Method for constructing beliefs

Constructing consonant beliefs from multivariate data with scenario theory

Marco De Angelis¹, Roberto Rocchetta², Ander Gray¹, Scott Ferson¹

¹Institute for Risk and Uncertainty, University of Liverpool ²Eindhoven University of Technology

ISIPTA 2021, virtually in Granada

July 7, 2021

Marco De Angelis, Roberto Rocchetta, Ander Gray, Scott Ferson

July 7, 2021 1/15

Scenario theory

Method for constructing beliefs

Outline

2 Scenario theory

3 Method for constructing beliefs

Marco De Angelis, Roberto Rocchetta, Ander Gray, Scott Ferson

Constructing consonant beliefs from multivariate data

July 7, 2021 2 / 15

Scenario theory

Method for constructing beliefs

Problem statement

Given a bunch of *iid* samples $X_1, ..., X_n$, with $X_i \in \mathbb{R}^m$, what can be learnt about the unknown underlying distribution \mathbb{P}_X ? What is the probability of observing a new sample in a given set?

Scenario theory

Method for constructing beliefs

Problem statement

Given a bunch of *iid* samples $X_1, ..., X_n$, with $X_i \in \mathbb{R}^m$, what can be learnt about the unknown underlying distribution \mathbb{P}_X ? What is the probability of observing a new sample in a given set?

Samples are few

Marco De Angelis, Roberto Rocchetta, Ander Gray, Scott Ferson

Constructing consonant beliefs from multivariate data

July 7, 2021 3 / 15

Scenario theory

Method for constructing beliefs

Problem statement

Given a bunch of *iid* samples $X_1, ..., X_n$, with $X_i \in \mathbb{R}^m$, what can be learnt about the unknown underlying distribution \mathbb{P}_X ? What is the probability of observing a new sample in a given set?

Samples are few

Multivariate case

Scenario theory

Method for constructing beliefs

Problem statement

Given a bunch of *iid* samples $X_1, ..., X_n$, with $X_i \in \mathbb{R}^m$, what can be learnt about the unknown underlying distribution \mathbb{P}_X ? What is the probability of observing a new sample in a given set?

Samples are few We cannot learn \mathbb{P}_X exactly!

Multivariate case

Marco De Angelis, Roberto Rocchetta, Ander Gray, Scott Ferson

Constructing consonant beliefs from multivariate data

July 7, 2021 3 / 15

Scenario theory

Method for constructing beliefs

Problem statement

Given a bunch of *iid* samples $X_1, ..., X_n$, with $X_i \in \mathbb{R}^m$, what can be learnt about the unknown underlying distribution \mathbb{P}_X ? What is the probability of observing a new sample in a given set?

Samples are few We cannot learn \mathbb{P}_X exactly!

■ Multivariate case What about X_i interdependence?

Marco De Angelis, Roberto Rocchetta, Ander Gray, Scott Ferson

Constructing consonant beliefs from multivariate data

July 7, 2021 3 / 15

Scenario theory

Method for constructing beliefs

Predictive beliefs

We want to obtain a belief function Bel_X so that the inequality $\text{Bel}_X \leq \mathbb{P}_X$ holds at least $100 \ (1 - \beta)\%$ of the times.

Marco De Angelis, Roberto Rocchetta, Ander Gray, Scott Ferson

Constructing consonant beliefs from multivariate data

July 7, 2021 4 / 15

Scenario theory

Method for constructing beliefs

Predictive beliefs

We want to obtain a belief function Bel_X so that the inequality $\text{Bel}_X \leq \mathbb{P}_X$ holds at least $100 \ (1 - \beta)\%$ of the times.

1
$$\forall A \subseteq \mathbb{R}^m, \ \mathsf{Bel}_X(A) \to \mathbb{P}_X(A), \ n \to \infty$$

Marco De Angelis, Roberto Rocchetta, Ander Gray, Scott Ferson

Constructing consonant beliefs from multivariate data

July 7, 2021 4 / 15

Scenario theory

Method for constructing beliefs

Predictive beliefs

We want to obtain a belief function Bel_X so that the inequality $\text{Bel}_X \leq \mathbb{P}_X$ holds at least $100 \ (1 - \beta)\%$ of the times.

1
$$\forall A \subseteq \mathbb{R}^m, \ \mathsf{Bel}_X(A) \to \mathbb{P}_X(A), \ n \to \infty$$

2
$$\mathbb{P}^n$$
 ($\mathsf{Bel}_X \leq \mathbb{P}_X$) $\geq 1 - \beta$

Scenario theory

Method for constructing beliefs

Coherent lower probabilities

Basic mass assignments: (i) $m(\emptyset) = 0$, (ii) $\sum_{A \in 2^{\mathcal{X}}} m(A) = 1$

Beliefs obtained from basic mass assignments are coherent lower probabilities.

The subsets $A \subseteq \mathcal{X}$ such that m(A) > 0 are called *focal elements*. The belief of a focal set A, for all $B \in 2^{\mathcal{X}}$, is

$$\mathsf{Bel}_X(A) = \sum_{B:B \subseteq A} m(B). \tag{1}$$

Scenario theory

S

Method for constructing beliefs

Scenario optimization

Let $z \in Z \subseteq \mathbb{R}^d$ be a vector of (design) parameters and $X_1, ..., X_n$ a bunch of *iid* samples , with $X_i \in \mathbb{R}^m$. The scenario optimization consists in minimizing the convex cost function $f : Z \to \mathbb{R}$:

$$\lim_{z \in \mathcal{Z}} f(z)$$
ubject to: $z \in \bigcap_{i=1,...,n} \mathcal{Z}_{X_i}$, (2)

Method for constructing beliefs

Scenario optimization

Let $z \in \mathcal{Z} \subseteq \mathbb{R}^d$ be a vector of (design) parameters and $X_1, ..., X_n$ a bunch of *iid* samples , with $X_i \in \mathbb{R}^m$. The scenario optimization consists in minimizing the convex cost function $f : \mathcal{Z} \to \mathbb{R}$:

$$\min_{z \in \mathcal{Z}} f(z)$$
subject to: $z \in \bigcap_{i=1,...,n} \mathcal{Z}_{X_i},$
(2)

Design parameters can be the center coordinates and the radius of a circle ($\mathbb{R}^{m=2}$) or sphere ($\mathbb{R}^{m=3}$), as it will be illustrated in the next slide.

Scenario theory

Method for constructing beliefs

Scenario optimization on the disk \mathbb{R}^2

For example, let $z = (c_x, r)$, be the centre x-coordinate and the radius of a circle $(c_y = 0)$. The scenario optimization consists in minimizing the area of the circle:

$$\min_{\substack{(c_x,r)\\ \text{subject to:}}} \frac{\pi r^2}{(c_x - X_1)^2 + (0 - Y_1)^2} \le r^2,$$
...
(3)

$$(c_x - X_n)^2 + (0 - Y_n)^2 \le r^2$$

Scenario theory

Method for constructing beliefs

Visualizing the constraints: m = 2, d = 2

Center y-coordinate = 0

Scenario theory

Method for constructing beliefs

Obtaining the smallest disk O(n)

Center y-coordinate = 0

Scenario theory

Method for constructing beliefs

Active scenarios

Scenario theory

Method for constructing beliefs

Active scenarios

Definitions

Enclosing set of degree k: The optimal set $B_k \subseteq \mathbb{R}^m$, that strictly contains n - k observations.

Lower probability of enclosing set B_k : The precise predictive probability of a given enclosing set of degree k, $\mathbb{P}_X(B_k)$, has a lower bound \underline{p}_k , with assigned one-sided coverage probability.

$$\mathbb{P}^n\left(\underline{p}_k \le \mathbb{P}_X(B_k)\right) \ge 1 - \beta,\tag{4}$$

Marco De Angelis, Roberto Rocchetta, Ander Gray, Scott Ferson

Constructing consonant beliefs from multivariate data

July 7, 2021 11 / 15

Scenario theory

Method for constructing beliefs

Computing the lower bound

$$\varphi(t) = \frac{\beta}{n+1} \sum_{j=k}^{n} {j \choose k} t^{j-k} - {n \choose k} t^{n-k}, \quad t \in [0,1]$$

$$\varphi(\hat{t}) = 0; \quad \underline{p}_{k} = \hat{t}(n,k,\beta);$$
(5)

$$\mathbb{P}^n\left(\underline{p}_k \le \mathbb{P}_X(B_k)\right) \ge 1 - \beta$$

Campi, M.C. and Garatti, S., 2018. Wait-and-judge scenario optimization. Mathematical Programming, 167(1), pp.155-189.

Garatti, S. and Campi, M.C., 2019. Risk and complexity in scenario optimization. Mathematical Programming, pp.1-37.

Marco De Angelis, Roberto Rocchetta, Ander Gray, Scott Ferson

Constructing consonant beliefs from multivariate data

Method for constructing beliefs

Theorem 1

The lower bounds \underline{p}_k make a sequence of coherent predictive beliefs for any $k \in \mathbb{Z}_+$ such that $0 = k_0 < k_1 < \cdots < k_n = n$.

Theorem 1

The lower bounds \underline{p}_k make a sequence of coherent predictive beliefs for any $k \in \mathbb{Z}_+$ such that $0 = k_0 < k_1 < \cdots < k_n = n$.

The proof follows from Eq.(5), noticing that the roots of the polynomial are decreasing with k.

Scenario theory

Method for constructing beliefs

Marco De Angelis, Roberto Rocchetta, Ander Gray, Scott Ferson

Constructing consonant beliefs from multivariate data

July 7, 2021 14 / 15

Method for constructing beliefs

Conclusions

- Inference on multidimensional datasets
- No need to estimate the likelihood
- Additional constraints can ensure sets are fully inter-nested
- Structures can be propagated and retain the confidence interpretation
- The interdependence is encoded in the shape of the enclosing sets