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Abstract

Moore’s theorem gives sufficient–but not necessary–conditions that a quotient of the 2-sphere S2

itself be homeomorphic to S2. In Chapter 1, we give a proof of this classical result by modern means,
avoiding explicit use of Moore’s original axiomatic approach, which is spread across a number of
papers and is rather inaccessible to today’s reader. Two applications of Moore’s theorem to the
study of dynamical systems are also sketched.

Our proof makes essential use of Zippin’s characterization of S2 amongst the class of Peano continua.
Much as with Moore’s theorem, the original references for this result can be difficult to read from a
modern perspective, and so we use Chapter 2 to give a self-contained proof of this theorem.

This self-containedness is contingent upon a variety of results from the theory of continua, and
particularly germane is Whyburn’s characterization of cyclically connected Peano continua. Ap-
pendix A reviews the necessary elements of continuum theory, culminating in a proof of this
characterization.

Since our proof of Moore’s theorem also relies on a special case of Alexander duality, Appendix B
presents a proof of this special case by elementary means.
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Notation and Terminology

For reference, we include below a summary of largely-standard notation and terminology which is
not defined explicitly in the main body of text; in particular, we draw the reader’s attention to the
notational conventions used for disconnected spaces and arcs.

We assume that the standard definitions of topological spaces, quotient spaces, metrizable spaces,
covers of a space, and exactness of a sequence are all known.

We also remark that, given sets A and B, we use the notation A ⊂ B to indicate that every element
of A is also an element of B; in particular, this includes the possibility that A = B. If we wish to
emphasise that A is a strict subset of B, so that the complement B −A is non-empty, we will write
A ( B.

Standard Spaces

Throughout, we denote by N = {1, 2, 3, . . .} the set of natural numbers, and by Z the set of integers.
For each n ∈ N, we define Rn to be the real n-space, and unless otherwise specified, we view Rn as
a topological space equipped with the standard (Euclidean) topology. The Euclidean norm on R
is denoted by |·|, and the Euclidean norm on Rn for n ≥ 2 is denoted by ‖·‖. For each n ∈ N, the
n-sphere is identified as the subspace

Sn =
{
x ∈ Rn+1

∣∣ ‖x‖ = 1
}
⊂ Rn+1,

while the n-cell is identified as the subspace

Dn = {x ∈ Rn | ‖x‖ ≤ 1} ⊂ Rn,

and we equip each of these with the standard metric inherited from Rn.

We use C to denote the complex plane, understood to be topologized in the usual fashion. Given a
point z ∈ C, we denote by z its complex conjugate.

Closed intervals in R are denoted by [a, b], and open intervals by ]a, b[. Accordingly, half-open
intervals are denoted by [a, b[ and ]a, b].

The empty set is denoted by ∅.

Topological Concepts

Many of these conventions are broadly similar to those of [Why45] and [Wil49]. Throughout this
section, we understand X to denote some topological space.

If A ⊂ X denotes some subspace, then the interior of A in X is denoted by

intX A =
⋃
{U ⊂ X |U ⊂ A and U is open},

and the closure of A in X is denoted by

clX A =
⋂
{C ⊂ X |A ⊂ C and C is closed}.
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In turn, the boundary of A in X is the intersection

frX A = clX A ∩ clX(X −A).

Where there is no confusion as to the choice of ambient space, we omit the subscripts, writing simply
intA, clA and frA.

If there exist subspaces A,B ⊂ X such that (clX A)∩B = A∩(clX B) = ∅, and such that X = A∪B,
then we say that X is disconnected. In this situation, we call X = A | B a separation (of X).

The connected subspaces of X which are maximal with respect to set-theoretic inclusion are the
(connected) components of X. If A ⊂ X denotes some subspace, then the components of the
complement X −A are termed the complementary domains of A in X. If the complement X −A is
disconnected, then we say that A separates X.

If some open cover of X has a finite subcover, then that cover is termed essentially finite. If every
open cover of X is essentially finite, then X is compact.

If we have some equivalence relation ∼ on X, then we denote by X/∼ the associated quotient space.
A subspace A ⊂ X which is a union of equivalence classes of ∼ is said to be saturated (with respect
to ∼). The notation

[x] = {y ∈ X |x ∼ y} ⊂ X
is used for the equivalence class of a point x ∈ X with respect to ∼.

Given some other topological space Y , a continuous function f : X → Y is said to be open (closed)
if the image under f of every open (closed) subspace of X is open (closed) in Y . If X and Y are
homeomorphic to one another, then we indicate this using the shorthand notation X ∼= Y .

By a Jordan curve in X, we mean some homeomorphic image of the circle S1 embedded in X.

A path in X is some continuous function γ : [0, 1]→ X. The points γ(0), γ(1) ∈ X are called the end
points of γ, and we say that γ is a path from γ(0) to γ(1). If both end points of γ are the same, then
γ is said to be a loop. If γ is injective, then we call γ (or its image) an arc from γ(0) to γ(1).

If T ⊂ X is some arc, considered as the image of some continuous function γ : [0, 1]→ X, then we
use the notation ]T [ = γ(]0, 1[) = T − {γ(0), γ(1)}.
In general, given any pair of points x, y ∈ X, there of course exist many different arcs in X from x to
y. Sometimes, however, we are only interested in the existence of some such arc, with specifics not
being relevant. In this situation, if γ is some arc from x to y, we may use the notation [xy] = γ([0, 1]).
By analogy to our conventions for intervals in R, we further define ]xy[ = γ(]0, 1[), and similarly for
images [xy[ and ]xy] of the respective half-open intervals.

If we wish to denote an arc from x to y in X which passes through points p1, p2, . . . , pn ∈ X in that
order, then we may use the notation [xp1p2 · · · pny] ⊂ X.

If C ⊂ X denotes some compact subspace, an arc [xy] ⊂ X is said to span C if [xy] intersects C
only at the points x and y.

If, for each pair of points x, y ∈ X, there exists some path (arc) in X from x to y, then X is said to
be path (arc) connected. The path (arc) connected subspaces of X which are maximal with respect
to set-theoretic inclusion are termed the path (arc) components of X.

The space X is said to be locally (path, arc) connected if each point of X permits a neighbourhood
basis consisting entirely of open (path, arc) connected subspaces.

If X is metrizable, then any metric d which induces the topology of X is said to topologize X. If a
metric d topologizes X, then the open ε-ball centred at a point x ∈ X with respect to d is denoted
by

Bd(x; ε) = {y ∈ X | d(x, y) < ε},
for each ε > 0. If the metric d can be inferred from its context without confusion, then we omit the
subscript and write simply B(x; ε). Given a subspace A ⊂ X, the diameter of A with respect to d is
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then defined to be the real number

diamdA = sup
x,y∈A

d(x, y),

and again, we write simply diamA if the choice of metric d is clear from context.

Algebraic Concepts

To indicate that two groups G1 and G2 are isomorphic, we use the shorthand G1
∼= G2.

For a topological space X and any n ∈ N ∪ {0}, we denote the nth singular homology group of X by
Hn(X).

Suppose that X denotes some topological space with a pair of subspaces A,B ⊂ X such that
X = intA ∪ intB. There then exists a long exact sequence

· · · Hn+1(X) Hn(A ∩B) Hn(A)⊕Hn(B) Hn(X) · · ·

of singular homology groups, where ⊕ denotes the group direct sum. We call this the Mayer-Vietoris
sequence of the triad (X,A,B), with further details being available in, for example, [Lee00].
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Chapter 1

Moore’s Theorem

1.1 Introduction

Our object in this first chapter is a proof of a theorem of R.L. Moore (Theorem 1.1.2.) Before we
state this result, however, we pause to define and characterize1 upper semicontinuity, in terms of
which Theorem 1.1.2 is most naturally stated.

Definition and Lemma 1.1.1. Let ∼ denote some equivalence relation on a topological space X
with the property that, for each point x ∈ X, the equivalence class [x] ⊂ X is compact.

The following are equivalent:

• For each open subspace U ⊂ X, the saturated interior U∗ =
⋃{[x] |x ∈ X and [x] ⊂ U} is

also open;

• For each closed subspace C ⊂ X, the saturated closure C† =
⋃{[x] |x ∈ C} is also closed; and

• The natural projection π : X → X/∼ is a closed map.

An equivalence relation with the above properties is said to be upper semicontinuous.

Proof. Notice that, for any subspace A ⊂ X, we have the chain of equalities

(X −A)∗ =
⋃
{[x] |x ∈ X and [x] ∩A = ∅}

= X −
⋃
{[x] | [x] ∩A 6= ∅}

= X −
⋃
{[x] |x ∈ A}

= X −A†.

(1.1)

This immediately establishes the equivalence of the first two conditions above. Noticing additionally
that

A† =
(
π−1 ◦ π

)
(A) (1.2)

for any subspace A ⊂ X shows the final two conditions above to be equivalent as well. This completes
the proof.

Heuristically, we can view the upper semicontinuity of an equivalence relation ∼ on a topological
space X as a guarantee that the quotient X/∼ is, in some sense, ‘well-behaved’; for instance, one can
show (Lemma 1.4.3) that if X is a separable metrizable space, and if ∼ is upper semicontinuous, then
X/∼ is also separable and metrizable. A book by Daverman [Dav86] discusses upper semicontinuity
in considerable detail.

1In the compact metric setting of interest to us here, there are in fact many more equivalent characterizations of
upper semicontinuity than the three given in Lemma 1.1.1. A treatment can be found in [PM13].
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14 CHAPTER 1. MOORE’S THEOREM

In the language of Definition 1.1.1, then, the theorem in which we are interested can be stated
thus.

Theorem 1.1.2 (Moore’s theorem). Let ∼ denote some upper semicontinuous equivalence relation
on S2 with at least two distinct equivalence classes, If, for every point x ∈ S2,

• The equivalence class [x] ⊂ S2 is connected, and

• The complement S2 − [x] is connected,

then the quotient S2/∼ is homeomorphic to S2 itself.

In Section 1.2, we loosely describe how this result was first obtained; however, Moore’s original proof
spans several papers [Moo15, Moo16, Moo25] and is written in language difficult for a modern reader
to penetrate. The proof we present here differs substantially from Moore’s approach, and is outlined
in Section 1.4.1. (Our method of proof adheres to a strategy laid out by Cannon in [Can78].)

Before explicitly proving Moore’s theorem, we take some time in Section 1.3 to develop some intuition
of why the hypotheses of Theorem 1.1.2 should be what they are, along with an illustration of
Moore’s theorem in practice. In the same section, we also supply an example of how the converse of
Theorem 1.1.2 is not true: the conditions of Moore’s theorem are sufficient for a quotient of S2 to
be homeomorphic to S2, but they are certainly not necessary.

After the aforementioned proof sketch in Section 1.4.1, we use Sections 1.4.2-1.4.4 to make our proof
explicit. Finally, we use Section 1.5 to give some indication of how Theorem 1.1.2 is of utility in
other fields of mathematics, describing two applications of this result to the study of dynamical
systems.

1.2 Historical Background

In [Moo25], Moore proved Theorem 1.1.2 by exploiting an axiomatic characterisation [Moo16] of the
Euclidean plane R2, ultimately derived from earlier work by himself [Moo15] and by Veblen [Veb04],
Moore’s doctoral supervisor. For their historical interest, we shall briefly review these axioms here,
although in an effort to render the source material more readable to a modern audience, we adjust
the notation and language of [Moo16] to better reflect the past century’s developments. (In fact, we
take an additional liberty, and use a reduced set of axioms due to Wilder: the axioms as stated in
[Moo16] include another, shown in [Wil27] to be superfluous, which is of a similar flavour to the
sixth axiom below.)

Moore begins with the primitive notions of a set Π of points, and some distinguished collection T of
subsets of Π, which he terms regions. Then, given any subset X ⊂ Π, a point p ∈ Π is classified
as a limit point of X if, for each region U ∈ T which contains p, the intersection U ∩ (X − {p}) is
non-empty; in turn, the subset clX ⊂ Π is defined as the union of X with its set of limit points.
The boundary of X, denoted frX, is the set of limit points of X which do not belong to X itself.
Further, the subset X is said to be connected if it cannot be expressed as the union of two disjoint
subsets, neither of which contains a limit point of the other.

Using these definitions, Moore finds that any pair (Π, T ) satisfying the following axioms must in
fact be topologically equivalent to the plane:

1. There exists some countably-infinite collection {Bn}n∈N ⊂ T of regions such that

• For any n ∈ N and for any point p ∈ Π, there exists some m > n such that p ∈ Bm; and

• Given any region U ∈ T and any distinct pair of points p, q ∈ U , there exists some N ∈ N
such that if n > N and p ∈ Bn, then clBn ⊂ Π− {q};

2. Every region U ∈ T is connected, as is the complement Π− clU ;

3. Given any region U ∈ T , the subset clU is compact;

4. There exists an infinite subset of Π with no limit point;
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5. Every Jordan curve2 in Π is the boundary of some region;

6. Given regions U1, U2 ⊂ T and some point p ∈ U1 ∩ clU2, there exists a pair of regions
V1, V2 ⊂ U1 such that

• p ∈ V1,

• V2 ⊂ Π− clU2, and

• V1 ∩ frU2 ⊂ frV2,

as schematically depicted in Figure 1.1.

The parallels between Moore’s regions and the open subspaces defined by a topology are obvious,
and it is easy to see how the above notion of limit points and connectedness are direct translations of
their modern formulations. It is worth noting, however, that Moore’s verbosity in the above axioms
is not redundant: at the time, neither abstract topological spaces nor open subspaces (in the modern
sense) had a standardised definition. The current definitions of these concepts can be traced back to
Sierpiński’s work in the 1920s and 1930s [Sie28, Sie34], which in turn drew from earlier work by,
most notably, Hausdorff, Tietze and Kuratowski [Hau14, Tie22, Kur22, Tie23].3

In 1930, Zippin [Zip30] substantially condensed the above axioms, yielding in particular the following
theorem, about which our proof of Theorem 1.1.2 shall revolve. To state the following theorem
more concisely, we use the language of Peano continua, which we recall to be precisely the compact,
connected, locally connected metrizable spaces; in Appendix A, these spaces are discussed in
depth.

Theorem 1.2.1 (Zippin’s sphere characterization). Let X denote some Peano continuum (Defini-
tion A.2.1). If X satisfies the Jordan curve theorem in the sense that

• X contains a Jordan curve,

• Every Jordan curve in X separates X, and

2In [Moo16], Moore defines a Jordan curve as the union of a pair of arcs between a fixed pair of points, disjoint
except for at their end points. He uses an intrinsic characterization of arcs similar in essence to Lemma A.4.5.

3The development of the modern notion of a topological space over the first half of the twentieth century is
recounted in [Moo08].
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• No closed arc in X separates X,

then X is homeomorphic to S2.

This result is itself far from trivial to prove, with such a proof occupying all of Chapter 2 and
necessitating the development of a number of continuum-theoretic results in Appendix A. Taking
Theorem 1.2.1 as granted for the time being, our proof of Moore’s theorem essentially reduces to
demonstrating that a quotient S2/∼ of the kind described in Theorem 1.1.2 satisfies the hypotheses
of Zippin’s sphere characterization.

1.3 Motivation for the Hypotheses

To gain some idea of why the hypotheses of Moore’s theorem are plausible, let us consider some
extremely simple quotients of the sphere, determining in each case whether or not they are themselves
homeomorphic to the sphere.

Example 1.3.1 (Identification of the closed upper hemisphere to a point). Suppose that we define
a quotient map π : S2 → X by letting the only non-degenerate equivalence class be the closed upper
hemisphere H ⊂ S2. What can we say about X?

The dense subspace π(S2 − H) ⊂ X is of course homeomorphic to the plane, while π(H) is, by
definition, just a single point. In other words, X is an Alexandroff compactification of the plane–but
so too is S2. Knowing (from, for example, [Wil70]) that the Alexandroff compactification of any
Hausdorff space is unique up to homeomorphism, we conclude that X ∼= S2.

Example 1.3.2 (Identification of the open upper hemisphere to a point). Now, let us assume
instead that π : S2 → X were defined by taking the open upper hemisphere U ⊂ S2 as the only
non-degenerate equivalence class. The singleton subspace π(U) ⊂ X is necessarily open in X,
because (π−1 ◦ π)(U) = U is open in S2; thus, X is not even T1, much less homeomorphic to S2.

In particular, we observe that in this case, the quotient map π is not closed, so that the corresponding
equivalence relation cannot be upper semicontinuous.

Example 1.3.3 (Identification of the ‘half-open’ upper hemisphere to a point). Define the ‘half-open’
upper hemisphere A ⊂ S2 to be the union of the open upper hemisphere with some closed arc of
the equator. If A is the only non-degenerate equivalence class of the quotient π : S2 → X, then the
singleton π(A) ⊂ X fails to be closed in X, since the complement S2 − (π−1 ◦ π)(A) = S2 −A is
not open in S2. Much as in Example 1.3.2, we see that X and S2 are not homeomorphic.

Example 1.3.4 (Identification of the north and south poles). Now suppose that the only non-
degenerate equivalence class of π : S2 → X is some two-point subspace {N,S} ⊂ S2, where we
assume N and S to denote some pair of antipodal points of the sphere, thought of as the north and
south poles respectively.

It seems unlikely that X ∼= S2 in this case, and we can prove this explicitly. Indeed, the space
X −{π(N)} is homeomorphic to S2 −{N,S}, which has the homotopy type of the punctured plane,
while S2−{x} has the homotopy type of the plane, for any point x ∈ S2. In particular, X −{π(N)}
fails to be contractible, while the complement in S2 of any point is contractible.

Example 1.3.5 (Identification of the equator to a point). If we define a quotient map π : S2 → X
by taking the equator E ⊂ S2 as our only non-degenerate equivalence class, then a similar analysis
to that of Example 1.3.4 reveals that X and S2 cannot possibly be homeomorphic: the complement
X − {π(E)} is disconnected, whereas no single point separates S2. By entirely analogous reasoning,
we see that the result of collapsing any subspace of S2 with disconnected complement cannot be
homeomorphic to S2.

By comparing Examples 1.3.1-1.3.3 with Definition 1.1.1, we can get some sense of why the statement
of Moore’s theorem presupposes upper semicontinuity. Examples 1.3.4 and 1.3.5, meanwhile, illustrate
some potential obstructions to a homeomorphism between S2 and some quotient S2/∼ when the
equivalence classes of ∼ are either disconnected or separate S2.
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However, it is worth emphasising that, although Moore’s theorem gives sufficient conditions for a
quotient S2/∼ to be homeomorphic to S2, these conditions are not necessary. What follows is a
counterexample to the converse of Theorem 1.1.2.

Example 1.3.6 (The implication of Theorem 1.1.2 does not reverse). This example is most readily
understood by viewing S2 as the Alexandroff compactification of the complex plane C, with a point
at infinity ∞ ∈ S2. Considering S2 in this way, let us define an equivalence relation ∼ on S2 by
declaring that

z ∼ w if and only if z = ±w. (1.3)

Immediately, we see that the equivalence classes of 0 and ∞ are degenerate, and that the equivalence
class of any point z ∈ S2 − {0,∞} consists precisely two points, namely z and −z. Of course, the
equivalence relation ∼ cannot satisfy the hypotheses of Theorem 1.1.2: almost all of its equivalence
classes are disconnected.

Nevertheless, we can show that S2/∼ ∼= S2 by supplying an explicit homeomorphism. Indeed, consider
the function S2 → S2/∼ acting by z 7→ [

√
z].4 This is manifestly a continuous bijection; further, by

noticing that the equivalence relation ∼ is, according to Definition 1.1.1, upper semicontinuous, we
find that this function is also closed. It follows that, as claimed, S2 and S2/∼ are homeomorphic,
despite the fact that ∼ does not satisfy the hypotheses of Moore’s theorem.

Our final example in this section shall be an example of how one might use Moore’s theorem to
identify a quotient space as a sphere, even though this might not be immediately obvious.

Example 1.3.7 (Sierpiński’s carpet). Suppose that we subdivide the unit square in R2 into nine
congruent squares of equal area, and delete the interior of the middle square; call the resulting space
X1. Now, let us repeat this process for each of the eight remaining squares, calling the space that
results X2. Continuing in this way, we arrive at a space X =

⋂
n∈NXn ⊂ R2, which goes by the

moniker of Sierpiński’s carpet. Some stages of this construction are sketched in Figure 1.2.

Viewing X as a subspace of S2 via stereographic projection, we define an equivalence relation ∼ on
S2 which acts to collapse the closure of each complementary domain of X in S2 to a separate point.
Trivially, this equivalence relation satisfies the hypotheses of Moore’s theorem, so that S2/∼ ∼= S2,
but a priori, this is not at all obvious.

Before proceeding, we remark that it is perhaps surprising that the conditions required by Theo-
rem 1.1.2 are relatively weak. In general, quotient spaces can be extremely different from the original
spaces; for instance, part of the Hahn-Mazurkiewicz-Sierpiński theorem (Theorem A.6.8) asserts
that every compact, connected, locally connected metrizable space is a quotient of the closed unit
interval [0, 1].

1.4 Proof of Moore’s Theorem

1.4.1 Strategy of Proof

As alluded to in Section 1.2, the engine driving our proof of Moore’s theorem is Theorem 1.2.1, with
our strategy reducing to proving that the space S2/∼ of Theorem 1.1.2 satisfies the hypotheses
of Zippin’s sphere characterization. Indeed, Section 1.4.2 is dedicated to proving that S2/∼ is a
Peano continuum, while Section 1.4.3 demonstrates that S2/∼ obeys the Jordan curve theorem in a
suitable sense.

It is in this latter section that the utility of Zippin’s reformulation of Moore’s axioms becomes
apparent. Theorem 1.2.1 recasts the problem as one of counting path components, and in doing so
allows us to argue via singular homology, by inspecting the ranks of the relevant zeroth homology
groups. Said homological arguments are enabled by the following fact, itself non-trivial, which we
prove in Appendix B.

4Given some complex number z = reiθ ∈ C, where r ∈ [0,∞[ and θ ∈ [0, 2π[, we define
√
z =
√
rei

θ
2 . Additionally,

we define
√
∞ =∞.
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(a) (b)

(c) (d)

Figure 1.2: The construction of Sierpiński’s carpet after (a) zero, (b) one, (c) two and (d) five
iterations.

Theorem 1.4.1 (Alexander duality). Let C ⊂ S2 denote some compact subspace with n ∈ N
connected components. Then, there exists an isomorphism H1

(
S2 − C

) ∼= Zn−1.

1.4.2 Quotients as Peano Continua

Our goal in this section is to demonstrate that the space S2/∼ of Theorem 1.1.2 is a Peano continuum.
In other words, we wish to prove that S2/∼ is compact, connected, metrizable, and locally connected,
and of course the first two properties are trivial to verify: the space S2/∼ is, by definition, a
continuous image of the compact, connected space S2.

To establish metrizability, we start by recalling Urysohn’s metrization theorem, although we shall not
concern ourselves here with an explicit proof of this classical result. (One implication is essentially
immediate, since every metrizable space is regular and every separable space is second countable; the
reverse implication may be shown by demonstrating that every regular second countable space can be
embedded in the Hilbert cube. An explicit argument can be found in, for instance, [Wil70].)

Using Urysohn’s metrization theorem, our proof of the metrizability of S2/∼ can be reduced to a
proof of its second countability.

Theorem 1.4.2 (Urysohn). For any topological space X, the following are equivalent:

1. X is regular and second countable, and

2. X is separable and metrizable.

Lemma 1.4.3. If ∼ is an equivalence relation on S2 which satisfies the hypotheses of Theorem 1.1.2,
then the quotient S2/∼ is metrizable.
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Proof. Every compact Hausdorff space is regular [Wil70], so that we need only concern ourselves
with the second countability of S2/∼. To this end, let B denote some countable basis for the topology
of S2, and notice that we lose no generality in assuming that B is closed under finite unions: were
this not the case, then we could simply replace B by the collection

{B1 ∪B2 ∪ · · · ∪Bn |n ∈ N and {B1, B2, . . . , Bn} ⊂ B}. (1.4)

Let π : S2 → S2/∼ denote the natural projection, and consider some point x of any open subspace
U ⊂ S2/∼. For each point a of the fibre π−1(U), there of course exists some basis element Ba ∈ B
such that a ∈ Ba ⊂ π−1(U); thus, we arrive at an open cover {Ba}a∈π−1(U) of the subspace
π−1(x) ⊂ π−1(U). By compactness, this cover must be essentially finite, and so we can exhibit some
finite subset {a1, a2, . . . , an} ⊂ π−1(U) such that

π−1(x) ⊂ Ba1 ∪Ba2 ∪ · · · ∪Ban . (1.5)

Introducing the notation
B = Ba1 ∪Ba2 ∪ · · · ∪Ban , (1.6)

our assumption that B is closed under finite unions tells us that B ∈ B.

Now, Lemma 1.1.1 ensures that the saturated interior B∗ is open and non-empty; moreover, π(B∗)
is open in S2/∼ by definition of the quotient topology. In particular, we notice that x ∈ B∗ ⊂ U , so
that the collection {π(B∗)}B∈B comprises a countable basis for the topology of S2/∼

As regards local connectedness, we notice that an immediate corollary of the above is that the
quotient S2/∼ is Hausdorff; consequently, we can avail ourselves of Sierpiński’s characterization of
local connectedness for compact Hausdorff spaces in terms of Property S. This notion is discussed in
more detail in Section A.6.1, the key statements of which we reproduce below before proving that
S2/∼ is indeed locally connected.

Definition A.6.1. Let X denote some topological space, with the property that every open cover of
X permits a refinement by finitely many connected subspaces. Then, the space X is said to have
Property S.

Lemma A.6.2. For any compact Hausdorff space X, the following are equivalent:

• X is locally connected, and

• X has Property S.

Lemma 1.4.4. If ∼ is an equivalence relation on S2 which satisfies the hypotheses of Theorem 1.1.2,
then the quotient S2/∼ is locally connected.

Proof. Knowing that S2/∼ is a compact Hausdorff space, it will suffice, according to Lemma A.6.2,
to prove that S2/∼ enjoys Property S (Definition A.6.1) in order to conclude that it is locally
connected.

To this end, let U denote some arbitrary open cover of S2/∼, so that the collection of fibres

π−1(U) =
{
π−1(U)

∣∣U ∈ U} (1.7)

is an open cover of S2. Using Lemma A.6.2, we find a refinement {V1, V2, . . . , Vn} of π−1(U) by
finitely many connected subspaces. The surjectivity of π ensures that {π(V1), π(V2), . . . , π(Vn)} is a
refinement of our original cover U by finitely many connected subspaces, and so another appeal to
Lemma A.6.2 allows us to deduce that S2/∼ is locally connected.

1.4.3 The Jordan Curve Theorem for Quotients

We mentioned in Section 1.4.1 that the second half of our proof of Moore’s theorem–that the space
S2/∼ of Theorem 1.1.2 satisfies the Jordan curve theorem in the sense of Theorem 1.2.1–is at its
heart a homological argument. That singular homology suffices for our purposes is a consequence of
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two facts, of which the first is the standard result5 that the zeroth singular homology group of any
space is free on that space’s set of path components.

The second is that, in our current setting, we lose nothing by counting path components, rather
than connected components, as encapsulated by the following lemma.

Lemma 1.4.5. If X denotes some locally path connected space, then every connected open subspace
of X is itself path connected.

Proof. Letting U ⊂ X denote some connected open subspace and distinguishing some point x ∈ U ,
we denote by A the path component of U which contains x. We know that U inherits the local path
connectedness of X, because U is open in X, and so we infer that A is open in U .

Now, suppose towards a contradiction that A is a proper subspace of U , and define B = U − A.
Selecting any point y ∈ B, the local path connectedness of U demands the existence of some path
connected neighbourhood V ⊂ U of y; moreover, V and A must be disjoint, for otherwise there
would exist a path in U connecting x and y. However, this implies that B is open in U , yielding a
separation U = A | B and contradicting our assumption that U is connected.

Notice that openness is essential in Lemma 1.4.5, for there exist numerous examples of non-open
subspaces of locally path connected spaces which, despite being connected, fail to be path connected.
Perhaps the best known of these is the so-called topologists’ sine curve, defined as the closure in R2

of the graph of the function sin
(
1
x

)
, defined on the interval ]0, 1].6

Before tackling any form of Jordan curve theorem, we will need a pair of preliminary results, of
which the first is reasonably straightforward, allowing us to ‘lift connectedness through quotients’, in
an appropriate sense. The second is a classical result of plane topology, originally due to Janiszewski
[Jan13] and proved independently a few years later by Mullikin [Mul22], which often bears only the
name of the former in the literature. Our proof here is in line with the homological theme of this
section, using similar ideas to [New85], although avoiding the theory of ‘gratings’ developed in the
cited work.7

Lemma 1.4.6. Consider a quotient map π : S2 → S2/∼, where the equivalence relation ∼ satisfies
the hypotheses of Theorem 1.1.2. If a subspace A ⊂ S2/∼ is connected, then so too is its fibre
π−1(A) ⊂ S2.

Proof. We shall argue by contraposition, supposing that the fibre π−1(A) permits some separation
π−1(A) = U | V .

Given any point x ∈ A, we propose that the fibre π−1(x) must be contained entirely within U or V .
Indeed, we know by hypothesis that π−1(x) must be non-empty and connected, and since

π−1(x) =
(
π−1(x) ∩ U

)
∪
(
π−1(x) ∩ V

)
, (1.8)

it follows that precisely one of the intersections π−1(x) ∩ U and π−1(x) ∩ V must be empty.

In particular, both U and V are unions of point inverses, so that π(U) and π(V ) are disjoint
non-empty open subspaces of A. In other words, A = π(U) | π(V ) is a separation, implying that A
is disconnected.

Lemma 1.4.7 (Janiszewski-Mullikin). Let C1 and C2 denote some pair of closed subspaces of the
sphere S2 for which the intersection C1 ∩ C2 is connected. If neither C1 nor C2 separates S2, then
nor does the union C1 ∪ C2.

5This is proved in almost any textbook which discusses singular homology; see, for instance, [Lee00].
6This space is a classical counterexample in general topology. It, and many other pathological spaces, are discussed

in [SS78].
7Lemma 1.4.7 appears as Corollary 2 to Theorem 9.1.2 in [New85].
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Proof. For the sake of a contradiction, suppose that C1 ∪ C2 separates points x and y in S2. By
hypothesis, both S2 − C1 and S2 − C2 are connected, so that we can use Lemma 1.4.5 to deduce
the existence of some pair of paths γ1 : [0, 1] → S2 − C1 and γ2 : [0, 1] → S2 − C2, each of which
connects x to y. Of course, the formal difference γ1 − γ2 is then a singular 1-chain in S2 − C1 ∩ C2.

Consider the Mayer-Vietoris sequence of the triad
(
S2 − C1 ∩ C2, S

2 − C1, S
2 − C2

)
. In particular,

a fragment of this sequence reads

· · · H1(S2 − C1 ∩ C2) H0(S2 − C1 ∪ C2) · · · .∂∗ (1.9)

Now, on the one hand, we are assuming that C1∩C2 is connected, so that we can appeal to Alexander
duality (Theorem 1.4.1) to deduce that H1

(
S2 − C1 ∩ C2

)
is the trivial group, so that ∂∗ must be the

zero homomorphism. On the other, however, we know from the construction of the Mayer-Vietoris
sequence [Lee00] that

∂∗([γ1 − γ2]) = [∂γ1] = [y]− [x], (1.10)

where we use square brackets to denote homology classes.

Combining these two observations, we find that [y]− [x] = 0 ∈ H0

(
S2 − C1 ∪ C2

)
. Phrased more

transparently, the points x and y must lie in the same path component of S2 − C1 ∪ C2–but this
contradicts our initial assumption that C1 ∪ C2 separates x and y. Thus, S2 − C1 ∪ C2 must be
connected.

With these results in hand, we are able to demonstrate that a quotient S2/∼ of the kind discussed
in Theorem 1.1.2 is separated by none of its arcs, and by all of its Jordan curves.

Lemma 1.4.8. Let ∼ denote some equivalence relation on S2 which satisfies the hypotheses of
Theorem 1.1.2. If T ⊂ S2/∼ denotes some arc, then the complement

(
S2/∼

)
− T is connected.

Proof. Let π : S2 → S2/∼ denote the natural projection. Noticing that
(
S2/∼

)
−T is the continuous

image of the complement S2 − π−1(T ) under π, it will suffice for us to prove that π−1(T ) fails to
separate S2. We shall argue by contradiction, supposing that π−1(T ) separates points x, y ∈ S2.

Introducing some parametrization γ : [0, 1]→ T , let us define

T1 = γ

([
0,

1

2

])
and T2 = γ

([
1

2
, 1

])
. (1.11)

Since T1 ∩ T2 is a singleton, we know by hypothesis that S2 − π−1(T1 ∩ T2) is connected. Thus, we
can invoke (the contrapositive of our statement of) Lemma 1.4.7 in order to deduce that at least one
of π−1(T1) and π−1(T2) separates S2.

Without loss of generality, suppose that π−1(T1) separates S2. Of course, T1 is itself an arc in S2/∼,
so that we can repeat the above argument to deduce that one of the subarcs

γ

([
0,

1

4

])
and γ

([
1

4
,

1

2

])
(1.12)

must separate S2. Continuing in this fashion, we can produce a descending chain

[0, 1] ) A1 ) A2 ) A3 ) · · · (1.13)

of closed intervals, with the property that (π−1 ◦ γ)(An) separates S2 for each n ∈ N.

Moreover, diamAn = 2−n for each n ∈ N, so that diamAn → 0. It follows that the intersection⋂
n∈NAn is a singleton, containing precisely one point t ∈ [0, 1]. Now, our hypotheses ensure

that S2 − (π−1 ◦ γ)(t) is connected; in particular, Lemma 1.4.6 allows us to find some path
P ⊂ S2 − (π−1 ◦ γ)(t).

The normality of the sphere allows us to find some neighbourhood U ⊂ S2 of (π−1 ◦ γ)(t) for which
U ∩ P = ∅, and we lose no generality in assuming that U is saturated: if necessary, we can just
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replace U with its saturated interior. Then, the image π(U) is a neighbourhood of the point γ(t) in
S2/∼, so that γ(AN ) ⊂ π(U) for sufficiently large N ∈ N. Thus, (π−1 ◦ γ)(AN ) ⊂ U .

However, the disjointness of U and P ensures that U does not separate x and y, and so we arrive at
a contradiction. Indeed, although U cannot separate x and y, the subspace (π−1 ◦ γ)(AN ) ⊂ U by
construction must. We conclude that S2 − π−1(T ), and therefore

(
S2/∼

)
− T , is connected.

Lemma 1.4.9. Let ∼ denote some equivalence relation on S2 which satisfies the hypotheses of
Theorem 1.1.2. If J ⊂ S2/∼ denotes some Jordan curve, then the complement

(
S2/∼

)
− J is

disconnected.

Proof. We can express the Jordan curve J as the union of precisely two proper subarcs T1, T2 ⊂ J
which meet precisely at their end points. Introducing the condensed notation

T ′1 = π−1(T1), T ′2 = π−1(T2) and J ′ = π−1(J), (1.14)

where π : S2 → S2/∼ denotes the natural projection, consider the Mayer-Vietoris sequence of the
triad (S2 − T ′1 ∩ T ′2, S2 − T ′1, S2 − T ′2); particularly, the tail of this sequence reads

· · · H1(S2 − T ′1)⊕H1(S2 − T ′2) H1(S2 − T ′1 ∩ T ′2)

H0(S2 − J ′) H0(S2 − T ′1)⊕H0(S2 − T ′2) H0(S2 − T ′1 ∩ T ′2) 0.

(1.15)

We are interested in the rank of the group H0(S2 − J ′), and we propose that we know the ranks of
all other groups appearing in (1.15).

Indeed, we know from Lemma 1.4.6 that T ′1 and T ′2 are both connected, so that an appeal to
Alexander duality (Theorem 1.4.1) reveals that

H1(S2 − T ′1) ∼= H1(S2 − T ′2) ∼= 0. (1.16)

Similarly, if we let T1 ∩ T2 = {x, y}, then

S2 − T ′1 ∩ T ′2 = S2 −
(
π−1(x) ∪ π−1(y)

)
. (1.17)

The point inverses π−1(x) and π−1(y) constitute a pair of disjoint, closed, connected subspaces of S2,
so that their union π−1(x) ∪ π−1(y) has precisely two connected components. Another invocation of
Theorem 1.4.1 therefore tells us that the group H1(S2 − T ′1 ∩ T ′2) is of rank one.

We have already shown with Lemma 1.4.8 that S2 − T ′1 and S2 − T ′2 are both connected, so that

H0(S2 − T ′1) ∼= H0(S2 − T ′2) ∼= Z, (1.18)

thanks to Lemma 1.4.5, leaving us with only the group H0(S2 − T ′1 ∩ T ′2) to handle.

Observe that
S2 − T ′1 ∩ T ′2 = (S2 − T ′1) ∪ (S2 − T ′2) (1.19)

is a union of two connected subspaces. Moreover, these subspaces share some common point, for the
intersection

(S2 − T ′1) ∩ (S2 − T ′2) = S2 − J ′ (1.20)

is non-empty by hypothesis. Thus, S2 − T ′1 ∩ T ′2 is connected, allowing us to call upon Lemma 1.4.5
a final time to deduce that

H0(S2 − T ′1 ∩ T ′2) ∼= Z. (1.21)

At this point, we recall that the alternating sum of the ranks of Abelian groups forming an exact
sequence vanishes. In this context, this means that

rankH0(S2 − J ′) = 1 + 2− 1 = 2, (1.22)

and since the zeroth singular homology group of any space is free on the set of that space’s path
components, we conclude that H0(S2− J ′) ∼= Z2. In particular, S2− J ′ is disconnected, so that (the
contrapositive of our statement of) Lemma 1.4.6 asserts that

(
S2/∼

)
−J is disconnected as well.
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1.4.4 Completing the Proof

We now have all of the components necessary for a proof of Moore’s theorem; the only thing that
remains for us to do is to assemble them.

Proof of Theorem 1.1.2. Let ∼ denote some equivalence relation on S2 which satisfies the
hypotheses of Theorem 1.1.2. Trivially, S2/∼ is both compact and connected, while Lemmas 1.4.4
and 1.4.3 respectively establish that S2/∼ is also locally connected and metrizable; taken together,
these facts imply that the quotient S2/∼ constitutes a Peano continuum. Meanwhile, it is precisely
the content of Lemmas 1.4.8 and 1.4.9 that S2/∼ satisfies the Jordan curve theorem in the sense of
Theorem 1.2.1. It follows that S2/∼ has all of the properties required for us to call upon Zippin’s
sphere characterization, and we conclude that S2/∼ ∼= S2.

1.5 Applications

Before moving on to a study of Zippin’s sphere characterization in its own right, we pause to briefly
outline two appearances of Moore’s theorem ‘in the wild’. In Section 1.5.1, we illustrate how Moore’s
theorem enables a construction known as polynomial mating, while in Section 1.5.2, we discuss
how the same result facilitates the study of dynamical systems defined on extremely complicated
topological spaces.

1.5.1 Polynomial Mating

Recall the Riemann mapping theorem, a classical result of complex analysis.8 (By a continuum, we
mean a compact, connected, metrizable space. In Appendix A, these spaces are explored in greater
depth.)

Theorem 1.5.1 (Riemann mapping theorem). Call a continuum K ⊂ C non-separating if the
complement C−K is connected, and let

D2 =
{
reiθ ∈ C

∣∣ r ∈ [0, 1] and θ ∈ [0, 2π[
}

denote the closed unit disc.

Then, given any non-separating continuum K ⊂ C, there exists a conformal isomorphism

ϕ : C−D2 → C−K,

with the property that

lim
|z|→∞

ϕ(z)

z
= 1.

We call ϕ the exterior Riemann map associated to K.

In their study of the Mandelbrot set, Douady and Hubbard introduced the notion of external rays
[DH82], which we shall need in what follows.

Definition 1.5.2. Denote by ϕ : C−D2 → C−K the exterior Riemann map associated to some
non-separating continuum K ⊂ C. For each θ ∈ [0, 2π[, the external ray of angle θ is defined to be
the curve

Rθ =
{
ϕ
(
reiθ

) ∣∣ r ∈ ]1,∞[
}
⊂ C−K.

If the limit limr→1 ϕ
(
reiθ

)
exists for some θ ∈ [0, 2π[, then this limit is known as the landing point

of the external ray Rθ, and the external ray Rθ is said to land (on K).

Of particular importance is the fact that when the continuum K in Definition 1.5.2 is Peano
(Definition A.2.1), all external rays land. This is a direct consequence of the work of Carathéodory
[Car13] and Torhorst [Tor21], which we summarise without proof in the following theorem.

8Typical treatments of the Riemann mapping theorem in fact state a slightly different result to that presented
here. Theorem 1.5.1 is a straightforward consequence of the ‘usual’ statement of the Riemann mapping theorem, of
which proofs may be found in, for instance, [SS03].



24 CHAPTER 1. MOORE’S THEOREM

Theorem 1.5.3 (Carathéodory-Torhorst). Let ϕ denote the exterior Riemann map associated to
some non-separating continuum K ⊂ C. The following are then equivalent:

• There exists a continuous extension ϕ̃ : C− intD2 → C−K, expanding the domain of ϕ to
include the unit circle; and

• The boundary frK is locally connected.

In particular, if the continuum K is Peano, then there exists such a continuous extension ϕ̃ of ϕ.

Lemma 1.5.4. If K ⊂ C is a Peano continuum with connected complement, then all of the external
rays {Rθ}θ∈[0,2π[ land on K.

Proof. If ϕ denotes the exterior Riemann map associated to K, and ϕ̃ the continuous extension
guaranteed by Theorem 1.5.3, then the point ϕ̃(eiθ) ∈ frK is readily seen to be the landing point of
Rθ in K.

Now, let us consider the implications of the combination of Lemma 1.5.4 with our knowledge that

lim|z|→∞
ϕ(z)
z = 1 for any exterior Riemann map ϕ. If we take any pair of non-separating Peano

continua K1,K2 ⊂ C, then we have an associated pair of exterior Riemann maps

ϕ1 : C−D2 → C−K1 and ϕ2 : C−D2 → C−K2, (1.23)

along with corresponding families {R1,θ}θ∈[0,2π[ and {R2,θ}θ∈[0,2π[, all of which land (Figures 1.3a

and 1.3b). Crucially, because lim|z|→∞
ϕi(z)
z = 1 for i ∈ {1, 2}, we know that, heuristically, the

external rays R1,θ and R2,θ each ‘look the same’ sufficiently far from the origin, for every θ ∈ [0, 2π[,
which enables the following construction.

Define gnomonic projections ν1, ν2 : C→ C× R by

ν1(z) =
1√
|z|2 + 1

(z, 1) and ν2(z) =
1√
|z|2 + 1

(z,−1) for each z ∈ C (1.24)

mapping the complex plane to the open upper and lower hemispheres, respectively, of the 2-sphere
embedded in C× R.

Letting S1 ⊂ S2 denote the equator, we know that, for each θ ∈ [0, 2π[, both ν1(R1,θ) and ν2(R2,−θ)
have a boundary point

(
e2πiθ, 0

)
∈ S1, as sketched in Figure 1.3c. Thus, we can define an equivalence

relation ∼ on S2, the so-called ray equivalence relation, to be that generated by the relation
which identifies clS2 ν1(R1,θ) and clS2 ν2(R2,−θ) for each θ ∈ [0, 2π[. We introduce the notation
S2/∼ = K1 ⊥⊥ K2 for the quotient space which results from this construction.

Of course, there is no a priori reason that the space K1 ⊥⊥ K2 should be either interesting or
well-behaved, and indeed, at this level of generality, there is little more to be said about K1 ⊥⊥ K2.
In the context of holomorphic dynamics, however, constructions of this kind underlie the rich and
expressive theory of polynomial mating. Recalling some concepts from holomorphic dynamics will
furnish us with the vocabulary to discuss this further.

Definition 1.5.5. Let f : C→ C denote some holomorphic function, and for each n ∈ N, denote by
f◦n its n-fold iterate. (That is, let f◦1 = f , f◦2 = f ◦ f , and so on.)

For each point z ∈ N, the orbit of z (under f) is the set

Of (z) = {f◦n(z) |n ∈ N} ⊂ C.

A point c ∈ C is said to be a critical point of f if f has vanishing derivative at c, and the union

Pf =
⋃
{Of (c) | c is a critical point of f} ⊂ C

is the postcritical set of f . When Pf has finite cardinality, the function f is termed postcritically
finite.
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K2

R1,θ

R2,−θ

S2

S1

(c)

If f is a polynomial, then the filled Julia set of f is defined as the union

Kf =
⋃
{Of (z) |Of (z) is bounded},

and we may define the Julia set of f to be the topological boundary Jf = frKf .

Suppose, then, that f1, f2 : C→ C are some pair of monic polynomials, both of equal degree d ≥ 2,
for which the associated filled Julia sets K1 and K2 are Peano continua. In terms of the gnomonic
projections ν1 and ν2 defined in (1.24), we are able to produce from f1 and f2 a smooth function
f1 ] f2 : S2 → S2 defined by

(f1 ] f2)(z, h) =


(ν1 ◦ f1)(z) if h > 0,(
zd, 0

)
if h = 0, and

(ν2 ◦ f2)(z) if h < 0,

(1.25)

where we continue to view S2 as being embedded in C × R. Observing that f1 ] f2 descends
to the quotient induced by the ray equivalence relation ∼, we arrive at a continuous function
f1 ⊥⊥ f2 : K1 ⊥⊥ K2 → S2, which is known as the mating of f1 and f2.

So far, it does not look as if we have gained much at all: just as the space K1 ⊥⊥ K2 may be highly
pathological, so too may be the induced function f1 ⊥⊥ f2. However, it turns out that in many cases,
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this construction in fact produces a rational map defined on S2. Following [PM13], we introduce
some jargon which will allow us to discuss this further.

Definition 1.5.6. Let f1 and f2 denote monic complex polynomials, both of equal and at least
quadratic degree, for which the corresponding filled Julia sets K1 and K2 are Peano continua. If the
resulting ray equivalence relation ∼ fails to satisfy the hypotheses of Moore’s theorem, so that the
space K1 ⊥⊥ K2 6∼= S2, then we classify the mating of f1 and f2 as Moore-obstructed.

Suppose that the mating of f1 and f2 is not Moore-obstructed, so that K1 ⊥⊥ K2
∼= S2. If the mating

f1 ⊥⊥ f2 is topologically conjugate to some rational map F : S2 → S2 (that is, if there exists some
homeomorphism h : S2 → S2 and some rational map F : S2 → S2 such that h ◦ (f1 ⊥⊥ f2) = F ◦ h),
then we say that f1 and f2 are topologically mateable, and f1 ⊥⊥ f2 is termed a topological mating.
If no such conjugacy exists, then the mating of f1 and f2 is considered to be topologically obstructed.

If f1 and f2 are topologically mateable via some conjugacy h which is holomorphic on the interiors
of K1 and K2 (when they are non-empty), then f1 and f2 are termed geometrically mateable, and
f1 ⊥⊥ f2 a geometric mating. If this is not the case, then the mating of f1 and f2 is referred to as
geometrically obstructed.

If h is in fact conformal on the interiors of K1 and K2 (again, when non-empty), then f1 and f2
are conformally mateable, and f1 ⊥⊥ f2 is a conformal mating. Otherwise, the mating of f1 and f2
is conformally obstructed.

The first result asserting the existence of matings under reasonably weak hypotheses which we
present is due to Yampolsky and Zakeri [YZ00]; for explanations of definitions appearing in this
theorem, we refer to [Mil06].

Theorem 1.5.7 (Yampolsky-Zakeri). Denote by f1 and f2 some pair of quadratic complex polyno-
mials which are not anti-holomorphically conjugate to one another, each with a Siegel fixed point of
bounded type. There then exists a geometric mating f1 ⊥⊥ f2.

If we restrict ourselves to the postcritically finite setting, then it is possible to say more about matings,
and we give just three examples. The first two are due to Meyer [Mey09, Mey14] and describe classes
of rational maps which do or do not arise as matings; the other, thanks to Tan, Rees and Shishikura
[Tan92, Ree92, Shi00], asserts the unique existence of certain conformal matings9.

Theorem 1.5.8 (Meyer). Suppose that F : S2 → S2 denotes some postcritically finite rational map,
with all of S2 as its Julia set.10 Then, there exists some N ∈ N such that, for every n ≥ N , the
n-fold iterate F ◦n is topologically conjugate to the topological mating of two polynomials.

Theorem 1.5.9 (Meyer). Let F : S2 → S2 denote some rational map which is not a polynomial,
and suppose that the postcritical set of F contains precisely three points. Then, F is not a mating of
any pair of polynomials.

Theorem 1.5.10 (Tan-Rees-Shishikura). Suppose that the complex polynomials f1(z) = z2 + c1 and
f2(z) = z2 + c2 are postcritically finite. If c1 and c2 do not lie in conjugate limbs of the Mandelbrot
set, then f1 and f2 are conformally mateable, and the result of this mating is unique up to Möbius
conjugacy.

The uniqueness portion of Theorem 1.5.10 is particularly striking, since extant matings in general
fail to be unique. For instance, in the quartic setting, there can be found a topological mating which
is conjugate to uncountably many distinct geometric matings [Mil04].

The theory of mating provides a means of constructing new rational maps from appropriate poly-
nomials in a controlled way, and dually, serves as a mechanism for the study of the dynamics of
appropriate rational maps by realizing them as matings of polynomials [PM13]. However, many
questions remain open in the field. For instance, there is no general theory of the (non-)existence of

9The result quoted in Theorem 1.5.10 is in fact weaker than that proved in [Shi00]. There, a more restrictive
definition of conformal mating is used, and using this definition, the conditions of Theorem 1.5.10 are not just sufficient,
but also necessary.

10Although we gave one definition of a Julia set in Definition 1.5.5, we restricted ourselves to the polynomial setting
for convenience’s sake. More general definitions of Julia sets, appropriate for rational maps, can be found in, for
instance, [Mil06].
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obstructions to mating, be they Moore, topological, geometric, or conformal.11 From the perspective
of decomposing rational maps, the phenomenon of shared matings, whereby particular rational maps
may be described as the matings of multiple distinct pairs of polynomials, is well-known [Wit88];
however, no systematic means of enumerating how a given rational map may be realized as a mating
is currently available.

1.5.2 Inverse Limits of Tent Maps

Unimodal maps (näıvely, self-maps of some closed interval with a single well defined ‘turning point’)
are of substantial interest in the field of one-dimensional dynamics, with the kneading theory of
Milnor and Thurston [MT88] enabling their detailed study. An important property of any unimodal
map is that its domain of definition can be restricted to some invariant subinterval–its so-called core–
which contains all non-trivial dynamics.

Before continuing, we make these definitions precise.

Definition 1.5.11. Let f : [a, b]→ [a, b] denote some continuous self-map of a closed interval such
that

• There exists a point c ∈ [a, b], the so-called turning point of f , such that f |[a,c] is strictly
increasing, and f |[c,b] strictly decreasing; and

• x < f(x) for each x ∈ ]a, c].

If f(a) = f(b) = a, then f is said to be non-core unimodal; if, instead, f(c) = b and f(b) = a, then
f is termed core unimodal.

Given some non-core unimodal map f : [a, b]→ [a, b] with turning point c, the core of f is defined as
the interval C =

[
f◦2(c), f(c)

]
, so that the restriction f |C is core unimodal.

Amongst the simplest examples of unimodal maps we find the piecewise linear tent maps, which
can shed light on the behaviour of more general unimodal maps, in spite of the simplicity of their
definition. No small degree of this theoretical significance derives from the (rough) fact that, if f
is some unimodal map which ‘moves close-together points apart after sufficiently many iterations’,
then the dynamics of some tent map are, in some sense, contained within those of f . Theorem 1.5.13
[Par66, MT88] couches this in more exact language.

Definition 1.5.12. Given any t ∈ ]1, 2], the unimodal map gt : [0, 1]→ [0, 1] defined by

gt(x) = tmin{x, 1− x}

is called the tent map of slope t. Collectively, the set {gt}t∈]0,2] of all such maps is referred to as the
tent family.

Theorem 1.5.13 (Parry; Milnor-Thurston). Let f : [a, b]→ [a, b] denote some unimodal map with
strictly positive topological entropy12 log s. Then, there exists a semiconjugacy p : [a, b]→ [0, 1] from
f to the tent map gs of slope s. (That is, there exists a continuous surjection p : [a, b]→ [0, 1] such
that p ◦ f = gs ◦ p.)

In all cases, the semiconjugacy p can be described by an explicit formula.

The unimodal maps of Definition 1.5.11 are not homeomorphisms, but there is a well established
technique for producing from a non-invertible dynamical system an invertible one, defined on the
so-called inverse limit space. The book [IM10] discusses the applications of inverse limit spaces to
topological dynamics in detail.

11It is conjectured that no matings are purely geometrically-obstructed, so that every every topologically mateable
pair of polynomials is geometrically mateable, but currently neither a proof nor a counterexample is known.

12Heuristically, we can interpret the topological entropy of such a map as a dynamical invariant measuring the
degree of divergence of initially close-together points under repeated iterations. We will not need any particular
knowledge of the details of topological entropy in what follows; more in-depth treatment of the concept can be found
in, for instance, [KH95].
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Definition and Lemma 1.5.14. Let X denote some compact metrizable space, equipped with some
continuous surjection f : X → X. The inverse limit of (X, f) is the subspace

X̂ = lim←−(X, f) = {(x1, x2, x3, . . .) |xi = f(xi+1) for each n ∈ N} ⊂ XN,

where we have endowed XN with the product topology.

The function f̂ : X̂ → X̂ defined by

f̂(x1, x2, x3, . . .) = (f(x1), x1, x2, x3, . . .)

is a homeomorphism, termed the natural extension of f to X̂.

The projection π : X̂ → X defined by

π(x1, x2, x3, . . .) = x1

is a semiconjugacy from f̂ to f ; that is, π ◦ f̂ = f ◦ π. More generally, any semiconjugacy from any
invertible dynamical system to f factors through π.

A reasonable first step in studying a unimodal dynamical system ([a, b], f), then, is to form the

inverse limit Î = lim←−([a, b], f), and then study the dynamics of the invertible natural extension f̂ .

However, there is some conservation of difficulty in play here: although the homeomorphism f̂ may
be better-behaved than our original map f , the topology of inverse limit spaces can, in general,
be exceptionally intricate. One canonical example of this complexity is Henderson’s construction
[Hen64] of the pseudoarc13 as the inverse limit of a particular self-map of [0, 1].

In the context of core tent maps, results of Barge, Brucks and Diamond [BBD96] illustrate just how
baroque the topology of the resulting inverse limit spaces can be.

Theorem 1.5.15 (Barge-Brucks-Diamond). For each t ∈
[√

2, 2
]
, let Ît denote the inverse limit of

the tent map gt : [0, 1]→ [0, 1].

There exists a dense subspace A ⊂
[√

2, 2
]

such that Ît is, except at finitely many points, locally the
product of an arc and a Cantor set, for each t ∈ A.

There also exists a dense full-measure Gδ subspace B ⊂
[√

2, 2
]

such that, if s ∈ B, then every open

subspace of Îs contains a homeomorph of Ît for every t ∈
[√

2, 2
]
.

Adding more layers of detail still, the spaces Îs and Ît, in the notation of Theorem 1.5.15, are
conjecturally non-homeomorphic when s 6= t. This so-called Ingram conjecture was answered in
the affirmative for non-core tent maps by Barge, Bruin and Štimac [BBŠ12]; for general core tent
maps, it is unknown whether or not the Ingram conjecture holds in full generality, although it has
been shown by Anušić, Bruin and Činč [ABČ15] that there are uncountably many homeomorphism
classes.14

In light of the convoluted topologies of the inverse limit spaces of unimodal maps, it is perhaps
surprising that dynamics in such a space are tightly entwined with dynamics on the 2-sphere. The
proof of this fact, due to Boyland, de Carvalho and Hall [BdCH17] is highly non-trivial, and shall
not be dwelled upon in any great detail; we content ourselves with remarking that the passage from
an inverse limit space to the 2-sphere is enabled by Moore’s theorem.

Theorem 1.5.16 (Boyland-de Carvalho-Hall). Let {ft}t∈J : [a, b] → [a, b] denote some family of
core unimodal maps, all of which satisfy the conditions of Convention 2.8 in [BdCH17]. where the

parameter interval J ⊂ R is compact. For each t ∈ J , let Ît denote the inverse limit lim←−([a, b], ft),

and f̂t the corresponding natural extension.

13A non-degenerate continuum P with the striking property of hereditary indecomposability: it is impossible to
express P , or any subcontinuum of P , as a union of two proper subcontinua of P .

14More precisely, it has been shown that the Ingram conjecture holds for core tent maps when their turning point
fails to be preperiodic, so that g◦nt

(
1
2

)
6= g◦mt

(
1
2

)
when n 6= m, and is moreover non-recurrent, so that there exists

some neighbourhood of 1
2

containing no iterates of 1
2

under gs.
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There then exists a continuously varying family {χt}t∈J of self-homeomorphisms of the 2-sphere S2,

such that there exists, for each t ∈ J , a semiconjugacy πt : Ît → S2 from f̂t to χt.

Moreover, for each such semiconjugacy πt, all but one fibre contains three or fewer points, and only
countably many fibres contain precisely three points.
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Chapter 2

Zippin’s Sphere
Characterization

2.1 Overview

This chapter is dedicated entirely to a proof of Zippin’s sphere characterization (Theorem 1.2.1),
which enabled our proof of Moore’s theorem in Chapter 1, and our approach shall mirror that of van
Kampen in [vK35]. For convenience, we restate Zippin’s sphere characterisation below.

Theorem 1.2.1 (Zippin’s sphere characterization). Let X denote some Peano continuum (Defini-
tion A.2.1). If X satisfies the Jordan curve theorem in the sense that

• X contains a Jordan curve,

• Every Jordan curve in X separates X, and

• No closed arc in X separates X,

then X is homeomorphic to S2.

Quite aside from its utility in Chapter 1, this result is interesting in its own right: given the intuitively
plausible condition of ‘satisfying the Jordan curve theorem’, we are able to distinguish S2 among
the class of Peano continua, which can in general be extremely pathological.

Before continuing, we would also remark on the similarities between Zippin’s sphere characterization
and the characterization of S1 given in Lemma A.4.6. There, the space S1 is identified as the unique
continuum separated by every pair of distinct points; that is, as the unique continuum separated
by each embedded copy of the 0-sphere. Meanwhile, Theorem 1.2.1 characterizes S2 in terms of
separation by Jordan curves, which is to say by embedded copies of the 1-sphere, although also
requires additional hypotheses to do so.

The similarity between Theorem 1.2.1 and Lemma A.4.6 is further reflected in our methods of proof:
in each case, we take a copy of S0 or S1 in our space X, and show that its complementary domains
in X are (the interiors of) a pair of 1- or 2-cells with the original 0- or 1-sphere as their common
boundary. One may well wonder whether a similar construction is possible in higher dimensions, but
even for the 3-sphere new techniques are required. Part of the reason for this is the existence in
S3 of pathological objects such as Alexander’s horned sphere [Ale24], an embedding of S2 with a
complementary domain which fails to be simply connected; a modern treatment can be found in
[Hat02].

2.2 Strategy of Proof

To streamline our discussion slightly, we introduce the following terminology. (By a generalized
Peano continuum is meant a connected, locally connected, locally compact, metrizable space. See
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Definition A.2.1, and Appendix A in general.)

Definition 2.2.1. A generalized Peano continuum X is said to be a Zippin space if

• X contains a Jordan curve,

• Every Jordan curve in X separates X, and

• No closed arc in X separates X.

Now, as a first step towards proving Theorem 1.2.1, we recall a more straightforward characterization
of S2. Namely, we realize the sphere as a CW complex consisting of a pair of 2-cells identified along
their boundaries–or, perhaps more evocatively, as two hemispheres glued together. Rather than
restricting ourselves to the two-dimensional case, we prove that we can in fact describe the n-sphere
in this way for all n ∈ N; this generalization adds no complexity to the proof, and will be of use in
Section A.4.1.

Lemma 2.2.2. Given some n ∈ N, explicitly identify the n-cell Dn and the (n − 1)-sphere Sn−1

with the subspaces

Dn = {x ∈ Rn | ‖x‖ ≤ 1} and Sn−1 = {x ∈ Rn | ‖x‖ = 1},

of Rn, and denote by ι : Sn−1 → Dn the set-theoretic inclusion. The adjunction space Dn ∪ι Dn is
homeomorphic to Sn.

(Explicitly, define the disjoint union Dn tDn to be the topological product Dn × {1, 2}, where {1, 2}
is understood to be equipped with the discrete topology. Further, let ∼′ denote the relation on the
disjoint union Dn t Dn defined by (x, i) ∼′ (y, j) if and only if x = ι(y), and ∼ the equivalence
relation on DntDn generated by ∼′. Then, the quotient Dn∪ιDn = (DntDn)/∼ is homeomorphic
to Sn.)

Proof. As suggested in this section’s opening paragraph, our strategy shall be to map each copy of
the n-cell in Dn tDn to a hemisphere of Sn; concretely, we define a surjection f : Dn tDn → Sn by

f(x, i) =


(
x1, x2, . . . , xn,

√
1−∑n

k=1 x
2
k

)
if i = 1 and(

x1, x2, . . . , xn,−
√

1−∑n
k=1 x

2
k

)
if i = 2,

(2.1)

where Dn and Sn are defined as in the statement of the lemma.

We immediately notice that this function is closed, as a continuous function with compact domain
and Hausdorff codomain, whence it follows that f is a quotient map.1 Observing additionally that
the equivalence kernel2 of f is precisely ∼ allows us to conclude that Dn∪ιDn ∼= Sn: any continuous
function constant on the equivalence classes of ∼ must factor through f , and this is precisely the
universal property of the quotient Dn ∪ι Dn = (Dn tDn)/∼.

Our proof of Zippin’s sphere characterization shall ultimately reduce to an application of the above
lemma. More concretely, suppose that we have some compact Zippin space X, alongside some
arbitrary Jordan curve J ⊂ X. If we can show that

• Each complementary domain of J in X has precisely J as its boundary;

• There are precisely two complementary domains of J in X, say U and V ;

• Both U ∪ J and V ∪ J are homeomorphs of the 2-cell; and

• It is possible to attach U ∪ J to V ∪ J along J in an appropriate fashion;

1We recall that, given topological spaces X and Y , a continuous surjection f : X → Y is termed a quotient map if
the topology of Y is final with respect to f . That is, the function f is a quotient map if the topology of Y is generated
from a subbasis consisting of those subsets A ⊂ Y for which f−1(A) ⊂ X is open. This is discussed in any textbook
treating elementary topology, such as [Lee00].

2That is, the equivalence relation on X which identifies points x, y ∈ X if and only if f(x) = f(y).
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then Lemma 2.2.2 will yield a homeomorphism X ∼= S2. Before we embark upon this undertaking,
however, it is worth taking some time to consider how we might proceed.

Proving the first two points above amount to a proof of the Jordan curve theorem for compact Zippin
spaces. Modern proofs of the Jordan curve theorem in R2 tend to involve results from algebraic
topology, often broadly similar to that used during our proof of Moore’s theorem in Chapter 1, but
no direct translation of these techniques to the current setting presents itself: we do not have enough
information about the homology or homotopy groups of arbitrary Peano continua. It therefore is
necessary for us to approach the problem using more elementary technology, and our method shall
be essentially that of van Kampen [vK35] and Wilder [Wil49], using results from continuum theory
which can be traced back to Whyburn in [Why28, Why31].

As an aside, it is interesting and perhaps surprising to note that this proof will essentially frame the
Jordan curve theorem as a consequence of the non-planarity of the complete bipartite graph K3,3

(Figure 2.1), as we shall see with Lemma 2.3.6. (This relationship is at the core of a proof [Tho92]
of the Jordan curve theorem in the plane due to Thomassen.)

Figure 2.1: The complete bipartite graph K3,3. In this depiction, each of the top-left, bottom-left
and middle-right vertices is connected to each of the top-right, bottom-right and center-left vertices.

The third point, meanwhile, is a clear analogue of Schoenflies’ theorem. In a similar vein to our
above comments, proofs of Schoenflies’ theorem in the plane often appeal to structure which we do
not here have at our disposal–this time, to complex-analytic techniques, with the Riemann mapping
theorem and the extension theorem of Carathéodory-Torhorst chief among them. It is again van
Kampen [vK35] who supplies us with a way around the issue, making use of the completeness of
Peano continua as metric spaces. Roughly speaking, an inductive construction shall equip us with a
homeomorphism between a dense subspace of the 2-cell and a dense subspace of (the closure of) a
complementary domain of a Jordan curve in a compact Zippin space; then, completeness allows us
to extend this to a homeomorphism between the entirety of the spaces.

The remainder of this chapter is given over to addressing each of the four bullet points above. As
alluded to, results from the theory of Peano continua–and especially from Whyburn’s theory of
cyclic connectivity [Why31]–will be crucial throughout this process, but the development of such
machinery at this stage would represent a lengthy digression from the task at hand. To streamline
our exposition, we therefore defer our study of Peano continua per se to Appendix A, freely calling
upon results as the need arises.

2.3 The Jordan Curve Theorem

In this section, we wish to show that if J denotes some Jordan curve in a Zippin space X, then the
complement X −J has precisely two components, each with J as its boundary. To compartmentalise
our discussion, we deal exclusively with the latter condition in Section 2.3.1, leaving the task of
enumerating the complementary domains of J in X until Section 2.3.2.
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2.3.1 Boundaries of Complementary Domains

We start with the technically simpler portion of the Jordan curve theorem for Zippin spaces: namely,
the condition for boundaries. Thus, given a Zippin space X and a Jordan curve J ⊂ X, we wish to
show that if A is some component of X − J , then frX A = J .

The inclusion frX A ⊂ J in fact holds in any locally connected space, and is a corollary of the
following.

Lemma 2.3.1. Let X denote some locally connected topological space, and consider some subspace
Y ⊂ X. If A denotes some connected component of Y , then frX A ⊂ frX Y .

Proof. We first propose that (clX A) ∩ (intX Y ) ⊂ intX A. Heuristically, one could view this as
stating that the connected component A is, in some sense, ‘as large as it can be’: if a point of the
closure of A is interior to Y , then that point must in fact be interior to A as well.

Indeed, consider some point x ∈ (clX A) ∩ (intX Y ). Using local connectedness, we can find some
connected neighbourhood U ⊂ intX Y of x, and since we chose A to be a connected component of
Y , it follows that U ⊂ A. We find that x ∈ intX A, as suggested.

From here, we can reach the desired result by a series of set-theoretic manipulations. Explicitly, we
notice that

frX A = clX A− intX A

⊂ clX A− intX Y

⊂ clX Y − intX Y

= frX Y,

(2.2)

where we use our above observation to pass from the first line to the second.

Corollary 2.3.2. Let X denote some locally connected topological space, and consider some closed
subspace C ⊂ X. If A denotes some connected component of X − C, then frX A ⊂ C.

Proof. We know from the preceding lemma that frX A ⊂ frX(X − C), and of course frX(X − C) is
precisely frX C. Since we have assumed C to be closed in X, we know that frX C ⊂ C, and we are
done.

To prove the inclusion J ⊂ frX A, we require an intuitively plausible result: if we are given some
path which starts in an open subspace U ⊂ X, and which ends in that subspace’s complement, then
that path must meet the boundary frX U .

Lemma 2.3.3. Let Y denote some subspace of a topological space X. If T ⊂ X denotes some path
with one end point in Y and the other in X − clY , then T ∩ frY 6= ∅.

Proof. We start by proving the result for the special case in which Y is open in X, and we then use
this to arrive at the full result.

Suppose, then, that Y is open in X. If one end point of T lies on frY , then there is nothing for us
to prove, so let us assume that one end point of T lies in Y and the other in X − clY . Now, for the
sake of a contradiction, suppose that T ∩ frY = ∅.
Using the openness of Y to observe that

(X − clY ) ∪ Y = X − (clY − Y ) = X − frY, (2.3)

we find that
T = (T ∩ Y ) ∪ (T ∩ (X − clY )), (2.4)

but this is a contradiction. We know that both T ∩ Y and T ∩ (X − clY ) are disjoint non-empty
open subspaces of T , but T is connected by definition. This establishes the result when Y is open.

We are now ready to approach the general case. Given some arbitrary subspace Y ⊂ X, consider
some path T ⊂ X with one end point in Y and the other in X − Y . Knowing that Y = intY ∪ frY ,
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the result follows immediately, for the end point of T lying in X − Y lies either in frY , in which
case we are done, or in the open subspace X − clY , in which case the result follows from the special
case proved above.

Corollary 2.3.4. Let U denote some connected open subspace of a path connected topological space
X. The boundary frU separates U and X − clU in X.

Proof. Were frU to fail to separate U from X − clU , then we would be able to find some path
T ⊂ X − frU connecting a point of U to a point of X − clU–but the preceding lemma tells us that
such a path cannot exist.

All that remains for us to do here is to put everything together.

Lemma 2.3.5. If J denotes some Jordan curve in a Zippin space X, and A some complementary
domain of J in X, then frX A = J .

Proof. The inclusion frX A ⊂ J was proved in Corollary 2.3.2. To establish the reverse inclusion, we
argue by contradiction, supposing that there exists some point z ∈ J − frX A.

Being a Jordan curve, J is of course locally connected, and so we are able to find some connected
open neighbourhood U ⊂ J − frX A of z in J ; accordingly, the complement J − U is a closed arc in
J which contains frX A. Now, select some point x ∈ A, and some point y ∈ X separated from x by
J , noticing that our assumption that X is Zippin guarantees the existence of such a point. This
same assumption precludes J − U from separating x and y, but Corollary 2.3.4 states that frX A
separates x and y. (Notice that here we have made use of the fact that, since X is locally connected,
the complementary domains of J in X are all open.)

This is the contradiction we seek: if J − U does not separate x and y, then certainly no subspace of
J − U can separate those points either.

2.3.2 Counting Complementary Domains

With one part of the Jordan curve theorem proven, it remains for us to show that a Jordan curve in
a Zippin space has precisely two complementary domains. We mentioned in Section 2.2 that this
result is closely related to the failure of the graph K3,3 to be planar, and before addressing this
section’s proofs in earnest, it is worth thinking about why this might be the case.

The Euclidean space R3 clearly fails to be Zippin, since, for instance, the unit circle fails to separate
this space. However, it does not take too much work to see how we might embed K3,3 into R3:
Figure 2.1 depicts one such embedding, if we interpret the edges interior to the hexagon as passing
over and under one another appropriately. Similarly, we of course cannot embed K3,3 into R1.

Heuristically, then, we can view the impossibility of embedding K3,3 into a space as indicating that
said space is, in some sense, ‘two dimensional’–but this is not the only thing which can be deduced.
There certainly exist 2-manifolds into which K3,3 can be embedded without issue, with the torus
and the Möbius band representing familiar examples; instances of such embeddings are sketched in
Figure 2.2. Reflecting this, there exist Jordan curves which fail to separate both the torus and the
Möbius band.

These observations supply us with another piece of intuition for why the ‘non-embeddability’ of K3,3

into Zippin spaces is significant. We are able to embed K3,3 into the torus and the Möbius band
essentially because these spaces have a non-trivial fundamental group; thus, the inability to embed
K3,3 into a space can be interpreted as, in some vague sense, enforcing the triviality of that space’s
fundamental group.

In the context of compact 2-manifolds, these comments on how K3,3 embeds into the torus and the
Möbius band in fact lead to a further observation. A classical theorem, of which a proof may be
found in [Lee00], classifies every compact 2-manifold as homeomorphic to either S2, the connected
sum of finitely many tori, or the connected sum of finitely many copies of the real projective plane
P2. Knowing that P2 can be realized as a quotient of the Möbius band in which the horizontal edges
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(a) (b)

Figure 2.2: Embeddings of K3,3 into (a) the torus and (b) the Möbius band. For clarity of illustration,
the Möbius band is here presented as a quotient of a rectangle in the plane, where the two vertical
edges are identified with reversed orientations.

in Figure 2.2b are identified with opposing orientations, we can observe that K3,3 can be embedded
in a compact 2-manifold if and only if that manifold is not homeomorphic to S2.

Having gained some idea why K3,3 should be relevant to Zippin’s sphere characterization, we prove
what the above discussion took for granted–namely, that it is indeed impossible to embed K3,3 into
a Zippin space. We henceforth dispense with any graph-theoretic terminology, making it simpler to
re-use this result in the sequel at the cost of a more complicated statement. We recall that an arc
T in some space X is said to span a compact subspace C ⊂ X if the intersection T ∩ C consists
precisely of the end points of T .

Lemma 2.3.6. Let J denote some Jordan curve in a Zippin space X, and suppose that T1, T2 and
T are three arcs spanning J such that

• ]T1[ and ]T2[ lie in different components of X − J , and

• T ∩ T1 = T ∩ T2 = ∅.

Then, the end points of T cannot be separated in J both by the end points of T1 and by those of T2.

Proof. We shall argue by contradiction. To this end, consider a Jordan curve J ⊂ X together with
arcs T1, T2 and T3 spanning J in such a configuration that

• ]T1[ and ]T2[ lie in different components of X − J ,

• T ∩ T1 = T ∩ T2 = ∅, and

• The end points of T are separated in J both by the end points of T1 and by those of T2,

as sketched in Figure 2.3. Given this arrangement of arcs, we shall construct a Jordan curve which
fails to separate X.

Let x and y denote the end points of the arc T . If Ux and Uy denote the complementary domains of
T1 in J which contain x and y respectively, and if Vx and Vy denote the complementary domains of
T2 in J which contain x and y respectively, then the intersections Wx = Ux ∩ Vx and Wy = Uy ∩ Vy
form a pair of disjoint open arcs in J .

We define a subspace I = Wx∪Wy∪T , sketched in Figure 2.4a, and propose that I is the complement
in J ∪ T1 ∪ T2 ∪ T of some Jordan curve K ⊂ J ∪ T1 ∪ T2 ∪ T . Indeed, we can arrive at such a curve
by considering the union T1 ∪ T2. If the end points of T1 and T2 coincide, then T1 ∪ T2 is precisely
the Jordan curve K; otherwise, we can form the union of T1 ∪ T2 with arcs in J connecting the end
points of T1 and T2, containing neither x nor y. Such a Jordan curve K is illustrated in Figure 2.4b.

From here, we shall show that every complementary domain of K in X intersects I. Since I is
connected, it will follow that X −K is also connected, which will complete the proof. With this
goal in mind, let A ⊂ X −K denote some such complementary domain.



2.3. THE JORDAN CURVE THEOREM 37

J

T1

T2

T

x

y
Figure 2.3
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Figure 2.4

Let D1 and D2 denote the components of X − J which contain ]T1[ and ]T2[ respectively, recalling
that D1 6= D2 by hypothesis. Given any point z ∈ ]T1[, the local connectedness of X allows us
to find some neighbourhood U ⊂ D1 of z. From Lemma 2.3.5, we know that frA = K, so that
z ∈ T1 ⊂ frA; thus, we deduce that U ∩ A 6= ∅, and in particular that D1 ∩ A 6= ∅. By entirely
analogous reasoning in which T2 takes the place of T1, we find that D2 ∩A 6= ∅.

Now, select points a ∈ D1 ∩ A and b ∈ D2 ∩ A. We know that A must be arc connected, because
it is a connected open subspace of a generalized Peano continuum (Lemma A.5.4), allowing us
to find some arc [ab] ⊂ A. Another application of Lemma 2.3.5 asserts that frD1 = J , which
combined with Lemma 2.3.3 tells us that [ab] ∩ J 6= ∅. However, since [ab] ⊂ X − K and since
(J ∪T1 ∪T2 ∪T )−K = I, it in fact follows that [ab]∩ I 6= ∅. This validates our claim that A∩ I 6= ∅,
and we are done: the Jordan curve K cannot separate X.

We are now ready to prove that Zippin spaces obey a Jordan curve theorem in an appropriate
sense. Given that our strategy of proof relies crucially on the notion of arc accessibility, discussed in
Section A.5.2, we recall the relevant definition and result before tackling the proof in earnest.
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Definition and Lemma A.5.8. Let X denote some topological space with a subspace Y ⊂ X,
and select some point x ∈ X − Y . We say that x is arc accessible from Y if there exists some arc
T ⊂ Y ∪ {x} with x as an end point.

Suppose that X is some Peano continuum, and U ( X some open subspace. The set of points of
frU which are arc accessible from U is dense in frU .

Lemma 2.3.7 (Jordan curve theorem). If X denotes some Zippin space and J ⊂ X some Jordan
curve, then the complement X−J consists of precisely two connected components, each with boundary
J .

Proof. We proved the condition involving boundaries of complementary domains in Lemma 2.3.5,
and we shall use Lemma 2.3.6 to prove the remaining part of the result. We know by hypothesis
that J has at least two complementary domains in X, so suppose towards a contradiction that there
are at least three such complementary domains, which we denote by D1, D2 and D3.

Knowing that the set of points of J which are arc-accessible from D1 is dense in J (Lemma A.5.8),
we can find some arc T1 ⊂ clD1 spanning J (Figure 2.5a). Letting J − T1 = A1 ∪ A2 for a pair
of disjoint open arcs A1, A2 ⊂ J , we can similarly find points a1 ∈ A1 and a2 ∈ A2 which serve
as the end points of some J-spanning arc T2 ⊂ clD2 (Figure 2.5b). Continuing with this line of
reasoning, let A1−{a1} = B1∪B2 and A2−{a2} = B3∪B4, for disjoint open arcs B1, B2 ⊂ A1 and
B3, B4 ⊂ A2, and select points b1 ∈ B1 and b3 ∈ B3 which are the end points of some J-spanning
arc T3 ⊂ clD3.

J
T1

A1

A2
(a)

T2

B1

B3

(b)

T3

(c)

Figure 2.5

We propose that the arcs T1, T2 and T3 violate Lemma 2.3.6. Indeed, ]T1[ and ]T2[ lie in distinct
components of X − J by construction, and likewise, our choice of T3 ensures that T3 is disjoint from
both T1 and T2. Moreover, we positioned the end points of T3 precisely to be separated in J both
by the end points of T1 and by those of T2, in contradiction of Lemma 2.3.6. It follows that X − J
has exactly two components, and the Jordan curve theorem for Zippin spaces is proved.
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2.4 Schoenflies’ Theorem

2.4.1 Lavrentieff’s Theorem

We now know that, given some Jordan curve J in some Zippin space X, the complement X − J
consists of precisely two components, with J as their common boundary. Following the rough
roadmap set out in Section 2.2, our task now is that of proving that, under the additional assumption
that X is compact, the closure of each such component is a 2-cell.

As mentioned in Section 2.2, this proof shall revolve around first defining a homeomorphism on a dense
subspace, and then using metric completeness to extend said homeomorphism. It is Lavrentieff’s
theorem which allows us to do so, and for the sake of comprehensiveness we prove this theorem
before proceeding. (Strictly speaking, what we prove is actually less general than Lavrentieff’s
theorem. Lavrentieff’s original result [Lav24] concerns the extension of a merely continuous–perhaps
not uniformly so–homeomorphism to Gδ subspaces lying between its original domain and codomain,
and the closures of the same.)

We divide our proof of Lavrentieff’s theorem into two stages. In Lemma 2.4.1, we prove a preliminary
extension result, and in Lemma 2.4.2, we use said result to construct the desired homeomor-
phism.

Lemma 2.4.1 (Kuratowski’s lemma). Let (X, dX) and (Y, dY ) denote a pair of complete metric
spaces, with subspaces A ⊂ X and B ⊂ Y .

Suppose that f : A→ B denotes some uniformly continuous function. Then, f permits a uniformly
continuous extension f̃ : clX A→ clY B.

Proof. Given some point x ∈ clX A, we can find some sequence (xn)∞n=1 of points of A with limit x.
The uniform continuity of f ensures that the image (f(xn))∞n=1 is a Cauchy sequence of points in B,
and the completeness of (Y, dY ) ensures that this sequence has some limit in clY B. We propose first
that this limit is independent of the sequence with which we start, in the sense that if (xn)∞n=1 and
(yn)∞n=1 are two sequences in A with limit y, then (f(xn))∞n=1 and (f(yn))∞n=1 have the same limit in
clX B.

Indeed, suppose that f(xn)→ a and f(yn)→ b, and consider dY (a, b). Using the triangle inequality
twice to observe that

dY (a, b) ≤ dY (a, f(xn)) + dY (f(xn), f(yn)) + dY (f(yn), b) (2.5)

for every n ∈ N, fix some ε > 0. We can immediately deduce that

dY (a, f(xn)) <
ε

3
and dY (f(yn), b) <

ε

3
(2.6)

for sufficiently-large values of n, so we wish to bound the value of the second term on the right-hand
side of (2.5).

Because f is uniformly continuous, we know that there must exist some δ > 0 such that if
dX(xn, yn) < δ, then dY (f(xn), f(yn)) < ε

3 . Further, since the sequences (xn)∞n=1 and (yn)∞n=1 both
share the same limit, we know that we can always arrange that dX(xn, yn) < δ by choosing a large
enough value of n. This proves our proposition.

Thus, given a point x ∈ clX A, we tentatively define

f̃(x) = lim
n→∞

f(xn), where xn → x in A, (2.7)

knowing from the above that this is at least a well defined extension of f–although its uniform
continuity remains to be seen. We prove this by similar reasoning to the above.

Indeed, consider some pair of points x, y ∈ clX A which are the limits of sequences (xn)∞n=1 and
(yn)∞n=1 in A respectively. Then, we know that

dY
(
f̃(x), f̃(y)

)
≤ dY

(
f̃(x), f(xn)

)
+ dY

(
f(xn), f(yn)

)
+ dY

(
f(yn), f̃(y)

)
(2.8)
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for each n ∈ N. Fix some ε > 0. By definition, f(xn)→ f̃(x) and f(yn)→ f̃(y), so that

dY
(
f̃(x), f(xn)

)
<
ε

3
and dY

(
f(yn), f̃(y)

)
<
ε

3
(2.9)

for sufficiently large values of n. Moreover, we can exploit the uniform continuity of f to deduce the
existence of some δ > 0 such that if dX(xn, yn) < 2δ, then dY (f(xn), f(yn)) < ε

3 , for all n ∈ N.

We now suggest that if dX(x, y) < δ, then dX(xn, yn) < 2δ for sufficiently large values of n; combining
this with (2.8) and (2.9) will complete the proof. This is essentially immediate, for since y lies in
the δ-ball in X centred at x, we know that the sequences (xn)∞n=1 and (yn)∞n=1 are both eventually

in this ball. We conclude that f̃ is indeed uniformly continuous.

Lemma 2.4.2 (Lavrentieff). Let (X, dX) and (Y, dY ) denote a pair of complete metric spaces, with
subspaces A ⊂ X and B ⊂ Y .

Suppose that f : A → B denotes some uniform isomorphism. (That is, let f denote a uniformly
continuous bijection with uniformly continuous inverse.) Then, f can be extended to a uniform

isomorphism f̃ : clX A→ clY B.

Proof. We can use Kuratowski’s lemma twice to produce uniformly continuous extensions

f̃ : clX A→ clY B and g̃ : clY B → clX A (2.10)

of f and f−1 respectively, so that we need only prove that these extensions are mutually inverse.

Suppose, then, that (xn)∞n=1 is some sequence of points in A with a limit x ∈ clX A. We know that

f(xn)→ f̃(x), and since f(xn) ∈ B for every n ∈ N, we also know that

(f−1 ◦ f)(xn) = xn → (g̃ ◦ f̃)(x). (2.11)

It follows that g̃ ◦ f̃ = idclX A, and entirely analogous reasoning reveals that f̃ ◦ g̃ = idclY B as
well.

2.4.2 Arc Complexes

With Lavrentieff’s theorem in hand, we have a means of extending a homeomorphism from a dense
subspace to an entire space–but we are yet to see how we might define an appropriate dense subspace
in this setting. At the heart of our construction is, given some complementary domain Y of a Jordan
curve J in a compact Zippin space X, an iterative subdivision of clX Y into ever-smaller pieces.
This subdivision is made possible by the so-called θ-curve lemma, which essentially states that we
can use arcs to bisect complementary domains of Jordan curves.

Lemma 2.4.3 (θ-curve lemma). Let T1, T2 and T3 denote three arcs in some Zippin space X, all
of which have the same end points but are otherwise disjoint. The union T1 ∪ T2 ∪ T3 is called a
θ-curve.

Such a θ-curve has precisely three complementary domains in X. One has boundary T1 ∪T2, another
has boundary T2 ∪ T3, and another has boundary T1 ∪ T3.

Proof. The unions T1 ∪ T2, T2 ∪ T3 and T1 ∪ T3 are all Jordan curves, so that we can use the Jordan
curve theorem (Lemma 2.3.7) to deduce that

• X − (T1 ∪ T2) has components D1 and E1, where ]T3[ ⊂ E1;

• X − (T2 ∪ T3) has components D2 and E2, where ]T1[ ⊂ E2; and

• X − (T1 ∪ T3) has components D3 and E3, where ]T2[ ⊂ E3.

Notice that D1, D2 and D3 are all components of X − (T1 ∪T2 ∪T3). To see why, observe that D1 is
certainly a connected subspace of X − (T1 ∪ T2 ∪ T3), and that frD1 = T1 ∪ T2. Were there to exist
some component A of X − (T1 ∪T2 ∪T3) with D1 ( A, then selecting points x ∈ D1 and y ∈ A−D1
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and using Lemma A.5.4 to find an arc [xy] ⊂ A, Lemma 2.3.3 would imply that (T1 ∪ T2) ∩A 6= ∅,
which is manifestly a contradiction. The same style of reasoning works equally well for D2 and D3.

Thus, it will suffice for us to prove that there is no fourth complementary domain of T1 ∪ T2 ∪ T3 in
X. Supposing that A is some fourth component of X − (T1 ∪ T2 ∪ T3), our strategy shall be to use
Lemma 2.3.6 to arrive at a contradiction. The vital ingredient in this procedure will be that there
exist points interior to T1, T2 and T3 which are arc-accessible from A, as we now demonstrate.

Supposing that ]T1[∩ frA = ∅ and using Corollary 2.3.2, we find that frA ⊂ T2 ∪ T3. In fact, we can
see that frA = T2 ∪ T3 by a similar argument to that which proved Lemma 2.3.5. Indeed, were there
to exist some point z ∈ (T2 ∪ T3)− frA, we would be able to find some connected neighbourhood
U ⊂ T2 ∪ T3 of z disjoint from A. Then, Corollary 2.3.4 would tell us that the arc (T2 ∪ T3) − U
separates X, which cannot be the case when X is Zippin.

This contradicts the Jordan curve theorem: the only components of X − (T2 ∪ T3) are D2 and E2,
but the above shows that A is a third such component. It follows that ]T1[ ∩ frA 6= ∅, and two
more arguments of a similar nature reveal that ]T2[ ∩ frA 6= ∅ and ]T3[ ∩ frA 6= ∅ as well; recalling
Lemma A.5.8 allows us to deduce the existence of points of T1, T2 and T3 which are arc-accessible
from A, as claimed.

We are now ready to construct the desired violation of Lemma 2.3.6. Let S denote some arc with
one end point interior to T1 and the other interior to T2, such that ]S[ ⊂ A. Further, let S1 denote
some arc such that ]S1[ ⊂ D1, the end points of which separate those of S on T1 ∪ T2. If we let
S2 = T3, we can see immediately that

• S1 and S2 lie in different components of X − (T1 ∪ T2),

• S ∩ S1 = S ∩ S2 = ∅,
• The end points of S1 separate those of S in T1 ∪ T2, because we chose S1 precisely so that this

would be so; and

• The end points of S2 separate those of S in T1 ∪ T2, because one end point of S is interior to
T1 and the other to T2, while the end points of S2 are those of T1 and T2.

This is a contradiction of Lemma 2.3.6, and the proof is complete.

The value of the θ-curve lemma for our current purposes derives from the fact that it holds just as
well in the 2-cell D2 as it does in clX Y , where we recall that Y is some complementary domain in
X of a Jordan curve J ⊂ X. This will allow us to produce subdivisions of the two spaces which
are, in some sense, ‘combinatorially equivalent’. Let us elaborate on this idea. If we take clX Y and
draw across it some J-spanning arc (Figure 2.6a), then the θ-curve lemma tells us that we have
divided clX Y into two components; likewise, an S1-spanning arc in D2 (Figure 2.6b) splits D2 in
two.

J
(a)

S1

(b)

Figure 2.6
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Crucially, we can repeat this for the resulting complementary domains in clX Y and in D2. We sketch
the outcome of adding a single additional arc in Figure 2.7, and of adding several in Figure 2.7.

J
(a)

S1

(b)

Figure 2.7: An additional spanning arc can be added to each of the configurations sketched in
Figure 2.6, while retaining their ‘combinatorial equivalence’.

J
(a)

S1

(b)

Figure 2.8: Finitely many additional spanning arcs can be added to each of the configurations
sketched in Figure 2.6, while retaining their ‘combinatorial equivalence’.

This notion of subdivision by finitely many spanning arcs, and the fact that we can produce ‘essentially
identical’ such subdivisions of both clX Y and of D2, is made formal by the following definitions
and lemma. Although notationally dense, these say nothing fundamentally new: the salient features
have already been covered in the preceding discussion and Figures 2.6-2.8. In Definition 2.4.4, the
subspace A is, for our purposes, either the Jordan curve J ⊂ X or the boundary S1 ⊂ D2.

Definition 2.4.4. Consider some topological space X with a subspace A ⊂ X. Let {T1, T2, . . . , Tn}
denote some collection of finitely many arcs in X with the property that, for each j ∈ {1, 2, . . . , n},
the arc Tj spans3 A ∪ ⋃j−1i=1 Ti. Then, the union C = A ∪ ⋃ni=1 Ti is called an (A-spanning) arc
complex in X.

We define the vertices, edges and domains of such an arc complex as follows:

• The vertices are precisely the end points of the arcs {T1, T2, . . . , Tn};

• The edges are precisely the subarcs of the arcs {T1, T2, . . . , Tn} which span the arc complex C;
and

3We once more recall that the arc Tj is said to span A if the intersection A∩ Tj consists precisely of the end points
of Tj .
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• The domains are precisely the components of X − C.

Suppose that D1 and D2 denote some pair of domains of some arc complex C ⊂ X. We say that D1

and D2 are adjacent if frD1 ∩ frD2 6= ∅.
Definition 2.4.5. Let X and Y denote topological spaces with arc complexes C ⊂ X and C ′ ⊂ Y ,
where the subspaces of X and Y spanned by C and C ′ respectively are homeomorphic to one another.
If there exist incidence-preserving bijections between the vertices, edges and domains of C and C ′,
then the arc complexes C and C ′ are said to be isomorphic.

Explicitly, let C0, C1 and C2 denote, respectively, the sets of edges, vertices and domains of C;
similarly, let C ′0, C ′1 and C ′2 denote the sets of edges, vertices and domains of C ′. Then, an
isomorphism between C and D consists of bijections

f0 : C0 → C ′0, f1 : C1 → C ′1 and f2 : C2 → C ′2

such that

• If x ∈ C0 and S ∈ C1, then x ∈ S if and only if f0(x) ∈ f1(S); and

• If S ∈ C1 and D ∈ C2, then S ⊂ frX D if and only if f1(S) ⊂ frY f2(D).

Lemma 2.4.6. Let Y denote some complementary domain of a Jordan curve J in a compact Zippin
space X. Every J-spanning arc complex in clX Y is isomorphic to an S1-spanning arc complex in
D2; conversely, every S1 spanning arc complex in D2 is isomorphic to a J-spanning arc complex in
clX Y .

Proof. Consider some J-spanning arc complex C = J ∪⋃ni=1 Ti in clX Y . We shall prove the result
by induction on n.

The basis case in which n = 0 is immediate, so suppose that the arc complex J ∪ ⋃n−1i=1 Ti is
isomorphic to some S1-spanning arc complex in D2. Let S1 and S2 denote the edges of C containing
the end points of the arc Tn, and D the domain of C containing ]Tn[.

Suppose that the aforementioned isomorphism identifies the edges S1 and S2 with edges S′1 and S′2
respectively, and the domain D with a domain D′. Use Lemma A.5.4 to find some arc T ′ ⊂ clD2 D′

such that ]T ′[ ⊂ D′, with end points on S′1 and S′2.

Now, use the θ-curve lemma to deduce that Tn has two complementary domains in D, and T ′

two complementary domains in D′. Identifying these complementary domains with one another in
such a way as to preserve incidence, and identifying Tn with T ′, extends our isomorphism to an
isomorphism between C and an S1-spanning arc complex in D2, completing the induction. The
reverse proposition follows by identical logic.

2.4.3 Subdividing Complementary Domains

With Lavrentieff’s theorem, the notion of an arc complex, and Lemma 2.4.6 in hand, we are well
on our way to defining a homeomorphism between (dense subspaces of) clX Y and D2. Our next
step is to show that we can find arc complexes in clX Y with ‘arbitrarily small domains’, and we
approach this in two distinct phases.

The first, to which this section is dedicated, is to simply show that we need only finitely many J
spanning arcs in order to subdivide clX Y into components of arbitrarily small diameter. However,
in doing so, we have no control over how the arcs involved intersect, and in particular they in general
will fail to comprise an arc complex. Accordingly, the second stage is to show that we can always
produce from such a collection of arcs an arc complex with domains also of arbitrarily small diameter;
this is the subject of the next section.

As it was for Section 2.4.2, the essential tool for the subdivisions of this section is the θ-curve lemma.
However, we shall also have need of some auxiliary results: namely, compact Zippin spaces are cyclic
(Definition A.10.1), as are the closures of complementary domains of Jordan curves in the same.
(Given how pathological arbitrary Jordan curves can be, this result is perhaps more surprising than
it would first appear.)
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These cyclicity results are foundational to the remainder of our proof of Zippin’s sphere char-
acterization, and the requisite machinery is developed in Sections A.8-A.10. In particular, the
characterisation given in Theorem A.10.3 will be used extensively in what follows; for the sake of
convenience, we restate the most important elements of said sections below before proceeding.

Definition A.10.1. Let X denote some Peano continuum. If, for each pair of points x, y ∈ X,
there exists some Jordan curve Jxy ⊂ X which contains both x and y, then X is said to be cyclically
connected.

The cyclically connected subcontinua of X which are maximal with respect to set-theoretic inclusion
are termed the cyclic components of X.

Definition A.8.1. Define an equivalence relation ∼ on the set of non-cut points of some Peano
continuum X by declaring that

x ∼ y if and only if no point of X separates x and y.

We call this the conjugacy relation on X, and if x ∼ y, then the points x and y are said to be
conjugate.

The equivalence class of a point x ∈ X with respect to ∼ is called the conjugacy class of x, and we
denote this by Cx ⊂ X.

Theorem A.10.3. We say that a Peano continuum X has the three point property if, for every
trio x, y, z ∈ X of distinct points, there exists some arc [xyz] ⊂ X.

For every Peano continuum X, the following are equivalent:

1. X has no cut points,

2. X has the three point property, and

3. X is cyclically connected.

Let us now prove that every Zippin space is indeed cyclic in the sense of Definition A.10.1.

Lemma 2.4.7. Every compact Zippin space is cyclic.

Proof. We shall argue by contraposition. Indeed, let X denote some Peano continuum which fails
to be cyclic; then, it follows from Lemma A.10.3 there must exist some point x ∈ X such that the
conjugacy class Cx (Definition A.8.1) is not the entirety of X.

Consider some connected component A of the complement X−Cx. We know from Lemma A.8.3 that
the boundary of A meets Cx in precisely one point, which we shall denote by y. Now, Lemma A.8.7
and Lemma A.10.3 together assert that y lies on some Jordan curve J ⊂ Cx, and that y is interior
to some closed arc T ⊂ Cx. In particular, T separates X, and so X cannot possibly be Zippin.

Lemma 2.4.8. If Y denotes some complementary domain of a Jordan curve J in a compact Zippin
space X, then clX Y is cyclic.

Proof. We shall argue by contradiction. Indeed, suppose that J is some Jordan curve in a Zippin
space X, with Y some component of X − J with a closure which fails to be cyclic. Then, we know
from Lemma A.10.3 that clX Y has some cut point p.

Given some separation clX Y − {p} = Y1 | Y2, we select points y1 ∈ Y1 and y2 ∈ Y2. According to
Lemma A.5.8, we can find an arc [ay1] ⊂ clX Y1 such that [ay1]∩ J = {a}, and an arc [y2b] ⊂ clX Y2
such that [by2] ∩ J = {b}; moreover, an arc [y1y2] ⊂ clX Y necessarily contains the cut point p. It
follows that the union [ay1] ∪ [y1y2] ∪ [y2b] contains some J-spanning arc [apb] ⊂ clX Y .

Let us apply the θ-curve lemma to the union J ∪ [apb], yielding components

• A1, with boundary [apb] ∪ clX J1;

• A2, with boundary [apb] ∪ clX J2; and
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Figure 2.9

• A3, with boundary J ;

of X − (J ∪ [apb]), where we denote by J1 and J2 the two complementary domains of {a, b} in J .

Now, select any point z1 ∈ ]ap[ ⊂ [apb]. This is a boundary point of A1, and there must therefore
exist some sequence in A1 with limit z1; crucially, the knowledge that Y is locally connected allows
us to deduce that Y1 is a neighbourhood of z1, so that in particular this sequence is eventually in Y1.
Thus, we find that A1 ∩ Y1 6= ∅.
However, applying similar reasoning to any point z2 ∈ ]pb[ ⊂ [apb] reveals that A1 ∩ Y2 6= ∅ as well.
This is a contradiction: the connected subspace A1 ⊂ Y − {p} = Y1 | Y2 cannot possibly meet both
Y1 and Y2.

Corollary 2.4.9. If Y denotes some complementary domain of a Jordan curve J in a compact
Zippin space X, then Y is cyclic.

Proof. The method of proof used for Lemma 2.4.8 works just as well to show that Y is cyclic.

We now begin the process of subdivision with a mild claim: we propose that it is always possible to
separate any pair of distinct points of J in clX Y by an arc which spans J .

Lemma 2.4.10. Let Y denote a complementary domain of a Jordan curve J in a compact Zippin
space X, and consider some pair of distinct points x, y ∈ J .

Suppose that a and b lie in different components of J−{x, y}. Then, any J-spanning arc [ab] ⊂ clX Y
must separate x and y in clX Y .

Proof. We know from the θ-curve lemma that, if [ab] is some J-spanning arc in clX Y , then the
union J ∪ [ab] has precisely three complementary domains in X, namely

• A1, with boundary [axb] ∪ [ab] relative to X;

• A2, with boundary [ayb] ∪ [ab] relative to X; and

• A3, with boundary J relative to X;

where [axb] and [ayb] denote the appropriate subarcs of J , as sketched in Figure 2.10.

Relative to clX Y , the complementary domain A1 has boundary [ab]. Lemma 2.3.3 therefore requires
that all arcs [xy] ⊂ clX Y intersect the arc [ab], whence it follows that x and y belong to separate
components of clX Y − [ab].

Refining this result, we can prove that any pair of distinct points of clX Y –whether or not they
belong to J–can be separated in clX Y by some J-spanning arc.

Lemma 2.4.11. Let x, y ∈ clX Y denote some pair of distinct points. There exists some arc in
clX Y which spans J and separates x from y in clX Y .
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Proof. We proceed by exhausting the different options for where the points x and y may lie. There
are three possibilities:

• Both x and y may lie on J , in which case we are done, thanks to Lemma 2.4.10;

• Precisely one of x and y may lie on J ; or

• Both x and y may be interior to y.

Suppose, then, that y ∈ J , and notice that there exists an arc [ayb] ⊂ clX Y which spans J and does
not contain x. (To see why, use Lemma 2.4.8 together with Lemma A.10.3 to see that x cannot be a
cut point of clX Y ; combining this with Lemma A.3.5 allows us to find a neighbourhood U ⊂ clX Y
of x which does not separate clX Y , such that y 6∈ clY U . Selecting any pair of distinct points a, b ∈ J
and recalling Lemma A.10.3 yields an arc [ayb] ⊂ clX Y − clY U which, by passing to a subarc if
necessary, can be assumed to span J with no loss of generality.)

Now, suppose additionally that x ∈ J . Denote by [axb] ⊂ J the appropriate arc of J , and define the
Jordan curve K = [axb] ∪ [ayb]. Using the θ-curve lemma, we find that K is the boundary in X of
some component of X − (J ∪ [ayb]), which we denote by A. Choosing points z1, z2 ∈ K which are
separated by {x, y} and are arc accessible from A, we can find some K-spanning arc [z1z2] ⊂ clX A.
Again using the θ-curve lemma, we see that [z1z2] separates x and y in clX A, and therefore in clX Y .
(Figure 2.11a.)
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z2
(a)
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y
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z′2
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Figure 2.11

If x ∈ Y instead, then let A be as defined above; recycling our earlier reasoning supplies us
with a J-spanning arc [cxd] ⊂ clX A. Considering the arcs [ac], [bd] ⊂ J , we find that the union
K ′ = [ac] ∪ [ayb] ∪ [bd] ∪ [cxd] is a Jordan curve (Figure 2.11b); by the Jordan curve theorem, K ′

has precisely two complementary domains in X, of which one is a subspace of Y . Denote this
complementary domain by A′.
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Selecting points z′1 ∈ ]ac[ and z′2 ∈ ]bd[ for which there exists a J-spanning arc [z′1z
′
2] ⊂ A′, we can

apply the θ-curve lemma to the union K ′ ∪ [z′1z
′
2] in order to deduce that [z′1z

′
2] separates x and y in

clX A
′, and therefore in clX Y . This completes the proof.

Now we proceed to show that it takes only finitely many J-spanning arcs to separate points of
disjoint compact subspaces of clX Y . We achieve this in two steps: first we separate single points
from points of compact subspaces, and then points of compact subspaces from points of compact
subspaces.

Lemma 2.4.12. Let C ( clX Y denote some compact subspace, and consider a point x ∈ clX Y −C.
There exists a finite collection T of J-spanning arcs in clX Y which separates x from points of C,
in the sense that for each point y ∈ C, there exists some member of T which separates x and y in
clX Y .

Proof. Given any point y ∈ C, we can use the preceding lemma to find a J-spanning arc Ty ⊂ clX Y
which separates x and y in clX Y . If Uy denotes the component of clX Y −Ty which contains y, then
the collection {Uy}y∈C comprises an open cover of C, which by compactness must be essentially
finite. Letting {Uy1 , Uy2 , . . . , Uyn} denote some finite subcover of {Uy}y∈C , the collection

T = {Ty1 , Ty2 , . . . , Tyn} (2.12)

separates x from points of C.

Lemma 2.4.13. Let C,D ( clX Y denote some pair of disjoint compact subspaces. There exists a
finite collection T of J-spanning arcs in clX Y which separates points of C from points of D, in the
sense that for each x ∈ C and for each y ∈ D, there exists some member of T which separates x and
y in clX Y .

Proof. For each point x ∈ C, we can use the previous result to find some collection {T x1 , T x2 , . . . , T xnx}
of finitely many arcs which separate x from points of D. For each such arc, define Uxi to be the
component of clX Y − T xi which contains x. Then, compactness asserts that

{Uxi |x ∈ C and i ∈ {1, 2, . . . , nx}} (2.13)

is an essentially finite open cover of C. Much as in our proof of Lemma 2.4.12, the arcs corresponding
to elements of some fixed finite subcover of (2.13) form a finite collection of J-spanning arcs in clX Y
which separate points of C from points of D, as needed.

We can now fulfil our ambition of subdividing clX Y into ‘arbitrarily small pieces’. All of the hard
work has been done; the only thing that remains is for us to apply Lemma 2.4.13 to the right family
of subspaces.

Lemma 2.4.14. Recalling that we insisted in Definition A.2.1 that all continua be metrizable,
choose any metric d which topologizes X, and fix some δ > 0. There exists a finite collection T of
J-spanning arcs in clX Y such that each component of clX Y −

⋃
T∈T T has diameter (with respect

to d) strictly less than δ.

Proof. If diam clX Y < δ, then we have nothing to do: any single J-spanning arc in clX Y satisfies
the conclusion of the lemma.

Suppose, then, that diam clX Y ≥ δ. Compactness allows us to cover clX Y with a collection
B = {B1, B2, . . . , Bn} of finitely many closed balls of radius δ

4 , where n > 1; moreover, there exists
at least one disjoint pair of elements of B.

To each pair of disjoint elements Bi, Bj ∈ B, Lemma 2.4.13 allows us to associate some finite
collection Tij of J-spanning arcs in clX Y which separate points of Bi from points of Bj . Defining T
to be the union of all such Tij , we claim that every component of clX Y −

⋃
T∈T T has diameter

strictly less than δ. Indeed, select any pair of points x, y ∈ clX Y with d(x, y) ≥ δ; such points must
belong to disjoint elements of B, so that x and y are separated in clX Y by some element of T .
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2.4.4 Subdivision by Arc Complexes

Using Lemma 2.4.14, we can fix some arbitrary δ > 0 and find some finite collection T of J-spanning
arcs which divide clX Y into pieces of diameter no greater than δ–but if we are to use Lemma 2.4.6
to make a connection with the 2-cell, then we need to produce an arc complex from T .

Examining Definition 2.4.4, we see how T may fail to be an arc complex: concretely, there might exist
no enumeration T = {T1, T2, . . . , Tn} such that Tj spans J ∪⋃j−1i=1 Tj for every j ∈ {1, 2, . . . , n}. (For
instance, consider what happens if two members of T intersect along a non-degenerate subarc.)

To correct this deficiency, then, we might try to produce an arc complex from T by working ‘one
step at a time’. Deciding upon some arbitrary enumeration T = {T1, T2, . . . , Tn}, we first form the
union J ∪ T1. Then, if we let S2 denote the collection of (J ∪ T1)-spanning subarcs of T2, we could
form the union J ∪ T1 ∪

⋃
S∈S2 S, continuing inductively in this manner until all elements of T have

been accounted for.

There is, however, a subtlety here. Our definition of an arc complex, and the crucial isomorphism
between arc complexes in clX Y and in D2, relies on the assumption that arc complexes can be
assembled from only finitely many arcs–and it is entirely possible that, given two arcs T1 and T2,
there exist infinitely many T1-spanning subarcs of T2. As an illustration, we give an explicit example
in which T2 contains a countable infinitude of T1-spanning subarcs.

Example 2.4.15 (An arc with infinitely many subarcs spanning another arc). Consider the arcs
T1, T2 ⊂ R2 sketched in Figure 2.12, in which T1 is the graph of the function

x 7→
{

0 if x = 0 and

x sin
(
1
x

)
if x ∈ ]0, 1],

(2.14)

and T2 is simply the product [0, 1]× {0}.

T1

T2

Figure 2.12

Of course, every subarc of T2 of the form
[

1
(n+1)π ,

1
nπ

]
×{0} for some n ∈ N spans T1, and there are

infinitely many such subarcs.

We can see in this example that, although there are infinitely many spanning subarcs, they eventually
become arbitrarily short, and we can prove that a suitable generalization of this observation holds in
general. In particular, we are less interested in arcs with end points which are far apart in some
ambient space than we are in arcs with end points which are far apart in the arc complex we seek to
construct. The following definition and lemma make this more precise.

Definition 2.4.16. Let Z denote some arc connected subspace of clX Y , and T ⊂ X some arc with
end points x, y ∈ Z. If there exists some arc [xy] ⊂ Z such that diam [xy] < ε for some ε > 0, then
the arc T is said to be ε-small in Z. Otherwise, the arc T is said to be ε-large in Z.

If, for some pair of points x, y ∈ Z, every arc [xy] ⊂ Z is ε-large, then we shall say that the points x
and y are ε-distant in Z.

Lemma 2.4.17. Fix some ε > 0, and denote by A ⊂ clX Y some compact subspace. If T ⊂ clX Y
denotes some J-spanning arc, then there exist at most finitely many A-spanning subarcs of T which
are ε-large in A.
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Proof. We first notice that there are at most countably many subarcs of T which span A, ε-large or
otherwise. Indeed, the interior of each such subarc is a component of the complement T −A, and
T −A is both locally connected and second countable. Were such a space to have uncountably many
components, then it could not possibly have a countable basis: the set of components of a locally
connected space is a collection of disjoint open subspaces.

From here, we argue by contradiction. Suppose that there exist infinitely many ε-large subarcs of T
which span A, and choose some parametrization γ : [0, 1]→ T ; according to the above observation,
we can arrange the end points of the ε-large A-spanning subarcs of T into a sequence (γ(tn))∞n=1,
ordered such that ti < tj whenever i < j.

The corresponding sequence (tn)∞n=1 in [0, 1] is then monotone, so must have some limit t ∈ [0, 1].
Appealing to the local connectedness of A, we find some arc-connected neighbourhood U ⊂ A
of γ(t) of diameter less than ε

2 , and we know that the sequence (γ(tn))∞n=1 is eventually in this
neighbourhood. In particular, U must contain both end points of some ε-large A spanning subarc of
T , but this is a contradiction: by definition, such end points cannot be connected by any arc in A of
diameter less than ε.

This result tells us that, so long as we are content to always work at some small-but-finite resolution,
there are no obstructions to the construction of a arc complexes from T . To facilitate further
discussion, we encapsulate this observation in the definition of an ε-approximation.

Definition 2.4.18. Let T = {T1, T2, . . . , Tn} denote some collection of finitely many J-spanning
arcs in clX Y , and fix some ε > 0.

Let A0 = J , and for each i ∈ {1, 2, . . . , n}, inductively define Ai as the union of Ai−1 with
all Ai−1-spanning subarcs of Ti which are ε-large in Ai−1. The resulting subspace An is the
ε-approximation of T .

Of course, the notion of an ε-approximation is only useful if it respects the properties of T which we
care about. Let us verify that, for sufficiently small ε, passing from T to an ε-approximation thereof
preserves the separation of points of disjoint compact subspaces, in the following sense.

Lemma 2.4.19. Let T denote some collection of finitely many J-spanning arcs which separate
points of disjoint compact subspaces C,D ( clX Y .

Let Aε denote the ε-approximation of T . There exists some ε > 0 such that Aε separates points of
C from points of D, in the sense that for each pair of points x ∈ C and y ∈ D, there exists an arc
in A which separates x and y in clX Y .

Proof. We proceed by contradiction. Indeed, suppose that that no ε > 0 satisfies the statement of
the lemma; then, for each n ∈ N, we can find points xn ∈ C and yn ∈ D which are not separated by
any arc of the 1

n -approximation An−1 . The compactness of C and D demands that the sequences
(xn)∞n=1 and (yn)∞n=1 have accumulation points x ∈ C and y ∈ D respectively.

By hypothesis, there must exist some arc T = [ab] ∈ T which separates x and y in clX Y . Moreover,
we can use Lemma A.5.8 to find some arc X = [xzx] ⊂ clX Y − T such that X ∩ J = {zx}, along
with some arc Y = [yzy] ⊂ clX Y − T such that Y ∩ J = {zy}. (Figure 2.13a.)

Selecting some k ∈ N such that 1
k < d(T,X ∪ Y ), we define U as the 1

k -neighbourhood of T in clX Y ,
as roughly indicated in Figure 2.13b. Now, suppose that the points a and b belong to the same
component of the intersection U ∩Ak−1 ; then, there would exist some arc in U ∩Ak−1 connecting
a to b, and such an arc would separate zx and zy in J . The same line of reasoning used to prove
Lemma 2.4.10 reveals that said arc would also separate x and y in clX Y , and this would be the
contradiction we seek: by construction, no arc contained in Ak−1 can separate x and y in clX Y .

Thus, we will be done if we can prove that a and b belong to the same component of U ∩Ak−1 . To
this end, suppose otherwise, so that U ∩ Ak−1 = Va | Vb is some separation in which a ∈ Va and
b ∈ Vb. Arbitrarily orienting T from a to b, define p to be the last point at which T meets Va, and a
to be the first point at which T meets Vb (Figure 2.13c). The subarc [pq] ⊂ T spans Ak−1 , but is
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not contained within Ak−1 ; recalling the construction of the 1
k -approximation of T , it follows that

the points p and q cannot be 1
k -distant in Ak−1 .

Unravelling the jargon, we find that there must exist some arc in Ak−1 which connects p to q and
has diameter less than 1

k . However, such an arc must then lie in U , contradicting our assumption
that a and b belong to distinct components of U ∩Ak−1 , and completing the proof.

Lemma 2.4.20. Let T denote some collection of finitely many J spanning arcs in clX Y , with the
property that every component of clX Y −

⋃
T∈T T has diameter strictly less than δ, for some δ > 0.

There exists some ε > 0 such that every domain of the ε-approximation of T also has diameter
strictly less than δ.

Proof. We cover clX Y by some collection B = {B1, B2, . . . , Bn} of finitely many closed balls of
radius δ

4 , and define the set

I = {(i, j) |Bi ∩Bj = ∅}. (2.15)

Given any (i, j) ∈ I, we know that T must separate points of Bi from points of Bj ; otherwise, there
would exist some complementary domain of

⋃
T∈T T in clX Y of diameter at least δ. Lemma 2.4.19

therefore asserts that the εij-approximation of T separates points of Bi from points of Bj , for some
εij > 0.

Now, let ε = min(i,j)∈I εij ; since I is a finite set, this ε is well defined. Moreover, inspection of
Definition 2.4.18 shows that, for each (i, j) ∈ I, the εij-approximation of T is a subspace of the
ε-approximation of T . Thus, every domain of the ε-approximation of T has diameter less than δ, as
required.
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2.4.5 Complementary Domains as 2-Cells

Lemma 2.4.20 is the final ingredient we need in order to prove that clX Y is a 2-cell. Indeed, for
each n ∈ N, let Tn denote some collection of finitely many J-spanning arcs which divide clX Y into
pieces of diameter no greater than 1

n , in the sense of Lemma 2.4.14. Using Lemma 2.4.20, we can
produce from each such Tn an arc complex An, all domains of which also have diameter strictly less
than 1

n .

Via Lemma 2.4.6, we know that each arc complex An is isomorphic to some S1-spanning arc complex
Bn in the 2-cell D2. We do not have any a priori guarantee that each domain of Bn is also bounded
above by 1

n , but no generality is lost in assuming this to be the case. (To see why, notice that we can
reduce any domain of Bn of diameter at least 1

n to finitely many components of diameter strictly less
than 1

n by, for example, repeated barycentric subdivisions. The arc complex that results is, again
via Lemma 2.4.6, isomorphic to some J-spanning arc complex in clX Y , with which we can replace
our original arc complex An.)

Now, we can define subspaces

C = {x ∈ clX Y |x is a vertex of An for some n ∈ N} and

D =
{
x ∈ D2

∣∣x is a vertex of Bn for some n ∈ N
}
,

(2.16)

which are dense in their respective ambient spaces essentially by construction; further, the iso-
morphisms between the arc complexes {An}n∈N and {Bn}n∈N furnish us with a natural bijection
f : C → D. Recalling Lavrentieff’s theorem (Lemma 2.4.2), we find that it will be sufficient for us to
prove f uniformly bicontinuous in order to establish a homeomorphism clX Y ∼= D2.

To this end, fix some ε > 0, and choose some n ∈ N such that 2
n < ε. We notice first that the uniform

continuity of f will follow from the existence of some δ > 0 with the property that, if d(x, y) < δ for
any pair of points x, y ∈ C, then x and y lie in the closures of some pair of (not necessarily distinct)
adjacent domains of An. (Explicitly, suppose that we are given some such δ, and select a pair of
points x, y ∈ C for which d(x, y) < δ. We then know that f(x) and f(y) belong to the closures of
some adjacent pair of domains in Bn, and every domain of Bn has diameter less than 1

n . It follows
that ‖f(x)− f(y)‖ ≤ 2

n < ε, so that f is uniformly continuous.)

We shall argue that such a δ must exist by contradiction. Suppose that, for each k ∈ N, there exists
some pair of points xk, yk ∈ C such that

• d(xk, yk) < 1
k , but

• f(xk) and f(yk) do not lie in the closures of an adjacent pair of domains of Bn.

Appealing to compactness and passing to subsequences if necessary, we find that the sequences
(xk)∞k=1 and (yk)∞k=1 have limits x and y respectively in C. Moreover, the arc complex An of course
has only finitely many domains, so that an application of the pigeonhole principle allows us to lose
no generality in assuming additionally that (xk)∞k=1 lies entirely in clX D1 and (yk)∞k=1 entirely in
clX D2, for some pair of non-adjacent domains D1 and D2 of An.

Observe that
d(x, y) ≤ d(x, xk) + d(xk, yk) + d(yk, y) (2.17)

for each k ∈ N. Since xk → x and yk → y, we can of course arrange that d(x, xk) < λ
3 and

d(y, yk) < λ
3 for any λ > 0, by choosing some sufficiently large value of k. If 1

k < λ
3 , then our

definition of the sequences (xk)∞k=1 and (yk)∞k=1 also ensures that d(xk, yk) < λ
3 , whence it follows

that x = y. However, this is a contradiction: we chose the domains D1 and D2 to be non-adjacent,
so that clX D1 ∩ clX D2 = ∅. Thus, they cannot possibly have a common boundary point. The
uniformly continuity of f is therefore established, while that of f−1 follows by exchanging the roles
of clX Y and D2 in the above reasoning.

All of this is summarised by the following result.

Lemma 2.4.21 (Schoenflies’ theorem). Let Y denote some complementary domain of a Jordan
curve J in a compact Zippin space X. Then, there exists some homeomorphism f : clX Y → D2

such that f(J) = S1.
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Proof. We did not show in the above that f(J) = S1, but this follows immediately from our
construction of the requisite arc complex isomorphisms in Lemma 2.4.6.

2.5 Completing the Proof

So far, we have shown that if J is some Jordan curve in a compact Zippin space X, then X − J
consists of exactly two components A1 and A2, both with boundary J (Lemma 2.3.7), and we
have deduced the existence of homeomorphisms f1 : clX A1 → D2 and f2 : clX A2 → D2 such that
f1(J) = f2(J) = S1 (Lemma 2.4.21). We are almost ready to conclude, using Lemma 2.2.2 to view
clX A1 and clX A2 as two hemispheres, that X is homeomorphic to S2, but there is one remaining
subtlety which must be tackled.

It was crucial in Lemma 2.2.2 that we attached the pair of 2-cells along their boundary circles
‘without twisting’, but as it stands, we only know that f1 and f2 both map the Jordan curve J to
the circle S1; given a single point x ∈ J , we have no assurance that f1(x) = f2(x). In other words,
it is possible that f1 and f2 differ on S1 by a non-trivial homeomorphism of the circle. Fortunately,
however, a classical trick due to Alexander4 [Ale23] gives us a way to circumvent the issue.

Lemma 2.5.1 (Alexander’s lemma). Let ϕ : S1 → S1 denote some homeomorphism. Then, ϕ can
be extended to a homeomorphism ϕ̃ : D2 → D2.

Proof. With the exception of the origin, each point of D2 of course permits a unique representation
in the form rx, where r ∈ [0, 1] and x ∈ S1. Defining

ϕ̃(rx) = rf(x) (2.18)

yields the desired extension.

Let us apply Alexander’s lemma to the composition f1 ◦ f−12 : S1 → S1, producing an extension
G : D2 → D2. The composition G ◦ f2 : clX A2 → D2 is then a homeomorphism with the property
that, given any point x ∈ J ,

(G ◦ f2)(x) =
(
f1 ◦ f−12 ◦ f2

)
(x) = f1(x), (2.19)

and this is precisely what we need. Identifying clX A1 with one copy of D2 via the homeomorphism
f1, and clX A2 with a second copy of D2 via the homeomorphism G ◦ f2, we invoke Lemma 2.2.2 to
conclude that every compact Zippin space is homeomorphic to S2, completing our proof of Zippin’s
sphere characterization.

4We remark in passing that an analogous result holds in all finite dimensions, and can be proved by exactly the
same methods. This fact sometimes goes by the moniker of Alexander’s trick, but we avoid that terminology here;
‘Alexander’s trick’ may also refer to a much more general result, stating that if two homeomorphisms of the n-cell Dn

are isotopic on the boundary Sn−1, then they are in fact isotopic throughout Dn. We shall have no need of this more
powerful machinery here.



Appendix A

Results from Continuum Theory

A.1 Overview

The theory of continua has a lengthy and storied history, with its genesis in the late 19th century and
Cantor’s explorations [Can83] of perfect subspaces1 of Rn satisfying an additional property2 which
reduces to connectedness in the compact setting. (Interestingly, it was also in [Can83] that Cantor
first introduced the now-classical space bearing his name, which we will encounter in Definition A.6.4.)
However, this would not evolve into the modern definition of continua (Definition A.2.1) until the
notion of compactness was given its modern formulation by Alexandroff and Urysohn [AU24, Wil70],
and that of connectedness by Lennes and Riesz [Len05, Rie06, Wil78].

From its infancy, continuum theory has facilitated research in adjacent fields of mathematics,
especially in topological dynamics [Wes18], and spawned numerous problems–many of which remain
open, with a representative cross-section given in [vMR90]. One example, counted by Bing as
among the most interesting open problems in contemporary topology [Bin69], is the plane fixed
point problem. Its statement seems relatively innocuous: if C ⊂ R2 denotes some continuum such
that R2 − C is connected, then does every continuous function C → C necessarily have a fixed
point? Nevertheless, the question remains unanswered, although Bellamy has provided an example
[Bel79] of a potentially non-planar continuum without this property, while Fokkink et al. answer the
question in the affirmative for a restricted class of continua and functions in [FMOT08].

Here, we shall restrict ourselves to a narrow transect of continuum theory, developing only what
is necessary for our treatment of Zippin’s sphere characterization in Chapter 2. With arbitrary
continua, we shall prove what we need in order to characterize arcs and the circle (Lemmas A.4.5
and A.4.6). With this complete, we shall add local connectedness to our hypotheses and begin to
study the so-called Peano continua.

After proving in Section A.5 that Peano continua enjoy far stronger connectivity properties than
arbitrary continua, we have two main objectives in our exploration of Peano continua. The first
is a complete characterization of Peano continua without explicit mention of local connectedness
(Theorem A.6.8), while the second (Theorem A.10.3) is a description of cyclic Peano continua
(Definition A.10.1) which is indispensable in our proof of Zippin’s sphere characterization. Along the
way, we shall also encounter a decomposition of Peano continua explicitly originating in Whyburn’s
work [Why27a], but also implicit in the work of Ayres [Ayr27].

A.2 Basic Definitions

A continuum, from the perspective of contemporary general topology, is always some form of compact,
connected space, although there is some variation in the literature as to whether any additional

1That is, closed subspaces with no isolated points.
2In modern language, this additional property is that of well chainedness.
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hypotheses should be included in this definition.

Here, we follow Nadler’s convention [Nad92] of always requiring our continua to be metrizable, and
we also consider Whyburn’s notion [Why45] of generalized continua. We make these definitions
explicit below.

Definition A.2.1. A continuum is a non-empty topological space which is compact, connected, and
metrizable; a Peano continuum is a continuum which is also locally connected.

A generalized continuum is any non-empty topological space which is locally compact, connected, and
metrizable; a generalized Peano continuum is a generalized continuum which is also locally connected.

Any continuum or generalized continuum which contains more than one point is referred to as
non-degenerate.

It is worthwhile to note that, by this definition, continua comprise a strict subclass of the compact,
connected spaces: as a straightforward example, endowing a two-point set with the trivial topology
yields a space which is of course compact and connected, but fails to be Hausdorff. However, there
are also many examples of compact, connected Hausdorff spaces which Definition A.2.1 excludes
from being continua, of which we give just one example.

Example A.2.2 (The cofinite topology on R). The cofinite topology on R is defined by declaring
that a subset U ⊂ R is open if and only if either

• U is empty, or

• The complement R− U is finite.

First, we shall prove that the space Rcof produced by equipping the set R with this topology is both
compact and connected; then, we argue that the space Rcof is not first countable, and a fortiori not
metrizable.

For compactness, let us denote by U any open cover of Rcof. If R ∈ U , then of course U contains a
finite subcover, so let us suppose this not to be the case, and distinguish some arbitrary element
U0 ∈ U . Our definition of the cofinite topology tells us that the complement R − U0 consists of
finitely many points, say {x1, x2, . . . , xn}. Now, for each i ∈ {1, 2, . . . , n}, there must of course exist
some Ui ∈ U such that xi ∈ Ui, and it follows immediately that the collection {U0, U1, U2, . . . , Un}
also covers Rcof.

As regards connectedness, it will suffice for us to prove that the only subspaces of Rcof which are
both closed and open are the empty set and Rcof itself. Indeed, let A ⊂ Rcof denote some subspace
which is both open and closed, and suppose that A 6∈ {∅,Rcof}; then, our definition of the cofinite
topology forces us to conclude that both R−A and A contain only finitely many points–but since R
contains infinitely many points, this is impossible. It follows, therefore, that Rcof is connected.

To establish that the space Rcof is not first countable (and therefore not metrizable), despite being
both compact and connected, we shall argue by contradiction. To this end, suppose that there were
to exist some countable neighbourhood basis for the point 0 ∈ R in this topology, say

B = {R−A1,R−A2, . . .}. (A.1)

Then, the union C = {0}∪⋃n∈NAn is countable, so that there must exist some point x ∈ R− C. The
complement R−{x} is, by definition, a neighbourhood of 0, but by construction this neighbourhood
can contain no element of B.

Before proceeding, we also give an example of a compact, connected, non-metrizable (and non-
Hausdorff) space which is of significant interest elsewhere in mathematics, especially in algebraic
geometry–namely, the spectrum of Z (or, more generally, of any principal ideal domain).

Example A.2.3 (The spectrum of Z). Let SpecZ denote the set of prime ideals of Z, and declare
a subspace C ⊂ SpecZ to be closed if and only if

C = {P ∈ SpecZ | I ⊂ P} (A.2)



A.2. BASIC DEFINITIONS 55

for some ideal I ⊂ Z. This is the so-called Zariski topology on SpecZ, and using this to topologize
SpecZ produces a space known as the spectrum of Z, again denoted by SpecZ.

To see that SpecZ is compact, recall that every ideal of Z is principal. Thus, given some ideal
(x) ⊂ Z and some prime ideal (p) ∈ SpecZ, we know that if (x) ⊂ (p), then p is a factor of x. Since
an integer has only finitely many prime factors, we find that every closed subspace of SpecZ is finite.
Thus, given some arbitrary open cover U of SpecZ, we can distinguish some element U ∈ U , safe in
the knowledge that the complement SpecZ− U is at most finite. This complement can of course be
covered by at most finitely many elements of U , establishing the compactness of SpecZ.

Moreover, the definition (A.2) ensures that no closed subspace of SpecZ can contain the trivial ideal
(0); thus, SpecZ permits no disjoint open subspaces, and must therefore be connected, but cannot
be Hausdorff.

Given that our primary interest in the main body of this work lies with the 2-sphere, however, we do
not lose much in insisting that our continua be metrizable–and in doing so, we are able to simplify
certain proofs, and make possible others which would not hold without this assumption.

A useful means of constructing new continua from some prescribed collection of nested continua is
to take their intersection, which we detail in the following lemma. In order to apply this result to
our proof of Lemma A.3.3, we are forced to couch this lemma in the language of nets, which we do
not formally introduce, in order to avoid a lengthy detour into the Moore-Smith theory3 [MS22] of
‘generalized convergence’ which is lucidly described in [Cla16].

The fact that we here work exclusively in first countable spaces, however, allows the reader unfamiliar
with nets to replace arbitrary directed sets by the natural numbers, and nets by sequences, without
changing the core idea of the following proof. However, when we prove Lemma A.3.3, we must
consider the intersection of a collection of subcontinua of a given continuum, and this collection is
not, in general, indexed by the natural numbers; nevertheless, it is certainly directed by reverse
set-theoretic inclusion.

Lemma A.2.4. Consider some collection {Xi}i∈I of continua, directed by reverse set-theoretic
inclusion. (That is, impose some preorder � on {Xi}i∈I by declaring that Xi � Xj if and only if
Xj ⊂ Xi.)

Then, the intersection
⋂
i∈I Xi is itself a continuum.

Proof. Let us arbitrarily select some index j ∈ I. Observing that
⋂
i∈I Xi =

⋂
i∈I(Xi ∩Xj), we see

that no generality is lost in assuming that Xi ⊂ Xj for each i ∈ I. Moreover, we notice that
⋂
i∈I Xi

is a closed subspace of Xj , and therefore must be compact.

As for connectedness, we shall argue by contraposition, showing that if
⋂
i∈I Xi is disconnected, then

so too must one of the spaces {Xi}i∈I be. Suppose, then, that
⋂
i∈I Xi = A ∪B, where the disjoint

subspaces A and B are non-empty and closed. Then, since the intersection
⋂
i∈I Xi is compact

Hausdorff, we know that A and B are both compact. Knowing that A and B are disjoint compact
subspaces of the compact Hausdorff (hence normal) space Xj , we can find some pair U and V of
disjoint neighbourhoods of A and B respectively in Xj .

Now, if all of the spaces {Xi}i∈I are to be connected, then for each i ∈ I, there must exist some
point xi ∈ Xi − (U ∩ V ): otherwise, Xi = (U ∩Xi) | (V ∩Xi) would be a separation of a connected
space. We assemble the points {xi}i∈I into a net Φ: I → Xj defined by Φ(i) = xi. (Here, we have
used our above assumption that Xi ⊂ Xj for each i ∈ I.)

The compactness of Xj ensures that this net has some accumulation point x ∈ Xj . If W ⊂ Xj

denotes any neighbourhood of this accumulation point, then for each i ∈ I, there must by definition
exist some i′ ∈ I such that Xi′ ⊂ Xi and xi′ ∈ W . In other words, we have shown that every
neighbourhood of the accumulation point x intersects all of the continua {Xi}i∈I , so that

x ∈
⋂
i∈I

clXj Xi =
⋂
i∈I

Xi. (A.3)

3Somewhat confusingly, this ‘Moore’ is E.H. Moore, not the R.L Moore of the Moore’s theorem discussed in
Chapter 1. Muddying the waters further, R.L Moore was at one point supervised by E.H. Moore. [Wil76]



56 APPENDIX A. RESULTS FROM CONTINUUM THEORY

This in turn implies that the union U ∪ V is a neighbourhood of the accumulation point x–but
this is a contradiction. By construction, the net Φ never takes values in U ∪ V , so a fortiori it is
impossible for Φ to frequently be in U ∪ V .

A.3 Cut Points and Separators

A great deal of insight into the structure of a continuum can be gleaned by studying subspaces
which separate the continuum on their removal: indeed, the entirety of Chapter 2 was devoted to a
characterization of the 2-sphere in terms of the (dis)connectedness of certain complementary domains.
We now investigate these ideas in greater generality, first introducing some terminology.

Definition A.3.1. Let X denote some topological space. If A ⊂ X denotes some subspace such that
X −A is disconnected, then we say that A is a separator of X, or that A separates X.

If a singleton {x} ⊂ X is a separator of X, then we call the point x a cut point of X. Dually, any
point of X which is not a cut point is termed a non-cut point of X.

The following reasonable-sounding result will be of significant utility in our study of continua. To
indicate why we need to include in Lemma A.3.2 the hypothesis that the separator C be connected,
consider the unions A ∪ C for the planar continua sketched in Figure A.1; one is manifestly itself
connected, while the other is just as clearly disconnected.

C A

(a)

C A

(b)

Figure A.1

Lemma A.3.2. Denote by C some connected separator of a continuum X. Then, if X −C = A | B
is some separation, the unions A ∪ C and B ∪ C are both continua.

Proof. To prove that A∪C is connected, we argue by contradiction. If A∪C is disconnected, then we
can produce some separation A∪C = U | V , and the connectedness of C allows us to assume without
loss of generality that C ⊂ V . It follows that U ⊂ A, for were there to exist a point u ∈ U − A,
this point would lie in C, and therefore in V . This, however, implies that X = U | (B ∪ V ) is a
separation of X, which is a contradiction. Thus, A ∪C is connected, and analogous reasoning shows
us that B ∪ C must be as well.

To complete the proof, we can see that A ∪ C and B ∪ C are closed, and therefore compact, by
observing that the complements X − (A ∪ C) = B and X − (B ∪ C) = A are open.

Another powerful result which may at first seem innocuous concerns the existence of non-cut points:
namely, that every continuum contains at least two.4 We can gain some intuition for why this should
be the case by considering the closed unit interval [0, 1]. If we delete, say, the origin from [0, 1], then
we arrive at a space which has only a single non-cut point, but we have sacrificed compactness in
doing so; on the other hand, if we attempt to force the non-cut points to coalesce by passing to
the quotient space S1, then we can retain compactness, but produce a space with no cut points at
all.

Lemma A.3.3. Let p denote some cut point of a continuum X, and X − {p} = A | B some
separation. Then, each of A and B contain a non-cut point of X.

4In passing, we remark that this fact was first proved in [Moo20] by R.L. Moore, originator of Theorem 1.1.2.
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Proof. Towards a contradiction, suppose that every point of A is a cut point of X, so that for each
a ∈ A we can find some separation X − {a} = U(a) | V (a). Notice that it is impossible for both
U(a) and V (a) to intersect B ∪ {p}, for otherwise we would have a separation

B ∪ {p} =
(
U(a) ∩ (B ∪ {p})

)
|
(
V (a) ∩ (B ∪ {p})

)
(A.4)

of a space which is, according to Lemma A.3.2, connected. Thus, one of U(a) and V (a) must be
contained within A; without loss of generality, we assume that U(a) ⊂ A.

Now, the collection {U(a) ∪ {a}}a∈A is a collection of continua, all contained within A, which we
can direct by set-theoretic inclusion. Using Lemma A.2.4, we see that the intersection

C =
⋂
a∈A

(U(a) ∪ {a}) ⊂ A (A.5)

is itself a continuum.

Selecting any point c ∈ C, consider the associated separation X−{c} = U(c) | V (c), where U(c) ⊂ A.
Choosing some point d ∈ U(c), observe that c cannot be a point of U(d), for otherwise both U(d)
and V (d) would intersect V (c) ∪ {c}, inducing a separation of a continuum as in (A.4). We have
arrive at a contradiction: on the one hand, we require that c ∈ ⋂a∈A(U(a) | {a}), but on the other,
we have just demonstrated that c 6∈ U(d) ∪ {d} for the point d ∈ U(c) ⊂ A.

Applying the same reasoning to points of B completes the proof.

Corollary A.3.4. Every non-degenerate continuum has at least two non-cut points.

One heuristic for visualizing cut points of a continuum is to consider them as where that continuum
is ‘pinched’ to a point. The following lemma makes this slightly more precise: if we take a non-cut
point of a continuum X, then we can always find some neighbourhood of that point which fails to
separate X.

Lemma A.3.5. If x denotes some non-cut point of a continuum X, then there exists some neigh-
bourhood U ( X of x such that the complement X − U is connected.

Proof. Arguing by contraposition, let us assume that every neighbourhood of some point x ∈ X
separates X. Then, arbitrarily choosing some metric which induces the topology of X, we know in
particular that the open balls

{
B(x;n−1)

}
n∈N all separate X. Let

X −B
(
x;

1

n

)
= Yn | Zn (A.6)

denote some separation for each n ∈ N, and notice that, since

X −B
(
x;

1

n

)
⊂ X −B

(
x;

1

n+ 1

)
for each n ∈ N, (A.7)

we lose no generality if we also assume that Yn ⊂ Yn+1 and Zn ⊂ Zn+1 for every n ∈ N.

We know that

X − {x} = X −
(⋂
n∈N

B

(
x;

1

n

))

=
⋃
n∈N

(
X −

(
x;

1

n

))

=

(⋃
n∈N

Yn

)
∪
(⋃
n∈N

Zn

)
.

(A.8)

However, the unions
⋃
n∈N Yn and

⋃
n∈N Zn are both open and disjoint, since for each n ∈ N, both

Yn and Zn are open and disjoint, with Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · and Z1 ⊂ Z2 ⊂ Z3 ⊂ · · · . It follows that
x is a cut point of X, which completes the proof.



58 APPENDIX A. RESULTS FROM CONTINUUM THEORY

A.4 Characterizing the Closed Unit Interval

In this section, we shall identify the closed unit interval [0, 1] as being, up to homeomorphism, the
only continuum with precisely two non-cut points. This result is not only elegant and intuitively
plausible, but also of great use, giving us a tool for identifying arcs in other continua without
explicitly constructing a homeomorphism.

This result was originally proved by the same Moore who proved Theorem 1.1.2, and–much as we
found in Chapter 1–Moore’s original exposition is at best challenging for many modern readers to
follow. Our proof here follows [Wil70], and is enabled by Whyburn’s notion [Why28] of a separation
order. Roughly, we can summarise the separation order as stating that if a point x ∈ X separates a
point y ∈ X from a, then we can view x as being, in some sense, ‘closer’ to a than y is.

A result of Cantor’s [Can95], also of interest in set theory and in model theory [Roi90, Mar00], will
allow us to identify a subspace of X with a subspace of [0, 1] order-theoretically. After constructing
a natural extension of this order isomorphism to the entirety of X and [0, 1], we shall see that the
separation order on X in fact induces the topology of X; thus, we can promote this order isomorphism
to a topological homeomorphism, and in doing so we arrive at the desired characterization.

Having sketched how we are to proceed, we now make the arguments involved explicit. We first use
the classical back-and-forth argument to prove Cantor’s order-theoretic result, which is of a slightly
different flavour to the topological results that follow it.

Lemma A.4.1 (Cantor). Let (A,≤A) and (B,≤B) denote some pair of countable total orders with
neither greatest nor least elements. Suppose additionally that these orders are dense, in the sense
that given any pair of points a1, a2 ∈ A and b1, b2 ∈ B, we can find a3 ∈ A and b3 ∈ B such that
a1 <A a3 <A a2 and b1 <B b3 <B b2.

Then, (A,≤A) and (B,≤B) are order isomorphic to one another.

Proof. Arbitrarily choose enumerations A = {a1, a2, . . .} and B = {b1, b2, . . .}, assuming without
loss of generality that whenever i 6= j, we have both that ai 6= aj and that bi 6= bj . Further, define
the finite subsets An = {a1, a2, . . . , an} and Bn = {b1, b2, . . . , bn} for each n ∈ N.

To define an order isomorphism f : A→ B, we define the restrictions f |An and f−1|Bn inductively.
For the basis case of this induction, we simply set f(a1) = b1 and f−1(b1) = a1, so suppose that we
have successfully defined the restrictions f |An−1

: An−1 → B and f−1|Bn−1
for some n > 1. We wish

to define f(an) and f−1(bn) in terms of these restrictions.

Our requirement that f be an order isomorphism means that, given the restrictions f |An−1
and

f−1|Bn−1 , we have defined f on a domain C = An−1 ∪ f−1(Bn−1). Now, if an ∈ C, then there is
nothing for us to do, so suppose that an 6∈ C. There are then three possibilities for where the point
an may lie with respect to C in the order ≤A, which we shall exhaust. Namely,

• an may be strictly greater than every element of C,

• an may be strictly less than every element of C, or

• an may have both an immediate successor and an immediate predecessor in C. (Notice that
this successor and predecessor must exist, since C is finite.)

In the first case, our assumption that (B,≤B) has no greatest element allows us to find some point
b ∈ B such that f(maxC) <B b. Knowing that f is an order isomorphism, we deduce that b 6∈ f(C),
and so we define f(an) = b.

We can deal with the second case in essentially the same fashion. There exists a point b′ ∈ B such
that b′ <B f(minC), because (B,≤B) has no least element, and since f is an order isomorphism,
we know that b′ 6∈ f(C). Thus, we define f(an) = b′.

As for the third case, let s and p denote respectively the immediate successor and predecessor in C
of the point an. Using the density of (B,≤B) together with the fact that f preserves order allows us
to find a point b′′ ∈ B such that f(p) < b′′ < f(s), and by the same logic as above, we know that
b′′ 6∈ f(C), allowing us to define f(an) = b′′.
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In order to define f−1(bn), we need only exchange the roles of f and f−1 and those of (A,≤A) and
(B,≤B) in the above.

Corollary A.4.2. Every countable total order with neither a greatest nor a least element which is
dense in the sense of Lemma A.4.1 is order isomorphic to Q ∩ ]0, 1[ with its standard order.

Now, let us formally define the separation order, and show that–at least in the setting we are
interested in here–this order induces the right topology.

Definition and Lemma A.4.3. Let X denote some continuum with precisely two non-cut points
a, b ∈ X. Define a relation � on X by declaring that

x � y if and only if either x = y, or x separates a from y in X.

This relation is a total order on X, which we call the separation order.

Proof. For any point x ∈ X − {a, b}, we shall use the notation

X − {x} = A(x) | B(x) (A.9)

to refer to a separation for which a ∈ A(x) and b ∈ B(x).

We start by proving that � is antisymmetric. Towards a contradiction, suppose that there exist
distinct points x, y ∈ X such that both x � y and y � x. Then, we would have separations
X − {x} = A(x) | B(x) and X − {y} = A(y) | B(y) such that y ∈ B(x) and x ∈ B(y). However, we
know (Lemma A.3.2) that both B(x) ∪ {x} and B(y) ∪ {y} are connected subspaces of X which
contain the point b, so that we have inclusions

B(x) ∪ {x} ⊂ B(y) and B(y) ∪ {y} ⊂ B(x). (A.10)

Taken together, these inclusions imply that

y ∈ B(x) ∪ {x} ⊂ B(y), (A.11)

and this is a contradiction: by definition, y 6∈ B(y). The antisymmetry of � is therefore established.

We can prove that � is transitive by similar means. Given points x, y, z ∈ X such that x � y and
y � z, we know that B(z) ∪ {z} ⊂ B(y), and likewise that B(y) ∪ {y} ⊂ B(x). It follows that
z ∈ B(x), so that x � z, as needed.

Finally, we turn towards the question of whether or not � is connex–that is, whether or not, for each
pair of points x, y ∈ X, x � y or y � x. Selecting some pair of distinct points x, y ∈ X, consider
the separation X − {x} = A(x) | B(x). If y ∈ B(x), then by definition we must have that x � y,
so suppose instead that y ∈ A(x). Then, we know that B(x) ∪ {x} ⊂ B(y), and in particular that
x ∈ B(y), and we conclude that � is connex. Putting everything together, we deduce that � is a
total order on X.

Lemma A.4.4. Let X denote some continuum with precisely two non-cut points a, b ∈ X. The
order topology induced on X by the separation order � is precisely the topology of X.

Proof. Recall that the order topology induced on X by � is generated from a subbasis of rays of the
form

Lx = {y ∈ X | y ≺ x} and Ux = {y ∈ X |x ≺ y}, (A.12)

for points x ∈ X.

Consider some point x ∈ X − {a, b}, and retain the notation of (A.9). If y ∈ X − {x}, then by
definition we know that y ∈ A(x) if and only if either y = a, or if y separates x from a–but this is
precisely the definition of the ray Lx. Similarly, we find that B(x) = Ux. Knowing that A(x) and
B(x) are by open in X by definition, and observing also that La = ∅, Ua = X − {a}, Lb = X − {b}
and Ub = ∅, we find that the topology of X refines the separation order topology: every subbasis
element for the latter is open in the former.
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Conversely, consider some arbitrary open subspace U ⊂ X, end select a point x ∈ U − {a, b}. We
shall argue by contradiction that there exist points p, q ∈ X such that

x ∈ ]p, q[ = {y ∈ X | p ≺ y ≺ q} ⊂ U. (A.13)

To this end, suppose that there exists no such interval, so that ]p, q[ ∩ (X − U) 6= ∅ for all distinct
points p, q ∈ X. A fortiori, we find that the closed interval

[p, q] = {y ∈ X | p � y � q} (A.14)

also intersects X − U , yielding a collection

C = {[p, q] ∩ (X − U) | p, q ∈ X and p ≺ x ≺ q} (A.15)

of non-empty subspaces of X. Knowing as we now do that the topology of X is a refinement of the
separation order topology, we also find that every member of C is closed in X.

Now, notice that, given a pair of closed intervals [p1, q1] and [p2, q2] such that p1 ≺ q1 and p2 ≺ q2,

[p1, q1] ∩ [p2, q2] = [max{p1, p2},min{q1, q2}]. (A.16)

from which it follows that C is in fact closed under finite intersections. Knowing that X is compact,
we find that there exists at least one point of X common to all elements of C, so that⋂

C∈C
C = (X − U) ∩

⋂
{[p, q] | p, q ∈ X and p ≺ x ≺ q} 6= ∅. (A.17)

However, we also know that⋂
{[p, q] | p, q ∈ X and p ≺ x ≺ q} = {x} ⊂ U, (A.18)

and the combination of (A.17) with (A.18) produces a contradiction.

We have successfully shown that if U ⊂ X is open and x ∈ U − {a, b}, then U contains an interval,
open with respect to the separation order on X, which contains the point x. If we can show similar
results hold when a ∈ U or b ∈ U , then we will be able to conclude that the separation order
topology also refines the topology of X–but the reasoning for this is essentially identical to the above.
(Explicitly, we repeat the same reasoning, replacing the open intervals ]p, q[ with rays Lq or with
rays Up.)

From here, all that needs to be done in order to complete our characterization of [0, 1] is to apply
Lemma A.4.1 to an appropriate subspace, and then extend the resulting order isomorphism to a
homeomorphism.

Lemma A.4.5. For any continuum X, the following are equivalent:

• X has precisely two non-cut points, and

• X is homeomorphic to the closed unit interval [0, 1].

Proof. One implication is trivial, since of course the closed unit interval has exactly two non-cut
points: to wit, 0 and 1.

Thus, consider some continuum X with precisely two non-cut points a, b ∈ X. Throughout, we shall
denote by X − {x} = A(x) | B(x) a separation such that a ∈ A(x) and b ∈ B(x), for any point
x ∈ X − {a, b}.
The space X is compact and metrizable, and therefore separable, allowing us to find some countable
dense subspace P ⊂ X, where we lose no generality in assuming that a, b 6∈ P . Letting � denote the
separation order on X, we propose that (P,�) satisfies the hypotheses of Lemma A.4.1.

That (P,�) has neither a greatest nor a least element is immediate: the greatest and least elements
of (X,�) are precisely the points a and b, which we have explicitly excluded from P . Moreover,
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given points p1, p2 ∈ P such that p1 ≺ p2, the density of P in X ensures that there exists some point
p3 common to P and the separation-order-open interval ]p1, p2[; in other words, p1 ≺ p3 ≺ p2, so
that the second condition of Lemma A.4.1 is also satisfied.

Invoking Lemma A.4.1, we arrive at some order isomorphism f : (P,�) → Q ∩ ]0, 1[. We wish to

extend this to an order isomorphism f̃ : (X,�)→ [0, 1], which, in light of Lemma A.4.4, will be the
homeomorphism we seek.

Let us define f̃(a) = 0 and f̃(b) = 1. Now, given some point x ∈ X − {a, b}, we know that

X − {x} = [a, x[ ∪ ]x, b], (A.19)

where both intervals are defined in terms of the separation order �. Using the fact that f is an
order isomorphism, we deduce that the pair (f([a, x[ ∩ P ), f(]x, b])) comprises a Dedekind cut of

Q ∩ ]0, 1[, uniquely determining a point of [0, 1] which we choose to be f̃(p).

To demonstrate that this extension f̃ of f is an order isomorphism, notice first that of course
f̃(a) and f̃(b) are, respectively, the greatest and least elements of [0, 1]. Given some pair of points
x, y ∈ X − {a, b} such that x < y, we also know that [a, x[ ⊂ [a, y[. It therefore follows that

f([a, x[ ∩ P ) ⊂ f([a, y[ ∩ P ), so that f̃(x) < f̃(y) by the standard ordering of Dedekind cuts. (See,
for example, [Pug10].)

A.4.1 Characterizing the Circle

It is not hard to promote Lemma A.4.5’s characterization of [0, 1] to a characterization of S1. Indeed,
our strategy is essentially that used in our proof of Zippin’s sphere characterization writ small: we
show that any continuum satisfying the right hypotheses is homeomorphic to a pair of unit intervals
attached at their end points, which is of course a homeomorph of S1.

Lemma A.4.6. For any continuum X, the following are equivalent:

• X is separated by every non-degenerate pair of its points, and

• X is homeomorphic to the circle S1.

Proof. One implication is trivial, so let us suppose that every non-degenerate pair of points separates
the continuum X.

Given any pair of distinct points x, y ∈ X, by hypothesis we can produce some separation X−{x, y} =
U | V , and Lemma A.3.2 asserts that both U ′ = U ∪ {x, y} and V ′ = V ∪ {x, y} are continua. If
we can prove there to exist homeomorphisms U ′ ∼= [0, 1] and V ′ ∼= [0, 1], both mapping x 7→ 0 and
y 7→ 1, then we will be able to deduce that X ∼= S1 by invoking Lemma 2.2.2, and we shall achieve
this by availing ourselves of Lemma A.4.5.

For the sake of a contradiction, let us suppose that U ′ 6∼= [0, 1]; then, Lemma A.4.5 allows us to find
some point u ∈ U such that U ′ −{u} is connected. At this point, we distinguish two possibilities–V ′

may be an arc with end points a and b, or it may not be–and derive a contradiction in each case
separately.

If V ′ is indeed an arc with end points a and b, then we can arbitrarily select a point v ∈ V
corresponding to some separation V ′ − {v} = Va | Vb, where

• a ∈ Va and b ∈ Vb, and

• Both Va and Vb are connected, each being a homeomorph of a half-open interval.

Then,

X − {u, v} = Va ∪ (U ′ − {u}) ∪ Vb (A.20)

must be connected, because a ∈ Va ∩ (U ′ − {u}) and b ∈ Vb ∩ (U ′ − {u}), which is the desired
contradiction.
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If, instead, V ′ is not an arc with end points a and b, then Lemma A.4.5 enables us to choose some
point v ∈ V ′ such that V ′ − {v} is connected. Then,

X − {u, v} = (U ′ − {u}) ∪ (V ′ − {v}) (A.21)

is connected, because {a, b} ⊂ (U ′ − {u})∩(V ′ − {v}), which again supplies us with our contradiction.

A.5 Local Arc Connectedness of Peano Continua

There are numerous examples of continua which fail to be path connected; one such space, the
topologists’ sine curve, is briefly mentioned in Section 1.4.3. However, introducing the hypothesis
of local connectedness and passing to the study of Peano continua eliminates this pathology in a
striking fashion. Peano continua are not merely path connected, but rather arc connected–and even
locally so.

It is worth pointing out that, in general, path connectedness is a strictly weaker notion than arc
connectedness, as we can see by considering the spectrum of Z.

Example A.5.1 (SpecZ is path connected, but not arc connected). Recall our definition of the
topological space SpecZ from Example A.2.3.

In that example, we showed that the trivial ideal (0) ∈ SpecZ is common to every open subspace of
SpecZ, so that this point is generic in the sense that clSpecZ{(0)} = SpecZ. Now, given any pair of
points P,Q ∈ SpecZ, let us define a function γ : [0, 1]→ SpecZ by

γ(t) =


P if t = 0,

(0) if t ∈ ]0, 1[, and

Q if t = 1.

(A.22)

The function γ is continuous, for given any open subspace U ⊂ SpecZ, inspection of (A.22) together
with our above comment that the point (0) is generic reveals that

γ−1(U) =


[0, 1] if P,Q ∈ U ;

[0, 1[ if P ∈ U and Q 6∈ U,
]0, 1] if P 6∈ U and Q ∈ U, and

]0, 1[ otherwise.

(A.23)

In other words, the preimage of any open subspace of SpecZ under γ is open in [0, 1], so that SpecZ
is path connected. (In fact, because (0) is common to all open subspaces of SpecZ, the space is
actually locally path connected.)

Nevertheless, SpecZ fails to be arc connected, and again, it is the existence of the generic point (0)
which is the crucial feature. Were there to exist some arc γ : [0, 1]→ SpecZ from (0) to some point
P ∈ SpecZ, then the image γ(]0, 1]) would be an open neighbourhood of P not containing (0).

In essence, our proof that Peano continua are (locally) arc connected is reasonably intuitive. Given
some pair of points x and y of a Peano continuum X, we will use local connectedness to construct a
nested sequence of ‘ever-smaller’ subcontinua of X, each containing x and y, then use Lemma A.2.4
to pass to the intersection of this sequence. Showing that this intersection is an arc then amounts to
a straightforward application of our characterization of [0, 1] in Lemma A.4.5.

Despite the conceptual simplicity of the proof, however, there is some terminological overhead
involved. Particularly, our construction of the aforementioned nested continua will rely on the
idea of a simple chain, constructed from a finite sequence of overlapping connected subspaces.
(Figure A.2).

Definition A.5.2. Let x and y denote points of a topological space X. A simple chain from x to y
in X is a collection {U1, U2, . . . , Un} of open subspaces of X such that
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• x ∈ Ui if and only if i = 1;

• y ∈ Ui if and only if i = n; and

• Ui ∩ Uj 6= ∅ if and only if |i− j| ≤ 1.

x
y

Figure A.2: A simple chain from x to y.

Before we can prove Peano continua to be locally arc connected, we need a preliminary result.
Morally, this result tells us that, in a connected space, it is easy to find chains which enjoy prescribed
properties: we just need to find an open cover of our space by subspaces enjoying those same
properties.

Lemma A.5.3. Let U denote some open cover of a connected space X. Then, given any pair of
distinct points x, y ∈ X, there exists some simple chain from x to y in X consisting of elements of U .

Proof. Distinguishing some arbitrary point x ∈ X, we define a subspace

Y = {y ∈ X |x and y are connected by a simple chain of elements of U}. (A.24)

Given that X is connected, it will suffice for us to prove that Y is both open and closed in X.
Openness is immediate, since if {Ui}ni=1 is some simple chain of elements of U connecting x to a
point y ∈ X, then by definition we must have that Un ⊂ Y . Thus, suppose that y ∈ clX Y .

Let V denote some element of U which contains y; then, there must exist some point z ∈ Y ∩ V .
Selecting some chain {Ui}ni=1 of elements of U which connects x to z, we are done if V = Ui for
some i ∈ {1, 2, . . . , n}, so suppose that this is not the case.

x

z

y

U1

UnUj

V

Figure A.3

By hypothesis, the set
I = {i ∈ {1, 2, . . . , n} |Ui ∩ V 6= ∅} (A.25)
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is non-empty, so let us define j = min I. Then, the collection {U1, U2, . . . , Uj , V } comprises a simple
chain of elements of U connecting x to y, so that y ∈ Y ; thus, we conclude that Y = X.

Lemma A.5.4. Every connected open subspace of any Peano continuum is arc connected.

Proof. Let Y denote some connected open subspace of a Peano continuum X, and distinguish some
pair of distinct points x, y ∈ Y ; we wish to find an arc in Y which connects x to y.

Knowing that the open subspace Y inherits the local connectedness of X, we deduce the existence
of some open cover of Y by connected subspaces, all of diameter strictly less than 1 with respect
to some metric d inducing the topology of X. According to Lemma A.5.3, then, there exists some
simple chain U = {U1, U2, . . . , Un} comprised of such subspaces, which connects x to y in Y .

x y
a1

U1

U2 U3

U4

Figure A.4

Now, select some point a1 ∈ U1 ∩U2, recalling that our definition of a simple chain ensures that this
intersection is non-empty. Again relying on local connectedness, we can cover U1 by connected open
subspaces of diameter strictly less than 1

2 , as measured by the metric d, and so Lemma A.5.3 delivers
a simple chain of such subspaces, connecting x to a1 in U1, which we shall denote by V1 (Figure A.4).
Moreover, the regularity of X means that we are free to assume without loss of generality that
clX V ⊂ U1 for each element V ∈ V1.

Similarly, we can select a point a2 ∈ U2 ∩ U3, and by identical reasoning produce a simple chain
V2 of connected open subspaces, all of diameter strictly less than 1

2 and all with closures contained
within U2, which connects a1 to a2 in U2 (Figure A.5).

We should like to concatenate the chains V1 and V2, in some suitable sense, to produce a simple chain
from x to a2, but there is a technical obstruction to simply taking the union V1 ∪ V2. Figure A.5
indicates what can go wrong with this näıve approach: if the chains V1 and V2 intersect anywhere
except at their first and final elements respectively, then their union cannot possibly be a simple
chain.

Fortunately, we are able to sidestep this issue. If V1 = {V1, V2, . . . , Vk} and V2 = {V ′1 , V ′2 , . . . , V ′k′},
then let us define

l = max{i ∈ {1, 2, . . . , k} |Vi intersects any element of V2} and

l′ = min{i ∈ {1, 2, . . . , k′} |V ′i ∩ Vl 6= ∅}.
(A.26)

With these definitions, we see readily that {V1, V2, . . . , Vl, V ′l′ , . . . , V ′k′} constitutes a simple chain
connecting x to a2. Continuing in this fashion for each i ∈ {1, 2, . . . , n− 1} yields a chain Vn−1 in
Y connecting x to y such that, for each V ∈ Vn−1,

• V is connected and open;
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a2

Figure A.5

• diamd V < 1
2 ; and

• clX V ⊂
⋃n
i=1 Ui.

Such a chain is depicted schematically in Figure A.6.

x
y

Figure A.6

Crucially, we can iterate this construction. This yields, for each n ∈ N, some simple chain Un
connecting x to y in X such that, for each U ∈ Un,

• U is connected,

• diamd U < 1
n , and

• clX U ⊂
⋃
V ∈Un−1

V , when n > 1.

Introducing the notation

Cn = clX

( ⋃
U∈Un

U

)
(A.27)

for each n ∈ N, we arrive at a descending sequence

C1 ⊃ C2 ⊃ C3 ⊃ · · · (A.28)

of continua in Y , each of which contains the points x and y. Lemma A.2.4 asserts that the intersection

C =
⋂
n∈N

Cn (A.29)
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is itself a continuum containing x and y, so that we need only demonstrate that every point of C
other than x and y is a cut point in order to complete the proof by way of an appeal to Lemma A.4.5.

Selecting any point z ∈ C − {x, y}, we know that for each n ∈ N, the point z belongs to either one
or two elements of the chain Un; thus, for each n ∈ N, we define

Wn =
⋃
{U ∈ Un |U is strictly prior to all elements of Un which contain z} and

W ′n =
⋃
{U ∈ Un |U is strictly later than all elements of Un which contain z},

(A.30)

as sketched in Figure A.7. We propose that the open subspaces C∩⋃n∈NWn and C∩⋃n∈NW ′n cover
C, which will prove C − {z} to be disconnected, since these subspaces are disjoint by construction.

x

yz

Wn

W ′
n

Figure A.7

Consider any point c ∈ C − {z}, and choose some N ∈ N such that 1
2N < d(c, z). Then, having

arranged that diamd U < 1
N for every U ∈ UN , we find that c and z must belong to different elements

of the chain UN–but this implies that either c ∈ WN or c ∈ W ′N . It follows that the subspaces
C ∩⋃n∈NWn and C ∩⋃n∈NW ′N do indeed cover C, so that C ⊂ Y is an arc from x to y.

Corollary A.5.5. Every Peano continuum is locally arc connected.

Proof. We have just demonstrated that every connected open subspace of a Peano continuum is
locally arc connected, so that this is an immediate consequence of the fact that Peano continua are,
by definition, locally connected.

As an aside, our newfound knowledge that Peano continua are arc connected allows us to quickly
prove that pathologies of the kind discussed in Example A.5.1 are only possible in a non-Hausdorff
setting. That is, arc connectedness is precisely equivalent to path connectedness for Hausdorff
spaces.

Lemma A.5.6. For any Hausdorff space X, the following are equivalent:

• X is path connected, and

• X is arc connected.

Proof. One implication is trivial, so suppose that X is path connected. Given any pair of distinct
points x, y ∈ X and any path γ : [0, 1]→ X from x to y, the image γ([0, 1]) ⊂ X is of course compact
and connected. Moreover, the same technique as that used in our proof of Lemma 1.4.4 allows us to
see that γ([0, 1]) is also locally connected.

Thus, Corollary A.5.5 tells us that there exists some arc from x to y in γ([0, 1]), and it follows that
X is arc connected.

A.5.1 Uniform Local Arc Connectedness of Peano Continua

In fact, we need not content ourselves merely with local arc connectedness: Peano continua turn
out to be, in a suitable sense, uniformly locally arc connected. We shall need this fact only once in
what follows, but its use cannot be avoided: it is the essential technical ingredient in our proof of
the Hahn-Mazurkiewicz-Sierpiński theorem in Section A.6.3.
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Definition and Lemma A.5.7. Peano continua are uniformly locally arc connected. That is, if
X denotes some Peano continuum topologized by a metric d, then there exists for each ε > 0 some
δ > 0 such that, if d(x, y) < δ for some pair of distinct points x, y ∈ X, then there exists some arc
[xy] ⊂ X for which diam [xy] < ε.

Proof. We start by proving that any Peano continuum X is uniformly locally connected, in an
appropriate sense. Fixing some ε > 0, we can find some finite open cover U of X by connected
subspaces, each of diameter strictly less than ε

2 ; because X is compact Hausdorff, this cover must
have some Lebesgue number δ. It follows that, if x, y ∈ X are points such that d(x, y) < δ, then
there exists a connected subspace U ⊂ X of diameter strictly less than ε

2 which contains both x and
y: namely, any element U ∈ U which contains x.

To promote this to uniform local arc connectedness, we rely on Lemma A.5.4. Each point z ∈ U
permits some connected neighbourhood Uz ⊂ X of diameter strictly less than ε

4 , so that the union
V =

⋃
z∈U Uz is a connected open subspace of X of diameter strictly less than ε; according to

Lemma A.5.4, such a subspace is in fact arc connected.

This construction ensures that U ⊂ V , and we know that if d(x, y) < δ, then x, y ∈ U ; thus, the
uniform local arc connectedness of X is established.

A.5.2 Arc Accessible Boundary Points

One relatively direct–but extremely useful–consequence of the local arc connectedness of Peano
continua is that, in such spaces, we can ‘almost always’ find an arc from a point of a given open
subspace to a point on that subspace’s boundary. More precisely, we have the following fact, which
is used extensively throughout Chapter 2.

Definition and Lemma A.5.8. Let X denote some topological space with a subspace Y ⊂ X,
and select some point x ∈ X − Y . We say that x is arc accessible from Y if there exists some arc
T ⊂ Y ∪ {x} with x as an end point.

Suppose that X is some Peano continuum, and U ( X some open subspace. The set of points of
frU which are arc accessible from U is dense in frU .

Proof. Select some point x ∈ frU , and denote by V ⊂ X some arc connected neighbourhood of x,
which Corollary A.5.5 ensures must exist. Choosing some point y ∈ U ∩ V , we know that there
must exist some arc [yx] ⊂ V , and we define p to be the point at which this arc first meets frU ;
essentially by definition, p is then arc accessible from U . It follows that the subspace of frU which
is arc accessible from U is indeed dense in frU .

A.6 Characterizing Peano Continua

Although local connectedness is a formally simple property, it can in practice be far from straightfor-
ward to verify whether or not a given continuum is Peano. For later use, we prove in this section
the Hahn-Mazurkiewicz-Sierpiński theorem [Maz13a, Maz13b, Hah14, Sie20], a classical and striking
characterization of Peano continua as, equivalently, those continua which are the continuous image of
the closed unit interval, or as those continua which can be assembled from finitely many arbitrarily
small Peano subcontinua.

Before we tackle the Hahn-Mazurkiewicz-Sierpiński theorem head-on, however, we will need a handful
of preliminary results, revolving around Sierpiński’s notion of Property S, and around the Alexandroff-
Hausdorff theorem [Ale27, Hau27]. Property S affords us a useful alternative characterization of
local connectedness in the compact Hausdorff setting, whereas the Alexandroff-Hausdorff theorem
supplies a continuous surjection from the Cantor space to any compact metrizable space.

A.6.1 Property S

Introduced by Sierpiński [Sie20] precisely for the purpose of identifying Peano continua amongst the
class of arbitrary continua, Property S can be described fairly straightforwardly in modern language,
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and shown to be equivalent to local connectedness for compact Hausdorff spaces. In this work, we
are interested in Property S primarily for its utility in proving that a connected union of finitely
many Peano continua is itself a Peano continuum.

Definition A.6.1. Let X denote some topological space, with the property that every open cover of
X permits a refinement by finitely many connected subspaces. Then, the space X is said to have
Property S.

Lemma A.6.2. For any compact Hausdorff space X, the following are equivalent:

• X is locally connected, and

• X has Property S.

Proof. Supposing that the compact Hausdorff space X is locally connected, let U denote some
arbitrary open cover of X. Each point x ∈ X belongs to at least one element Ux ∈ U , and the assumed
local connectedness of X asserts the existence of some corresponding connected neighbourhood
Vx ⊂ Ux of x. Compactness demands that the collection {Vx}x∈X of all such neighbourhoods be
essentially finite, which tells us that X has Property S.

Conversely, suppose that the compact Hausdorff space X enjoys Property S, and select some arbitrary
point x ∈ X, along with some neighbourhood U ⊂ X of x. Every compact Hausdorff space is regular,
and so we can find some neighbourhood V ⊂ X of the point x such that clV ⊂ U ; then, the pair
{U,X − clV } comprises an open cover of X. Our definition of Property S requires that this open
cover have some refinement by finitely many connected subspaces, and choosing any element of this
refinement containing x supplies us with a connected neighbourhood of x which is contained within
our original neighbourhood U .

Lemma A.6.3. Let {X1, X2, . . . , Xn} denote some collection of Peano continua for which the union
X = X1 ∪X2 ∪ · · · ∪Xn is connected. Then, the union X is a Peano continuum.

Proof. It is clear immediately that X is a continuum, and so we need only concern ourselves with
local connectedness. We are free to restrict ourselves to the setting in which n = 2, with the
general case following inductively, and in light of Lemma A.6.2, we need only prove that the union
X = X1 ∪X2 has Property S.

Indeed, denote by U some open cover of X; then,

U1 = {U ∩X1 |U ∈ U} and U2 = {U ∩X2 |U ∈ U} (A.31)

are open covers of X1 and X2 respectively. The fact that both X1 and X2 have Property S provides
us with finite refinements V1 and V2 of U1 and U2, respectively, by connected subspaces; then, the
union V1 ∪ V2 is a refinement of the original cover U by finitely many connected subspaces. In other
words, the union X has Property S, and must therefore be a Peano continuum.

A.6.2 The Alexandroff-Hausdorff Theorem

Before proving the Alexandroff-Hausdorff theorem we first recall two characterizations of the Cantor
space, well-known [AB06] to be equivalent to one another, along with the fact that the Cantor space
retracts onto each of its closed subspaces.

Definition A.6.4. The Cantor space is the product C = {0, 1}N, where each instance of {0, 1} is
equipped with the discrete topology. Where it is necessary to consider this product as a metric space,
we shall use the metric

d(c,d) =

∞∑
n=1

|cn − dn|
3n

,

where c = (c1, c2, c3, . . .) and d = (d1, d2, d3, . . .).
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Equivalently, the Cantor space is the subspace of the closed unit interval [0, 1] produced by the
standard middle-thirds construction, detailed in, for instance, [Wil70]. The map

(c1, c2, c3, . . .) 7→
∞∑
n=1

2cn
3n

is a homeomorphism between the two realizations of the Cantor space.

Lemma A.6.5. Every non-empty closed subspace of the Cantor space C is a retract of C. That is,
if X ⊂ C is closed and non-empty, then there exists some continuous function r : C → X such that
r|X = idX .

Proof. Endowing C with the metric d of Definition A.6.4, let X ⊂ C denote some non-empty compact
subspace. We propose that, for each point c ∈ C, there exists precisely one point r(c) ∈ X such that

d(c, r(c)) = inf
x∈X

d(c,x) = d(c, X). (A.32)

The existence of at least one such point is straightforward, since for any fixed point c ∈ C, the
function x 7→ d(c,x) is a continuous function on the compact space X, which must attain its greatest
lower bound.

As for uniqueness, fix some point c ∈ C, and suppose that x,y ∈ X are some pair of points such that

d(c,x) = d(c,y) = d(c, X). (A.33)

Then, we know that

d(c,x) =

∞∑
n=1

|cn − xn|
3n

=

∞∑
n=1

|cn − yn|
3n

= d(c,y), (A.34)

which can be so only if cn−xn = cn− yn for each n ∈ N, justifying our claim. Thus, (A.32) specifies
a well defined function r : C → X, which by construction restricts to the identity map on X. If we
can additionally show this function to be continuous, then the proof will be complete.

To this end, consider some sequence (cn)n∈N of points of C with a limit c ∈ C, and suppose for the
sake of a contradiction that the sequence (r(cn))n∈N fails to converge to r(c). By using compactness
to pass to a subsequence if necessary, we lose no generality in assuming that r(cn)→ x for some
point x ∈ X.

Now, we know by definition that d(c, r(c)) = d(c, X); further, knowing that the function c 7→ d(c, X)
is continuous on C, it follows that

d(c, r(c)) = lim
n→∞

d(cn, X) = lim
n→∞

d(cn, r(cn)) = d(c,x). (A.35)

This is the contradiction we seek for we assumed the points r(c) and x to be distinct, but this
together with (A.35) violates the uniqueness result proved above.

Although the statement of the Alexandroff-Hausdorff theorem is perhaps at first surprising, it is
not especially complicated to prove. Relatively direct constructions of the requisite surjection in
terms of inverse limit spaces are possible [Wil70], but here we opt for a more ‘hands-off’ but less
technically intricate construction, fundamentally facilitated by Lemma A.6.5.

Theorem A.6.6 (Alexandroff-Hausdorff). Every compact metrizable space is a continuous image
of the Cantor space.

Proof. Our strategy shall be to relate an arbitrary compact metrizable space to the Cantor space by
mapping both into the Hilbert cube.

Letting C denote the Cantor space, recall that the so-called Devil’s staircase may defined as the
function ϕ : C → [0, 1] acting by

ϕ(c1, c2, c3, . . .) =

∞∑
i=1

ci
2i
. (A.36)
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Using the metric d of Definition A.6.4 allows us to see immediately that ϕ is continuous. Moreover,
we notice that ϕ must be surjective, since every point of [0, 1] permits at least one dyadic expansion.

The function ϕ of course induces a continuous surjection ϕ̃ : CN → [0, 1]N, explicitly defined by

ϕ̃(c1, c2, c3, . . .) = (ϕ(c1), ϕ(c2), ϕ(c3), . . .). (A.37)

However, the observation that

CN =
(
{0, 1}N

)N ∼= {0, 1}N×N ∼= {0, 1}N ∼= C (A.38)

allow us to formally identify the Cantor space C with the product CN, and so we arrive at a
continuous surjection C → [0, 1]N. Abusing notation slightly, we use ϕ̃ to denote this function also.

Now, let X denote some compact metrizable space. We know that there must exist5 some embedding
ι : X → [0, 1]N, so that the image ι(X) is closed in [0, 1]; thus, the preimage (ϕ̃−1 ◦ ι)(X) is a closed
subspace of C. Using Lemma A.6.5, we deduce the existence of some retract r : C → (ϕ̃−1 ◦ ι)(X).
The composition ϕ̃◦ r is then the desired continuous surjection from C to (a homeomorph of) X.

We remark in passing that the hypothesis of metrizability cannot be omitted from Theorem A.6.6;
the Stone-Čech compactification βN of N serves as an explicit counterexample.

Example A.6.7 (The Stone-Čech compactification of N). We do not concern ourselves with the
details of how one might define the Stone-Čech compactification of a given locally compact Hausdorff
space, referring to [Wil70]. For the purposes of this example, we concern ourselves only with βN,
the Stone-Čech compactification of the natural numbers N.

The Cantor space C is well-known to have the cardinality c of the continuum, while one can show
[Wal74] that βN has cardinality 2c; in particular, there can exist no surjection C → βN. However,
the space βN cannot be metrizable, because it is not even first countable: any separable, first
countable Hausdorff space has a cardinality of at most 2ℵ0 . (To see why, notice that each point of
such a space is the limit of some sequence taking values in a countable subspace.)

A.6.3 The Hahn-Mazurkiewicz-Sierpiński Theorem

We now have all of the building blocks necessary for a proof of the Hahn-Mazurkiewicz-Sierpiński
theorem; the only thing that remains is for us to put them all together. We shall see that most
of the requisite implications are straightforward consequences of our work so far, with only one
(namely, that every Peano continuum is a quotient of the closed unit interval [0, 1]) being especially
involved.

Theorem A.6.8 (Hahn-Mazurkiewicz-Sierpiński). For any continuum X, the following are equiva-
lent:

• X is Peano;

• X is a continuous image of the closed unit interval [0, 1]; and

• X can be expressed as the union of finitely many Peano continua of diameter strictly less than
ε, given any ε > 0.

Proof. We shall organise each implication of this proof in roughly ascending order of complexity.
Thus, we proceed as follows:

1. We start by showing that every continuous image of [0, 1] is Peano;

2. Using this, we prove that every continuous image of [0, 1] satisfies the third condition in the
theorem’s statement;

5One means of constructing such an embedding is to invoke Urysohn’s lemma, producing from some countable
basis for the topology of X a collection {f1, f2, f3, . . .} of countably many continuous functions X → [0, 1]. Then, it
can be shown that the evaluation map x 7→ (f1(x), f2(x), f3(x), . . .) is the desired embedding of X into [0, 1]. This
procedure is discussed in explicit detail in, for instance, [Wil70].
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3. Then, the machinery of Property S will allow us to demonstrate that every continuum satisfying
the third condition above is Peano; and finally

4. We construct a continuous surjection from [0, 1] to an arbitrary Peano continuum X.

The conceptual work for the first of these steps is already done: by re-using the method employed
for our proof of Lemma 1.4.4 and recalling that every continuous function from a compact space to
a Hausdorff space is closed, we find that every continuous image of [0, 1] is a Peano continuum.

For the second step, suppose that π : [0, 1]→ X is some continuous surjection and select any ε > 0,
along with any metric d which topologizes the continuum X. Knowing that every continuous function
on a compact Hausdorff space is uniformly continuous, we can find some δ > 0 such that if |x− y| < δ
for points x, y ∈ [0, 1], then d(π(x), π(y)) < ε. Thus, we decompose [0, 1] as a union

[0, 1] = I1 ∪ I2 ∪ · · · ∪ In (A.39)

of closed intervals of diameter strictly less than δ, so that

X = π([0, 1]) = π(I1) ∪ π(I2) ∪ · · · ∪ π(In). (A.40)

Each of the closed intervals {I1, I2, . . . , In} is of course homeomorphic to [0, 1], and we have already
demonstrated that continuous images of [0, 1] are Peano; the second step is therefore dealt with.

As for the third, we need only invoke Lemma A.6.3, and so all that remains is to find, given a Peano
continuum X topologized by a metric d, a continuous surjection [0, 1]→ X. Using Theorem A.6.6,
we can produce a continuous surjection f : C → X, where we denote by C ⊂ [0, 1] the standard
middle-thirds Cantor set; from here, we shall use Lemma A.5.7’s guarantees of uniform local arc
connectedness to extend f to a continuous surjection f̃ : [0, 1]→ X.

We know that the complement [0, 1] − C has countably many components, all of which are open
intervals, which we denote by {I1, I2, I3, . . .}, where In = ]an, bn[ for each n ∈ N. Moreover, we enu-
merate these intervals such that, if n < m, then either diam Im < diam In, or else diam Im = diam In
and bn < am.

Now, Lemma A.5.7 allows us to find, for each n ∈ N, some δn > 0 such that if x, y ∈ X are distinct
points such that d(x, y) < δn, then there exists an arc in X from x to y of diameter strictly less than
2−n. Moreover, the surjection f : C → X is uniformly continuous, so that for each n ∈ N, we can
also select some ζn > 0 such that, if |c− d| < ζn for points c, d ∈ C, then d(f(c), f(d)) < δn.

Of course, the interval [0, 1] is bounded, so that only finitely many of the intervals {In}n∈N have
diameter at least ζ1; let us denote these intervals by {I1, I2, . . . , Ik1}. For each i ∈ {1, 2, . . . , k1}, we

define the restriction f̃ |cl Ii by

• f̃(cl Ii) = f(ai) = f(bi), if f(ai) = f(bi); or otherwise

• f̃ |cl Ii = γi, where γi is any homeomorphism from the closed interval [ai, bi] to any arc from
f(ai) to f(bi) in X.

Similarly, only a finite subcollection {Ik1+1, Ik1+2, . . . , Ik2} of the arcs {In}n∈N have diameters in

[ζ2, ζ1[. For each i ∈ {k1 + 1, k1 + 2, . . . , k2}, we define f̃ |cl Ii similarly to the above case, but with
an additional condition; since we now know that diam Ii < ζ1, we also know that d(f(ai), f(bi)) < δ1.
In particular, we are able to join f(ai) and f(bi) (when the two points do not coincide) by an arc of
diameter strictly less than 1

2 . Explicitly, we define

• f̃(cl Ii) = f(ai) = f(bi), if f(ai) = f(bi); or otherwise

• f̃ |cl Ii = γi, for any homeomorphism γi : [ai, bi]→ Ti, where Ti ⊂ X is some arc from f(ai) to
f(bi) such that diamTi <

1
2 . Notice that our definition of ζ1 ensures the existence of such an

arc.

We can continue in this fashion for each n ∈ N. That is, for each component Ii of [0, 1]− C such

that diam Ii ∈ [ζn+1, ζn[, we define f̃ |cl Ii by

• f̃(cl Ii) = f(ai) = f(bi), if f(ai) = f(bi); or otherwise
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• f̃ |cl Ii = γi, for any homeomorphism γi : [ai, bi]→ Ti, where Ti ⊂ X is some arc from f(ai) to
f(bi) such that diamTi < 2−n.

Thus, we produce an extension f̃ : [0, 1]→ X of f , which of course must be surjective. If we are able

to show that f̃ is also continuous, then we will be done, and to achieve this, we prove continuity at
points of [0, 1]− C and points of C separately.

Given a point x ∈ [0, 1] − C, we know that x ∈ Ii for some i ∈ N. Denoting by (xn)n∈N some

sequence in [0, 1] converging to x, and by U ⊂ X some arbitrary neighbourhood of f̃(x), we know

that (xn)n∈N eventually lies in Ii ∩ f̃−1(U). Having defined f̃ |cl Ii to be a homeomorphism, we find

immediately that f̃(xn) ∈ U for all sufficiently large values of n; it follows that f̃(xn)→ f̃(x), so

that f̃ is continuous on [0, 1]− C.

If, instead, x ∈ C, we can distinguish three possibilities:

• x = ai for some i ∈ N;

• x = bi for some i ∈ N; or

• x 6∈ {a1, b1, a2, b2, . . .}.
When x = ai for some i ∈ N, we know from the above that f̃ is right-continuous at x, so that it will
suffice for us to prove that f̃ is also left-continuous at x. With this aim, prescribe some ε > 0, select
some N ∈ N such that 21−N < ε, and choose some ζ ∈ ]0, ζN [ such that, for any point y ∈ ]x− ζ, x[,
either

• y ∈ C, or

• y ∈ In for some n ∈ N, where diam In < ζN .

From here, we can see that f̃ is indeed left-continuous at x. Explicitly, when y ∈ C, our definition of
ζN guarantees that

d
(
f̃(x), f̃(y)

)
= d(f(x), f(y)) <

1

2N
<

1

2N−1
< ε, (A.41)

whereas if y ∈ In for some n ∈ N, we can deduce that

d
(
f̃(x), f̃(y)

)
≤ d
(
f̃(x), f(bn)

)
+ d
(
f(bn), f̃(y)

)
≤ d(f(x), f(bn)) + d

(
f(bn), f̃(y)

)
<

1

2N
+

1

2N

≤ 1

2N−1

< ε.

(A.42)

When x = bi for some i ∈ N, the continuity of f̃ follows by a formally similar argument, in which the
roles of left- and right-continuity are exchanged. Should it be the case that x 6∈ {a1, b1, a2, b2, . . .},
then we deduce the continuity of f̃ at x by combining the argument for the left-continuity of f̃
on {a1, a2, a3, . . .} with that for the right-continuity of f̃ on {b1, b2, b3, . . .}, and this completes the
proof.

A.7 The 2-Bogensatz

Menger’s theorem [Men27] is a classical result in graph theory which, roughly, states that if u and
v are some pair of vertices in a finite graph G, then the number of disjoint paths in G from u to
v counts the number of vertices which must be removed from G in order to separate u and v. A
number of contrasting modern proofs of this fact are presented in [Die05].

The 2-Bogensatz 6 which we prove in this section is readily seen to be a continuum-theoretic analogue
of a special case of Menger’s theorem, and will play an important role in our work in Section A.10.

6German for the 2 arc theorem.
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It is interesting to note that the 2-Bogensatz can be used as the basis case for an inductive proof
[Nöb32, Zip33, Why48] of a complete analogue of Menger’s theorem, appropriately known as the
n-Bogensatz, although this is highly non-trivial and not necessary for our purposes. We also remark
that the relationship between continuum theory and graph theory extends deeper than a superficial
parallel to Menger’s theorem; in [Nad93], Nadler makes productive use of this connection, and in
[Nad92], the same author gives a pedagogical overview of how the theories of continua and graphs
are intertwined.

Our method of proof for Lemma A.7.1 is essentially an expansion of that presented by Whyburn in
[Why45].

Lemma A.7.1 (2-Bogensatz). Let X denote some Peano continuum with no cut points, and consider
some pair A,B ⊂ X of disjoint, non-degenerate closed subspaces. There then exists some pair of
disjoint arcs from A to B.

Proof. We define a subspace S ⊂ X which consists of all points x ∈ X for which there exist arcs
[ab], [px] ⊂ X such that

• a, p ∈ A and b ∈ B; and

• [ab] ∩ [px] = ∅.
If we can show that S = X, the result will follow, and because X is connected, it will suffice to
prove that S is non-empty, open and closed in X.

For non-emptiness, we use the assumed non-degeneracy of A to select some distinct pair of points
a1, a2 ∈ A, along with some point b ∈ B. The arc connectedness of X yields some arc [a1b] ⊂ X,
and local arc connectedness supplies us with some arc connected neighbourhood U ⊂ X of a2 which
is disjoint from the arc [a1b]. It follows that U ⊂ S, so that S is at least non-empty. We sketch this
in Figure A.8a.

Similar reasoning7 indicates that S is also open. Indeed, given some point x ∈ S, there must exist
some arc [a1b] from A to B and some arc [a2x] such that [a1b] ∩ [a2x] = ∅. Choosing some arc
connected neighbourhood V ⊂ X of x which is disjoint from [a1b] and arbitrarily selecting a point
y ∈ V , there of course exists some arc [xy] ⊂ V ; the union [a2x] ∪ [xy] then contains an arc [a2y]
which is disjoint from [a1b], as indicated in Figure A.8b.

It remains for us to prove that S is closed. Choosing any point x ∈ clS and some arc connected
neighbourhood W ⊂ X of x, there must exist some point y ∈W ∩ S; using our definition of S, we
deduce the existence of arcs [a1b] and [a2y] of the above form.8 Supposing that W and [a1b] are
disjoint, we can find some arc [yx] ⊂W , necessarily not meeting [a1b]. Then, the union [a2y] ∪ [yx]
contains an arc [a2x] disjoint from [a1b]; thus, it follows that x ∈ S in this case.

Suppose instead that W ∩ [a1b] 6= ∅. Our hypotheses ensure that x is not a cut point of X, so
that there must exist some arc [cd] ⊂ X − {x} such that [cd] ∩ A = {c} and [cd] ∩ B = {b};
moreover, the local arc connectedness of X ensures that we lose no generality in assuming that
W ∩A = W ∩ [cd] = ∅. Notice that we are done if [cd] ∩ [a2y] = ∅: in this case, we can simply find
an arc [yx] ⊂W , so that the union [a2y] ∪ [yx] contains an arc [a2x] disjoint from [cd]. Inspecting
our definition of S reveals that this means that x ∈ S.

Thus, let us assume that [cd] and [a2y] fail to be disjoint. We define the following points, indicated
in Figure A.8c.

• r1: the point at which [a1b] first intersects clW ;

• r2: the point at which [a2y] first intersects clW ; and

7In an effort to economise on notation, we re-use the symbols a1, a2 and b here, although there is no need for any
of these points to coincide with those with the same names in the previous paragraph. This overloading of notation is
depicted in Figure A.8.

8Again, we recycle the symbols a1, a2 and b for points which need not be the same as those in the preceding
portions of the proof.



74 APPENDIX A. RESULTS FROM CONTINUUM THEORY

A

B

U

a1

a2

b

(a)

A

B

V

a1

a2

b

x
y

(b)

A

B
W

a1
a2

b

x y
r1

r2
u

c d

(c)

A

BW

W ′

a1
a2

x
d

(d)

Figure A.8

• u: the point at which [cd] last intersects the union [a1r1] ∪ [a2r2]. (Our assumption that
[cd] ∩ [a2y] 6= ∅ ensures the existence of such a point.)

There are two mutually exclusive possibilities for where the point u may lie: either u ∈ [a2r2], as
sketched in Figure A.8c, or u ∈ [a1r1].

If u ∈ [a2r2], then the union [a2u] ∪ [ud] is an arc from A to B which is disjoint from [a1r1] ∪ clW .
Finding some arc connected neighbourhood W ′ ⊂ X of r1, disjoint from A∪ [a2u]∪ [ud], allows us to
find an arc [r1z] ⊂W ′ and an arc [zx] ⊂W , where z ∈W ∩W ′. Then, the union [a1r1]∪ [r1z]∪ [zx]
contains an arc [a1x] disjoint from [a2d], whence it follows that x ∈ S, as needed. This construction
is illustrated in Figure A.8d.

If, on the other hand, u ∈ [a1r1], then the same reasoning with the roles of [a1r1] and [a2r2] exchanged
produces disjoint arcs [a1d] and [a2x], so that x ∈ S in this case also. This completes the proof.

A.8 Conjugacy

Whyburn’s theory of cyclic connectedness, which we shall encounter in earnest in Section A.10,
has had a significant impact on research into the structure of Peano continua, some of which
is summarised in [McA66]. This theory, first touched upon in [Why27a] and [Ayr27], is for our
current purposes most naturally couched in the language of conjugacy, introduced by Kuratowski
and Whyburn [KW30] and, according to the cited work, inspired by Moore’s discussion of upper
semicontinuity in [Moo29].



A.8. CONJUGACY 75

In essence, conjugacy is an equivalence relation on the set of non-cut points of a Peano continuum,
defined as follows.

Definition A.8.1. Define an equivalence relation ∼ on the set of non-cut points of some Peano
continuum X by declaring that

x ∼ y if and only if no point of X separates x and y.

We call this the conjugacy relation on X, and if x ∼ y, then the points x and y are said to be
conjugate.

The equivalence class of a point x ∈ X with respect to ∼ is called the conjugacy class of x, and we
denote this by Cx ⊂ X.

In general, the relation ∼ extended to include cut points cannot be an equivalence relation, since it
is not typically transitive.9 Radó and Reichelderfer [RR47] embraced this failure of transitivity and
developed a generalized notion of conjugacy based on what they called cyclic transitivity, but to our
current aims this is only relevant as a curiosity.

What follows is a series of elementary properties of conjugacy classes, adapted from [WD79], which
we shall use throughout the remainder of this chapter.

Lemma A.8.2. If x denotes a non-cut point of some Peano continuum X, then the conjugacy class
Cx ⊂ X is closed.

Proof. Consider some arbitrary point y 6∈ Cx. By definition, there must exist some point p ∈ X with
a corresponding separation X − {p} = X1 | X2, where x ∈ X1 and y ∈ X2. Notice that Cx ⊂ X1,
for any point of X2 is necessarily separated from x by the point p.

Now, we know that X1 is closed, so that every convergent sequence of points of Cx must have its
limit in X1. In particular, we see that no sequence of points of Cx can possibly converge to the point
y, or, phrased differently, that y 6∈ clX Cx. Repeating this reasoning for each point y ∈ X − Cx, we
deduce that (clCx) ∩ (X − Cx) = ∅–or, more transparently, that Cx is closed.

Lemma A.8.3. If x denotes a non-cut point of some Peano continuum X, then each component of
X − Cx has precisely one boundary point in Cx.

Proof. This is trivial if Cx is a singleton, so let us assume that Cx has at least two points. Denoting
by Y some component of X − Cx, we suppose towards a contradiction that there exist two distinct
points a, b ∈ Cx ∩ frY .

Let U and V denote disjoint, arc connected neighbourhoods in X of the points a and b respectively;
then, the union Y ∪ U ∪ V is a connected open subspace of X, and therefore arc connected
(Lemma A.5.4). Thus, there exists some arc [ab] ⊂ Y ∪ U ∪ V , and such an arc must have some
subarc [a′b′] ⊂ [ab] such that a′, b′ ∈ Cx and ]a′b′[ ⊂ Y .

Now, choose any point y ∈ ]a′b′[. Having arranged that ]a′b′[ ⊂ Y ⊂ X − Cx, we know from
Definition A.8.1 that there must exist some point p ∈ X such that X−{p} = X1 | X2 is a separation
with x ∈ X1 and y ∈ X2. By similar reasoning to that used to prove Lemma A.8.2, we deduce that
Cx − {p} ⊂ X1, which implies that at least one10 of the points a′ and b′ lies in X1. r However, if
a′ ∈ X1, then [ay[ ⊂ X1; if b′ ∈ X1, then ]yb] ⊂ X1 instead. Either way, this is a contradiction: we
know that y ∈ X2, and a point of X2 cannot possibly be a boundary point of X1.

Lemma A.8.4. Let K denote some connected subspace of a Peano continuum X. For each non-cut
point x ∈ X, the intersection Cx ∩K is connected.

9For instance, if p is a cut point of a Peano continuum X which separates points x, y ∈ X, it is easy to think of
configurations in which x ∼ p and p ∼ y, even though x 6∼ y.

10It is in principle possible that p = a′ or p = b′.
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Proof. We shall argue by contraposition, supposing that Cx ∩K is disconnected for some K 6⊂ Cx,
and showing that K must be disconnected as well. (Notice that the result is immediate when
K ⊂ Cx.)

Let Cx ∩K = A | B denote some separation. From Lemma A.8.3, we know that each component of
K − Cx has precisely one boundary point in Cx, which must lie in either A or B. Thus, we define
subspaces

KA = A ∪
⋃
{components of K − Cx with a boundary point in A} and

KB = B ∪
⋃
{components of K − Cx with a boundary point in B}.

(A.43)

By construction, KA ∪KB = K and KA ∩KB = ∅. We contend that

KA ∩ (clK KB) = (clK KA) ∩KB = ∅, (A.44)

for this will imply that K is disconnected, completing the proof.

Towards a contradiction, suppose that there exists some point y ∈ KA ∩ (clK KB). Such a point is of
course a limit of some sequence (yn)n∈N of points of KB , and this limit must lie in A. (To see why,
notice that our definition in (A.43) implies that every point of KA −A belongs to an open subspace
disjoint from KB : namely, a component of K − Cx which has a boundary point in A.)

Consider some neighbourhood U ⊂ X of y which is disjoint from B. Since the sequence (yn)n∈N is
eventually in this neighbourhood, we see that U must intersect at least one component of K − Cx
with a boundary point in B, and we denote this component by L. However, this implies that L
contains a sequence with limit y ∈ A; in other words, L must have boundary points in both A and
B alike, and this contradicts Lemma A.8.3.

Corollary A.8.5. Every conjugacy class in a Peano continuum is connected.

Lemma A.8.6. If x denotes a non-cut point of some Peano continuum X, then the conjugacy class
Cx ⊂ X is itself a Peano continuum.

Proof. The metrizability of Cx is trivial, while its compactness and connectedness are demonstrated
by Lemma A.8.2 and Corollary A.8.5 respectively. To demonstrate that Cx is also locally connected,
we recall the machinery of Property S developed in Section A.6.1.

If U denotes some open cover of Cx by open subspaces of Cx, then we know that U is of the form

U = {Vi ∩ Cx | i ∈ I} (A.45)

for some collection {Vi}i∈I of open subspaces of X. This implies that the collection

V = {Vi}i∈I ∪ (X − Cx) (A.46)

is an open cover of X, and Lemma A.6.2 requires that such a cover permit some refinement

W = {W1,W2, . . . ,Wn} (A.47)

by finitely many connected subspaces. Using Lemma A.8.4, we see that

W ′ = {W1 ∩ Cx,W2 ∩ Cx, . . . ,Wn ∩ Cx} (A.48)

is a refinement of our original cover U by finitely many connected subspaces–but another application
of Lemma A.6.2 tells us that Cx must therefore be locally connected.

Lemma A.8.7. If x denotes a non-cut point of some Peano continuum X, then the conjugacy class
Cx has no cut points.



A.9. END POINTS AND THE WHYBURN DECOMPOSITION 77

Proof. With an eye towards deriving a contradiction, suppose that Cx − {p} = A | B is a separation
for some point p ∈ Cx. Notice first that p and x cannot be the same point, for by hypothesis,
X − {x} is connected, so that Lemma A.8.4 forces Cx − {x} = Cx ∩ (X − {x}) to be connected.

Select some pair of points a ∈ A and b ∈ B. We propose that p cannot separate a and b in X,
and indeed, suppose that there were to exist some separation X − {p} = X1 | X2 with a ∈ X1 and
b ∈ X2. We lose no generality in assuming that x ∈ X1, and noticing that p therefore separates x
and b reveals that b 6∈ Cx. This validates our proposal.

In light of this, denote by Y the component of X − {p} which contains both a and b. According to
Lemma A.8.4, the intersection

Y ∩ Cx = (Y − {p}) ∩ Cx = Y ∩ (Cx − {p}) (A.49)

is connected and contains both a and b–but this is a contradiction, for we chose a and b specifically
to lie in different components of Cx − {p}.

A.9 End Points and the Whyburn Decomposition

The non-cut points of a given Peano continuum X can naturally be divided into two classes: namely
those with non-degenerate conjugacy classes, and those whose conjugacy class consists of that point
alone. In this section, we prove that the latter class of points is precisely that of the end points of
X, and in doing so arrive at Whyburn’s decomposition [Why27a] of Peano continua into collections
of non-degenerate conjugacy classes and end points, all connected by cut points.

Definition and Lemma A.9.1. Let X denote some Peano continuum. A non-cut point x ∈ X
is said to be an end point of X if there exists a neighbourhood basis {Ui}i∈I for x such that frX Ui
contains precisely one point for each i ∈ I.

For any non-cut point x of a Peano continuum X, the following are equivalent:

• Cx = {x}, and

• x is an end point of X.

Proof. Suppose first that Cx = {x}, and consider some arbitrary neighbourhood U ⊂ X of x. By
hypothesis, x is a non-cut point of X, so that there must exist some neighbourhood V ⊂ X of x
such that V ⊂ U and X − V is connected (Lemma A.3.5).

Using Lemma A.5.8, we find some point y ∈ X − V and some arc [xy] ⊂ X such that [xy[ ⊂ V . Our
assumption that Cx is a singleton asserts the existence of some point z ∈ X separating x and y, and
manifestly z ∈ [xy[, for otherwise some component of X − {z} would contain the arc [xy].

Thus, let X−{z} = X1 | X2 denote some separation with x ∈ X1 and y ∈ X2. Having chosen V such
that X − V is connected, we find that X − V ⊂ X2, so that X1 ⊂ V . Noticing that frX X1 = {z},
we find that x is an end point of X.

Conversely, suppose that x is an end point of X, and select any point y ∈ X − {x}. Finding some
open neighbourhood U ⊂ X of x such that y 6∈ clU and frU = {z}, we can use Lemma 2.3.3 to
deduce that every arc [xy] ⊂ X meets z. Thus, there exists no arc joining x to y in X − {z}, so that
y 6∈ Cx.

From the above result, we can see that there exists a natural decomposition of any Peano continuum
as follows.

Definition and Lemma A.9.2. Let X denote some Peano continuum. Each point x ∈ X is either

• A cut point of X;

• An end point of X; or

• An member of a non-degenerate conjugacy class in X.

We call this partition of the Whyburn decomposition of X.
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A.10 Cyclically Connected Peano Continua

The idea of cyclic connectedness was mentioned briefly in the introduction to Section A.8, but it is
only now that we have the necessary machinery in place to extract what we need from it. We start
with a definition originating in [Why27a, Why27b, Why27c].

Definition A.10.1. Let X denote some Peano continuum. If, for each pair of points x, y ∈ X,
there exists some Jordan curve Jxy ⊂ X which contains both x and y, then X is said to be cyclically
connected.

The cyclically connected subcontinua of X which are maximal with respect to set-theoretic inclusion
are termed the cyclic components of X.

Inspecting Definition A.10.1, we deduce immediately that cyclic connectedness precludes the existence
of cut points.11 Less obvious, however, is that the converse is in fact true: every Peano continuum
with no cut points is cyclically connected, and it is to a proof of this non-trivial fact that we dedicate
this section.

With what we have learned so far, it is not clear how we might directly prove that, if X is some
Peano continuum with no cut points, then X is cyclically connected. The issue is that, a priori, we
have no means of constructing Jordan curves in X, and with the following lemma we move towards
addressing this shortcoming.

Lemma A.10.2. If X denotes some Peano continuum without cut points, then each point of x is
interior to some arc. That is, given any point x ∈ X, we can find points a, b ∈ X − {x} for which
there exists an arc [axb] ⊂ X.

Proof. We distinguish two possibilities, and prove the result in each case separately: either the point
x may be a cut point of one of its connected neighbourhoods in X, or x may not separate any of its
neighbourhoods.

The first of these is more straightforward to deal with. If U ⊂ X denotes some connected open
neighbourhood of x such that U − {x} = A | B is some separation, let us select points a ∈ A and
b ∈ B. Lemma A.5.4 asserts that U is arc connected, yielding arcs [ax], [xb] ⊂ U ; moreover, since a
and b belong to different components of U − {x}, we can deduce that [ax] ∩ [xb] = {x}. It follows
that the union [ax] ∪ [xb] = [axb] is the arc we seek.

Suppose now that no connected neighbourhood of x has x as a cut point, fix some metric d
topologizing X, and choose some arbitrary pair of points a, b ∈ X − {x}. We lose no generality in
assuming that

min{d(x, a), d(x, b)} = 1, (A.50)

for if this is not the case, we can simply rescale d by an appropriate constant factor.

Using local connectedness, we are able to find some connected open neighbourhood U1 ⊂ X such
that diamU1 <

1
2 . Additionally, the Hahn-Mazurkiewicz-Sierpiński theorem (Theorem A.6.8) allows

us to find some cover A1 of X by finitely many Peano subcontinua, all of diameter strictly less than
1
4 . We define

Y1 =
⋃
{A ∈ A1 |A ∩ U1 6= ∅}, (A.51)

which, recalling Lemma A.6.3, we see to be a Peano continuum containing x; further, this construction
ensures that diamY1 < 1, so that in particular a, b 6∈ Y1.

By construction, Y1 is a neighbourhood of x in X, so that x is a non-cut point of Y1. Further, were
x to be an end point of Y1, then x would also be an end point of X–but since we have assumed that
X lacks cut points, this is impossible. Appealing to Lemma A.9.2, we deduce that the conjugacy
class of x in Y1 is non-degenerate. We also know from Lemma A.8.6 that this conjugacy class is itself
a Peano continuum, which we shall denote by C1. Lemma A.8.7 allows us to apply the 2-Bogensatz
(Lemma A.7.1) to the disjoint closed subspaces {a, b} and C1, producing a pair of disjoint arcs
[aa1], [bb1] ⊂ X, with [aa1] ∩ C1 = {a1} and [bb1] ∩ C1 = {b1}.

11Indeed, were X some Peano continuum with points a, b ∈ X separated by some third point p ∈ X, no pair of arcs
from a to b in X can possibly be disjoint: all such arcs must pass through the point p.
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This construction can now be iterated with a1, b1 and C1 taking the roles of a, b and X respectively.
This produces a Peano subcontinuum C2 ⊂ C1 such that diamC2 <

1
2 , which contains x and has no

cut points; likewise, we now have disjoint arcs [a1a2], [b1b2] ⊂ C1 such that [a1a2] ∩ C2 = {a2} and
[b1b2] ∩ C2 = {b2}. More generally, we can construct, for each n ∈ N,

• Peano continua X = C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ · · · such that diamCn <
1
n and x ∈ ⋂n∈N Cn, all

of which lack cut points; and

• Disjoint pairs of arcs [an−1an], [bn−1bn] ⊂ Cn, each with the property that [an−1an]∩Ck = ak
and [bn−1bn] ∩ Ck = bk, for k ∈ {n− 1, n} where we have identified a = a0 and b = b0.

Defining the unions

Ta =
⋃
n∈N

[an−1an],

Tb =
⋃
n∈N

[bn−1bn] and

T = Ta ∪ {x} ∪ Tb,

(A.52)

we suggest that T is the arc we seek. Thanks to Lemma A.4.5, it will suffice to prove that T is a
continuum with precisely two non-cut points.

First, consider clX Ta. Noticing that the sequence (an)n∈N converges to x, we find that x ∈ clX Ta;
however, no sequence of points of Ta can have a limit in Tb. To see this, let (yn)n∈N denote some
sequence in Ta with a limit y ∈ Tb. For some n ∈ N, it must be the case that y ∈ ]bn−1, bn], so that
]bn−1, bn+1[ ⊂ Tb is a neighbourhood of y in T . The sequence (yn)n∈N can never take values in such
a neighbourhood, and we conclude that yn 6→ y.

Since it is clear that Ta can have no boundary points in X − T , we find that

clX Ta = clT Ta = Ta ∪ {x}, (A.53)

with an analogous result for clX Tb. Knowing that Ta and Tb are both connected (for otherwise, one
of the intervals {[an−1, an], [bn−1, bn]}n∈N would be disconnected), we deduce that so too are their
closures clT Ta and clT Tb; thus, we see that T is compact and connected, with x as a cut point.

The same style of reasoning allows us to conclude that every other point of T − {a, b} also separates
T , and so the proof is complete.

Notice that, in the presence of cut points, Lemma A.10.2 cannot possibly hold. (Consider, for
instance, the point 0 in the closed unit interval [0, 1].)

With Lemma A.10.2, we are able to prove the equivalence between cyclic connectedness and the
absence of cut points, which is vital throughout the latter portions of Chapter 2. This proof is clarified
conceptually by the introduction of the three point property, which is in essence a strengthening of
Lemma A.10.2: in a space with this property, not only is every point interior to some arc, but we
are free to choose the end points of that arc as well.

Theorem A.10.3. We say that a Peano continuum X has the three point property if, for every
trio x, y, z ∈ X of distinct points, there exists some arc [xyz] ⊂ X.

For every Peano continuum X, the following are equivalent:

1. X has no cut points,

2. X has the three point property, and

3. X is cyclically connected.

Proof. We shall prove first that an absence of cut points is equivalent to the presence of the three
point property, then that any Peano continuum enjoying the three point property must be cyclically
connected, and finally that no cyclically connected Peano continuum can have a cut point.

Suppose, then, that X is a Peano continuum without cut points, and choose any three distinct
points x, y, z ∈ X. We know from Lemma A.10.2 that there exists some arc [ayb] ⊂ X for some pair
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of points a, b ∈ X, and the arc connectedness of X supplies us with arcs [xa], [bz] ⊂ X. The union
[xa] ∪ [ayb] ∪ [bz] then contains an arc [xyz], so that X has the three point property.

Conversely, suppose for the sake of a contradiction that X has the three point property, and that
X − {p} = A | B is some separation for some point p ∈ X. Selecting any pair of points a ∈ A and
b ∈ B, we know that any arc from a to b in X must contain the point p, but this implies that there
can exist no arc [pab] ⊂ X. Thus, X is forbidden to have any cut points.

Supposing now that X has the three point property, we suggest that every point of X lies on some
Jordan curve in X, and shall use this as a stepping stone towards a proof of the cyclic connectedness
of X. Indeed, given any point x ∈ X, we can find some arc [axb] ⊂ X, and knowing from the
preceding that X lacks cut points, we can also find some arc [ab] ⊂ X − {x}. Then, the union
[axb] ∪ [ab] must contain some Jordan curve on which the point x lies.

Jx
x

y

(a)
Jx

Jy
T1

T2x

y

(b)

Jx
Jyx

ya b
p

(c)

Jx

Jyx

y

p

q
(d)

Figure A.9

Thus, given any pair of distinct points x, y ∈ X, we can find a pair of Jordan curves Jx, Jy ⊂ X
such that x ∈ Jx and y ∈ Jy. From here, we can proceed by exhausting the possible forms of the
intersection Jx ∩ Jy:

• If Jx = Jy (Figure A.9a), then there is nothing further to be done.

• If Jx ∩ Jy = ∅, then an application of the 2-Bogensatz (Lemma A.7.1) allows us to find
disjoint arcs T1, T2 from Jx to Jy, each meeting Jx and Jy only at their endpoints. The union
Jx ∪Jy ∪T1 ∪T2 then contains a Jordan curve upon which both x and y lie. (Explicitly, denote
by Ax the complementary domain of T1 ∪ T2 in Jx which contains x, and Ay that of the same
in Jy which contains y. The union Ax ∪ T1 ∪ Ay ∪ T2 is then the desired Jordan curve; see
Figure A.9b.)

• If Jx and Jy meet at precisely one point p, then our knowledge that X has no cut points allows
us to find points a ∈ Jx−{p} and b ∈ Jy−{p} for which there exists an arc [ab] ⊂ X−{p}, such
that [ab] ∩ Jx = {a} and [ab] ∩ Jy = {b}. Then, there exists a Jordan curve containing both x
and y in the union Jx∪Jy ∪ [ab]. (Explicitly, if Ax denotes the complementary domain of {a, p}
in Jx which contains x, and Ay that of {b, p} in Jy which contains y, then Ax ∪ [ab]∪Ay ∪ {p}
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is a suitable Jordan curve. See Figure A.9c.)

• Finally, if Jx ∩ Jy contains multiple points, but nevertheless Jx 6= Jy, then we can find points
p, q ∈ Jx ∩ Jy such that there exists some arc [pyq] ⊂ Jy, and such that [pyq] ∩ Jx = {p, q}.
Denoting by A the complementary domain of {p, q} in Jx containing x, we see that the union
Ax ∪ [pyq] is a Jordan curve containing both x and y. (Figure A.9d.)

We conclude that if X enjoys the three point property, then X must be cyclically connected.

All that remains for us to prove is that a cyclically connected Peano continuum has no cut points,
and we shall proceed by contradiction. Suppose that X is a cyclically connected Peano continuum
with some cut point p ∈ X. If a, b ∈ X − {p} lie in different components, then it is impossible
for there to exist a Jordan curve in X which contains both a and b. Indeed, were J some such
curve, then the complement J − {a, b} would consist of two disjoint open arcs with ends in different
components of X − {p}–but according to Lemma 2.3.3, any two such arcs must contain the point p,
and so cannot possibly be disjoint.
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Appendix B

Alexander Duality

B.1 Overview

In full generality, Alexander duality1 can be viewed as a relationship between the Čech cohomology
groups of a given compact subspace of the n-sphere and the singular homology groups of the
complement in the n-sphere of said subspace. This is treated in many algebraic topology textbooks,
such as [Spa66], and the necessity of using the Čech cohomology theory in general is discussed in
[Mas78].

Here, however, we have no need of the far-reaching generality of Alexander duality as described by
the preceding works. In Chapter 1, we use only an extremely restricted form of the result, which we
restate below.

Theorem 1.4.1 (Alexander duality). Let C ⊂ S2 denote some compact subspace with n ∈ N
connected components. Then, there exists an isomorphism H1

(
S2 − C

) ∼= Zn−1.

In this appendix, we give a reasonably self-contained proof of Theorem 1.4.1 by elementary means.
Essentially, we first prove an analogous result in the plane, and then we promote this to the sphere
by a Mayer-Vietoris argument.

Our proof of the planar form of Theorem 1.4.1 is inspired by Newman’s treatment [New85] of a
‘homology-like’ theory in the plane, and hinges upon the fact that, from the perspective of singular
homology, we lose no generality in assuming that paths are the so-called grid paths of Definition B.2.2.
The first section of this chapter is given over to proving this: in Section B.2.1, we demonstrate that
all paths in the plane are path-homotopic to grid paths, and in Section B.2.2, we recall how path
homotopy interacts with singular homology.

In Sections B.3 and B.4, we develop the machinery of winding number which enables our proof of
the planar form of Theorem 1.4.1; it turns out that a particularly convenient formulation of winding
number for these purposes is in terms of covering spaces, whose vital properties we review without
proof in Lemma B.3.1. The most important–and most technical–aspect here is the relationship
between winding number and homology presented in Lemma B.4.2.

Finally, in Section B.5 we make good on our promises, proving Theorem 1.4.1 with reference to some
well-known facts from algebraic topology.

Before proceeding, we establish notation for the concatenation of paths. Particularly, we comment
that γ1 and γ2 in the below definition are reversed compared to the convention of [Lee00]. (This
change was made that the notation for path concatenation might better parallel that for function
composition.)

Definition B.1.1. Let γ1, γ2 : [0, 1]→ X denote some pair of paths in a topological space X such

1So named for Alexander’s 1915 work [Ale15], before the advent of algebraic topology in its modern sense.
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that γ1(1) = γ2(0). The path in X defined by

(γ2 ∗ γ1)(t) =

{
γ1(2t) if t ∈

[
0, 12
]

and

γ2(2t− 1) if t ∈
[
1
2 , 1
]
.

is then said to be the concatenation of γ1 and γ2.

B.2 Paths in the Plane

Ultimately, our goal in this section is to show that, when working with singular homology, we are
free to assume that paths in the plane are of a particularly simple form. We divide our strategy
into two pieces: first, we prove in Section B.2.1 that each path in the plane is path-homotopic to a
grid path, and in Section B.2.2, we prove that if a given pair of paths are path-homotopic, then they
must also be homologous.

It will be in Section B.4 that we see the payoff of this work. Roughly speaking, we shall use the
results of this section to rephrase a claim about arbitrary singular 2-chains as a claim about grid
paths, about which we can then reason combinatorially.

B.2.1 Grid Paths

A particular simple class of path in R2 is what we shall call the grid path, which consists of a
concatenation of finitely many vertical and horizontal paths. Especially relevant here is that–at least
from a path-homotopical perspective–we do not lose any generality in assuming that an arbitrary
path in R2 is of this form, as we now prove.

Definition B.2.1. If γ : [0, 1]→ X denotes some path in a topological space X, then the support of
γ is defined to be the image supp γ = γ([0, 1]).

Definition B.2.2. A path in R2 is said to be a grid path if it is the concatenation of finitely many
paths, each of which is either vertical or horizontal.

To prove that an arbitrary path in (an open subspace of) R2 is path-homotopic2 to a grid path,
we first prove that it is path-homotopic to a piecewise linear one. With this result in hand, it will
suffice to prove that every straight-line path in (an open subspace of) R2 is path-homotopic to a
grid path.

Lemma B.2.3. Path homotopy respects concatenation in the following sense.

Let γ1, γ2 : [0, 1]→ X denote some pair of paths in a topological space X, for which γ1(1) = γ2(0).
If γ1 is path-homotopic in X to a path γ′1, and γ2 to a path γ′2, then the concatenations γ2 ∗ γ1 and
γ′2 ∗ γ′1 are also path-homotopic in X.

Proof. Let ϕ : [0, 1]2 → X denote some path homotopy from γ1 to γ2, and ψ : [0, 1]2 → X some path
homotopy from γ′1 → γ′2. Then, we see immediately that the function [0, 1]2 → X acting by

(s, t) 7→
{
ϕ(2s, t) if s ≤ 1

2 and

ψ(2s− 1, t) if s ≥ 1
2

(B.1)

is a path homotopy from γ2 ∗ γ1 to γ′2 ∗ γ′1.

Lemma B.2.4. Let γ : [0, 1]→ U denote some path, where U ⊂ R2 is some open subspace. Then,
γ is path-homotopic in U to a piecewise linear path.

2We recall that paths γ1, γ2 : [0, 1] → X are said to be path-homotopic in X if there exists some homotopy
ϕ : [0, 1]2 → X from γ1 to γ2 such that ϕ(0, t) = γ1(0) = γ2(0) and ϕ(1, t) = γ1(1) = γ2(1) for every t ∈ [0, 1]. Perhaps
more transparently, a path homotopy is a homotopy between paths which leaves their endpoints fixed throughout.
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Proof. The openness of U allows us to find, for each t ∈ [0, 1], some εt > 0 such that B(γ(t); εt) ⊂ U .
Thus, we arrive at an open cover

U = {B(γ(t); εt) | t ∈ [0, 1]} (B.2)

of U , from which we construct an open cover

V =
{
γ−1(U)

∣∣U ∈ U} (B.3)

of [0, 1].

Now, the cover V permits some Lebesgue number δ > 0, because [0, 1] is compact and metrizable.
Let us select some N ∈ N such that 1

N < δ, and subdivide [0, 1] as a union

[0, 1] =

N⋃
k=1

Ik, where Ik =

[
k − 1

N
,
k

N

]
for each k ∈ {1, 2, . . . , N}. (B.4)

By construction, for each k ∈ {1, 2, . . . , N}, there must exist some Uk ∈ U which contains the path
segment γ(Ik). From here, our strategy shall be to ‘straighten’ each segment γ(Ik) ⊂ Uk, and then
to concatenate the results.

Explicitly, for each k ∈ {1, 2, . . . , N}, we define a path γk : [0, 1]→ Uk by

γk(t) = γ(Nt− k), (B.5)

which is essentially nothing more than the restriction of γ to Ik. We know that supp γk ⊂ Uk,
and we define Lk : [0, 1] → Uk as the straight-line path from γk(0) to γk(1). The convexity of Uk
ensures that γk and Lk are path-homotopic in U so that the concatenations γN ∗ γN−1 ∗ · · · ∗ γ1
and LN ∗ LN−1 ∗ · · · ∗ L1 are also path-homotopic in U , thanks to Lemma B.2.3. Observing that
γN ∗ γN−1 ∗ · · · ∗ γ1 is nothing more than a reparametrization of the original path γ completes the
proof.

Lemma B.2.5. Let L : [0, 1] → U denote some straight-line path, where U ⊂ R2 is some open
subspace. Then, L is path-homotopic in U to a grid path.

Proof. Conceptually, this proof is extremely similar to that of the preceding result. Again, we find
some cover U of suppL by open balls contained within U , and pull this back through L to an open
cover of [0, 1] with some Lebesgue number δ > 0; we decompose [0, 1] as a union

[0, 1] =

N⋃
k=1

Ik, where Ik =

[
k − 1

N
,
k

N

]
for each k ∈ {1, 2, . . . , N}. (B.6)

We now select for each k ∈ {1, 2, . . . , N} some Uk ∈ U such that L(Ik) ⊂ U , and define the path
Lk : [0, 1]→ Uk as the straight-line path from L

(
k−1
N

)
to L

(
k
N

)
.

Fixing some k ∈ {1, 2, . . . , N}, let (xk, yk) denote the coordinates of the centre of the ball Uk, and
introduce the notation

Lk(0) = (ak, bk) and Lk(1) = (a′k, b
′
k). (B.7)

We can define the following straight-line paths, all of which must by convexity lie within Uk:

• v1, starting at (ak, bk) and ending at (ak, xk);

• h1, starting at (ak, xk) and ending at (xk, yk);

• v2, starting at (xk, yk) and ending at (xk, b
′
k); and

• h2, starting at (xk, b
′
k) and ending at (a′k, b

′
k).

Once more using the convexity of Uk, we find that the concatenation h2 ∗ v2 ∗ h1 ∗ v1 is path-
homotopic in Uk to Lk, which is a grid path. Since L itself is path-homotopic to the concatenation
LN ∗ LN−1 ∗ · · · ∗ L1, we appeal to Lemma B.2.3 in order to conclude that L is path-homotopic to a
grid path.
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Corollary B.2.6. If γ : [0, 1]→ U denotes some path, where U ⊂ R2 is some open subspace, then
γ is path-homotopic in U to a grid path.

B.2.2 Path Homotopy and Homology

Having shown that, as far as homotopy is concerned, we do not lose any generality in restricting our
consideration of paths in R2 to grid paths, we now go on to prove that the same holds true from the
point of view of singular homology. This is a consequence of the following result, stating that if two
paths are path-homotopic, then they are necessarily homologous.

Lemma B.2.7. Let γ1, γ2 : [0, 1] → X denote some pair of path-homotopic paths in a topological
space X. Then, γ1 and γ2 are homologous.

Proof. We introduce the notation

γ1(0) = γ1(0) = x and γ1(1) = γ2(1) = y, (B.8)

and let ϕ : [0, 1]2 → X denote some path homotopy from γ1 to γ2. Our strategy shall be to exhibit a
quotient of [0, 1]2 which is homeomorphic to a 2-simplex ∆2, to which ϕ descends; this will yield a
singular 2-simplex ∆2 → X, and we shall prove that γ1 − γ2 is homologous to the boundary of this
2-simplex.

To this end, realize a 2-simplex ∆2 as the convex hull of points {(0, 0), (1, 0), (1, 1)} ⊂ R2, and define
the continuous surjection π : [0, 1]2 → ∆2 by

π(x, y) = (x− xy, xy) (B.9)

As a continuous function from a compact space to a Hausdorff space, the surjection π is closed, and
therefore must be a quotient map, which we can interpret as collapsing the leftmost edge of the unit
square to a point. (Figure B.1.)

π

Figure B.1

Since ϕ is a path homotopy, we know that ϕ(0, t) = x; in other words, ϕ descends through the
quotient map π, inducing a singular 2-simplex ϕ̃ : ∆2 → X.

Notice that
∂ϕ̃ = κy − γ1 + γ2, (B.10)

where we use κy to denote the constant path at y ∈ X. Since ∂ϕ̃ and κy are of course both
boundaries, we deduce that γ1 and γ2 are indeed homologous.

We can also show that the concatenation of paths interacts in a natural way with the notion of
homology.

Lemma B.2.8. Let γ1, γ2 : [0, 1]→ X denote paths in a topological space X for which γ1(1) = γ2(0).
Then, the concatenation γ2 ∗ γ1 is homologous to the singular 2-chain γ1 + γ2.

Proof. Realize a 2-simplex ∆2 ⊂ R2 as the convex hull of the vertices (0, 0), (1, 0) and (1, 1), and
define a function Σ: ∆2 → X by

Σ(x, y) =

{
γ1(x+ y) if x+ y ≤ 1, and

γ2(x+ y − 1) if x+ y ≥ 1.
(B.11)
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Notice that this is well defined, since when x+ y = 1,

γ1(x+ y) = γ1(0) = γ2(1) = γ2(x+ y − 1). (B.12)

The continuity of Σ is manifest, and we therefore have a singular 2-simplex Σ: ∆2 → X, the boundary
of which we now compute.

We define the face maps F1, F2, F3 : [0, 1]→ ∆2 as follows:

F1(t) = (0, 1− t),
F2(t) = (t, t) and

F3(t) = (1− t, 1).

(B.13)

Comparing (B.13) to (B.11) reveals that

∂∆2 = (∆2 ◦ F1)− (∆2 ◦ F2) + (∆2 ◦ F3)

= γ1 − (γ2 ∗ γ1) + γ2,
(B.14)

whence we conclude that γ1 + γ2 and γ2 ∗ γ1 are indeed homologous.

B.3 Covering Spaces and Winding Number

It is convenient for us to couch our definition of winding number in the language of covering spaces,
freely making use of the equivalence between R2 and C. We recall the relevant definitions and
properties without proof, referring to [Lee00] for a more detailed treatment.

Definition and Lemma B.3.1. Let π : C → X denote some continuous surjection between topo-
logical spaces. If there exists some subspace U ⊂ X such that

• The fibre π−1(U) is a disjoint union of some collection {Ũi}i∈I of open subspaces of C, and

• For each i ∈ I, the restriction π|Ũi : Ũi → U is a homeomorphism,

then we say that U is evenly covered (by π).

If every point of x has some neighbourhood in X which is evenly covered by π, then we call π a
covering map (with base space X), and say that C is a covering space of X. Suppose that π : C → X
is a covering map in what follows.

Given some continuous function f : Y → X between topological spaces, a lift of f (through π) is a

continuous function f̃ : Y → C such that π ◦ f̃ = f .

If Y is connected, and if f̃1 and f̃2 are two lifts of f such that f̃1(y) = f̃2(y) for some y ∈ Y , then

f̃1 = f̃2.

If γ : [0, 1]→ X denotes some path, let x = γ(0), and select any point c ∈ π−1(x). There then exists
precisely one lift γ̃ of γ through π such that γ̃(0) = x.

Let γ1, γ2 : [0, 1]→ X denote some pair of path-homotopic paths. If γ̃1 and γ̃2 are lifts of γ1 and γ2
respectively through π, both of which start at the same point, then γ̃1 and γ̃2 are path-homotopic in
C.

Lemma B.3.2. The exponential map exp: C→ C− {0} is a covering map.

In terms of Definition B.3.1 and Lemma B.3.2, we define winding number as follows. Part of
the reason we choose to frame this definition in terms of covering spaces is the ease with which
Corollary B.3.4 follows from the fact that path homotopies lift to covering spaces.

Definition and Lemma B.3.3. Let γ : [0, 1]→ C−{0} denote some path, and γ̃ : [0, 1]→ C some
lift of γ through the exponential map. The winding number of γ about 0 is defined as

nγ(0) =
1

2πi
(γ̃(1)− γ̃(0)).
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This is well defined, in the sense that the value of nγ(0) does not depend on our choice of lift.

Suppose more generally that γ : [0, 1]→ C is some path, and select some point z ∈ C− supp γ. The
winding number of γ about z is defined to be

nγ(z) = nγ−z(0), (B.15)

where in an abuse of notation we denote by γ − z the path defined by t 7→ γ(t)− z.

Proof. Suppose that γ̃1 and γ̃2 are two lifts of γ through the exponential map. Then, for each
t ∈ [0, 1], we know that

exp(γ̃1(t)− γ̃2(t)) = γ(t)− γ(t) = 0, (B.16)

whence we deduce the existence of some function f : [0, 1]→ Z such that

γ̃1(t)− γ̃2(t) = 2iπf(t). (B.17)

Inspecting (B.17), we see that the function f must be continuous; since Z is totally disconnected, it
follows that f must in fact be a constant function with some value k ∈ Z. We can now observe that

(γ̃1(1)− γ̃1(0))− (γ̃2(1)− γ̃2(0)) = (γ̃2(1)− γ̃1(1))− (γ̃2(0)− γ̃1(0))

= 2ikπ − 2ikπ

= 0,

(B.18)

from which we conclude that the winding number nγ(0) is indeed indeed independent of our choice
of lift.

Corollary B.3.4. Winding numbers are path homotopy invariant, in the sense that if we have some
pair γ1, γ2 : [0, 1]→ C of path-homotopic paths, then for every point z ∈ C− (supp γ1 ∪ supp γ2), we
have that nγ1(z) = nγ2(z)

Proof. It will suffice for us to prove the claim for winding numbers about the origin. We know from
Definition B.3.1 that we can find a pair of path-homotopic lifts γ̃1 and γ̃2 of γ1 and γ2 respectively
through the exponential map, and in particular these lifts must share their end points. The result
now follows from Definition B.3.3 of the winding number.

We conclude this section with a pair of lemmas describing the behaviour of winding numbers. Of
particular importance in the sequel is Lemma B.3.6, which gives some properties of the winding
numbers of loops which will be essential in our proof of Theorem 1.4.1.

Lemma B.3.5. The winding number of any path varies continuously. That is, given any path
γ : [0, 1]→ C, the function nγ : C− supp γ → C is continuous.

Proof. Consider any sequence of points (zn)n∈N in C− supp γ with a limit z ∈ C− supp γ. It will
suffice for us to prove that nγ(zn)→ nγ(z).

Adopting the notational convention of Definition B.3.3, let γ̃ denote any lift of γ − z through the
exponential map, and γ̃n any lift of γ − zn through the same, for each n ∈ N. Unravelling our
definition of winding number, we see that

exp(2iπ(nγ(z)− nγ(zn))) = exp((γ̃ − γ̃n)(1)− (γ̃ − γ̃n)(0))

=
(exp ◦γ̃)(1)

(exp ◦γ̃)(0)
· (exp ◦γ̃n)(0)

(exp ◦γ̃n)(1)

=
γ(1)− z
γ(0)− z ·

γ(0)− zn
γ(1)− zn

(B.19)

Now, (B.19) in the limit n → ∞. Having assumed that zn → z, and that neither the sequence
(zn)n∈N nor the point z lie in the support of γ, we see that

lim
n→∞

exp(2iπ(nγ(z)− nγ(zn))) = 1, (B.20)
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which can be true only if

lim
n→∞

(nγ(z)− nγ(zn)) = 0. (B.21)

This completes the proof.

Lemma B.3.6. Let σ : [0, 1]→ C denote some loop. Then,

• For each z ∈ C− suppσ, the winding number nσ(z) is an integer;

• The winding number nσ is constant on each path component of C− suppσ, and

• If z is a point of the unbounded component of C− suppσ, then nσ(z) = 0.

Proof. For the first claim, let σ̃ denote any lift of σ−z through the exponential map, where z 6∈ suppσ,
and where we use the notational convention of Definition B.3.3. By hypothesis, σ(0) = σ(1), so that

exp(2iπnσ(z)) = exp(σ̃(1)− σ̃(0))

=
σ(1)

σ(0)

= 1.

(B.22)

It follows that nσ(z) ∈ Z.

Now, consider any pair of points z, w ∈ C−suppσ, and denote by γ : [0, 1]→ C−suppσ some path be-
tween them. Combining the above with Lemma B.3.5, we see that the composition nσ ◦ γ : [0, 1]→ Z
is continuous–but since Z is totally disconnected, this can only be true if nσ is constant on supp γ.
From this, we can deduce that nσ is constant on each path component of C− suppσ.

For the final claim, it will be enough to exhibit at least one point of the unbounded component
of C − suppσ at which the winding number nσ vanishes. Knowing that suppσ is compact, and
in particular bounded, we can find some R > 0 such that suppσ ⊂ B(0;R); selecting any point
z ∈ C−B(0;R), we propose that nσ(z) = 0.

Indeed, we know that supp(σ − z) ⊂ B(−z;R), and our choice of z ensures that 0 6∈ B(−z;R).
Knowing that B(−z;R) is simply connected, we find that the path σ − z is path-homotopic in
C − {0} to the constant path at σ(0) − z. The lifts of such a path through the exponential map
are nothing more than the constant paths at each point of the fibre exp−1(σ(0)− z), so that an
invocation of Corollary B.3.4 allows us to conclude that nσ(z) = 0.

B.4 Winding Number and Homology

The following lemma, adapted from [BG91], will prove instrumental in our proof of Theorem 1.4.1.
In particular, it will allow us to prove that a homomorphism defined on a group of cycles descends
to the quotient, yielding an isomorphism defined on a homology group.

Definition B.4.1. Let c =
∑n
i=1 αiγi denote some singular 1-chain with support in R2. For each

point x ∈ supp c, we define the winding number of c about x to be the sum

nc(x) =

n∑
i=1

αinγi(x).

Lemma B.4.2. Let c denote any singular 1-cycle with support in some open subspace U ⊂ R2. The
following are equivalent:

• There exists some singular 2-chain d with support in U such that c = ∂d, and

• The winding number nc vanishes on all of R2 − U .
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Proof. If the 1-cycle c is the boundary of some singular 2-chain with support in U , then every
point of R2 − U is a fortiori a point of the unbounded component of R2 − supp c. It follows from
Lemma B.3.6 that nc

(
R2 − U

)
= {0}, establishing one implication.

Conversely, suppose that nc
(
R2 − U

)
= {0} for the singular 1-chain c =

∑N
i=1 αiγi; we wish to

construct some singular 2-chain d, supported in U , such that c = ∂d. We start by observing that,
in light of Corollary B.2.6 and Corollary B.3.4, we lose no generality in assuming that each of the
paths {γi}Ni=1 is either vertical or horizontal.

Let {xi}nxi=1 denote the set of x-coordinates of end points of the paths {γi}Ni=1, and {yi}nyi=1 the set
of y-coordinates of the same.3 Order these sets such that

x1 < x2 < · · · < xnx and y1 < y2 < · · · < yny , (B.23)

and define, for each i ∈ {1, 2, . . . , nx − 1} and for each j ∈ {1, 2, . . . , ny − 1}, the rectangle

Rij = [xi, xi+1]× [yj , yj+1] ⊂ R2, (B.24)

the centre of which we denote by rij . (Figure B.2.) Notice that each rectangle Rij can be realized
as the support of a singular 2-chain

Sij = τij + τ ′ij , (B.25)

where the singular 2-simplices τij and τ ′ij are defined as in Figure B.3.

c

U

r1,1

r1,2

r2,1

r1,4 r5,4

r5,1

. . . . . . . . .

. . . . . .

. .
.

. .
.

. .
.

. .
.

. .
.

. .
....

...

...

Figure B.2

We propose if nc(rij) 6= 0, then Rij ⊂ U , and prove this by contradiction. Indeed, suppose that
there exists some point a ∈ Rij − U for some rectangle Rij ; if we can prove that there exists some
path in R2 − supp c which connects rij to a, then Lemma B.3.5 will tell us that nc(rij) vanishes, as
hoped.

We denote by γ : [0, 1]→ Rij the straight-line path from rij to a, which we know by convexity to
be supported in Rij . We chose a not to lie in U , which means that a 6∈ supp c; knowing also that
γ([0, 1[) ⊂ intRij , we conclude that supp γ and supp c are disjoint. It follows that rij and a belong
to the same path component of R2 − suppσ, justifying our proposal.

3Notice that, in general, nx and ny are unequal, and either may be strictly less than N : in general, several of the
paths {γi}Ni=1 will have end points which share an x- or y-coordinate.
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(xi, yj) (xi+1, yj)

(xi+1, yj+1)(xi, yj+1)

τij

τ ′ij

Figure B.3

The upshot of this is that we can define a singular 2-chain

d =
∑

nc(rij)6=0

nc(rij)Sij , (B.26)

and we propose that our original 1-chain c is precisely the boundary of d.

Let us consider the formal difference c− ∂d. Our choice of c, together with our definition of d, allows
us to write this in the form

c− ∂d =

M∑
k=1

αkνk, (B.27)

where each of the paths {νk}Mk=1 is either vertical or horizontal. Moreover, no generality is lost in
assuming that, whenever k 6= l, the intersection (supp νk) ∩ (supp νl) is either empty, or contains
one or both end points of the paths νk and νl. Our approach from here shall be to prove that the
coefficients {αk}Mk=1 all vanish, which will imply that c = ∂d, so completing the proof.

c− ∂d

µ1

µ2

µ3

νkrij

Figure B.4

Suppose that, for some k ∈ {1, 2, . . . ,M}, the support of the path νk comprises the right-hand edge
of some rectangle Rij , and the left-hand edge of the rectangle Ri+1,j , as depicted schematically in
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Figure B.4. Adopting the notation of Figure B.4, we know that

∂Rij = µ1 + µ2 + µ3 ± νk, (B.28)

with the sign of the final term depending on the orientation of νk, and from this we can immediately
deduce that the linear combination c− ∂d∓ αk∂Rij contains no term involving νk. In particular,
the support of c− ∂d∓ αk∂Rij does not intersect the straight-line path from rij to ri+1,j ; recalling
Lemma B.3.6 and Definition B.4.1, we arrive at the equality

nc−∂d(rij)∓ αkn∂Rij (rij) = nc−∂d(ri+1,j)∓ αkn∂Rij (ri+1,j). (B.29)

The winding number of ∂Rij about rij and ri+1,j is readily evaluated, allowing us to rewrite (B.29)
in the form

∓ αk = nc−∂d(ri+1,j)− nc−∂d(rij). (B.30)

However, our definition of the chain d in (B.26) ensures that the right-hand side of (B.30) vanishes,
whence we conclude that αk = 0 in this case. This reasoning, appropriately modified, reveals that
αk also vanishes when supp νk comprises the top edge of some rectangle Rij and the bottom edge of
some rectangle Ri,j+1.

Now, suppose instead that all points of supp νk have x-coordinate x0, so that supp νk is the left-hand
edge of some rectangle R0j ; again, we know that the linear combination c − ∂d ∓ αk∂R0j has no
term involving νk. If we choose some point z ∈ U with x-coordinate strictly less than x0 and
y-coordinate equal to that of r0j , then it follows that the straight-line path from r0j to z does not
meet supp(c− ∂d∓ αk∂R0j), and so we deduce (once more via Lemma B.3.6 and Definition B.4.1)
that

nc−∂d(r0j)∓ ∂αkn∂R0j (r0j) = ∓αk
= nc−∂d(z)∓ ∂αkn∂R0j (z).

(B.31)

However, our choice of z ensures that this point belongs to the unbounded components of both
R2 − supp(c− ∂d) and R2 − supp(∂R0j), so that a final invocation of Lemma B.3.6 tells us that
αk = 0 in this case also.

Suitably adapted reasoning further indicates that αk also vanishes when every point of supp νk
has x-coordinate xnk , y-coordinate y0, or y-coordinate yny . Thus, we deduce that c = ∂d, which
completes the proof.

B.5 Alexander Duality

We need four results before we are ready to prove Theorem 1.4.1, but we quote three without proof
in order to obviate the need for a lengthy detour into the realms of algebraic topology. The first of
these is the standard result that the second homology group of any open subspace of the plane must
be trivial, and is proved in [Vic94]; the second two, due to Hurewicz [Hur35] and Johansson [Joh31],
concern themselves with the fundamental groups of surfaces, with modern treatments provided in
[Lee00] and [Sti93] respectively.

The fourth result, by contrast, involves the topology of the plane, and we prove it explicitly.
Heuristically, this lemma states that if we are given some compact subspace of the plane with only
finitely many components, then we can always ‘draw a loop separating any one of those components
from all of the others’.

Lemma B.5.1. If U ⊂ R2 denotes some open subspace, then the second singular homology group
H2(U) is the trivial group.

Lemma B.5.2 (Hurewicz). If X denotes some path connected topological space with some dis-
tinguished base point x ∈ X, then the first singular homology group H1(X) is isomorphic to the
Abelianization of the fundamental group π1(X,x).

Lemma B.5.3 (Johansson). The fundamental group of any non-compact 2-manifold is free.
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Lemma B.5.4. Let C ⊂ R2 denote some compact subspace with finitely many components, and
A one of these components. There exists a Jordan curve J ⊂ R2 − C such that A lies in the
bounded complementary domain of J in R2, while every other component of C lies in the unbounded
complementary domain of the same.

Proof. If C is connected, then our claim follows immediately from the knowledge that a compact
subspace of the plane is necessarily bounded.

If C instead fails to be connected, then let {A,B1, B2, . . . , Bn} denote the set of components of C.
For each i ∈ {1, 2, . . . , n}, we define

δi = inf{‖a− b‖ | a ∈ A and b ∈ Bi} (B.32)

to be the distance from A to Bi, and choose

δ = min{δ1, δ2, . . . , δn} (B.33)

to be the least of these distances. Notice that δ > 0.

Choosing some ε ∈
]
0, δ

2
√
2

[
, we tile the plane with the squares

Sij = [i− ε, i+ ε]× [j − ε, j + ε] where i, j ∈ Z, (B.34)

roughly sketched in Figure B.5a, and define the subspace

X =
⋃
{Sij | i, j ∈ Z and Sij ∩A 6= ∅} ⊂ R2, (B.35)

as indicated in Figure B.5b. Letting X ′ denote the union of X with all of its bounded complementary
domains4 in the plane, we propose that J = frX ′ (Figure B.5c) is precisely the Jordan curve we
seek.

Certainly, J is a Jordan curve.5 Moreover, we lose no generality in assuming that J fails to meet A,

for if this is not the case, then we can simply replace ε in (B.34) by an appropriate value in
]
ε, δ

2
√
2

[
.

Our construction of J ensures that A lies in the bounded component of R2 − J , while every other
component of C must lie in the unbounded component of the same, and so we conclude that the
Jordan curve J has the desired properties.

With what has been established up to this point, we can complete our proof of Theorem 1.4.1 in two
steps. First, we prove an appropriate analogue of Theorem 1.4.1 in the plane with Lemma B.5.5;
then, we transfer this to the sphere via a Mayer-Vietoris argument, so completing the proof.

Lemma B.5.5. Let C ⊂ R2 denote some compact subspace with n ∈ N connected components. The
first singular homology group H1

(
R2 − C

)
is isomorphic to Zn.

Proof. Let (G,+) denote the group of locally constant Z-valued functions on C, where the group
operation acts by pointwise addition. We readily observe that G ∼= Zn, for if we let {C1, C2, . . . , Cn}
denote the set of components of C, then G is freely generated by the functions

{f1, f2, . . . , fn}, where fi(x) =

{
1 if x ∈ Ci and

0 otherwise.
(B.36)

Our strategy shall be to define a group homomorphism Z1

(
R2 − C

)
→ G, where Z1

(
R2 − C

)
denotes

the group of singular 1-cycles supported in R2 − C, and then to show that this homomorphism
descends to an isomorphism H1

(
R2 − C

) ∼= G.

4Sometimes, such a union is referred to as the filling of X.
5There is a subtlety which we have elided here. It is in principle possible that some pair of squares comprising X′

intersect only at a vertex, which would prevent frX′ from being a Jordan curve. However, this can be rectified by
subdividing each of the offending squares into nine congruent smaller squares, and using the boundary of what results.
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A

(a)

X

(b)

X ′

J
(c)

Figure B.5

To this end, we define a function ϕ : Z1

(
R2 − C

)
→ G by

ϕ(c)(x) = nc(x), (B.37)

essentially acting to map a chain c ∈ Z1

(
R2 − C

)
to its winding number. Recalling Lemma B.3.6

reassures is that such a function is at least well defined. That ϕ is also a homomorphism of groups
is a direct consequence of Definition B.4.1; explicitly, given some pair of chains c1, c2 ∈ Z1

(
R2 − C

)
,

we find that
ϕ(c1 + c2)(x) = nc1+c2(x)

= nc1(x) + nc2(x)

= (ϕ(c1) + ϕ(c2))(x),

(B.38)

as needed.

Our next task is to show that ϕ is constant on homology classes, so that it descends to a homo-
morphism ϕ̃ : H1

(
R2 − C

)
→ G. Indeed, if we select some arbitrary pair of homologous chains

c1, c2 ∈ Z1

(
R2 − C

)
, we know from Lemma B.4.2 that the winding number nc1−c2 must vanish on

C. It follows that ϕ(c1 − c2) ∈ G must be the constant function C → {0}, so that ϕ(c1) = ϕ(c2).

Finally, it falls to us to demonstrate that our homomorphism ϕ̃ : H1

(
R2 − C

)
→ G is in fact an

isomorphism. To see that ϕ̃ is injective, suppose that ϕ̃([c]) is the constant function C → {0} for
some homology class [c] ∈ H1

(
R2 − C

)
; then, ϕ̃(c) is also the constant function C → {0}. In other

words, the winding number nc vanishes on C, and an appeal to Lemma B.4.2 allows us to deduce
that c is a boundary. It follows that ϕ̃([c]) is the identity of G if and only if [c] is the identity of
H1

(
R2 − C

)
, establishing injectivity.

For surjectivity, fix any i ∈ {1, 2, . . . , n} and consider the corresponding component Ci of C. Using
Lemma B.5.4, we can find some Jordan curve J ⊂ R2 − C such that Ci is the only component of C
contained within the bounded component of R2 − J . If σ : [0, 1]→ J denotes some parametrization
of J , then Lemma B.3.6 asserts that ϕ̃([σ]) = fi, where fi denotes the generator defined in (B.36).
Thus, the image of ϕ̃ contains every generator of G, and hence surjectivity follows.
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Proof of Theorem 1.4.1. Distinguishing some point ∞ ∈ S2 − C, we define two subspaces of
S2 − C; namely, some open ε-ball A ⊂ S2 − C centred at ∞, and B ⊂ S2 − C, the complement
in S2 − C of the open ε

2 ball centred at ∞. Ultimately, we wish to examine the Mayer-Vietoris
sequence of the triad

(
S2 − C,A,B

)
, but before doing so, we determine the homotopy types of A,

B and A ∩B.

Clearly, A is contractible. If we denote by Π: S2 − {∞} → R2 the stereographic projection with
projection point∞, then Π(B) ⊂ R2 is the complement of Π(C) in some closed disc; such a subspace
is a deformation retract of R2 − Π(C), and therefore is of the same homotopy type. Finally, the
same stereographic projection reveals that A ∩B is homeomorphic to an annulus in the plane, so
that this intersection has the homotopy type of the circle.

With these observations in hand, the tail of the Mayer-Vietoris sequence of the triad
(
S2 − C,A,B

)
reads

· · · H2

(
S2 − C

)
Z H1

(
R2 −Π(C)

)
H1

(
S2 − C

)
Z Z⊕H0

(
R2 −Π(C)

)
H0

(
S2 − C

)
0.

(B.39)

Now, we can see by stereographically projecting with any point of C as our projection point that
S2 − C is a homeomorph of some open subspace of R2, so that its second singular homology group
is trivial (Lemma B.5.1); meanwhile, Lemma B.5.5 asserts that H1

(
R2 −Π(C)

) ∼= Zn. Yet another
stereographic projection about ∞ allows us to see that the sets of path components of S2 − C and
R2 −Π(C) are in bijection, and we let α denote the (potentially infinite) cardinality of these sets.

In light of all of this, the exact sequence (B.39) becomes

0 Z Zn H1

(
S2 − C

)
Z Zα+1 Zα 0, (B.40)

and insisting that the alternating sum of ranks in this truncated sequence vanish allows us to deduce
that the homology group H1

(
S2 − C

)
has rank n− 1.

From here, we can deduce that H1

(
S2 − C

) ∼= Zn−1 via an appeal to Lemma B.5.3. The complement
S2 −C inherits the local connectedness of S2, so that it is topologically the disjoint union of each of
its connected components, and each such component is a non-compact surface with free fundamental
group. Combining the standard result that the Abelianization of any free group is a free Abelian
group with Lemma B.5.2, we find that H1

(
S2 − C

)
is a direct sum of free Abelian groups, and in

particular is itself free Abelian. Every free Abelian group of rank n− 1 is isomorphic to Zn−1, and
so the proof is complete.
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[Hau14] F. Hausdorff. Grundzüge der Mengenlehre. Verlag von Veit and Co., Leipzig, 1914.

[Hau27] F. Hausdorff. Mengenlehre. Verlag Walter de Gruyter and Co., Berlin, 1927.

[Hen64] G.W. Henderson. The pseudo-arc as an inverse limit with one binding map. Duke
Mathematical Journal, 31(3):421–425, 1964.
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