟏 , …  𝑫 − 𝟏 

 

Equation (1.11) 

 

Where 𝛑𝐣(𝐗) = 𝐏 (𝒀𝒊 ≤   𝐝 | 𝐗)   represents the probability of being at or below category  𝐝    

given a predictor variable.  Additionally, 𝒀𝒊 denotes the ordered response variable with possible 

values (1, 2,…d)  for the 𝒊𝒕𝒉  individual;  D number of response categories;  𝐝  ordered response 

value;   and  ϫ𝐝 = (ϫ𝟏, … ϫ𝐃−𝟏 ) are the cut points or intercepts.   The predictor genotype SNP is 

denoted by  𝐗  and   𝜷  is the logit coefficient which corresponds to the predictor.   The 

proportional odds model assumes that the effects due to any predictor variable included in the 

model are the same across the ordered disease status categories (i.e proportional).  As a result, 

a single logit coefficient is estimated for each predictor variable.  Therefore, it is expected that 

the intercept pertaining to each response or ordered disease status category would be different, 

but the slope is the same for all categories. 

 

1.7.4. | Analysis of binary outcomes 

 

The binary outcome measure, which in this instance compares individuals affected and 

unaffected by a disease or trait of interest, are usually applied using the most common approach 

in GWAS, the logistic regression model [160] which is defined as: 

 



 
 

49 
 

  𝐋𝐨𝐠𝐢𝐭 (𝝅𝒊 )  =  𝐥𝐨𝐠 ( 
𝝅𝒊

𝟏 − 𝝅𝒊
) =  ɤ +  𝜽𝑿 

Equation (1.12) 

Where  𝛑𝐢 = 𝐏(𝐘𝐢  = 𝟏)   represents the probability of the occurrence of the disease of interest 

in individual  𝐢  denoted  𝐏(𝐘𝐢  = 𝟏) , while     𝟏 − 𝛑𝐢 = 𝐏(𝐘𝐢  = 𝟎)  corresponds to the probability 

of not developing the disease of interest for individual 𝐢.  In the logistic model, the logit-

transformed probabilities associated with disease outcome is modelled as a linear relationship 

with the predictor variables.  The model predictor which in genetics is most commonly a 

genotype SNP is denoted by  𝐗 while the corresponding coefficient is denoted by 𝛉.  The 

intercept (denoted  ɤ )    represents the overall probability of a single case of disease when all 

predictors are zero, it corresponds to the log of the baseline odds.  The model assumes that the 

probabilities of disease occurrence for an individual  𝐘𝐢 has a Bernoulli distribution, therefore, 

the expected values for   𝐘𝐢 (𝐄(𝐘𝐢))   is equal to  𝛑𝐢. 

 

1.8.  | Thesis objective and structure 
 

The focus of the research in this thesis is to evaluate methods for detecting associations of SNPs 

and GRS with AOO of disease in the presence of population structure due to both substructure 

and admixture.  Chapter 2 focuses on investigating methods to account for admixture in GWAS 

of TTE outcomes within admixed populations.  The power to detect association of AOO of 

disease and SNPs in a TTE framework is investigated via simulations.  Primarily, investigations 

compared the performance of two TTE models (Cox PH and Weibull models).  The simulation 

study evaluates the impact of admixture on statistical power (which assumed an admixed 

population).    

 

Chapter 3, which includes a component of both simulation and real data application, focuses on 

investigating methods based on the polygenic contribution to common diseases in single-

ancestry populations. Investigations involves the construction of GRS which entails different 

versions of weighted and unweighted GRS. These GRS are used to test for association with AOO 

of T2D using two independent GWAS datasets. The first GWAS originates from the 

Northwestern University Gene (NUgene) Banking Project and comprises of 1,115 individual 

samples of which 46% are cases of T2D.  The second GWAS originates from the Wellcome Trust 
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Case Control Consortium (WTCCC) and comprises of 3,810 individual samples with 24% being 

cases of T2D.   A meta-analysis to combine the results of the two datasets and a GRS simulation 

study to further assess the statistical properties of the different statistical approaches is also 

undertaken.  In the GRS simulation study evaluation is concentrated primarily on evaluating the 

impact of censoring on relative power between different statistical approaches. 

 

Chapter 4 focuses again on investigating methods based on polygenic contribution to common 

diseases but in multi-ancestry populations, where different approaches to applying GRS to non-

European ancestry populations is included in the investigations.  Investigations involves the 

construction of GRS to test for an association with AOO of T2D using a UK Biobank dataset.  The 

UK Biobank dataset consisted of just under 400,000 individuals of which approximately 17,000 

are cases of T2D and comprised individuals of European (96%), Asian (2%) and African (2%) 

ancestry. 

 

Chapter 5 brings together the major themes of the thesis and contains the general discussions, 

conclusions and recommendations for further work which are based on key findings of the work 

undertaken in chapters 2, 3, and 4.  
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Chapter 2:  Investigating methods to account for population 

structure in association studies of age -of-onset of disease 

Chapter Outline 
In this chapter, the type I error rate (false positive rate) and power to detect association 

between age-of-onset (AOO) of disease and single nucleotide polymorphisms (SNPs) within an 

admixed population is investigated in a time-to-event (TTE) framework via simulations. The 

simulations compare the performance of the Cox proportional hazards (PH) and general 

Weibull TTE models.  The simulation study evaluates the impact of population admixture on 

statistical power. Incorporated in the simulations is a comparison between the traditional 

association analysis approach, which seeks to establish an association between SNP genotype 

and the AOO, and an “admixture mapping” approach, which is based on local ancestry at a 

specified locus and seeks to identify genomic regions at which ancestry is associated with AOO. 

 

2.1.  | Introduction 
 

From the onset of genome-wide association studies (GWAS), population structure was 

identified as a fundamental challenge affecting the validity of GWAS findings.  As highlighted in 

Chapter 1,  GWAS, if conducted in ancestrally diverse populations, have the potential to result 

in inflated type I (false positive) error rates due to the mechanisms of geographical confounding 

between the disease and SNP, if not accounted for in the association analysis [161, 162].    In a 

push to address population structure, numerous strategies have been explored to both detect 

and account for population structure. However, their performance depends on the type of 

population structure present within the population.  These strategies are discussed in section 

1.5, covering both global (provides global view of admixture) and local (provides locus specific 

ancestry) ancestry inference methods. 

 

As indicated in section 1.4.1, common examples of recently admixed populations are based in 

the Caribbean and the Americas.  African Caribbean populations are estimated to have ~65– 

95% West African, ~4–27% European, and ~0–6% Native American ancestry  [163]. In relation 

to the Unites States of America (USA), research has indicated that African Americans are 

estimated to have on average 73.2% African, 24.0% European, and 0.8% Native American 

ancestry, while Latino Americans are estimated to have on average 18.0% Native American 

ancestry, 65.1% European ancestry, and 6.2% African ancestry [63]. 
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In a standard GWAS, localization of the causal gene or region is facilitated by linkage 

disequilibrium (LD; discussed in section 1.2.1).  However, LD is known to differ among ancestral 

populations [164].  Through the mechanism of LD, genotype SNP microarrays are formulated 

on the basis of representative SNPs, often referred to as a “tag SNP”, which are used as proxies 

for a group of neighbouring SNPs in high LD that are usually found in haplotype blocks (set of 

SNPs found on the same chromosome that tend to be inherited together)  throughout the human 

genome. These genotyping microarrays used in GWAS are designed to cover LD blocks, 

representing up to 80% of all SNPs with minor allele frequencies (MAF) > 5% in the genome of 

European ancestry populations [3].  Therefore, as the overall LD structure of the human genome 

in ancestral populations is different, the power to detect genetic associations across ancestral 

populations is not consistent as genomic coverage is likely to be different.  As indicated in 

Chapter 1 section 1.4.3.2, to increase power in non-European ancestry populations, specific SNP 

array platforms are often applied.  However, within the LD blocks, the pairwise LD between the 

causal SNP and tag SNP usually measured by the squared correlation coefficient (r2) also differs 

among ancestral populations (GWAS genotyping microarray chips designed to capture pairwise 

LD of r2 ≥ 0.8 between SNPs). 

 

In this chapter, simulations were undertaken to assess the impact of population admixture, on 

the false positive error rate and power of association of a SNP with AOO of disease.  The study, 

which considers an admixed population, was evaluated in a TTE framework under an additive 

genetic model.  Within this TTE framework, the relative performance of the Cox PH and general 

Weibull TTE models was the primary focus of evaluation.  The range of scenarios considered 

included those where it was assumed that the causal SNP is directly genotyped as well as 

scenarios where the causal SNP is not directly genotyped, but association is instead tested with 

a correlated tag SNP due to LD, which varies across ancestral populations.  As part of the 

admixed population simulation study framework, admixture mapping (described in Chapter 1) 

where ancestry at a specified marker locus forms the basis of analysis was compared to the 

standard genotype disease association approach [38, 165]. 
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2.2.  |  Methods  
  

2.2.1.  | Description of study of admixed population 

 

The simulation study considered a disease of interest in a sample of individuals ascertained 

from an admixed population originating from two ancestral populations. The impact of a bi-

allelic causal SNP on the AOO of disease is considered where individuals in the study are 

followed from birth for 50 years, with a record made of the age at which a disease occurs.  The 

impact of lost to follow-up because of drop-out were incorporated.  Those that are unaffected 

at the age of 50 are considered as censored observations.  It is assumed that the ancestry of both 

the maternal and paternal chromosomes in the genomic region flanking the causal SNP is 

known or correctly inferred. 

 

A range of scenarios were considered with regards to population, genetic and TTE parameters 

(see Appendix A Figure A.2.1).  The population component described: (i) the probability that 

each chromosome (maternal and paternal chromosome) of a sampled individual in the genomic 

region flanking the causal SNP belongs to one of two ancestral populations; and (ii) the RAF of 

the causal SNP in each ancestral population.  The genetic component described the log HR of 

genotypes at the causal SNP, under an additive model in the number of risk alleles, which is 

assumed to be homogenous across ancestries.    Finally, the TTE component described: (i) the 

TTE model (Cox PH or Weibull); and (ii) the baseline hazard (discussed further in section 2.2.2).   

As censored observations are not expected to contribute significantly to the level of statistical 

power, in all simulations, the baseline hazard rate was selected to achieve approximately 5% 

right-censored observations (i.e. not affected by the disease at the end of the study).  The setting 

for right censoring also allowed censoring due to dropout.   

 

Initially, it was assumed that testing for association of AOO was with the causal SNP.  However, 

in practice, the causal SNP might not be directly tested in the GWAS analysis.  To reflect the 

more common occurrence, in practice [166], testing of a bi-allelic tag SNP in LD with the causal 

SNP was also considered, parameterized in terms of the squared correlation coefficient (r2) 

between them, allowing for the fact that the structure of LD varies between ancestries.  The 

values considered covered the full spectrum ranging from r2 = 0 (SNPs are in complete linkage 

equilibrium) to r2 = 1 (SNPs are in complete linkage disequilibrium).   The specific levels of LD 
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values examined based on r2 included 0, 0.05, 0.15, 0.25, 0.5, 0.75, 0.85, 0.95, and 1.  It was 

assumed that local ancestry at the tag SNP was the same as at the causal SNP, and that allele 

frequencies of the tag SNP and causal SNP were the same within an ancestry, to reduce the space 

of parameters investigated in the study.   The complete list of parameters used in the simulation 

models is outlined in Table 2.1. 
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Table 2. 1 - Description of time-to-event models and admixture simulation components 

Model Weibull model Cox PH model 

(1) Single SNP 

model 
h(t) =λνt ν−1 exp(β

1
*X

1
) h(t) =λ exp(β

1
*X

1
) 

(2) Single SNP 

with ancestry 

as a covariate 
h(t) =λνt ν−1 exp((β

1
*X

1
) + (β

2
*X

2
)) h(t) =λ exp((β

1
*X

1
) + (β

2
*X

2
)) 

Description of parameters in relation to TTE models 

Model parameters: 
λ = Scale parameter 
ν = Shape parameter 

β= Log-hazard ratio due to covariates X 

X = covariate (s) X1 Genotype of causal SNP and X2 Causal SNP locus ancestry in admixed 
individuals  

Coding of model covariate(s): 

Genotype of causal SNP which is coded AA=0; Aa =1; aa=2 

Ancestry of chromosomes of individuals at a specified locus which is based on the number of 
alleles originating from ancestry 1 coded; zero copies of ancestry 1 allele=0; one copy of 
ancestry 1 allele=1; two copy of ancestry 1 alleles=2 

Genotype of Tag SNP which is coded BB=0; Bb =1; bb=2  

Simulation set values in relation to TTE component 

Weibull Model 

λ= νtν-1 = Baseline hazard rate 

ν (value: 2 representing increasing HR 
β1 = Log-hazard ratio due to Genotype of causal SNP (common diseases characterized by 
small to moderate SNP effect sizes) 

Range of values: 0 - 0.0875 (0,0.0125,0.025,0.0375,0.05,0.0625,0.075,0.0875) 

Cox PH Model 

λ = Baseline hazard rate 
ν (value: 1; representing constant HR) 

β1 = Log-hazard ratio due to Genotype of causal SNP (common diseases characterized by 
small to moderate SNP effect sizes) 

Range of values: 0 - 0.175 (0,0.025,0.05,0.075,0.10,0.125,0.15,0.175) 

Simulation set values in relation to population and genetic component 

 Overall admixed population size (1,000) 
 Number of ancestral populations (2) 
Values for ancestry proportion   

ancestry 1 (0.1, 0.3, 0.5); ancestry 2 (0.9, 0.7, 0.5) 
Values for RAF for causal SNP and tag SNP 

ancestry 1 (0.1, 0.2, 0.3); ancestry 2 (0.5, 0.5, 0.5) 
Values for level of LD between causal SNP and tag SNP  

Based on r2 (0, 0.05, 0.15, 0.25, 0.5, 0.75, 0.85, 0.95, 1) 
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2.2.2.  | Simulation models 

 
As part of the simulation study, two TTE models were considered based on the two-parameter 

Weibull distribution: (i) the general Weibull model; and (ii) the Cox PH model.  In the general 

Weibull model, the hazard function at time t is given by Equation 1.8 (described in section 1.7.2).    

Simulations were based on shape parameter (𝜈)  values of 2 representing an increasing hazard 

rate.   The independent variable, a simulated single causal SNP, was included as a genotype 

additive model (coded in the number of risk alleles carried (0, 1 or 2).  Additionally, the values 

for (β), log HR of the risk allele consisted of values in the range 0 - 0.0875 (0, 0.0125, 0.025, 

0.0375, 0.05, 0.0625, 0.075, 0.0875) for AOO simulated under the general Weibull model and 

values in the range of 0 - 0.175 (0, 0.025, 0.05, 0.075, 0.10, 0.125, 0.15, 0.175) for AOO simulated 

under the Cox PH model (Table 2.1).  In the simulations based on the Cox PH model (described 

in section 1.7.2), the hazard function is given by Equation 1.9.  The Cox PH model is a special 

case for the general Weibull model for which the hazard rate is constant over time (i.e. ν=1).  

 

2.2.3.  |  Simulation process 

 

The simulations, which were implemented using the R programming language, version 3.3.4  

[167, 168], were performed in three steps for each replicate of data, given the three components 

of the simulation scenario: population, genetic and TTE. Each replicate of data comprised 1,000 

individuals (description of the three steps are outlined in Figure 2.1).  

 

In the first step of the admixed population simulations the ancestral origin of each of an 

individual’s two chromosomes (maternal and paternal chromosome) at the causal SNP were 

simulated, independently, under a binomial distribution (assuming two ancestral populations), 

given the specified relative frequencies of each ancestry in the population (description of the 

three steps are outlined in Figure 2.1).   

 

In the second step of the admixed population simulations, conditional on the ancestry of each 

of the two chromosomes, their associated allele at the causal SNP was simulated under a 

binomial distribution, given the specified RAF in each ancestral population, and under the 

assumption of Hardy-Weinberg equilibrium (HWE).  The two alleles pertaining to the two 
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chromosomes of individuals in the sample were then merged to form the genotype for the 

causal SNP. 

 

In the third and last step, conditional on the genotype of the individual at the causal SNP, the 

AOO of the disease was simulated under either the general Weibull model or Cox PH model, 

given the specified log HR of the risk allele. 

 
For simulations including a tag SNP, genotypes at the tag SNP were simulated by first calculating 

haplotype frequencies across the causal SNP and tag SNP in each ancestral population for the 

admixed population simulations, according to the r2.  The scope of the scenarios allowed for the 

possibility of different LD between the causal SNP and tag SNP in the different ancestral 

populations but assumed the allele frequency of the two SNPs to be the same to reduce the 

simulation parameter space.   

 

In the context of an admixed population, alleles at the tag SNP were simulated under a binomial 

distribution for each chromosome separately, given the haplotype frequencies in the ancestral 

populations and conditional on the ancestry of the individual at the causal SNP.  HWE (see 

Appendix A Table A.1.1 -A.1.4) was assumed at the tag SNP. 

 

2.2.3.1.  | Simulating genotype data in an admixed population 

 

Generating ancestry of chromosomes:  The admixed population simulations was centred 

around simulating the local ancestry of a causal SNP in admixed individuals assumed to 

originate from two ancestral populations.  The process begun by randomly generating 1,000 

datasets consisting of 1,000 individuals of mixed ancestry.   The ancestry of the maternal and 

paternal chromosomes was simulated independently based on the binomial distribution. The R 

syntax used to generate the ancestry of each chromosome is outlined in Appendix D.1.1 and 

D.1.2.  The key steps involved in generating the ancestry of the chromosomes include; (1) 

specification of the ancestry proportion for each ancestral population; (2) simulation of the 

maternal chromosome ancestry based on the binomial distribution for an admixed population 

founded on  two ancestral populations (facilitated by the R rbinom() function); (3) simulation 

of the paternal chromosome ancestry  based on the binomial distribution for an admixed 

population founded on two ancestral populations; (4) the ancestry of  the maternal and paternal 
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chromosomes columns were merged which gives the number of chromosomes originating from 

each ancestry. 

 

Generating genotype of causal SNP: The allele at the causal SNP for each chromosome was 

simulated based on the RAF specific to its ancestral population.  The R syntax used to generate 

the allele of each chromosome is outlined in Appendix D.2.1.  The main steps entailed; (1) 

specification of the RAFs associated with each ancestral population; (2) simulation of the allele 

associated with the  maternal chromosome based on the binomial distribution given its 

ancestry at the causal SNP (facilitated by the R rbinom() function); (3) simulation of the allele 

associated with the  paternal chromosome based on the binomial distribution given its ancestry 

at the causal SNP; (4) the allele of the maternal and paternal chromosomes columns were 

merged to create the genotype of the causal SNP column. 

 

Generating genotype of tag SNP: For those simulations that considered the situation where 

the causal SNP was not directly genotyped, the genotype of the tag SNP correlated with the 

causal SNP was also simulated.  The alleles of the tag SNP were simulated to reflect a range of 

LD (measured using the r2) levels between zero and one (Appendix D.3.1).  The process 

involved; (1) calculation of the allele frequencies of the tag SNP based on the haplotype 

frequencies derived from causal SNP allele frequencies and specified LD values; (2) simulation 

of the tag SNP maternal chromosome allele in each ancestral population based on the binomial 

distribution (facilitated by the R rbinom() function); and (3) simulation of the tag SNP  paternal 

chromosome allele  in each ancestral population based on the binomial distribution.  (4) the 

alleles of the maternal and paternal chromosomes columns were merged to create the genotype 

of the tag SNP column. 
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Figure 2. 1 - Description of data generating process in an admixed population 
 

Generating ancestry of maternal chromosome associated with a SNP at specific locus 

STEP 2 

Generating AOO of disease 

 STEP 
1 

▪ The simulation process is initiated by generating 1,000 datasets based on a 
specified ancestry proportions for simulating ancestry of maternal chromosome 
associated with a causal SNP in a population of 1,000 individuals.    

Generating allele of maternal chromosome associated with causal SNP 

Generating allele of maternal chromosome associated with tag SNP STEP 2.b 

 

▪ The 1,000 datasets indicating the ancestry of the SNPs chromosomes at a specific 
locus is then used to simulate AOO of disease assuming a specified log HR. 

▪ The allele for maternal chromosome associated with its ancestry population was 
then generated based on population specific RAF.  A column is added to the 1,000 
datasets indicating   the allele of maternal chromosome. 

 

▪ The allele for maternal chromosome of each tag SNP value associated with its 
ancestry population was then generated to reflect a range of LD levels between 
zero (0) complete equilibrium and one (1) complete linkage disequilibrium. 
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STEP 
3 

STEP 
2 

Generating ancestry of paternal chromosome associated with a SNP at specific locus 

▪ The ancestry of paternal chromosome is then simulated by generating 1,000 
datasets based on a specified ancestry proportions for a population of 1,000 
individuals.    

Generating allele of paternal chromosome associated with causal SNP 

▪ The allele for paternal chromosome associated with its ancestry population was 
then generated based on population specific RAF.  A column is added to the 1,000 
datasets indicating   the allele of paternal chromosome.  

Generating allele of paternal chromosome associated with tag SNP 

▪ The allele for paternal chromosome of each tag SNP value associated with its 
ancestry population was then generated to reflect a range of LD levels between 
zero (0) complete equilibrium and one (1) complete linkage disequilibrium. 

 

Ancestry of maternal and paternal chromosomes columns merge to 
create ancestry of genotype SNP column 

Allele of maternal and paternal chromosomes columns merge to 
create genotype of causal SNP column 

Allele of maternal and paternal chromosomes columns merge to 
create genotype of tag SNP column 
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2.2.3.2.  | Simulating AOO of disease conditional on the causal 

SNP genotype 

 

Following the simulation of the ancestry of the maternal and paternal chromosomes at the 

causal SNP and genotype of the causal SNP, the AOO of disease conditional on the causal SNP 

genotype under an additive model was simulated assuming a range of log hazard ratios (HRs) 

(Appendix D.4).  The process entailed: (1) specification of the shape and scale parameter values; 

(2) specification of the log HRs; (3) causal SNP entered into the TTE model as a continuous 

explanatory variable indicative of the genetic additive model (AA genotype coded as 0; Aa=1; 

aa=2); (4) specification of the baseline hazard rate; and (5) specification of the censoring rate 

due to dropout based on the exponential distribution. 

 

The settings used to simulate AOO in the admixed population simulations assuming a 5% right 

censoring rate under the Cox PH model has been outlined in Appendix D.4.1 and under the 

Weibull model Appendix D.4.2.  The R rweibull() function with a shape parameter of one, where 

the HR was assumed constant was used to simulate AOO under the Cox PH model.   The settings 

also allowed censoring due to dropout, which was facilitated by the R rexp() function.  

 

2.2.4.  |  Association analysis  

 

Analysis of each simulated data set was performed using both the Cox PH model and the Weibull 

model, irrespective of the TTE model used for simulation.  The analysis considered the inclusion 

of the causal SNP genotype (or tag SNP genotype, as appropriate) as the independent variable 

in the regression model, with or without adjustment for ancestry.   A description of the models 

fitted are outlined in Table 2.1.  To assess the impact of the admixture mapping approach, 

analysis using ancestry as the single independent variable in the model was also considered.  

Here ancestry represented the ancestry of the causal SNPs locus.  As noted from Chapter 1 

admixture mapping is formulated on the basis of whether an individual at a specified locus has 

0, 1, or 2 copies of a population specific allele [104].  Additionally, the false positive error rate 

and power to detect an association was assessed at a nominal 5% level of significance, given by 

the proportion of replicates for which the association p-value was less than 0.05.  
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The survival package [169]was used to perform both the Cox PH and Weibull TTE analysis via 

the coxph and survreg functions respectively.   An excerpt of the R syntax used to undertake the 

Cox PH analysis is outlined in Appendix E.1, while R syntax used for the Weibull analysis is 

outlined in Appendix E.2. 
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2.3.  | Results 
 

This simulation study consisted of an admixed population consisting of two ancestral (parental) 

populations based on AOO of disease simulated under a Cox PH model or general Weibull model.   

The simulations focused primarily on evaluating the power to detect an association with AOO 

of disease and a causal SNP or tag SNP. The simulations first assessed the impact of the causal 

SNP HR on power, the scope of which incorporated two primary population specific 

characteristics; (1) RAF within each ancestral population; and (2) the ancestry proportion or 

percentage contribution from each ancestral population which comprise the admixed 

individual.  Secondly, the simulations also assessed the impact of the ancestry proportions 

within the admixed populations in greater detail, where different levels of ancestry proportions 

and RAF were assessed.  A more detailed evaluation was also conducted in relation to the impact 

of the relative RAF between ancestral populations within the admixed population, here RAF was 

fixed in one ancestral population while it was varied in the second ancestral population.  

Simulations were also undertaken that considered the impact of the LD between the causal SNP 

and a tested tag SNP, which covered both: (i) the situation where the level of LD between the 

causal SNP and tag SNP was the same in the ancestral populations; and (ii) the situation where 

LD levels between the causal SNP and tag SNP were different among the ancestral populations 

which formed the admixed population. Additionally, the two primary population specific 

characteristics described above, were also incorporated into the assessment (RAF and ancestry 

proportion).  To assess the presence of inflation in the type I error rate, models of both the 

causal SNP and tag SNP adjusted by the locus specific ancestry of the causal SNP were also 

incorporated as part of the assessment. 

 

2.3.1.  | AOO simulated under Cox PH model  

 

Impact of causal SNP HR on power:  Figure 2.2 presents the power to detect association 

of the causal SNP with AOO of disease as a function of log HR, based on analyses with both the 

Cox PH and Weibull models.  The nine plots present power across different parameter settings 

for the RAF in the two ancestral populations and their ancestry proportions within the admixed 

population.   The analysis which illustrates the relative performance of the Cox PH and Weibull 

models indicated that there was no notable difference in power between the two analysis 

methods.  Additionally, there was no indication that inflation in the type I error rate was an 
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issue. (Table 2.2). The mean type I error rate for the causal SNP based on the Cox PH model 

without and with adjustment for ancestry were 5.1% (CI: 4.4% - 5.7%) and 4.9% (CI: 4.4% - 

5.3%) respectively. 

 

Table 2. 2 - Type I error rate associated with causal SNP HR simulated under a Cox PH 
model in an admixed population 

Model log HR Ancestry 
proportion     

(P1=0.1,P2=0.9) 

Ancestry 
proportion     

(P1=0.3,P2=0.7) 

Ancestry 
proportion     

(P1=0.5,P2=0.5) 

RAF (P1=0.1, P2=0.5)         

Causal SNP Cox PH  0 4.6% 5.9% 5.8% 
Causal SNP + ancestry Cox PH  0 4.4% 5.2% 4.9% 
Causal SNP Weibull 0 4.6% 6.0% 6.1% 
Causal SNP + ancestry Weibull 0 4.3% 5.2% 4.9% 
RAF (P1=0.2, P2=0.5)         

Causal SNP Cox PH  0 3.7% 5.2% 6.0% 
Causal SNP + ancestry Cox PH  0 4.3% 4.6% 5.8% 
Causal SNP Weibull 0 3.8% 5.1% 6.2% 
Causal SNP + ancestry Weibull 0 4.6% 4.5% 6.1% 
RAF (P1=0.3, P2=0.5)         

Causal SNP Cox PH  0 4.2% 5.9% 4.3% 
Causal SNP + ancestry Cox PH  0 4.5% 5.8% 4.5% 
Causal SNP Weibull 0 4.5% 5.8% 4.8% 

Causal SNP + ancestry Weibull 0 4.5% 5.7% 4.4% 

Summary         

  MEAN SE Lower 95% CI Upper 95% CI 

Causal SNP Cox PH  5.1% 0.3% 4.4% 5.7% 
Causal SNP + ancestry Cox PH  4.9% 0.2% 4.4% 5.3% 
Causal SNP Weibull 5.2% 0.3% 4.6% 5.9% 
Causal SNP + ancestry Weibull 4.9% 0.2% 4.4% 5.4% 

Descriptions: Log HR: log hazard ratio; SE: standard error; CI: confidence interval 

 

In general, there was a small reduction in power to detect association of the causal SNP with 

AOO with adjustment for ancestry, which indicated that the association of AOO was described 

by the causal SNP genotypes, independently of ancestry.  The small reduction in power was 

most apparent in situations of equal or near equal admixture (i.e. equal ancestral proportions) 

and marked differences in RAF as illustrated in Figure 2.2 Plot 4 and Plot 7. 
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As anticipated, for TTE data simulated under a Cox PH model, analysis with the Cox PH model 

with the causal SNP genotype as the independent variable was more powerful for detecting 

association with AOO of disease than using locus specific ancestry of the causal SNP as the 

independent variable in the model.  In this approach admixed individuals were assumed for 

example, at a specified causal locus to have 0, 1, or 2 copies of an allele which originated from 

ancestral population 1.   
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Figure 2. 2 - Power to detect association of a causal SNP with AOO of disease (simulated under 
a Cox PH model) as a function of log HR assuming admixed population originating from two 
ancestries 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and log HR on the x axis for each TTE 

model analysed. Cox PH model with SNP as the single explanatory variable  (navy blue); Weibull model with SNP as the single 

explanatory variable   (blue); Cox PH model with ancestry as the single explanatory variable   (red); Weibull model with ancestry 

as the single explanatory variable  (dark red); Cox PH model with SNP as explanatory variable and ancestry as covariate 

(burlywood brown); Weibull model with SNP as explanatory variable and ancestry as covariate (light burlywood brown). 

Abbreviations:  BH: baseline hazard; RAF: risk allele frequency; AP: ancestry proportion; C.SNP: Cox PH model with SNP 

variable; C.Ancestry: Cox PH model with ancestry variable; C.SNP +Ancestry: Cox PH model with SNP variable and ancestry 

covariate; W.SNP: Weibull model with SNP variable; W.Ancestry: Weibull model with ancestry variable; W.SNP +Ancestry: 

Weibull model with SNP variable and ancestry covariate. 
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In the models based on locus-specific ancestry the power to detect an association with AOO of 

disease was influenced by the relative difference in RAF between the ancestral populations and 

the relative ancestry proportions within the admixed population.  The more similar the relative 

ancestry proportions in the admixed population power to detect an association was increased.  

This is because greater levels of admixture between the two mixing ancestral populations 

maximizes information pertaining to ancestry and disease risk, therefore power is positively 

impacted. Additionally, the wider the gap in terms of the difference in RAF between the 

ancestries power was also increased. With RAF that are distinguishable between the two 

ancestral populations aids the locus-specific ancestry-based model to detect an association with 

AOO of disease. 

  

Impact of ancestry proportion on power:   Figure 2.3 presents the power to detect 

association of the causal SNP with AOO of disease as a function of ancestry proportion. The four 

plots present power across different parameter settings for the RAF in the two ancestral 

populations.  The simulations assumed a log HR of 0.1 (HR=1.11) for the risk allele at the causal 

SNP.  It was noted that with a combination of equal admixture and a marked difference in RAF 

between ancestries, the difference in power to detect association of the causal SNP with AOO of 

disease between the unadjusted casual SNP model and the causal SNP model adjusted for 

ancestry was most apparent as illustrated in Figure 2.3 Plot 1(RAF: 10% compared to 50%).  

Furthermore, observations from the locus-specific ancestry-based model seemed to indicate 

that maximal power maybe attained when there is a marked difference in RAF between 

ancestries coupled with equal or near equal admixture (i.e. equal ancestral proportions). 

However, with an assumed log HR of 0.1 for the risk allele of the causal SNP, power was 

relatively low when compared to the models based on the causal SNP, with or without 

adjustment for ancestry.  
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Figure 2. 3 - Effect of ancestry proportion on power to detect an association with AOO of disease 
(simulated under a Cox PH model) assuming admixed population originating from two 
ancestries 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and log HR on the x axis for each TTE 

model analysed. Cox PH model with SNP as the single explanatory variable   (navy blue); Weibull model with SNP as the single 

explanatory variable   (blue); Cox PH model with ancestry as the single explanatory variable   (red); Weibull model with ancestry as 

the single explanatory variable  (dark red); Cox PH model with SNP as explanatory variable and ancestry as covariate (burlywood 

brown); Weibull model with SNP as explanatory variable and ancestry as covariate (light burlywood brown). 

Abbreviations:   BH: baseline hazard; RAF: risk allele frequency; AP: ancestry proportion; C.SNP: Cox PH model with SNP 

variable; C.Ancestry: Cox PH model with ancestry variable; C.SNP +Ancestry: Cox PH model with SNP variable and ancestry 

covariate; W.SNP: Weibull model with SNP variable; W.Ancestry: Weibull model with ancestry variable; W.SNP +Ancestry: 

Weibull model with SNP variable and ancestry covariate. 



 
 

68 
 

Impact of RAF on power:  Figure 2.4 presents the power to detect association of the causal 

SNP with AOO of disease as a function of ancestry specific RAF.  The simulations assumed a log 

HR of 0.1 (HR=1.11) for the risk allele at the causal SNP.  Additionally, the ancestry proportions 

were assumed to be 0.5 in both ancestral populations.  The individual nine plots illustrate the 

impact on power to detect association with AOO of disease when the levels of RAF vary between 

the ancestral populations.  In each scenario, RAF was varied in one ancestral population while 

it was held fixed in the other ancestral population.  Evaluation of the role of ancestry specific 

RAF on power to detect association of the causal SNP indicates that maximal power, as expected, 

was attained when the risk allele has frequency of 50% in both ancestries. However, reduction 

in power was most apparent when there are marked differences in ancestry specific RAF as 

illustrated in Figure 2.4 Plot 1 (where RAF is 0.1 in ancestry 2) and Plot 9 (where RAF is 0.9 in 

ancestry 2). 
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Figure 2. 4 - Effect of ancestry RAF on power to detect an association with AOO of disease 
(simulated under a Cox PH model assuming a log HR of 0.1 and an AP of 0.5 in both ancestral 
populations) 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and RAF in ancestry 1 on the x axis for 

each TTE model analysed. Cox PH model with SNP as the single explanatory variable  (navy blue); Weibull model with SNP as the  

single explanatory variable   (blue); Cox PH model with ancestry as the single explanatory variable   (red); Weibull model with 

ancestry as the single explanatory variable   (dark red); Cox PH model with SNP as explanatory variable and ancestry as covariate 

(burlywood brown); Weibull model with SNP as explanatory variable and ancestry as covariate (light burlywood brown).  
Abbreviations:  BH: baseline hazard; RAF: risk allele frequency; AP: ancestry proportion; C.SNP: Cox PH model with SNP 

variable; C.Ancestry: Cox PH model with ancestry variable; C.SNP +Ancestry: Cox PH model with SNP variable and ancestry 

covariate; W.SNP: Weibull model with SNP variable; W.Ancestry: Weibull model with ancestry variable; W.SNP +Ancestry: 

Weibull model with SNP variable and ancestry covariate. 
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Impact of LD with a tag SNP on power:  Illustrated in Figure 2.5 is the power to detect 

association of AOO of disease with a tested tag SNP as a function of LD with the causal SNP 

within an admixed population.  Simulations assumed a log HR of 0.5 (HR=1.65) for the risk allele 

at the causal SNP.  The nine plots present power across different parameter settings for RAF in 

the two ancestral populations and the proportions of the two ancestral population within the 

admixed population.  First, the scenario in which LD between the causal SNP and tag SNP was 

assumed to be the same in both ancestral populations was considered.  Figure 2.5 illustrates the 

power of tag SNP association models, with and without adjustment for ancestry.  The effect of 

confounding due to ancestry was particularly evident when the RAF was substantially different 

in the two ancestral populations (10% compared to 50%) (see Figure 2.5 plot 7 and plot 4) and 

the ancestry proportions were the same or similar within the admixed population.   

Furthermore, the effects of confounding are of particular concern when the ancestry 

proportions are the same within the admixed population.  When LD was zero and the ancestry 

proportion was 50% for both ancestral populations power based on the Cox PH model was 22%, 

11.3% and 8.4% for RAF 0.1,0.5; 0.2,0.5; and 0.3,0.5 respectively.  However, by including 

ancestry as a covariate, in addition to the tag SNP reduces the type I error to the correct levels 

(5% power expected).    

 

After adjustment for the effects of ancestry, the results seem to indicate that for the tag SNP to 

be comparable with the causal SNP, higher levels of LD are required between the causal SNP 

and tag SNP in both ancestral populations, when the ancestry proportions are the same for each 

ancestral population.  For instance, when there was a difference in the relative ancestry 

proportions in the admixed population (10% compared to 90%; 30% compared to 70%), LD of 

at least r2 0.5 was required to achieve the same power for the analysis of the tag SNP to be 

comparable with the causal SNP.   However, when the ancestry proportion was 50% for both 

ancestral populations LD of at least r2 0.75 was required for the tag SNP model to be comparable 

with the causal SNP. 
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Figure 2. 5 - Effect of LD on power to detect an association with AOO of disease assuming levels of 
LD between tag SNP and causal SNP are the same in the ancestral populations and a log HR of 0.5 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and linkage disequilibrium in both ancestries 

on the x axis, for each TTE model analysed. Cox PH model with causal SNP as  the single explanatory variable   (navy blue); Weibull 

model with causal SNP as the single explanatory variable   (blue); Cox PH model with tag SNP as the single explanatory vari able   

(burlywood brown); Weibull model with tag SNP as the single explanatory variable   (light burlywood brown ); Cox PH model with tag 

SNP  as explanatory variable  and  ancestry as covariate (yellow green); Weibull model with tag SNP  as explanatory variable and  

ancestry as covariate (gold). 

Abbreviations:   BH: baseline hazard; RAF: risk allele frequency; AP: Ancestry proportion; C.SNP: Cox PH model with SNP 

variable; C.tagSNP: Cox PH model with tag SNP variable; C.tagSNP +Ancestry: Cox PH model with tag SNP variable and ancestry 

covariate; W.SNP: Weibull model with SNP variable; W.tagSNP: Weibull model with tag SNP variable; W.tagSNP +Ancestry: 

Weibull model with tag SNP variable and ancestry covariate. 
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Next, a more practical setting in which the level of LD between the causal SNP and a tag SNP 

were different within the two ancestral populations were also considered.  For this scenario, 

the power to detect association of AOO of disease with the tag SNP is illustrated in Figure 2.6.  

Here a log HR of 0.5 (HR=1.65) for the risk allele at the causal SNP was assumed and is 

illustrated as a function of LD with the causal SNP, which was assumed to be different within 

the two ancestral populations. In Figure 2.6 the nine plots present power across different 

parameter settings for LD within the ancestral populations.  In each scenario LD was varied in 

one ancestral population while it was held fixed in the other ancestral population.  Additionally, 

the parameter settings in relation to the RAF and the ancestry proportion within the admixed 

population were fixed at (0.1,0.5) and (0.5,0.5) respectively. 

 
Inflated type I error rates due to admixture evident as the unadjusted model with tag SNP 

showed power around 20% even when LD in both populations was zero (Figure 2.6).   However, 

the expected levels were observed when ancestry was included in the model in addition 

to the tag SNP.   

 

These results further illustrate that higher levels of LD are required between the causal SNP and 

tag SNP when the ancestry proportions are the same for each ancestral population.  However, 

it appears that power is not seriously impacted if the LD between the causal SNP and the tag 

SNP is not high in one of the two ancestral populations.  For instance when the contribution 

from both populations was the same (50%) and there was a gap in terms of RAF between the 

populations (0.1 versus 0.5) the adjusted tag SNP model was comparable with the causal SNP 

in terms of power for all levels of LD in the first population when LD in the second was 0.75. 
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Figure 2. 6 - Effect of LD on power to detect an association with AOO of disease assuming levels 
of LD between tag SNP and causal SNP are different among ancestral populations and a log HR 
of 0.5 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and linkage disequilibrium in an cestry 

2 (rP2) on the x axis, for each TTE model analysed. Cox PH model with causal SNP as  the single explanatory variable  (navy blu e); 

Weibull model with causal SNP as the single explanatory variable   (blue); Cox PH model with  tag SNP as the single explanatory 

variable   (burlywood brown); Weibull model with tag SNP as the single explanatory variable  (light burlywood brown); Cox PH 

model with tag SNP as explanatory variable  and ancestry as covariate (yellow green); Weibull model with tag SNP as explanatory 

variable  and ancestry as covariate   (gold). 

Abbreviations:  BH: baseline hazard; RAF: risk allele frequency; AP: Ancestry proportion; rP1: linkage disequilibrium in 
ancestral population 1;  rP2: linkage disequilibrium in ancestral population 2; C.SNP: Cox PH model with SNP variable; 
C.tagSNP: Cox PH model with tag SNP variable; C.tagSNP +Ancestry: Cox PH model with tag SNP variable and ancestry 
covariate; W.SNP: Weibull model with SNP variable; W.tagSNP: Weibull model with tag SNP variable; W.tagSNP +Ancestry: 
Weibull model with tag SNP variable and ancestry covariate. 
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The relative performance between the tag SNP and ancestry models were also compared. 

Findings suggested that ancestry-based models may be useful in situations where LD between 

the causal SNP and the tag SNP is 0.5 or less.   This is particularly so in cases where there is a 

marked difference in terms of RAF between the two ancestral populations and contribution 

from both populations is high (30%) or the same (50%).  For example, in a situation where the 

RAF was markedly different between population (10% compared to 50%) and contribution 

from both populations was high (30%) or the same (50%) modelling with ancestry was more 

powerful than models based on the tag SNP when LD was 0.4 or less (Appendix A Figure A.3.1 

plot 4 and 7).  Similarly, when RAF was again markedly different between the populations and 

contribution from both ancestral populations was 50% the ancestry-based model was more 

powerful than models based on the tag SNP when LD was 0.5 or less.  These findings were not 

seriously affected if LD levels between the causal SNP and the tag SNP varied in only one of the 

ancestral populations (Appendix A Figure A.3.2). 

 

2.3.2.  | AOO simulated under the Weibull model 

 

Impact of causal SNP HR on power: Illustrated in Figure 2.7 are the power to detect 

association of the causal SNP with AOO of disease as a function of log HR simulated under the 

Weibull model assuming an increasing hazard rate with a shape parameter value of 2. The nine 

plots illustrate power across different parameter settings for the RAF in the two ancestral 

populations and the ancestry proportion within the admixed population.  In terms of power, it 

was noted that under these conditions no notable difference in performance between the Cox 

PH and Weibull analysis models were observed.  There was also no indication of a problem with 

inflated type I error rates (Table 2.3). The mean type I error rate for the causal SNP based on 

the Cox PH and Weibull models without adjustment for ancestry were 4.7% (CI: 4.1% - 5.4%) 

and 4.8% (CI: 4.2% - 5.4%) respectively. 
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Table 2. 3 - Type I error rate associated with causal SNP HR simulated under a Weibull 
model in an admixed population 

Model log HR Ancestry 
proportion     

(P1=0.1,P2=0.9) 

Ancestry  
proportion     

(P1=0.3,P2=0.7) 

Ancestry  
proportion     

(P1=0.5,P2=0.5) 

RAF (P1=0.1, P2=0.5)         

Causal SNP Cox PH  0 5.5% 3.6% 4.5% 
Causal SNP + ancestry Cox 
PH  

0 5.6% 4.6% 4.0% 
Causal SNP Weibull 0 5.5% 3.8% 4.6% 
Causal SNP + ancestry 
Weibull 

0 5.7% 4.4% 4.3% 
RAF (P1=0.2, P2=0.5)         

Causal SNP Cox PH  0 3.5% 5.5% 6.0% 
Causal SNP + ancestry Cox 
PH  

0 3.6% 5.9% 5.6% 
Causal SNP Weibull 0 3.7% 5.8% 5.9% 
Causal SNP + ancestry 
Weibull 

0 3.7% 6.0% 5.5% 
RAF (P1=0.3, P2=0.5)         

Causal SNP Cox PH  0 4.5% 5.0% 4.5% 
Causal SNP + ancestry Cox 
PH  

0 4.7% 4.7% 4.5% 
Causal SNP Weibull 0 4.6% 4.8% 4.5% 
Causal SNP + ancestry 
Weibull 

0 5.0% 4.7% 4.6% 

Summary         

  MEAN SE Lower 95% CI Upper 95% CI 

Causal SNP Cox PH  4.7% 0.3% 4.1% 5.4% 
Causal SNP + ancestry Cox 
PH  4.8% 0.3% 4.2% 5.4% 
Causal SNP Weibull 4.8% 0.3% 4.2% 5.4% 
Causal SNP + ancestry 
Weibull 4.9% 0.2% 4.3% 5.4% 

Descriptions: Log HR: log hazard ratio; SE: standard error; CI: confidence interval 

 

A small reduction in power to detect association of the causal SNP with AOO with adjustment 

for ancestry was observed over the range of scenarios considered. This is an indication that the 

association of AOO is described by the causal SNP genotypes, independently of ancestry.  As 

with AOO simulated under Cox PH model the small reduction in power was most apparent in 

situations of equal or near equal admixture and marked differences in RAF as illustrated in 

Figure 2.7 Plot 4 and Plot 7. 
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Figure 2. 7 - Power to detect association of a causal SNP with AOO of disease (simulated under 
a Weibull model) as a function of log HR assuming a shape parameter of 2 admixed population 
originating from two ancestries 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and log HR on the x axis for each TTE 

model analysed. Cox PH model with SNP as the single explanatory variable (navy blue); Weibull model with SNP as the single 

explanatory variable  (blue); Cox PH model with ancestry as the single explanatory variable   (red); Weibull model with ancestry 

as the single explanatory variable   (dark red); Cox PH model with SNP as explanatory variable and ancestry as covariate 

(burlywood brown); Weibull model with SNP as explanatory variable and ancestry as covariate (light burlywood brown).  

Abbreviations:  BH: baseline hazard; RAF: risk allele frequency; AP: ancestry proportion; C.SNP: Cox PH model with SNP 

variable; C.Ancestry: Cox PH model with ancestry variable; C.SNP +Ancestry: Cox PH model with SNP variable and 

ancestry covariate; W.SNP: Weibull model with SNP variable; W.Ancestry: Weibull model with ancestry variable; W.SNP 

+Ancestry: Weibull model with SNP variable and ancestry covariate. 



 
 

77 
 

 

2.4.  | Discussion 
 

GWAS has been established as the standard approach for genetic association analysis of 

common complex diseases in humans.  However, the threat of issues relating to the presence of 

population structure or admixture adds to the complexities of applying GWAS methodology. 

There are existing methods that can mitigate the potential impact of population structure, 

however, there remains many concerns particularly regarding the inflation of the false positive 

error rate in the presence of population structure.  Simulation studies were undertaken in an 

effort to identify the most robust and powerful approaches for conducting AOO of disease GWAS 

in ancestrally diverse populations within a TTE framework. 

 

Results from the study in relation to simulations under a Cox PH model highlighted that power 

under the general Weibull model is largely consistent with that of the Cox PH model, despite the 

additional degree of freedom required for the shape parameter.   Two studies [170, 171] 

comparing the relative performance of the Cox PH and the Weibull regression model have 

indicated that there are situations where the Cox PH and the Weibull model give similar results.   

In these studies, data was simulated from a parametric Weibull model with an assumed shape 

parameter greater than 1. Both simulation studies demonstrated similar performance for 

testing association with a predictor under a Weibull model with unknown shape parameter and 

the Cox PH model. It was also noted that the shape parameter of the Weibull model does not 

impact the performance of the Cox PH model. 

 

Findings from the simulation study presented here also highlighted issues relating to 

confounding due to ancestry.   Inflated type I error rates in testing for association of AOO of the 

disease with a tag SNP because of confounding with ancestry was observed.  The effects of 

confounding due to ancestry are most apparent when the RAF is markedly different between 

the ancestries and the proportions of the ancestries are the same (equal admixture). 

 

To address confounding due to ancestry, ancestry was included as a covariate in the regression 

models.  This removed the inflation in type I error rates, however, in practice ancestry might 

not be known, or difficult to define in the presence of population admixture [172].  However, in 

these circumstances, multivariate analyses of GWAS data can be used to infer “axes of genetic 
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variation” that can be included as covariates to account for confounding due to population 

structure [124].  In the case of admixed populations, local ancestry inference methods based on 

genotype data can be applied where the focus is on locus-specific ancestry [108, 173, 174]. 

  

Variation in the level of LD between ancestries has an impact on the power of a tag SNP.  The 

presence of strong or high LD levels between a causal SNP and tag SNP among all ancestral 

populations positively impact the power of the tag SNP to detect an association with AOO of 

disease.  The power of the tag SNP to detect an association with AOO disease may still be 

possible in the presence of low levels of LD within ancestral populations provided that high LD 

is present in at least one of the ancestral populations.  However, the extent of the variation in 

power is influenced by the relative ancestral proportions within the population. Equal or near 

equal admixture positively influences power. 

 

The main limiting factors pertaining to these simulations are that scenarios were limited 

primarily to two ancestral populations where an admixed population were considered 

independently.  In reality, populations are more likely to be hierarchical, consisting of both 

discrete ancestry groups and admixed individuals.  It was also assumed that the RAF of both the 

causal SNP and tag SNP was the same but in reality, this is not always the case. 

 
In conclusion, the results of these simulations provide a resource for the development or 

improvement to guidelines for implementing the most powerful approaches, within admixed 

populations, to detect association with AOO of disease in a GWAS TTE framework, given a 

combination of population and genetic characteristics.  These results highlight the importance 

of accounting for ancestry when assessing the association of AOO of disease with a tag SNP.  Also 

provided is a more definitive understanding of the likely impact on the power of a tag SNP 

within admixed populations originating from ancestral populations with varying levels of LD. 
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Chapter 3:  Investigating the utility of genetic risk scores to 

detect an association with age-of -onset of disease in 

European ancestry populations 

Chapter Outline 
This chapter focuses on investigating the utility of genetic risk scores (GRS) to detect an 

association with age-of-onset (AOO) of disease in ancestrally homogenous populations, which 

includes a component of both simulation and real data application.  The first element entails the 

application of GRS to investigate the association of AOO of type 2 diabetes (T2D) in two 

independent genome-wide association studies (GWAS) originating from the Northwestern 

University Gene (NUgene) Banking Project and the Wellcome Trust Case Control Consortium 

(WTCCC).  As part of the assessment the results of these two independent GWAS was also 

combined in a summary statistics meta-analysis.  Additionally, a GRS AOO of disease simulation 

study to further assess the relative performance of the Cox proportional hazards (PH), 

proportional odds and binary logistic models was also undertaken.  In the simulations, analyses 

concentrated primarily on evaluating the impact of censoring on the relative power between 

the three models.   Data analysis in the time-to-event (TTE) framework consisting of both cases 

and controls, AOO is assessed at the end of the study period, where controls are censored at 

their current age.  However, in the proportional odds model framework, AOO is viewed as an 

ordinal outcome which distinguishes between controls, late-age-onset (LAO) and early-age-

onset (EAO), while within the binary logistic regression framework contrast is made between 

cases (irrespective of AOO) and controls.    

 

3.1.  | Introduction 
 

GWAS have facilitated numerous discoveries in common disease biomedical research including 

diseases like cardiovascular diseases, psychiatric diseases, multiple sclerosis, various types of 

cancer and diabetes. However, the magnitude of common disease genetic effects has been 

characterized on many occasions as small to moderate with odds ratio (OR) ranging between 

1.1 to 1.5 [175-179]  and generally only explains a small proportion of the variance in disease 

risk.  Heritability as described in section 1.6.1 is an indication as to the level of genetic 

contribution attributable to disease occurrence. Questions regarding unexplained heritability 

led to the application of GRS as it presented an avenue to simultaneously assess the overall 
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genomic risk of an individual associated with a disease or trait.  It was further noted (section 

1.6.3) that GRS have the potential to identify individuals at risk of early age-onset disease 

because they are expected to have a greater genetic burden.  This is because the expectation is 

that individuals who are affected by the disease earlier in life will not have had as much 

exposure to lifestyle risk factors, and therefore would be expected to have greater genetic 

burden of disease risk variants than those that develop the disease later in life. To this end, the 

utility of GRS to detect an association with AOO of T2D, as an exemplar, in ancestrally 

homogenous populations is explored. 

 

Further assessment of the relative performance of the Cox PH, proportional odds and binary 

logistic models was also undertaken via a GRS AOO of disease simulation study.  The focus of 

the simulation study was geared primarily towards evaluation of the impact of censoring on 

relative power between different statistical approaches.  As part of the simulation study, 

evaluation of key determinants of statistical power associated with the underlying genetic 

architecture of common diseases were considered.  This encompassed the risk allele frequency 

(RAF), number of susceptibility genetic variants and the magnitude of SNP or GRS effect.  

 

3.1.1.  | Current burden of T2D 
 

Diabetes mellitus (DM) was a recognized medical condition as far back as 400 (before Christ) 

BC [180].   Within the last three decades, DM has emerged to become the fastest growing disease 

epidemic globally, and a major health burden to health systems at every level.  According to the 

world health organization (WHO) most recent estimates [181], globally diabetes was the 

seventh leading cause of death in 2016.  In 2017, the International Diabetes Federation (IDF) 

estimated that 4 million deaths globally were attributable to diabetes [182]. 

 

Despite the remarkable progress in some aspects of diabetes care, overall, the absolute burden 

of the disease is rising.  Currently T2D is estimated to affect 10% of the world population, 

accounting for 90% of all diabetes cases [183].  IDF estimated that 425 million adults aged 20 - 

79 years had diabetes in 2017, however, in 1985 this figure stood at around 30 million.  This 

dramatic increase in cases has been attributed in part to modifiable factors relating to lifestyle.  

However, both genetics and environmental factors or known to contribute to the development 

of diabetes within human populations.  The main lifestyle factors attributed to the onset of 

diabetes include being overweight or obese, physical inactivity, and unhealthy diets.   The T2D 



 
 

81 
 

epidemic to a large extent has been ascribed to the worldwide increase in obesity during the 

last 30 years, for instance, more than 60% of individuals older than 15 in the UK and US are 

overweight (BMI > 25) [184]. 

 

3.1.2.  | AOO of T2D 
 

From a diabetes perspective, the twentieth century marked a period of remarkable 

advancement in terms of understanding the mechanisms leading to hyperglycaemia which led 

to the formal classification of type I and type 2 diabetes in 1979  [185].  Currently, diabetes is 

defined as a group of metabolic diseases characterized by hyperglycemia resulting from defects 

in insulin secretion, insulin action, or both (T2D formerly called non-insulin dependent or adult-

onset) [184].   More recently, however, it has been argued that diabetes is not a single disease, 

but a composite of many diseases with a common feature of hyperglycaemia [186].  Historically, 

AOO and disease severity were among the distinguishing characteristics used to classify the 

subtypes of diabetes.  Furthermore, the precise degree of hyperglycaemia defining diabetes has 

evolved over the years. In a clinical setting, the age at first diagnosis of T2D is used as a proxy 

for AOO, however, given the physiological nature of T2D the true AOO in many instances is 

largely unknown.   AOO of T2D may be difficult to discern in some circumstances given the slow 

asymptomatic nature of the disease, as a result, the pre-detection period may extend over many 

years [184]. This limitation is further complicated by diagnosis criteria issues [185] stemming 

from lack of clear clinical guidelines pertaining to the classification and diagnosis of diabetes.  

Consequently, many cases of T2D remain undiagnosed and are only diagnosed at very advanced 

stages of the disease course. 

 

3.1.3.  | Genetics of T2D 
 

Genetically, T2D is characterized as a heterogenous disease.  Findings from twin and family 

studies have reported heritability estimates as low as 25%  [187],  while others have reported 

estimates as high as 80%  [184, 188].  It has been noted that this wide range in heritability of 

T2D is due in part to the AOO of T2D, as studies based on cases with a lower AOO resulted in 

higher estimates of heritability for T2D [189-191].  Conventionally T2D was considered to be a 

disease that primarily affected adults, and in particular later in life, hence the initial 

classification of adult-onset diabetes.  Today, however T2D is occurring in children and within 

the younger adult population, likely due to increasing rates of obesity. 
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GWAS have proven to be the most important contributor in relation to the identification of the 

genetic determinants of T2D [192].  The first T2D GWAS in 2007 identified 2 novel loci 

(SLC30A8 and HHEX) and confirmed the TCF7L2 locus [193] originally identified by linkage 

analysis or candidate gene association studies (PPARG and KCNJ11 previously confirmed). 

Around 2011 this TCF7L2 locus was known to have the largest effect on T2D risk (OR ~1.4), as 

most identified loci have small effect sizes (OR~1.1-1.3) [194].  In 2012 the number of identified 

T2D loci stood at 50 [195], by 2015 this number had risen to more than 120.   

 

However, only a minority of observed T2D heritability is explained based on variation at known 

loci.  The more than 120 loci only explain 10% of T2D heritability (based on data prior to 

December 2017) [139].  Previous work on the application of GRS to T2D indicates that GRS 

could potentially represent an improvement over existing risk assessment tools used in the 

diagnosis of T2D as they have demonstrated good predictive ability [196].  A 2018 study 

comparing the lowest T2D quintile to the highest quintile reported OR of 2.34 (95% CI: 1.59 – 

3.46) [197]. 

 

3.1.4.  | Association analysis of T2D 
 

The analysis of common disease GWAS, which consists of data originating for the case-control 

or cohort study design, is usually undertaken in a logistic regression framework.  This is often 

the case even in situations where the outcome though dichotomous has a time related event 

such as AOO of the disease.  As highlighted in Chapter 1, the tendency to apply logistic regression 

was influenced by the fact that the model is considered less computationally expensive than 

modelling TTE analysis.   The lack of inclusion of TTE models in GWAS software; and the need 

to undertake meta-analysis, which benefits from having data from both case-control and cohort 

studies analysed in the same way, are also contributing factors  [198]. 

 

From the perspective of TTE outcomes, the logistic model, which assumes a binary outcome, in 

the context of disease genomics affected or unaffected by disease, is often considered to be less 

powerful then the TTE analytical approach particularly for diseases that occur later in life  

[148, 149, 199, 200].  However, there remains some scepticism regarding the relative power 

between the logistic and Cox PH model as previous investigations comparing these two models 

suggests that the Cox PH model has more statistical power to detect risk factors than logistic 



 
 

83 
 

models  [198, 201, 202].   However, there are also some studies that favour the logistic over the 

Cox PH model in situations of short follow-up periods for cohorts and low incidence of event 

occurrences (high censoring rates) [203, 204].  However, these differences in study findings 

have been attributed to the rate of censoring [150].  Within a TTE framework an individual who 

remain unaffected by T2D at the end of the study period is considered a control and is therefore 

censored at their current age. 

 

3.2.  | Methods for construction of T2D GRS 
 

This section provides details pertaining to the “base” GWAS SNPs (DIAbetes Genetics 

Replication And Meta-analysis (DIAGRAM) study: published T2D GWAS used as inputs for the 

construction of the GRS) used in the construction of the GRS along with their associated 

summary statistics.  Information regarding the two “target” GWAS (NUgene and WTCCC) 

genotyped samples used to test the performance of the GRS is also described.    The methods 

applied to combine the results of the two datasets in a meta-analysis is also described in section 

3.2.4. 

 

3.2.1.  | Identification of disease-associated SNPs 
 

A European ancestry meta-analysis of T2D GWAS published at the end of 2017 formed the basis 

of the GRS constructed to test the association of GRS with AOO of T2D. This study, from the 

DIAGRAM Consortium [205] combined GWAS from 18 European ancestry studies totalling 

26,676 T2D cases and 132,532 controls.  All studies included in the meta-analysis were imputed 

against the March 2012 multi-ethnic 1000 Genomes Project (1000G) reference panel.  To 

improve coverage and statistical power, several reference panels have been developed.  The 

most commonly applied reference panels for the imputation of genotyped microarray data 

includes the 1000G reference panel first introduced in 2010 and more recently the Haplotype 

Reference Consortium (HRC) in 2016 [87].  For European ancestry populations the HRC is 

currently the most optimum reference panel for genotype imputation [206]. The 2017 

DIAGRAM study reported a total of 128 distinct signals at 113 loci that were independently 

associated with T2D with OR ranging from 1.03 to 2.02.  These loci incorporated lead SNPs that 

were identified at genome-wide significance in this 2017 DIAGRAM study or in earlier T2D 

GWAS [207-211].  However, it was noted that some previously reported SNPs did not attain 
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genome-wide significance in this 2017 DIAGRAM study but met a less stringent nominal 

threshold. Therefore, the GRS was constructed using two different subsets of SNPs: 36 

independent SNPs attaining genome-wide significance (p<5x10-8) in the 2017 DIAGRAM study; 

and 90 independent SNPs attaining genome-wide significance in the 2017 DIAGARM study or 

other previously reported independent SNPs attaining nominal significance (p<0.05) in the 

2017 DIAGRAM study.  

 

Using the summary statistics from this DIAGRAM study, it was possible to extract a list 

containing the SNPs know to be associated with T2D along with their corresponding p-value 

and effect size as measured by their OR values.   In addition to SNP identifier details, other 

associated information collected included, details pertaining to the effect allele (EA), alternative 

allele (NEA) and effect allele frequency (EAF) or risk allele frequency (RAF) (Appendix B Table 

B.1.1).   Several SNPs (9 SNPs) previously identified in non-European populations failed to 

attain nominal significance in this European ancestry DIAGRAM meta-analysis and therefore 

were not included as part of the GRS.  In the event where multiple SNPs were reported for a 

locus, only the lead SNP, i.e the SNP with the strongest association signal (smallest p-value) was 

kept in the GRS list of SNPs as the GRS assumes SNPs to be independent.  After removing non-

lead SNPs, removal of the X chromosome SNPs (removed to eliminate confounding by sex); 

removal of SNPs located in the extended strong LD region; at the nominal significances  p-value 

threshold, there were a total of 90 SNPs available for the construction of the GRS (Appendix B 

Table B.1.1).  Based on the genome-wide threshold criteria (p-value < 5 × 10-8 in the meta-

analysis) a total of 38 SNPs was available. 

 

Two European ancestry genotyped GWAS datasets originating from the NUgene Project and 

WTCCC were used to evaluate the utility of GRS in detecting an association with AOO of T2D.  

The NUgene Banking Project sponsored by the Centre for Genetic Medicine at Northwestern 

University situated in Chicago, United States of America (USA) is a genomic biobank.  Data for 

both cases and controls are routinely collected from patients over the age of 18 at Northwestern 

Medicine – affiliated hospitals and clinics for many common diseases including T2D.  The data 

collected include DNA samples, and associated health information, which are usually sourced 

from patient health records.  The health information provided for this study included T2D 

status, sex, enrolment age, year of birth, decade of birth, BMI and in relation to individuals with 

T2D, AOO of the disease [212].   In the second dataset, data were obtained from a case control 
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study carried out by the WTCCC.  The WTCCC was established in 2005 and is an organization 

that comprise several research groups across the United Kingdom (UK).   The consortium has 

gathered genotype data relating to seven common diseases which includes T2D.  For each 

disease 2,000 samples are collected with the study design incorporating controls ascertained 

from the 1958 Birth Cohort and blood donors sourced from three national UK blood services. 

Provided health information included T2D status, sex, enrolment age in relation to controls, and 

in relation to individuals with T2D, AOO of T2D.  A general overview of the characteristics of the 

two datasets are given in Table 3.3. 

 

For the NUgene study, cases were ascertained on the bases of already having a diagnosis of T2D, 

evidenced by an International Classification of Diseases (ICD) 9 code for T2D, while previously 

unknown cases were ascertained on the basis of laboratory evidence of hyperglycemia and 

being prescribed T2D medication.  Among previously known T2D cases, exclusions were made 

on the basis of have an ICD 9 code for ketoacidosis; being treated only with insulin and having 

never been on a T2D medication [212].  Cases in the WTCCC study were ascertained on the basis 

of current prescribed medication used to treat T2D and as defined by the World Health 

Organization (WHO), historical or contemporary laboratory evidence of hyperglycemia, in 

relation to individuals treated with diet alone; while other forms of diabetes were excluded on 

the basis of a standard clinical criteria based on personal and family history [213]. 

 

After the main quality control checks and genotype imputation were completed the NUgene and 

WTCCC, data were made available by Professor Andrew Morris (Supervisor – University of 

Liverpool). The genotype samples from NUgene study were genotyped using Illumina-

Human660W-Quad_v1_A and Illumina-Human1M-Duov3_B microarray [212] and imputed 

against the Haplotype Reference Consortium (HRC) reference panel ,release 1.1 [214].  For the 

WTCCC study, genotyping was undertaken with Affymetrix-Affymetrix 500K chi [215] and 

imputed against the HRC reference panel release 1.1.  Using the Michigan Imputation Server 

[216] the genotyped data were first phased using SHAPEIT, and then the pre-phased data were 

imputed using minimac3. To account for ancestry, principal components derived from a genetic 

relationship matrix were adjusted for in each dataset. 
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3.2.2.  | Development and construction of GRS 
 

To facilitate the construction of the GRS for individuals in the target GWAS, the process started 

with the extraction of SNPs in the target datasets that matched the selected SNPs from the base 

GWAS. As a result of this process 8 SNPs were excluded from the calculation of GRS because 

they were not available in the target datasets (Appendix B Table B.1.2).  An additional SNP was 

removed from both datasets because of having an info score less than 0.4 in the NUgene dataset 

(Appendix B Table B.1.3).  In the next step the effect allele (EA) in the target GWAS was then 

aligned with the base GWAS by flipping the EA in target GWAS to be the same as in the base 

GWAS in instances where there was a difference.  Subsequently, the dosage associated with each 

EA were adjusted using the formula (2 – current dosage value) if the EA in the target GWAS 

were flipped.  The formula used to calculate the original dosage values is as described in 

Equation 3.1.     

 

 

𝑮𝒊𝒋 = [(𝐏_𝟎𝐢𝐣 × 𝟎) + (𝐏_𝟏𝐢𝐣 × 𝟏) + (𝐏_𝟐𝐢𝐣 × 𝟐)] 

Equation (3.1) 

 

Where 𝐺𝑖𝑗 is the genotype dosage of the ith individual at the jth SNP; 𝑷_𝟎𝒊𝒋 refers to the 

probability of homozygous genotype associated with the NEA; 𝑷_𝟏𝒊𝒋 refers to the probability of 

heterozygous genotype; 𝑷_𝟐𝒊𝒋  refers to the probability of homozygous genotype associated 

with the EA  and 0,1 or 2 refers to the number of EA present. 

 

To calculate the GRS for each individual in the sample the formula used is as describe in 

Equation 1.3 in section 1.6.3.1 for the weighted GRS and Equation 1.4 also described in section 

1.6.3.1 for the unweighted GRS.  The corresponding R code used to calculate the GRS is outlined 

in Appendix G.   Additionally, to evaluate the performance of GRS different versions of weighted 

and unweighted GRS determined at different p-value thresholds were developed.  Four different 

versions of GRS were constructed based on: (1) SNPs determined at genome-wide significances 

p-value threshold of 5 × 10-8 with  base GWAS  effect size weighting; (2) SNPs determined at 

genome-wide significance p-value without weighting; (3) SNPs determined at nominal 
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significances  p-value threshold of 0.05  with  base GWAS  effect size weighting; and (4) SNPs 

determined at nominal significances  without weighting. 

 

3.2.3.  | Statistical analysis of individual T2D GWAS datasets 
 

The main statistical methods and statistical software tools applied in the data analysis of the 

individual T2D genotyped GWAS datasets is described in this section.   The procedures 

undertaken in the analysis of the datasets based on three different outcome measures applied 

to the Cox PH, proportional odds, and logistic model is described.  The pseudo R2 measure 

applied to assess the relative performance of the various statistical models within each 

statistical approach is also described. 

 

3.2.3.1.  | Statistical methods to individual T2D GWAS datasets 

 

The T2D status of individuals in the samples which primarily distinguished between individuals 

affected by T2D (cases) and individuals who remained unaffected by T2D at the end of the study 

period (controls) were assessed using three different outcome measures.  The first measure 

considered the AOO of T2D, where AOO was modelled in a TTE framework by means of a Cox 

PH model.  In the TTE framework, which considered both cases and controls, controls were 

censored at their current age at the end of the study period.  As part of the modelling process, 

the hazard ratio (HR) of the GRS associated with the AOO of T2D was estimated based on 

Equation 1.9 described in section 1.7.2.   In Equation 1.9, the baseline hazard rate is given by λ 

(i.e. the hazard rate when all covariates are zero), which is scaled by the function of predictors 

or covariates, X, and corresponding regression coefficients, β, via exp(βX).  In this context, the 

predictor of interest was the GRS, however, to address confounding due to population structure 

principal component analysis (PCA) was applied to the genotyped data to form a relatedness 

matrix where eigen decomposition was performed to generate a smaller set of variables 

through a few linear combinations of the original variables.  This smaller set of variables termed 

“principal components (PCs)” quantifies the patterns of population structure within the sample.  

These PC were thus included as covariates in the model.  Other covariates included in the model 

were sex, and for the NUgene sample, BMI.  The HR of the GRS for AOO of T2D was estimated 

using the function (coxph) of the R package (survival). 
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The second outcome measure entailed three ordered response categories or outcomes where 

an AOO of 55 was used to distinguish between early AOO T2D (age <=55) and late AOO T2D 

cases; while controls referred to individuals unaffected by T2D at the end of the study period.   

The proportional odds model was used to model the association of GRS and the ordered T2D 

status.  The cumulative OR of the GRS for T2D were estimated using the function (polr) of the R 

package (MASS) based on Equation 1.11 in section 1.7.3.  While the T2D GRS was included in 

the model as the predictor variable additional covariates were included to address potential 

confounding. These confounding variables are as described above in relation to the Cox PH 

model.   

 

The third outcome measure considered the binary response categories cases versus controls 

where the association of GRS and T2D status was modelled via the binary logistic model.  The 

OR of the GRS for T2D was estimated using the function (glm) of the R package (stats) based on 

Equation 1.12 in section 1.7.4.  Confounding variables included in the model to address 

confounding is as outlined above in relation to the Cox PH model.  Furthermore, age was not 

included as a covariate (see also Appendix H.1 – H.3). 

 

Furthermore, due to the limited data available regarding age, age at enrolment was not included 

as a covariate in the logistic analysis in both datasets. The NUgene data was ascertained via 

routine electronic medical records with no fixed entry or end points which is likely to induced 

bias.  Stratification by birth cohorts have been recommended as a solution to avoid bias due to 

age [217].   In relation to the WTCCC dataset age at enrolment was only available for controls, 

while AOO were available for cases as data was collected via case-control study design. 

 

3.2.3.2.  | Evaluating performance of T2D GRS models 

 

To quantify the amount of variation attributable to the GRS the Nagelkerke pseudo R2 measure 

(described in Chapter 1) was applied for all three analytical approaches.  This pseudo R2 

measure is commonly applied in genetic research due to its maximum value of 1 property which 

is lacking in most pseudo R2 measures. To determine the proportion of variance in AOO 

explained by the T2D GRS after adjustment for confounding variables, the R2 values between 

nested models were compared.  The proportion of variance explained represents the difference 

in R2 after adjustment for confounding variables where the full model (model with confounding 
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variables and GRS) was compared to a reduced model (model with confounding variables only, 

GRS was excluded in this model).  These confounding variables included sex, BMI (NUgene) and 

PCs described in section 3.2.3.2.  The difference in R2 between these two models (full – reduced) 

was used to determine the R2 that is likely to be due to the GRS (Table 3.1).  

  

 Table 3. 1 – Description of models used in the analysis of T2D GRS 

Model Terms included in model 

(1) GRS reduced models Covariate(s): 
     (X s) - Sex:  male=0; female =1 

(X d) - BMI: continuous covariate measured in kg/m2 
(Xc1) - Xc3) - PC1 - PC3: principal components used to account for 
population structure) 

(2) adjusted (full) model Variable of interest: 
(X g) - GRSwN: weighted nominal significant GRS 

Covariate(s): 
(X s) - Sex:  male=0; female =1 

(X d) - BMI: continuous covariate measured in kg/m2 
(Xc1) - Xc3) - PC1 - PC3: principal components used to account for 
population structure)  
 

Description 
Versions of GRS 

 (X g1) - GRSwN: weighted nominal significant GRS  

(X g2) - GRSwG: weighted genome-wide significant GRS  

(X g3) - GRSuN: unweighted nominal significant GRS  

     (X g4) - GRSuG: unweighted genome-wide significant GRS 
 

 

 

As indicated in section 3.1.1 obesity  has been recognised as a potent independent  and 

modififable risk factor for T2D. Obesity is estimated to account for 80-85% of the risk of 

developing T2D  [218, 219].    Additionally, the relationship between obesity and T2D may differ 

according to external factors including age and sex. In relation to obesity, BMI is the marker 

most commonly applied to identify the risk of T2D [220].  Therefore, in the NUgene sample the 

extent to which BMI explains the variance of AOO of T2D was also considered.    In these models 

the full model consisting of the confounding variables which included the GRS and BMI was 

compared to a reduced model consisting of the confounding variables which included the GRS, 

while BMI was excluded in these models (Table 3.2). 
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Table 3. 2 – Description of models used in the analysis of T2D GRS and BMI 

Model Terms included in model 

(1) BMI reduced models Covariate(s): 
Model 1: 

(X s) - Sex:  male=0; female =1 
(Xc1) - Xc3) - PC1 - PC3: principal components used to account for 
population structure)  
(X g) - GRSwN: weighted nominal significant GRS 
 

(2) adjusted (full) model Model 1: 
Variable of interest: 

 (X d) - BMI: continuous covariate measured in kg/m2 
Covariate(s): 

(X s) - Sex:  male=0; female =1 
 (Xc1) - Xc3) - PC1 - PC3: principal components used to account for 
population structure)  
(X g) - GRSwN: weighted nominal significant GRS 
 
 

Description 
Versions of GRS 

 (X g1) - GRSwN: weighted nominal significant GRS  

(X g2) - GRSwG: weighted genome-wide significant GRS  

(X g3) - GRSuN: unweighted nominal significant GRS  

     (X g4) - GRSuG: unweighted genome-wide significant GRS 
 
 

 

3.2.4.  | Statistical analysis of combined T2D GWAS datasets 
 

The main statistical methods and statistical software tools applied to combine the results of the 

two datasets after independent analysis is outlined in this section.  The procedures carried out 

in the summary statistics meta-analysis of the two T2D GWAS datasets NUgene and WTCCC 

which entailed two primary approaches; procedures for combining effect sizes, which in this 

instance are the OR and cumulative OR originating from the logistic and proportional odds 

analysis respectively; and (due to issues relating to the age timescale applied in individual 

studies) procedures for combing p-values originating from the Cox PH analysis are outlined. 

Methods applied to assess consistency and heterogeneity of model estimates are also outlined. 
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3.2.4.1.  | Data extracted for inclusion in meta-analysis 

 

The general characteristics of the NUgene and WTCCC T2D GWAS datasets have be outlined in 

Table 3.3.  In addition to the OR outputted from the logistic model, cumulative OR outputted 

from the proportional odds model, and the HRs outputted from the Cox PH model, their 

corresponding standard error (SE) and p-value were also extracted for inclusion in the meta-

analysis.   

 

3.2.4.2.  | Statistical methods applied in meta-analysis 

 

The fixed effect model was applied to facilitate the combining of the log OR where inverse-

variance weighting was applied.  The fixed effect model is formed on the premise that there is 

one true effect size to be estimated across all studies [221].  As a result, the pooled estimate is 

considered to be the true common effect size, which here is denoted  𝜷𝒑𝒐𝒐𝒍𝒆𝒅 and is calculated 

using Equation 3.2 where 𝒘𝒌 refers to weights assigned to each dataset and  𝜷𝒌 estimate based 

on individual datasets.  (𝒌  refers to individual datasets and 𝑲   overall number of datasets 

included in the meta-analysis). 

 

𝛃𝐩𝐨𝐨𝐥𝐞𝐝 = ∑ 𝛃𝐤𝐰𝐤

𝐊

𝐤=𝟏
/ ∑ 𝐰𝐤

𝐊

𝐤=𝟏
 

Equation (3.2) 

In a meta-analysis setting, the inverse variance weighting has been shown to be optimal [222], 

therefore the weighting applied to the pooled estimate is based on the inverse variance rather 

than the sample size of the individual datasets (𝒘𝒌 = 𝟏 / 𝒗𝒌).  If the SE for each dataset is 

denoted SE (𝜷𝒌), then 𝒗𝒌   is SE(𝜷𝒌)𝟐  [223].   It is further assumed that any deviation in 

individual estimates from the pooled estimate is solely due to the play of chance.  The pooled 

SE is calculated based on Equation 3.3. 

  

𝐒𝐄𝐩𝐨𝐨𝐥𝐞𝐝 = √𝟏 / ∑ 𝐰𝐤

𝐊

𝐤=𝟏
    

Equation (3.3) 
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It was deemed more appropriate to combine the p-values rather than the effect size of the HR 

from the Cox PH analysis. As the entry of controls into both the NUgene and WTCCC studies 

were not fixed to a reference date and consisted of different ages, this can pose a challenge when 

chronological age is used as the timescale within a TTE framework  [217].  This is particularly 

so when measures implemented to account for different entry points of controls in relation to 

cases is unclear.  In recent years the use of chronological age as a timescale has gained moderate 

acceptance for the analysis of TTE data  [217].  However, the issue of calendar time when 

individuals enter the study at different times remains.  As a result, to facilitate the combining of 

the p-values of the HR from the individual Cox PH model analysis, Equation 3.8 for the Stouffers 

method was applied.   The Stouffer’s z-score method is one of the most commonly applied 

methods in combined p-value meta-analysis [224, 225].  Compared to meta-analysis based on 

effect sizes, Stouffer’s method has been found to be more robust when there was a difference in 

analytical approaches between studies.  However, there is the possibility of a small loss of 

efficiency [226].   Unlike earlier approaches that have been developed, the Stouffer’s z-score 

approach considers the direction of the effect size [1].  In the Stouffers method, it is assumed 

that the z-score of individual studies is given by Equation 3.4 [1, 227] , where  𝒛𝒌  refers to 

the directed z-score from individual datasets and  𝒑𝒌   refers to the p- value for the individual 

datasets where    𝒑𝒌/𝟐  is applied in the case of two-sided p-values.   Additionally, ∅ refers to 

the standard normal cumulative distribution function and  𝒛 is assumed to follow a standard 

normal distribution. 

 

𝐳𝐤 =  ∅−𝟏(1 - 𝐩
k 

/2) *sign (𝛃𝐤) 

 

 Equation (3.4) 

The direction of the z-score is aligned to the same effect allele across studies.  In Equation 3.4 

the effect direction for an individual dataset k is denoted sign (𝛃𝐤).   The overall meta-analysis 

z-score, denoted  𝒁 is formulated on the basis of Equation 3.5.   To combine the z-score using 

the Stouffer’s method, the inverse normal transformed p-values is summed taking into account 

applied weighting.  To improve power when combining studies of varying sample sizes 

weighting is usually incorporated [1, 225, 228].  The optimal weighting applied in the Stouffer’s 

method is given by the squared root of the sample sizes [229].  Under the null hypothesis of no 

association the standard cumulative normal distribution c.c.f (Φ) is expected to follow 

a standard normal distribution.  
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Ζ= ∑ 𝒛𝒌𝒗𝒌
𝑲
𝒌=𝟏   /√∑ 𝒗𝒌

𝑲
𝒌=𝟏  

   

Equation (3.5) 

The components of the z-score equation used to calculate the overall meta-analysis z-score 

value includes 𝒛𝒌 which refers to the z-score value from individual datasets;  𝑣𝑘  refers to the 

squared root of the sample size of the kth  dataset;  𝐾 represents the number of datasets  included 

in the meta-analysis; and  𝑘  which  refers to the individual datasets. 

  

3.2.4.3.  | Evaluating heterogeneity in meta-analysis 

 

The Cochran Q statistic, in conjunction with the I2 index, was used to assess heterogeneity in 

the effect size in the meta-analysis [230].  Due to the low power of the Cochran Q test to detect 

heterogeneity, a less stringent P-value threshold is often recommended. Here we use the 

recommended threshold of a P-value < 0.10 instead of the conventional P < 0.05 [231-233].  The 

Q statistic is given by:    

  

 𝐐 = ∑ 𝐰𝐤 (𝛃𝐤 − 𝛃𝐩𝐨𝐨𝐥𝐞𝐝)𝟐𝐊
𝐤=𝟏     

 

Equation (3.10) 

 where 𝛽𝑝𝑜𝑜𝑙𝑒𝑑   denotes the overall common effect size  assuming a fixed effect model 

and  𝛽𝑘 represents the estimate based on individual datasets.   Q is distributed as a chi-square 

statistic with K - 1 degrees of freedom (df), where K corresponds to the number of datasets 

included in meta-analysis. 

𝐈𝟐 = ((𝐐 − 𝐝𝐟)  / 𝐐)  × 𝟏𝟎𝟎% 

 

Equation (3.11) 

The 𝐼2 statistic or index which quantifies heterogeneity is the percentage of the total variability 

in the set effect sizes due to true heterogeneity (Equation 3.11).  On the basis of the 𝐼2 index, the 

extent of heterogeneity is assessed by comparing the Q value to its expected value, i.e. its df 

(df=K-1), with K representing the number of datasets included in the meta-analysis.   A 
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𝐼2 value > 50% was considered an indicator of substantial heterogeneity between 

studies [231, 234, 235] while  an 𝐼2 < 25%   signifies low or no heterogeneity [236, 237]. 

 

Combined p-value meta-analysis methods relative to other statistical methods are limited in 

respect to their ability to quantify or characterise heterogeneity [238].   As estimation of pooled 

effect sizes does not form part of the p-value meta-analysis, it is not possible to directly assess 

heterogeneity.   However, in the case of Stouffer’s z-score method, heterogeneity can be 

assessed visually by ranking the estimated z-score from individual studies, where values are 

plotted and investigated to see if they lay on a straight line [239].  Nevertheless, application of 

methods that directly combine p-values, which are relatively flexible, require minimal 

information and assumptions regarding individual studies [240].  Methods that directly 

combine p-values have the advantage of simplicity as well as being extensible to different kinds 

of outcome measures as p-values are used as a common metric to examine the evidence of 

association [241, 242]. 

 

3.2.4.4.  | Statistical software used in meta-analysis  

 

The meta-analysis of the T2D GWAS datasets was also conducted in the R software version 3.3.1 

within the Linux redhat environment. The pooled OR were estimated using the fixed effects 

model along with its corresponding 95% confidence interval (CI) in base R.  Pooling of the 

estimates were weighted according to the inverse variance method.  Forest plots were 

generated to summarize information for effect size and the corresponding 95% CI of each 

dataset and the pooled effect using the ‘forestplot’ function of the “forestplot” package.  

Additionally, pooled p-values for the HR were estimated using the sumz function of the “metap” 

package (Appendix H.4). 
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3.3.  | Association of T2D GRS with AOO of the disease 
 

Findings from the primary analysis of the T2D genotype data from the NUgene and WTCCC are 

discussed in this section along with key findings from the GRS AOO T2D summary statistics 

meta-analysis of the two datasets.  The utility of GRS to detect an association with AOO of T2D 

is assessed, although the association of BMI, a major risk factor of T2D, with AOO of T2D is also 

considered.   At the outset, a general overview of the underlying characteristics and GRS profiles 

within each genotype dataset is provided in section 3.3.1.  The single SNP association analysis 

is presented in section 3.3.2. Results of the GRS association analysis based on the cases and 

control Cox PH, proportional odds and binary logistic models is presented in section in 3.3.3.  

Assessment of the models is formulated in terms of the size of estimated effect and strength of 

association resulting from the GRS.  The variation in AOO of T2D explained by the GRS were 

assessed on the basis of the Nagelkerke pseudo R2 measure (section 3.3.5).  Analysis focused on 

assessing BMI are presented in section 3.3.4; assessing model assumptions 3.3.6; and the 

combining of the two samples in a meta-analysis is presented in section 3.3.7. 

 

3.3.1.  | Profile of GWAS datasets 
 

Presented in Table 3.3 is a general summary of the characteristics of the NUgene and WTCCC 

genotyped datasets.  The general characteristics considered include sex, age (AOO for cases and 

age at the end of the study period for controls) and BMI (NUgene only).  It is observed that the 

two datasets differed mainly in terms of the ratio of cases and controls and distribution of age 

among the cases and controls. 
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Table 3. 3 – Descriptive characteristics of T2D cases and controls 

Characteristics 
NUgene SAMPLE WTCCC SAMPLE 

Cases Control Cases Control 

Total (N) (517) (598) (921) (2,889) 

Sex (n, % female) 226 (43.7%) 333 (55.7%) 409 (44.4%) 1,467 (50.7%) 

Age (years)         

Mean (SD) 57.75 (11.30) 49.90(12.90) 49.41 (10.77) 50.83 (11.34) 

Median 58 51 50 58 

Range (Min-Max) 20 - 90 18 - 90 25 - 75 17 - 69 
BMI (Body Mass 
Index)     - - 

Mean (SD) 33.36 (8.05) 26.92 (5.35) - - 

Median 32.02 25.98 - - 

Range (Min-Max) 17.6 - 67.03 15.58 - 50.59 - - 
Descriptions: N: overall sample size; n: subgroup sample size; Age: for cases age refers to AOO of T2D and 

controls age at enrolment; SD: standard deviation; Min: minimum; Max: maximum; BMI: body mass index 
measured in kg/m2. 
 

The NUgene dataset consists of 1,115 individual samples of which 46.4% are cases of T2D, while 

the WTCCC dataset consists of 3,810 individuals with 24.1% being cases of T2D.  It was also 

noted that on average individuals affected by T2D in the NUgene dataset are older when 

compared to individuals in the WTCCC dataset, mean age of onset of T2D are 57.8 years (SD 

11.30) and 49.4 years (SD 10.77) for NUgene and WTCCC respectively.  It was further noted that 

on average the controls in the WTCCC are older when compared to the controls used in the 

NUgene dataset (median age of controls, NUgene 51 years and WTCCC 58 years).  
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Using the NUgene dataset it was possible to consider the impact of BMI in relation to the onset 

of T2D.  The distribution of BMI among cases and controls is illustrated in Figure 3.1.  T2D EAO 

cases appear on average to have a higher BMI compared to unaffected controls and LAO cases 

(BMI 35.8, 31.6, and 26.9 respectively for EAO, LAO and unaffected controls).  The difference in 

BMI is particularly noticeable among females where the mean BMI is 37.7, 32.6, and 26.3 for 

EAO, LAO and unaffected controls, respectively. 

 

Figure 3. 1 - Distribution of BMI and T2D status in the NUgene   
The boxes represent the distribution of BMI for EAO (green), LAO (yellow green) as well as CTL 
(dark grey).  The horizonal line inside the box refers to the median.  The lower and upper hinges 
of the box correspond to the 25th and 75th quartiles and the black dots denoted outliers.  
Abbreviations: CTL: controls; LAO: late age onset; EAO: early age onset. 
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Table 3. 4 – Comparison of mean GRS using unpaired two sample t-test of T2D cases and 
controls in NUgene and WTCCC samples 
 

Characteristics P-value 
Mean of     

Cases 
Mean of 
Controls 

Standard 
Error of 

difference in 
means 

Cases versus controls 

NUgene 

Genetic Risk Scores (GRS)         

Weighted GRS (P<0.05) 1.1 x 10⁻¹³ 7.36 7.14 0.03 

Weighted GRS (P<5*10-8) 1.7 x 10⁻¹⁴ 4.85 4.65 0.03 

Unweighted GRS (P<0.05) 2.4 x 10⁻⁰⁹ 81.65 79.76 0.31 

Unweighted GRS (P<5*10-8) 1.9 x 10⁻¹² 44.00 42.37 0.23 

WTCCC 

Genetic Risk Scores (GRS)         

Weighted GRS (P<0.05) 2.2 x 10⁻⁵³ 7.45 7.17 0.02 

Weighted GRS (P<5*10-8) 6.2 x 10⁻⁴³ 4.88 4.66 0.02 

Unweighted GRS (P<0.05) 9.3 x 10⁻⁴² 82.69 79.96 0.20 

Unweighted GRS (P<5*10-8) 3.2 x 10⁻³⁷ 44.16 42.39 0.14 

Descriptions: GRS: genetic risk score; EAO early-age-onset; LAO late-age-onset 
 

Table 3.4 presents the findings from t-tests undertaken to compare the means of the T2D GRS 

between cases and controls in the NUgene and WTCCC datasets.  The GRS was defined by the 

nominal and genome-wide significance thresholds.  For the weighted GRS, the weighting 

applied was based on the OR reported in the base GWAS used to construct the GRS, while for 

the unweighted GRS each SNP contributing to the GRS was assumed to contribute equally to the 

risk of T2D.   In both samples (NUgene and WTCCC) the tests indicate that the mean GRS of the 

cases was significantly higher than controls for both weighted and unweighted GRS. 

Furthermore, a general summary of the characteristics of weighted and unweighted GRS among 

the T2D cases and controls is presented in Appendix B B.3.1. 
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Table 3. 5 - Comparison of mean GRS using unpaired two sample t-test of T2D EAO cases 
and LAO cases in NUgene and WTCCC samples 
 

Characteristics P-value 
Mean of 

EAO cases 
Mean of     

LAO cases 

Standard 
Error of 

difference in 
means 

EAO cases versus LAO cases 

NUgene 

Genetic Risk Scores (GRS)         

Weighted GRS (P<0.05) 1.7 x 10⁻⁰¹ 7.32 7.38 0.04 

Weighted GRS (P<5*10-8) 2.1 x 10⁻⁰¹ 4.82 4.87 0.04 

Unweighted GRS (P<0.05) 4.2 x 10⁻⁰¹ 81.42 81.81 0.49 

Unweighted GRS (P<5*10-8) 1.6 x 10⁻⁰¹ 43.71 44.21 0.35 

WTCCC 

Genetic Risk Scores (GRS)         

Weighted GRS (P<0.05) 4.4 x 10⁻⁰¹ 7.46 7.43 0.03 

Weighted GRS (P<5*10-8) 3.9 x 10⁻⁰¹ 4.89 4.86 0.03 

Unweighted GRS (P<0.05) 4.3 x 10⁻⁰¹ 82.78 82.49 0.37 

Unweighted GRS (P<5*10-8) 3.6 x 10⁻⁰¹ 44.24 44.01 0.24 

Descriptions: GRS: genetic risk score; EAO early-age-onset; LAO late-age-onset 
 
 

Table 3.5 presents the findings from t-tests undertaken to compare the mean GRS of EAO cases 

and LAO cases in NUgene and WTCCC datasets.  Unlike the comparison between the cases and 

the controls, among all four T2D GRS considered in the two datasets it was found that they were 

not significantly different between EAO and LAO cases. 
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Table 3. 6 - Comparison of mean GRS in the NUgene and WTCCC samples using unpaired 
two sample t-test of both T2D cases and controls 
 

Characteristics P-value 
Mean in 
NUgene 

Mean in 
WTCCC 

Standard 
Error of 

difference 
in means 

NUgene controls versus WTCCC controls     

Genetic Risk Scores (GRS)         

Weighted GRS (P<0.05) 2.0 x 10⁻⁰¹ 7.14 7.17 0.02 

Unweighted GRS (P<0.05) 4.0 x 10⁻⁰¹ 79.76 79.96 0.24 

Weighted GRS (P <5*10-8) 5.1 x 10⁻⁰¹ 4.65 4.66 0.02 

Unweighted GRS (P <5*10-8) 9.0 x 10⁻⁰¹ 42.37 42.39 0.17 

NUgene cases versus WTCCC cases     

Genetic Risk Scores (GRS)         

Weighted GRS (P<0.05) 6.2 x 10⁻⁰⁴ 7.36 7.45 0.03 

Unweighted GRS (P<0.05) 3.8 x 10⁻⁰⁴ 81.65 82.69 0.29 

Weighted GRS (P <5*10-8) 2.5 x 10⁻⁰¹ 4.85 4.88 0.02 

Unweighted GRS (P <5*10-8) 4.2 x 10⁻⁰¹ 44.00 44.16 0.20 

Descriptions: GRS: genetic risk score 

 

Table 3.6 presents the findings from t-tests undertaken to compare the mean GRS of cases in 

the NUgene and WTCCC studies and the mean GRS of controls in the NUgene and WTCCC 

studies.  The GRS of the controls in the NUgene and WTCCC studies were not significantly 

different for all four versions of the T2D GRS.   Additionally, the mean genome-wide weighted 

and unweighted GRS of cases were also not significantly different between the two studies. 

However, the mean GRS of both the weighted and unweighted nominally significant GRS of 

cases were significantly different. 
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3.3.2.  | Single-SNP association with T2D status 
 

The single SNP component of the analysis were undertaken to assess the association of each 

SNP independently within each sample.  This was designed to gauge their potential for 

predicting the risk of the onset of T2D as part of the T2D GRS.  In the NUgene sample, the impact 

of BMI on the perform of individual SNPs was also considered. 

 

A summary of the significant results of the single SNP tests, which originally included the 81 

SNP used to construct the GRS in presented in Appendix B Table B.2.1 and Table B.2.2.   The 

analysis of the single SNP association with T2D status adjusted for age, sex and population 

structure, indicated that of the 81 SNPs tested in the NUgene dataset, 8 were nominally 

significantly associated with T2D status, while 32 SNPs were found to be significant within the 

WTCCC dataset (Appendix B Table B.2.2).  In the NUgene sample the 8 significant SNPs were 

significant with and without adjustment for BMI.   This suggests that these 8 SNPs are associated 

with T2D independently of BMI.   

 

3.3.3.  | Association of GRS with AOO of T2D 
 

In this section, the performance of both the weighted and unweighted GRS, which consists of 

the genome-wide and nominal significance threshold for SNPs included in the GRS was 

assessed.  Potential confounding in respect to sex, and population structure (using PCs), as well 

as BMI in the case of the NUgene sample, have been taken into consideration.  An overall 

assessment of the three analytical approaches (cases and controls Cox PH, proportional odds, 

and binary logistic analysis) was also given. 

 

3.3.3.1.  | Association of weighted GRS with AOO of T2D 

Illustrated in Figure 3.2 are model estimates based on Cox PH, proportional odds, and logistic 

models.  It compares the estimated HR of AOO of T2D (from Cox PH model), OR of T2D status 

(from logistic model) and cumulative OR of AOO of T2D (from the proportional odds model) 

associated with the weighted T2D GRS produced by the NUgene and WTCCC samples.  

Generally, the results indicated that the weighted genome-wide GRS produced greater effect 

sizes in relation to AOO of T2D and T2D status compared to the weighted nominal significance 
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GRS models.  In both samples, for the analysis based on the Cox PH model, the weighted 

nominally significant GRS was found to be the most highly significant of the two versions of GRS 

evaluated.  The difference in the strength of the association between weighted GRS was less 

noticeable for the NUgene sample. The estimated HR pertaining to the weighted nominally 

significant GRS was 1.5 (95% CI 1.2 - 1.8:   p = 3.7 x 10-05) and 2.4 (95% CI 2.1 - 2.8: p = 2.9 x 10-

38) respectively for the NUgene and WTCCC samples.  For the proportional odds model, the 

weighted nominally significant GRS was also found to be most highly significantly associated 

with AOO of T2D in the WTCCC sample.  For the NUgene sample though, a similar strength of 

association was observed for both versions of the weighted GRS in relation to AOO of T2D. 

 

 Regarding T2D status, of the two versions of GRS evaluated in both samples, the weighted 

nominally significant GRS was found to be most highly associated with T2D status.  The 

estimated OR associated with the weighted nominally significant GRS was 2.8 (95% CI 2.1 – 3.7:   

p = 2.3 x 10-12) and 3.4 (95% CI 2.9 – 4.0: p = 5.3 x 10-48) respectively for the NUgene and WTCCC 

samples.  In relation to T2D status, it was further noted as with the other two methods (Cox PH 

and proportional odds), in the NUgene sample, the observed strength of association was found 

to be similar for both versions of the weighted GRS.  However, for the WTCCC sample, a more 

marked difference in the strength of association was observed between the two versions of 

weighted GRS.  The P-value associated with the weighted nominally significant GRS and 

weighted genome-wide significant GRS was p = 5.3 x 10-48 and p = 1.6 x 10-39 respectively.  

Furthermore, in general, these results seem to suggest that while constructing the GRS based 

on nominally significant SNPs (greater number of SNPs included in GRS) increases the evidence 

of association, constructing the GRS based on genome-wide significant SNPs (smaller number 

of SNPs included in GRS but more strongly associated with T2D) illustrates a greater effect on 

risk of T2D or AOO of T2D. 
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Figure 3. 2 - Comparison of estimated  ES of  AOO of T2D associated with the 
weighted GRS based on three analytical methods for NUgene and WTCCC samples. 
The x-axis indicates the HR for the Cox PH model and the OR for the logistic and proportional odds model 

and 95% CI for each GRS model shown on the y-axis.  The models have been adjusted for sex, ancestry 
principal components to account for population structure, GRS and for NUgene BMI. The two models 

considered include the adjusted model with weighted nominal significant GRS denoted (grsN) and 

adjusted weighted genome-wide significant GRS denoted (grsG). Models for the NUgene samples are 

represented by green and WTCCC gold. 
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Table 3.7 presents a summary of the estimates resulting from each of the three statistical 

methods evaluating the weighted GRS in the NUgene and WTCCC samples.  Overall, the strength 

of association with T2D status and AOO of T2D for both versions of the weighted GRS were 

found to be similar based on the logistic and proportional models.  However, the observed 

association between both versions of the weighted GRS and T2D status and AOO of T2D based 

on the logistic and proportional odds models were found to be substantially stronger when 

compared the weighted GRS based on the Cox PH model. The P-value associated with the 

weighted nominally significant GRS based on the proportional odds, logistic and Cox PH models 

was p = 4.0 x 10-48, p = 5.3 x 10-48 and p = 2.9 x 10-38 respectively for the WTCCC sample. 
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Table 3. 7 - Estimated effect of association of weighted GRS and AOO of T2D in NUgene 
and WTCCC samples 

Analysis 
Method 

Weighted GRS                                                                                   
(P-value threshold   P < 0.05) 

Weighted GRS                                                                                                                    
(P-value threshold P <  5 x 10-8) 

ES Lower 
95% CI 

Upper 
95% CI 

P-value ES Lower 
95% CI 

Upper 
95% CI 

P-value 

NUGENE 

Cox PH model (cases and controls) 

Adjusted (GRS+ 
BMI+ Covariates) 

1.488 1.232 1.798 3.7 x 10⁻⁰⁵ 1.565 1.256 1.949 6.6 x 10⁻⁰⁵ 

Proportional odds model 

Adjusted (GRS+ 
BMI+ Covariates) 

2.347 1.829 3.013 2.1 x 10⁻¹¹ 2.804 2.085 3.772 9.2 x 10⁻¹² 

Binary logistic regression model  

Adjusted (GRS+ 
BMI+ Covariates) 

2.768 2.090 3.693 2.3 x 10⁻¹² 3.255 2.340 4.566 4.4 x 10⁻¹² 

WTCCC 

Cox PH model (cases and controls) 

Adjusted (GRS+ 
Covariates) 

2.428 2.123 2.778 2.9 x 10⁻³⁸ 2.611 2.222 3.069 2.4 x 10⁻³¹ 

Proportional odds model 

Adjusted (GRS+ 
Covariates) 

3.330 2.833 3.915 4.0 x 10⁻⁴⁸ 3.627 2.996 4.392 9.1 x 10⁻⁴⁰ 

Binary logistic regression model  

Adjusted (GRS+ 
Covariates) 

3.417 2.900 4.037 5.3 x 10⁻⁴⁸ 3.692 3.043 4.491 1.6 x 10⁻³⁹ 

Descriptions: ES: effect size which refers to the HR for Cox PH model and OR for the logistics and 
proportional odds models; GRS: genetic risk score; BMI: Body Mass Index; PC1-PC3: Principal Components; 

CI: confidence interval 
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3.3.3.2.  | Association of unweighted GRS with AOO of T2D 

 

Represented in Figure 3.3 are again model estimates based on the three analytical approaches. 

In this instance however, the analysis compares the estimated OR of AOO of T2D associated 

with the unweighted GRS.  In general, the results indicated that the unweighted genome-wide 

GRS produced greater effect sizes in relation to AOO of T2D and T2D status compared to the 

unweighted nominal significance GRS models.  As with the weighted GRS, in the Cox PH analysis 

the unweighted nominally significant GRS was found to be the most highly significant of the two 

versions of GRS evaluated in both samples.  It was further noted however, in relation to the 

NUgene sample, that the observed strength of association was similar for both versions of the 

unweighted GRS.  In the NUgene and WTCCC samples the unweighted nominally significant GRS 

HR was estimated to be 1.03 (95% CI 1.01 - 1.05:   p = 5.0 x 10-04) and 1.07 (95% CI 1.06 – 1.09: 

p = 1.5 x 10-29) respectively.  Additionally, in both the proportional odds and logistic analysis 

the unweighted nominally significant GRS was found to be the most highly significant of the two 

versions of GRS evaluated in the WTCCC.  However, for the NUgene sample, the difference in the 

strength of association observed for both versions of the unweighted GRS in relation to AOO of 

T2D was marginal.  For the WTCCC sample, the estimated OR associated with the nominally 

significant GRS based on the logistic model was 1.1 (95% CI 1.09 – 1.12:   p = 2.4 x 10-38) and the 

estimated cumulative OR based on the proportional odds model was 1.1 (95% CI 1.09 – 1.12:   

p = 3.5 x 10-38). 
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Figure 3.3 - Comparison of estimated ES of AOO of T2D associated with the unweighted 
GRS based on three analytical methods for NUgene and WTCCC samples. 
The x-axis indicates the HR for the Cox PH model and the OR for the logistic and proportional odds model 

and 95% CI for each GRS model shown on the y-axis.  The models have been adjusted for sex, ancestry 
principal components to account for population structure, GRS and for NUgene BMI. The two models 

considered include the adjusted model with unweighted nominal significant GRS denoted (grsN) and 

adjusted unweighted genome-wide significant GRS denoted (grsG). Models for the NUgene samples are 

represented by green and WTCCC gold. 
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Table 3.8 presents a summary of the estimates resulting from each of the three statistical 

methods, evaluating in this instance the unweighted GRS in the NUgene and WTCCC samples.  

Overall, as in the weighted GRS, the difference in the observed association between both 

versions of the unweighted GRS and T2D status and AOO of T2D based on the logistic and 

proportional odds models were found to be substantially stronger when compared the 

unweighted GRS based on the Cox PH model.  However, the difference in performance between 

the logistic and proportional odds models were found to be marginal. The P-value associated 

with the unweighted nominally significant GRS based on the proportional odds, logistic and Cox 

PH models was p = 3.5 x 10-38, p = 2.4 x 10-38 and p = 1.5 x 10-29 respectively for the WTCCC 

sample. 
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Table 3. 8 - Estimated effect of association of unweighted GRS and AOO of T2D in 
NUgene and WTCCC samples 
 

Analysis 
Method 

Unweighted GRS                                                                                   
(P-value threshold   P < 0.05) 

Unweighted GRS                                                                                                                    
(P-value threshold P <  5 x 10-8) 

ES Lower 
95% CI 

Upper 
95% CI 

P-value ES Lower 
95% CI 

Upper 
95% CI 

P-value 

NUGENE 

Cox PH model (cases and controls) 

Adjusted (GRS+ 
BMI+ Covariates) 

1.031 1.013 1.049 5.0 x 10⁻⁰⁴ 1.041 1.017 1.067 9.6 x 10⁻⁰⁴ 

Proportional odds model 

Adjusted (GRS+ 
BMI+ Covariates) 

1.074 1.049 1.099 2.1 x 10⁻⁰⁹ 1.110 1.074 1.147 7.3 x 10⁻¹⁰ 

Binary logistic regression model  

Adjusted (GRS+ 
BMI+ Covariates) 

1.088 1.060 1.117 4.2 x 10⁻¹⁰ 1.129 1.088 1.172 1.7 x 10⁻¹⁰ 

WTCCC                 

Cox PH model (cases and controls) 

Adjusted (GRS+ 
Covariates) 

1.073 1.060 1.086 1.5 x 10⁻²⁹ 1.103 1.083 1.123 2.9 x 10⁻²⁶ 

Proportional odds model 

Adjusted (GRS+ 
Covariates) 

1.102 1.086 1.118 3.5 x 10⁻³⁸ 1.144 1.120 1.169 8.6 x 10⁻³⁵ 

Binary logistic regression model  

Adjusted (GRS+ 
Covariates) 

1.104 1.088 1.121 2.4 x 10⁻³⁸ 1.146 1.121 1.171 1.1 x 10⁻³⁴ 

Descriptions: ES: effect size which refers to the HR for Cox PH model and OR for the logistics and 
proportional odds models; GRS: genetic risk score; BMI: Body Mass Index; PC1-PC3: Principal Components; 
CI: confidence interval 
 
 

3.3.4.  | Association of BMI with AOO of T2D 
 

Given that overweight and obesity, measured by BMI, is an important contributing factor to the 

onset of T2D (discussed in section 3.1.1 and 3.2.3.2), the focus of this section was to assess the 

impact of BMI after adjustment for one of the four versions of the T2D GRS.  Model adjustment 

includes confounding factors sex, ancestry principal components to account for population 

structure and one of the weighted or unweighted GRS. 
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Figure 3. 4 - Comparison of estimated ES of AOO of  T2D associated with the BMI 
based on three analytical methods for NUgene sample. 
The x-axis indicates the HR for the Cox PH model and the OR for the logistic and proportional odds model 

and 95% CI for each BMI model shown on the y-axis.  The models have been adjusted for sex, ancestry 

principal components to account for population structure, and GRS.  The four models considered include 
the adjusted BMI model with weighted nominal significant GRS denoted (aBwN_NU); adjusted BMI  

weighted genome-wide significant GRS denoted (aBwG_NU); adjusted BMI model with unweighted 

nominal significant GRS denoted (aBuN_NU) and adjusted BMI unweighted genome-wide significant GRS 
denoted (aBuG_NU).  GRS at the genome-wide level denoted (green) and GRS at the nominal level denoted 

(purple). 
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Represented in Figure 3.4 are model estimates based on the three analytical approaches. It 

compared the estimated HR and OR of AOO of T2D or T2D status associated with BMI while 

considering the impact of one version of the weighted or unweighted GRS.  The models were 

adjusted for sex and population structure (via PCs).  In all three approaches BMI was found to 

be highly significantly associated with AOO of T2D or T2D status.  In general, for all four versions 

of the BMI models, the difference in performance was marginal. However, the unweighted 

nominally significant GRS was found to be the most strongly associated with AOO of T2D and 

T2D status.  Additionally, for all four versions of the BMI models, the Cox PH model was found 

to be most strongly associated, followed by the proportional odds model among the three 

analytical approaches considered.  The P-value associated with the unweighted nominally 

significant BMI based on the Cox PH, proportional odds, and logistic models was p = 1.3 x 10-54 

with HR 1.09 (CI 1.08 – 1.10); p = 4.2 x 10-49 with cumulative OR 1.16 (95% CI 1.14 – 1.18) and 

p = 1.9 x 10-38 with OR 1.18 (95% CI 1.15 – 1.21) respectively (Appendix B Table B.3.2). 

 

3.3.5.  | Variance in AOO of T2D explained 
 

This section considered the extent to which the variance in the AOO of T2D  or T2D status that 

can be attributed to the T2D GRS and similarily for BMI.  Given the maximun value of 1 property, 

explained variance was evaluated on the basis of the Nagelkerke pseudo R2, a commonly applied 

pseudo R2 measure in genetic research. The Nagelkerke pseudo R2 measure was used to 

facilitate comparison between the four versions of T2D GRS distinguished by weighting and 

significance threshold for included SNPs.  

 

3.3.5.1.  | Variance in T2D Status and AOO of T2D explained by 

GRS 

 

Figure 3.5 depicts the proportion of variance in AOO of T2D and T2D status  that is explained 

by GRS, as measured by the Nagelkerke pseudo R2, based on the three analytical approaches.  In 

general, it seems that of the four versions of the T2D GRS considered, a weighted T2D GRS based 

on the  nominally signifcant SNPs explained the highest proportion of variance in the onset of 

T2D due the T2D GRS.  Furthermore, both weighted T2D GRS explains a higher proportion of 

the variance in T2D onset or AOO of T2D when compared to the unweighted T2D GRS.  Based 

on the logistic model in the WTCCC dataset, the observed proportion of variance in T2D status 
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due to the weighted nominally signifcant  GRS was 8.8%, which compares to 7.1%, 6.8% and 

6.1%, respectively, for the weighted genome-wide significance GRS, unweighted nominal 

significance GRS, and unweighted genome-wide significance GRS adjusted models.  In the 

NUgene sample, the proprtion of variance in T2D status in the logistic model was estimated to 

be 4.9% and 4.8 %, respectively, for the weighted nominal significance and genome-wide GRS 

models, and for the unweighted nominal significance and genome-wide GRS models was 3.8% 

and 4.0%, respectively. 
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Figure 3. 5 - Proportion of variance in AOO of T2D explained by GRS in NUgene a and 
WTCCC samples based on Nagelkerke R2 
The proportion of variance measured by the Nagelkerke pseudo R2 measure is shown on the y-axis while 
the effects of the nominal significance weighted (wei: dark purple) and unweighted (unw: light purple) 

GRS models as well as the genome-wide significance weighted (weiG: gold) and unweighted (unwG: 

yellow) GRS models are shown on the x-axis. The models which have been adjusted for potential 

confounding (adjGRS), the proportion of variance explained represents the difference in R2 after 
adjustment for confounding variables where the full model (model with confounding variables and GRS) 

was compared to a reduced model (model with confounding variables only, GRS is excluded in this 

model).  Models adjusted for sex, ancestry principal component to account for population structure and 
BMI. 



 
 

114 
 

3.3.5.2.  | Variance in AOO of T2D explained by BMI 

 

Figure 3.6 depicts the proportion of variance in AOO of T2D that was explained by BMI in the 

NUgene sample.  It was observed that the difference in performance between the BMI models 

based on the four versions of GRS was marginal for all three approaches.  Therefore, there is no 

evidence that the proportion of variance in AOO of T2D attributable to BMI is substantially 

impacted by GRS weighting.  Based on the logistic model the observed proportion of variance 

in AOO of T2D due to the BMI model adjusted with the unweighted nominal significance GRS 

was 25.3%, which compares to 24.3%, 24.4% and 23.9% respectively for the unweighted 

genome-wide significance GRS; weighted nominal significance GRS; and weighted genome-wide 

significance GRS adjusted models. 
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  Figure 3. 6 - Proportion of variance in AOO of T2D explained by BMI in NUgene based 
on Nagelkerke R2 
The proportion of variance measured by the Nagelkerke  pseudo R2 measure is shown on the y-axis while 

the effects of adjusted BMI with nominal significance unweighted GRS model (light purple); adjusted BMI 
with genome-wide significance unweighted GRS model (light green); adjusted BMI with nominal 

significance weighted GRS model (dark purple); and adjusted BMI with genome-wide  significance 

weighted GRS model (medium green) is shown on the x-axis. The proportion of variance explained 

represents the difference in R2 after adjustment for confounding variables where the full model (model 
with confounding variables and GRS) was compared to a reduced model (model with confounding 

variables only, BMI is excluded in this model).  Models adjusted for sex, ancestry principal component to 

account for population structure and weighted or unweighted GRS. 
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3.3.6.  | Assessing model assumptions 
 

This section focuses of the assessment of the proportional odds assumption key for the 

application of the proportional odds models.  In earlier analysis, it was noted that the 

distribution of T2D GRS across LAO and EAO cases was not as expected, i.e lowest mean GRS in 

LAO cases and highest mean GRS in EAO cases, particularly in the NUgene sample.   Therefore, 

the multinomial logistic regression model as an alternative to the proportional odds model was 

fitted to check the validity of the proportional odds assumption, and the residual deviances 

compared as a formal test of the deviation from the proportional odds model assumption.   

 

Presented in Table 3.9 are the results of a likelihood ratio test undertaken to assess the validity 

of the proportional odds assumption.  The residual deviance is lower in the multinomial models 

which suggests that the multinomial model is a better fit when compared to the proportional 

odds model.  The likelihood ratio test indicate that the p-value associated with each GRS model 

assessed is significant, and therefore the proportional odds assumptions is not valid for these 

models. 
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Table 3. 9 - Likelihood ratio test between the multinomial and proportional odds 
models 
 

Characteristics Residual Deviance Likelihood Ratio Test 

  

Deviance 
from 

Multinomial 
Model 

Deviance 
from 

Proportional 
Odds Model 

Degrees 
of 

Freedom 
Chisq P_value 

NUgene 

Genetic Risk Scores (GRS)           

Weighted GRS (P <0.05) 1874.14 1910.13 5 35.99 9.6 x 10⁻⁰⁷ 

Unweighted GRS (P <0.05) 1886.11 1919.83 5 33.71 2.7 x 10⁻⁰⁶ 

Weighted GRS (P <5*10-8) 1875.64 1908.49 5 32.84 4.0 x 10⁻⁰⁶ 

Unweighted GRS (P <5*10-8) 1883.70 1917.57 5 33.87 2.5 x 10⁻⁰⁶ 

WTCCC       

Genetic Risk Scores (GRS)           

Weighted GRS (P <0.05) 5076.35 5094.90 5 18.55 2.3 x 10⁻⁰³ 

Unweighted GRS (P <0.05) 5128.77 5147.05 5 18.28 2.6 x 10⁻⁰³ 

Weighted GRS (P <5*10-8) 5122.96 5139.46 5 16.49 5.6 x 10⁻⁰³ 

Unweighted GRS (P <5*10-8) 5147.75 5164.38 5 16.63 5.3 x 10⁻⁰³ 

Descriptions: Chisq: chi-square distribution 
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3.3.7.  | Combining estimates from individual T2D GWAS 
 

This section discusses the finding from the meta-analysis conducted to combine estimates from 

the NUgene and WTCCC datasets.  The combined estimate of the P-value associated with the log 

HR produced by the Cox PH model is first presented.  This is followed by the combined 

estimated log OR originating from the logistic models.  Given that the proportional odds 

assumptions were found to be invalid, the GRS models produced by the proportional odds 

models was not included in the meta-analysis. 

 

3.3.7.1.  | Combing P-value estimated from Cox PH model 

 

Presented in Table 3.10 are the combined z-score of the NUgene and WTCCC datasets 

originating from the Cox PH analysis associated with the HR of the four versions of the GRS.  The 

results indicated that all four versions of the GRS were highly significant overall.  The weighted 

nominally significant GRS was shown to have the largest combined z-score value.  

 

Table 3. 10 – Stouffer meta-analysis of Cox PH model HR P-value 
 

Study.ID Sample size Z-value P-value Weights 

NUgene 1115 3.40 6.7 x 10-04 35% 

WTCCC 3810 12.93 3.0 x 10-38 65% 

All W(P<0.05)   12.85 8.6 x 10-38 100% 

NUgene 1115 2.39 1.7 x 10-02 35% 

WTCCC 3810 11.29 1.5 x 10-29 65% 

All uW(P<0.05)   10.89 1.3 x 10-27 100% 

NUgene 1115 3.55 3.9 x 10-04 35% 

WTCCC 3810 11.65 2.3 x 10-31 65% 

All W(P<5 x 10-8)   11.79 4.4 x 10-32 100% 

NUgene 1115 2.79 5.3 x 10-03 35% 

WTCCC 3810 10.60 3.0 x 10-26 65% 

All uW(P<5 x10-8)   10.48 1.1 x 10-25 100% 
Descriptions: W: Weighted GRS; Uw: Unweighted GRS 

 

 

 



 
 

119 
 

 

3.3.7.2.  | Combing log OR estimated from logistic model 

 

Figure 3.7 presents the combined estimate of the log OR based on the logistic model.  Among 

the four versions of T2D GRS the CI of the individual studies overlap, suggesting a common 

effect.  The magnitude of the log OR was found to be greatest for the weighted GRS based on 

genome-wide significant SNPs.    The overall log OR for the genome wide weighted GRS was 

estimated to be 1.24 (which corresponds to an OR of 3.46).  Additionally, as in the analysis of 

the individual datasets, the nominally significant weighted GRS were founded to be most 

strongly associated with T2D status.  The pooled P-value associated with the nominally 

significant weighted GRS and genome-wide significant weighted GRS was p = 1.6 x 10-57 and p 

= 3.0 x 10-50, respectively. 
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The level of heterogeneity as measured by the Cochran Q and I2 statistics for the logistic model 

indicated that there was no evidence of heterogeneity for the genome-wide weighted and 

unweighted T2D GRS (Q p-value 0.23 and 0.21 and I2 31% and 37% respectively).  However, 

the level of heterogeneity reported for the nominal significance T2D GRS was found to be 

nominally significant (Q p-value 0.04 and 0.03 and I2 77% and 78% respectively for weighted 

and unweighted nominal significance T2D GRS. 

Figure 3. 7 - Fixed effect meta-analysis of estimated OR of  onset of T2D 
associated with T2D GRS based on the logistic model(adjusted) 

The x-axis indicates the log OR and 95% CI for each individual dataset(green) and combined 
(orange) shown on the y-axis for the adjusted model 
Abbreviations:  adjwei: adjusted weighted GRS models; uadjwei: adjusted unweighted GRS 
model; FE: Fixed effect; Q: Cochran Q statistic; p: p-value for Cochran Q statistics; I2: I-
squared statistic. 
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3.4.  | GRS simulation methods 
 

The methods applied to further assess the performance of the GRS via a simulation study is 

described in this section.  Included is an outline of the scenarios explored, the Cox PH model 

used to generate the simulated data, along with a general description of the overall simulation 

process. 

 

3.4.1.  | Description of simulation study of GRS 
 

This simulation study was undertaken as a result of persistent scepticism regarding the relative 

performance of the Cox PH and logistic models, coupled with preliminary findings from the 

NUgene and WTCCC datasets which indicated that the logistic model may have greater 

predictive power when compared to the Cox PH model.   Therefore, in this simulation study a 

disease of interest in a sample of individuals ascertained from a homogeneous single ancestry 

population was considered along with the impact of GRS on AOO of disease.  It is assumed that 

individuals in the study are followed for a specified period, with a record made of the age at 

which a disease occurs.  Those that are unaffected at the end of the study period are considered 

as censored observations.  It is also assumed that the causal SNPs have been correctly identified. 

 

A range of scenarios were considered comprising of genetic and TTE parameters (see Appendix 

B.5 Figure B.5.1). The genetic component described the log HR of the GRS derived from 

genotypes of individual unweighted causal SNPs, under an additive model in the number of risk 

alleles, where each SNP is assumed to contribute equally to the risk of the onset of disease. It 

was further assumed that the RAF was the same among all SNPs.  Primarily the number of SNPs 

included in the GRS, which ranged between 1 and 25 and the RAF are varied in the scenarios 

considered. 

 

Finally, the TTE component described: (i) the TTE model (Cox PH); and (ii) the baseline hazard 

(see Appendix B.5 Figure B.5.1).  Here, the Cox PH, which assumes a constant hazard over time 

resulting from, in this instance, the GRS forms the basis of the simulations.  An important 

element of the simulation study was to evaluate the impact of censoring on the relative power 

between the Cox PH, logistic and proportional odds model, therefore, the censoring rates were 

varied.  Initially, the baseline hazard rate and time (t), which refers to the study period was set 
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to achieve an equal number of cases and controls at the end of the study, i.e. a censoring rate of 

50%.  However, to assess the impact of censoring the t component was altered to achieve 

varying degrees of censoring. 

 

3.4.1.1.  | GRS simulation model  

 

The Cox PH model outlined in Equation 1.9 of section 1.7.2 was applied to simulate AOO of 

disease.  In this context, the component βX in the equation refers to the variable of interest, the 

GRS, where X represents the GRS and β the corresponding regression coefficient which is the 

log HR of the GRS.  For the Cox PH, which is a special case of the general Weibull model, the HR 

is constant over time (i.e. shape parameter (ν) =1).  As part of the simulation process, the 

baseline hazard rate and time (t), which refers to the study period or end of study time, was 

varied to achieve different rates of censoring.  The scenarios considered were: (1) moderate 

censoring (50%); (2) low censoring (under 30%); and (3) censoring ranging from high (90%) 

to low (10%).   To achieve the required censoring rate, the end of study time (t), was altered. 

For instance, varying the end of study time from 10 to 170 corresponded to changing from a 

high censoring rate of 90% to a low censoring rate of 10%. 

 

In the range of simulation scenarios considered, the simulated GRS (independent variable) 

includes a range of values pertaining to the number of SNPs used to construct the GRS, SNP RAF, 

and log HR of the associated GRS.  The values considered for the number of SNPs used to 

construct the GRS ranged from 1 to 25 SNPs.   The values considered in relation to the log HR of 

the associated GRS included β values ranging from 0 to 0.30.  For the associated RAF values 

considered included RAF of 0.05, 0.1, 0.25 and 0.5. 

 

3.4.1.2.  | GRS simulation process 

 

The simulation encompassed three main steps, incorporating the two components of the 

simulation scenario where genetic and TTE data were generated, for each replicate.  Each 

replicate of data comprised 1,000 individuals (detailed description of the three steps are 

outlined in Figure 3.8).  In the first step, the genotype of individual causal SNPs was simulated 

under a binomial distribution, given a specified RAF.  In the second step, the GRS, which is 

unweighted, is constructed for each individual.   In the third and last step, conditional on the 
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GRS, the AOO of the disease was simulated under the Cox PH model, given the specified log HR 

of the GRS. 

 

Generating genotype of individual SNPs: To begin the simulation process  1,000 datasets was 

generated based on the specified RAF for each causal SNP in a population of 1,000 individuals 

assumed to originate from a single homogenous population (see Appendix F for R code used to 

generate genotype of individual SNPs for each individual). The process involves: (1) 

specification of the RAF (with the risk and protective alleles denoted a and A, respectively); (2) 

generating simulated genotype for each simulated SNP based on binomial distribution 

(facilitated by the R rbinom() function). 

 

Generating GRS of individuals:  After the genotype for each SNP is determined, the GRS for 

each individual in the dataset is then constructed by summing the genotype values of each SNP.   

The process entails: (1) specification of the number of SNPs to be included in GRS; (2)  summing 

the genotype values of each SNP based on the number of risk alleles present (0,1 or 2); and (3) 

GRS values were rescaled to have a mean of zero and standard deviation of 1 across individuals. 
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Figure 3. 8 - Description of data generating process of GRS 

 
 

Generating AOO of disease: Following the simulation of the genotypes of each individual in 

the datasets associated SNPs, included in the construction of the GRS, the AOO of disease 

conditional on the GRS was simulated assuming a range of log hazard ratios (HRs) (ranging 

from 0.05 to 0.30).  The process entailed; (1) based on the Weibull distribution, specification 

of the shape parameter value, which was set to l to achieve a constant HR for the Cox PH; (2) 

specification of the log HRs associated with the GRS; (3) GRS entered into the TTE model as a 

STEP 2 

Generating AOO of disease 

 STEP 
1 

▪ The simulation process was initiated by generating 1,000 datasets based on a 
specified RAF for simulating genotype of causal SNPs in a population of 1,000 
individuals originating from a single homogenous population. 
1) Data value for the RAF are specified and is assumed to be the same for each 

SNP. 
2) Generate simulated genotype of each simulated SNP based on binomial 

distribution. 

▪ The 1,000 datasets representing 1,000 individuals with their corresponding 
GRS was then used to simulate AOO of disease assuming a specified log HR (or 
SNP effect size) 

1) Data values for shape and scale parameters specified for the TTE model 
2) Data values for the log HR specified. 
3) GRS are entered into the TTE model as numeric covariate. 
4) Data values for hazard rate of censoring specified.  
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STEP 
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STEP 
2 

Generating GRS of individuals 

▪ The GRS for each individual are then constructed by summing the genotype values 
of each SNP based on the number of effect alleles present (0,1 or 2).    
1)  Specification of the number of SNPs to be included in GRS 
2) Generate simulated GRS of each simulated individual by summing the genotype 

values of each SNP based on the number of effect alleles present (0,1 or 2).    
3) Rescale GRS values to have a mean of zero and standard deviation of 1. 

 

 

Generating genotype of individual SNPs 
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continuous explanatory variable; (4) and specification of the baseline hazard rate which was 

based on the value BH= [-50/log(0.5)] to intially achieve a censoring rate of 50%. 

 

3.4.2.  | Statistical analysis of simulated GRS data 
 

The simulated GRS data was also assessed using the three different outcome measures, TTE, 

ordinal and binary outcomes which have been described in detail in section 3.2.5.1.  A similar 

process of data analysis was undertaken as in the analysis of the T2D GWAS datasets. However, 

the scope of the simulation study did not incorporate adjustment of the GRS for potential 

confounding factors.  As a result, the analysis considered the GRS as a single covariate in the 

regression models.  The disease status of individuals in the simulated datasets was based on 

their simulated disease status value where a value of one represented case (affected by the 

disease) and zero control (unaffected by the disease at end of study period).  In the case of the 

proportional odds model, the cut-off age used to define EAO in each GRS simulation scenario 

were based on 50% of the study period. For example, if time t=30, the EAO cut-off age would be 

(< 15).   

 

As in the case of the T2D GWAS datasets, data analysis was also conducted using the function 

coxph (R package survival), polr (R package MASS), and glm (R package stats) for the Cox PH, 

proportional odds and logistic model respectively.  The relative power between the Cox PH, 

logistic regression, and proportional odds models to detect an association with GRS was 

assessed at a nominal level of significance (p<0.05).  Outputted P-values associated with the 

estimated HR or OR were used to evaluate relative power between the models.      A description 

of the models fitted are outlined in Appendix B.  
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3.5.  | GRS simulation results 
 

The GRS simulation study findings are discussed in this section. The GRS simulation study 

focused for the most part on evaluating the relative power of the Cox PH, logistic and 

proportional odds models considered to detect an association between GRS and AOO of disease.  

As differences in performance of the Cox PH and logistic model have been attributed in part to 

the rate of censoring, the scope of the study has focused mainly on the impact of censoring on 

power.  The first section (3.5.1) evaluates power in a setting where there is a balance of cases 

and controls and where the logistic model is expected to be most powerful (i.e. 50% cases and 

50% controls).  The second section (3.5.2) examines the impact of both the censoring rate and 

GRS effect size.  Here the impact of low censoring rates was evaluated.  In the third section 

(3.5.3)   the impact of censoring was again considered along with variation in the number of 

SNPs contributing to the GRS.  Here the impact of high, moderate, and low censoring was 

evaluated. The scope of simulations incorporated specifically three primary characteristics 

pertaining to the GRS; (1) RAF; (2) Effect size (ES); and (3) number of SNPs from which the GRS 

was constructed. 

  

3.5.1.  | Impact of SNPs in GRS on power in presence of 
moderate censoring 

 

Simulating under a Cox PH model, the power to detect association of a GRS with AOO of disease 

as a function of the number of SNPs included in the GRS is presented in Figure 3.9.  A log HR of 

0.05 (HR=1.05) attributable to the GRS is assumed throughout the simulations. A perfect 

balance in terms of the number of cases and controls assessed is assumed (i.e. a censoring rate 

of 50%), where the logistic model is expected to be most powerful.  Different parameter settings 

pertaining to the RAF, which is assumed to be the same for all SNPs included in the GRS, are 

presented across the three plots.  In general, it was observed that power, which was evaluated 

at the 5% significance level, increases in relation to the number of SNPs used to generate the 

GRS which is as anticipated.  It was also noted that larger RAF among SNPs within the GRS 

resulted in greater power to detect an association with AOO of disease.  Therefore, the 

combination of more SNPs with larger RAF within a GRS results in greater power to detect an 

association with AOO.  In this setting where there is a balance regarding cases and controls little 
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difference in power is observed between the three models (Appendix B.5 Figure B.5.2 -B.5.3), 

however, the Cox PH model is marginally better, particularly for small effect sizes. 

 

 

 

 

 

 

 

 

 

Figure 3. 9 - Power to detect association of GRS with AOO of disease as a function of the 
number of SNPs in the GRS assuming an ES of 0.05 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS effect on 

the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate (green); logistic 
model with GRS as covariate (gold); Cox PH model with GRS as covariate (navy blue). 
Abbreviations:  RAF: risk allele frequency; ES: GRS effect size. 
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3.5.2.  | Impact of effect size of GRS on power in the presence 
of low censoring 

 

Figure 3.10 presents the power to detect association of a GRS with AOO of disease as a function 

of effect size.  Different parameter setting for the number of SNPs included in the construction 

of the GRS is presented across the four plots. The simulations assumed a RAF of 0.05 which was 

also assumed to be the same for all SNPs included in the GRS, as well as a low censoring rate of 

10%.  A difference in performance in favour of the Cox PH model can be distinguished for 

smaller effect sizes and fewer SNPs contributing to the GRS.  A similar trend is also observed in 

relation to low censoring rates of 20% and 30% (Appendix B.5.4 and B.5.5). 
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Figure 3. 10 – Power to detect association of GRS with AOO of disease as a function of the 
GRS effect size assuming a RAF of 0.05  
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS effect 

on the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate (green); 
logistic model with GRS as covariate (gold); Cox PH model with GRS as covariate (navy blue). 
Abbreviations:  RAF: risk allele frequency; SNP: number of SNPs included in the GRS calculation; t: study period 
(follow-up time) c: censoring rate. 
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3.5.3.  | Impact of SNPs in GRS on power in the presence of 
high to low censoring 

 

Presented in Figure 3.11 the power to detect association of a GRS with AOO of disease as a 

function of the number of SNPs included in the GRS.  A log HR of 0.05 (HR=1.05) attributable to 

the GRS was assumed throughout the simulation.  Additionally, a RAF of 0.05 was also assumed 

for all SNPs included in the GRS. Different parameter settings pertaining to the censoring rate 

are presented across the four plots.  The plots illustrate that for very high levels of censoring 

the performance of the three models was relatively similar, however, when there was a perfect 

balance of cases and controls the Cox PH was marginally better than both the logistic and 

proportional odds models.  On the other hand, when censoring levels were low, a marked 

difference in favour of the Cox PH model can be observed (See also Appendix B.5.6 – B.5.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

131 
 

 

 

 

 

 

 

 

 

Figure 3. 11 - Power to detect association of GRS with AOO of disease as a function of 
the number of SNPs in the GRS assuming a RAF of 0.05 and ES of 0.05 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS 

effect on the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate 

(green); logistic model with GRS as covariate (gold); Cox PH model with GRS as covariate (navy blue). 
Abbreviations:  RAF: risk allele frequency; ES: GRS effect size; t: study period (follow-up time) c: censoring 

rate. 



 
 

132 
 

3.6.  | Discussion 
 

GWAS have facilitated numerous discoveries associated with many common complex diseases 

which subsequently lead to the application of GRS.  GRS simultaneously assesses overall 

genomic risk at the individual level and therefore have the potential to predict disease risk in 

individuals.  The GRS approach has been employed to investigate the association of T2D GRS 

with AOO of T2D with the view to identifying the most powerful of the three statistical 

approaches considered, binary, ordinal and TTE outcomes framework. This was coupled with a 

GRS simulation study to further assess the relative statistical power between the three outcome 

measures.  A summary statistics meta-analysis to combine the results of the two datasets was 

also undertaken. 

 

In general, the logistic model performed better than the Cox PH model, which was somewhat 

surprising giving the expectation that EAO cases would exhibit a greater genetic burden than 

LAO cases.  Results from the simulation study seem to indicate that high rates of censoring 

results in relatively similar performance between the methods.  However, the Cox PH seemed 

to have the advantage, in terms of power, in a setting where there are very low rates of 

censoring.  In the analysis of the NUgene and WTCCC datasets, which reflects high rates of 

censoring 54% and 76% respectively, it was found that the models based on the logistic method 

performed better in both circumstances.   A likely contributing factor is the fact that the SNPs 

and weights applied in the construction of the GRS originated from models based on the logistic 

regression approach.  As a result, the analysis may be biased in favour of the logistic model. 

Moreover, as the data used in case control studies are collected retrospectively, such data are 

likely to be subjected to recall bias, particularly when it comes to AOO or age at first diagnosis 

(particularly for patients that have relocated, or instances where medical records are 

unavailable).  Furthermore, there are likely to be inconsistencies in the measurement of a 

characteristic like age particularly among cases and controls. Consequently, these limiting 

factors may have negatively impacted the TTE analysis. 

 

A general finding from the three modelling approaches indicates that the utility of the T2D GRS 

to detect an association with T2D status under a logistic regression model was substantially 

better when compared to the Cox PH model, which assessed the utility of the T2D GRS to detect 

an association with AOO of T2D.  Consideration was also given to the proportional odds 
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modelling framework which encompassed LAO and EAO, however, the proportional odds 

assumption was found not to be valid in both the NUgene and WTCCC datasets.  Of the four 

versions of the T2D GRS considered, the weighted nominally significant GRS was found to be 

the best predictor of the onset of T2D based on strength of association, as measured by the p-

value, with AOO of T2D and proportion of variance explained by the model.   However, it was 

also observed that greater effect sizes in relation to AOO of T2D or T2D status were attributed 

to the weighted genome-wide GRS models relative to the nominally significant GRS models.  

This translates to a smaller number of SNPs included in the GRS but which are more strongly 

associated with T2D and generating a greater effect on risk of T2D or AOO of T2D.   

  

As anticipated, BMI significantly impacts T2D status and AOO of T2D.  Controlling for the effects 

of the GRS also increases the effect size associated with T2D attributable to BMI but not 

substantially.  Furthermore, it was noted that controlling for the effects of GRS using weighted 

or unweighted GRS produced similar results, however, the nominally significant unweighted 

GRS were shown to have the greatest impact of the four versions of the T2D GRS considered.  

 

The nominally significant weighted GRS was found to be most strongly associated with T2D 

status based on the logistic regression model in both the meta-analysis and individual analysis 

of the NUgene and WTCCC studies. Furthermore, assessment of heterogeneity in the meta-

analysis indicated that there was evidence of heterogeneity for the nominally significant 

weighted and unweighted T2D GRS. However, there was no evidence of heterogeneity for the 

genome-wide significant weighted and unweighted T2D GRS. These results are consistent with 

findings from the statistical tests of differences in the mean GRS as the mean GRS of both the 

weighted and unweighted nominally significant GRS of cases in the NUgene study were 

significantly different from the cases in WTCCC study. A key limiting factor particularly for a 

clinically heterogeneous disease, such as T2D, is potential differences in the clinical definition 

of disease that may be applied in different studies or in different countries.  An International 

Classification of Diseases (ICD) -9 codes for T2D or laboratory evidence of hyperglycemia and 

prescribed T2D medication formed the basis of selection of cases in the NUgene study. However, 

current prescribed medication for T2D and historical or contemporary laboratory evidence of 

hyperglycemia formed the basis of selection of cases in the WTCCC study. 
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In conclusion, the results of this analysis have provided further insight regarding the utility of 

T2D GRS to detect an association with AOO of T2D in European ancestry populations.  However, 

the main challenge affecting the clinical implementation of GRS is their application to diverse 

global populations.  This is particularly problematic for T2D as T2D has global impact.  As a 

result, Chapter 4 builds on the work of this chapter as it examines the utility of the T2D GRS in 

diverse populations. 

  



 
 

135 
 

Chapter 4: Investigating the utility of genetic risk scores to 

detect an association with age-of-onset of disease in 

European, Asian, and African descended populations 

Chapter Outline 
Currently, the main challenge surrounding the clinical implementation of genetic risk scores 

(GRS) is that they are of far greater predictive value in European descended populations when 

compared to other populations.  This in part is because European derived GRS are optimized to 

capture common variants with higher minor allele frequencies (MAF) on average in Europeans 

compared to non-Europeans.  Also contributing to differences in performance is the fact that 

different ancestral populations tend to differ in respect to risk allele frequencies (RAF) and 

patterns of linkage disequilibrium (LD) structure.  To construct non-European GRS, European 

derived discovery single nucleotide polymorphisms (SNPs) is often used which given the 

present methodology is not as accurate at predicting disease risk in non-Europeans when 

compared to Europeans.  However, as non-European GWAS are often not large enough to 

produce powerful GRS, European derived SNPs are often used to construct non-European GRS.  

This chapter extends the work of the previous chapter, focusing on investigating the utility of 

GRS to detect an association with age-of-onset (AOO) of disease in ancestrally diverse 

populations.  The first aspect entails the application of GRS to investigate the association of AOO 

of type 2 diabetes (T2D) using data from the UK Biobank, where application of a European 

ancestry derived GRS in a European ancestry population was again explored.  Application of the 

European derived GRS was also extended to non-European populations, which comprised 

individuals of Asian and African descent from the UK Biobank where the relative performance 

of the GRS in each ancestry was compared.  A second aspect of the work involved further 

assessment of the utility of GRS in diverse populations where the focus was on identifying the 

conditions within each ancestry that are likely to influence the degradation in performance of a 

European ancestry derived GRS in non-European populations. 
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4.1.  | Introduction 
 

“Delivering the right treatments, at the right time, every time to the right person” were words 

spoken by President Barack Obama in 2015 in his State of the Union Address in reference to 

precision medicine.  Precision medicine is broadly defined as the use of diagnostic tools and 

treatments targeted to the needs of the individual patient on the basis of genetic, biomarker, or 

psychosocial characteristics  [243].  By 2018, echoes of “A treatment plan like this — tailored to 

an individual’s genetic risk — is one of the great promises of precision medicine” [244].  Gene 

discoveries resulting from common disease GWAS have aided the emergence of GRS as a 

potential biomarker for predicting risk for many common diseases. Currently, however, the 

main challenge surrounding the clinical implementation of GRS is that they are of far greater 

predictive value in European descended populations [190, 245].   The performance of GRS 

which are primarily based on SNPs derived from GWAS undertaken in European ancestry 

populations are affected by RAF and LD that differ among different ancestral populations.  

These differences, RAF, and LD structures, as well as differences in effect sizes across 

populations which is impacted by LD structure, overall have implications for statistical power.  

Therefore, to pinpoint the causes of diseases more effectively or quickly, broadening the scope 

of scientific inquiry to acquiring a better understanding of genomics in all populations on a 

global scale may be the key to improving disease risk prediction for people of all ancestries.  To 

this end, the utility of a European ancestry derived GRS to detect an association with AOO of 

T2D in European, Asian, and African populations was explored. 

 

4.1.1. | Global Impact of T2D 
 

 T2D has now attained the status of a global pandemic, affecting all regions around the world 

[246].  The prevalence of diabetes on a global level has been increasing over recent decades. 

Estimates for 2017 based on the International Diabetes Federation (IDF) diabetes atlas, 

standardized for the age group 20-79 years, estimated global diabetes prevalence to be 8.8% 

(95% confidence interval 7.2-11.3%) [247].   However, estimates from 1980, based on adults 

over the age of 18, reported the global prevalence of diabetes at 4.7%, which increased to 8.5% 

in 2014 [181]. 

 

The IDF diabetes atlas classifies the world population into 7 regions that comprise: Africa 

(AFR); Europe (EUR); Middle East and North Africa (MENA); North America and the Caribbean 
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(NAC); South and Central America (SACA); South East Asia (SEA) and Western Pacific (WP).  It 

ranked NAC number 1 based on prevalence of diabetes for persons aged 20 to 79 (Appendix C 

Table C.1.1) while MENA was ranked 2.  Furthermore, the region of AFR, though ranked lowest 

in terms of prevalence, experienced the largest proportion of all deaths due to diabetes 

occurring before age 60 (Appendix C, Table C.1.2).  A global view of prevalence is illustrated in 

Figure 4.1. 

 

  

 

 
 

 
 
 
 
 
 
 
 

The countries that contained the largest number of adults living with diabetes worldwide 

include China and India (ranked 1 & 2 respectively), both of which form part of the SEA region.  

Other countries that made up the top ten countries containing the largest number of adults with 

diabetes include: the United States of America (USA, part of NAC region); Brazil and Mexico 

(part of SACA region); Indonesia (part of the SEA); the Russian Federation and Germany (part 

of EUR region); and Egypt and Pakistan (part of MENA region).  A global view of the estimated 

Source: International diabetes federation (IDF) diabetes atlas, eighth edition 2017 

Figure 4. 1- Estimated age-adjusted prevalence of diabetes in adults (20-79 years), 
2017 
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total number of adults (20-79 years) living with diabetes is illustrated in Appendix C Figure 

C.2.1. 

 

4.1.2. | Ancestral and geographic composition of individuals in 
GWAS 

 

At the inception of GWAS, the practice of conducting studies in ancestrally homogeneous 

populations was established.  This course of action was taken primarily because of concerns 

about the validity of GWAS findings due to unrecognized population structure within 

heterogeneous populations.  LD the mechanism that underpins GWAS methodology, tends to 

vary between ancestral groups, which adds to the complexity of undertaking GWAS in diverse 

geographical populations.  In association testing, population structure has the potential to cause 

inflated type I error rates (false positives) due to geographical confounding between the disease 

and SNPs.  Simultaneously inflation in the type II error (false negatives) may also occur resulting 

from LD differences among ancestries which can potentially bias estimates of effect sizes [248].  

Due to these concerns regarding population structure, the application of GWAS was primarily 

based in homogenous populations.  In 2009, 96% of participants in GWAS studies were of 

European ancestry and, more recently, this figure was estimated to be 88% (2017) [249].  In 

the long run, having GWAS discoveries based primarily on European ancestry populations 

(people of European ancestry are estimated to represent only 16% of the world population) 

may present problems particularly for diseases like T2D that have global impact.  The lack of 

GWAS in geographically diverse ancestral populations has the potential to negatively impact 

the implementation of precision medicine as segments of the world population may be unable 

to benefit from the clinical or therapeutic advances stemming from such research [250]. This is 

the case owing to the likelihood of a biased picture emerging regarding which variants are 

important in relation to disease risk.  Moreover, increasing diversity of geographic ancestry is 

critical to prevent genomics from further contributing to healthcare inequalities [251].  

Treatment of asthma and cardiovascular disease are two examples of commonly available 

medications that were found not to work as effectively in non-European ancestry populations  

[252]. 
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4.1.3. | Recognising the benefits of ancestral diversity in GWAS 
 

In recent years, there has been increasing recognition that, although ancestral diversity 

presents many challenges, it also provides many opportunities in the context of gene 

discoveries. “Its not that people of different ethnic backgrounds have wildly different biology. Its 

more subtle, and fascinating that, we need to explore the vast range of human genetic variation: 

It could end up saving us all”  [244]. Furthermore, in 2013, a life science research associate at 

Stanford University, Andres Moreno-Estrada, MD, PhD was also  quoted as saying, “If we don’t 

understand the origin of our genetic variants, we won’t be able to design personalized, or even 

population-level medicine” [253]. 

 

Ancestral diversity in GWAS is now regarded as key to providing more accurately targeted 

therapeutic treatments to more of the world population [254].  The additional benefits noted 

include extended insight underlying the genetic architecture of diseases; greater capacity to 

uncover rare variants with significant effect sizes (as rare variants in European populations 

may exist at higher rates in other ancestries), particularly in isolated populations [249].   There 

is also the possibly that variants that are monomorphic (a SNP is defined as monomorphic in a  

population if only one allele occurs at a site or locus [255]) in European populations may be 

present in non-Europeans. 

 

4.1.4. | Application of GRS in ancestrally diverse populations 
 

Current research has illustrated the potential of GRS to improve risk prediction for common 

diseases in the long term.  However, a major shortcoming of GRS is that they are often derived 

of European ancestry populations and as such are therefore optimized for use within this 

population.  Consequently, owing to the bias of GWAS to European ancestry populations, GRS 

tend to perform sub-optimally in other non-European ancestry populations [256]. This 

diminished predictive power of GWAS is due in part to differences in the pattern of LD among 

ancestry groups, which in turn drives differences in effect size estimates across ancestry groups 

[257].  Adding to this is the tendency for the risk allele associated with most significant SNPs to 

be more common in the population in which it was discovered.  It has been noted that GWAS 

catalogue variants are on average more common in European descent populations when 

compared to Asian and African descent populations [257].  While discovered variants may be 
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common in European populations, they may be rare in non-European populations, and thus 

have less predictive power. 

 
Although the scope of common disease GWAS has extended to include both low frequency (MAF 

1 – 5%) and rare variants (MAF < 1%), the fundamental framework which forms the basis of 

GWAS, “common disease” “ common variant” has implications on the performance of the GRS 

across different ancestral populations.   This is due to the fact that most GWAS discoveries have 

MAF > 5% in the discovery population.  Furthermore, in some instances, a SNP may be 

monomorphic (defined in section 4.1.5) in a population.    Moreover, some risk variants may be 

ancestry-specific, and therefore monomorphic in other ancestral populations [258]. For 

example, the T2D AGMO  gene locus (rs73284431) identified in an African ancestry population 

is monomorphic in non-African ancestry populations [258].   This is likely to substantially 

impact the performance of the GRS in different populations.  

 

Approaches to the construction of GRS in relation to LD is an importannt consideration. In 

GWAS, the identified associated SNP is most often not the causal variant but rather a tag SNP in 

LD with the causal variant.  Therefore, variation in LD structure between ancestry groups may 

result in ancestry-specific tagging of the same causal SNP.  Moreover, the process of LD pruning 

in European ancestry populations potentially may result in the removal of non-European 

ancestry-specific tag SNPs.  Consequently, the applied LD pruning strategy has implications for 

the performance of the GRS, as the causal SNP may no longer be well tagged in non-European  

ancestry populations after the process of LD pruning. 

 

Given the global impact of T2D, a more in-depth understanding of population specific 

characteristics, particularly as it relates to the variation in patterns of LD structure across 

ancestral populations and allele frequency is essential.   In this chapter, the application of 

European-ancestry derived GRS to investigate the association of AOO of T2D in European and 

non-European ancestry populations is explored.  The relative performance of the GRS in each 

ancestry is compared, where the non-European populations comprised those of Asian and 

African descent.  To identify the conditions within each ancestry that are likely to influence the 

degradation in performance of a European ancestry derived GRS in non-European populations, 

further assessment of the utility of GRS in diverse populations was also undertaken. 
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4.2.  | T2D GRS methods 
 

In this section, aspects of the process undertaken to construct the T2D GRS used to assess the 

association of AOO of T2D are described. Included are details pertaining to the base GWAS 

(European ancestry T2D GWAS meta-analysis published at the end of 2018) from which the 

selected SNPs and their associated summary statistics were sourced [259].  The target GWAS 

(UK Biobank dataset) genotyped samples used to test the performance of the GRS is also 

described. 

 

4.2.1. | Identification of disease-associated SNPs 
 

Base GWAS: A study published at the end of 2018, which undertook locus discovery and fine-

mapping in European ancestry T2D GWAS, formed the basis of the GRS that were constructed 

to investigate their association with AOO of T2D  [259].   This study combined GWAS association 

summary statistics via meta-analysis from 32 European ancestry studies imputed to two 

different reference panels, 1 from a population-specific reference panel, while the others were 

imputed from the Haplotype Reference Consortium (HRC) reference panel.  The study identified 

243 genome-wide significant loci with odds ratios (OR) ranging from 1.04 to 8.05 and MAF 

ranging from 0.02% to 50%.  The analysis also incorporated assessment of the impact of 

obesity, where models unadjusted and adjusted for body mass index (BMI) were evaluated  

[259].  

 

Using the BMI unadjusted summary statistics from this published study, it was possible to 

acquire information for SNPs known to be associated with T2D.  It was possible to extract the 

SNP IDs along with their corresponding p-value and effect size as measured by their OR values.   

In addition to SNP identifier details, other associated information collected included details 

pertaining to the effect allele (EA), alternative allele (NEA) and effect allele frequency (EAF) 

(Appendix C Table C.3.1).   

 

Target GWAS: The utility of the T2D GRS in detecting an association with AOO of T2D was 

evaluated in European, Asian, and African descended populations using data originating from 

the UK Biobank.  The UK Biobank is a prospective cohort study consisting of approximately 

500,000 individuals recruited between 2006 and 2010 from across the UK.  The data collected 
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from these individuals, who were aged between 40 and 69, included their DNA sample, along 

with demographic and health information. Provided health information relevant to this 

investigation included T2D status; sex; ethnicity, BMI; genotyping microarray; enrolment age 

in relation to controls, and in relation to individuals with T2D, AOO of the disease [260]. 

Genotyping of DNA samples was carried out using the Affymetrix UK BiLEVE Axiom Array and 

Affymetrix UK Biobank Axiom Array.  Phasing and imputation were based on the HRC, 1000 

Genomes phase 3 and UK10K reference panels  [261].   A general overview of the characteristics 

of the UK Biobank dataset are given in Table 4.3.  Before the dataset was used in data analysis, 

the samples were checked for the presence of related individuals or duplicate samples.  As 

indicated in Chapter 1 section 1.4.3.3, the identity by descent (IBD) is a measure of how strongly 

pairs of individuals may be related. It is often used to remove related individuals or duplicate 

samples based on an IBD metric (pi-hat) threshold value > 0.1875 [25]. 

 

4.2.2. | Identifying individuals of European, Asian, and African 
ancestry 

 

Individuals in the UK Biobank dataset who self-reported as being of European, Asian, or African 

descent formed part of the initial samples.  However, to confirm ancestry, the first two principal 

components (PCs) along with self-reported ancestry were used to identify individuals deemed 

to be ancestry outliers.  This approach is often used as at the continental level most of the 

variation in ancestry is explained by the first two PCs. The procedure generally used to 

construct PCs is described in detail in Chapter 1 section 1.5.2. 
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Figure 4. 2 - Identification of ancestry outliers based on first two principal 
components using 95% confidence levels 
The x axis indicates the principal component 1, while the y axis indicates the principal component 2.   
Each individual is represented by a dot with the colours representing the selected and excluded (outliers) 
individuals in each population.  Red (Outliers) selected (purple European; blue Asian; green African).  
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For each ancestry, the R function stat_ellipse from the R package “ggplot2”  [262] was used to 

generate an ellipse of the data that was assumed to be normally distributed.  The calculation 

was based on the mean of both PC1 and PC2 and the covariance matrix.  The resulting ellipse 

contained a defined percentage, in this instance 95%, of the original data.  From the ellipse, it 

was possible to identify the individuals that fall inside the ellipse and individuals that fall 

outside the ellipse (ancestry outliers). Individuals deemed to be ancestry outliers were 

removed from the sample (Figure 4.2).   

 

4.2.3. | Development and construction of GRS 
 

The 243 lead SNPs identified in the base GWAS were extracted from the UK Biobank dataset.   

At the start of the process, a check was made to ensure that the SNPs included in the target 

sample (UK Biobank data) match the selected SNPs from the base GWAS.  The alignment of the 

EA of each SNPs was then checked. If the EA of the SNPs were not in alignment, the EA in the 

target GWAS was aligned with the base GWAS by flipping the EA in target GWAS to be the same 

as in the base GWAS.  If the EA in the target GWAS was flipped, the corresponding genotype 

dosage for each individual was adjusted using the formula (2 – current dosage value).  The 

formula used to calculate the GRS for each individual in the sample is outlined in section 1.6.3.1.   

Two different versions of the GRS were constructed, the first based on weightings derived from 

the effect size (log OR) in the base GWAS, and the second unweighted, which assumes that each 

SNP contributes equally to the risk of T2D. 

 

4.2.4. | Statistical analysis 
 

This section outlines the procedures undertaken in the analysis of the European, Asian, and 

African ancestry T2D genotyped GWAS datasets originating from the UK Biobank.  This includes 

the main statistical methods and statistical software tools applied in the data analysis.  As in 

Chapter 3, AOO of T2D was again analysed with the Cox PH, and logistic models, where within 

each statistical approach the pseudo R2 measure was applied to assess the relative performance 

of nested models. 
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4.2.4.1.  | Statistical analysis of individual T2D GWAS datasets 

 

A similar process, as described in section 3.2.3.1, was undertaken in relation to the application 

of each analytical approach.  The analysis for each ancestry group was conducted 

independently.   The association of T2D GRS and AOO of T2D was again assessed in a TTE, and 

logistic regression framework where the relative performance of the T2D GRS in each of the 

ancestry groups was compared.   In the case of the TTE analysis, based on the Cox PH model 

(described in Equation 1.9 section 1.7.2), two different analyses were carried out.  As there are 

situations where the use of controls may not be appropriate, the first analysis entailed a case 

only analysis, where only individuals diagnosed with T2D were included in the model.  The 

second analysis comprised both cases of T2D and controls, where controls were censored at 

their current age at the end of the study period.  The hazard ratio (HR) of the GRS (predictor of 

interest in the model) for AOO of T2D was estimated using the function (coxph) of the R package 

(survival).  Sex, BMI, and ancestry principal components (used to adjust for the effects of 

confounding due to population structure), and in the case of the European ancestry group, type 

of genotyping microarray, were included in the model as covariates. Adjustment for genotyping 

microarray was not necessary for the non-European ancestry samples as the single Affymetrix 

UK Biobank Axiom Array was used. 

 

The second outcome measure relates to the binary logistic model described in section 1.7.4. 

Equation 1.12 illustrates the relationship of the logit-transformed probabilities associated with 

disease outcome which was modelled as a linear relationship with the predictor variable which 

in this instance was the GRS.  To address confounding the variables listed above (Sex, BMI 

ancestry PCs, and type of genotyping microarray) were included as covariates in the model. 

Additionally, age was included as a covariate. The OR of the GRS for T2D was estimated using 

the function (glm) of the R package (stats). 

 

Further analysis, where single SNP association analysis involving each of the 81 SNPs included 

in the T2D GRS with T2D were undertaken.  The association of T2D status with each SNP 

independently were assessed using SNPtest in R and the association of AOO of T2D with each 

SNP independently using the function (coxph) of the R package (survival).  All tests were 

adjusted for confounding (Sex, BMI ancestry PCs, and type of genotyping microarray included 

as covariates). 
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4.2.4.2.  | Evaluating performance of T2D GRS models 

 

As in Chapter 3, the Nagelkerke pseudo R2 measure (discussed in Chapter 1) was applied for all 

three analytical approaches to quantify the amount of variation attributable to the GRS.  To 

determine the proportion of variance in AOO explained by the T2D GRS after adjustment for 

confounding variables (Sex, BMI ancestry PCs, and type of genotyping microarray), the R2 

values between nested models were compared.  Therefore, the proportion of variance explained 

represents the difference in R2 after adjustment for confounding variables where the full model 

(confounders and GRS) was compared to a reduced model (confounders only), described 

further in Table 4.1. 

 

 Table 4. 1 - Description of models used in the analysis of T2D GRS 

Model Terms included in model 

(1) GRS reduced models Covariate(s): 
     (X s) - Sex:  male=0; female =1 

(X m) - genotyping microarray:  UK BILEVE=0; UK Biobank =1 
 

(X d) - BMI: continuous covariate measured in kg/m2 
(Xc1) - Xc3) - PC1 – PC10: principal components used to account for 
population structure) 

(2) adjusted (full) model Variable of interest: 
(X g1) - GRSw: weighted GRS 

Covariate(s): 
(X s) - Sex:  male=0; female =1 
(X m) - genotyping microarray:  UK BILEVE=0; UK Biobank =1 
 

(X d) - BMI: continuous covariate measured in kg/m2 
(Xc1) - Xc3) - PC1 - PC3: principal components used to account for 
population structure)  
 

Description 
Versions of GRS 

 (X g1) - GRSw: weighted GRS  

     (X g2) - GRSu: unweighted GRS 
 

 

As indicated in section 3.1.1 and 3.2.3.2 obesity is an important modifiable risk factor for  T2D.  

It is also known that the relationship between obesity and T2D varies with geographical areas 

and ancestry.   To explore the association of BMI (the most commonly applied marker used to 

assess risk for T2D) and AOO of T2D while taking into account the different verisons of the T2D 
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GRS, BMI models were also assessed.  Therefore, the extent to which BMI explains the variation 

in AOO of T2D was also considered.  In these models the full model consisting of the confounding 

variables which included the GRS and BMI was compared to a reduced model consisting of the 

confounding variables which included the GRS, while BMI was excluded in these models (Table 

4.2). 

 

Table 4. 2 - Description of models used in the analysis of T2D GRS and BMI 

Model Terms included in model 

(1) BMI reduced models Covariate(s): 
Model 1: 

(X s) - Sex:  male=0; female =1 
(X m) - genotyping microarray:  UK BILEVE=0; UK Biobank =1 
(Xc1) - Xc3) - PC1 - PC3: principal components used to account for 
population structure)  
(X g1) - GRSw: weighted GRS 
 

(2) adjusted (full) model Model 1: 
Variable of interest: 

 (X d) - BMI: continuous covariate measured in kg/m2 

Covariate(s): 
(X s) - Sex:  male=0; female =1 
(X m) - genotyping microarray:  UK BILEVE=0; UK Biobank =1 
 (Xc1) - Xc3) - PC1 - PC3: principal components used to account for 
population structure)  
(X g1) - GRSw: weighted GRS 
 
 

Description 
Versions of GRS 

 (X g1) - GRSw: weighted GRS  

     (X g2) - GRSu: unweighted GRS 
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4.3.  | T2D GRS results 
 

This section presents the results of the investigation of the utility of a European ancestry 

derived T2D GRS to detect an association with AOO of T2D in European, Asian, and African 

ancestry populations in the UK Biobank.  Section 4.3.1 provides an overview of the underlying 

general characteristics and GRS profile within each ancestry group included in the ancestry-

specific analysis of T2D GRS. Presented in section 4.3.2 are the results of the single SNP 

association analysis in relation to T2D status and Cox PH analysis for AOO of T2D.  This is 

followed by an account of the findings of the association analysis based on cases only Cox PH, 

cases and controls Cox PH and binary logistic models for T2D GRS.  The models are first assessed 

in terms of the size of estimated effect and strength of association resulting from the GRS 

(section 4.3.3) and second in terms of the variance in AOO of T2D explained by the GRS based 

on the Nagelkerke pseudo R2 measure (section 4.3.5).   Analysis focused on assessing the impact 

of BMI are presented in section 4.3.4 and 4.3.6. 

 

4.3.1. |  Profile of GWAS datasets 
 

Table 4.3 presents a summary of the general characteristics of each ancestry group included.  

The analysis of T2D GRS consisted of 366,422 European; 7,937 Asian; and 6, 387 African 

ancestry individuals.  Within these three main ancestry groups, European, Asian, and African, 

there were 15,028 (4.1%); 1,252 (15.8%); and 628 (9.8%) cases of T2D, respectively.   
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Table 4. 3 - General descriptive characteristics of T2D cases and controls in European, 
Asian, and African descended populations 

Characteristics 
T2D Status 

Cases Control 

European ancestry population 

Total (N, %) 15,028 (4.1%) 351,394 (95.9%) 

Sex (n, % female)       5,252 (34.9%) 192,146 (54.7%) 

Age (years)     

Mean (SD) 53.77 (9.55) 56.57 (8.02) 

Median 55 58 

Range (Min-Max) 1 - 70 39 - 73 

BMI (Body Mass Index)     

Mean (SD) 31.92 (5.81) 27.17 (4.61) 

Median 31.14 26.54 

Range (Min-Max) 16.47 - 74.68 12.12 - 68.41 

Asian ancestry population 

Total (N, %) 1,252 (15.8%) 6,685 (84.2%) 

Sex (n, % female)   407 (32.5%) 3,195 (47.8%) 

Age (years)     

Mean (SD) 48.06 (11.37) 52.48 (8.42) 

Median 50 52 

Range (Min-Max) 1 - 69 40 - 70 

BMI (Body Mass Index)     

Mean (SD) 28.69 (5.05) 26.89 (4.2) 

Median 27.81 26.37 

Range (Min-Max) 17.24 - 60 14.87 - 58.91 

African ancestry population 

Total (N, %) 628 (9.8%) 5,759 (90.2%) 

Sex (n, % female)       305 (48.6%) 3,292 (57.2%) 

Age (years)     

Mean (SD) 48.86 (10.62) 51.22 (7.79) 

Median 49 50 

Range (Min-Max) 1 - 69 39 - 70 

BMI (Body Mass Index)     

Mean (SD) 31.53 (5.93) 29.3 (5.21) 

Median 30.46 28.59 

Range (Min-Max) 17.69 - 68.13 19.28 - 59.37 
Descriptions: N: overall sample size; n: subgroup sample size; Age: for cases age refers to AOO of T2D and 

controls age at enrolment; SD: standard deviation; Min: minimum; Max: maximum; BMI: body mass index 
measured in kg/m2. 
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The general characteristics considered include sex, age (AOO for cases) and BMI.  It was noted 

that more than 50% of controls in European and African population were female (54.7% and 

57.2% respectively), compared to 47.8% in the Asian population.   Among cases, however, the 

proportion of females was lower than males, with the highest proportion of females occurring 

in the African population (48.6%) compared to 34.9% and 32.5% respectively in the European 

and Asian population.  Furthermore, it was noted that both cases and controls, on average, were 

younger in Asian and African populations when compared to the European population.  Among 

cases, the mean AOO was 48.06, 48.86, and 53.77, respectively, in Asian, African, and European 

ancestry populations.  It was further noted for T2D, which typically occurs in adulthood, that 

inspection of the distribution of AOO revealed a small number of outliers with earlier AOO than 

expected.  However, the percentage of T2D cases in the population with AOO 20 years or less 

was just 0.06% (228), 0.57% (45) and 0.22% (14) in the European, Asian, and African ancestry 

populations, respectively, and thus would not be expected to impact on results.  It was also 

observed that, in general, cases had on average a higher BMI when compared to controls in all 

populations.  Additionally, cases in the European and African populations had a higher BMI on 

average when compared to the Asian population. 
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Figure 4.3 presents the profile of the distribution of the weighted GRS within each ancestry 

group according to T2D status for the European, Asian, and African ancestry populations. The 

GRS distribution of cases of T2D (CAS) and controls (CTL) within the three ancestry groups is 

presented.  The mean weighted GRS across the three ancestry groups in relation to T2D cases 

was 17.13, 17.26 and 17.06 respectively for European, Asian, and African ancestry populations. 

As it relates to controls within the European, Asian, and African ancestry groups the mean 

weighted GRS was 16.74, 17.02 and 16.97, respectively. 

Figure 4. 3 - Distribution of weighted GRS and T2D status in European, Asian, and 
African descended populations 
The distribution of GRS for cases T2D (purple) and controls (light blue) is shown.  The horizonal dotted 
line represent the means.  
Abbreviations: CTL: controls; CAS: cases of T2D. 
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Figure 4.4 presents the profile of the distribution of the unweighted GRS within each ancestry 

group according to T2D status.  Illustrated is the GRS distribution in relation to cases of T2D 

(CAS) and controls (CTL) within the three ancestry groups.  Among T2D cases the mean 

unweighted GRS across the three ancestry groups were 239.72, 242.14 and 242.25 respectively 

for European, Asian, and African ancestry groups.  For controls the mean unweighted GRS for 

European, Asian, and African ancestry groups were 234.58, 239.16, and 241.01, respectively. 

 

 

Figure 4. 4 - Distribution of unweighted GRS and T2D status in European, Asian, and 
African descended populations 
The distribution of GRS for cases of T2D (purple) and controls (light blue) is shown.  The horizonal dotted 
line represent the means.  
Abbreviations: CTL: controls; CAS: cases of T2D. 

 



 
 

153 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 depicts the relationship between GRS and AOO of T2D in the European, Asian, and 

African populations.  A small, but consistent, negative correlation between GRS and AOO of T2D 

was observed across all three ancestries.  The correlations were not significant in the Asian and 

Figure 4. 5 - Relationship of GRS and AOO of T2D in European, Asian, and African 
populations 
The x-axis indicates the AOO of T2D and the corresponding GRS is shown on the y-axis for each 

individual in the European, Asian, and African populations.   Each point represents the individuals 
included in the samples. 
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African ancestry populations because of the smaller sample size, but the trend of earlier AOO 

for higher GRS was consistent.  

 
 

4.3.2. | Single-SNP association with T2D status and AOO of T2D 
 

Single SNP analysis was undertaken to assess the association of each European derived SNP 

independently within the European, Asian, and African ancestry populations from the UK 

Biobank in respect to both risk of T2D and AOO of T2D.  This assessment was essential to gauge 

how well the European derived SNPs that form the basis of the T2D GRS were likely to perform 

in non-European ancestry populations.  Given the much smaller sample size in the Asian and 

African ancestry populations, relative to the European ancestry population, consideration was 

given to both nominal and genome-wide significance across the three ancestry groups. 

 

Figure 4.6 summarises the results of the test of the single SNP association with T2D status 

adjusted for age, sex, BMI, population structure via 10 PCs and, in the case of the European 

ancestry population, type of genotyping microarray used (further details are also summarised 

in Appendix C.4 Table C.4.1 -Table C.4.5).  Given that the SNPs used to construct the T2D GRS 

were primarily European ancestry derived, coupled with a much larger sample size, it was 

unsurprising that the majority of SNPs achieved at least nominal significance (234 SNPs) in the 

European ancestry population.  In contrast, the number of SNPs achieving nominal significance 

was far less in the Asian and African ancestry populations, where 33 and 18 SNPs respectively, 

were nominally significant.  Furthermore, it was noted that among the SNPs attaining nominal 

significance, six were common to all three ancestral populations; rs2972144 (near gene 

IRS1),   rs11708067 (near gene  ADCY5), rs3774723 (near gene PSMD6), rs7903146 (near gene 

TCF7L2),  rs141521721 (near gene PDE3B), and rs10406431 (near gene GIPR). 
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Figure 4. 6 - Single SNP association with T2D using 243 genotyped SNPs in 
European, Asian, and African descended populations. 
 The x axis indicates the chromosomal position of each SNP, while the y axis indicates the statistical 
significance of the association of each SNP with T2D represented by -log10 (p-values).  Each SNP is 
represented by a dot with the colours representing the different chromosomes (SNPs attaining 
nominal significance in all three ancestries are highlighted by gold dots).  The horizontal red line 
indicates the genome-wide significance threshold, while the gold indicates the nominal significance 
threshold. 
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At the genome-wide significance level, overall, 51 SNPs were found to be significant with T2D 

status in the European population and one in the Asian population.  None of the SNPs evaluated 

achieved genome-wide significances in the African ancestry population although this could 

partly be due to the much smaller sample size for this population.  It was further noted that the 

SNP rs7903146, mapping near the TCF7L2 gene, was the most highly significant SNP across all 

three populations, achieving genome-wide significance in both the European and Asian 

ancestry populations. 

 

The results of the test for a single SNP association with AOO of T2D based on the Cox PH model 

is given in Appendix C.5 Table C.5.1 – Table C.5.3.   At the genome-wide significance level, 57 

SNPs were found to be associated with AOO of T2D in the European ancestry group.  As with 

T2D risk, rs7903146, mapping near the TCF7L2 gene, was also found to be associated with AOO 

of T2D in the Asian ancestry population.  Considering nominal significance for the Asian and 

African ancestry populations (as none of the SNPs achieved genome-wide significance), 34 and 

16 SNPs respectively were found to be associated with AOO of T2D. 

 

4.3.3. | Association of GRS with AOO of T2D 
 

In this section, the relative performance of the T2D GRS in the European, Asian, and African 

ancestry populations was evaluated in each of the three analytical approaches (cases only Cox 

PH, cases and controls Cox PH, and binary logistic analysis). Additionally, as part of the 

evaluation, the performance of the weighted and unweighted T2D GRS was considered. 

 

4.3.3.1.  | Association of weighted GRS with AOO of T2D 

 

Illustrated in Figure 4.7 are model estimates relating to the European, Asian, and African 

ancestry populations.  For each of the three analytical approaches that featured the Cox PH and 

logistic models, the estimated HR of AOO of T2D or OR of T2D status associated with the 

weighted T2D GRS was compared across the three ancestries considered.  Potential 

confounding in respect to sex, population structure (using 10 PCs), type of genotyping 

microarray, BMI, and age at enrolment in the case of the logistic model have been taken into 

consideration. 
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In the analysis based on the cases only Cox PH model the estimated HR in the adjusted GRS 

model in the European population was found to be the most highly significantly associated with 

AOO of T2D of the three ancestral populations evaluated.  Additionally, it was observed that the 

CI of all three populations overlapped.  However, although the estimated HR in the European 

ancestry population was the smallest of the three groups, the CI in the European was much 

narrower compared to the Asian and African ancestry populations.  The estimated HR 

pertaining to the European, Asian, and African ancestry populations was 1.12 (95% CI 1.09 - 

1.15:   p = 4.4 x 10-18) and 1.13 (95% CI 1.03 – 1.24: p = 1.1 x 10-02) and 1.15 (95% CI 1.01 – 1.32: 

p = 4.0 x 10-02) respectively.  Based on the cases and controls Cox PH model, the European 

population was also found to be the most highly significantly associated with AOO of T2D among 

the three ancestries evaluated.  Additionally, it was observed that the estimated HR in the 

European population was both larger and CI much tighter when compared to the Asian and 

African ancestry populations.  The estimated HR in the adjusted GRS model in the European 

population, the largest of the three ancestries considered, was 2.5 (CI: 2.5 - 2.6: p = 4.7 x 10-

1214); Asian 1.9 (CI: 1.8 - 2.1: p = 3.6 x 10-44); and African 1.3 (CI: 1.2 - 1.5: p = 1.8 x 10-05).    
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Figure 4. 7 - Comparison of estimated ES of AOO of T2D associated with the weighted 
GRS for European, Asian, and African descended populations 
The x-axis indicates the HR or OR and 95% CI for each GRS model shown on the y-axis.  The analysis 

methods included are the cases only Cox PH model; cases and controls Cox PH model; and logistic model.. 

The weighted (wei) GRS models which have been adjusted for sex, ancestry principal component to 
account for population structure, type of microarray used for genotyping of SNPs and BMI are denoted 

(purple),  (blue) and  (green) which refers to the  African, Asian and European ancestry populations. 
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Regarding T2D status, the T2D GRS was found to be most highly associated with T2D status, in 

the European ancestry population followed by the Asian ancestry population.  Additionally, for 

the European ancestry population, it was observed that the estimated OR was both larger and 

CI much tighter when compared to the Asian and African ancestry populations.  In the logistic 

model the estimated OR in the adjusted GRS model in the European population was 2.6 (CI: 2.6 

- 2.7: p = 1.1 x 10-1064); Asian 1.9 (CI: 1.7 - 2.1: p = 6.3 x 10-33); and African 1.3 (CI: 1.2 - 1.5: p = 

1.3 x 10-04). 

 

In general, among the three analytical approaches considered, the weighted T2D GRS models 

were highly significantly associated with AOO of T2D across the three ancestries for the cases 

and controls Cox PH, and logistic models. The cases only Cox PH model, however, was highly 

significant only in the European ancestry population.  Within the European and Asian ancestry 

populations, the Cox PH model consisting of both cases and controls were found to be the most 

strongly associated of the three approaches.  The performance of the weighted GRS model in 

the African ancestry population was similar for both the cases and controls Cox PH model and 

logistic model. 

 

 

4.3.3.2.  | Association of unweighted GRS with AOO of T2D 

 

Represented in Figure 4.8 are model estimates pertaining to the European, Asian, and African 

ancestry populations.  In this instance the estimated HR of AOO of T2D or OR of T2D status 

associated with the unweighted T2D GRS were considered, which were based on three 

analytical approaches incorporating the Cox PH, and logistic models.  The European population 

was found to be the most highly significantly associated with AOO of T2D in the case only Cox 

PH analysis (European: p = 2.1 x 10-12).  This was followed by the Asian ancestry population. 

However, the T2D GRS was found not to be significantly associated with AOO of T2D in the 

African ancestry population. It was noted that although the estimated HR in the European 

ancestry population was the smallest of the three groups, the CI in the European was narrower 

compared to the Asian and African ancestry populations.  The GRS in the European population 

was also found to be the most highly significantly associated with AOO of T2D among the three 

ancestries evaluated in the cases and control analysis.   The estimated HR in the European 

population, which was larger relative to the Asian and African ancestry were also characterized 
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by a narrower CI.  The HR estimated for each ancestry based on the cases and controls Cox PH 

model was European 1.06 (CI: 1.058 – 1.062: p = 5.8 x 10-955); Asian 1.04 (CI: 1.03 – 1.04: p = 3.9 

x 10-29); and African 1.02 (CI: 1.01 - 1.03: p = 6.7 x 10-05).   

 

 

 

 

 

 

 

 

 

Figure 4. 8 - Comparison of estimated ES of AOO of T2D associated with the 
unweighted GRS for European, Asian, and African descended populations. 
The x-axis indicates the HR or OR and 95% CI for each GRS model shown on the y-axis.  The analysis 

methods included are the cases only Cox PH model; cases and controls Cox PH model; and logistic model. 

The unweighted (unw) GRS models which have been adjusted for sex, ancestry principal component to 
account for population structure, type of microarray used for genotyping of SNPs and BMI are denoted 

(purple),  (blue) and  (green) which refers to the  African, Asian and European ancestry populations. 
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In the logistic analysis, where the association between T2D status and T2D GRS was evaluated, 

the most strongly associated T2D GRS was once again observed in the European ancestry 

population along with the largest estimated OR.  It was further noted that the African ancestry 

population which produced the smallest OR of the three ancestries considered, larger SE were 

observed relative to the Asian population (SE was estimated to be 0.005 and 0.004 respectively 

in the African and Asian population). 

 

Overall, as in the weighed GRS models, unweighted GRS models were significantly associated 

with AOO across the three populations assessed for the cases and controls Cox PH, and logistic 

models.  Additionally, the Cox PH model based on cases and controls was again most highly 

associated in the three ancestry populations.  As for the weighted T2D GRS, the on average 

younger ages of cases and controls seen in the Asian and African population likely contributed 

to differences in model performance among the three ancestries in the analysis based on the 

cases only Cox PH model. 

 

A summary of the estimated HR of AOO of T2D or OR of T2D status associated with both the 

weighted and unweighted T2D GRS in the European, Asian, and African ancestry populations 

are presented in Table 4.4.   In general, the GRS models in the European were found to be more 

strongly associated in the Cox PH model relative to the logistic model. 
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Table 4. 4 - Estimated effect of association of GRS and AOO of T2D in European, Asian, 
and African ancestry populations 
 

Analysis 
Method 

Weighted GRS Unweighted GRS 

ES Lower 
95% CI 

Upper 
95% CI 

P-value ES Lower 
95% CI 

Upper 
95% CI 

P-value 

European ancestry population 

Cox PH model (cases only)   
Adjusted (GRS+ 
BMI+Covariates) 

1.120 1.092 1.149 4.4 x 10⁻¹⁸ 1.006 1.005 1.008 2.1 x 10⁻¹² 

Cox PH model (cases and controls)   
Adjusted (GRS+ 
BMI+Covariates) 

2.533 2.472 2.595 4.7 x 10-1214 1.060 1.058 1.062 5.8 x 10-955 

Binary logistic regression model    
Adjusted (GRS+ 
BMI+Covariates) 

2.623 2.553 2.695 1.1 x 10-1064 1.062 1.060 1.064 1.1 x 10-851 

Asian ancestry population 

Cox PH model (cases only) 
Adjusted (GRS+ 
BMI+Covariates) 

1.130 1.028 1.243 1.1 x 10⁻⁰² 1.007 1.001 1.014 2.5 x 10⁻⁰² 

Cox PH model (cases and controls) 
Adjusted (GRS+ 
BMI+Covariates) 

1.933 1.762 2.121 3.6 x 10⁻⁴⁴ 1.037 1.031 1.044 3.9 x 10⁻²⁹ 

Binary logistic regression model  
Adjusted (GRS+  
BMI+Covariates) 

1.927 1.731 2.146 6.3 x 10⁻³³ 1.036 1.028 1.043 3.7 x 10⁻²¹ 

African ancestry population 

Cox PH model (cases only) 
Adjusted (GRS+ 

BMI+Covariates) 
1.151 1.006 1.316 4.0 x 10⁻⁰² 1.008 0.999 1.017 9.4 x 10⁻⁰² 

Cox PH model (cases and controls) 
Adjusted (GRS+ 
BMI+Covariates) 

1.348 1.176 1.545 1.8 x 10⁻⁰⁵ 1.019 1.010 1.029 6.7 x 10⁻⁰⁵ 

Binary logistic regression model  
Adjusted (GRS+ 
BMI+Covariates) 

1.328 1.148 1.536 1.3 x 10⁻⁰⁴ 1.018 1.007 1.028 7.9 x 10⁻⁰⁴ 

Descriptions: GRS: genetic risk score; ES: Effect Size (hazard ratio or odds ratio); CI: confidence interval; 
Covariates: Models adjusted for Sex; BMI: Body Mass Index; array: genotype microarray; ancestry via PC1-
PC10: Principal components. 
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4.3.4. | Association of BMI with AOO of T2D 
 

Since the relationship between obesity and T2D is known to vary according to geographical 

areas and ancestry, models incorporating BMI and T2D GRS were evaluated.  Thus, the focus of 

this section was to assess the impact of being overweight or obese after adjustment for one of 

the two versions of the T2D GRS (weighted and unweighted GRS). 

 

Depicted in Figure 4.9 are model estimates pertaining to the European, Asian, and African 

ancestry populations.  It compares the estimated HR and OR of AOO of T2D associated with BMI 

across the three populations produced by each of the three analytical approaches considered. 

The weighted and unweighted BMI models both account for sex, population structure (via 10 

PCs), type of genotype microarray and age at enrolment in the case of the logistic model, but 

differ in whether adjustment for GRS were based on the weighted T2D GRS or the unweighted 

T2D GRS. 
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Figure 4. 9 - Comparison of estimated ES of AOO of T2D associated with BMI for 
European, Asian, and African descended populations 
The x-axis indicates the HR or OR and 95% CI for each BMI model shown on the y-axis.  The analysis 

methods included are the cases only Cox PH model; cases and controls Cox PH model; and logistic model.  
The models have been adjusted for sex, ancestry principal component to account for population 

structure, type of microarray used for genotyping of SNPs and GRS. The two models considered include 

the adjusted model with weighted GRS denoted (BMIwei) and adjusted model with unweighted GRS 
denoted (BMIunw), where(purple), (blue) and (green) refers to African, Asian, and European ancestry 

population. 
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BMI was found to be significantly associated with AOO of T2D or T2D status in all three 

ancestries and in all three analytical approaches.  Additionally, it was observed that the BMI 

models that incorporated the weighted GRS were more strongly associated with AOO of T2D 

compared to the unweighted GRS.  However, the estimated effect sizes were similar between 

the weighted and unweighted BMI models.  It was also noted that the European derived BMI 

models were more strongly associated with AOO of T2D when compared to the Asian and 

African ancestry populations.  The European derived BMI models were also characterized by 

the largest effect sizes and narrower CI relative to the Asian and African ancestry populations. 

Furthermore, overlap in the CI were observed between the Asian and African ancestry 

populations in the analysis based on the cases and controls Cox PH, and logistic models, while 

overlap in CI was observed between all three ancestries in the cases only Cox PH model.  A 

summary table of the estimated HR of AOO of T2D or OR of T2D status associated with BMI in 

the European, Asian, and African ancestry populations are also presented in Appendix C.7.1 

 

4.3.5. | Variance in AOO of T2D explained by GRS 
 

Depicted in Figure 4.10 is the proportion of variance in AOO of T2D that is explained by the T2D 

GRS  based on the three analytical approaches.  Explained variance was measured by 

Nagelkerke pseudo R2 where comparison was made across the three ancestry groups for both 

the weighted and unweighted GRS.  For the  models that  have been adjusted for confounding,  

the proportion of variance explained represents the difference in R2 after adjustment for 

confounding variables.   
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Figure 4. 10 - Proportion of variance in AOO of T2D explained by GRS in European, 
Asian, and African ancestry populations based on Nagelkerke R2 
The proportion of variance measured by the Nagelkerke pseudo R2 measure is shown on the y-axis while 
the effects of both the weighted(wei) and unweighted (unw) GRS models is shown on the x-axis.  The 

models which have been adjusted for potential confounding (adjGRS), the proportion of variance 

explained represents the difference in R2 after adjustment for confounding variables where the full model 

(model with confounding variables and GRS) was compared to a reduced model (model with confounding 
variables only, GRS is excluded in this model).  Models adjusted for sex, ancestry principal component to 

account for population structure, type of microarray used for genotyping of SNPs and BMI. 
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Overall, the weighted GRS models explained a higher proportion of variance relative to the 

unweighted GRS models.  Looking at the weighted GRS based on the logistic model, across the 

three poplations, a greater proportion of variance in T2D status  was explained  in the European 

ancestry population, where  4.6% of variance was explained which compares to 3% in Asian 

and  0.5% in the African population. However, for the cases and controls Cox PH models, a 

higher proportion of variance in AOO of T2D due to the weighted GRS were explained in the 

Asian population (2.3%) when compared to the European and African populations (1.4% and  

0.3% respectively). 

 

4.3.6. | Variance in AOO of T2D explained by BMI 
 

Figure 4.11 depicts the proportion of variance in AOO of T2D that is explained by BMI, as 

measured by the Nagelkerke pseudo R2 , based on the three analytical approaches.  The 

proportion of variance, for the models which have been adjusted for confounding, represents 

the difference in  R2 after adjstment for confounding variables.  Model comparison was based 

on two models; the adjusted with weighted GRS; and the adjusted with unweighted GRS.  
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Figure 4. 11 - Proportion of variance in AOO of T2D explained by BMI in European, 
Asian, and African descended populations based on Nagelkerke R2 
The proportion of variance measured by the Nagelkerke pseudo R2 measure is shown on the y-axis while 
the effects of adjusted BMI with unweighted GRS model (purple: adjBMIu); and adjusted BMI with 

weighted GRS model (blue: adjBMIw); models is shown on the x-axis.  The proportion of variance  

explained represents the difference in R2 after adjustment for confounding variables where the full model 

(model with confounding variables and GRS) was compared to a reduced model (model with confounding 
variables only, BMI is excluded in this model).  Models adjusted for sex, ancestry principal component to 

account for population structure, type of microarray used for genotyping of SNPs and weighted or 

unweighted GRS. 
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Across the three ancestry groups, the BMI weighted, and BMI unweighted models performed 

similarly, however, overall, the BMI weighted models explained a slightly higher proportion of 

the variance in AOO due to BMI.  Furthermore, based on the logistic model, a much greater  

proportion of variance  in T2D status due to BMI was explained in the European population.   

The observed proportion of variance in T2D status due to the weighted BMI  were 9.9% in the 

European population which compares to 4% and 3.8% respectively in the Asian and African 

populations based on the logistic model.   
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4.4.  | Dissecting the ancestry specific T2D GRS 
 

Generally, assessing the clinical utility of individual risk  loci in different populations is 

challenging given the differences in RAF and LD patterns across populations. This is 

compounded by the limited availabilty of GWAS data in non-European populations, as sample 

sizes may vary considerably among different ancestry groups and in some instances sample size 

is insufficent for good SNP selection for the construction of GRS.  Therefore to gain a better 

insight as to why the GRS performs differently in the different populations, the role of sample 

size, ancestry specific RAF and impact of LD was assessed in greater detail.  The methods 

employed in carrying out this assessment is described in section 4.4.1 and the results presented 

in section 4.4.2. 

 

4.4.1. | Methods employed to assess the T2D GRS 
 

The sampling process undertaken to obtaining samples of the same size for each ancestry is 

described in section 4.4.1.1, while section 4.4.1.2 describes the process of calculating the RAF 

for each ancestry based on  the ancestry specific association analysis and to identify the risk 

allele, the summary statistics from published GWAS used to construct the GRS.  Section 4.4.1.3 

describes the process of extracting information pertaining to LD differences for each GRS SNP 

from the LDProxy website operated by the National Cancer Institute of the United States 

Department of Health and Human Serves. 

 

4.4.1.1.  | Selecting ancestry specific subsamples 

 

To assess the impact of sample size on the performance of the T2D GRS, independent analyses 

using the same sample size in each ancestry were conducted.  The size of the sample was based 

on the African ancestry group as it was the smallest of the three ancestry groups.  Therefore a 

random sample of cases and also a random sample of controls reflecting the African ancestry 

group were obtained for analysis of the European and Asian ancestry groups. 
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4.4.1.2.  | Calculating ancestry specific RAF 

 

To assess the impact of variation in the RAF among the three ancestry groups on the predictive 

power of the GRS, ancestry specific RAFs were calculated and comparisons made between the 

ancestry groups.  Information provided in summary statistics of  the published GWAS used to 

construct the GRS was used to identify the risk allele associated with each SNP included in the 

GRS.  In conjunction with information relating to allele frequencies provided in the ancestry-

specific association analyses of the UK Biobank data, RAF for each ancestry group were 

calculated. 

 

4.4.1.3.  | Determining ancestry specific tag SNPs 

 

Genomic coverage based on the number of SNPs that were in pairwise LD with the SNPs 

included in the GRS was assessed. Using the data available on the LDProxy website  [263] the 

number of SNPs in pairwise LD with the SNPs included in the GRS were extracted for the 

European, Asian, and African ancestry populations based on the Phase 3 (Version 5) of the 1000 

Genomes Project [264].  SNPs with an LD of r2 0.8 or above were extracted.  The data extracted 

included the SNP ID, chromosome, position, alleles, MAF and r2 value.  The number of SNPs in 

LD with the GRS SNPs in European ancestry population was compared graphically with the 

Asian and African ancestry population. However, there are T2D GRS SNPs that have been 

excluded from the LDproxy database and/or have been identified as monoallelic in at least one 

ancestral population.  These SNPs are listed in Appendix C.9.1. 

 

4.4.2. | Results of T2D GRS assessment 
 

This section presents the results of the assessment of T2D GRS performance in the different 

ancestries.  The impact of sample size on the performance of the T2D GRS is presented in section 

4.4.2.1.  In section 4.4.2.2 are the results of the assessment of the impact of RAF among 

ancestries.  Assessment of the impact of LD among ancestries is presented in section 4.4.2.3. 
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4.4.2.1.  | Assessing the impact of sample size 

 

An analysis based on a subset of the original samples was undertaken to assess the potential 

impact of sample size on the T2D GRS analysis in the European, Asian, and African ancestry 

populations.   In general, the findings were consistent with the original samples.  The magnitude 

of the estimated effect of the T2D GRS was still greatest in the European ancestry population 

for the cases and controls Cox PH, and logistic models in the weighted T2D GRS (Figure 4.12).  

The fact that estimated effect, in the Cox PH cases only model, was not the greatest in the 

European ancestry population could potentially be influence by the mean age of cases in the 

three ancestries.  Individuals with an earlier AOO of disease are expected to have a higher 

genetic loading of risk variants.  The mean AOO of cases in the European, Asian, and African 

ancestry population were 54, 48, and 49, respectively.   

 

Additionally, with a smaller sample size, the difference in performance of the unweighted T2D 

GRS in the European ancestry population was less distinguishable among the three analytical 

approaches (Appendix C.10.1).  The P-value pertaining to the logistic, and Cox PH cases and 

controls models were found to be p = 1.7 x 10-36; and p = 3.9 x 10-34 respectively in the European 

ancestry population. Furthermore, findings pertaining to the BMI models were similar to the 

original overall sample (Appendix C.10.2). 
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Figure 4. 12 - Subsample comparison of estimated ES of AOO of T2D 
associated with the weighted GRS for European, Asian and African 
descended populations 
The x-axis indicates the HR or OR and 95% CI for each GRS model shown on the y-axis.  The 

analysis methods included are the cases only Cox PH model; cases and controls Cox PH 
model; and logistic model. The weighted (wei) GRS models which have been adjusted for sex, 

ancestry principal component to account for population structure, type of microarray used 

for genotyping of SNPs and BMI are denoted (purple),  (blue) and  (green) which refers to 
the  African, Asian and European ancestry populations. 
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4.4.2.2.  | Assessing impact of RAF among ancestries 

 

Allele frequency differences between ancestries to a large extent results in variation in the 

relative power to detect association between SNPs and a disease of interest.  Genetic variants 

that are common in the study population, which is primarily European, are more likely to be 

discovered, but might be of a lower frequency in other population groups  [265].   Considering 

the major role RAF plays in driving the level of power in GWAS, the RAF of SNPs in the T2D GRS 

was examined to determine their overall impact on the performance of the GRS in the three 

populations. 

 

Figure 4.13 compares RAF of each SNP in the T2D GRS between European and Asian ancestry 

populations. A consistent pattern of the RAF being more common in the European ancestry 

population was not evident as there were instances where the RAF was higher in the Asian 

ancestry population.  It was also observed that a low frequency or rare variant SNP in the 

European ancestry population used in the construction of the T2D GRS had the largest base 

GWAS log OR (log OR > 1), while the SNP with the second largest base GWAS log OR was a high 

frequency T2D SNP (log OR > 0.40) in the European ancestry population.  SNPs with small base 

GWAS log OR were observed mainly in the intermediate RAF range (RAF 0.10 to 0.90). 
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Figure 4.14 compares RAF of each SNP in the T2D GRS between European and African ancestry 

populations.  The extent of the difference in the RAF between the European and African 

population was substantially more than that observed between the European and Asian 

population.  The SNPs with small base GWAS log OR were also observed mainly in the 

intermediate RAF range (RAF 0.10 to 0.90).  Additionally, it was observed that several SNPs in 

the European ancestry population with RAF that were low frequency or rare had base GWAS 

log OR greater than 0.07, however, these SNPs were rarer or absent in the African ancestry 

population.  This is consistent with past research that has indicated that many disease-

Figure 4. 13 - Relationship between RAF in European population compared to RAF 
in an Asian population. 
The x-axis indicates the RAF in the European population for each SNP included in the GRS and the 

corresponding RAF for each SNP in the Asian population is shown on the y-axis.   Each point which 
is weighted by the logOR in the base GWAS used to construct the GRS represents each SNP included 

in the GRS. 
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associated alleles segregate at intermediate frequencies in non-Africans but are found at 

extremely low or high frequencies in Africans.   This is the result of statistical power in European 

GWAS being maximized at intermediate allele frequencies  [266]. 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 4. 14 - Relationship between RAF in European population compared to RAF in 
an African population. 
The x-axis indicates the RAF in the European population for each SNP included in the GRS and the 

corresponding RAF for each SNP in the African population is shown on the y-axis.   Each point which 

is weighted by the logOR in the base GWAS used to construct the GRS represents each SNP included 

in the GRS. 

 



 
 

177 
 

4.4.2.3.  | Assessing impact of LD among ancestries 

 
As the level of pairwise LD between a potential causal SNP and a tag SNP is an important feature 

within GWAS that drives power, the number of SNPs in LD with the SNPs that form the GRS was 

assessed at of r2 ≥ 0.8.  Figure 4.15 compares the number of SNPs in LD with each GRS SNP in 

the European and Asian ancestry populations.  Figure 4.15 illustrates that there was some 

variation in the number of SNPs tagging the GRS SNPs between the two populations.  At the r2 

≥ 0.8 threshold level in the European ancestry population, the median number of SNPs tagged 

by the GRS was 14 compared to 9 in the Asian ancestry population.  The drop in the number of 

tag SNPs in the Asian ancestry population relative to the European ancestry population reduces 

the likelihood of the causal SNP being tagged by the GRS SNPs and therefore lower predictive 

power in the Asian ancestry population.  At the LD threshold r2 =1 the number of SNPs in 

pairwise LD with the SNPs included in the GRS are more in the European ancestry population 

relative to the Asian ancestry population overall. 
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Figure 4. 15 - Relationship between the number of SNPs in LD with the GRS SNPs in 
European population compared to the number of SNPs in LD with the GRS SNPs in 
Asian population. 
The x-axis indicates the number of SNPs in LD in the European population for each SNP included in the 
GRS and the corresponding number of SNPs in LD for each SNP in the Asian population is shown on the 
y-axis.   Each point represents each SNP included in the GRS. 
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Figure 4.16 compares the number of SNPs in LD with the GRS SNPs in the European and African 

ancestry populations.   Figure 4.16 illustrates that for most GRS SNPs, the number of tag SNPs 

was greater in the European ancestry population when compared to the African ancestry 

population at the at the r2 ≥ 0.8 threshold level.  There were only a handful of GRS SNPs in the 

African ancestry population that had more SNPs tagging it at an LD level of r2 0.8 or more when 

compared to the European ancestry population.  At the r2 ≥ 0.8 threshold level, the median 

number of SNPs tagged by the GRS in the African ancestry population was 2 which compares to 

14 in the European ancestry population.  At the LD threshold r2 =1 the number of SNPs in LD 

with the SNPs included in the GRS was less than the number at the r2 ≥ 0.8 threshold level in 

both the European and African ancestry population.  But overall, the number of SNPs in pairwise 

LD were more in the European ancestry population relative to the African ancestry population. 

It was noted also, that SNPs rs117001013 and rs117483894 included in the GRS were in 

pairwise LD with more SNPs in the African ancestry population compared to the European 

ancestry population.   
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Figure 4. 16 - Relationship between the number of SNPs in LD with the GRS SNPs in 
European population compared to the number of SNPs in LD with the GRS SNPs in 
African population. 
The x-axis indicates the number of SNPs in LD in the European population for each SNP included in the 
GRS and the corresponding number of SNPs in LD for each SNP in the African population is shown on the 
y-axis.   Each point represents each SNP included in the GRS. 
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4.5.  | Discussion 
 

Discovery GWAS have aided the emergence of GRS for predicting risk for many common 

diseases.  Owing to increasing concerns regarding the application of GRS in non-European 

ancestry populations, the utility of a European ancestry derived T2D GRS to detect an 

association with AOO of T2D in European, Asian, and African ancestry populations was 

assessed.    The scope of the assessment was also extended to include a detailed examination of 

the role of sample size, ancestry specific RAF and impact of LD in relation to the performance of 

the T2D GRS. 

 

Overall, assessment of the three analytical approaches, based on strength of association, the 

best approach was the Cox PH model with both cases and controls.   Apart from the cases only 

Cox PH model, all models produced highly significant associations of the GRS with AOO of T2D 

or T2D status in all populations.  As expected, given its much larger sample size, the strongest 

associations were observed in the European ancestry population and therefore more precise 

estimates, resulting from smaller standard errors, are produced within this population relative 

to the Asian and African ancestry populations.   In relation to the most potent independent 

modifiable risk factor for T2D, obesity, it was noted that BMI (both weighted and unweighted 

models) was found to be significantly associated with AOO of T2D or T2D status in all three 

ancestries.  

 

In terms of the proportion of variance in AOO of T2D or T2D status attributable to the GRS, a 

higher proportion based on the logistic model was explained in the European ancestry 

population relative to the Asian and African populations.   In the cases and controls Cox PH 

analysis, however, the highest proportion of variance in AOO of T2D attributable to the GRS was 

explained in the Asian ancestry population.  It is noted that cases in the Asian ancestry 

population on average had a lower AOO of T2D when compared to the African and European 

ancestry populations.  Individuals with an earlier AOO of disease are expected to have a higher 

genetic loading of risk variants. 

  

The impact of allele frequency and LD on the performance of the GRS was assessed by 

comparing the RAF in the European ancestry population with that of the Asian and African 

ancestry populations and similarly the number of SNPs in pairwise LD with GRS SNPs.  
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Differences in RAF were observed between the European and Asian ancestry populations and 

between the European and African ancestry populations.  However, the extent of the variance 

in RAF was far greater between the European and African ancestry populations.  Additionally, 

the number of SNPs in pairwise LD with those contributing to the T2D GRS in most instances 

were less in the African ancestry population relative to the European ancestry population.  A 

drop in the number of SNPs tagging the GRS SNPs were also observed between the Asian and 

European, however, not to the extent of that observed between the African and European 

ancestry population.  Given these differences, a single GRS that is optimal in all populations may 

not be possible. 

 

In the absence of African ancestry discovery SNPs and other non-European ancestry discovery 

SNPs that can be used to build GRS, several alternative approaches have been explored.  These 

methods differ primarily from the standard approach in terms of: (1) how allele frequency 

differences between ancestries are addressed; (2) how differing LD structures among 

ancestries is accounted for; and (3) how ancestry is accounted for.  GRS are constructed for 

different ancestries by employing the corresponding human genome reference panel (usually 

from the 1000 Genomes Project) to determine allele frequency distribution and LD structure 

within each ancestry group.  However, the most basic alternative approach to constructing GRS 

in different ancestries involves only retaining SNPs that attain at least nominal significance in 

target samples and combining with ancestry specific SNPs  [267, 268]. 

 

In relation to allele frequency determination, options include constructing standardized GRS 

distributions for each ancestry centred on an overall global mean, which gives consideration as 

to whether a risk allele is derived (risk alleles resulting from new mutations) or ancestral (risk 

alleles that are shared across ancestries)  [266].   This approach appeared to be potentially 

beneficial for metabolic diseases, as corrected GRS have shown that the African ancestry 

population GRS distribution overlapped heavily with the other ancestries after correction  

[266]. Other approaches utilise Bayesian or other statistical procedures to infer the allele 

frequency distribution in each ancestral population [269]. 

 

Alternative avenues pertaining to LD include explicitly modelling or accounting for LD where 

both linked and unlinked SNPs are included in the calculation of the GRS [270] or excluding 

linked SNPs based on a LD threshold. Lowering LD thresholds used for clumping to lower the 
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risk of removing non-European ancestry tags has been explored  [271].  Research in this area 

has shown that lower r2 thresholds for clumping tend to make worldwide ancestral population 

polygenic risk score distributions more similar [271].  

 

In conclusion, some of the key areas that need further consideration with regards to the 

application of GRS in diverse global populations have been highlighted.   Although, there is 

shared genetic contribution to T2D at established loci across different populations, a single GRS 

that is optimal in different populations may not be possible.  Considering that different ancestral 

populations tend to differ in respect to RAF and patterns of LD structure which drives 

differences in effect size, different approaches to constructing GRS need to be explored further 

to ensure the clinical useful of the GRS across global populations. 
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Chapter 5: Discussion and future work 

Chapter Outline 
This final chapter provides a synopsis of the research that has been carried out in this thesis.  It 

encompasses a discussion of the key findings and limitations, and implications for 

epidemiological and clinical research.   Additionally, recommendations for future work are also 

considered. 

 

5.1.  | Introduction 
 

Genome-wide association study (GWAS) methodology has evolved considerably since its 

inception in 2005.  This evolution was achieved even in the face of many challenges which has 

be ascribed primarily in the realm of statistical, computational, and methodological.  At the 

outset of GWAS, concerns about the validity of findings due to unrecognized population 

structure within diverse populations resulted in the practice of conducting GWAS in ancestrally 

homogeneous populations, which was most often populations of European ancestry.  More 

recently however, there has been increasing recognition that, although ancestral diversity 

presents many challenges, it also provides many opportunities for gene discoveries.  Moreover, 

broadening the scope of scientific inquiry to acquiring a better understanding of genomics in all 

populations on a global scale may be the key to improving disease risk prediction for people of 

all ancestries.  As a result, methods to effectively address population structure, the most 

prominent confounding issue to consider in the design and analysis of GWAS, is therefore 

essential.   

 

GWAS discoveries have contributed tremendously to the current knowledge of genetics and its 

implication for human health.  Analysis of contributing genomic variants associated with many 

common complex diseases have enabled the application of genetic risk scores (GRS).  However, 

currently, the main challenge for the clinical implementation of GRS is that they are of far 

greater predictive value in European ancestry populations when compared to other 

populations, owing to bias emanating from European derived GRS.  Therefore, a better 

understanding of the mechanisms influencing the degradation in performance of a European 

ancestry derived GRS in non-European populations is crucial to ensure accurate prediction of 

disease risk in all populations given the importance of genomics to the future of healthcare.  The 
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focus of the research in this thesis was concentrated on evaluating methods for detecting 

associations of age-of-onset (AOO) of disease with a single nucleotide polymorphism (SNP) and 

GRS in the presence of population structure due to both substructure and admixture.   

 
 

5.2.  | Summary of main findings of the thesis 
 

Chapter 2 focused on investigating methods to account for population structure and admixture 

in GWAS of time-to-event (TTE) outcomes via simulation.  The simulation study based on an 

admixed population comprised of two ancestral populations, evaluated the power to detect 

association between a single SNP and AOO of disease under an additive genetic model in a TTE 

framework.  Investigations compared the performance of the Cox proportional hazards (PH) 

model and the general Weibull model.  Based on comparison of these two models it was 

demonstrated that the power of the general Weibull model was largely consistent with that of 

the Cox PH model.   

 

From the results of the simulation study which consisted of an admixed population, it was 

observed, in general, that the association of AOO of disease was described by the causal SNP 

genotype independently of ancestry.  Furthermore, the type I error rates overall also appeared 

consistent with the nominal significance level (5%) under the null hypothesis (i.e. log HR of 0).  

However, a small reduction in power to detect an association with the causal SNP with 

adjustment for ancestry was observed.  Given the relationship between the type II error rate 

(β) and power (1 − β), this signifies the potential for inflation in the type II error rate if ancestry 

is not appropriately accounted for in the analysis.   

 

Additionally, testing for association with a tag SNP, which is the more common occurrence in 

GWAS, was impacted considerably by population admixture as inflation in the type I error rate 

was observed if ancestry was not accounted for in the analysis.  In assessing the impact of the 

level of LD between the causal SNP and tag SNP, assuming that LD levels were the same in both 

ancestries, it was observed that equal admixture combined with RAF that are markedly 

different between ancestries reduces power.   Results also indicates that higher levels of LD may 

be required between the causal SNP and tag SNP when there was equal admixture in order to 

facilitate detection of an association with AOO of disease based on the tag SNP.   This suggests 
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that greater levels of admixture could potentially cause a reduction in the power to detect 

associations. Additionally, assuming differing levels of LD between ancestries, the greater the 

level of LD between the causal SNP and tag SNP in the ancestry where LD was assumed to be 

fixed at a specified level, the greater the observed lost in power due to ancestry as LD was varied 

in the second ancestral population. Based on the local ancestry of each admixed individual, 

which was defined by the genetic ancestry of an individual at the causal SNP, the power to detect 

association with AOO is greatest when the admixed population is comprised of an equal mixture 

of the two ancestral populations with very different RAF. In such situations the greater the 

relative difference in RAF between the two ancestries, the greater the power to detect an 

association with AOO of disease. 

 
Chapter 3 focused on exploring the association of type 2 diabetes (T2D) GRS and AOO of T2D 

through the application of the Cox PH, proportional odds and logistic regression models in two 

independent European ancestry GWAS originating from the Northwestern University Gene 

(NUgene) Banking Project and Wellcome Trust Case Control Consortium (WTCCC).  In the Cox 

PH framework, in which both cases and controls were considered, the AOO of T2D cases was 

considered, while controls were censored at their current age.  For the proportional odds model, 

AOO of T2D was viewed as an ordinal outcome that distinguished between controls, late-age-

onset (LAO) cases and early-age-onset (EAO) cases.  Within the binary logistic regression 

framework, contrast was made between cases (irrespective of AOO) and controls.  The results 

of these two studies were also combined via meta-analysis. Additionally, a simulation 

study to further assess the relative performance of the three analytical approaches on power to 

detect association of a GRS with AOO of disease was undertaken, concentrating primarily on the 

impact of censoring.   As part of the T2D analysis, four versions of the T2D GRS were considered: 

(1) SNPs determined at the genome-wide significance p-value threshold of 5 × 10-8 with base 

GWAS effect-size weighting; (2) SNPs determined at the genome-wide significance p-value 

threshold without weighting; (3) SNPs determined at a nominal significance p-value threshold 

of 0.05 with base GWAS effect size weighting; and (4) SNPs determined at a nominal significance 

p-value threshold without weighting. 

 

Generally, based on strength of association measured by the P-value, the utility of the T2D GRS 

to detect an association with T2D status under a logistic regression model was substantially 

better when compared to the time-to-event (TTE) modelling framework (Cox PH model), which 
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assessed the utility of the T2D GRS to detect an association with AOO of T2D.  The utility of the 

T2D GRS to detect an association with AOO of T2D within a proportional odds modelling 

framework encompassing LAO and EAO T2D was also considered, however, the proportional 

odds assumption was not valid in the datasets evaluated.   Additionally, of the four versions of 

the T2D GRS considered, the weighted GRS with nominally significant SNPs was found to be the 

best predictor of the onset of T2D based on strength of association, as measured by the p-value 

and proportion of variance explained by the model.   Results from the simulation study 

indicated that high rates of censoring did not impact on the relative performance of the 

methods.   However, the Cox PH model seemed to have the advantage, in terms of power, in a 

setting where there were very low rates of censoring.   

 
Chapter 4 extended the work of Chapter 3 as it focused on investigating the utility of GRS to 

detect an association with AOO of T2D in ancestrally diverse populations.  Here, the utility of a 

European ancestry derived T2D GRS in detecting an association with AOO the disease in 

European, Asian, and African ancestry populations using data originating from the UK Biobank 

was evaluated.   The results indicated that the T2D GRS was found to be most strongly 

associated with AOO of T2D in the Cox PH, comprised of cases and controls, where controls 

were censored at their current age.  However, the utility of the T2D GRS to detect an association 

with T2D status within a logistic regression framework was stronger than the association with 

AOO of T2D in the Cox PH model based on cases only. Considering the proportion of variance 

explained by the models, it was observed that the logistic model explained a greater proportion 

of the variance in T2D status attributable to T2D GRS in the European ancestry population.  

However, in the Cox PH model, a greater proportion of variance in AOO of T2D attributable to 

T2D GRS was explained in the Asian ancestry population, relative to the European and African 

ancestry populations. 

 

An assessment of the RAF and number of SNPs having an r2 of ≥ 0.8 with SNPs used to construct 

the T2D GRS showed differences between the three ancestry groups.  The assessment showed 

that the number of SNPs in LD with the T2D SNPs used to construct the GRS was much less in 

the African ancestry population when compared with the European ancestry population.    This 

suggests that if the GRS SNPs are not causal, they are less likely to tag the causal SNP in African 

ancestry populations.  It was also observed in comparing the African ancestry population with 

the European population that the RAFs between the two populations were far more variable.  

In a situation where the RAF is at a moderate to low level, the RAF of GRS SNPs were typically 
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lower in the African ancestry population than the European ancestry population, meaning that 

the GRS will be more powerful in European ancestry populations. 

 
 

5.3.  | Implications for epidemiological and clinical research 
 

The primary implications of the findings in this thesis in relation to AOO of common disease 

GWAS are highlighted in this section.  Implications of undertaking GWAS in diverse and admixed 

global populations and the implementation of GRS in a clinical setting is considered.  

Additionally, implications in terms of the statistical analysis of AOO of disease in GWAS and 

approaches to constructing a GRS that is optimum for different ancestry populations are also 

considered. 

 

The findings in this thesis have important implications for common disease GWAS in relation to 

detecting an association with AOO of disease with GRS.  With the application of GRS to T2D in 

three different ancestry populations, it was observed that European ancestry derived T2D GRS 

were not transferrable to two non-European ancestry populations when compared to the 

European ancestry group.   Therefore, implementation of a T2D GRS in a clinical setting for 

diverse global populations based on the current methodology would prove to be in general less 

effective in non-Europeans.   Deviation in RAF and the number of SNPs in LD with the SNPs used 

to construct the GRS was observed in both the Asian and African ancestry populations when 

compared to the European ancestry population.  The extent of the deviation was greatest in the 

African ancestry population.  As a result, it may be necessary to develop ancestry-specific GRS. 

However, due to discovery GWAS in non-European being comparatively based on smaller 

sample sizes which are not as well powered as European ancestry GWAS, the number discovery 

SNPs available for constructing GRS are often limited in non-European populations. Therefore, 

different approaches to selecting the SNPs or constructing the GRS may be necessary to improve 

the utility of GRS in non-European ancestry populations [272, 273].   The weighted T2D GRS 

was found to have exhibited the strongest association with AOO of T2D in all ancestry 

populations when compared to the unweighted T2D GRS.  Hence, the weighted T2D GRS would 

be the preferred model for clinical implementation. 

 

The findings pertaining to the application of the T2D GRS in European, Asian, and African 

ancestry population have also demonstrated that the Cox PH model were effective in detecting 
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an association between AOO of disease and T2D GRS.  The stronger performance of the logistic 

model, which demonstrated the strongest association between AOO and T2D GRS when applied 

in the NUgene and WTCCC may in part be attributed to the fact that the discovery SNPs and 

weights applied in the construction of the GRS originated from models based on the logistic 

regression approach, which were derived from a T2D case-control GWAS.   Furthermore, there 

are other limiting factors in relation to AOO being ascertained retrospectively in a case-control 

study framework which increasingly is becoming more common [274-276].   Age at diagnosis 

was used as a proxy measure of AOO of disease, which is limited by several factors including 

longitudinal biases resulting from changes in the clinical diagnostic criteria overtime as well as 

advances in technology that can be used to aid the clinical diagnosis of diseases.  Additionally, 

in conducting GWAS globally, or comparing studies across populations, potential differences in 

clinical definitions of phenotypes or adherence to international disease classification standards 

across countries is important to consider, particularly for a disease such as T2D, which is 

clinically heterogeneous [277].   A recent review of the classification of diabetes has highlighted 

the challenges associated with defining T2D and the existing overlap between the different 

diabetes subtypes [278].    

 
 

5.4.  | Recommendations for future work 
 

Areas where further research can be initiated have been highlighted in this thesis. Extensions 

to the simulation work undertaken in this thesis are considered as well as work relating to GRS 

for the prediction of AOO of common diseases in global worldwide populations. 

 

5.4.1. | Single SNP association with AOO of disease 
 

In this thesis to facilitate the development or improvement to existing methods designed to 

correct for the potential effects of population structure, a simulation study was undertaken to 

evaluate statistical power in relation to detecting an association between a single SNP and AOO 

of disease in a TTE framework.   The simulations, which assumed a study period that spanned 

50 years, considered the scenarios where it is assumed that the population comprised of an 

admixed population.  The main limiting factors pertaining to these simulations are that 

scenarios primarily considered only two ancestral populations which formed an admixed 
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population were considered independently.  In reality, populations are more likely to be 

hierarchical, consisting of both discrete ancestry groups and admixed individuals.  It was also 

assumed that the RAF of both the causal SNP and tag SNP was the same, but in reality, this is not 

always the case.  The simulation scenarios could be extended by increasing the level of 

complexity by: (1) incorporating three way or four way admixture which could represent for 

example admixture in South American populations (three way admixture: African, European, 

and Native American; and four way admixture: African, European, Native American and Asian); 

(2) incorporating ancestry inference based on genotype data rather than the more simplistic 

assumption of known ancestry that was applied in the simulations. 

 

5.4.2. | GRS association with AOO of disease 
 

Application of T2D GRS in three independent genotype T2D datasets has demonstrated that 

T2D GRS has the potential to detect an association with the AOO of disease.  Several areas for 

further research have been highlighted in this thesis particularly as it relates to the application 

of T2D GRS in non-European ancestry populations.  These include identifying the most 

appropriate statistical method for assessing AOO of disease and GRS, alternative approaches for 

the application of T2D GRS in non-European ancestry populations and establishment of 

standard age-related attributes to aid research that involves AOO of disease. 

  

The GRS simulation results indicated that, in the presence of high censoring rates, the 

performance of the Cox PH, and logistic models was similar. Furthermore, the results of the 

analysis based on the NUgene and WTCCC datasets as well as the much larger UK Biobank 

dataset suggests the T2D GRS are likely to have the greatest ability to detection an association 

with AOO of T2D within a Cox PH modelling framework.  Therefore, the Cox PH model should 

be assessed further using other common complex disease phenotypes such as Alzheimer’s 

disease, arthritis and other metabolic diseases.  

 

 

Further assessment of application of European ancestry derived T2D GRS in non-European 

populations should be considered.  This could include different criteria for selection of SNPs for 

inclusion in the construction of GRS.  As the number discovery SNPs for most non-European 

ancestry population are often limited due to smaller sample sizes, which are less well powered 
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than European ancestry GWAS, development of ancestry-specific GRS based on a combination 

of European derived discovery SNPs and inclusion of ancestry-specific SNPs should also be 

explored. Given the limited number of ancestry-specific GWAS discovery SNPs for non-

European populations, it may be beneficial to also explore other approaches to constructing 

GRS that would allow modelling of ancestry specific LD.  Such an approach would potentially 

reduce the loss of information in relation to ancestry-specific tagging due to LD differences 

between ancestries.  Other approaches including mixed modelling approaches, which often 

comprise fixed and random effects models, could be explored for this purpose, as well as for 

accounting for differences in effect sizes and population structure [279, 280].  In such settings 

population structure is accounted for by means of genetic relationship matrix (GRM).  The GRM 

which can account for both population structure and relatedness (described in section 1.5.2) is 

constructed from individual sampled genotyped data comprising genome-wide SNPs. The 

relationship of this GRM with the phenotype of interest is evaluated in a random effects model 

framework, which can also incorporate a fixed effects component to accounts for other potential 

confounding effects by including them as covariates in the [123]. The application of GRS to AOO 

of disease to other common complex disease phenotypes should also be considered. 

 

With the decrease in prospective cohort studies and increasing use of electronic medical and 

health data systems, data for research is increasingly being collected retrospectively.  

Therefore, the data used in research is vulnerable to different data quality issues.  In respect to 

age, the impact of errors in AOO need to be given further consideration.  In the area of age or 

AOO of disease, efforts to improve or standardize the recording of age and age-related attributes 

globally is essential.  As cases and controls are often reused in different studies and at different 

time points, establishing a mandatory component to the recording of age and age-related 

attributes may be beneficial in terms of improving the quality of AOO captured in electronic 

medical and health data systems.  Attributes mandatory for cases could include age at diagnosis, 

year of diagnosis, year of birth, age at DNA extraction and year of DNA sample extraction.  In 

relation to controls, mandatory elements could include year of birth, age at DNA extraction and 

year of DNA sample extraction.  Another important consideration relates to the selection of 

controls.  Careful consideration should be given to the fact that the use of controls younger than 

the cases reduces the power of the analysis as controls given time may develop the disease. 
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5.5.  | Concluding remarks 
 

In conclusion, the research in this thesis has demonstrated that GRS have the potential to 

advance common disease genetic research in relation to AOO. GWAS discoveries to date have 

provided valuable insight in terms of disease risk, but increasing research dedicated to 

understanding the disease biology of complex diseases in relation to AOO is an important next 

step.  Implementation of better targeted screening strategies informed by knowledge of the 

AOO of disease is key to reducing treatment costs as well as facilitating improvements to 

survival rates.  Additionally, improvements to methods developed to detect and account for 

population structure is paramount for GWAS discoveries as sample sizes continue to grow and 

for the clinical implementation of risk prediction models based on GRS.  The application of GRS 

in ancestrally diverse or admixed populations is key to the realization of the vision of 

personalized medicine or personalized healthcare for all.  
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Supporting information relating to simulation studies based on 
admixed populations 
 

A.1: Supporting tables relating to simulation process 

 

Table A.1. 1 - Description of causal SNP and tag SNP 

Allele Allele frequency 

Name Description Name Description 

A1 Causal SNP alternative allele p1  Frequency of causal SNP alternative 
allele 

a2 Causal SNP risk allele p2  Frequency of causal SNP risk allele 

B1 Tag SNP alternative allele q1  Frequency of tag SNP alternative allele 

b2 Tag SNP risk allele q2  Frequency of tag SNP risk allele 

 

Table A.1. 2 - Description of allele frequencies in relation to haplotype frequencies and 
LD 

Allele Allele Frequency assuming LD 
Allele frequency based on 

haplotype frequency 

A1 p1= (p1q1 + D) + (p1q2 - D) p1 = p11 + p12 

a2 p2 = (p2q1 - D) + (p2q2 + D) p2 = p21 + p22 

B1 q1 = (p1q1 + D) + (p2q1 - D) q1 = p11 + p21 

b2 q2 = (p1q2 - D) +(p2q2 + D) q2 = p12 + p22 

 

Table A.1. 3 - Description of haplotype 

Haplotype Haplotype frequency 

Name Description Name Description 

A1B1  Haplotype derived from causal and 
tag SNP alternative allele 

p11 Frequency of causal and tag SNP 
alternative allele haplotype 

A1b2 Haplotype derived from causal 
SNP alternative and tag SNP risk 
allele 

p12 Frequency of causal SNP alternative 
and tag SNP risk allele haplotype 

a2B1 Haplotype derived from causal 
SNP risk and tag SNP alternative 
allele 

p21 Frequency of causal SNP risk and tag 
SNP alternative allele haplotype 

a2b2 Haplotype derived from causal and 
tag SNP risk allele 

p22 Frequency of causal and tag SNP risk 
allele haplotype 
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Table A.1. 4 - Description of haplotype frequency based on allele frequency assuming 
LD 

Haplotype Measured with deviation (D) 
Measured with squared 

correlation coefficient(r2) 
Frequency 

A1B1  p11 = (p1q1 + D)  p(BA)= p(B)*p(A) + (r * 
SQRT(p(B)*p(b)+p(A)*p(a)))  

p11 = p(BA) 

A1b2 p12 = (p1q2 - D) p(bA)= p(A) - p(BA) p12 = p(bA) 

a2B1 p21 = (p2q1 - D)  p(Ba)= p(B) - p(BA) p21 = p(Ba) 

a2b2 p22 = (p2q2 + D) p(ba)= 1 - (p(BA) +P(bA) + 
p(Ba)) 

p22 = p(ba) 

  D = (p11*p22) - (p12*p21) r2 = D/(pA*pa*pB*pb)   
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A.2: Supporting figures relating to simulation process 

 

Figure A.2. 1 - General structure of simulation model 
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A.3: Supporting figures with further results relating to the admixed 

population simulations. 

 

 

 

 
 
 
 
 
 
 
 
 

Figure A.3. 1 - Effect of LD on power to detect an association with AOO of disease 
assuming levels of LD between tag SNP and causal SNP are the same in the ancestral 
populations 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and linkage disequilibrium  on the x 

axis, for each TTE model analysed. Cox PH model with causal SNP as  the single explanatory variable   (navy blue); Weibull model 

with causal SNP as the single explanatory variable   (blue); Cox PH model with ancestry as the single explanatory variable   (light 

red); Weibull model with ancestry as the single explanatory variable   (dark red); Cox PH model with tag SNP  as explanatory 

variable  and  ancestry as covariate (yellow green); Weibull model with tag SNP  as explanatory variable and  ancestry as 

covariate (gold). 

Abbreviations:  BH: baseline hazard; RAF: risk allele frequency; AP: Ancestry proportion; C.SNP: Cox PH model with SNP 

variable; C.Ancestry: Cox PH model with ancestry variable; C.tagSNP +Ancestry: Cox PH model with tag SNP variable and 

ancestry covariate; W.SNP: Weibull model with SNP variable; W.Ancestry: Weibull model with ancestry variable; 

W.tagSNP +Ancestry: Weibull model with tag SNP variable and ancestry covariate. 
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Figure A.3. 2 - Effect of LD on power to detect an association with AOO of disease 
assuming levels of LD between tag SNP and causal SNP are different among 
ancestral populations 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and linkage disequilibrium on the x 

axis, for each TTE model analysed. Cox PH model with causal SNP as  the single explanatory variable   (navy blue); Weibull model 

with causal SNP as the single explanatory variable   (blue); Cox PH model with ancestry as the single explanatory variable   (light 

red); Weibull model with ancestry as the single explanatory variable   (dark red); Cox PH model with tag SNP  as explanatory 

variable  and  ancestry as covariate (yellow green); Weibull model with tag SNP  as explanatory variable and  ancestry as 

covariate (gold). 

Abbreviations: BH: baseline hazard; RAF: risk allele frequency; AP: Ancestry proportion; C.SNP: Cox PH model with SNP 

variable; C.Ancestry: Cox PH model with ancestry variable; C.tagSNP +Ancestry: Cox PH model with tag SNP variable and 

ancestry covariate; W.SNP: Weibull model with SNP variable; W.Ancestry: Weibull model with ancestry variable; 

W.tagSNP +Ancestry: Weibull model with tag SNP variable and ancestry covariate. 
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Supporting information relating to application of T2D GRS in 
ancestrally homogenous populations 

B.1: Supporting tables relating to construction of T2D GRS 

 
 
Table B.1. 1 – List of associated T2D SNPs selected from base GWAS 
 

# Nearest gene 
Chrom-
osome 

Base Pair 
Position 

rsid EA NEA EAF OR P_value 

1 MACF1 1 40035928 rs3768321 T G 0.19 1.08 8.1 x 10⁻⁰⁷ 

2 FAF1 1 51109269 rs12031920 T A 0.56 1.05 3.8 x 10⁻⁰⁵ 

3 NOTCH2 1 120554048 rs406767 C T 0.09 1.14 7.5 x 10⁻⁰⁷ 

4 ATP8B2 1 154336716 rs67156297 A G 0.25 1.03 2.7 x 10⁻⁰² 

5 PROX1 1 214159256 rs340874 C T 0.55 1.07 3.4 x 10⁻⁰⁸ 

6 GCKR 2 27748539 rs145819220 G C 0.01 1.26 3.0 x 10⁻⁰³ 

7 THADA 2 43734847 rs6757251 C T 0.9 1.14 1.9 x 10⁻¹⁰ 

8 BCL11A 2 60552476 rs10193447 T C 0.6 1.07 1.3 x 10⁻⁰⁸ 

9 RBMS1 2 161131694 rs1563575 A G 0.74 1.07 6.7 x 10⁻⁰⁷ 

10 GRB14 2 165689720 rs28584669 T C 0.83 1.05 2.0 x 10⁻⁰³ 

11 IRS1 2 227117778 rs2972156 G C 0.61 1.08 1.2 x 10⁻⁰⁹ 

12 PPARG 3 12344730 rs11712037 C G 0.87 1.14 8.6 x 10⁻¹³ 

13 UBE2E2 3 23455582 rs35352848 T C 0.78 1.09 1.5 x 10⁻⁰⁸ 

14 ADAMTS9 3 64710850 rs7428936 T C 0.59 1.07 1.0 x 10⁻⁰⁸ 

15 ADCY5 3 123065778 rs11708067 A G 0.79 1.12 8.8 x 10⁻¹³ 

16 IGF2BP2 3 185511687 rs4402960 T G 0.31 1.15 2.7 x 10⁻²⁵ 

17 ST6GAL1 3 186663868 rs9820223 C T 0.38 1.06 1.5 x 10⁻⁰⁵ 

18 LPP 3 187741842 rs6777684 G A 0.61 1.05 5.9 x 10⁻⁰⁵ 

19 MAEA 4 744972 rs1531583 T G 0.05 1.15 3.9 x 10⁻⁰⁶ 

20 WFS1 4 6299940 rs3821943 T C 0.54 1.1 4.2 x 10⁻¹⁶ 

21 TMEM154 4 153397823 rs7660590 C T 0.72 1.06 6.8 x 10⁻⁰⁵ 

22 ACSL1  4 185708807 rs60780116 T C 0.84 1.09 7.4 x 10⁻⁰⁸ 

23 ARL15 5 53301561 rs11747901 G C 0.19 1.07 1.2 x 10⁻⁰⁵ 

24 ANKRD55 5 55861601 rs9687833 A G 0.19 1.1 1.6 x 10⁻⁰⁹ 

25 ZBED3 5 76453765 rs6453287 C A 0.3 1.07 4.5 x 10⁻⁰⁶ 

26 PAM 5 102726073 rs74944275 T C 0.04 1.16 4.4 x 10⁻⁰⁶ 

27 SSR1/RREB1 6 7258847 rs6923241 C T 0.71 1.07 1.6 x 10⁻⁰⁶ 

28 CDKAL1 6 20673880 rs7451008 C T 0.26 1.19 3.8 x 10⁻³⁷ 

29 ZFAND3 6 38228979 rs143308245 T A 0 2.02 3.0 x 10⁻⁰³ 

30 KCNK16 6 39331930 rs139514607 T C 0 1.48 8.0 x 10⁻⁰³ 
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# Nearest gene 
Chrom-
osome 

Base Pair 
Position 

rsid EA NEA EAF OR P_value 

31 CENPW 6 126792095 rs11759026 G A 0.24 1.1 5.8 x 10⁻¹⁰ 

32 SLC35D3  6 137287702 rs6918311 A G 0.53 1.07 6.7 x 10⁻⁰⁷ 

33 DGKB 7 15054232 rs10238625 A G 0.54 1.07 3.2 x 10⁻⁰⁸ 

34 JAZF1 7 28189411 rs1635852 T C 0.5 1.1 3.0 x 10⁻¹⁴ 

35 GCK 7 44255643 rs878521 A G 0.24 1.05 6.1 x 10⁻⁰⁴ 

36 GCC1 7 127631181 rs73455744 A G 1 1.93 3.0 x 10⁻⁰³ 

37 KLF14 7 130463758 rs10954284 T A 0.5 1.06 1.8 x 10⁻⁰⁵ 

38 MNX1  7 157027753 rs1182436 C T 0.8 1.08 8.3 x 10⁻⁰⁷ 

39 ANK1 8 41519248 rs516946 C T 0.78 1.08 8.6 x 10⁻⁰⁷ 

40 TP53INP1 8 95957984 rs11786613 C A 0.03 1.21 1.6 x 10⁻⁰⁶ 

41 SLC30A8 8 118185025 rs3802177 G A 0.68 1.12 1.7 x 10⁻¹⁷ 

42 GLIS3 9 4292083 rs10758593 A G 0.41 1.05 2.9 x 10⁻⁰⁴ 

43 PTPRD 9 8288059 rs186838848 T C 0.01 1.46 2.4 x 10⁻⁰⁴ 

44 CDKN2A/B 9 22132878 rs10965248 T C 0.82 1.15 6.5 x 10⁻¹⁷ 

45 TLE4 9 81900744 rs13301067 G A 0.92 1.11 1.5 x 10⁻⁰⁵ 

46 TLE1 9 84311800 rs9410573 T C 0.6 1.08 2.0 x 10⁻⁰⁸ 

47 ABO  9 136155000 rs635634 T C 0.18 1.08 3.6 x 10⁻⁰⁷ 

48 GPSM1 9 139252148 rs11787792 A G 0.67 1.04 1.3 x 10⁻⁰² 

49 CDC123/CAMK1D 10 12309269 rs11257659 T C 0.23 1.08 2.7 x 10⁻⁰⁸ 

50 VPS26A 10 70859204 rs10998572 C A 0.93 1.09 2.8 x 10⁻⁰⁴ 

51 ZMIZ1 10 80942620 rs810517 C T 0.51 1.09 1.3 x 10⁻¹² 

52 HHEX/IDE 10 94466910 rs11187140 G A 0.62 1.14 4.2 x 10⁻²⁶ 

53 TCF7L2 10 114758349 rs7903146 T C 0.29 1.34 9.2 x 10⁻¹⁰⁸ 

54 PLEKHA1  10 124186714 rs2292626 C T 0.5 1.09 1.8 x 10⁻¹² 

55 KCNQ1 11 2858546 rs2237897 C T 0.95 1.25 4.9 x 10⁻¹³ 

56 KCNJ11 11 17409572 rs5219 T C 0.38 1.07 4.3 x 10⁻⁰⁸ 

57 HSD17B12  11 43877934 rs1061810 A C 0.28 1.08 5.3 x 10⁻⁰⁹ 

58 MAP3K11  11 65364385 rs111669836 A T 0.25 1.07 7.4 x 10⁻⁰⁷ 

59 ARAP1 (CENTD2) 11 72428172 rs76550717 A G 0.83 1.1 3.8 x 10⁻⁰⁹ 

60 MTNR1B 11 92708710 rs10830963 G C 0.27 1.08 1.7 x 10⁻⁰⁷ 

61 CCND2 12 4376089 rs4238013 C T 0.2 1.1 3.6 x 10⁻⁰⁹ 

62 KLHDC5 12 27962719 rs7953190 T C 0.8 1.08 4.2 x 10⁻⁰⁷ 

63 HMGA2 12 66221060 rs2258238 T A 0.1 1.11 1.6 x 10⁻⁰⁷ 

64 TSPAN8/LGR5 12 71656723 rs6581998 C T 0.27 1.06 1.2 x 10⁻⁰⁵ 

65 HNF1A (TCF1) 12 121432117 rs56348580 G C 0.68 1.08 2.5 x 10⁻⁰⁸ 

66 MPHOSPH9 12 123653592 rs2851437 A C 0.72 1.07 2.6 x 10⁻⁰⁶ 

67 SPRY2 13 80705315 rs11616380 G T 0.71 1.09 3.9 x 10⁻¹¹ 

68 NRXN3  14 79945162 rs10146997 G A 0.21 1.07 4.6 x 10⁻⁰⁶ 

69 RASGRP1 15 38822905 rs7403531 T C 0.21 1.04 1.4 x 10⁻⁰² 
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# Nearest gene 
Chrom-
osome 

Base Pair 
Position 

rsid EA NEA EAF OR P_value 

70 C2CD4A 15 62117975 rs4774420 C T 0.7 1.08 2.7 x 10⁻⁰⁸ 

71 HMG20A 15 77776498 rs952471 G C 0.69 1.08 4.0 x 10⁻¹⁰ 

72 ZFAND6 15 80411245 rs62006309 A G 0.52 1.05 4.6 x 10⁻⁰⁵ 

73 AP3S2 15 90289162 rs62023387 C A 0.18 1.07 5.7 x 10⁻⁰⁴ 

74 PRC1 15 91563513 rs12595616 C T 0.37 1.07 5.6 x 10⁻⁰⁷ 

75 FTO 16 53803574 rs1558902 A T 0.42 1.13 4.7 x 10⁻²⁵ 

76 BCAR1 16 75252327 rs8056814 G A 0.92 1.16 3.7 x 10⁻¹¹ 

77 CMIP  16 81534790 rs2925979 T C 0.3 1.08 2.7 x 10⁻⁰⁸ 

78 SRR 17 2309188 rs9911305 A G 0.7 1.05 1.0 x 10⁻⁰³ 

79 ZZEF1  17 4014384 rs7224685 T G 0.3 1.07 2.0 x 10⁻⁰⁷ 

80 GLP2R  17 9780387 rs78761021 G A 0.34 1.07 5.5 x 10⁻⁰⁸ 

81 HNF1B (TCF2) 17 36102833 rs757209 G A 0.58 1.09 1.1 x 10⁻⁰⁹ 

82 GIP  17 46967038 rs79349575 A T 0.51 1.07 2.6 x 10⁻⁰⁷ 

83 LAMA1 18 7067652 rs7234111 C T 0.36 1.06 7.7 x 10⁻⁰⁷ 

84 MC4R 18 57793209 rs1942880 T C 0.33 1.07 2.8 x 10⁻⁰⁷ 

85 BCL2A 18 60845884 rs12454712 T C 0.62 1.05 2.0 x 10⁻⁰³ 

86 CILP2 19 19456917 rs58489806 T C 0.09 1.09 1.0 x 10⁻⁰⁴ 

87 PEPD 19 33943994 rs139990642 A G 0.01 1.25 2.0 x 10⁻⁰³ 

88 APOE 19 45411941 rs429358 T C 0.85 1.13 1.4 x 10⁻¹⁰ 

89 HNF4A 20 43042364 rs1800961 T C 0.04 1.17 4.4 x 10⁻⁰⁶ 

90 MTMR3/HORMAD2 22 30599562 rs2023681 G A 0.89 1.13 3.9 x 10⁻⁰⁹ 

 

Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 

SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;  EA: Discovery 
SNP effect allele; NEA: Discovery SNP alternative allele; EAF: Discovery SNP effect allele frequency; OR: Odds 

ratio associated with SNP effect allele; P_value: P_value associated with SNP effect allele. 
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Table B.1. 2 - List of associated T2D SNPs not available in target GWAS 

# Nearest gene 
Chrom-
osome 

Base Pair 
Position 

rsid EA NEA EAF OR P_value 

1 IRS1 2 227117778 rs2972156 G C 0.61 1.08 1.2 x 10⁻⁰⁹ 

2 ARL15 5 53301561 rs11747901 G C 0.19 1.07 1.2 x 10⁻⁰⁵ 

3 KCNK16 6 39331930 rs139514607 T C 0 1.48 8.0 x 10⁻⁰³ 

4 PTPRD 9 8288059 rs186838848 T C 0.01 1.46 2.4 x 10⁻⁰⁴ 

5 CDC123/CAMK1D 10 12309269 rs11257659 T C 0.23 1.08 2.7 x 10⁻⁰⁸ 

6 MAP3K11  11 65364385 rs111669836 A T 0.25 1.07 7.4 x 10⁻⁰⁷ 

7 AP3S2 15 90289162 rs62023387 C A 0.18 1.07 5.7 x 10⁻⁰⁴ 

8 GIP  17 46967038 rs79349575 A T 0.51 1.07 2.6 x 10⁻⁰⁷ 

 

Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 

SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;  EA: Discovery 
SNP effect allele; NEA: Discovery SNP alternative allele; EAF: Discovery SNP effect allele frequency; OR: Odds 

ratio associated with SNP effect allele; P_value: P_value associated with SNP effect allele. 

 
 

Table B.1. 3 - List of associated T2D SNPs excluded due poor imputation score 
 

# Nearest gene 
Chrom-
osome 

Base Pair 
Position 

rsid EA NEA EAF OR P_value 

1 GCC1 7 127631181 rs73455744 A G 1 1.93 3.0 x 10⁻⁰³ 

 

Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 

SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;  EA: Discovery 
SNP effect allele; NEA: Discovery SNP alternative allele; EAF: Discovery SNP effect allele frequency; OR: Odds 

ratio associated with SNP effect allele; P_value: P_value associated with SNP effect allele. 
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B.2: Supporting tables with further results relating to single SNP 

association with T2D status  

 

Table B.2. 1 - Single SNP association with T2D status in NUgene dataset  

# Nearest 
gene 

Chrom-
osome 

Base Pair 
Position 

rsid  P-value: 
Adjusting 

for age, sex 
and 

ancestry 

P-value: 
Adjusting 

for age, 
sex, 

ancestry 
and BMI 

1 PROX1 1 214159256 rs340874 3.6 x 10⁻⁰² 3.7 x 10⁻⁰² 

2 MACF1 1 40035928 rs3768321 6.3 x 10⁻⁰³ 6.7 x 10⁻⁰³ 

3 WFS1 4 6299940 rs3821943 7.2 x 10⁻⁰⁴ 7.2 x 10⁻⁰⁴ 

4 CDKN2A/B 9 22132878 rs10965248 2.1 x 10⁻⁰² 2.0 x 10⁻⁰² 

5 TCF7L2 10 114758349 rs7903146 1.1 x 10⁻⁰⁵ 1.2 x 10⁻⁰⁵ 

6 FTO 16 53803574 rs1558902 1.3 x 10⁻⁰³ 1.4 x 10⁻⁰³ 

7 
HNF1B 
(TCF2) 

17 36102833 rs757209 
3.7 x 10⁻⁰² 3.4 x 10⁻⁰² 

8 BCL2A 18 60845884 rs12454712 7.0 x 10⁻⁰³ 6.3 x 10⁻⁰³ 
 

Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 
SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;   

P-value: P-value associated with each SNP adjusted by covariates age, sex, ancestry and BMI. 
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Table B.2. 2 - Single SNP association with T2D status in WTCCC dataset 

# Nearest gene Chrom-
osome 

Base Pair 
Position 

rsid  P-value:  
Adjusting 

for age, sex 
and 

ancestry 

1 PROX1 1 214159256 rs340874 4.5 x 10⁻⁰² 

2 BCL11A 2 60552476 rs10193447 2.2 x 10⁻⁰³ 

3 ADCY5 3 123065778 rs11708067 2.2 x 10⁻⁰² 

4 PPARG 3 12344730 rs11712037 2.8 x 10⁻⁰³ 

5 UBE2E2 3 23455582 rs35352848 3.3 x 10⁻⁰² 

6 IGF2BP2 3 185511687 rs4402960 6.8 x 10⁻⁰³ 

7 ADAMTS9 3 64710850 rs7428936 2.8 x 10⁻⁰² 

8 ZBED3 5 76453765 rs6453287 2.7 x 10⁻⁰³ 

9 ANKRD55 5 55861601 rs9687833 4.3 x 10⁻⁰² 

10 CDKAL1 6 20673880 rs7451008 1.1 x 10⁻⁰⁵ 

11 DGKB 7 15054232 rs10238625 1.8 x 10⁻⁰² 

12 JAZF1 7 28189411 rs1635852 4.8 x 10⁻⁰³ 

13 CDKN2A/B 9 22132878 rs10965248 1.3 x 10⁻⁰³ 

14 TLE4 9 81900744 rs13301067 1.6 x 10⁻⁰² 

15 ABO 9 136155000 rs635634 3.4 x 10⁻⁰² 

16 TLE1 9 84311800 rs9410573 4.1 x 10⁻⁰⁴ 

17 HHEX/IDE 10 94466910 rs11187140 7.6 x 10⁻⁰⁴ 

18 TCF7L2 10 114758349 rs7903146 6.8 x 10⁻¹⁰ 

19 HSD17B12 11 43877934 rs1061810 8.6 x 10⁻⁰³ 

20 KCNQ1 11 2858546 rs2237897 3.3 x 10⁻⁰² 

21 KCNJ11 11 17409572 rs5219 2.0 x 10⁻⁰² 

22 MPHOSPH9 12 123653592 rs2851437 3.0 x 10⁻⁰² 

23 HNF1A (TCF1) 12 121432117 rs56348580 1.8 x 10⁻⁰³ 

24 TSPAN8/LGR5 12 71656723 rs6581998 7.9 x 10⁻⁰⁵ 

25 KLHDC5 12 27962719 rs7953190 2.9 x 10⁻⁰² 

26 PRC1 15 91563513 rs12595616 3.3 x 10⁻⁰² 

27 FTO 16 53803574 rs1558902 6.0 x 10⁻⁰⁵ 

28 ZZEF1 17 4014384 rs7224685 2.7 x 10⁻⁰² 

29 MC4R 18 57793209 rs1942880 2.5 x 10⁻⁰² 

30 LAMA1 18 7067652 rs7234111 3.1 x 10⁻⁰² 

31 CILP2 19 19456917 rs58489806 1.5 x 10⁻⁰² 

32 HNF4A 20 43042364 rs1800961 2.4 x 10⁻⁰² 
Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 
SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;   

P-value: P-value associated with each SNP adjusted by covariates age, sex, and ancestry. 
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B.3: Supporting tables with further results relating to association of 

GRS with AOO of T2D  

 

Table B.3. 1 - Descriptive characteristics of weighted and unweighted GRS among T2D 
cases and controls 

Characteristics 
NUGENE SAMPLE WTCCC SAMPLE 

Cases Controls Cases Controls 

Genetic Risk Scores (GRS)         

Weighted GRS (P<0.05)         

Mean (SD) 7.36 (0.50) 7.14 (0.48) 7.45 (0.48) 7.17 (0.48) 

Median 7.38 7.15 7.46 7.18 

Range (Min-Max) 5.72 - 9.08 5.58 - 8.53 5.79 - 8.95 5.57 - 8.78 

Unweighted GRS (P<0.05)         

Mean (SD) 81.65 (5.46) 79.76 (5.02) 82.69 (5.2) 79.96 (5.28) 

Median 81.90 80.04 82.45 80.06 

Range (Min-Max) 66.06 - 100.93 64.19 - 94.93 64.87 - 97.63 62.93 - 97.30 

Weighted GRS (P <5*10-8)         

Mean (SD) 4.85 (0.44) 4.65 (0.42) 4.88 (0.39) 4.66 (0.41) 

Median 4.86 4.66 4.88 4.66 

Range (Min-Max) 3.29 - 6.18 3.41 - 5.74 3.73 - 6.14 3.33 - 5.98 

Unweighted GRS (P <5*10-8)         

Mean (SD) 44.00 (3.96) 42.37 (3.68) 44.16 (3.46) 42.39 (3.68) 

Median 44.13 42.67 44.20 42.53 

Range (Min-Max) 29.00 - 55.97 29.66 - 52.12 34.26 - 55.07 29.08 - 54.86 
Descriptions: GRS: genetic risk score; SD: standard deviation 
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B.4: Supporting tables with further results relating to association of 

BMI with AOO of T2D  

 

Table B.4. 1 - Estimated effect of association of BMI and AOO of T2D in NUgene samples 
(weighted GRS) 

Analysis Method 

BMI with Weighted GRS                                                                                
(P-value threshold   P < 0.05) 

BMI with Weighted GRS                                                                                                                    
(P-value threshold P <  5 x 10 -8) 

ES Lower 
95% CI 

Upper 
95% CI 

P-value ES Lower 
95% CI 

Upper 
95% CI 

P-value 

NUgene 

Cox PH model (cases and controls) 

Adjusted (BMI+   
Covariates) 

1.087 1.076 1.099 2.8 x 10⁻⁵⁴ 1.087 1.075 1.098 1.1 x 10⁻⁵³ 

Proportional odds model 

Adjusted (BMI+   
Covariates) 

1.156 1.134 1.179 9.4 x 10⁻⁴⁹ 1.155 1.133 1.178 2.4 x 10⁻⁴⁸ 

Binary logistic regression model  

Adjusted (BMI+   
Covariates) 

1.176 1.148 1.206 9.4 x 10⁻³⁸ 1.174 1.146 1.205 2.6 x 10⁻³⁷ 

Descriptions: ES: effect size which refers to the HR for Cox PH model and OR for the logistics and 
proportional odds models; GRS: genetic risk score; BMI: Body Mass Index; CI: confidence interval; 

Covariates: include sex and Principal Components PC1-PC2 to account for population structure. 
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Table B.4. 2 - Estimated effect of association of BMI and AOO of T2D in NUgene samples 
(unweighted GRS) 

Analysis Method 

BMI with Unweighted GRS                                                                                
(P-value threshold   P < 0.05) 

BMI with Unweighted GRS                                                                                                                   
(P-value threshold P < 5 x 10 -8) 

ES Lower 
95% CI 

Upper 
95% CI 

P-value ES Lower 
95% CI 

Upper 
95% CI 

P-value 

NUgene 

Cox PH model (cases and controls) 

Adjusted (BMI+   
Covariates) 

1.087 1.076 1.099 1.3 x 10⁻⁵⁴ 1.086 1.075 1.098 1.1 x 10⁻⁵³ 

Proportional odds model 

Adjusted (BMI+ 
Covariates) 

1.157 1.135 1.180 4.2 x 10⁻⁴⁹ 1.155 1.133 1.178 3.7 x 10⁻⁴⁸ 

Binary logistic regression model  

Adjusted (BMI+   
Covariates) 

1.178 1.150 1.209 1.9 x 10⁻³⁸ 1.175 1.147 1.205 1.5 x 10⁻³⁷ 

 Descriptions: ES: effect size which refers to the HR for Cox PH model and OR for the logistics and 

proportional odds models; GRS: genetic risk score; BMI: Body Mass Index; CI: confidence interval; 
Covariates: include sex and Principal Components PC1-PC2 to account for population structure. 
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B.5: Supporting figures with further results relating to GRS 

simulation of AOO  

 

Figure B.5. 1 - General structure of GRS simulation model 
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Figure B.5. 2 - Power to detect association of GRS with AOO of disease as a function of 
the number of SNPs in the GRS assuming an ES of 0.10 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS effect 

on the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate (green); 

logistic model with GRS as covariate (gold); Cox model with PRS as covariate (navy blue). 
Abbreviations:  RAF: risk allele frequency; ES: GRS effect size. 
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Figure B.5. 3 - Power to detect association of GRS with AOO of disease as a function of 
the number of SNPs in the GRS assuming an ES of 0.20 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS effect 

on the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate (green); 

logistic model with GRS as covariate (gold); Cox model with PRS as covariate (navy blue). 

Abbreviations:  RAF: risk allele frequency; ES: GRS effect size. 
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Figure B.5. 4 - Power to detect association of GRS with AOO of disease as a function of 
the GRS effect size assuming a RAF of 0.05 and C of 30% 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS effect 

on the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate (green); 

logistic model with GRS as covariate (gold); Cox model with GRS as covariate (navy blue). 

Abbreviations:  RAF: risk allele frequency; SNP: number of SNPs included in the GRS calculation; t: 

study period (follow-up time) c: censoring rate. 
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Figure B.5. 5 - Power to detect association of GRS with AOO of disease as a function of 
the GRS effect size assuming a RAF of 0.05 and C of 20% 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS effect 

on the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate (green); 

logistic model with GRS as covariate (gold); Cox model with GRS as covariate (navy blue). 

Abbreviations:  RAF: risk allele frequency; SNP: number of SNPs included in the GRS calculation; t: 

study period (follow-up time); c: censoring rate. 
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Figure B.5. 6 - Power to detect association of GRS with AOO of disease as a function of 
the number of SNPs in the GRS assuming a RAF of 0.05 and ES of 0.05 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS effect 

on the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate (green); 

logistic model with GRS as covariate (gold); Cox model with GRS as covariate (navy blue). 

Abbreviations:  RAF: risk allele frequency; ES: GRS effect size; t: study period (follow-up time) c: 

censoring rate. 
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Figure B.5. 7 - Power to detect association of GRS with AOO of disease as a function of 
the number of SNPs in the GRS assuming a RAF of 0.10 and ES of 0.05 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS effect 

on the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate (green); 

logistic model with GRS as covariate (gold); Cox model with GRS as covariate (navy blue). 

Abbreviations:  RAF: risk allele frequency; ES: GRS effect size; t: study period (follow-up time) c: 

censoring rate. 
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Figure B.5. 8 - Power to detect association of GRS with AOO of disease as a function of 
the number of SNPs in the GRS assuming a RAF of 0.25 and ES of 0.05 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS effect 

on the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate (green); 

logistic model with GRS as covariate (gold); Cox model with GRS as covariate (navy blue). 

Abbreviations:  RAF: risk allele frequency; ES: GRS effect size; t: study period (follow-up time) c: 

censoring rate. 
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Figure B.5. 9 - Power to detect association of GRS with AOO of disease as a function of 
the number of SNPs in the GRS assuming a RAF of 0.5 and ES of 0.05 
Statistical power which is evaluated at the 5% significance threshold is shown on the y axis and GRS effect 

on the x axis for each analysis model evaluated,  Proportional odds model with GRS as covariate (green); 

logistic model with GRS as covariate (gold); Cox model with GRS as covariate (navy blue). 

Abbreviations:  RAF: risk allele frequency; ES: GRS effect size; t: study period (follow-up time) c: 

censoring rate. 
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Supporting information relating to application of T2D GRS in 
ancestrally diverse populations 
 

C.1: Supporting tables relating to global Impact of T2D 

 

Table C.1. 1 - IDF regions ranked by prevalence (%) of diabetes (20-79 years) per 
region in 2017 
 

Rank IDF regions 
Age-adjusted comparative 

diabetes prevalence 
Raw diabetes prevalence 

  Estimate CI Estimate CI 

1 North America and 
Caribbean 

11.0% 9.2 - 12.5% 13.0% 10.8 - 14.5% 

2 Middle East and 
North Africa 

10.8% 7.5 - 14.2% 9.6% 6.7 - 12.7% 

3 South-East Asia 10.1% 7.9 - 12.8% 8.5% 6.5 - 10.7% 
4 Western Pacific 8.6% 7.6 - 11.0% 9.5% 8.4 - 12.0% 
5 South and central 

America 
7.6% 6.3 - 9.5% 8.0% 6.7 - 9.8% 

6 Europe 6.8% 5.4 - 9.9% 8.8% 7.0% - 12.0% 
7 Africa 4.4% 2.9 - 7.8% 3.3% 2.1 - 6.0% 

Source: International diabetes federation (IDF) diabetes atlas, eighth edition 2017 

 

Table C.1. 2 - Proportion (%) of people who died from diabetes in 2017 before the age 
of 60 in IDF regions 

IDF regions Number of deaths due 
to diabetes before age 
60 

Proportion of all deaths due to 
diabetes occurring before age 
60 

Africa 0.23 million (0.16-0.39) 77.0% 
Europe 0.16 million (0.13-0.22) 32.9% 
Middle East and North 
Africa 

0.16 million (0.12-0.21) 51.8% 

North America and 
Caribbean 

0.13 million (0.11-0.14) 45.0% 

South and central America 0.09 million (0.08-0.11) 44.9% 
South-East Asia 0.58 million (0.47-0.69) 51.5% 
Western Pacific 0.48 million (0.43-0.60) 38.0% 

Source: International diabetes federation (IDF) diabetes atlas, eighth edition 2017 
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C.2: Supporting figures relating to global Impact of T2D 

 

 

Source: International diabetes federation (IDF) diabetes atlas, eighth edition 2017 

Figure C.2. 1 - Estimated total number of adults (20-79 years) living with diabetes, 2017 
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C.3: Supporting tables relating to T2D base and target GWAS  

 
Table C.3. 1 - List of associated T2D SNPs selected from base GWAS 

# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number EA NEA EAF 
(%) 

OR  p-value 

1 MACF1 1 40035928 rs3768321 T G 20.04 1.09  2.6x10-26 

2 FAF1 1 51256091 rs58432198 C T 88.11 1.07  2.1x10-10 

3 PATJ 1 62579891 rs12140153 G T 90.51 1.07  1.3x10-8 

4 DENND2C 1 115144899 rs184660829 C T 0.02 8.05  2.5x10-8 

5 PTGFRN 1 117532790 rs1127215 C T 58.38 1.05  1.6x10-13 

6 NOTCH2 1 120526982 rs1493694 T C 10.89 1.09  2.7x10-16 

7 FAM63A 1 151017991 rs145904381 T C 98.67 1.19  2.6x10-8 

8 SEC16B 1 177889025 rs539515 C A 19.81 1.05  1.6x10-10 

9 DSTYK 1 205114873 rs12048743 G C 44.17 1.04  3.5x10-9 

10 SRGAP2 1 206593900 rs9430095 C G 49.4 1.04  1.9x10-8 

11 PROX1 1 214159256 rs340874 C T 55.55 1.07  1.6x10-22 

12 LYPLAL1 1 219748818 rs2820446 C G 70.55 1.06  3.3x10-16 

13 ABCB10 1 229672955 rs348330 G A 36.05 1.05  2.7x10-14 

14 GNG4 1 235690800 rs291367 G A 63.22 1.04  4.7x10-10 

15 TMEM18 2 422144 rs62107261 T C 95.36 1.12  3.8x10-12 

16 FAM49A 2 16574669 rs11680058 A G 86.3 1.06  1.4x10-8 

17 DTNB 2 25643221 rs17802463 G T 73.14 1.04  2.9x10-8 

18 GCKR 2 27730940 rs1260326 C T 60.69 1.07  6.5x10-25 

19 THADA 2 43698028 rs80147536 A T 90.43 1.13 2.7x10-29 

20 BNIPL 2 59307725 rs6545714 G A 39.2 1.04  8.9x10-9 

21 BCL11A 2 60583665 rs243024 A G 45.99 1.06  2.5x10-20 

22 CEP68 2 65287896 rs2249105 A G 63.43 1.10  2.2x10-14 

23 TMEM127 2 96913918 rs79046683 T G 0.48 2.34  3.0x10-8 

24 DDX18 2 118071061 rs562386202 G A 0.06 3.20  4.2x10-8 

25 GLI2 2 121347612 rs11688682 G C 72.78 1.05  4.2x10-9 

26 PABPC1P2 2 147861633 rs35999103 T C 15.47 1.05  9.7x10-9 

27 CYTIP 2 158339550 rs13426680 A G 93.73 1.09  6.7x10-10 

28 RBMS1 2 161135544 rs3772071 T C 71.35 1.05  1.2x10-11 

29 GRB14/COBLL1 2 165513091 rs10195252 T C 58.64 1.07  6.0x10-25 

30 CRYBA2 2 219859171 rs113414093 A G 5.14 1.12  6.6x10-9 

31 IRS1 2 227101411 rs2972144 G A 63.85 1.10  2.1x10-46 

32 PPARG 3 12336507 rs11709077 G A 87.65 1.14  1.8x10-36 

33 UBE2E2 3 23455582 rs35352848 T C 78.78 1.07  1.3x10-17 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number EA NEA EAF 
(%) 

OR  p-value 

34 KIF9 3 46925539 rs11926707 C T 62.62 1.27  2.1x10-8 

35 RBM6 3 49980596 rs4688760 T C 68.42 1.04  3.5x10-10 

36 RFT1 3 53127677 rs2581787 T G 56.34 1.04  2.4x10-8 

37 CACNA2D3 3 54828827 rs76263492 T G 4.52 1.09  6.3x10-9 

38 PSMD6 3 63962339 rs3774723 G A 84.42 1.07  1.6x10-13 

39 ADAMTS9 3 64701146 rs9860730 A G 70.36 1.06  4.9x10-15 

40 SHQ1 3 72865183 rs13085136 C T 92.83 1.08  1.5x10-8 

41 ROBO2 3 77671721 rs2272163 C A 61.84 1.04  9.6x10-9 

42 ADCY5 3 123065778 rs11708067 A G 77.23 1.09  5.2x10-32 

43 SLC12A8 3 124926637 rs649961 T C 46.51 1.04  9.9x10-10 

44 TMCC1 3 129333182 rs9828772 C G 89.83 1.06  4.2x10-8 

45 TSC22D2 3 150066540 rs62271373 A T 5.53 1.09  1.0x10-9 

46 MBNL1 3 152086533 rs13065698 A G 60.02 1.05  8.1x10-13 

47 EGFEM1P 3 168218841 rs7629630 A T 85.67 1.05  2.5x10-8 

48 SLC2A2 3 170733076 rs9873618 G A 71 1.07  4.8x10-21 

49 ABCC5 3 183738460 rs2872246 A C 45.38 1.04  1.5x10-8 

50 IGF2BP2 3 185503456 rs6780171 A T 31.38 1.14  9.0x10-56 

51 ST6GAL1 3 186665645 rs3887925 T C 54.68 1.07  3.1x10-22 

52 LPP 3 187740899 rs4686471 C T 61.04 1.06  1.7x10-20 

53 PCGF3 4 744972 rs1531583 T G 4.58 1.13  3.5x10-14 

54 MAEA 4 1784403 rs56337234 C T 50.26 1.06  8.6x10-18 

55 HTT 4 3241845 rs362307 T C 7.68 1.08  1.1x10-9 

56 WFS1 4 6306763 rs10937721 C G 58.8 1.06  1.5x10-8 

57 LCORL 4 17792869 rs12640250 C A 71.49 1.04  3.7x10-8 

58 GNPDA2 4 45186139 rs10938398 A G 42.89 1.05  3.6x10-12 

59 USP46 4 52818664 rs2102278 G A 31.86 1.04  3.7x10-8 

60 SCD5 4 83578271 rs12642790 A G 33.78 1.04  4.4x10-10 

61 FAM13A 4 89740894 rs1903002 G C 50.05 1.04  2.7x10-8 

62 SMARCAD1 4 95091911 rs6821438 A G 53.42 1.04  4.0x10-11 

63 SLC9B1 4 104140848 rs1580278 C A 47.28 1.04  2.2x10-10 

64 PABPC4L 4 137083193 rs1296328 A C 44.57 1.04  3.5x10-8 

65 TMEM154 4 153513369 rs7669833 T A 70.45 1.06  1.2x10-14 

66 PDGFC 4 157652753 rs28819812 C A 67.67 1.04  2.2x10-8 

67 ACSL1 4 185717759 rs58730668 T C 85.8 1.07  1.3x10-13 

68 ANKH 5 14751305 rs146886108 C T 99.38 1.41  7.8x10-13 

69 MRPS30 5 44682589 rs6884702 G A 39.32 1.04  1.5x10-10 

70 ITGA1 5 52100489 rs3811978 G A 16.68 1.06  7.7x10-11 

71 ARL15 5 53271420 rs702634 A G 69 1.05 7.7x10-14 

72 ANKRD55 5 55808475 rs465002 T C 74.21 1.11  6.1x10-38 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number EA NEA EAF 
(%) 

OR  p-value 

73 PIK3R1 5 67714246 rs4976033 G A 41.05 1.05  1.0x10-9 

74 POC5 5 75003678 rs2307111 T C 60.53 1.05  2.1x10-16 

75 ZBED3 5 76424949 rs4457053 G A 30.36 1.06  8.4x10-18 

76 DMGDH 5 78430607 rs1316776 C A 64.76 1.05  2.6x10-12 

77 RASA1 5 86577352 rs7719891 G A 25.85 1.04  2.4x10-8 

78 SLCO6A1 5 101232944 rs138337556 G A 0.36 1.56  4.7x10-9 

79 PAM 5 102422968 rs115505614 T C 4.99 1.19  1.3x10-30 

80 PHF15 5 133864599 rs329122 A G 42.86 1.04  3.6x10-9 

81 EBF1 5 157928196 rs3934712 C T 20.57 1.05  3.2x10-8 

82 RREB1 6 7231843 rs9379084 G A 88.73 1.11  3.3x10-21 

83 CDKAL1 6 20679709 rs7756992 G A 27.35 1.15  2.4x10-88 

84 MHC 6 32573415 rs601945 G A 17.75 1.06  4.7x10-8 

85 HMGA1 6 34247047 rs77136196 T C 4.2 1.11  1.6x10-8 

86 LRFN2 6 40409243 rs34298980 T C 49.67 1.04  9.3x10-10 

87 VEGFA 6 43814190 rs6458354 C T 28.9 1.05  2.1x10-12 

88 TFAP2B 6 50788778 rs3798519 C A 18.44 1.06  2.6x10-12 

89 SLC25A51P1 6 67387490 rs555402748 T C 0.04 3.67  4.6x10-8 

90 BEND3 6 107431688 rs4946812 G A 67.43 1.04  8.2x10-9 

91 CENPW 6 126792095 rs11759026 G A 23.21 1.07  2.4x10-18 

92 SOGA3 6 127416930 rs2800733 A G 71.65 1.05  6.0x10-11 

93 SLC35D3 6 137300960 rs9494624 A G 28.99 1.04  6.1x10-9 

94 MIR3668 6 139835329 rs2982521 A T 38 1.05  1.3x10-9 

95 SLC22A3 6 160770312 rs474513 A G 51.69 1.04  8.1x10-10 

96 QKI 6 164133001 rs4709746 C T 86.76 1.06  5.8x10-9 

97 DGKB 7 15063569 rs10228066 T C 53.73 1.07  1.1x10-28 

98 IGF2BP3 7 23512896 rs4279506 G C 61.02 1.06  4.8x10-8 

99 JAZF1 7 28198677 rs1708302 C T 51.24 1.10  1.1x10-48 

100 CRHR2 7 30728452 rs917195 C T 77 1.05  4.2x10-11 

101 GCK 7 44255643 rs878521 A G 24.51 1.06  1.9x10-13 

102 FBXL13 7 102486254 rs11496066 T C 81.81 1.08  1.1x10-8 

103 RELN 7 103444978 rs39328 T C 43.34 1.04  3.7x10-8 

104 CTTNBP2 7 117495667 rs6976111 A C 31.27 1.04  1.2x10-8 

105 KLF14 7 130457914 rs1562396 G A 31.86 1.06  9.9x10-18 

106 AOC1 7 150537635 rs62492368 A G 30.81 1.05  1.1x10-10 

107 MNX1 7 156930550 rs6459733 G C 67.29 1.06  2.4x10-17 

108 MSRA 8 9974824 rs17689007 G A 53.29 1.04  2.5x10-9 

109 XKR6 8 10808687 rs57327348 A T 78.2 1.04  4.5x10-8 

110 LPL 8 19830921 rs10096633 C T 87.66 1.07  1.1x10-12 

111 PURG 8 30863938 rs10954772 T C 31.35 1.04  1.8x10-9 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number EA NEA EAF 
(%) 

OR  p-value 

112 ANK1 8 41508577 rs13262861 C A 82.92 1.07  4.0x10-12 

113 TP53INP1 8 95961626 rs10097617 T C 48.47 1.04  3.3x10-11 

114 CPQ 8 97737741 rs149364428 A G 1.04 1.27  1.8x10-12 

115 TRHR 8 110123183 rs12680028 C G 53.42 1.04  2.5x10-8 

116 SLC30A8 8 118185025 rs3802177 G A 68.51 1.11  1.1x10-55 

117 CASC11 8 128711742 rs17772814 G A 91.51 1.08  5.4x10-10 

118 PVT1 8 129568078 rs1561927 C T 26.86 1.04  1.5x10-9 

119 BOP1 8 145507304 rs4977213 C T 37.49 1.05  9.1x10-14 

120 GLIS3 9 4291928 rs10974438 C A 35.67 1.05  1.5x10-14 

121 HAUS6 9 19067833 rs7022807 G A 40.14 1.04  2.7x10-10 

122 FOCAD 9 20241069 rs7867635 C T 41.23 1.04  4.0x10-8 

123 CDKN2A/B 9 22134068 rs10811660 G A 82.82 1.27 1.4x10-115 

124 LINGO2 9 28410683 rs1412234 C T 32.29 1.04  1.9x10-10 

125 UBAP2 9 34074476 rs12001437 C T 37.22 1.04  2.8x10-10 

126 MTND2P8 9 81359113 rs11137820 C G 57.51 1.04  2.9x10-8 

127 TLE4 9 81905590 rs17791513 A G 93.17 1.10  3.1x10-14 

128 TLE1 9 84308948 rs2796441 G A 59.24 1.07  4.4x10-24 

129 ZNF169 9 97001682 rs55653563 A C 73.21 1.04  2.2x10-9 

130 ABO 9 136149229 rs505922 C T 33.17 1.05  3.9x10-12 

131 GPSM1 9 139241030 rs28505901 G A 75.2 1.09  6.7x10-26 

132 CDC123/CAMK1D 10 12307894 rs11257655 T C 21.84 1.09  1.5x10-32 

133 NEUROG3 10 71466578 rs2642588 G T 70.16 1.05  2.2x10-14 

134 ZMIZ1 10 80952826 rs703972 G C 53.3 1.07  1.7x10-29 

135 PTEN 10 89769340 rs11202627 T C 15.18 1.06  4.7x10-8 

136 HHEX/IDE 10 94462427 rs10882101 T C 58.72 1.06  1.4x10-8 

137 TCF7L2 10 114758349 rs7903146 T C 29.5 1.37  5.8x10-447 

138 WDR11 10 122915345 rs72631105 A G 18.99 1.06  3.7x10-9 

139 PLEKHA1 10 124193181 rs2280141 T G 51.61 1.05  1.4x10-13 

140 INS/IGF2 11 2197286 rs4929965 A G 38.29 1.07  4.0x10-26 

141 KCNQ1 11 2857194 rs2237895 C A 42.6 1.12  6.0x10-52 

142 PDE3B 11 14763828 rs141521721 A C 2.36 1.13  2.7x10-8 

143 KCNJ11 11 17408404 rs5213 C T 36.24 1.07  3.5x10-27 

144 METTL15 11 28534898 rs4923543 A G 33.2 1.04  4.5x10-8 

145 QSER1 11 32927778 rs145678014 G T 95.67 1.11  2.0x10-10 

146 PDHX 11 34982148 rs2767036 C A 29.08 1.04  3.3x10-8 

147 HSD17B12 11 43877934 rs1061810 A C 28.8 1.05  6.0x10-13 

148 CRY2 11 45912013 rs7115753 A G 44.94 1.04  3.8x10-9 

149 CELF1 11 47529947 rs7124681 A C 40.97 1.04  5.1x10-9 

150 MAP3K11 11 65294799 rs1783541 T C 20.35 1.06  2.0x10-14 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number EA NEA EAF 
(%) 

OR  p-value 

151 CCND1 11 69448758 rs11820019 T C 97.33 1.16  5.1x10-12 

152 CENTD2/ARAP1 11 72460398 rs77464186 A C 83.63 1.11  4.7x10-33 

153 MTNR1B 11 92708710 rs10830963 G C 27.65 1.10  4.8x10-43 

154 ETS1 11 128398938 rs67232546 T C 20.7 1.06  1.3x10-11 

155 CCND2 12 4384844 rs76895963 T G 98.02 1.62  1.4x10-69 

156 CDKN1B 12 12871099 rs2066827 G T 23.5 1.05  4.2x10-8 

157 ITPR2 12 26453283 rs718314 G A 25.32 1.05  8.4x10-11 

158 KLHDC5 12 27965150 rs10842994 C T 80.54 1.08  4.1x10-20 

159 HMGA2 12 66221060 rs2258238 T A 10.42 1.10  4.5x10-21 

160 TSPAN8/LGR5 12 71522953 rs1796330 G C 57.11 1.05  2.2x10-14 

161 USP44 12 95928560 rs2197973 T C 53.75 1.04  3.6x10-8 

162 RMST 12 97848775 rs77864822 A G 93.24 1.08  1.1x10-8 

163 WSCD2 12 108629780 rs1426371 G A 73.89 1.05  8.2x10-12 

164 KSR2 12 118412373 rs34965774 A G 14.38 1.06  2.0x10-9 

165 HNF1A 12 121432117 rs56348580 G C 68.89 1.05  2.3x10-13 

166 MPHOSPH9 12 123450765 rs4148856 C G 78.14 1.05  1.7x10-10 

167 ZNF664 12 124468572 rs7978610 G C 66.55 1.27  2.0x10-8 

168 FBRSL1 12 133069698 rs12811407 A G 33.05 1.05  1.7x10-12 

169 RNF6 13 26776999 rs34584161 A G 75.98 1.05  2.2x10-10 

170 HMGB1 13 31042452 rs11842871 G T 73.45 1.04  1.2x10-8 

171 KL 13 33554302 rs576674 G A 16.94 1.05  8.3x10-10 

172 DLEU1 13 51096095 rs963740 A T 71.28 1.04  2.1x10-8 

173 PCDH17 13 58366634 rs9537803 C T 27.71 1.04  4.6x10-8 

174 SRGAP2D 13 59077406 rs9563615 A T 71.01 1.05  6.4x10-11 

175 SPRY2 13 80717156 rs1359790 G A 72.01 1.09  2.4x10-31 

176 IRS2 13 109947213 rs7987740 T C 60.94 1.04  4.0x10-8 

177 SLC7A7 14 23288935 rs17122772 G C 22.8 1.04  1.6x10-8 

178 AKAP6 14 33302882 rs17522122 T G 47.42 1.04  3.2x10-9 

179 CLEC14A 14 38848419 rs8017808 G T 74.31 1.04  2.1x10-8 

180 NRXN3 14 79932041 rs17836088 C G 21.71 1.06  6.7x10-14 

181 SMEK1 14 91963722 rs8010382 G A 42.14 1.04  6.5x10-9 

182 MARK3 14 103894071 rs62007683 G T 65.32 1.04  3.1x10-8 

183 RASGRP1 15 38873115 rs34715063 C T 12.35 1.10  2.3x10-19 

184 LTK 15 41809205 rs11070332 A G 35.78 1.05  1.1x10-13 

185 ONECUT1 15 53091553 rs2456530 T C 12.72 1.06  5.4x10-9 

186 WDR72 15 53747228 rs528350911 G C 0.68 1.27  2.1x10-8 

187 TCF12 15 57456802 rs117483894 G A 3.69 1.10  3.9x10-8 

188 C2CD4A/B 15 62394264 rs8037894 G C 56.63 1.05  2.6x10-13 

189 USP3 15 63871292 rs7178762 C T 45.95 1.04  5.4x10-10 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number EA NEA EAF 
(%) 

OR  p-value 

190 MAP2K5 15 68080886 rs4776970 A T 64.06 1.04  5.0x10-9 

191 PTPN9 15 75932129 rs13737 G T 75.86 1.05  5.6x10-10 

192 HMG20A 15 77818128 rs1005752 A C 71.54 1.08  2.5x10-29 

193 AP3S2 15 90423293 rs4932265 T C 26.72 1.07  4.2x10-20 

194 PRC1 15 91511260 rs12910825 G A 36.12 1.05  1.6x10-15 

195 ITFG3 16 295795 rs6600191 T C 82.46 1.06  9.3x10-13 

196 CLUAP1 16 3583173 rs3751837 T C 22 1.04  1.4x10-8 

197 ATP2A1 16 28915217 rs8046545 G A 35.89 1.04  1.9x10-8 

198 FAM57B 16 30045789 rs11642430 G C 39.9 1.04  2.2x10-9 

199 FTO 16 53800954 rs1421085 C T 41.5 1.13  3.1x10-84 

200 NFAT5 16 69651866 rs862320 C T 57.83 1.04  3.9x10-11 

201 BCAR1 16 75234872 rs72802342 C A 92.31 1.17  4.0x10-32 

202 CMIP 16 81534790 rs2925979 T C 29.96 1.05  1.4x10-14 

203 SPG7 16 89564055 rs12920022 A T 15.75 1.05  3.4x10-9 

204 ZZEF1 17 4045440 rs1377807 C G 31.18 1.05  4.2x10-13 

205 ATP1B2 17 7549681 rs1641523 C T 42.76 1.05  1.2x10-10 

206 GLP2R 17 9785187 rs7222481 C G 32.38 1.04  1.4x10-8 

207 RAI1 17 17661802 rs4925109 A G 31.64 1.05  2.8x10-12 

208 NF1 17 29413019 rs71372253 C T 6.42 1.08  4.4x10-8 

209 HNF1B 17 36099952 rs10908278 T A 48.08 1.08  6.4x10-36 

210 MLX 17 40731411 rs34855406 C G 27.72 1.05  2.3x10-12 

211 TTLL6 17 47060322 rs35895680 C A 67.8 1.06  2.5x10-15 

212 KIF2B 17 52140805 rs569511541 G A 0.02 7.63  1.5x10-8 

213 ACE 17 62203304 rs60276348 T C 13.97 1.05  2.6x10-8 

214 BPTF 17 65892507 rs61676547 C G 19.24 1.06  2.9x10-11 

215 LAMA1 18 7070642 rs7240767 C T 37.62 1.04  1.6x10-8 

216 COMMD9 18 36278709 rs62080313 C T 12.33 1.06  1.0x10-8 

217 TCF4 18 53050646 rs72926932 C A 8.39 1.09  1.0x10-14 

218 WDR7 18 54675384 rs17684074 G C 74.03 1.04  2.9x10-8 

219 GRP 18 56876228 rs9957145 G A 82.9 1.05  8.1x10-9 

220 MC4R 18 57848369 rs523288 T A 23.77 1.05  7.6x10-13 

221 BCL2A 18 60845884 rs12454712 T C 61.42 1.05  4.6x10-13 

222 UHRF1 19 4948862 rs7249758 A G 20.39 1.05  3.4x10-9 

223 INSR 19 7240848 rs75253922 C T 19.09 1.05  2.7x10-8 

224 MAP2K7 19 7970635 rs4804833 A G 39.02 1.05  7.7x10-13 

225 FARSA 19 13038415 rs3111316 A G 58.85 1.05  6.3x10-13 

226 TM6SF2 19 19388500 rs8107974 T A 7.69 1.10  3.3x10-15 

227 PEPD 19 33890838 rs10406327 C G 52.26 1.04  3.8x10-8 

228 TOMM40/APOE 19 45411941 rs429358 T C 84.58 1.08  2.6x10-18 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number EA NEA EAF 
(%) 

OR  p-value 

229 GIPR 19 46157019 rs10406431 A G 56.25 1.05  9.6x10-14 

230 ZC3H4 19 47569003 rs3810291 A G 67.3 1.05  8.9x10-12 

231 NKX2.2 20 21466795 rs13041756 C T 10.72 1.06  1.4x10-8 

232 RALY 20 32596704 rs2268078 A G 65.72 1.04  2.3x10-10 

233 HNF4A 20 43042364 rs1800961 T C 3.53 1.18  2.3x10-22 

234 EYA2 20 45598564 rs6063048 G A 72.46 1.05  2.2x10-11 

235 CEBPB 20 48832135 rs11699802 C T 53.59 1.04  1.8x10-11 

236 TSHZ2 20 51223594 rs34454109 A T 77.09 1.04 7.1x10-9 

237 GNAS 20 57394628 rs6070625 G C 51.74 1.05  5.3x10-14 

238 TCEA2 20 62693175 rs59944054 A G 23.82 1.06  1.5x10-8 

239 MTMR3/ASCC2 22 30609554 rs6518681 G A 91.36 1.09  1.1x10-12 

240 YWHAH 22 32348841 rs117001013 C T 91.17 1.07  1.7x10-8 

241 EP300 22 41489920 rs5758223 A G 71.67 1.04  3.8x10-8 

242 PNPLA3 22 44324730 rs738408 T C 22.61 1.05  1.4x10-10 

243 PIM3 22 50356850 rs1801645 C T 27.5 1.04  1.5x10-8 

 
Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 

SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;  EA: Discovery 

SNP effect allele; NEA: Discovery SNP alternative allele; EAF: Discovery SNP effect allele frequency; OR: Odds 
ratio associated with SNP effect allele; P_value: P_value associated with SNP effect allele. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

  



 
 

250 
 

C.4: Supporting tables with further results for single-SNP association 

with T2D status  

 

Table C.4. 1 - Single SNP association with T2D status in European ancestry population 
(nominal level) 

# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting 

for age, sex, 
BMI, and 
ancestry 

1 DENND2C 1 115144899 rs184660829 3.2 x 10⁻⁰³ 

2 PTGFRN 1 117532790 rs1127215 1.2 x 10⁻⁰⁵ 

3 NOTCH2 1 120526982 rs1493694 5.1 x 10⁻⁰⁷ 

4 SEC16B 1 177889025 rs539515 4.2 x 10⁻⁰⁴ 

5 DSTYK 1 205114873 rs12048743 6.5 x 10⁻⁰⁴ 

6 SRGAP2 1 206593900 rs9430095 2.5 x 10⁻⁰³ 

7 PROX1 1 214159256 rs340874 2.8 x 10⁻¹⁰ 

8 LYPLAL1 1 219748818 rs2820446 1.7 x 10⁻⁰³ 

9 ABCB10 1 229672955 rs348330 3.9 x 10⁻⁰⁶ 

10 GNG4 1 235690800 rs291367 4.7 x 10⁻⁰³ 

11 MACF1 1 40035928 rs3768321 4.7 x 10⁻⁰⁸ 

12 FAF1 1 51256091 rs58432198 9.2 x 10⁻⁰⁶ 

13 PATJ 1 62579891 rs12140153 7.0 x 10⁻⁰⁶ 

14 GLI2 2 121347612 rs11688682 4.1 x 10⁻⁰⁶ 

15 PABPC1P2 2 147861633 rs35999103 1.8 x 10⁻⁰⁵ 

16 CYTIP 2 158339550 rs13426680 4.3 x 10⁻⁰⁵ 

17 RBMS1 2 161135544 rs3772071 3.3 x 10⁻⁰³ 

18 GRB14/COBLL1 2 165513091 rs10195252 9.2 x 10⁻¹¹ 

19 FAM49A 2 16574669 rs11680058 3.5 x 10⁻⁰⁵ 

20 CRYBA2 2 219859171 rs113414093 2.9 x 10⁻⁰³ 

21 IRS1 2 227101411 rs2972144 2.1 x 10⁻¹⁴ 

22 DTNB 2 25643221 rs17802463 7.9 x 10⁻⁰³ 

23 GCKR 2 27730940 rs1260326 3.2 x 10⁻¹¹ 

24 TMEM18 2 422144 rs62107261 2.4 x 10⁻⁰⁵ 

25 THADA 2 43698028 rs80147536 2.3 x 10⁻¹² 

26 BNIPL 2 59307725 rs6545714 1.2 x 10⁻⁰⁶ 

27 BCL11A 2 60583665 rs243024 2.9 x 10⁻⁰⁷ 

28 CEP68 2 65287896 rs2249105 4.9 x 10⁻⁰⁴ 

29 TMEM127 2 96913918 rs79046683 1.3 x 10⁻⁰² 

30 ADCY5 3 123065778 rs11708067 3.9 x 10⁻⁰⁹ 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting 

for age, sex, 
BMI, and 
ancestry 

31 PPARG 3 12336507 rs11709077 1.3 x 10⁻⁰⁸ 

32 SLC12A8 3 124926637 rs649961 3.9 x 10⁻⁰³ 

33 TMCC1 3 129333182 rs9828772 8.4 x 10⁻⁰³ 

34 TSC22D2 3 150066540 rs62271373 2.2 x 10⁻⁰⁴ 

35 MBNL1 3 152086533 rs13065698 4.7 x 10⁻⁰⁴ 

36 EGFEM1P 3 168218841 rs7629630 1.8 x 10⁻⁰² 

37 SLC2A2 3 170733076 rs9873618 2.1 x 10⁻⁰⁴ 

38 ABCC5 3 183738460 rs2872246 2.4 x 10⁻⁰² 

39 IGF2BP2 3 185503456 rs6780171 6.4 x 10⁻²⁰ 

40 ST6GAL1 3 186665645 rs3887925 7.9 x 10⁻⁰⁹ 

41 LPP 3 187740899 rs4686471 7.0 x 10⁻⁰⁸ 

42 UBE2E2 3 23455582 rs35352848 2.0 x 10⁻¹¹ 

43 KIF9 3 46925539 rs11926707 1.9 x 10⁻⁰⁴ 

44 RBM6 3 49980596 rs4688760 2.4 x 10⁻⁰⁸ 

45 RFT1 3 53127677 rs2581787 9.2 x 10⁻⁰³ 

46 CACNA2D3 3 54828827 rs76263492 1.9 x 10⁻⁰⁴ 

47 PSMD6 3 63962339 rs3774723 4.4 x 10⁻⁰⁹ 

48 ADAMTS9 3 64701146 rs9860730 2.5 x 10⁻⁰² 

49 SHQ1 3 72865183 rs13085136 6.1 x 10⁻⁰⁵ 

50 ROBO2 3 77671721 rs2272163 1.2 x 10⁻⁰³ 

51 SLC9B1 4 104140848 rs1580278 2.7 x 10⁻⁰³ 

52 PABPC4L 4 137083193 rs1296328 6.6 x 10⁻⁰⁵ 

53 TMEM154 4 153513369 rs7669833 5.0 x 10⁻⁰⁴ 

54 PDGFC 4 157652753 rs28819812 3.3 x 10⁻⁰³ 

55 MAEA 4 1784403 rs56337234 2.0 x 10⁻⁰⁸ 

56 ACSL1 4 185717759 rs58730668 1.9 x 10⁻⁰³ 

57 HTT 4 3241845 rs362307 3.9 x 10⁻⁰⁵ 

58 GNPDA2 4 45186139 rs10938398 3.4 x 10⁻⁰⁴ 

59 USP46 4 52818664 rs2102278 3.5 x 10⁻⁰⁷ 

60 WFS1 4 6306763 rs10937721 3.2 x 10⁻¹³ 

61 PCGF3 4 744972 rs1531583 2.4 x 10⁻⁰³ 

62 SCD5 4 83578271 rs12642790 5.2 x 10⁻⁰⁴ 

63 FAM13A 4 89740894 rs1903002 4.1 x 10⁻⁰² 

64 SMARCAD1 4 95091911 rs6821438 6.8 x 10⁻⁰³ 

65 SLCO6A1 5 101232944 rs138337556 5.6 x 10⁻⁰⁴ 

66 PAM 5 102422968 rs115505614 6.7 x 10⁻¹¹ 

67 PHF15 5 133864599 rs329122 2.0 x 10⁻⁰⁵ 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting 

for age, sex, 
BMI, and 
ancestry 

68 ANKH 5 14751305 rs146886108 1.5 x 10⁻¹⁰ 

69 EBF1 5 157928196 rs3934712 1.1 x 10⁻⁰³ 

70 MRPS30 5 44682589 rs6884702 2.5 x 10⁻⁰² 

71 ITGA1 5 52100489 rs3811978 9.3 x 10⁻⁰⁷ 

72 ARL15 5 53271420 rs702634 2.4 x 10⁻⁰⁴ 

73 ANKRD55 5 55808475 rs465002 6.8 x 10⁻⁰⁹ 

74 PIK3R1 5 67714246 rs4976033 7.3 x 10⁻⁰³ 

75 POC5 5 75003678 rs2307111 8.6 x 10⁻⁰⁶ 

76 ZBED3 5 76424949 rs4457053 4.3 x 10⁻⁰⁴ 

77 DMGDH 5 78430607 rs1316776 8.4 x 10⁻⁰⁴ 

78 RASA1 5 86577352 rs7719891 2.7 x 10⁻⁰⁴ 

79 BEND3 6 107431688 rs4946812 1.6 x 10⁻⁰³ 

80 CENPW 6 126792095 rs11759026 2.3 x 10⁻⁰⁶ 

81 SOGA3 6 127416930 rs2800733 1.1 x 10⁻⁰⁴ 

82 SLC35D3 6 137300960 rs9494624 4.4 x 10⁻⁰² 

83 MIR3668 6 139835329 rs2982521 4.6 x 10⁻⁰⁶ 

84 SLC22A3 6 160770312 rs474513 1.0 x 10⁻⁰⁴ 

85 QKI 6 164133001 rs4709746 4.6 x 10⁻⁰² 

86 CDKAL1 6 20679709 rs7756992 2.1 x 10⁻²¹ 

87 MHC 6 32573415 rs601945 2.0 x 10⁻⁰⁷ 

88 HMGA1 6 34247047 rs77136196 3.7 x 10⁻⁰³ 

89 LRFN2 6 40409243 rs34298980 2.1 x 10⁻⁰⁶ 

90 VEGFA 6 43814190 rs6458354 1.6 x 10⁻⁰³ 

91 TFAP2B 6 50788778 rs3798519 3.2 x 10⁻⁰⁸ 

92 SLC25A51P1 6 67387490 rs555402748 9.9 x 10⁻⁰⁶ 

93 RREB1 6 7231843 rs9379084 5.9 x 10⁻¹³ 

94 FBXL13 7 102486254 rs11496066 3.5 x 10⁻⁰⁴ 

95 RELN 7 103444978 rs39328 4.4 x 10⁻⁰⁵ 

96 CTTNBP2 7 117495667 rs6976111 4.4 x 10⁻⁰⁵ 

97 KLF14 7 130457914 rs1562396 2.6 x 10⁻⁰⁷ 

98 AOC1 7 150537635 rs62492368 5.9 x 10⁻⁰⁵ 

99 DGKB 7 15063569 rs10228066 1.1 x 10⁻⁰⁹ 

100 MNX1 7 156930550 rs6459733 1.6 x 10⁻⁰⁵ 

101 IGF2BP3 7 23512896 rs4279506 3.0 x 10⁻⁰⁴ 

102 JAZF1 7 28198677 rs1708302 2.7 x 10⁻¹⁴ 

103 CRHR2 7 30728452 rs917195 3.0 x 10⁻⁰⁴ 

104 GCK 7 44255643 rs878521 5.8 x 10⁻⁰⁴ 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting 

for age, sex, 
BMI, and 
ancestry 

105 XKR6 8 10808687 rs57327348 2.9 x 10⁻⁰³ 

106 TRHR 8 110123183 rs12680028 6.4 x 10⁻⁰⁵ 

107 SLC30A8 8 118185025 rs3802177 1.3 x 10⁻²² 

108 CASC11 8 128711742 rs17772814 3.6 x 10⁻⁰² 

109 PVT1 8 129568078 rs1561927 1.0 x 10⁻⁰⁴ 

110 BOP1 8 145507304 rs4977213 2.9 x 10⁻⁰⁵ 

111 LPL 8 19830921 rs10096633 5.1 x 10⁻⁰⁴ 

112 PURG 8 30863938 rs10954772 1.4 x 10⁻⁰⁴ 

113 ANK1 8 41508577 rs13262861 3.5 x 10⁻¹² 

114 TP53INP1 8 95961626 rs10097617 2.1 x 10⁻⁰⁸ 

115 CPQ 8 97737741 rs149364428 1.3 x 10⁻⁰⁴ 

116 MSRA 8 9974824 rs17689007 7.1 x 10⁻⁰⁵ 

117 ABO 9 136149229 rs505922 1.9 x 10⁻⁰³ 

118 GPSM1 9 139241030 rs28505901 1.2 x 10⁻⁰⁸ 

119 HAUS6 9 19067833 rs7022807 4.3 x 10⁻⁰³ 

120 FOCAD 9 20241069 rs7867635 1.1 x 10⁻⁰³ 

121 CDKN2A/B 9 22134068 rs10811660 9.4 x 10⁻²⁸ 

122 LINGO2 9 28410683 rs1412234 6.3 x 10⁻⁰⁴ 

123 UBAP2 9 34074476 rs12001437 3.1 x 10⁻⁰² 

124 GLIS3 9 4291928 rs10974438 4.6 x 10⁻⁰⁸ 

125 TLE4 9 81905590 rs17791513 1.9 x 10⁻⁰³ 

126 TLE1 9 84308948 rs2796441 1.5 x 10⁻¹³ 

127 ZNF169 9 97001682 rs55653563 1.1 x 10⁻⁰² 

128 TCF7L2 10 114758349 rs7903146 1.5 x 10⁻¹⁵¹ 

129 WDR11 10 122915345 rs72631105 1.4 x 10⁻⁰⁶ 

130 CDC123/CAMK1D 10 12307894 rs11257655 5.9 x 10⁻¹² 

131 PLEKHA1 10 124193181 rs2280141 1.8 x 10⁻⁰² 

132 NEUROG3 10 71466578 rs2642588 2.1 x 10⁻⁰⁷ 

133 ZMIZ1 10 80952826 rs703972 1.7 x 10⁻¹² 

134 PTEN 10 89769340 rs11202627 1.2 x 10⁻⁰² 

135 HHEX/IDE 10 94462427 rs10882101 2.6 x 10⁻¹⁷ 

136 ETS1 11 128398938 rs67232546 1.1 x 10⁻⁰⁵ 

137 PDE3B 11 14763828 rs141521721 4.3 x 10⁻⁰⁴ 

138 KCNJ11 11 17408404 rs5213 2.1 x 10⁻⁰⁹ 

139 INS/IGF2 11 2197286 rs4929965 1.3 x 10⁻¹⁰ 

140 METTL15 11 28534898 rs4923543 4.7 x 10⁻⁰³ 

141 KCNQ1 11 2857194 rs2237895 2.5 x 10⁻²¹ 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting 

for age, sex, 
BMI, and 
ancestry 

142 QSER1 11 32927778 rs145678014 1.1 x 10⁻⁰² 

143 PDHX 11 34982148 rs2767036 5.4 x 10⁻⁰³ 

144 HSD17B12 11 43877934 rs1061810 1.2 x 10⁻⁰² 

145 CRY2 11 45912013 rs7115753 1.7 x 10⁻⁰³ 

146 CELF1 11 47529947 rs7124681 1.2 x 10⁻⁰⁴ 

147 MAP3K11 11 65294799 rs1783541 8.0 x 10⁻⁰⁶ 

148 CCND1 11 69448758 rs11820019 2.1 x 10⁻⁰⁶ 

149 CENTD2/ARAP1 11 72460398 rs77464186 2.3 x 10⁻¹⁵ 

150 MTNR1B 11 92708710 rs10830963 1.6 x 10⁻¹² 

151 WSCD2 12 108629780 rs1426371 3.4 x 10⁻⁰⁵ 

152 KSR2 12 118412373 rs34965774 1.6 x 10⁻⁰⁴ 

153 HNF1A 12 121432117 rs56348580 4.0 x 10⁻⁰⁴ 

154 MPHOSPH9 12 123450765 rs4148856 5.6 x 10⁻⁰³ 

155 ZNF664 12 124468572 rs7978610 1.9 x 10⁻⁰³ 

156 CDKN1B 12 12871099 rs2066827 4.1 x 10⁻⁰³ 

157 FBRSL1 12 133069698 rs12811407 3.6 x 10⁻⁰⁶ 

158 ITPR2 12 26453283 rs718314 1.1 x 10⁻⁰⁶ 

159 KLHDC5 12 27965150 rs10842994 5.3 x 10⁻⁰⁵ 

160 CCND2 12 4384844 rs76895963 2.6 x 10⁻²⁹ 

161 HMGA2 12 66221060 rs2258238 3.3 x 10⁻¹⁰ 

162 TSPAN8/LGR5 12 71522953 rs1796330 8.5 x 10⁻⁰⁴ 

163 USP44 12 95928560 rs2197973 4.3 x 10⁻⁰⁵ 

164 RMST 12 97848775 rs77864822 6.3 x 10⁻⁰³ 

165 IRS2 13 109947213 rs7987740 3.1 x 10⁻⁰⁷ 

166 RNF6 13 26776999 rs34584161 1.3 x 10⁻⁰² 

167 HMGB1 13 31042452 rs11842871 1.5 x 10⁻⁰⁵ 

168 KL 13 33554302 rs576674 1.8 x 10⁻⁰² 

169 DLEU1 13 51096095 rs963740 5.5 x 10⁻⁰³ 

170 PCDH17 13 58366634 rs9537803 1.6 x 10⁻⁰³ 

171 SRGAP2D 13 59077406 rs9563615 2.6 x 10⁻⁰⁷ 

172 SPRY2 13 80717156 rs1359790 6.2 x 10⁻¹³ 

173 MARK3 14 103894071 rs62007683 4.0 x 10⁻⁰⁴ 

174 SLC7A7 14 23288935 rs17122772 2.0 x 10⁻⁰² 

175 AKAP6 14 33302882 rs17522122 3.2 x 10⁻⁰⁴ 

176 CLEC14A 14 38848419 rs8017808 1.1 x 10⁻⁰⁸ 

177 NRXN3 14 79932041 rs17836088 1.8 x 10⁻⁰⁵ 

178 SMEK1 14 91963722 rs8010382 3.8 x 10⁻⁰³ 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting 

for age, sex, 
BMI, and 
ancestry 

179 RASGRP1 15 38873115 rs34715063 3.4 x 10⁻¹⁰ 

180 LTK 15 41809205 rs11070332 1.4 x 10⁻⁰⁴ 

181 ONECUT1 15 53091553 rs2456530 1.1 x 10⁻⁰³ 

182 WDR72 15 53747228 rs528350911 2.1 x 10⁻⁰² 

183 C2CD4A/B 15 62394264 rs8037894 2.2 x 10⁻⁰³ 

184 USP3 15 63871292 rs7178762 2.9 x 10⁻⁰² 

185 PTPN9 15 75932129 rs13737 1.2 x 10⁻⁰⁵ 

186 HMG20A 15 77818128 rs1005752 8.4 x 10⁻¹⁰ 

187 AP3S2 15 90423293 rs4932265 3.7 x 10⁻⁰⁶ 

188 PRC1 15 91511260 rs12910825 5.4 x 10⁻⁰⁵ 

189 ATP2A1 16 28915217 rs8046545 5.4 x 10⁻⁰³ 

190 ITFG3 16 295795 rs6600191 1.6 x 10⁻⁰⁵ 

191 FAM57B 16 30045789 rs11642430 1.6 x 10⁻⁰⁴ 

192 CLUAP1 16 3583173 rs3751837 4.7 x 10⁻⁰³ 

193 FTO 16 53800954 rs1421085 4.2 x 10⁻²⁴ 

194 NFAT5 16 69651866 rs862320 3.8 x 10⁻¹⁰ 

195 BCAR1 16 75234872 rs72802342 3.1 x 10⁻¹³ 

196 CMIP 16 81534790 rs2925979 5.1 x 10⁻⁰³ 

197 SPG7 16 89564055 rs12920022 1.0 x 10⁻⁰⁴ 

198 RAI1 17 17661802 rs4925109 5.0 x 10⁻⁰⁴ 

199 HNF1B 17 36099952 rs10908278 2.0 x 10⁻¹⁴ 

200 ZZEF1 17 4045440 rs1377807 6.8 x 10⁻⁰⁷ 

201 MLX 17 40731411 rs34855406 6.0 x 10⁻⁰⁶ 

202 TTLL6 17 47060322 rs35895680 2.3 x 10⁻⁰⁵ 

203 KIF2B 17 52140805 rs569511541 1.0 x 10⁻⁰⁴ 

204 ACE 17 62203304 rs60276348 1.7 x 10⁻⁰³ 

205 BPTF 17 65892507 rs61676547 3.3 x 10⁻⁰³ 

206 ATP1B2 17 7549681 rs1641523 1.8 x 10⁻⁰² 

207 GLP2R 17 9785187 rs7222481 5.2 x 10⁻⁰³ 

208 COMMD9 18 36278709 rs62080313 2.8 x 10⁻⁰³ 

209 TCF4 18 53050646 rs72926932 2.6 x 10⁻⁰⁴ 

210 WDR7 18 54675384 rs17684074 2.9 x 10⁻⁰⁴ 

211 GRP 18 56876228 rs9957145 5.1 x 10⁻⁰⁴ 

212 MC4R 18 57848369 rs523288 1.2 x 10⁻⁰⁷ 

213 BCL2A 18 60845884 rs12454712 2.4 x 10⁻⁰⁶ 

214 LAMA1 18 7070642 rs7240767 5.8 x 10⁻⁰⁴ 

215 FARSA 19 13038415 rs3111316 2.6 x 10⁻⁰⁶ 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting 

for age, sex, 
BMI, and 
ancestry 

216 TM6SF2 19 19388500 rs8107974 5.3 x 10⁻⁰⁶ 

217 PEPD 19 33890838 rs10406327 5.2 x 10⁻⁰⁷ 

218 TOMM40/APOE 19 45411941 rs429358 4.2 x 10⁻⁰⁶ 

219 GIPR 19 46157019 rs10406431 6.6 x 10⁻¹³ 

220 ZC3H4 19 47569003 rs3810291 2.5 x 10⁻⁰⁶ 

221 UHRF1 19 4948862 rs7249758 7.1 x 10⁻⁰⁴ 

222 INSR 19 7240848 rs75253922 7.3 x 10⁻⁰⁵ 

223 MAP2K7 19 7970635 rs4804833 8.8 x 10⁻⁰⁶ 

224 RALY 20 32596704 rs2268078 1.1 x 10⁻⁰³ 

225 HNF4A 20 43042364 rs1800961 4.3 x 10⁻⁰⁹ 

226 EYA2 20 45598564 rs6063048 8.0 x 10⁻⁰⁶ 

227 CEBPB 20 48832135 rs11699802 6.1 x 10⁻⁰⁵ 

228 GNAS 20 57394628 rs6070625 4.2 x 10⁻⁰⁶ 

229 TCEA2 20 62693175 rs59944054 2.6 x 10⁻⁰⁴ 

230 MTMR3/ASCC2 22 30609554 rs6518681 1.7 x 10⁻⁰³ 

231 YWHAH 22 32348841 rs117001013 1.5 x 10⁻⁰² 

232 EP300 22 41489920 rs5758223 1.7 x 10⁻⁰² 

233 PNPLA3 22 44324730 rs738408 3.4 x 10⁻⁰³ 

234 PIM3 22 50356850 rs1801645 4.1 x 10⁻⁰⁴ 
Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 
SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;   

P-value: P-value associated with each SNP adjusted by covariates age, sex, and ancestry. 
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Table C.4. 2 - Single SNP association with T2D status in European ancestry population 
(genome-wide level) 

# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting for 

age, sex, 
BMI, and 
ancestry 

1 PROX1 1 214159256 rs340874 2.8 x 10⁻¹⁰ 

2 MACF1 1 40035928 rs3768321 4.7 x 10⁻⁰⁸ 

3 GRB14/COBLL1 2 165513091 rs10195252 9.2 x 10⁻¹¹ 

4 IRS1 2 227101411 rs2972144 2.1 x 10⁻¹⁴ 

5 GCKR 2 27730940 rs1260326 3.2 x 10⁻¹¹ 

6 THADA 2 43698028 rs80147536 2.3 x 10⁻¹² 

7 ADCY5 3 123065778 rs11708067 3.9 x 10⁻⁰⁹ 

8 PPARG 3 12336507 rs11709077 1.3 x 10⁻⁰⁸ 

9 IGF2BP2 3 185503456 rs6780171 6.4 x 10⁻²⁰ 

10 ST6GAL1 3 186665645 rs3887925 7.9 x 10⁻⁰⁹ 

11 UBE2E2 3 23455582 rs35352848 2.0 x 10⁻¹¹ 

12 RBM6 3 49980596 rs4688760 2.4 x 10⁻⁰⁸ 

13 PSMD6 3 63962339 rs3774723 4.4 x 10⁻⁰⁹ 

14 MAEA 4 1784403 rs56337234 2.0 x 10⁻⁰⁸ 

15 WFS1 4 6306763 rs10937721 3.2 x 10⁻¹³ 

16 PAM 5 102422968 rs115505614 6.7 x 10⁻¹¹ 

17 ANKH 5 14751305 rs146886108 1.5 x 10⁻¹⁰ 

18 ANKRD55 5 55808475 rs465002 6.8 x 10⁻⁰⁹ 

19 CDKAL1 6 20679709 rs7756992 2.1 x 10⁻²¹ 

20 TFAP2B 6 50788778 rs3798519 3.2 x 10⁻⁰⁸ 

21 RREB1 6 7231843 rs9379084 5.9 x 10⁻¹³ 

22 DGKB 7 15063569 rs10228066 1.1 x 10⁻⁰⁹ 

23 JAZF1 7 28198677 rs1708302 2.7 x 10⁻¹⁴ 

24 SLC30A8 8 118185025 rs3802177 1.3 x 10⁻²² 

25 ANK1 8 41508577 rs13262861 3.5 x 10⁻¹² 

26 TP53INP1 8 95961626 rs10097617 2.1 x 10⁻⁰⁸ 

27 GPSM1 9 139241030 rs28505901 1.2 x 10⁻⁰⁸ 

28 CDKN2A/B 9 22134068 rs10811660 9.4 x 10⁻²⁸ 

29 GLIS3 9 4291928 rs10974438 4.6 x 10⁻⁰⁸ 

30 TLE1 9 84308948 rs2796441 1.5 x 10⁻¹³ 

31 TCF7L2 10 114758349 rs7903146 1.5 x 10⁻¹⁵¹ 

32 CDC123/CAMK1D 10 12307894 rs11257655 5.9 x 10⁻¹² 

33 ZMIZ1 10 80952826 rs703972 1.7 x 10⁻¹² 

34 HHEX/IDE 10 94462427 rs10882101 2.6 x 10⁻¹⁷ 

35 KCNJ11 11 17408404 rs5213 2.1 x 10⁻⁰⁹ 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting for 

age, sex, 
BMI, and 
ancestry 

36 INS/IGF2 11 2197286 rs4929965 1.3 x 10⁻¹⁰ 

37 KCNQ1 11 2857194 rs2237895 2.5 x 10⁻²¹ 

38 CENTD2/ARAP1 11 72460398 rs77464186 2.3 x 10⁻¹⁵ 

39 MTNR1B 11 92708710 rs10830963 1.6 x 10⁻¹² 

40 CCND2 12 4384844 rs76895963 2.6 x 10⁻²⁹ 

41 HMGA2 12 66221060 rs2258238 3.3 x 10⁻¹⁰ 

42 SPRY2 13 80717156 rs1359790 6.2 x 10⁻¹³ 

43 CLEC14A 14 38848419 rs8017808 1.1 x 10⁻⁰⁸ 

44 RASGRP1 15 38873115 rs34715063 3.4 x 10⁻¹⁰ 

45 HMG20A 15 77818128 rs1005752 8.4 x 10⁻¹⁰ 

46 FTO 16 53800954 rs1421085 4.2 x 10⁻²⁴ 

47 NFAT5 16 69651866 rs862320 3.8 x 10⁻¹⁰ 

48 BCAR1 16 75234872 rs72802342 3.1 x 10⁻¹³ 

49 HNF1B 17 36099952 rs10908278 2.0 x 10⁻¹⁴ 

50 GIPR 19 46157019 rs10406431 6.6 x 10⁻¹³ 

51 HNF4A 20 43042364 rs1800961 4.3 x 10⁻⁰⁹ 
Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 
SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;   

P-value: P-value associated with each SNP adjusted by covariates age, sex, and ancestry. 
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Table C.4. 3 - Single SNP association with T2D status in Asian ancestry population 
(nominal level) 

# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting for 
age, sex, BMI, 
and ancestry 

1 DENND2C 1 115144899 rs184660829 2.3 x 10⁻⁰² 

2 MACF1 1 40035928 rs3768321 3.2 x 10⁻⁰³ 

3 GLI2 2 121347612 rs11688682 1.9 x 10⁻⁰² 

4 IRS1 2 227101411 rs2972144 4.3 x 10⁻⁰² 

5 ADCY5 3 123065778 rs11708067 1.2 x 10⁻⁰³ 

6 EGFEM1P 3 168218841 rs7629630 2.4 x 10⁻⁰² 

7 IGF2BP2 3 185503456 rs6780171 9.2 x 10⁻⁰³ 

8 PSMD6 3 63962339 rs3774723 1.3 x 10⁻⁰² 

9 ROBO2 3 77671721 rs2272163 2.1 x 10⁻⁰² 

10 PAM 5 102422968 rs115505614 4.4 x 10⁻⁰² 

11 EBF1 5 157928196 rs3934712 4.1 x 10⁻⁰² 

12 DMGDH 5 78430607 rs1316776 4.5 x 10⁻⁰³ 

13 BEND3 6 107431688 rs4946812 2.5 x 10⁻⁰² 

14 CDKAL1 6 20679709 rs7756992 1.9 x 10⁻⁰² 

15 RREB1 6 7231843 rs9379084 1.3 x 10⁻⁰² 

16 DGKB 7 15063569 rs10228066 1.4 x 10⁻⁰² 

17 GCK 7 44255643 rs878521 4.5 x 10⁻⁰³ 

18 PURG 8 30863938 rs10954772 2.4 x 10⁻⁰² 

19 TCF7L2 10 114758349 rs7903146 5.5 x 10⁻⁰⁹ 

20 HHEX/IDE 10 94462427 rs10882101 2.4 x 10⁻⁰³ 

21 PDE3B 11 14763828 rs141521721 2.8 x 10⁻⁰² 

22 KCNJ11 11 17408404 rs5213 4.0 x 10⁻⁰² 

23 CENTD2/ARAP1 11 72460398 rs77464186 6.5 x 10⁻⁰⁴ 

24 ZNF664 12 124468572 rs7978610 1.4 x 10⁻⁰² 

25 MARK3 14 103894071 rs62007683 3.5 x 10⁻⁰² 

26 RASGRP1 15 38873115 rs34715063 4.9 x 10⁻⁰² 

27 BCAR1 16 75234872 rs72802342 2.6 x 10⁻⁰² 

28 NF1 17 29413019 rs71372253 9.8 x 10⁻⁰³ 

29 HNF1B 17 36099952 rs10908278 4.8 x 10⁻⁰² 

30 LAMA1 18 7070642 rs7240767 4.8 x 10⁻⁰² 

31 GIPR 19 46157019 rs10406431 1.7 x 10⁻⁰⁴ 

32 GNAS 20 57394628 rs6070625 4.8 x 10⁻⁰² 

33 PIM3 22 50356850 rs1801645 7.5 x 10⁻⁰³ 
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Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 
SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;   

P-value: P-value associated with each SNP adjusted by covariates age, sex, and ancestry. 

 

Table C.4. 4 - Single SNP association with T2D status in Asian ancestry population 
(genome-wide level) 

# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting for 
age, sex, BMI, 
and ancestry 

1 TCF7L2 10 114758349 rs7903146 5.5 x 10⁻⁰⁹ 
Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 
SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;   

P-value: P-value associated with each SNP adjusted by covariates age, sex, and ancestry. 
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Table C.4. 5 - Single SNP association with T2D status in African ancestry population 
(nominal level) 

# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number P-value:  
Adjusting 

for age, sex, 
BMI, and 
ancestry 

1 SEC16B 1 177889025 rs539515 1.5 x 10⁻⁰² 

2 GNG4 1 235690800 rs291367 1.3 x 10⁻⁰² 

3 GRB14/COBLL1 2 165513091 rs10195252 2.4 x 10⁻⁰² 

4 IRS1 2 227101411 rs2972144 4.2 x 10⁻⁰² 

5 ADCY5 3 123065778 rs11708067 6.2 x 10⁻⁰³ 

6 PSMD6 3 63962339 rs3774723 2.8 x 10⁻⁰² 

7 SLCO6A1 5 101232944 rs138337556 3.0 x 10⁻⁰² 

8 CASC11 8 128711742 rs17772814 3.7 x 10⁻⁰² 

9 LPL 8 19830921 rs10096633 1.3 x 10⁻⁰² 

10 MSRA 8 9974824 rs17689007 3.4 x 10⁻⁰² 

11 TCF7L2 10 114758349 rs7903146 3.1 x 10⁻⁰³ 

12 PDE3B 11 14763828 rs141521721 1.2 x 10⁻⁰² 

13 FBRSL1 12 133069698 rs12811407 2.0 x 10⁻⁰² 

14 RNF6 13 26776999 rs34584161 6.0 x 10⁻⁰³ 

15 AP3S2 15 90423293 rs4932265 4.8 x 10⁻⁰² 

16 CLUAP1 16 3583173 rs3751837 1.2 x 10⁻⁰² 

17 GIPR 19 46157019 rs10406431 3.2 x 10⁻⁰² 

18 ZC3H4 19 47569003 rs3810291 2.7 x 10⁻⁰² 
Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 
instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 

SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;   

P-value: P-value associated with each SNP adjusted by covariates age, sex, and ancestry. 
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C.5: Supporting tables with further results for single-SNP association 

with AOO of T2D  

 

Table C.5. 1 - Single SNP association with AOO of T2D in European ancestry population 
(genome-wide level) 

# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number HR Lower 
95% CI 

Upper 
95% CI 

P-value 

1 NOTCH2 01 120526982 rs1493694 1.114 1.076 1.154 1.7 x 10-09 

2 PROX1 01 214159256 rs340874 1.080 1.056 1.105 3.5 x 10-11 

3 GRB14/COBLL1 02 165513091 rs10195252 1.110 1.084 1.136 1.5 x 10-18 

4 GCKR 02 27730940 rs1260326 1.073 1.048 1.098 3.1 x 10-09 

5 BCL11A 02 60583665 rs243024 1.066 1.042 1.091 3.0 x 10-08 

6 IRS1 02 227101411 rs2972144 1.111 1.085 1.139 7.3 x 10-18 

7 THADA 02 43698028 rs80147536 1.153 1.108 1.200 2.3 x 10-12 

8 ADCY5 03 123065778 rs11708067 1.105 1.075 1.135 4.0 x 10-13 

9 PPARG 03 12336507 rs11709077 1.147 1.107 1.190 1.0 x 10-13 

10 UBE2E2 03 23455582 rs35352848 1.113 1.081 1.146 3.8 x 10-13 

11 ST6GAL1 03 186665645 rs3887925 1.079 1.055 1.104 6.3 x 10-11 

12 LPP 03 187740899 rs4686471 1.069 1.044 1.094 2.3 x 10-08 

13 IGF2BP2 03 185503456 rs6780171 1.139 1.112 1.166 3.0 x 10-26 

14 SLC2A2 03 170733076 rs9873618 1.080 1.053 1.108 2.1 x 10-09 

15 WFS1 04 6306763 rs10937721 1.093 1.067 1.118 1.1 x 10-13 

16 MAEA 04 1784403 rs56337234 1.084 1.060 1.109 3.6 x 10-12 

17 PAM 05 102422968 rs115505614 1.207 1.150 1.266 2.2 x 10-14 

18 ANKH 05 14751305 rs146886108 1.788 1.506 2.123 3.2 x 10-11 

19 PHF15 05 133864599 rs329122 1.071 1.047 1.096 4.2 x 10-09 

20 ANKRD55 05 55808475 rs465002 1.099 1.071 1.129 2.5 x 10-12 

21 MHC 06 32573415 rs601945 1.085 1.055 1.116 1.4 x 10-08 

22 CDKAL1 06 20679709 rs7756992 1.146 1.118 1.175 1.0 x 10-26 

23 RREB1 06 7231843 rs9379084 1.162 1.118 1.208 2.3 x 10-14 

24 DGKB 07 15063569 rs10228066 1.071 1.047 1.096 4.0 x 10-09 

25 KLF14 07 130457914 rs1562396 1.090 1.064 1.117 2.0 x 10-12 

26 JAZF1 07 28198677 rs1708302 1.110 1.085 1.135 1.5 x 10-19 

27 TP53INP1 08 95961626 rs10097617 1.066 1.043 1.091 2.5 x 10-08 

28 ANK1 08 41508577 rs13262861 1.122 1.088 1.158 4.4 x 10-13 

29 SLC30A8 08 118185025 rs3802177 1.149 1.121 1.179 1.8 x 10-27 

30 CDKN2A/B 09 22134068 rs10811660 1.193 1.156 1.231 6.6 x 10-28 
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# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number HR Lower 
95% CI 

Upper 
95% CI 

P-value 

31 GLIS3 09 4291928 rs10974438 1.074 1.049 1.100 2.5 x 10-09 

32 TLE1 09 84308948 rs2796441 1.102 1.077 1.128 1.5 x 10-16 

33 GPSM1 09 139241030 rs28505901 1.089 1.060 1.118 5.7 x 10-10 

34 HHEX/IDE 10 94462427 rs10882101 1.114 1.089 1.141 5.9 x 10-20 

35 CDC123/CAMK1D 10 12307894 rs11257655 1.101 1.071 1.131 4.9 x 10-12 

36 ZMIZ1 10 80952826 rs703972 1.087 1.062 1.112 7.2 x 10-13 

37 TCF7L2 10 114758349 rs7903146 1.432 1.398 1.466  2.9 x 10-195 

38 MTNR1B 11 92708710 rs10830963 1.106 1.079 1.134 1.8 x 10-15 

39 KCNQ1 11 2857194 rs2237895 1.123 1.098 1.149 1.2 x 10-23 

40 INS/IGF2 11 2197286 rs4929965 1.081 1.056 1.106 4.3 x 10-11 

41 KCNJ11 11 17408404 rs5213 1.085 1.059 1.110 1.4 x 10-11 

42 CENTD2/ARAP1 11 72460398 rs77464186 1.147 1.111 1.185 1.0 x 10-16 

43 HMGA2 12 66221060 rs2258238 1.133 1.094 1.174 4.2 x 10-12 

44 ITPR2 12 26453283 rs718314 1.075 1.048 1.103 3.7 x 10-08 

45 CCND2 12 4384844 rs76895963 2.076 1.854 2.325 1.1 x 10-36 

46 SPRY2 13 80717156 rs1359790 1.104 1.076 1.132 3.9 x 10-14 

47 CLEC14A 14 38848419 rs8017808 1.099 1.070 1.129 7.6 x 10-12 

48 HMG20A 15 77818128 rs1005752 1.080 1.053 1.108 4.2 x 10-09 

49 RASGRP1 15 38873115 rs34715063 1.097 1.062 1.134 3.0 x 10-08 

50 AP3S2 15 90423293 rs4932265 1.089 1.062 1.117 4.5 x 10-11 

51 BCAR1 16 75234872 rs72802342 1.199 1.145 1.255 1.3 x 10-14 

52 HNF1B 17 36099952 rs10908278 1.097 1.072 1.122 1.4 x 10-15 

53 BCL2A 18 60845884 rs12454712 1.075 1.050 1.101 1.4 x 10-09 

54 PEPD 19 33890838 rs10406327 1.072 1.048 1.097 1.6 x 10-09 

55 GIPR 19 46157019 rs10406431 1.080 1.056 1.105 3.4 x 10-11 

56 TM6SF2 19 19388500 rs8107974 1.127 1.082 1.174 1.1 x 10-08 

57 HNF4A 20 43042364 rs1800961 1.238 1.167 1.314 2.0 x 10-12 

Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 

SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;  HR: estimated 

SNP HR associated with AOO of T2D; 95% CI: Lower and upper 95% confidence interval of estimated SNP 
HR associated with AOO of T2D; P-value: P-value associated with each SNP adjusted by covariates age, sex, 

and ancestry. 
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Table C.5. 2 - Single SNP association with AOO of T2D in Asian ancestry population 
(nominal level) 

# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number HR Lower 
95% CI 

Upper 
95% CI 

P-value 

1 DENND2C 01 115144899 rs184660829 4.816 1.429 16.229 1.1 x 10-02 

2 MACF1 01 40035928 rs3768321 1.216 1.041 1.420 1.4 x 10-02 

3 CEP68 02 65287896 rs2249105 1.085 1.003 1.175 4.3 x 10-02 

4 IRS1 02 227101411 rs2972144 1.135 1.033 1.247 8.7 x 10-03 

5 ADCY5 03 123065778 rs11708067 1.193 1.080 1.318 5.1 x 10-04 

6 ROBO2 03 77671721 rs2272163 1.094 1.009 1.186 3.0 x 10-02 

7 UBE2E2 03 23455582 rs35352848 1.126 1.024 1.238 1.5 x 10-02 

8 IGF2BP2 03 185503456 rs6780171 1.114 1.029 1.206 7.6 x 10-03 

9 SLC2A2 03 170733076 rs9873618 1.097 1.002 1.203 4.6 x 10-02 

10 DMGDH 05 78430607 rs1316776 1.108 1.022 1.201 1.2 x 10-02 

11 EBF1 05 157928196 rs3934712 1.113 1.022 1.211 1.4 x 10-02 

12 ANKRD55 05 55808475 rs465002 1.090 1.005 1.183 3.7 x 10-02 

13 CDKAL1 06 20679709 rs7756992 1.139 1.043 1.244 3.8 x 10-03 

14 RREB1 06 7231843 rs9379084 1.210 1.049 1.396 8.9 x 10-03 

15 DGKB 07 15063569 rs10228066 1.095 1.010 1.187 2.8 x 10-02 

16 JAZF1 07 28198677 rs1708302 1.100 1.006 1.203 3.7 x 10-02 

17 GCK 07 44255643 rs878521 1.095 1.001 1.199 4.7 x 10-02 

18 PURG 08 30863938 rs10954772 0.896 0.824 0.975 1.1 x 10-02 

19 GPSM1 09 139241030 rs28505901 1.155 1.046 1.275 4.3 x 10-03 

20 HHEX/IDE 10 94462427 rs10882101 1.145 1.058 1.239 7.6 x 10-04 

21 CDC123/CAMK1D 10 12307894 rs11257655 1.111 1.014 1.217 2.4 x 10-02 

22 TCF7L2 10 114758349 rs7903146 1.336 1.231 1.449 3.6 x 10-12 

23 PDE3B 11 14763828 rs141521721 1.383 1.022 1.872 3.6 x 10-02 

24 KCNJ11 11 17408404 rs5213 1.088 1.004 1.178 3.9 x 10-02 

25 CENTD2/ARAP1 11 72460398 rs77464186 1.192 1.073 1.324 1.1 x 10-03 

26 HNF1B 17 36099952 rs10908278 1.098 1.012 1.191 2.4 x 10-02 

27 ATP1B2 17 7549681 rs1641523 1.092 1.006 1.186 3.5 x 10-02 

28 NF1 17 29413019 rs71372253 0.693 0.484 0.994 4.6 x 10-02 

29 GIPR 19 46157019 rs10406431 1.191 1.101 1.289 1.4 x 10-05 

30 CEBPB 20 48832135 rs11699802 1.095 1.009 1.188 2.9 x 10-02 

31 GNAS 20 57394628 rs6070625 0.908 0.838 0.984 1.9 x 10-02 

32 PIM3 22 50356850 rs1801645 1.093 1.012 1.181 2.3 x 10-02 

33 EP300 22 41489920 rs5758223 1.124 1.017 1.242 2.2 x 10-02 

34 PNPLA3 22 44324730 rs738408 1.126 1.028 1.233 1.1 x 10-02 
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Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 
SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;  HR: estimated 

SNP HR associated with AOO of T2D; 95% CI: Lower and upper 95% confidence interval of estimated SNP 

HR associated with AOO of T2D; P-value: P-value associated with each SNP adjusted by covariates age, sex, 

and ancestry. 

 

Table C.5. 3 - Single SNP association with AOO of T2D in African ancestry population 
(nominal level) 

# Nearest gene Chrom-
osome 

Base Pair 
Position 

rs Number HR Lower 
95% CI 

Upper 
95% CI 

P-value 

1 GNG4 01 235690800 rs291367 1.208 1.070 1.364 2.3 x 10-03 

2 SEC16B 01 177889025 rs539515 1.165 1.031 1.317 1.4 x 10-02 

3 GRB14/COBLL1 02 165513091 rs10195252 1.144 1.004 1.304 4.3 x 10-02 

4 ADCY5 03 123065778 rs11708067 1.289 1.082 1.536 4.5 x 10-03 

5 PSMD6 03 63962339 rs3774723 1.170 1.046 1.308 6.0 x 10-03 

6 LPL 08 19830921 rs10096633 1.148 1.026 1.285 1.6 x 10-02 

7 MSRA 08 9974824 rs17689007 1.134 1.009 1.274 3.5 x 10-02 

8 TCF7L2 10 114758349 rs7903146 1.315 1.169 1.479 4.8 x 10-06 

9 PDE3B 11 14763828 rs141521721 2.609 1.275 5.338 8.7 x 10-03 

10 FBRSL1 12 133069698 rs12811407 1.167 1.032 1.321 1.4 x 10-02 

11 HNF1A 12 121432117 rs56348580 0.850 0.738 0.979 2.4 x 10-02 

12 RNF6 13 26776999 rs34584161 0.732 0.607 0.883 1.1 x 10-03 

13 AP3S2 15 90423293 rs4932265 1.161 1.021 1.321 2.2 x 10-02 

14 SPG7 16 89564055 rs12920022 1.160 1.015 1.326 2.9 x 10-02 

15 CLUAP1 16 3583173 rs3751837 0.835 0.729 0.957 9.4 x 10-03 

16 GIPR 19 46157019 rs10406431 1.189 1.065 1.326 2.0 x 10-03 

Descriptions: Nearest gene: refers to the name of the nearest gene to a DNA polymorphism (SNP in this 

instance); Chromosome:  chromosome number or SNP ID;  Base pair position: Base pair position of the 
SNP on the human genome based on the human reference genome build 37; rsid: Cluster ID;  HR: estimated 

SNP HR associated with AOO of T2D; 95% CI: Lower and upper 95% confidence interval of estimated SNP 

HR associated with AOO of T2D; P-value: P-value associated with each SNP adjusted by covariates age, sex, 
and ancestry. 
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C.6: Supporting tables with further results for BMI association with 

AOO of T2D and T2D status 

 
 

Table C.6. 1 - Estimated effect of association of BMI and AOO of T2D in European, Asian, 
and African ancestry populations 

Analysis 
Method 

Weighted GRS Unweighted GRS 

ES Lower 
95% CI 

Upper 
95% CI 

P-value ES Lower 
95% CI 

Upper 
95% CI 

P-value 

European ancestry population 

Cox PH model (cases only)   
Adjusted (BMI+ 
GRS+Covariates) 

1.026 1.023 1.029 1.5 x 10⁻⁶⁵ 1.025 1.022 1.028 2.3 x 10⁻⁶² 

Cox PH model (cases and controls)   
Adjusted (BMI+ 
GRS+Covariates) 

1.159 1.157 1.162 9.7 x 10-3519 1.156 1.153 1.158 3.5 x 10-3396 

Binary logistic regression model    
Adjusted (BMI+ 
GRS+Covariates) 

1.172 1.168 1.175 3.7 x 10-2463 1.167 1.164 1.171 2.4 x 10-2395 

Asian ancestry population 

Cox PH model (cases only) 
Adjusted (BMI+ 
GRS+Covariates) 

1.028 1.015 1.040 1.4 x 10⁻⁰⁵ 1.027 1.014 1.039 2.7 x 10⁻⁰⁵ 

Cox PH model (cases and controls) 
Adjusted (BMI+ 
GRS+Covariates) 

1.097 1.086 1.110 2.6 x 10⁻⁶² 1.097 1.085 1.109 3.0 x 10⁻⁶⁰ 

Binary logistic regression model  
Adjusted (BMI+ 
GRS+Covariates) 

1.105 1.090 1.121 6.1 x 10⁻⁰¹ 1.102 1.087 1.118 5.0 x 10⁻⁰¹ 

African ancestry population 

Cox PH model (cases only) 
Adjusted (BMI+ 
GRS+Covariates) 

1.029 1.014 1.044 1.8 x 10⁻⁰⁴ 1.029 1.014 1.044 1.8 x 10⁻⁰⁴ 

Cox PH model (cases and controls) 
Adjusted (BMI+ 
GRS+Covariates) 

1.079 1.065 1.094 2.3 x 10⁻²⁹ 1.079 1.065 1.094 7.6 x 10⁻²⁹ 

Binary logistic regression model  
Adjusted (BMI+ 
GRS+Covariates) 

1.086 1.071 1.102 4.0 x 10⁻⁰¹ 1.086 1.070 1.102 3.8 x 10⁻⁰¹ 

Descriptions: GRS: genetic risk score; ES: Effect Size (hazard ratio or odds ratio); CI: confidence interval; 
Covariates: Models adjusted for Sex; BMI: Body Mass Index; array: genotype microarray; ancestry via PC1-
PC10: Principal components. 
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C.7: Supporting tables with further results for dissecting the ancestry 

specific T2D GRS 

 

Table C.7. 1 - GRS SNPs excluded from LDproxy database and/or monoallelic in at least 
one ancestral population 

# 
Nearest 

gene 
chromo- 

some 
Base Pair 
Position 

rs Number Status 

1 DENND2C 1 115144899 rs184660829 Monoallelic in Asian and 
African ancestry populations 

2 FAM63A 1 151017991 rs145904381 Monoallelic in African ancestry 
populations 

3 TMEM127 2 96913918 rs79046683 Monoallelic in European and 
African ancestry populations 

4 DDX18 2 118071061 rs562386202 Not included in 1000G 
reference panel 

5 MBNL1 3 152086533 rs13065698 Does not match RS number at 
1000G position 

6 SCD5 4 83578271 rs12642790 Does not match RS number at 
1000G position 

7 SLCO6A1 5 101232944 rs138337556 Monoallelic in Asian ancestry 
populations 

8 SLC25A51P1 6 67387490 rs555402748 Not included in 1000G 
reference panel 

9 ABO 9 136149229 rs505922 Does not match RS number at 
1000G position 

10 KCNJ11 11 17408404 rs5213 Is not a biallelic variant 

11 WDR72 15 53747228 rs528350911 Monoallelic in African ancestry 
populations 

12 KIF2B 17 52140805 rs569511541 Monoallelic in European 
ancestry populations 

 

Descriptions: LDproxy: online database that can be used to assess the number of SNPs in pairwise LD 

with SNPs included in the T2D GRS; Monoallelic: when only one of the two gene copies (alleles)  at a site or 

locus is actively expressed in a population;  Excluded from reference panel: SNPs excluded from the phase 
3 (version 3) 1000 genome project reference panel; Biallelic variant: only variant RS numbers that are bi-

allelic  are included in the LDproxy database. 
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C.8: Supporting figures with further results for dissecting the 

ancestry specific T2D GRS 

 

 

 

 

 

 

 

 

 

 

Figure C.8. 1 - Subsample comparison of estimated  ES of AOO of T2D 
associated with the unweighted GRS for European, Asian, and African 
descended populations 

The x-axis indicates the HR or OR and 95% CI for each GRS model shown on the y-axis.  The 

analysis methods included are the cases only Cox PH model; cases and controls Cox PH model; 

and logistic model. The weighted (wei) GRS models which have been adjusted for sex, ancestry 
principal component to account for population structure, type of microarray used for genotyping 

of SNPs and BMI are denoted (purple),  (blue) and  (green) which refers to the  African, Asian and 

European ancestry populations. 
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Figure C.8. 2 - Subsample comparison of estimated ES of AOO of T2D 
associated with BMI based on cases only Cox model for European, Asian, and 
African descended populations 

The x-axis indicates the HR or OR and 95% CI for each BMI model shown on the y-axis.  The 

analysis methods included are the cases only Cox PH model; cases and controls Cox PH model; 

and logistic model.  The models have been adjusted for sex, ancestry principal component to 

account for population structure, type of microarray used for genotyping of SNPs and GRS. The 
two models considered include the adjusted model with weighted GRS denoted (BMIwei) and 

adjusted model with unweighted GRS denoted (BMIunw), where(purple), (blue) and (green) 

refers to African, Asian, and European ancestry population. 
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Appendix D: R syntax used for generating admixture 

simulation data 
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Appendix D: R syntax used for generating admixture 

simulation data 

 
D.1: R syntax used to generate ancestry 
################################################################# 
###Included is the R syntax used to generate 1,000 random samples each consisting 
### of 1,000 individuals assumed to originate from a population formed of discrete  
###subpopulations (D.1.1).  In the case of an admixed population the syntax used  
###to generate ancestry of the maternal and paternal chromosome associated with a  
###tested causal SNP at a specified locus is also outlined (D.1.2 and D.1.3). 
################################################################# 

D.1.1:  R syntax used to generate ancestry of maternal chromosome 

associated with a tested causal SNP at specified locus 

################################################################# 

### Simulating ancestry of chromosome 1 at a specified locus associated with a 

### causal SNP from an admixed individual assumed to originate from two  

### ancestral populations based on a given ancestry proportion             

################################################################# 

# Create working directories 

################################################################# 

#Create main directory 
mainDir <- paste("C: /FOLDER ADDRESS PART 1", 
                 "/ FOLDER ADDRESS PART 2", 
                 "/Data Generation/Datasets", sep="") 
#Create sub directory 
subDir <- "S1Datasets" 
dir.create(file.path(mainDir, subDir)) 
#Set working directory 
setwd(file.path(mainDir, subDir)) 
#Get Working Directory 
getwd()  
 
################################################################# 
#Specification of scenario data values - ancestry proportion 
################################################################# 
# Three main scenarios were considered for the ancestry proportion 

# (scenario 1; o1_1 <- 0.1 (population 1)   and o2_1 <- 0.9 (population 2);   

# scenario 2; o1_1 <- 0.3 (population 1)   and o2_1 <- 0.7 (population 2);  

# and scenario 3; o1_1 <- 0.5 (population 1)   and o2_1 <- 0.5 (population 2);    
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################################################################# 
o1_1 <-  0.1  #Ancestry proportion for population 1 
o2_1 <-  0.9  #Ancestry proportion for population 2 
################################################################# 
# Create empty dataframes for simulated samples  
################################################################# 
Population <- 0 
reps = 1000 # Number of datasets to be generated in each condition 
N_list = c(1000) # Population size 
for (N in N_list) { 
  for (i in 1:reps) { 
    for (j in length(Population)) { 
      Population <- matrix(data=5,nrow = N, ncol = 1) 
      colnames(Population) <-  "ID" 
      file=as.character(paste("Sam",N,"_",i,".csv", sep=" ")) 
      write.table(Population,file,row.names = FALSE) 
       } 
  } 
} 
 
################################################################# 
# Save path to folder that holds multiple .csv files 
################################################################################ 

folder <- paste("C:/FOLDER ADDRESS PART 1", 
                "/ FOLDER ADDRESS PART 2/Data Generation", 
                "/Datasets/S1Datasets/",sep="") 
################################################################# 
# Get list of file names in from directory folder containing files that 
#will be used to create list 
################################################################# 
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library("tools") 
myAncCHMNames <- list.files(path=folder, pattern="^Sam(.*)csv$")  
# read in each  file named in the list and create list of dataframes or #files 
myAncCHMlist <- lapply(myAncCHMNames, read.table, header = TRUE, sep = "") 
# Read in each file in the list of files and save as R dataframe 
 myAncCHMNames <- file_path_sans_ext(myAncCHMNames, compression = FALSE) 
 names(myAncCHMlist) <- myAncCHMNames 
 names(myAncCHMlist) 
 lapply(names(myAncCHMlist), function(i) {  
   assign(i, myAncCHMlist[[i]]) 
   save(list=i, file=paste0(i, ".Rdata")) 
 }) 
 #Read in each file in the list of files and save as R dataframe  
 #and load files into the  R environment 
 names(myAncCHMlist) <- myAncCHMNames 
 names(myAncCHMlist) 
  lapply(names(myAncCHMlist), function(i) {  
   assign(i, myAncCHMlist[[i]], envir= .GlobalEnv) 
   save(list=i, file=paste0(i, ".Rdata")) 
 }) 
  
################################################################# 
#To create add ancestry of chromosome 1 to simulated samples function 
################################################################# 
library("abind") 
  myFunCHROM1ProG <- function(x, z=myAncNames,k=o2_1,...) { 
    lapply(x, function(x){ 
        lapply(k, function(k){ 
          x <- array(rbinom(n= sum(!is.na(x)), size = 1, prob=k),  
     dim = c(sum(!is.na(x)), 1)) 
           return(data.frame(x)) 
    }) 
  }) 
} 
  
################################################################# 
#To run add ancestry of chromosome 1 to simulated samples function after  
#creating it and to save results 
set.seed(4101)  
NewAncC1 <- myFunCHROM1ProG(myAncCHMlist) 
################################################################# 
myAncCHMNames <- file_path_sans_ext(myAncCHMNames,  
compression = FALSE) 
names(NewAncC1) <- names(mget(myAncCHMNames)) 
names(NewAncC1) 
 
################################################################# 
# To save files in a file list as csv files after making changes to data frames 

# Extracting column one scenario one 
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library("writexl") 

lapply(names(NewAncC1), function(d) { 

  write_xlsx(NewAncC1[[d]][[1]],  

             path=paste0("CH1", d, ".xlsx",sep= " "), 

             col_names = TRUE) 

})  

 

################################################################# 

# To save files in a file list as R files after making changes to data frames 

# Extracting column one scenario one 

lapply(names(NewAncC1), function(i,k=o2_1,...) {  

  assign(i, NewAncC1[[i]] [1]) 

  save(list=i, file=paste0("CH1",i,".Rdata")) 

}) 

 

################################################################# 

#Save path to folder that holds multiple .csv files 

folder <- paste("C: /FOLDER ADDRESS PART 1", 

                "/ FOLDER ADDRESS PART 2/Data Generation", 

                "/Datasets/S1Datasets/",sep="") 

#Get list of file names in from directory folder containing files that will be  

#used to create list 

myAncCHM1Names <- list.files(path=folder, pattern="^CH1(.*)xlsx$")  

library("readxl") 

#Read in each  file named in the list and create list of dataframes or files 

myAncCHM1list <- lapply(myAncCHM1Names, read_excel, col_names = TRUE) 

#Read in each file in the list of files and save as R dataframe  

#and load files into the  R environment 

myAncCHM1Names <- file_path_sans_ext(myAncCHM1Names, compression = FALSE) 

names(myAncCHM1list) <- myAncCHM1Names 

names(myAncCHM1list) 

lapply(names(myAncCHM1list), function(i) {  

  assign(i, myAncCHM1list[[i]], envir= .GlobalEnv) 

  save(list=i, file=paste0(i, ".Rdata")) 

}) 

################################################################# 
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D.1.2: R syntax used to generate ancestry of paternal chromosome 

associated with a tested causal SNP at specified locus 

################################################################# 

### Simulating ancestry of chromosome 2 at a specified locus associated with a 

### causal SNP from an admixed individual assumed to originate from two  

### ancestral populations based on a given ancestry proportion             

################################################################# 

# Create working directories 

################################################################# 

#Create main directory 

mainDir <- paste("C: /FOLDER ADDRESS PART 1", 

                 "/ FOLDER ADDRESS PART 2", 

                 "/Data Generation/Datasets", sep="") 

#Create sub directory 

subDir <- "S1Datasets" 

dir.create(file.path(mainDir, subDir)) 

setwd(file.path(mainDir, subDir)) 

# get Working Directory 

getwd() 

################################################################# 

# Save path to folder that holds the simulated csv files 

folder <- paste("C: /FOLDER ADDRESS PART 1", 

                "/ FOLDER ADDRESS PART 2", 

                "/Datasets/S1Datasets/",sep="") 

 

# Get list of file names in from directory folder containing files that 

# will be used to create list 

library("tools") 

myAncCHM1Names <- list.files(path=folder, pattern="^CH1(.*)xlsx$")  

library("readxl") 

#Read in each  file named in the list and create list of dataframes or files 

myAncCHM1list <- lapply(myAncCHM1Names, read_excel, col_names = TRUE) 

 

# Read in each file in the list of files and save as R dataframe 

#library("tools") 

myAncCHM1Names <- file_path_sans_ext(myAncCHM1Names, compression = FALSE) 

names(myAncCHM1list) <- myAncCHM1Names 

names(myAncCHM1list) 

lapply(names(myAncCHM1list), function(i) {  

  assign(i, myAncCHM1list[[i]]) 

  save(list=i, file=paste0(i, ".Rdata")) 

}) 
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################################################################# 

#Specification of scenario data values – ancestry proportions 

################################################################# 

# Three main scenarios were considered for the ancestry proportion 

# (scenario 1; o1_1 <- 0.1 (population 1)   and o2_1 <- 0.9 (population 2);   

# scenario 2; o1_1 <- 0.3 (population 1)   and o2_1 <- 0.7 (population 2);  

# and scenario 3; o1_1 <- 0.5 (population 1)   and o2_1 <- 0.5 (population 2);    

################################################################# 

o1_1 <-  0.1  #Ancestry proportions for population 1 

o2_1 <-  0.9  #Ancestry proportions for population 2 

 

################################################################# 
#To create add ancestry of chromosome 2 to simulated samples function 
################################################################# 
library("abind") 

################################################################# 

myFunCHROM2ProG <- function(x, z,CHROM2, k=o2_1,...) { 

lapply(names(x), function(i) { 

    CHROM2  <- 8 

    z <- 4 

    CHROM2  <- array(rbinom(n= sum(!is.na(x[[i]][1])), size = 1, prob=k), dim = 

c(sum(!is.na(x[[i]][1])), 1)) 

    addCHROM2 <- CHROM2 

    addCHROM1 <- as.numeric(x[[i]][[1]]) 

    z <- abind(addCHROM1, addCHROM2=addCHROM2, along=2) 

      colnames(z)[1] <- "CHROM1" 

      colnames(z)[2] <- "CHROM2" 

    return(data.frame(z)) 

    }) 

 } 

 

################################################################# 

#To run add ancestry of chromosome 2 to simulated samples function after  
#creating it and to save results 
set.seed(2391)  

NewAncC2 <- myFunCHROM2ProG(myAncCHM1list) 

myAncCHM1Names <- file_path_sans_ext(myAncCHM1Names, compression = FALSE) 

names(NewAncC2) <- names(mget(myAncCHM1Names)) 

names(NewAncC2) 

 

################################################################# 

# To save files in a file list as csv files after making changes to data frames 

# Extracting column one scenario one 

library("writexl") 
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lapply(names(NewAncC2), function(d) { 

  write_xlsx(NewAncC2[[d]],  

             path=paste0("CH2", d, ".xlsx",sep= " "), 

             col_names = TRUE) 

})  

 

################################################################# 

# To save files in a file list as R files after making changes to data frames 

# Extracting column one scenario one 

lapply(names(NewAncC2), function(i,k=o2_1,...) {  

  assign(i, NewAncC2[[i]]) 

  save(list=i, file=paste0("CH2",i,".Rdata")) 

}) 

 

################################################################# 

#Save path to folder that holds multiple .csv files 

folder <- paste("C: /FOLDER ADDRESS PART 1", 

                "/ FOLDER ADDRESS PART 2", 

                "/Datasets/S1Datasets/",sep="") 

#Get list of file names in from directory folder containing files that will be  

#used to create list 

myAncCHM2Names <- list.files(path=folder, pattern="^CH2(.*)xlsx$")  

library("readxl") 

#Read in each  file named in the list and create list of dataframes or files 

myAncCHM2list <- lapply(myAncCHM2Names, read_excel, col_names = TRUE) 

#Read in each file in the list of files and save as R dataframe  

#and load files into the  R environment 

myAncCHM2Names <- file_path_sans_ext(myAncCHM2Names, compression = FALSE) 

names(myAncCHM2list) <- myAncCHM2Names 

names(myAncCHM2list) 

lapply(names(myAncCHM2list), function(i) {  

  assign(i, myAncCHM2list[[i]], envir= .GlobalEnv) 

  save(list=i, file=paste0(i, ".Rdata")) 

}) 

 

################################################################# 
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D.1.3: Setting used for detailed assessment of ancestry proportion 

 

################################################################# 

#Specification of scenario data values - ancestry proportion 

################################################################# 

o1_1 <-  c(0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5)  #Ancestry proportions for population 1 

o2_1 <-  c(0.9,0.85,0.8,0.75,0.7,0.65,0.6,0.55,0.5)  #Ancestry proportions for population 2 

 

################################################################# 

# Create empty dataframes for simulated samples  

################################################################# 

Population <- 0 

reps = 1000 # Number of datasets to be generated in each condition 

N_list = c(1000) # Population size 

for (N in N_list) { 

  for (i in 1:reps) { 

    for (j in length(Population)) { 

      Population <- matrix(data=5,nrow = N, ncol = 1) 

      colnames(Population) <-  "ID" 

      file=as.character(paste("Sample",N,"_",i,".csv", sep=" ")) 

      write.table(Population,file,row.names = FALSE) 

       

    } 

  } 

} 

 

################################################################# 

# Save path to folder that holds the .csv files 

folder <- paste("C: /FOLDER ADDRESS PART 1", 

"/ FOLDER ADDRESS PART 2", 

"/Datasets/S1Datasets/",sep="") 

# Get list of file names in from directory folder containing files that will be  

# used to create list 

library("tools") 

myAncNames <- list.files(path=folder, pattern="^Sample")  

# read in each file named in the list and create list of dataframes or files 

 myAnclist <- lapply(myAncNames, read.table, header = TRUE, sep = "") 

# Read in each file in the list of files and save as R dataframe 

 myAncNames <- file_path_sans_ext(myAncNames, compression = FALSE) 

 names(myAnclist) <- myAncNames 
 names(myAnclist) 

 lapply(names(myAnclist), function(i) {  

   assign(i, myAnclist[[i]]) 

   save(list=i, file=paste0(i, ".Rdata")) 

 }) 
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 #Read in each file in the list of files and save as R dataframe  

 #and load files into the  R environment 

 names(myAnclist) <- myAncNames 

 names(myAnclist) 

  lapply(names(myAnclist), function(i) {  

   assign(i, myAnclist[[i]], envir= .GlobalEnv) 

   save(list=i, file=paste0(i, ".Rdata")) 

 }) 

  

################################################################# 

# To create function to add ancestry to simulated samples 

################################################################# 

library("abind") 
 
  myFunCHROM1ProG <- function(x, z=myAncNames,k=o2_1,...) { 
    lapply(x, function(x){ 
        lapply(k, function(k){ 
      z <- 5 
       
      addCHROM1 <- array(rbinom(n= sum(!is.na(x)), size = 1, prob=k), dim = c(sum(!is.na(x)), 

1)) 

      addCHROM2 <- array(rbinom(n= sum(!is.na(x)), size = 1, prob=k), dim = c(sum(!is.na(x)), 

1)) 

      z <- abind(CHROM1=addCHROM1,  CHROM2=addCHROM2, along=2) 

      return(data.frame(z)) 

    }) 

  }) 

} 

   

################################################################# 

#To run add ancestry of chromosomes to simulated samples function after  
#creating it and to save results 
set.seed(8897)  

NewAncC1 <- myFunCHROM1ProG(myAnclist) 

 

myAncNames <- file_path_sans_ext(myAncNames, compression = FALSE) 

names(NewAncC1) <- names(mget(myAncNames)) 

names(NewAncC1) 

 

################################################################# 

# To save files in a file list as csv files after making changes to data frames 

# Extracting column one scenario one 

library("writexl") 
lapply(names(NewAncC1), function(d) { 
  write_xlsx(NewAncC1[[d]][[1]],  
             path=paste0("A1CHM", d, ".xlsx",sep= " "), 
             col_names = TRUE) 
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})  
lapply(names(NewAncC1), function(d) { 
  write_xlsx(NewAncC1[[d]][[2]],  
             path=paste0("A2CHM", d, ".xlsx",sep= " "), 
             col_names = TRUE) 
}) 
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D.2: R syntax used to generate allele and genotype of causal SNP 
 

################################################################# 

###The main excerpt of the R syntax used to simulate the genotype of the causal SNP  

###for each individual in the subpopulation samples are included.  Each subpopulation  

###genotypes were simulated based on population specific RAF. Included also are  

###excerpts of the syntax used to simulate the allele of each chromosome based of the RAF  

###of the ancestral populations. 

################################################################# 

D.2.1: R syntax used to generate allele of chromosomes associated 

with tested causal SNP at specified locus 

################################################################# 

#Specification of Scenario Data Values - alleles 

################################################################# 

q1_1 <- 0.1   #Risk allele frequency for population 1 

q2_1 <- 0.5   #Risk allele frequency for population 2 

 

p1_1 <-  c(1-q1_1)       #Second allele frequency for population 1 

p2_1 <-  c(1-q2_1)       #Second allele frequency for population 2 

 

################################################################# 

#To calculate SNP frequencies for each population 

################################################################# 

library(plyr) 

 

List1 <- list(A=p1_1, a=q1_1) 

List1m <- do.call(cbind,  List1) 

List2 <-list(A=p2_1, a=q2_1) 

List2m <- do.call(cbind,  List2) 

 

ConVList1 <- apply(List1m, 1, function(x) list(c(x[1], x[2]))) 

ConVList2 <- apply(List2m, 1, function(x) list(c(x[1], x[2]))) 

names(ConVList1) <- "rep1" 

names(ConVList2) <- "rep1" 

 

GenotypeStatus1 <- function (j,  ConVList1, ConVList2, z,...)  { 

  Pro1 <- c(ConVList1[[j]][[1]][["A"]], ConVList1[[j]][[1]][["a"]]) 

  Pro2 <- c(ConVList2[[j]][[1]][["A"]], ConVList2[[j]][[1]][["a"]]) 

  return(Pro1) 

} 

Prob1 <- lapply(names(ConVList1), GenotypeStatus1, ConVList1=ConVList1, 

ConVList2=ConVList2) 
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GenotypeStatus2 <- function (j,  ConVList1, ConVList2, z,...)  { 

  Pro1 <- c(ConVList1[[j]][[1]][["A"]],ConVList1[[j]][[1]][["a"]]) 

  Pro2 <- c(ConVList2[[j]][[1]][["A"]],ConVList2[[j]][[1]][["a"]]) 

  return(Pro2) 

} 

Prob2 <- lapply(names(ConVList1), GenotypeStatus2, ConVList1=ConVList1, 

ConVList2=ConVList2) 

 

print(Prob1) 

print(Prob2) 

Pr1 <-Prob1[[1]] 

Pr2 <-Prob2[[1]] 

print(Pr1) 

print(Pr2) 

 

################################################################# 

# Add SNP column to dataframes for each population 

################################################################# 

library("abind") 

 

myFunAlleleProG <- function(x, z, g, y1=SNPs1, y2=SNPs2, Pro1=Pr1,  Pro2=Pr2,...) { 

  lapply(names(x), function(i) { 

    ALLELE1 <- 4 

    ALLELE2 <- 5 

    ALE1 <- 8 

    ALE2 <- 6 

    z <- 4 

    ALE1 <- array(sample(x=0:1, size= sum(!is.na(x[[i]][1])), replace=T, prob=Pro1), dim = 

c(sum(!is.na(x[[i]][1])), 1)) 

    addALE1 <- ALE1 

     

    ALE2 <- array(sample(x=0:1, size= sum(!is.na(x[[i]][1])), replace=T, prob=Pro2), dim = 

c(sum(!is.na(x[[i]][1])), 1)) 

    addALE2 <- ALE2 

    addCHROM1 <- as.numeric(x[[i]][["CHROM1"]]) 

    addCHROM2 <- as.numeric(x[[i]][["CHROM2"]]) 

     

    z <- abind(addCHROM1,addCHROM2, ALLELE1=ifelse(addCHROM1== 0, addALE1, 

addALE2), 

         ALEID1=ifelse(addCHROM1 == 0, "ALEp1", "ALEp2"),  

          ALLELE2=ifelse(addCHROM2== 0, addALE1, addALE2), 

         ALEID2=ifelse(addCHROM2 == 0, "ALEp1", "ALEp2"),  along=2) 
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    colnames(z)[1] <- "CHROM1" 

    colnames(z)[2] <- "CHROM2" 

    colnames(z)[3] <- "ALLELE1" 

    colnames(z)[5] <- "ALLELE2" 

  

    return(data.frame(z)) 

     

  }) 

   

} 

################################################################# 

#To run add SNP function after creating it and to save results of add SNP function 

set.seed(3939) 

NewGeno1 <- myFunAlleleProG(myAncCHM2list) 

print(NewGeno1) 

################################################################# 

# To save files in a file list as csv files after adding SNP column to dataframes 

################################################################# 

# To save files in a file list as csv files after making changes to data frames 

# Extracting columns for scenario one 

################################################################# 

 

myFunGenotypeProG <- function(x, v, i,...) { 
  lapply(x, function(i,...) { 
     
    addALLELE1 <- (i[["ALLELE1"]]) 
    addALLELE2 <- (i[["ALLELE2"]]) 
    v <- 4 
    v <- abind(i, GENOTYPE= paste(addALLELE1,addALLELE2,sep=""), along=2) 
     
    return(data.frame(v)) 
  }) 
} 
 
################################################################# 
NewGeno2 <- myFunGenotypeProG(NewGeno1) 
print(NewGeno2) 
 
################################################################# 
myFunRecodeSNP <- function(x, z, i,...) { 
   
  lapply(x, function(i,...) { 
     
    i[["GENOTYPE_F"]] <- factor(i[["GENOTYPE"]], 
                             levels=c("00","01","10","11"), 
                             labels=c("AA","Aa","aA" ,"aa")) 
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    i[["SNPs"]] <- revalue(i[["GENOTYPE"]],  
                            c("00"="0","01"="1","10"="1","11"="2")) 
     
    i[["SNPs_F"]] <- factor(i[["SNPs"]], 
                                levels=c(0,1,2), 
                                labels=c("AA","Aa","aa")) 
    return(data.frame(i)) 
  }) 
}    
     
NewGeno3 <- myFunRecodeSNP(NewGeno2) 
print(NewGeno3) 
     
#################################################################   
myFunCHROMANC <- function(x, z, i,...) { 
lapply(x, function(i,...) { 
addSample <- i 
checkCHROM1 <- (i[["CHROM1"]]) 
checkCHROM2 <- (i[["CHROM2"]]) 
 
CHROMANC <- ifelse(checkCHROM1== 0 & checkCHROM2 == 0,  
                   CHROMANC <- 2,     
                   ifelse(checkCHROM1== 1 & checkCHROM2 == 1, 
                          CHROMANC <- 0,   
                          ifelse(checkCHROM1== 0 & checkCHROM2 == 1, CHROMANC <- 1, CHROMANC 
<- 1) 
                                 ) 
                          ) 
  
z <- abind(addSample, CHROMANC=CHROMANC, along=2) 
 
return(data.frame(z)) 
}) 
}     
NewGeno4 <- myFunCHROMANC(NewGeno3) 
print(NewGeno4) 
    
################################################################# 
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D.2.2: Setting used for detailed assessment of ancestry specific RAF 

 
To assess further the impact of population specific RAF on power nine different scenarios 

were considered. The first scenario (shown below) allowed the RAF to vary in population 1 

while RAF was held fixed at 0.1 in population 2.  In the second scenario the RAF was held fixed 

at 0.2 in the second population. A similar process was followed through to scenario nine 

where RAF in the first population was varied but held fixed at 0.9 in the second population. 

 
################################################################# 
#Specification of scenario data values - RAF 
################################################################# 
 
q1_1 <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)  #Risk allele frequency for population 1 
q2_1 <- c(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)  #Risk allele frequency for population 2 
p1_1 <-  c(1-q1_1)       #Second allele frequency for population 1 
p2_1 <-  c(1-q2_1)       #Second allele frequency for population 2 
 
################################################################# 

#Specification of scenario data values - RAF 

################################################################# 

q1_1 <- c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)  #Risk allele frequency for population 1 

q2_1 <- c(0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2)  #Risk allele frequency for population 2 

p1_1 <-  c(1-q1_1)       #Second allele frequency for population 1 

p2_1 <-  c(1-q2_1)       #Second allele frequency for population 2 

################################################################# 
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D.3: R syntax used to generate allele and genotype of tag SNP 
################################################################# 

###The main excerpt of the R syntax used to simulate the genotype of  a tag SNP  

###for each individual in the subpopulation samples are included.  Each subpopulation  

###genotypes were simulated based on population specific RAF. Included also are  

###excerpts of the syntax used to simulate the allele of maternal and paternal  

###chromosome based of the RAF of the ancestral populations. 

################################################################# 

D.3.1: R syntax used to generate allele of chromosomes associated 

with tested tag SNP at specified locus 

################################################################# 

#Specification of scenario data values used to simulate alleles of tag SNP 

################################################################# 

LD <- c(0, 0.05,0.15,0.25,0.5,0.75,0.85,0.95,1) 

q1_1 <- 0.1   #P(a) Risk allele frequency for population 1 Casual SNP 

q2_1 <- 0.5   #P(a) Risk allele frequency for population 2 Casual SNP 

g1_1 <- 0.1   #P(b) Risk allele frequency for population 1 Tag SNP 

g2_1 <- 0.5   #P(b) Risk allele frequency for population 2 Tag SNP 

p1_1 <-  c(1-q1_1)       #P(A) Second allele frequency for population 1 Casual SNP 

p2_1 <-  c(1-q2_1)       #P(A)  Second allele frequency for population 2 Casual SNP 

t1_1 <-  c(1-g1_1)       #P(B)Second allele frequency for population 1 Tag SNP 

t2_1 <-  c(1-g2_1)       #P(B)Second allele frequency for population 2 Tag SNP 

 

#haplotype frequencies for two loci with two alleles  

#assuming linkage disequilibrium 

#P(BA) haplotype frequencies for x11 Population 1 

A1B1_1d <- (((p1_1)*(t1_1)) + LD*(sqrt(t1_1*g1_1*p1_1*q1_1)))   

#P(Ba) haplotype frequencies for x12 Population 1 

A1b2_1d <- p1_1 - A1B1_1d                                      

#P(bA) haplotype frequencies for x21 Population 1 

a2B1_1d <- t1_1 - A1B1_1d                                      

#P(ba) haplotype frequencies for x22 Population 1 

a2b2_1d <- (1 - (A1B1_1d +  A1b2_1d + a2B1_1d))               

 

#haplotype frequencies for two loci with two alleles 

# assuming linkage disequilibrium 

#P(BA)   haplotype frequencies for x11 Population 2 

A1B1_2d <- (((p2_1)*(t2_1)) + LD*(sqrt(t2_1*g2_1*p2_1*q2_1)))   

#P(Ba)  haplotype frequencies for x12 Population 2 

A1b2_2d <- p2_1 - A1B1_2d                                     

#P(bA)  haplotype frequencies for x21 Population 2 

a2B1_2d <- t2_1 - A1B1_2d                                      
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#P(ba)  haplotype frequencies for x22 Population 2 

a2b2_2d <- (1 - (A1B1_2d +  A1b2_2d + a2B1_2d))                

 

#Probability of seeing a Tag SNP allele given the casual allele 

B_A1 <- A1B1_1d/p1_1 

b_A1 <- A1b2_1d/p1_1 

B_a1 <- a2B1_1d/q1_1 

b_a1 <- a2b2_1d/q1_1 

 

#Probability of seeing a Tag SNP allele given the casual allele 

B_A2 <- A1B1_2d/p2_1 

b_A2 <- A1b2_2d/p2_1 

B_a2 <- a2B1_2d/q2_1 

b_a2 <- a2b2_2d/q2_1 

################################################################# 

#To calculate Allele frequencies for each population 

################################################################# 

library(plyr) 

 

List1 <- list(A=B_A1, a=b_A1) 

List1m <- do.call(cbind,  List1) 

List2 <-list(A=B_a1, a=b_a1) 

List2m <- do.call(cbind,  List2) 

List3 <- list(A=B_A2, a=b_A2) 

List3m <- do.call(cbind,  List3) 

List4 <-list(A=B_a2, a=b_a2) 

List4m <- do.call(cbind,  List4) 

 

ConVList1 <- apply(List1m, 1, function(x) list(c(x[1], x[2]))) 

ConVList2 <- apply(List2m, 1, function(x) list(c(x[1], x[2]))) 

ConVList3 <- apply(List3m, 1, function(x) list(c(x[1], x[2]))) 

ConVList4 <- apply(List4m, 1, function(x) list(c(x[1], x[2]))) 

 

names(ConVList1) <- c("rep1","rep2","rep3","rep4","rep5","rep6","rep7","rep8","rep9") 

names(ConVList2) <- c("rep1","rep2","rep3","rep4","rep5","rep6","rep7","rep8","rep9") 

names(ConVList3) <- c("rep1","rep2","rep3","rep4","rep5","rep6","rep7","rep8","rep9") 

names(ConVList4) <- c("rep1","rep2","rep3","rep4","rep5","rep6","rep7","rep8","rep9") 

 

GenotypeStatus1 <- function (j,  ConVList1, ConVList2, ConVList3, ConVList4, z,...)  { 

  Pro1A <- c(ConVList1[[j]][[1]][["A"]], ConVList1[[j]][[1]][["a"]]) 

  Pro1a <- c(ConVList2[[j]][[1]][["A"]], ConVList2[[j]][[1]][["a"]]) 

  Pro2A <- c(ConVList3[[j]][[1]][["A"]], ConVList3[[j]][[1]][["a"]]) 

  Pro2a <- c(ConVList4[[j]][[1]][["A"]], ConVList4[[j]][[1]][["a"]]) 



 
 

288 
 

  return(Pro1A) 

} 

Prob1A  <- lapply(names(ConVList1), GenotypeStatus1, ConVList1=ConVList1, 

ConVList2=ConVList2,  

                   ConVList3=ConVList3, ConVList4=ConVList4) 

#repeated to abstract (Pro1a) 

GenotypeStatus2 <- function (j,  ConVList1, ConVList2, ConVList3, ConVList4, z,...)  { 

  Pro1A <- c(ConVList1[[j]][[1]][["A"]], ConVList1[[j]][[1]][["a"]]) 

  Pro1a <- c(ConVList2[[j]][[1]][["A"]], ConVList2[[j]][[1]][["a"]]) 

  Pro2A <- c(ConVList3[[j]][[1]][["A"]], ConVList3[[j]][[1]][["a"]]) 

  Pro2a <- c(ConVList4[[j]][[1]][["A"]], ConVList4[[j]][[1]][["a"]]) 

  return(Pro1A) 

} 

Prob1a  <- lapply(names(ConVList1), GenotypeStatus2, ConVList1=ConVList1, 

ConVList2=ConVList2,  

                  ConVList3=ConVList3, ConVList4=ConVList4) 

 

#repeated to abstract (Pro2A) 

GenotypeStatus3 <- function (j,  ConVList1, ConVList2, ConVList3, ConVList4, z,...)  { 

  Pro1A <- c(ConVList1[[j]][[1]][["A"]], ConVList1[[j]][[1]][["a"]]) 

  Pro1a <- c(ConVList2[[j]][[1]][["A"]], ConVList2[[j]][[1]][["a"]]) 

  Pro2A <- c(ConVList3[[j]][[1]][["A"]], ConVList3[[j]][[1]][["a"]]) 

  Pro2a <- c(ConVList4[[j]][[1]][["A"]], ConVList4[[j]][[1]][["a"]]) 

  return(Pro2A) 

} 

Prob2A  <- lapply(names(ConVList1), GenotypeStatus3, ConVList1=ConVList1, 

ConVList2=ConVList2,  

                  ConVList3=ConVList3, ConVList4=ConVList4) 

#repeated to abstract (Pro2a) 

GenotypeStatus4 <- function (j,  ConVList1, ConVList2, ConVList3, ConVList4, z,...)  { 

  Pro1A <- c(ConVList1[[j]][[1]][["A"]], ConVList1[[j]][[1]][["a"]]) 

  Pro1a <- c(ConVList2[[j]][[1]][["A"]], ConVList2[[j]][[1]][["a"]]) 

  Pro2A <- c(ConVList3[[j]][[1]][["A"]], ConVList3[[j]][[1]][["a"]]) 

  Pro2a <- c(ConVList4[[j]][[1]][["A"]], ConVList4[[j]][[1]][["a"]]) 

  return(Pro2a) 

} 

Prob2a  <- lapply(names(ConVList1), GenotypeStatus4, ConVList1=ConVList1, 

ConVList2=ConVList2,  

                  ConVList3=ConVList3, ConVList4=ConVList4) 

################################################################# 

print(Prob1A) 

print(Prob1a) 

print(Prob1A) 
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print(Prob2a) 

Pr1 <-Prob1A 

Pr2 <-Prob1a 

Pr3 <-Prob2A 

Pr4 <-Prob2a 

print(Pr1) 

print(Pr2) 

print(Pr3) 

print(Pr4) 

names(Pr1) <- c("rep1","rep2","rep3","rep4","rep5","rep6","rep7","rep8","rep9") 

names(Pr2) <- c("rep1","rep2","rep3","rep4","rep5","rep6","rep7","rep8","rep9") 

names(Pr3) <- c("rep1","rep2","rep3","rep4","rep5","rep6","rep7","rep8","rep9") 

names(Pr4) <- c("rep1","rep2","rep3","rep4","rep5","rep6","rep7","rep8","rep9") 

 

################################################################# 

# To create add genotype of SNP column to dataframes for each population funcion 

################################################################# 

library("abind") 

################################################################# 

myFunTagProG1 <- function(x, z, y1=ALLEP1A, y2=ALLEP1a, y3=ALLEP2A,  y4=ALLEP2a, 

                        rr=Pr1, ss=Pr2, tt=Pr3,uu=Pr4,...) { 

                 

  lapply(names(x), function(i) { 

    addSample <- (x[[i]]) 

    checkCHR1  <- as.numeric(x[[i]][["CHROM1"]]) 

    checkCHR2  <- as.numeric(x[[i]][["CHROM1"]]) 

    checkALLELE1 <- as.numeric(x[[i]][["ALLELE1"]]) 

    checkALLELE2 <- as.numeric(x[[i]][["ALLELE2"]]) 

     ###### 

    TagALLEB1 <- 8 

    TagALLEB2 <- 8 

    ALLEP1A <- 8 

    ALLEP1a <- 8 

    ALLEP2A <- 8 

    ALLEP2a <- 8 

     z <- 9 

     ALLEP1A <- array(sample(x=0:1, size= sum(!is.na(x[[i]][1])), replace=T, 

                              prob=rr[[1]]), dim = c(sum(!is.na(x[[i]][1])), 1)) 
        addALLEP1A <- ALLEP1A 
    ALLEP1a <- array(sample(x=0:1, size= sum(!is.na(x[[i]][1])), replace=T, 
                              prob=ss[[1]]), dim = c(sum(!is.na(x[[i]][1])), 1)) 
        addALLEP1a <- ALLEP1a 
    ALLEP2A <- array(sample(x=0:1, size= sum(!is.na(x[[i]][1])), replace=T, 
                              prob=tt[[1]]), dim = c(sum(!is.na(x[[i]][1])), 1)) 
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        addALLEP2A <- ALLEP2A 
    ALLEP2a <- array(sample(x=0:1, size= sum(!is.na(x[[i]][1])), replace=T,  
                              prob=uu[[1]]), dim = c(sum(!is.na(x[[i]][1])), 1)) 
        addALLEP2a <- ALLEP2a 
       

      

################################################################# 

      TagALLEB1 <- ifelse(checkCHR1== 0 & checkALLELE1 == 0,  

                         TagALLEB1 <- addALLEP1A,   # add Tag SNP genotype BB for population 1 Tag 

SNPsB <- "BB",  

                         ifelse(checkCHR1== 1 & checkALLELE1 == 0, 

                                TagALLEB1 <- addALLEP2A,  # add Tag SNP genotype BB for population 2  

                                    ifelse(checkCHR1== 0 & checkALLELE1 == 1,TagALLEB1 <- 

addALLEP1a,TagALLEB1 <- addALLEP2a) 

                                ) 

                         ) 

                       

################################################################# 

        TagALLEB2 <- ifelse(checkCHR2== 0 & checkALLELE2 == 0,  

                           TagALLEB2 <- addALLEP1A,   # add Tag SNP genotype BB for population 1 Tag 

SNPsB <- "BB",  

                           ifelse(checkCHR2== 1 & checkALLELE2 == 0, 

                                  TagALLEB2 <- addALLEP2A,  # add Tag SNP genotype BB for population 2  

                                    ifelse(checkCHR2== 0 & checkALLELE2 == 1,TagALLEB2 <- 

addALLEP1a,TagALLEB2 <- addALLEP2a) 

                                 ) 

                           ) 

    z <- abind(addSample, TagALLE1=TagALLEB1, TagALLE2=TagALLEB2, along=2) 

    return(data.frame(z)) 

     }) 

} 

################################################################# 

#To run add SNP function after creating it and to save results of add SNP function 

set.seed(7787) 

NewTag SNP1 <- myFunTagProG1(myTaglist) 

print(NewTag SNP1) 

 

 

################################################################# 

#To create function used to add labels to tag SNP genotype 

################################################################# 

myFunGenotypeProG1 <- function(x, v, i,...) { 

  lapply(x, function(i,...) { 
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    addALLELEB1 <- (i[["TagALLE1"]]) 

    addALLELEB2 <- (i[["TagALLE2"]]) 

    v <- 4 

    v <- abind(i, GENOTYPEb= paste(addALLELEB1,addALLELEB2,sep=""), along=2) 

     

    return(data.frame(v)) 

  }) 

} 

 

################################################################# 

# To run add labels to tag SNP genotype function and save results 

NewTag SNP1_2 <- myFunGenotypeProG1(NewTag SNP1) 

print(NewTag SNP1_2) 

 

################################################################# 

#To create function used to recode tag SNP 

################################################################# 

myFunRecodeSNP1 <- function(x, z, i,...) { 
   
  lapply(x, function(i,...) { 
        i[["GENOTYPE_Fb"]] <- factor(i[["GENOTYPEb"]], 
                                 levels=c("00","01","10","11"), 
                                 labels=c("AA","Aa","aA" ,"aa")) 
    i[["Tag SNPs"]] <- revalue(i[["GENOTYPEb"]],  
                              c("00"="0","01"="1","10"="1","11"="2")) 
        i[["Tag SNPs_F"]] <- factor(i[["Tag SNPs"]], 
                               levels=c(0,1,2), 
                               labels=c("AA","Aa","aa")) 
    return(data.frame(i)) 
  }) 
}    
 
################################################################# 

# To run recode tag SNP function and save results 

NewTag SNP1_3 <- myFunRecodeSNP1(NewTag SNP1_2) 

print(NewTag SNP1_3) 

################################################################# 
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D.3.2: Setting where LD is assumed different among ancestral 

populations 

 

The scenarios where LD was assumed to be different among populations incorporated the 

scenarios where LD was held fixed in population 1while LD varied in the second population.  

Nine different scenarios were considered, the first scenario (shown below) assumed LD in 

population 1 was fixed at 0 while LD varied in population. In the second scenario LD in 

population was fixed at 0.05 while LD in the second population. A similar process was 

followed through to scenario nine where LD in the first population was fixed at 1 but varied in 

the second population. 

 

################################################################# 

#Specification of scenario data values used to simulate alleles and genotype of tag SNP 

################################################################# 

#scenario 1 

LDr1 <- c(0,0,0,0,0,0,0,0,0) 

LDr2 <- c(0, 0.05,0.15,0.25,0.5,0.75,0.85,0.95,1) 

q1_1 <- 0.1   #P(a) Risk allele frequency for population 1 Casual SNP 

q2_1 <- 0.5   #P(a) Risk allele frequency for population 2 Casual SNP 

g1_1 <- 0.1   #P(b) Risk allele frequency for population 1 Tag SNP 

g2_1 <- 0.5   #P(b) Risk allele frequency for population 2 Tag SNP 

p1_1 <-  c(1-q1_1)       #P(A) Second allele frequency for population 1 Casual SNP 

p2_1 <-  c(1-q2_1)       #P(A)  Second allele frequency for population 2 Casual SNP 

t1_1 <-  c(1-g1_1)       #P(B)Second allele frequency for population 1 Tag SNP 

t2_1 <-  c(1-g2_1)       #P(B)Second allele frequency for population 2 Tag SNP 

 

################################################################# 

#Specification of scenario data values used to simulate alleles and genotype of tag SNP 

################################################################# 

#scenario 2 

LDr1 <- c(0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05) 

LDr2 <- c(0,0.05,0.15,0.25,0.5,0.75,0.85,0.95,1) 

q1_1 <- 0.1   #P(a) Risk allele frequency for population 1 Casual SNP 

q2_1 <- 0.5   #P(a) Risk allele frequency for population 2 Casual SNP 

g1_1 <- 0.1   #P(b) Risk allele frequency for population 1 Tag SNP 

g2_1 <- 0.5   #P(b) Risk allele frequency for population 2 Tag SNP 

p1_1 <-  c(1-q1_1)       #P(A) Second allele frequency for population 1 Casual SNP 

p2_1 <-  c(1-q2_1)       #P(A)  Second allele frequency for population 2 Casual SNP 

t1_1 <-  c(1-g1_1)       #P(B)Second allele frequency for population 1 Tag SNP 

t2_1 <-  c(1-g2_1)       #P(B)Second allele frequency for population 2 Tag SNP 
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D.4: R syntax used to generate AOO of disease  
################################################################# 

###The main excerpt of the R syntax used to simulate the AOO of disease for both 

### the subpopulation and admixed population simulated data are included.   

###Simulated AOO is based primarily on the Cox model, however, to facilitate  

###comparison, AOO based on the Weibull model is included.  The settings used 

### to simulate different censoring rates is also included.  

################################################################# 

D.4.1: R syntax used to generate AOO of disease associated with a 

tested causal SNP within an admixed population based on the Cox 

model 

################################################################# 

#Specification of scenario data values for Cox models 

################################################################# 
#The original setting used for lambdaT <- 15 and lambdaC <- 0.000003125 was updated  
#to lambdaT <- 18 and lambdaC <- 0.001 for the admixed population simulations to  
#allow for 5% censoring including due to dropout            
################################################################# 
Study_tC <- 50                   # Study time in years 

lambdaT <-  18                 # baseline hazard rate (ho(t)) 

lambdaC <- 0.001            # hazard rate of censoring  

beta_G_C <- c(0,0.025,0.05,0.075,0.10,0.125,0.15,0.175)         #  log hazard ratio associated with  

#genotype of causal SNP 

################################################################# 

# To create function to Simulate survival time (AOO) based on Cox model 

################################################################# 

library("abind") 

myFunTTEaddModelCox <- function(x, z, T0, T1, T2, C0, C1, C2, time_OT, 

                                eventStatus, b1=beta_G_C,,...) { 

# to use lapply to apply x over all the different datasets in the file list of datasets applied 

  lapply(names(x), function(i) { 

   

    z <-0 
    T0 <-0 
    C0 <-0 
    time_OT <- 0 
    eventStatus <-0 
# to use lapply to apply b1 over the different (beta_G_C <- 
c(0,0.025,0.05,0.075,0.10,0.125,0.15,0.175) ) values          
    lapply(b1, function(k) { 
      # to add the SNP variable to the time to event (T) equation     
      add_X1_G_C <- as.numeric(x[[i]][["SNPs"]]) 
      # true event time - simulating true event time based on Weibull distribution 
      T0 <- rweibull((n=sum(!is.na(x[[i]][["SNPs"]]))), shape =1, 
                     (scale =lambdaT*exp(-k*(as.numeric(add_X1_G_C))) )) 
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      # to change event times over 50 to 50 
      T1 <- ifelse(T0 >= 50, Study_tC, T0) 
      # to change event times less than zero (negative values) to 0 
      T2 <- ifelse(T0 < 0, 0, T1) 
     
      # censoring time - simulating censoring time based on the exponential distribution 
      C0 <- rexp((n=sum(!is.na(x[[i]][["SNPs"]]))), (rate =lambdaC))  
      # to change censoring times over 50 to 50 
      C1  <- ifelse(C0 >= 50, Study_tC, C0) 
      # to change censoring times less than zero (negative values) to 0 
      C2  <- ifelse(C0 < 0, 0, C1) 
      # Observed time is minimum of censored and true event time 
      time_OT <- pmin(T2,C2) 
      # set to (1) if event is oberved 
      eventStatus1 <- time_OT ==T2   # set to (1) if event is oberved 
      eventStatus2 <-  ifelse(T0 > 50, "FALSE", eventStatus1) 
      eventStatus3 <-  ifelse((T0 == 50 & C0 >= 50), "TRUE", eventStatus2) 
      eventStatus4 <-  ifelse((T0 == C0 & T0 <= 50), "TRUE", eventStatus3) 
      eventID <- ifelse(eventStatus4=="TRUE", 1, 0) 
      # Use array bind to add columns T,  C, time_OT, eventStatus to datasets 
      z <- abind(x[[i]], ET=T2, CT=C2, OT=time_OT, eventStatus=eventStatus4,  
                 eventID=eventID, along=2) 
      return(data.frame(z)) 
    }) 
  }) 
  } 
 
################################################################# 
#To run Cox model function after creating it and save results of Cox model function 
set.seed(5845) 
addModelCox <- myFunTTEaddModelCox(myModellist) 
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D.4.2: R syntax used to generate AOO of disease associated with a 

tested causal SNP with an admixed population based on the Weibull 

model 

################################################################# 

# Specification of scenario data values for Weibull model  

Study_tC <- 50                      # Study time in years 

lambdaT <-  30                    # baseline hazard rate (ho(t)) 

lambdaC <- 0.001            # hazard rate of censoring  

beta_G_C <- c(0,0.0125,0.025,0.0375,0.05,0.0625,0.075,0.0875)         #  log hazard ratio 

associated with  

 # genotype of causal SNP 

################################################################# 

# To create function to simulate survival time (AOO) based on Weibull model 

################################################################# 

library("abind") 

myFunTTEaddModelWEI <- function(x, z, T0, T1, T2, C0, C1, C2, time_OT, 
                                eventStatus, b1=beta_G_C,...) { 
# to use lapply to apply x over all the different datasets in the file list of datasets applied 
  lapply(names(x), function(i) { 
     z <-0 
    T0 <-0 
    C0 <-0 
    time_OT <- 0 
    eventStatus <-0 
# to use lapply to apply b1 over the different (beta_G_C <- 
c(0,0.0125,0.025,0.0375,0.05,0.0625,0.075,0.0875) ) values          
    lapply(b1, function(k) { 
      # to add the SNP variable to the time to event (T) equation     
      add_X1_G_C <- as.numeric(x[[i]][["SNPs"]]) 
     # true event time - simulating true event time based on Weibull distribution 
      T0 <- rweibull((n=sum(!is.na(x[[i]][["SNPs"]]))), shape =2,  
                     (scale =lambdaT*exp(-k*(as.numeric(add_X1_G_C))) )) 
      # to change event times over 50 to 50 
      T1 <- ifelse(T0 >= 50, Study_tC, T0) 
      # to change event times less than zero (negative values) to 0 
      T2 <- ifelse(T0 < 0, 0, T1) 
      # censoring time - simulating censoring time based on the exponential distribution 
      C0 <- rexp((n=sum(!is.na(x[[i]][["SNPs"]]))), (rate =lambdaC))  
      # to change censoring times over 50 to 50 
      C1  <- ifelse(C0 >= 50, Study_tC, C0) 
      # to change censoring times less than zero (negative values) to 0 
      C2  <- ifelse(C0 < 0, 0, C1) 
      # Observed time is minimum of censored and true event time 
      time_OT <- pmin(T2,C2) 
      # set to (1) if event is oberved 
      eventStatus1 <- time_OT ==T2   # set to (1) if event is oberved 
      eventStatus2 <-  ifelse(T0 > 50, "FALSE", eventStatus1) 
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      eventStatus3 <-  ifelse((T0 == 50 & C0 >= 50), "TRUE", eventStatus2) 
      eventStatus4 <-  ifelse((T0 == C0 & T0 <= 50), "TRUE", eventStatus3) 
      eventID <- ifelse(eventStatus4=="TRUE", 1, 0) 
      # Use array bind to add columns T,  C, time_OT, eventStatus to datasets 
      z <- abind(x[[i]], ET=T2, CT=C2, OT=time_OT, eventStatus=eventStatus4,  
                 eventID=eventID, along=2) 
      return(data.frame(z)) 
    }) 
  }) 
  } 
 
################################################################# 
#To run Weibull model function after creating it and save results of Weibull  
#model function 
set.seed(3427) 
addModelWEI <- myFunTTEaddModelWEI(myModellist) 
################################################################# 
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simulated AOO of disease data 
 

Table of contents 

 

Appendix E: R syntax used to conduct data analysis of the simulated 

AOO of disease data ............................................................................................ 298 

E.1: R syntax used to undertake Cox analysis in an admixed population ....... 298 
E.1.1: R syntax used to undertake Cox analysis of simulated data in an admixed population......... 298 
E.1.2: Specification for different forms of the Cox model in an admixed population .......................... 300 

E.2: R syntax used to undertake Weibull analysis in an admixed population301 
E.2.1: R syntax used to undertake Weibull analysis of simulated data in an admixed population 301 
E.2.2: Specification for different forms of the Weibull model in an admixed population.................. 303 

  



 
 

298 
 

Appendix E: R syntax used to conduct data analysis of the 

simulated AOO of disease data 
 

E.1: R syntax used to undertake Cox analysis in an admixed 
population 
 

E.1.1: R syntax used to undertake Cox analysis of simulated data in 

an admixed population 

################################################################# 

#Data analysis based on Cox model 
################################################################# 
library(survival) 
args(coxph) 
 
# Function to run Cox PH model based on Additive SNPs variable 
myResultsModelCoxS <- function(x,...) {  
   
  lapply(names(x), function(i) { 
     
    snptemp <- as.numeric(x[[i]][["SNPs"]]) 
    timetemp <- as.numeric(x[[i]][["OT"]]) 
    eventID  <-  as.numeric(x[[i]][["eventID"]]) 
     
    CphModel_M2 <- coxph(Surv(timetemp, eventID)~ snptemp) 
     
   sumCoxM2 <- summary(CphModel_M2) 
   print(sumCoxM2) 
    return(sumCoxM2) 
   
  }) 
} 
 
################################################################# 
#Function to abstract and store model results   
################################################################# 
library("abind") 
mySaveModelCoxS <- function(x,...) {  
  lapply(names(x), function(i) { 
     
    coefv<- coef(x[[i]])[1,1] 
     
    #to extract hazard ratio 
    expv<- coef(x[[i]])[1,2] 
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    SEv<- coef(x[[i]])[1,3] 
    Zv <- coef(x[[i]])[1,4] 
    #to extract p.value  
    Pv <- coef(x[[i]])[1,5] 
    ID <- length(x[i]) 
     
    # to combine dataset results into one dataframe(or array) by row 
    w <- abind(ID=ID, coef=coefv, HR=expv, SE=SEv, Z_test=Zv, P_value=Pv, along=2) 
    return(data.frame(w)) 
  }) 
} 
 
################################################################# 
#To run Cox model function after creating it and save results of Cox model function 
ResCoxB1S <-mySaveModelCoxS(ResultsCoxB1S) 
ResCoxB1S_DF <- do.call(rbind,ResCoxB1S) 
print(ResCoxB1S_DF)  
ResCoxB1S_DF$ID <- seq_len(nrow(ResCoxB1S_DF)) 
save(ResCoxB1S_DF, file=paste("C: /FOLDER ADDRESS PART 1", 
                              "/ FOLDER ADDRESS PART 2", 
                              "/Output Analysis/Tables/S1Tables/ResCoxB1S_DF.Rda",sep="")) 
################################################################# 
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E.1.2: Specification for different forms of the Cox model in an 

admixed population 

 
 

#Cox analysis based on genotype SNP 
snptemp <- as.numeric(x[[i]][["SNPs"]]) 
timetemp <- as.numeric(x[[i]][["OT"]]) 
eventID  <-  as.numeric(x[[i]][["eventID"]]) 
CphModel_M2 <- coxph(Surv(timetemp, eventID)~ snptemp) 
 
#Cox analysis based on ancestry of genotype SNP 
anctemp<- as.numeric(x[[i]][["CHROMANC"]]) 
timetemp <- as.numeric(x[[i]][["OT"]]) 
eventID  <-  as.numeric(x[[i]][["eventID"]]) 
CphModelA_M2 <- coxph(Surv(timetemp, eventID)~ anctemp) 
     
#Cox analysis based on genotype SNP with ancestry as covariate 
anctemp<- as.numeric(x[[i]][["CHROMANC"]]) 
snptemp <- as.numeric(x[[i]][["SNPs"]]) 
timetemp <- as.numeric(x[[i]][["OT"]]) 
eventID  <-  as.numeric(x[[i]][["eventID"]]) 
CphModel_M2 <- coxph(Surv(timetemp, eventID)~ snptemp + anctemp) 
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E.2: R syntax used to undertake Weibull analysis in an admixed 
population 
 

E.2.1: R syntax used to undertake Weibull analysis of simulated data 

in an admixed population 

################################################################# 

#Data analysis based on general Weibull model 

################################################################# 

library(survival) 
library(eha) 
 

# Function to run Weibull model based on Additive SNPs variable 

myResultsModelWeiS <- function(x,...) {  
   
  lapply(names(x), function(i) { 
    snptemp <- as.numeric(x[[i]][["SNPs"]]) 
    timetemp <- as.numeric(x[[i]][["OT"]]) 
    eventID  <-  as.numeric(x[[i]][["eventID"]]) 
    WphModel_M2S <- survreg(Surv(timetemp, eventID )~ snptemp, dist="weibull") 
     
    sumWeiM2S <- summary(WphModel_M2S) 
    print(sumWeiM2S) 
    return(sumWeiM2S) 
  }) 
} 
 

################################################################# 
#Function to abstract and store model results   
################################################################# 
library("abind") 
library("mlr") 
 
mySaveModelWeiS <- function(x,...) {  
  lapply(names(x), function(i) { 
    coefv<-  x[[i]][["table"]][[2,1]] 
     
    #to extract hazard ratio   
    expv<-  exp( coefv) 
    SEv<-  x[[i]][["table"]][[2,2]] 
    Zv<-  x[[i]][["table"]][[2,3]] 
     
    #to extract p.value   
    Pv<- x[[i]][["table"]][[2,4]] 
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    ID <- length(x[i]) 
    Scale1  <-  x[[i]][["scale"]][1] 
     
    # to combine dataset results into one dataframe(or array) by row 
    w <- abind(ID=ID, coef=coefv, HR=expv, SE=SEv, Z_test=Zv, P_value=Pv, Scale=Scale1, 
along=2) 
    return(data.frame(w)) 
  }) 
} 
 
################################################################# 
#To run Weibull model function after creating it and save results of Weibull model 
function 
ResWeiB1S <-mySaveModelWeiS(ResultsWeiB1S) 
ResWeiB1S_DF <- do.call(rbind,ResWeiB1S) 
print(ResWeiB1S_DF)  
ResWeiB1S_DF$ID <- seq_len(nrow(ResWeiB1S_DF)) 
 
save(ResWeiB1S_DF, file=paste("C: /FOLDER ADDRESS PART 1", 
                              "/ FOLDER ADDRESS PART 2", 
                              "/Output Analysis/Tables/S1Tables/ResWeiB1S_DF.Rda",sep="")) 
################################################################# 
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E.2.2: Specification for different forms of the Weibull model in an 

admixed population. 

 

 

#Weibull analysis based on genotype SNP 

snptemp <- as.numeric(x[[i]][["SNPs"]]) 

timetemp <- as.numeric(x[[i]][["OT"]]) 

eventID  <-  as.numeric(x[[i]][["eventID"]]) 

WphModel_M2S <- survreg(Surv(timetemp, eventID )~ snptemp, dist="weibull") 

 

#Weibull analysis based on ancestry of genotyped SNP    
anctemp <- as.numeric(x[[i]][["CHROMANC"]]) 

timetemp <- as.numeric(x[[i]][["OT"]]) 

eventID  <-  as.numeric(x[[i]][["eventID"]]) 

WphModel_M2A <- survreg(Surv( timetemp, eventID)~ anctemp, dist="weibull") 

     

#Weibull analysis based on genotype SNP with ancestry as covariate 

anctemp<- as.numeric(x[[i]][["CHROMANC"]]) 

snptemp <- as.numeric(x[[i]][["SNPs"]]) 

timetemp <- as.numeric(x[[i]][["OT"]]) 

eventID  <-  as.numeric(x[[i]][["eventID"]]) 

WphModel_M2S <- survreg(Surv(timetemp, eventID )~ snptemp + anctemp, dist="weibull") 
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Appendix F: R syntax used for generation and data analysis 

of GRS simulated data 
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Appendix F: R syntax used for generation and data analysis 

of GRS simulated data 

F.1: R syntax used for generating GRS simulated data 
 

set.seed(1364)  

################################################################# 

nsim <- 1000      #Number of simulations/samples 

maf <- 0.05          #Minor allele frequency 

beta <- 0.05         #Log hazard ratio of GRS 

nind <- 1000       #Number of individuals in the sample 

ngen <- 1                        #Number of SNPs in the GRS 

time <- 50                       #Study period 

base <- -50/log (0.5)  #baseline hazard 

################################################################# 

#simulating AOO of disease conditional on GRS 

################################################################# 

library("abind") 

library(MASS) 

library(survival) 

#creating empty datsets 

zstat <- matrix(nrow=nsim,ncol=3,0) 

cstat <- matrix(nrow=nsim,ncol=3,0) 

for(n in 1:nsim){ 

xgen <- matrix(nrow=nind,ncol=ngen+1,0) 

xphen <- matrix(nrow=nind,ncol=4,0) 
#simulating genotype and GRS data 

for(i in 1:nind){ 

for(j in 1:ngen){ 

#generating genotype of individual SNPs for each individual 

xgen[i,j] <- rbinom(1,2,maf) 

 

#generating GRS for each individual in sample 

xgen[i,ngen+1] <- xgen[i,ngen+1]+xgen[i,j] 

} 

   

#rescaling GRS to have mean of zero 

xgen[i,ngen+1]<- xgen[i,ngen+1]-2*ngen*maf 

#generating AOO of disease conditional on GRS 

xphen[i,1] <- rweibull(1,1,base*exp(-xgen[i,ngen+1]*beta))   #event time 

xphen[i,2] <- xphen[i,1]                                     #censoring time 

xphen[i,3] <- 1                                                      #event status 

xphen[i,4] <- 1                                                      #ordered event status 

if(xphen[i,1]>time) xphen[i,2] = time 

if(xphen[i,1]>time) xphen[i,3] = 0 
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if(xphen[i,1]>time) xphen[i,4] = 0 

if(xphen[i,1] < 25) xphen[i,4] = 2 

 

} 

 

Pheno <- abind(xphen, xgen[,ngen+1], along=2) 

Pheno <- as.data.frame(Pheno) 
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F.2: R syntax used for data analysis simulated GRS data 
################################################################# 

#analysis simulated based on the proportional odds model 

Polrx <- polr(as.ordered(xphen[,4]) ~ xgen[,ngen+1],method ="logistic") 

zstat[n,1] <- summary(Polrx)$coefficients[1,3] 

 

################################################################# 

#analysis simulated based on the logistic model 

glmx <- glm(xphen[,3]~xgen[,ngen+1],family="binomial") 

zstat[n,2] <- summary(glmx)$coefficients[2,3] 

 

################################################################# 

#analysis simulated based on the Cox PH model 

coxx <- coxph(Surv(xphen[,2],xphen[,3])~xgen[,ngen+1]) 

zstat[n,3] <- summary(coxx)$coefficients[,4] 

 

print(Polrx) 

PolrxA <- print(Polrx) 

PolrxB <- print(summary(Polrx)) 

 

print(glmx) 

glmxA <- print(glmx) 

glmxB <- print(summary(glmx)) 

 

print(coxx) 

coxxA <- print(coxx) 

coxxB <- print(summary(coxx)) 

 

} 

################################################################# 

################################################################# 

#Saving Z-value results 

write.table(zstat,'zstatout1',row.names=F,col.names=F) 

zstatout1 <- read.table("zstatout1") 

zstatO1 <- zstatout1 

 

################################################################# 
#calculating P-values for each model based on Z values 
################################################################# 
pstat <- matrix(nrow=nsim,ncol=3,0) 

#calculate P-value for proportional odds model 

PolrP <- pnorm(abs(zstatO1[, 1]), lower.tail=FALSE) * 2 

pstat[,1] = PolrP 

 

#calculate P-value for binary logistic model 

glmP <- pnorm(abs(zstatO1[, 2]), lower.tail=FALSE) * 2 
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pstat[,2]=glmP 

#calculate P-value for Cox PH model 

coxP <- pnorm(abs(zstatO1[, 3]), lower.tail=FALSE) * 2 

pstat[,3]=coxP 

################################################################# 

#saving P-value results 

write.table(pstat,'pstatout1',row.names=F,col.names=F) 

pstatout1 <- read.table("pstatout1") 

pstatO1 <- pstatout1 

##################### 

options(scipen=20) 

################################################################# 
#PROPORTIONAL ODDS MODEL 
#count number of samples with significant P-values 
################################################################# 
NumSamples <- length(pstatO1[,1]) 

NumPRS <- ngen 

SigPvalG <- length(pstatO1[,1] [pstatO1[,1] <= 5*10^-8]) 

SigPvalS <- length(pstatO1[,1] [pstatO1[,1] <= 0.05]) 

PowerpG <- SigPvalG/NumSamples 

PowerpS <- SigPvalS/NumSamples 

powPRSPO1 <- list(NumSamples=NumSamples, NumPRS=NumPRS, SigPvalG=SigPvalG,  

     SigPvalS=SigPvalS, Power_G=PowerpG, Power_S=PowerpS) 

 

##################### 

powPRSPO1 <- do.call(rbind,powPRSPO1) 

powPRSPO1 <- data.frame(Nam=row.names(powPRSPO1), powPRSPO1, row.names=NULL) 

names(powPRSPO1) 

print(powPRSPO1) 

write.table(powPRSPO1,'powPRSPO1.csv',row.names=F,col.names=F) 

 
################################################################# 
#LOGISTIC MODEL  
#count number of samples with significant P-values 
################################################################# 
NumSamples <- length(pstatO1[,2]) 

NumPRS <- ngen 

SigPvalG <- length(pstatO1[,2] [pstatO1[,2] <= 5*10^-8]) 
SigPvalS <- length(pstatO1[,2] [pstatO1[,2] <= 0.05]) 

PowerpG <- SigPvalG/NumSamples 

PowerpS <- SigPvalS/NumSamples 

powPRSLR1 <- list(NumSamples=NumSamples, NumPRS=NumPRS, SigPvalG=SigPvalG,  

                  SigPvalS=SigPvalS, Power_G=PowerpG, Power_S=PowerpS) 

 

##################### 

powPRSLR1 <- do.call(rbind,powPRSLR1) 

powPRSLR1 <- data.frame(Nam=row.names(powPRSLR1), powPRSLR1, row.names=NULL) 
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names(powPRSLR1) 

print(powPRSLR1) 

write.table(powPRSLR1,'powPRSLR1.csv',row.names=F,col.names=F) 

 

################################################################# 
#Cox PH model  
#count number of samples with significant P-values 
################################################################# 
NumSamples <- length(pstatO1[,3]) 

NumPRS <- ngen 

SigPvalG <- length(pstatO1[,3] [pstatO1[,3] <= 5*10^-8]) 

SigPvalS <- length(pstatO1[,3] [pstatO1[,3] <= 0.05]) 

PowerpG <- SigPvalG/NumSamples 

PowerpS <- SigPvalS/NumSamples 

powPRSCX1 <- list(NumSamples=NumSamples, NumPRS=NumPRS, SigPvalG=SigPvalG,  

                  SigPvalS=SigPvalS, Power_G=PowerpG, Power_S=PowerpS) 

##################### 

powPRSCX1 <- do.call(rbind,powPRSCX1) 

powPRSCX1 <- data.frame(Nam=row.names(powPRSCX1), powPRSCX1, row.names=NULL) 

names(powPRSCX1) 

print(powPRSCX1) 

write.table(powPRSCX1,'powPRSCX1.csv',row.names=F,col.names=F) 

################################################################# 
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Appendix G: R syntax used for used for constructing T2D 

GRS  

G.1: R syntax used to import genotype probabilities or genotype 
dosage 

G.1.1: R syntax used to import genotype dosage values 

################################################################# 

cd /DIRECTORY ADDRESS/FOLDER ADDRESS 
nano bashrc 
source bashrc 
bcftools query T2D_DATASET_DOS.vcf -f 
'%CHROM\t%POS\t%ID\t%REF\t%ALT\t%QUAL\t%FILTER [\t%DS]\n' -H > 
T2D_DATASET_GRS.vcf 
cp T2D_DATASET_GRS.vcf T2D_DATASET_GRS.csv 
 
 
################################################################# 
R 
################################################################# 
#DATASET 1 – SAMPLES - importing dataset with SNP genotype information 
#pertaining to each individual included in the genotype sample. 
R_T2D_DATASET_GRS <- read.csv("/DIRECTORY ADDRESS/FOLDER ADDRESS/ 
T2D_DATASET_GRS.csv", header=TRUE, sep="\t") 
save(R_T2D_DATASET_GRS, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS/ 
R_T2D_DATASET_GRS.Rda",sep="")) 
load("R_T2D_DATASET_GRS.Rda") 
View(R_T2D_DATASET_GRS) 
################################################################# 
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G.1.2: R syntax used to import genotype probabilities values 

################################################################# 

cd /DIRECTORY ADDRESS/FOLDER ADDRESS  
nano bashrc 
source bashrc 
bcftools query T2D_DATASET_DOS.vcf -f 
'%CHROM\t%POS\t%ID\t%REF\t%ALT\t%QUAL\t%FILTER [\t%GP{0}]\n' -H > 
T2D_DATASET_GRS0.vcf 
bcftools query T2D_DATASET_DOS.vcf -f 
'%CHROM\t%POS\t%ID\t%REF\t%ALT\t%QUAL\t%FILTER [\t%GP{1}]\n' -H > 
T2D_DATASET_GRS1.vcf 
bcftools query T2D_DATASET_DOS.vcf -f 
'%CHROM\t%POS\t%ID\t%REF\t%ALT\t%QUAL\t%FILTER [\t%GP{2}]\n' -H > 
T2D_DATASET_GRS2.vcf 
 
awk '{print NR,$1,$2,$3,$4,$5}' T2D_DATASET_GRS0.vcf 
 
cp T2D_DATASET_GRS0.vcf T2D_DATASET_GRS0.csv 
cp T2D_DATASET_GRS1.vcf T2D_DATASET_GRS1.csv 
cp T2D_DATASET_GRS2.vcf T2D_DATASET_GRS2.csv 
 
################################################################# 
R 
################################################################# 
#DATASET 1 – SAMPLES - importing dataset with SNP genotype information 
#pertaining to each individual included in the genotype sample. 
#DATASET 1a - SAMPLES - Genotype Probability 1 
R_T2D_DATASET_GRS0 <- read.csv("/DIRECTORY ADDRESS/FOLDER ADDRESS/ 
WTCCC_GRS0.csv", header=TRUE, sep="\t") 
library("stringr") 
R_T2D_DATASET_GRS0$X.3.ID  <- str_replace_all(R_T2D_DATASET_GRS0$X.3.ID, '_(.*)_(.*)$', 
'') 
 
save(R_T2D_DATASET_GRS0, file=paste("/DIRECTORY ADDRESS/ FOLDER ADDRESS 
/R_T2D_DATASET_GRS0.Rda",sep="")) 
load("R_T2D_DATASET_GRS0.Rda") 
View(R_T2D_DATASET_GRS0) 
#############  
############# 
#DATASET 1b - SAMPLES - Genotype Probability 2 
R_T2D_DATASET_GRS1 <- read.csv("/DIRECTORY ADDRESS/ FOLDER ADDRESS 
/WTCCC_GRS1.csv", header=TRUE, sep="\t") 
library("stringr") 
R_T2D_DATASET_GRS1$X.3.ID  <- str_replace_all(R_T2D_DATASET_GRS1$X.3.ID, '_(.*)_(.*)$', 
'') 
 
save(R_T2D_DATASET_GRS1, file=paste("/ph-users/odessica/T2D-
Dataset2/R_T2D_DATASET_GRS1.Rda",sep="")) 
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load("R_T2D_DATASET_GRS1.Rda") 
View(R_T2D_DATASET_GRS1) 
#############  
############# 
#DATASET 1c - SAMPLES - Genotype Probability 3 
R_T2D_DATASET_GRS2 <- read.csv("/DIRECTORY ADDRESS/ FOLDER ADDRESS/ 
WTCCC_GRS2.csv", header=TRUE, sep="\t") 
library("stringr") 
R_T2D_DATASET_GRS2$X.3.ID  <- str_replace_all(R_T2D_DATASET_GRS2$X.3.ID, '_(.*)_(.*)$', 
'') 
 
save(R_T2D_DATASET_GRS2, file=paste("/DIRECTORY ADDRESS/ FOLDER ADDRESS/ 
R_T2D_DATASET_GRS2.Rda",sep="")) 
load("R_T2D_DATASET_GRS2.Rda") 
View(R_T2D_DATASET_GRS2) 
 
################################################################# 
#dataset to check probability totals 
library("dplyr") 
R_T2D_DATASET_GRS_check <- R_T2D_DATASET_GRS0 %>%  mutate_at(.vars= 
vars(matches("^X.(.*)WTCCC(.*).GP",  
            ignore.case =FALSE)), .funs=funs(. +R_T2D_DATASET_GRS1$. + 
R_T2D_DATASET_GRS2$.)) 
save(R_T2D_DATASET_GRS_check, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS/ 
R_T2D_DATASET_GRS_check.Rda",sep="")) 
################################################################# 
 
#calculating Dosage for alternative allele 
library("dplyr") 
R_T2D_DATASET_GRS00 <- R_T2D_DATASET_GRS0 %>%  mutate_at(.vars= 
vars(matches("^X.(.*)WTCCC(.*).GP",  
            ignore.case =FALSE)), .funs=funs(. *0)) 
save(R_T2D_DATASET_GRS00, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS/ 
R_T2D_DATASET_GRS00.Rda",sep="")) 
 
R_T2D_DATASET_GRS11 <- R_T2D_DATASET_GRS1 %>%  mutate_at(.vars= 
vars(matches("^X.(.*)WTCCC(.*).GP",  
            ignore.case =FALSE)), .funs=funs(. *1)) 
save(R_T2D_DATASET_GRS11, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS/ 
R_T2D_DATASET_GRS11.Rda",sep="")) 
 
R_T2D_DATASET_GRS22 <- R_T2D_DATASET_GRS2 %>%  mutate_at(.vars= 
vars(matches("^X.(.*)WTCCC(.*).GP",  
            ignore.case =FALSE)), .funs=funs(. *2)) 
save(R_T2D_DATASET_GRS22, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS/ 
R_T2D_DATASET_GRS22.Rda",sep="")) 
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################################################################# 
#Final Dosage value 
#Dosage=probability of allele 1 *0) + (probability of allele 2*1) + (probability of #allele 
3 * 2)) 
library("dplyr") 
R_T2D_DATASET_GRS <- R_T2D_DATASET_GRS00 %>%  mutate_at(.vars= 
vars(matches("^X.(.*)WTCCC(.*).GP",  
            ignore.case =FALSE)), .funs=funs(. +R_T2D_DATASET_GRS11$. + 
R_T2D_DATASET_GRS22$.)) 
 
save(R_T2D_DATASET_GRS, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS/ 
R_T2D_DATASET_GRS.Rda",sep="")) 
 
################################################################# 
load("R_T2D_DATASET_GRS.Rda") 
View(R_T2D_DATASET_GRS) 
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G.2: R syntax used to adjust genotype dosage values in line with EA 
 
#################################################################  
#DATASET 2 - DISCOVERY SNPs – importing dataset with information pertaining #to 
each T2D SNP from base GWAS included in the construction of T2D GRS  
################################################################# 
library(readxl) 
Dis_GRS_All <- read_excel("/DIRECTORY ADDRESS/ FOLDER ADDRESS/Discovery SNP.xlsx") 
save(Dis_GRS_All, file=paste("/DIRECTORY ADDRESS/ FOLDER ADDRESS/ 
Dis_GRS_All.Rda",sep="")) 
load("Dis_GRS_All.Rda") 
View(Dis_GRS_All) 
   
################################################################# 
#DATASET 3 - merging SNP genotype data from target and discovery T2D GWAS 
################################################################# 
T2D_DATASET_GRS_Check_M <- merge(Dis_GRS_All,R_T2D_DATASET_GRS, by.x = 
"Position_b37", by.y ="X.2.POS") 
View(T2D_DATASET_GRS_Check_M) 
#remove SNP with info score less than 0.4 
T2D_DATASET_GRS_Check_M <-  subset(T2D_DATASET_GRS_Check_M,  
Position_b37!=127631181) 
T2D_DATASET_GRS_Check_M <-  
T2D_DATASET_GRS_Check_M[order(T2D_DATASET_GRS_Check_M$Chr,T2D_DATASET_GRS_C
heck_M$Position_b37),] 
length(unique(T2D_DATASET_GRS_Check_M$Position_b37)) 
 
save(T2D_DATASET_GRS_Check_M, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS / 
T2D_DATASET_GRS_Check_M.Rda",sep="")) 
 
load("T2D_DATASET_GRS_Check_M.Rda") 
View(T2D_DATASET_GRS_Check_M) 
length(T2D_DATASET_GRS_Check_M$X.4.REF) 
 
################################################################# 
#select SNPs with differences in reference allele assignment  
#want effect allele in base GWAS dataset to be same as alternative allele 
# as dosage in the sample dataset is for the alternative allele 
################################################################# 
library("dplyr") 
T2D_DATASET_GRS_Check_M$REF_DIff <- (T2D_DATASET_GRS_Check_M$NEA 
==T2D_DATASET_GRS_Check_M$X.4.REF) 
T2D_DATASET_GRS_Check_M$ALT_DIff <- (T2D_DATASET_GRS_Check_M$EA 
==T2D_DATASET_GRS_Check_M$X.5.ALT) 
save(T2D_DATASET_GRS_Check_M, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS / 
T2D_DATASET_GRS_Check_M.Rda",sep="")) 
 
T2D_DATASET_GRS_ALT_DIFF <- subset(T2D_DATASET_GRS_Check_M, ALT_DIff =="FALSE") 
T2D_DATASET_GRS_ALT_SAME <- subset(T2D_DATASET_GRS_Check_M, ALT_DIff =="TRUE") 
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T2D_DATASET_GRS_ALT_DIFF <- as.data.frame(T2D_DATASET_GRS_ALT_DIFF) 
T2D_DATASET_GRS_ALT_SAME <- as.data.frame(T2D_DATASET_GRS_ALT_SAME) 
#################  
save(T2D_DATASET_GRS_ALT_DIFF, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS / 
T2D_DATASET_GRS_ALT_DIFF.Rda",sep="")) 
save(T2D_DATASET_GRS_ALT_SAME, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS 
/ T2D_DATASET_GRS_ALT_SAME.Rda",sep="")) 
load("T2D_DATASET_GRS_ALT_DIFF.Rda") 
View(T2D_DATASET_GRS_ALT_DIFF) 
load("T2D_DATASET_GRS_ALT_SAME.Rda") 
View(T2D_DATASET_GRS_ALT_SAME) 
################# 
library("plyr") 
count(T2D_DATASET_GRS_Check_M$REF_DIff) 
count(T2D_DATASET_GRS_Check_M$ALT_DIff) 
length(unique(T2D_DATASET_GRS_Check_M$Position_b37)) 
length(unique(T2D_DATASET_GRS_ALT_DIFF$Position_b37)) 
length(unique(T2D_DATASET_GRS_ALT_SAME$Position_b37)) 
################################################################# 
 
 
 
################################################################# 
# adjusting dosage values in sample of individuals dataset 
################################################################# 
library("dplyr") 
T2D_DATASET_GRS_ALT_DIFFa <- T2D_DATASET_GRS_ALT_DIFF %>% mutate_at(.vars= 
vars(matches("^(.*)PT(.*)SM(.*)",  
            ignore.case =FALSE)), .funs=funs(2- .)) 
 
save(T2D_DATASET_GRS_ALT_DIFFa, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS 
/ T2D_DATASET_GRS_ALT_DIFFa.Rda",sep="")) 
 
################################################################# 
#append or merge to original dataset 
################################################################# 
T2D_DATASET_GRS_Adjust_M <- rbind(T2D_DATASET_GRS_ALT_DIFFa, 
T2D_DATASET_GRS_ALT_SAME) 
length(unique(T2D_DATASET_GRS_Adjust_M$Position_b37)) 
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G.3: R syntax used to calculate weighted GRS 
 
#################################################################  
#Calculation of weighted score for each SNP 
################################################################# 
T2D_DATASET_GRSw_Adjust_Mr <- T2D_DATASET_GRS_Adjust_M %>% mutate_at(.vars= 
vars(matches("^(.*)PT(.*)SM(.*)",  
                  ignore.case =FALSE)), .funs=funs((log(OR)) *.)) 
 
save(T2D_DATASET_GRSw_Adjust_Mr, file=paste("/DIRECTORY ADDRESS/FOLDER 
ADDRESS / T2D_DATASET_GRSw_Adjust_Mr.Rda",sep="")) 
 
#library("dplyr") 
load("T2D_DATASET_GRSw_Adjust_Mr.Rda") 
View(T2D_DATASET_GRSw_Adjust_Mr) 
 
################################################################# 
#Calculation of overall weighted GRS value for each individual in the sample 
################################################################# 
T2D_DATASET_GRSw_Adjust_All <- T2D_DATASET_GRSw_Adjust_Mr %>% 
summarise_at(.vars= vars(matches("^(.*)PT(.*)SM(.*)", 
                    ignore.case =FALSE)), sum, na.rm = TRUE) 
View(T2D_DATASET_GRSw_Adjust_All) 
save(T2D_DATASET_GRSw_Adjust_All, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS 
/ T2D_DATASET_GRSw_Adjust_All.Rda",sep="")) 
load("T2D_DATASET_GRSw_Adjust_All.Rda") 
################################################################# 
library("dplyr") 
T2D_DATASET_GRSw_Adjust_All_t <-  t(T2D_DATASET_GRSw_Adjust_All) 
 
T2D_DATASET_GRSw_Adjust_All_t1 <- data.frame(names = 
row.names(T2D_DATASET_GRSw_Adjust_All_t),  
                               T2D_DATASET_GRSw_Adjust_All_t, row.names = NULL) 
colnames(T2D_DATASET_GRSw_Adjust_All_t1) <- c("SampleID","GRS_wei") 
View(T2D_DATASET_GRSw_Adjust_All_t1) 
 
 
#removing extra characters from ID numbers 
library("stringr") 
T2D_DATASET_GRSw_Adjust_All_t1$SampleID  <- 
str_replace_all(T2D_DATASET_GRSw_Adjust_All_t1$SampleID, '^X.*.PT.', 'PT-') 
T2D_DATASET_GRSw_Adjust_All_t1$SampleID  <- 
str_replace_all(T2D_DATASET_GRSw_Adjust_All_t1$SampleID, '.SM.', '-SM-') 
T2D_DATASET_GRSw_Adjust_All_t1$SampleID  <- 
str_replace_all(T2D_DATASET_GRSw_Adjust_All_t1$SampleID, '.DS$', '') 
 
save(T2D_DATASET_GRSw_Adjust_All_t1, file=paste("/DIRECTORY ADDRESS/FOLDER 
ADDRESS / T2D_DATASET_GRSw_Adjust_All_t1.Rda",sep="")) 
 



 
 

318 
 

load("T2D_DATASET_GRSw_Adjust_All_t1.Rda") 
View(T2D_DATASET_GRSw_Adjust_All_t1) 
head(T2D_DATASET_GRSw_Adjust_All_t1,10) 
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G.4: R syntax used to calculate unweighted GRS 
 
########################################################### 
#Calculation of overall unweighted GRS value for each individual in the sample 
########################################################### 
T2D_DATASET_GRSu_Adjust_All <- T2D_DATASET_GRS_Adjust_M %>% summarise_at(.vars= 
vars(matches("^(.*)PT(.*)SM(.*)", 
                    ignore.case =FALSE)), sum, na.rm = TRUE) 
View(T2D_DATASET_GRSu_Adjust_All) 
save(T2D_DATASET_GRSu_Adjust_All, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS 
/ T2D_DATASET_GRSu_Adjust_All.Rda",sep="")) 
load("T2D_DATASET_GRSu_Adjust_All.Rda") 
################################## 
library("dplyr") 
T2D_DATASET_GRSu_Adjust_All_t <-  t(T2D_DATASET_GRSu_Adjust_All) 
 
T2D_DATASET_GRSu_Adjust_All_t1 <- data.frame(names = 
row.names(T2D_DATASET_GRSu_Adjust_All_t),  
                               T2D_DATASET_GRSu_Adjust_All_t, row.names = NULL) 
colnames(T2D_DATASET_GRSu_Adjust_All_t1) <- c("SampleID","GRS_unw") 
View(T2D_DATASET_GRSu_Adjust_All_t1) 
################################################################# 
#removing extra characters from ID numbers 
library("stringr") 
T2D_DATASET_GRSu_Adjust_All_t1$SampleID  <- 
str_replace_all(T2D_DATASET_GRSu_Adjust_All_t1$SampleID, '^X.*.PT.', 'PT-') 
T2D_DATASET_GRSu_Adjust_All_t1$SampleID  <- 
str_replace_all(T2D_DATASET_GRSu_Adjust_All_t1$SampleID, '.SM.', '-SM-') 
T2D_DATASET_GRSu_Adjust_All_t1$SampleID  <- 
str_replace_all(T2D_DATASET_GRSu_Adjust_All_t1$SampleID, '.DS$', '') 
 
save(T2D_DATASET_GRSu_Adjust_All_t1, file=paste("/DIRECTORY ADDRESS/FOLDER 
ADDRESS / T2D_DATASET_GRSu_Adjust_All_t1.Rda",sep="")) 
 
load("T2D_DATASET_GRSu_Adjust_All_t1.Rda") 
View(T2D_DATASET_GRSu_Adjust_All_t1) 
head(T2D_DATASET_GRSu_Adjust_All_t1,10) 
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G.5: R syntax used to merge GRS value to phenotype data  
 
################################################################# 
#loading phenotype dataset and nominal significant GRS datasets 
################################################################# 
load("T2D_Dataset_pheno_adj_IND.Rda") 
View(T2D_Dataset_pheno_adj_IND) 
head(T2D_Dataset_pheno_adj_IND, 10) 
 
load("T2D_DATASET_GRSw_Adjust_All_t1.Rda") 
View(T2D_DATASET_GRSw_Adjust_All_t1) 
head(T2D_DATASET_GRSw_Adjust_All_t1,10) 
 
load("T2D_DATASET_GRSu_Adjust_All_t1.Rda") 
View(T2D_DATASET_GRSu_Adjust_All_t1) 
head(T2D_DATASET_GRSu_Adjust_All_t1,10) 
 
################################################################# 
#To add weighted GRS to T2D sample dataset 
T2D_sample_GRS <- merge(T2D_Dataset_pheno_adj_IND, T2D_DATASET_GRSw_Adjust_All_t1, 
               by.x = "ID_2", by.y = "SampleID") 
 
save(T2D_sample_GRS, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS / 
T2D_sample_GRS.Rda",sep="")) 
load("T2D_sample_GRS.Rda") 
View(T2D_sample_GRS) 
head(T2D_sample_GRS) 
 
################################################################# 
#To add unweighted GRS to T2D sample dataset 
T2D_sample_GRS <- merge(T2D_sample_GRS, T2D_DATASET_GRSu_Adjust_All_t1, 
               by.x = "ID_2", by.y = "SampleID") 
 
save(T2D_sample_GRS, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS / 
T2D_sample_GRS.Rda",sep="")) 
load("T2D_sample_GRS.Rda") 
View(T2D_sample_GRS) 
 
 
 
################################################################# 
#loading phenotype dataset and genome-wide significant GRS datasets 
################################################################# 
load("T2D_sample_GRS.Rda") 
View(T2D_sample_GRS) 
head(T2D_sample_GRS, 10) 
 
load("T2D_DATASET_GRSw_Adjust_Allg_t1.Rda") 
View(T2D_DATASET_GRSw_Adjust_Allg_t1) 
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head(T2D_DATASET_GRSw_Adjust_Allg_t1,10) 
 
load("T2D_DATASET_GRSu_Adjust_Allg_t1.Rda") 
View(T2D_DATASET_GRSu_Adjust_Allg_t1) 
head(T2D_DATASET_GRSu_Adjust_Allg_t1,10) 
 
 
################################################################# 
#To add weighted GRS to T2D sample dataset 
T2D_sample_GRS <- merge(T2D_sample_GRS, T2D_DATASET_GRSw_Adjust_Allg_t1, 
               by.x = "ID_2", by.y = "SampleID") 
 
save(T2D_sample_GRS, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS / 
T2D_sample_GRS.Rda",sep="")) 
 
load("T2D_sample_GRS.Rda") 
View(T2D_sample_GRS) 
################################################################# 
#To add unweighted GRS to T2D sample dataset 
T2D_sample_GRS <- merge(T2D_sample_GRS, T2D_DATASET_GRSu_Adjust_Allg_t1, 
               by.x = "ID_2", by.y = "SampleID") 
 
save(T2D_sample_GRS, file=paste("/DIRECTORY ADDRESS/FOLDER ADDRESS / 
T2D_sample_GRS.Rda",sep="")) 
 
load("T2D_sample_GRS.Rda") 
View(T2D_sample_GRS) 
head(T2D_sample_GRS, 10) 
################################################################# 
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Appendix H: R syntax used to conduct data analysis of T2D 

GRS AOO data  
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Appendix H: R syntax used to conduct data analysis of T2D 

GRS AOO data  
 

H.1: R syntax used to undertake Cox PH analysis 
 
############################################################ 
#weighted GRS (nominal significance level) 
############################################################ 
library(survival) 
args(coxph) 
Cox_Model_1 <- coxph(Surv(timeAGE_O, eventID)~ GRSwei,  
data=T2D_Dataset_R) 
SumCox_Model_1 <- summary(Cox_Model_1) 
print(SumCox_Model_1) 
 
library(survival) 
args(coxph) 
Cox_Model_2 <- coxph(Surv(timeAGE_O, eventID)~ SEX + BMI,  
data=T2D_Dataset_R) 
SumCox_Model_2 <- summary(Cox_Model_2) 
print(SumCox_Model_2) 
  
library(survival) 
args(coxph) 
Cox_Model_3 <- coxph(Surv(timeAGE_O, eventID)~ SEX + C1 + C2 + GRSwei, 
data=T2D_Dataset_R) 
SumCox_Model_3 <- summary(Cox_Model_3) 
print(SumCox_Model_3)  
  
library(survival) 
args(coxph) 
Cox_Model_3.2 <- coxph(Surv(timeAGE_O, eventID)~ SEX + BMI + C1 + C2 + GRSwei, 
data=T2D_Dataset_R) 
SumCox_Model_3.2 <- summary(Cox_Model_3.2) 
print(SumCox_Model_3.2)  
  
############################################################ 
#unweighted GRS (nominal significance level) 
############################################################  
library(survival) 
args(coxph)  
Cox_Model_4 <- coxph(Surv(timeAGE_O, eventID)~ GRSunw, 
data=T2D_Dataset_R) 
SumCox_Model_4 <- summary(Cox_Model_4) 
print(SumCox_Model_4) 
 
library(survival) 
args(coxph)  
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Cox_Model_5 <- coxph(Surv(timeAGE_O, eventID)~ SEX + BMI, 
data=T2D_Dataset_R) 
SumCox_Model_5 <- summary(Cox_Model_5) 
print(SumCox_Model_5) 
 
 
############################################################ 
library(survival) 
args(coxph) 
Cox_Model_6 <- coxph(Surv(timeAGE_O, eventID)~ SEX + C1 + C2 + GRSunw, 
data=T2D_Dataset_R) 
SumCox_Model_6 <- summary(Cox_Model_6) 
print(SumCox_Model_6) 
 
library(survival) 
args(coxph) 
Cox_Model_6.2 <- coxph(Surv(timeAGE_O, eventID)~ SEX + BMI + C1 + C2 + GRSunw, 
data=T2D_Dataset_R) 
SumCox_Model_6.2 <- summary(Cox_Model_6.2) 
print(SumCox_Model_6.2) 
 
############################################################ 
#weighted GRS (genome-wide significance level) 
############################################################ 
 
library(survival) 
args(coxph) 
Cox_Model_7 <- coxph(Surv(timeAGE_O, eventID)~  GRSwei_G,  
data=T2D_Dataset_R) 
SumCox_Model_7 <- summary(Cox_Model_7) 
print(SumCox_Model_7) 
  
library(survival) 
args(coxph) 
Cox_Model_8 <- coxph(Surv(timeAGE_O, eventID)~ SEX + BMI, 
data=T2D_Dataset_R) 
SumCox_Model_8 <- summary(Cox_Model_8) 
print(SumCox_Model_8) 
  
library(survival) 
args(coxph) 
Cox_Model_9 <- coxph(Surv(timeAGE_O, eventID)~ SEX + C1 + C2 + GRSwei_G,  
data=T2D_Dataset_R) 
SumCox_Model_9 <- summary(Cox_Model_9) 
print(SumCox_Model_9) 
  
library(survival) 
args(coxph) 
Cox_Model_9.2 <- coxph(Surv(timeAGE_O, eventID)~ SEX + BMI + C1 + C2 + GRSwei_G,  
data=T2D_Dataset_R) 
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SumCox_Model_9.2 <- summary(Cox_Model_9.2) 
print(SumCox_Model_9.2) 
############################################################ 
#unweighted GRS (genome-wide significance level) 
############################################################  
library(survival) 
args(coxph)   
Cox_Model_10 <- coxph(Surv(timeAGE_O, eventID)~ GRSunw_G,  
data=T2D_Dataset_R) 
SumCox_Model_10 <- summary(Cox_Model_10) 
print(SumCox_Model_10) 
 
library(survival) 
args(coxph)   
Cox_Model_11 <- coxph(Surv(timeAGE_O, eventID)~ SEX + BMI,  
data=T2D_Dataset_R) 
SumCox_Model_11 <- summary(Cox_Model_11) 
print(SumCox_Model_11) 
 
library(survival) 
args(coxph)   
Cox_Model_12 <- coxph(Surv(timeAGE_O, eventID)~ SEX + C1 + C2 + GRSunw_G,  
data=T2D_Dataset_R) 
SumCox_Model_12 <- summary(Cox_Model_12) 
print(SumCox_Model_12) 
 
library(survival) 
args(coxph)   
Cox_Model_12.2 <- coxph(Surv(timeAGE_O, eventID)~ SEX + BMI + C1 + C2 + GRSunw_G,  
data=T2D_Dataset_R) 
SumCox_Model_12.2 <- summary(Cox_Model_12.2) 
print(SumCox_Model_12.2) 
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H.2: R syntax used to undertake logistic analysis 
############################################################ 
#weighted GRS (nominal significance level) 
############################################################ 
library("DescTools") 
Ltc_Model_1 <- glm(eventID ~ GRSwei, 
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_1 <- summary(Ltc_Model_1) 
ANOVALtc_Model_1 <- anova(Ltc_Model_1, test = "Chisq") 
R2Ltc_Model_1 <- PseudoR2(Ltc_Model_1, which="all") 
print(SumLtc_Model_1) 
print(ANOVALtc_Model_1) 
print(R2Ltc_Model_1) 
 
Ltc_Model_2 <- glm(eventID ~ SEX + BMI, 
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_2 <- summary(Ltc_Model_2) 
ANOVALtc_Model_2 <- anova(Ltc_Model_2, test = "Chisq") 
R2Ltc_Model_2 <- PseudoR2(Ltc_Model_2, which="all") 
print(SumLtc_Model_2) 
print(ANOVALtc_Model_2) 
print(R2Ltc_Model_2) 
 
Ltc_Model_3 <- glm(eventID ~ SEX + C1 + C2 + GRSwei, 
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_3 <- summary(Ltc_Model_3) 
ANOVALtc_Model_3 <- anova(Ltc_Model_3, test = "Chisq")  
R2Ltc_Model_3 <- PseudoR2(Ltc_Model_3, which="all")  
print(SumLtc_Model_3) 
print(ANOVALtc_Model_3) 
print(R2Ltc_Model_3) 
 
Ltc_Model_3.2 <- glm(eventID ~ SEX + BMI + C1 + C2 + GRSwei, 
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_3.2 <- summary(Ltc_Model_3.2) 
ANOVALtc_Model_3.2 <- anova(Ltc_Model_3.2, test = "Chisq")  
R2Ltc_Model_3.2 <- PseudoR2(Ltc_Model_3.2, which="all")  
print(SumLtc_Model_3.2) 
print(ANOVALtc_Model_3.2) 
print(R2Ltc_Model_3.2) 
 
############################################################ 
#unweighted GRS (nominal significance level) 
############################################################  
Ltc_Model_4 <- glm(eventID ~ GRSunw, 
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_4 <- summary(Ltc_Model_4) 
ANOVALtc_Model_4 <- anova(Ltc_Model_4, test = "Chisq")  
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R2Ltc_Model_4 <- PseudoR2(Ltc_Model_4, which="all") 
print(SumLtc_Model_4) 
print(ANOVALtc_Model_4) 
print(R2Ltc_Model_4) 
  
Ltc_Model_5 <- glm(eventID ~ SEX + BMI, 
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_5 <- summary(Ltc_Model_5) 
ANOVALtc_Model_5 <- anova(Ltc_Model_5, test = "Chisq")  
R2Ltc_Model_5 <- PseudoR2(Ltc_Model_5, which="all") 
print(SumLtc_Model_5) 
print(ANOVALtc_Model_5) 
print(R2Ltc_Model_5) 
 
############################################################ 
Ltc_Model_6 <- glm(eventID ~ SEX + C1 + C2 + GRSunw,  
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_6 <- summary(Ltc_Model_6) 
ANOVALtc_Model_6 <- anova(Ltc_Model_6, test = "Chisq")  
R2Ltc_Model_6 <- PseudoR2(Ltc_Model_6, which="all") 
print(SumLtc_Model_6) 
print(ANOVALtc_Model_6) 
print(R2Ltc_Model_6) 
 
############################################################ 
Ltc_Model_6.2 <- glm(eventID ~ SEX + BMI + C1 + C2 + GRSunw,  
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_6.2 <- summary(Ltc_Model_6.2) 
ANOVALtc_Model_6.2 <- anova(Ltc_Model_6.2, test = "Chisq")  
R2Ltc_Model_6.2 <- PseudoR2(Ltc_Model_6.2, which="all") 
print(SumLtc_Model_6.2) 
print(ANOVALtc_Model_6.2) 
print(R2Ltc_Model_6.2) 
 
############################################################ 
#weighted GRS (genome-wide significance level) 
############################################################ 
Ltc_Model_7 <- glm(eventID ~ GRSwei_G, 
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_7 <- summary(Ltc_Model_7) 
ANOVALtc_Model_7 <- anova(Ltc_Model_7, test = "Chisq")  
R2Ltc_Model_7 <- PseudoR2(Ltc_Model_7, which="all") 
print(SumLtc_Model_7) 
print(ANOVALtc_Model_7) 
print(R2Ltc_Model_7) 
 
Ltc_Model_8 <- glm(eventID ~ SEX + BMI,  
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_8 <- summary(Ltc_Model_8) 
ANOVALtc_Model_8 <- anova(Ltc_Model_8, test = "Chisq")  
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R2Ltc_Model_8 <- PseudoR2(Ltc_Model_8, which="all") 
print(SumLtc_Model_8) 
print(ANOVALtc_Model_8) 
print(R2Ltc_Model_8) 
 
Ltc_Model_9 <- glm(eventID ~ SEX +C1 + C2 + GRSwei_G, 
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_9 <- summary(Ltc_Model_9) 
ANOVALtc_Model_9 <- anova(Ltc_Model_9, test = "Chisq")  
R2Ltc_Model_9 <- PseudoR2(Ltc_Model_9, which="all") 
print(SumLtc_Model_9) 
print(ANOVALtc_Model_9) 
print(R2Ltc_Model_9) 
 
Ltc_Model_9.2 <- glm(eventID ~ SEX + BMI +C1 + C2 + GRSwei_G, 
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_9.2 <- summary(Ltc_Model_9.2) 
ANOVALtc_Model_9.2 <- anova(Ltc_Model_9.2, test = "Chisq")  
R2Ltc_Model_9.2 <- PseudoR2(Ltc_Model_9.2, which="all") 
print(SumLtc_Model_9.2) 
print(ANOVALtc_Model_9.2) 
print(R2Ltc_Model_9.2) 
 
############################################################ 
#unweighted GRS (genome-wide significance level) 
############################################################  
Ltc_Model_10 <- glm(eventID ~ GRSunw_G, 
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_10 <- summary(Ltc_Model_10) 
ANOVALtc_Model_10 <- anova(Ltc_Model_10, test = "Chisq")  
R2Ltc_Model_10 <- PseudoR2(Ltc_Model_10, which="all") 
print(SumLtc_Model_10) 
print(ANOVALtc_Model_10) 
print(R2Ltc_Model_10) 
 
Ltc_Model_11 <- glm(eventID ~ SEX + BMI,  
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_11 <- summary(Ltc_Model_11) 
ANOVALtc_Model_11 <- anova(Ltc_Model_11, test = "Chisq")  
R2Ltc_Model_11 <- PseudoR2(Ltc_Model_11, which="all") 
print(SumLtc_Model_11) 
print(ANOVALtc_Model_11) 
print(R2Ltc_Model_11) 
 
Ltc_Model_12 <- glm(eventID ~ SEX +C1 + C2 + GRSunw_G ,  
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_12 <- summary(Ltc_Model_12) 
ANOVALtc_Model_12 <- anova(Ltc_Model_12, test = "Chisq")  
R2Ltc_Model_12 <- PseudoR2(Ltc_Model_12, which="all") 
print(SumLtc_Model_12) 
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print(ANOVALtc_Model_12) 
print(R2Ltc_Model_12) 
 
Ltc_Model_12.2 <- glm(eventID ~ SEX + BMI +C1 + C2 + GRSunw_G ,  
family = binomial(link = 'logit'),data=T2D_Dataset_R) 
SumLtc_Model_12.2 <- summary(Ltc_Model_12.2) 
ANOVALtc_Model_12.2 <- anova(Ltc_Model_12.2, test = "Chisq")  
R2Ltc_Model_12.2 <- PseudoR2(Ltc_Model_12.2, which="all") 
print(SumLtc_Model_12.2) 
print(ANOVALtc_Model_12.2) 
print(R2Ltc_Model_12.2) 
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H.3: R syntax used to undertake proportional odds analysis 
############################################################ 
#weighted GRS (nominal significance level) 
############################################################ 
library(MASS) 
library("DescTools") 
Polr_Model_1 <- polr(T2D_ord ~ GRSwei,  
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_1 <- summary(Polr_Model_1) 
ptable_1 <- coef(summary(Polr_Model_1)) 
P <- pnorm(abs(ptable_1[, "t value"]), lower.tail=FALSE) * 2 
ptable_1 <- cbind(ptable_1, "P value" =P) 
R2Polr_Model_1 <- PseudoR2(Polr_Model_1, which="all") 
print(Polr_Model_1) 
print(SumPolr_Model_1) 
print(ptable_1) 
print(R2Polr_Model_1) 
 
library(MASS) 
Polr_Model_2 <- polr(T2D_ord ~ SEX + BMI,  
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_2 <- summary(Polr_Model_2) 
ptable_2 <- coef(summary(Polr_Model_2)) 
P <- pnorm(abs(ptable_2[, "t value"]), lower.tail=FALSE) * 2 
ptable_2 <- cbind(ptable_2, "P value" =P) 
R2Polr_Model_2 <- PseudoR2(Polr_Model_2, which="all") 
print(Polr_Model_2) 
print(SumPolr_Model_2) 
print(ptable_2) 
print(R2Polr_Model_2) 
 
library(MASS) 
Polr_Model_3 <- polr(T2D_ord ~  SEX + C1 + C2 + GRSwei, 
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_3 <- summary(Polr_Model_3) 
ptable_3 <- coef(summary(Polr_Model_3)) 
P <- pnorm(abs(ptable_3[, "t value"]), lower.tail=FALSE) * 2 
ptable_3 <- cbind(ptable_3, "P value" =P) 
R2Polr_Model_3 <- PseudoR2(Polr_Model_3, which="all") 
print(Polr_Model_3) 
print(SumPolr_Model_3) 
print(ptable_3) 
print(R2Polr_Model_3) 
 
library(MASS) 
Polr_Model_3.2 <- polr(T2D_ord ~  SEX + BMI + C1 + C2 + GRSwei, 
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_3.2 <- summary(Polr_Model_3.2) 
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ptable_3.2 <- coef(summary(Polr_Model_3.2)) 
P <- pnorm(abs(ptable_3.2[, "t value"]), lower.tail=FALSE) * 2 
ptable_3.2 <- cbind(ptable_3.2, "P value" =P) 
R2Polr_Model_3.2 <- PseudoR2(Polr_Model_3.2, which="all") 
print(Polr_Model_3.2) 
print(SumPolr_Model_3.2) 
print(ptable_3.2) 
print(R2Polr_Model_3.2) 
############################################################ 
#unweighted GRS (nominal significance level) 
############################################################  
library(MASS) 
Polr_Model_4 <- polr(T2D_ord ~ GRSunw, 
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_4 <- summary(Polr_Model_4) 
ptable_4 <- coef(summary(Polr_Model_4)) 
P <- pnorm(abs(ptable_4[, "t value"]), lower.tail=FALSE) * 2 
ptable_4 <- cbind(ptable_4, "P value" =P) 
R2Polr_Model_4 <- PseudoR2(Polr_Model_4, which="all") 
print(Polr_Model_4) 
print(SumPolr_Model_4) 
print(ptable_4) 
print(R2Polr_Model_4) 
 
library(MASS) 
Polr_Model_5 <- polr(T2D_ord ~ SEX + BMI, 
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_5 <- summary(Polr_Model_5) 
ptable_5 <- coef(summary(Polr_Model_5)) 
P <- pnorm(abs(ptable_5[, "t value"]), lower.tail=FALSE) * 2 
ptable_5 <- cbind(ptable_5, "P value" =P) 
R2Polr_Model_5 <- PseudoR2(Polr_Model_5, which="all") 
print(Polr_Model_5) 
print(SumPolr_Model_5) 
print(ptable_5) 
print(R2Polr_Model_5) 
 
############################################################ 
library(MASS) 
Polr_Model_6 <- polr(T2D_ord ~ SEX + C1 + C2 + GRSunw,  
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_6 <- summary(Polr_Model_6) 
ptable_6 <- coef(summary(Polr_Model_6)) 
P <- pnorm(abs(ptable_6[, "t value"]), lower.tail=FALSE) * 2 
ptable_6 <- cbind(ptable_6, "P value" =P) 
R2Polr_Model_6 <- PseudoR2(Polr_Model_6, which="all") 
print(Polr_Model_6) 
print(SumPolr_Model_6) 
print(ptable_6) 
print(R2Polr_Model_6) 
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############################################################ 
library(MASS) 
Polr_Model_6.2 <- polr(T2D_ord ~ SEX + BMI + C1 + C2 + GRSunw,  
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_6.2 <- summary(Polr_Model_6.2) 
ptable_6.2 <- coef(summary(Polr_Model_6.2)) 
P <- pnorm(abs(ptable_6.2[, "t value"]), lower.tail=FALSE) * 2 
ptable_6.2 <- cbind(ptable_6.2, "P value" =P) 
R2Polr_Model_6.2 <- PseudoR2(Polr_Model_6.2, which="all") 
print(Polr_Model_6.2) 
print(SumPolr_Model_6.2) 
print(ptable_6.2) 
print(R2Polr_Model_6.2) 
############################################################ 
#weighted GRS (genome-wide significance level) 
############################################################ 
library(MASS) 
Polr_Model_7 <- polr(T2D_ord ~ GRSwei_G,  
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_7 <- summary(Polr_Model_7) 
ptable_7 <- coef(summary(Polr_Model_7)) 
P <- pnorm(abs(ptable_7[, "t value"]), lower.tail=FALSE) * 2 
ptable_7 <- cbind(ptable_7, "P value" =P) 
R2Polr_Model_7 <- PseudoR2(Polr_Model_7, which="all") 
print(Polr_Model_7) 
print(SumPolr_Model_7) 
print(ptable_7) 
print(R2Polr_Model_7) 
 
library(MASS) 
Polr_Model_8 <- polr(T2D_ord ~ SEX + BMI,  
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_8 <- summary(Polr_Model_8) 
ptable_8 <- coef(summary(Polr_Model_8)) 
P <- pnorm(abs(ptable_8[, "t value"]), lower.tail=FALSE) * 2 
ptable_8 <- cbind(ptable_8, "P value" =P) 
R2Polr_Model_8 <- PseudoR2(Polr_Model_8, which="all") 
print(Polr_Model_8) 
print(SumPolr_Model_8) 
print(ptable_8) 
print(R2Polr_Model_8) 
 
library(MASS) 
Polr_Model_9 <- polr(T2D_ord ~ SEX + C1 + C2 + GRSwei_G, 
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_9 <- summary(Polr_Model_9) 
ptable_9 <- coef(summary(Polr_Model_9)) 
P <- pnorm(abs(ptable_9[, "t value"]), lower.tail=FALSE) * 2 
ptable_9 <- cbind(ptable_9, "P value" =P) 



 
 

333 
 

R2Polr_Model_9 <- PseudoR2(Polr_Model_9, which="all") 
print(Polr_Model_9) 
print(SumPolr_Model_9) 
print(ptable_9) 
print(R2Polr_Model_9) 
 
library(MASS) 
Polr_Model_9.2 <- polr(T2D_ord ~ SEX + BMI + C1 + C2 + GRSwei_G, 
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_9.2 <- summary(Polr_Model_9.2) 
ptable_9.2 <- coef(summary(Polr_Model_9.2)) 
P <- pnorm(abs(ptable_9.2[, "t value"]), lower.tail=FALSE) * 2 
ptable_9.2 <- cbind(ptable_9.2, "P value" =P) 
R2Polr_Model_9.2 <- PseudoR2(Polr_Model_9.2, which="all") 
print(Polr_Model_9.2) 
print(SumPolr_Model_9.2) 
print(ptable_9.2) 
print(R2Polr_Model_9.2) 
 
############################################################ 
#unweighted GRS (genome-wide significance level) 
############################################################  
library(MASS) 
Polr_Model_10 <- polr(T2D_ord ~ GRSunw_G, 
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_10 <- summary(Polr_Model_10) 
ptable_10 <- coef(summary(Polr_Model_10)) 
P <- pnorm(abs(ptable_10[, "t value"]), lower.tail=FALSE) * 2 
ptable_10 <- cbind(ptable_10, "P value" =P) 
R2Polr_Model_10 <- PseudoR2(Polr_Model_10, which="all") 
print(Polr_Model_10) 
print(SumPolr_Model_10) 
print(ptable_10) 
print(R2Polr_Model_10) 
 
library(MASS) 
Polr_Model_11 <- polr(T2D_ord ~ SEX + BMI, 
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_11 <- summary(Polr_Model_11) 
ptable_11 <- coef(summary(Polr_Model_11)) 
P <- pnorm(abs(ptable_11[, "t value"]), lower.tail=FALSE) * 2 
ptable_11 <- cbind(ptable_11, "P value" =P) 
R2Polr_Model_11 <- PseudoR2(Polr_Model_11, which="all") 
print(Polr_Model_11) 
print(SumPolr_Model_11) 
print(ptable_11) 
print(R2Polr_Model_11) 
 
library(MASS) 
Polr_Model_12 <- polr(T2D_ord ~ SEX + C1 + C2 + GRSunw_G, 
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method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_12 <- summary(Polr_Model_12) 
ptable_12 <- coef(summary(Polr_Model_12)) 
P <- pnorm(abs(ptable_12[, "t value"]), lower.tail=FALSE) * 2 
ptable_12 <- cbind(ptable_12, "P value" =P) 
R2Polr_Model_12 <- PseudoR2(Polr_Model_12, which="all") 
print(Polr_Model_12) 
print(SumPolr_Model_12) 
print(ptable_12) 
print(R2Polr_Model_12) 
 
library(MASS) 
Polr_Model_12.2 <- polr(T2D_ord ~ SEX + BMI + C1 + C2 + GRSunw_G, 
method ="logistic",data=T2D_Dataset_R) 
SumPolr_Model_12.2 <- summary(Polr_Model_12.2) 
ptable_12.2 <- coef(summary(Polr_Model_12.2)) 
P <- pnorm(abs(ptable_12.2[, "t value"]), lower.tail=FALSE) * 2 
ptable_12.2 <- cbind(ptable_12.2, "P value" =P) 
R2Polr_Model_12.2 <- PseudoR2(Polr_Model_12.2, which="all") 
print(Polr_Model_12) 
print(SumPolr_Model_12) 
print(ptable_12) 
print(R2Polr_Model_12) 
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H.4: R syntax used to undertake meta-analysis 

H.4.1: Syntax used to undertake meta-analysis based on P-values 

from Cox PH model HR 

 
############################################################ 
#weighted GRS (nominal significance level) 
############################################################ 
library(metap) 
rMeta_cTTEb1 <- sumz(mPV_W05, MEweight, data=MEb_CModel_ALL_MER) 
print(rMeta_cTTEb1) 
 
############################################################ 
#unweighted GRS (nominal significance level) 
############################################################ 
library(metap) 
rMeta_cTTEb2 <- sumz(mPV_uW05, MEweight, data=MEb_CModel_ALL_MER) 
print(rMeta_cTTEb2) 
 
############################################################ 
#weighted GRS (genome-wide significance level) 
############################################################ 
library(metap) 
rMeta_cTTEb3 <- sumz(mPV_W08, MEweight, data=MEb_CModel_ALL_MER) 
print(rMeta_cTTEb3) 
 
############################################################ 
#unweighted GRS (genome-wide significance level) 
############################################################ 
library(metap) 
rMeta_cTTEb4 <- sumz(mPV_uW08, MEweight, data=MEb_CModel_ALL_MER) 
print(rMeta_cTTEb4) 
 
 
 

H.4.2: Syntax used to undertake meta-analysis based on OR from the 

logistic model  

 
############################################################ 
library(rmeta) 
rMeta_bLOGb1 <- meta.summaries(Est_W05, SE_W05, method="fixed", 
names=Study_ID, logscale=FALSE, data=MEb_LModel_ALL_MER) 
SUMrMeta_bLOGb1  <- summary(rMeta_bLOGb1) 
 
############################################################ 
library(rmeta) 
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rMeta_bLOGb2 <- meta.summaries(Est_uW05, SE_uW05, method="fixed", 
names=Study_ID, logscale=FALSE, data=MEb_LModel_ALL_MER) 
SUMrMeta_bLOGb2  <- summary(rMeta_bLOGb2) 
 
############################################################ 
library(rmeta) 
rMeta_bLOGb3 <- meta.summaries(Est_W08, SE_W08, method="fixed", 
names=Study_ID, logscale=FALSE, data=MEb_LModel_ALL_MER) 
SUMrMeta_bLOGb3  <- summary(rMeta_bLOGb3) 
 
############################################################ 
library(rmeta) 
rMeta_bLOGb4 <- meta.summaries(Est_uW08, SE_uW08, method="fixed", 
names=Study_ID, logscale=FALSE, data=MEb_LModel_ALL_MER) 
SUMrMeta_bLOGb4  <- summary(rMeta_bLOGb4) 
 
 
 


