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Arrow Update Synthesis

Hans van Ditmarsch∗,†, Wiebe van der Hoek‡,
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Abstract

In this contribution we present arbitrary arrow update model logic (AAUML). This
is a dynamic epistemic logic or update logic. In update logics, static/basic modali-
ties are interpreted on a given relational model whereas dynamic/update modalities
induce transformations (updates) of relational models. In AAUML the update modal-
ities formalize the execution of arrow update models, and there is also a modality for
quantification over arrow update models. Arrow update models are an alternative to
the well-known action models. We provide an axiomatization of AAUML. The ax-
iomatization is a rewrite system allowing to eliminate arrow update modalities from
any given formula, while preserving truth. Thus, AAUML is decidable and equally
expressive as the base multi-agent modal logic. Our main result is to establish arrow

update synthesis: if there is an arrow update model after which ϕ, we can construct

(synthesize) that model from ϕ. We also point out some pregnant differences in up-

date expressivity between arrow update logics, action model logics, and refinement
modal logic, and we provide a novel axiomatization for refinement modal logic.

Keywords: modal logic, synthesis, dynamic epistemic logic, expressivity

1 Introduction

Modal logic In modal logic we formalize that propositions may not be merely true or
false, but that they are necessarily or possibly true or false, or that they may be desirable,
or forbidden, or true later, or never, or that they are known. A common setting is for such
modal propositions to be interpreted in relational models, also known as Kripke models.
They consist of a domain of abstract objects, called states or worlds; then, given a set
of labels, often representing agents, for each such agent a binary relation between those
states; and, finally, a valuation of atomic propositions on the domain, typically seen as a
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unary relation, i.e., a property satisfied on a subset of the domain. The truth of a modal
proposition is relative to a state in the relational model, called the actual state or the point
of the model. The unit of interpretation is thus a pointed model: a pair consisting of a
relational model and an actual state.

If a pair (s, s′) in the relation for a this can mean that after executing action a in state
s the resulting state is s′. But it can also mean that agent a considers state s′ desirable in
case she is in state s. The interpretation that we focus on, is that of information. That
is, it is consistent with a’s information in state s that the state would be s′. In state s it
is true that agent a knows ϕ (or believes ϕ, depending on the properties of the relation),
notation ✷aϕ, if the formula ϕ is true in all states s′ accessible from s, i.e., for all s′ with
(s, s′) in the relation for a. The modal logics using that kind of interpretation of modalities
are called epistemic logics [6, 24].

As an example, consider two agents a, b (commonly known to be) uncertain about the
truth of a propositional variable p. The uncertainty of a and b can be pictured as follows.
We ‘name’ the states with the value of the variable p. The actual state is framed. Pairs
in the accessibility relation are visualized as labelled arrows. In the actual state: p is true,
agent a does not know p because she considers a state possible wherein p is false (formally
¬✷ap), agent a also does not know ¬p because she considers a state possible wherein p is
true (formally ¬✷a¬p, also written as ✸ap), and similarly for agent b. Agent a also knows
that she is ignorant about p, as this is true in both states that she considers possible. The
accessibility relations for a and b are both equivalence relations. This is always the case if
the modalities represent knowledge.

¬p pab

ab ab

p

Update logic In this work we focus on modal logics that are update logics. Apart from
the modalities that are interpreted in a relational model, they have other modalities that
are interpreted by transforming a relational model (and by then interpreting the formulas
bound by that modality in the transformed model). If the modal logic is an epistemic
logic, update logics are called dynamic epistemic logics. To distinguish them we call the
former static and we call the latter dynamic.

The updates X that we consider can be defined as transformers of relational models.
This transformation induces a binary update relation between pointed models. To an up-
date relation corresponds an update modality (often also called update) that is interpreted
with this relation, so we can see those as [X ] or 〈X〉, where [X ]ϕ means that ϕ is true in
all pointed models transformed according to the X relation, and 〈X〉ϕ that there is a pair
of pointed models in the relation. Given a relational model we can change its domain of
states, the relations between the states, or the valuations of atomic propositions, or two
or more of those at the same time. There are therefore many options for change. Change
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the valuation of a model is also known as factual change [26, 21]. Update involving factual
change is an interesting topic, but it is outside the scope of the current paper.

Public announcement logic The basic update for states is the model restriction, and
the basic update operation interpreted as a model restriction is a public announcement.
The logic with epistemic modalities and public announcements is public announcement

logic (PAL) [18, 5]. A public announcement of ϕ restricts the domain to all states where
the announced formula ϕ is true, thereby decreasing the uncertainty of the agents. As a
result of the domain restriction, the relations and the valuation are adjusted in the obvious
way. A condition for the transformation is that the actual state is in the restriction. This
means that the announcement formula is true when announced.

As an example, after the public announcement of p, both a and b know that p:

¬p pab

ab ab

⇒ p

ab

Arrow update logic The basic update for relations is the relational restriction, i.e.,
a restriction of the arrows: a pair in the relation is called an ‘arrow’. This leaves all
states intact, although some may have become unreachable. In arrow update logic (AUL),
proposed in [15] we specify which arrows we wish to preserve, by way of specifiying what
formulas should be satisfied at the source (state) of the arrow and the target (state) of the
arrow. This determines the model transformation. Such a specification is called an arrow

update. The logic AUL contains modalities for arrow updates.
Given initial uncertainty about p with both agents, a typical arrow update is the action

wherein Anne (a) opens an envelope containing the truth about p while Bill (b) observes
Anne reading the contents of the letter. We preserve all arrrows satisfying one of p →a

p,¬p→a ¬p, and ⊤ →b ⊤. Therefore, only two arrows disappear, ¬p→a p and p→a ¬p.

¬p pab

ab ab

⇒ ¬p pb

ab ab

The boundary between state elimination and arrow elimination is vague. If p is true, the
following arrow update with ⊤ →a p,⊤ →b p is the same update as a public announcement
of p. This is because there is no arrow from the p state to the ¬p state after the update.
Therefore, if p is true, the ¬p state does not matter. In another formalism this arrow
update is known as the arrow elimination semantics of public announcement [11, 14].

¬p pab

ab ab

⇒ ¬p pb

ab
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Generalizations In PAL and AUL the complexity (the number of states) of the rela-
tional model cannot increase. By generalizing the mechanism underlying state elimination
and arrow elimination we can achieve that, and thus express more model transformations.
This increases their update expressivity. From the perspective of information change, this
adds uncertainty about what is happening. We obtain action models [5] as a generaliza-
tion of public announcements, and arrow update models [16] as a generalization of arrow
updates.

Action model logic Action model logic (AML) was proposed by Baltag, Moss and
Solecki in [5]. An action model is like a relational model but the elements of the domain
are called actions instead of states, and instead of a valuation a precondition is assigned to
each domain element. The transformed relational model is then the modal product of the
relational model and the action model, restricted to (state,action) pairs where the action
can be executed in that state. We refer to Section 6 for a formal introduction.

An example is the action as above wherein Anne reads the contents of a letter containing
p or ¬p, but now with the increasing uncertainty that Bill is uncertain whether Anne has
read the letter (and that they are both aware of these circumstances). The action model
is not depicted (details are in Section 6). The model transformation is as follows. In the
resulting framed state, a knows that p, but b considers it possible that a is uncertain about
p, i.e., ✷ap ∧✸b¬(✷ap ∨ ✷a¬p). In the figure we assume transitivity of the relation for b.

¬p ¬p pab

ab ab

⇒ ¬p p

¬p p

ab

b

b b

ab ab

ab ab

Similar logics (or semantics) for action composition are found in [22, 13, 21, 2, 32]. Action
model logic is often referred to as (the) dynamic epistemic logic. As said, we use the latter
more generally, namely to denote any update logic with an epistemic interpretation.

Arrow update model logic Generalized arrow update logic [16] is a (indeed) generaliza-
tion of arrow update logic where the dynamic modalities for information change formalize
execution of (pointed) arrow update models, structures akin to the action models of ac-
tion model logic. In this contribution, instead of generalized arrow update logic we call
it arrow update model logic (AUML). The arrow updates of [15] correspond to singleton
arrow update models. The next Section 2 formally introduces them. The above is also an
example of arrow update model execution — Section 6 explains how to get action models
from arrow update models and vice versa, and to what extent they define the same update.
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Quantification over information change Another extension of update logics is with
quantification over updates. Arbitrary public announcement logic (APAL) adds quantifi-
cation over public announcements to PAL [4]. Arbitrary arrow update logic (AAUL) [28]
extends arrow update logic with quantifiers over information change induced by arrow up-
dates: it contains dynamic modalities formalizing that there is an arrow update after which

ϕ. Arbitary action model logic (AAML) by Hales [12] add quantifiers over action models
to AML. In arbitrary arrow update model logic (AAUML), the topic of this paper, we add
quantifiers over arrow update models to the logical language. It is like Hales’ arbitrary
action model logic. Refinement modal logic (RML) [8] has a modality representing quantifi-
cation over updates, but does not have (deterministic/concrete) update modalities in the
object language to quantify over. We will show that the AAML and AAUML quantifier
behaves much (but not quite) like the refinement quantifier in RML. Section 7 is devoted
to it.

Figure 1 gives an overview of the different logics discussed in the paper, in their relation
to AAUML. The four logics in the left square are based on state manipulation, the four
logics in the right square are based on arrow manipulation. Entirely on the left we find
the base modal logic ML and the logic RML, that is also arrow manipulating.

All these logics are equally expressive as ML and are decidable, which can be shown
by truth-preserving rewriting procedures to eliminate updates (for AAUML this is one of
the results of the paper), except for APAL and AAUL, which are more expressive and
undecidable [4, 9, 28, 29]. However, the logics greatly differ in update expressivity, as the
typical examples above already demonstrated. See also Sections 5 — 7.

There are many other updates and update logics that we do not consider in this paper.
In particular we do not consider updates X that can only be defined as pointed model
transformers (that is, they cannot be globally defined on the entire model; they are defined
locally: how they transform the model depends on the actual state). If such were the
definition of an update, even the interpretation of a static modality can be seen as an
update, namely transforming the model with point s into the model with point s′, where
the point has shifted given a pair (s, s′) in the relation for an agent. Such local update
logics are often more expressive than modal logic, are often undecidable, and may lack
axiomatizations. Examples are [20, 3, 1]. In [1] not only relational restriction is considered
but also relational expansion (‘bridge’) and relational change that is neither restriction nor
expansion, such as reversing the direction of arrows (‘swap’). It should finally be noted that
the distinction between static modalities, interpreted in a model, and dynamic modalities,
interpreted as updates, is not rigid: unifying perspectives include [21].

Synthesis For these update logics we can ask whether there is an update that achieves
a certain goal. For the logics without quantification this question cannot be asked in the
object language but only meta-logically. That is, we can ask whether there is an update
X such that 〈X〉ϕ is true. For the update logics with quantification this question can be
asked in the object language. Let 〈?〉 be (the existential version of) that quantifier. Then
〈?〉ϕ asks whether there is an update X that makes ϕ true.

5



ML

RML

PAL

APAL

AML

AAML

AUL

AAUL

AUML

AAUML

Figure 1: An overview of update logics discussed in the paper. Horizontal arrows informally
represent more complex updates. Vertical arrows informally represent quantification over

updates. The arrows can be interpreted as syntactic extensions (modulo the names of
quantifiers) or as semantic generalizations. Assume transitive closure.

Only knowing whether there is an update that achieves a goal is not very satisfying; we
would also like to know which update, if any, achieves the goal. So we would like to know
not only whether the goal is achievable but also how it can be achieved. The process of
constructing this update that achieves the goal is known as synthesis.

Formally, the synthesis problem for a given type of update takes as input a formula ϕ,
and gives as output an update X of that type such that, whenever ϕ can be achieved, then
X achieves ϕ. In symbols, this is the validity of 〈?〉ϕ→ 〈X〉ϕ.

This is a rather strong goal. We do not consider it sufficient to find, for every pointed
model (M, s), an update X(M,s) such that (M, s) satisfies 〈?〉ϕ→ 〈X(M,s)〉ϕ. We want one
single update Xϕ that achieves ϕ in every model where ϕ is achievable. Because this goal
is so strong, there is, in general, no guarantee that synthesis is possible.

For PAL this strong kind of synthesis is impossible. If (M1, s1) satisfies 〈ψ1〉ϕ and
(M2, s2) satisfies 〈ψ2〉ϕ, so if ϕ can be achieved in two different situations using two different
public announcements, then there is typically no unifying public announcement ψ such that
(M1, s2) satisfies 〈ψ〉ϕ and (M2, s2) satisfies 〈ψ〉ϕ.

For example, consider the four-state model below; p means that p is false in that state,
etc. Both states where p, q, r are all true satisfy that 〈?〉(✷ap ∧ ¬✷bp). In the top-left
pqr-state this is true because 〈q〉(✷ap ∧ ¬✷bp) is true, whereas in the bottom-right pqr-
state this is true because 〈r〉(✷ap ∧ ¬✷bp) is true. However, there is no announcement ϕ
such that 〈ϕ〉(✷ap ∧ ¬✷bp) is truth in both pqr-states. Assuming that there were such an
announcement easily leads to a contradiction.

pqr pqr

pqr pqr

a

a

b b

ab ab

ab ab
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For AUL this strong kind of synthesis is also not possible. But, somewhat surprisingly,
in [12], Hales showed that this synthesis is possible for AML. This result was surprising
for the following reason. Hales obtained his synthesis result with refinement modalities as
quantifiers. It was already known that finite action model execution results in a refinement
of the current relational model, but also that the other direction does not hold: there are
refinements (i.e., updates) that can only be achieved by executing an infinite action model
[25]. However, as the synthesis is with respect to making a given formula ϕ true, a finite
syntactic object, synthesis for AML was after all possible.

In this contribution we show that synthesis is also possible for AUML. That is, for a
given goal formula ϕ, we can construct an arrow update model X such that

For all (M, s): there is an arrow update model Y such that (M, s) satisfies
〈Y 〉ϕ, if and only if (M, s) satisfies 〈X〉ϕ.

In AAUML we also have a quantifier over arrow update models. Therefore, in that logic the
synthesis translates to the above-mentioned validity 〈?〉ϕ→ 〈X〉ϕ. In AUML / AAUML we
synthesize a (single-)pointed arrow update model, whereas for AAUML Hales synthesizes a
multi-pointed action model, and it can be easily shown that this cannot be single-pointed.

Results in the paper In this contribution we present arbitrary arrow update model logic

(AAUML), that further extends arrow update model logic AUML, namely with dynamic
modalities formalizing that there is an arrow update model after which ϕ. For this logic
AAUML we obtain various results. We provide an axiomatization of AAUML. The ax-
iomatization is a rewrite system allowing to eliminate dynamic modalities from any given
formula, while preserving truth. Thus, unlike AAUL, AAUML is decidable, and equally
expressive as multi-agent modal logic. We establish arrow update model synthesis: if there
is an arrow update model after which ϕ, we can construct (synthesize) that model from
ϕ. We define a notion of update expressivity and we determine the relative update expres-
sivity of AAUML and other arrow update logics and action model logics. Finally, we also
compare AAUML to RML, where we provide a novel axiomatization for RML.

Overview of content Section 2 presents the syntax and semantics of arbitrary arrow
update model logic, AAUML, and elementary structural notions. In Section 3 we describe
the procedure for synthesizing arrow update models. In that section we also introduce a
number of validities that are useful when introducing an axiomatization for AAUML, which
we do in the subsequent Section 4. Section 5 introduces the notion of update expressivity.
Section 6 compares AAUML and AAML, and in particular their update expressivity. This
comparison also includes examples of arrow update models that have exponentially larger
corresponding action models. Section 7 compares AAUML to RML.
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2 Arbitrary arrow update model logic

Throughout this contribution, let A be a finite set of agents and let P be a disjoint countably
infinite set of propositional variables (or atoms).

2.1 Structures

A relational model is a triple M = (S,R, V ) with S a non-empty domain of states, R a
function assigning to each agent a ∈ A an accessibility relation Ra ⊆ S×S, and V : P → S
a valuation function assigning to each propositional variable p ∈ P the subset V (p) ⊆ S
where the variable is true. For s ∈ S, the pair (M, s) is called a pointed relational model,
and for T ⊆ S, the pair (M,T ) is called a multi-pointed relational model.

Let two relational models M = (S,R, V ) and M ′ = (S ′, R′, V ′) be given. A non-empty
relation R ⊆ S × S ′ is a bisimulation if for all (s, s′) ∈ R and a ∈ A:

atoms s ∈ V (p) iff s′ ∈ V ′(p) for all p ∈ P ;

forth for all t ∈ S, if Ra(s, t), then there is a t′ ∈ S ′ such that R′
a(s

′, t′) and (t, t′) ∈ R;

back for all t′ ∈ S ′, if R′
a(s

′, t′), then there is a t ∈ S such that Ra(s, t) and (t, t′) ∈ R.

We write M↔M ′ (M and M ′ are bisimilar) iff there is a bisimulation between M and M ′,
and we write (M, s)↔(M ′, s′) ((M, s) and (M ′, s′) are bisimilar) iff there is a bisimulation
between M and M ′ linking s and s′. Similarly, (M,T )↔(M ′, T ′) iff for all s ∈ T there is
s′ ∈ T ′ such that (M, s)↔(M ′, s′), and vice versa. A total bisimulation is a bisimulation
such that all states in the domain and codomain occur in a pair of the relation.

We will now define arrow update models. We can think of them as follows. If you
remove the valuation from a relational model you get a relational frame. We now decorate
each arrow (pair in the accessibility relation for an agent) with two formulas in some logical
language L: one for a condition that should hold in the source (state) of the arrow and
the other that should hold in the target (state) of the arrow. The result is called an arrow

update model.

Definition 1 (Arrow update model) Given a logical language L, an arrow update model

U is a pair (O,RR) where O is the set of outcomes and where RR is an arrow relation

RR : A→ P((O ×L)× (O × L)). ⊣

For each agent a, the arrow relation assigns to a pair (o, o′) of outcomes in the domain
a pair (ϕ, ϕ′) of formulas. We write RRa for RR(a), and we write (o, ϕ) →a (o′, ϕ′) for
((o, ϕ), (o′, ϕ′)) ∈ RRa, or even, if the outcomes are unambiguous, ϕ →a ϕ

′. Formula ϕ
is the source condition and formula ϕ′ is the target condition of the a-labelled arrow from
source o to target o′. A pointed arrow update model, or arrow update, is a pair (U, o) where
o ∈ O. Similarly, we define the multi-pointed arrow update model (U,Q), where Q ⊆ O,

8



known as well as arrow update. There is no confusion with the arrow updates of AUL [15],
as those correspond to singleton pointed arrow update models.

Arrow update models are rather similar to the action models by Baltag et al. [5]. They
are compared in Section 6.

2.2 Syntax

We proceed with the language and semantics of arbitrary arrow update model logic (AAUML).

Definition 2 (Syntax) The language of AAUML is inductively defined as

L ∋ ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ✷aϕ | [U, o]ϕ | [↑]ϕ

where p ∈ P , a ∈ A, where U is a finite arrow update model with source and target
conditions of type ϕ, and o ∈ D(U). ⊣

The source and target conditions in U are thus lower in the inductive hierarchy: think of
[U, o]ϕ as an n-ary operator where not only the formula bound by [U, o] is of type ϕ but
also all the source and target conditions in U . We read [U, o]ϕ as ‘after executing arrow
update (U, o), ϕ (holds), and [↑]ϕ as ‘after an arbitrary arrow update, ϕ (holds)’. Other
propositional connectives and dual diamond versions of modalities can be defined as usual
by abbrevation: ✸aϕ := ¬✷a¬ϕ, 〈U, o〉ϕ := ¬[U, o]¬ϕ, and 〈↑〉ϕ := ¬[↑]¬ϕ. Expression
ϕ[ψ/p] stands for uniform substitution of all occurrences of p in ϕ for ψ.

The propositional sublanguage is called Lpl and the language with additionally the
modal construct ✷aϕ is Lml (the language of modal logic). In the language L of AAUML,
(modalities for) multi-pointed arrow update models are defined by abbreviation as [U,Q]ϕ :=∧
o∈Q[U, o]ϕ, and we informally allow them as primitive modalities in the logical language.

However, in later sections we wish to compare the logic with only modalities for single-
pointed arrow update models to the logic with modalities for multi-pointed arrow update
models. Let us therefore call the former AAUML1.

When doing synthesis, we will put formulas in disjunctive normal form. Since we
are working in a modal logic, the definition has to be adapted from the usual one in
propositional logic. We say that a formula ϕ ∈ L is in disjunctive normal form (DNF) if
every subformula of ϕ is a disjunction of conjunctions of formulas ψ1, . . . , ψn, where each
ψi is an atom, or the negation of an atom, or has one of �a,♦a, [U, o], 〈U, o〉, [↑] or 〈↑〉 as
main connective. Note that the requirement is that all subformulas are such disjunctions
of conjunctions. In particular, this means that formulas have to be in DNF at every modal
depth. So, for example, p ∨ �(q ∨ (♦p ∧ ¬q)) is in DNF, while p ∨ �(q ∨ ¬(¬♦p ∨ q)) is
not. It is easy to see that every formula is equivalent to a formula in DNF.

2.3 Semantics

We continue with the semantics. The semantics is defined by induction on ϕ ∈ L, and
simultaneously with the execution of arrow update models.

9



Definition 3 (Semantics) Let a relational modelM = (S,R, V ), a state s ∈ S, an arrow
update model U = (O,RR), an outcome o ∈ O, and a formula ϕ ∈ L be given.

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= ✷aϕ iff M, t |= ϕ for all (s, t) ∈ Ra

M, s |= [U, o]ϕ iff M ∗ U, (s, o) |= ϕ where M ∗ U is defined in (♯)
M, s |= [↑]ϕ iff M, s |= [U, o]ϕ for all (U, o) satisfying (♯♯)

(♯): M ∗ U = (S ′, R′, V ′) is defined as

S ′ = S × O
((s, o), (s′, o′)) ∈ R′

a iff (s, s′) ∈ Ra, (o, ϕ) →a (o
′, ϕ′),M, s |= ϕ, and M, s′ |= ϕ′

V ′(p) = V (p)× O

(♯♯): (U, o) is an arrow update model with all source and target conditions in Lml . ⊣

Validity in a model and validity are defined as usual.
The restriction of arrow formulas to Lml in the semantics of [↑]ϕ is to avoid circularity

of the semantics, as [↑]ϕ could otherwise itself be one of those arrow formulas. However,
because we will prove that AAUML is as expressive as basic modal logic, we also have

M, s |= [↑]ϕ iff M, s |= [U, o]ϕ for all (U, o)

without any restriction on the source and target conditions of U . We will prove this
property in Proposition 13, later.

2.4 Example

First consider the action of the introductory section of Anne reading a letter containing
the truth about p while Bill remains uncertain whether she performs that action. The
arrow update model producing the resulting information state is depicted below. In the
figure, an arrow → labelled with ϕ i ϕ

′ and linking outcomes o, o′ stands for the arrow
ϕ →i ϕ

′ between these outcomes, i.e., ((o, ϕ), (o′, ϕ′)) ∈ RRi; ϕ ij ϕ
′ stands for ϕ →i ϕ

′

and ϕ→j ϕ
′.

In the resulting model Bill considers it possible that Anne knows p, that she knows ¬p,
and that she still is uncertain about p: ✸b(✷ap ∧ ✷a¬p ∧ ¬(✷ap ∨✷a¬p)).

Next, consider the action of Anne privately learning that p while Bill remains unaware
of her doing so. The arrow update model achieving that and the resulting relational
model are depicted further below. In the resulting model it is true that, for example, Bill
incorrectly believes that Anne is uncertain about p: ✷ap ∧ ✷b¬(✷ap ∨✷a¬p).

10



¬p pab

ab ab

∗ •

◦

⊤ b ⊤

⊤ ab ⊤

p a p

¬p a ¬p

⊤ b ⊤

= (¬p, •) (p, •)

(¬p, ◦) (p, ◦)

ab

b

b b

ab ab

ab ab

¬p pab

ab ab

∗ •

◦

⊤ b ⊤

⊤ ab ⊤

⊤ a p

= (¬p, •) (p, •)

(¬p, ◦) (p, ◦)

ab

a

b b

ab ab

a

3 Arrow update synthesis

The goal of synthesis is to find, given a goal formula ϕ, an arrow update model (U, o) that
makes ϕ true. There are at least three ways in which we could interpret this goal, however.

Definition 4 (Synthesis)

• The local synthesis problem takes as input a pointed model (M, s) and a goal formula
ϕ. The output is an arrow update model (U, o) such that M, s |= 〈U, o〉ϕ, or “NO”
if no such arrow update model exists.

• The valid synthesis problem takes as input a goal formula ϕ. The output is an arrow
update model (U, o) such that |= 〈U, o〉ϕ, or “NO” if no such arrow update model
exists.

• The global synthesis problem takes as input a goal formula ϕ. The output is an arrow
update model (U, o) such that for every pointed model (M, s), if there is some (U ′, o′)
such that M, s |= 〈U ′, o′〉ϕ, then M, s |= 〈U, o〉ϕ. ⊣

We recall from the introduction that we take the third approach: when we say synthesis we
mean global synthesis. An alternative, equivalent characterization of the global synthesis
problem is that, for given ϕ, we want to find (U, o) such that M, s |= 〈↑〉ϕ↔ 〈U, o〉ϕ. We
further recall that synthesis is impossible for PAL and for AUL, but possible for AML [12].
We now show that synthesis for AUML is also possible. Because our version of synthesis is
global, it cannot depend on any specific model. So our synthesis process is purely syntactic.

In our synthesis, we make use of so-called reduction axioms. These reduction axioms are
a set of validities that, when taken together, show that AAUML has the same expressive
power as modal logic.
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3.1 Reduction axioms for arrow update models

We start by considering the reduction axioms for the [U, o] operator.

Lemma 5 ([16]) Let (U, o) be an arrow update model, p ∈ P , a ∈ A and ϕ, ψ ∈ L. Then
the following validities hold:

|= [U, o]p↔ p

|= [U, o]¬ϕ↔ ¬[U, o]ϕ

|= [U, o](ϕ ∧ ψ) ↔ ([U, o]ϕ ∧ [U, o]ψ)

|= [U, o]�aϕ↔
∧

(o,ψ)→a(o′,ψ′)

(ψ → �a(ψ
′ → [U, o′]ϕ))

Proof The first three validities follow immediately from the semantics of [U, o]. The fourth
validity also follows from the semantics, in the following way

M,w |= [U, o]�aϕ⇔M ∗ U, (w, o) |= �aϕ

⇔∀(w, o)R(w′, o) :M ∗ U, (w′, o′) |= ϕ

⇔∀(o, ψ) →a (o, ψ
′)∀wRw′ : if M,w |= ψ,M,w′ |= ψ′

then M ∗ U, (w′, o′) |= ϕ

⇔∀(o, ψ) →a (o, ψ
′) : if M,w |= ψ

then M,w |= �a(ψ
′ → [U, o′]ϕ)

⇔M,w |=
∧

(o,ψ)→a(o′,ψ′)

(ψ → �a(ψ
′ → [U, o′]ϕ))

�

Note that, in particular, |= [U, o]¬ϕ ↔ ¬[U, o]ϕ implies that [U, o] is self-dual: we have
|= [U, o]ϕ ↔ 〈U, o〉ϕ. This, of course, does not extend to the arbitrary arrow update
operator: 6|= [↑]ϕ↔ 〈↑〉ϕ.

3.2 Reduction axioms for the arrow update model quantifier

We can also write similar reduction axioms for [↑]. In practice, however, it turns out to be
slightly more convenient to write them for the dual operator 〈↑〉.

Lemma 6 For every ϕ ∈ L and every a ∈ A, we have

|= 〈↑〉♦aϕ↔ ♦a〈↑〉ϕ

12



Proof Let M,w be any pointed model, and suppose that M,w |= 〈↑〉♦aϕ. Then there is
some (U, o) such that M ∗ U, (w, o) |= ♦aϕ. So (w, o) has an a-successor (w′, o′) such that
M ∗ U, (w′, o′) |= ϕ.

This implies that M,w′ |= 〈U, o′〉ϕ and therefore M,w′ |= 〈↑〉ϕ. Since w′ is an a-
successor of w, we obtain M,w |= ♦a〈↑〉ϕ.

Now, suppose that M,w |= ♦a〈↑〉ϕ. Then there is an a-successor w′ of w such that
M,w′ |= 〈↑〉ϕ. As witness for this 〈↑〉 statement there must be some U ′, o′ such that
M,w′ |= 〈U ′, o′〉ϕ.

Let (U, o) be the arrow update model obtained by adding one extra world o to U ′, and
a transitions (o,⊤) →a (o

′,⊤). Note that (M ∗ U ′, (w′, o′)) is bisimilar to (M ∗ U, (w′, o′)),
and therefore M ∗ U, (w′, o′) |= ϕ. Finally, note that (w′, o′) is an a-successor of (w, o), so
we have M ∗ U, (w, o) |= ♦aϕ and therefore M,w |= 〈↑〉♦aϕ. �

Note that the proof is constructive. That is, if we find (U ′, o′) such thatM,w |= ♦a〈U
′, o′〉ϕ

then not only do we know that M,w |= 〈↑〉♦aϕ, we can also find a specific (U, o) such that
M,w |= 〈U, o〉♦aϕ.

Next, we consider a slightly stronger lemma.

Lemma 7 For every ϕ1, · · · , ϕn ∈ L and every a ∈ A we have

|= 〈↑〉
∧

1≤i≤n

♦aϕi ↔
∧

1≤i≤n

♦a〈↑〉ϕi

Proof The left to right direction is obvious, so we show only the right to left direction. So
suppose that M,w |=

∧
♦a〈↑〉ϕi. Then there are a-successors w1, · · · , wn of w and pointed

arrow update models (U1, o1), · · · , (Un, on) such that M,wi |= 〈Ui, oi〉ϕi for all i.
Now, let (U, o) be the arrow update model obtained by taking the union of all Ui and

adding one extra outcome o, and adding arrows (o,⊤) →a (oi,⊤) for every oi.
For every i, (M ∗Ui, (wi, oi)) is bisimilar to (M ∗U, (wi, oi)), so we haveM ∗U, (wi, oi) |=

ϕi. Finally, (wi, oi) is an a-successor of (w, o) for every i. As such, we have M,w |=
〈U, o〉

∧
♦aϕi and therefore M,w |= 〈↑〉

∧
♦aϕi. �

Again, the proof is constructive, so given (Ui, oi) for all i, we can find the model (U, o).
Note also that the ϕi need not be consistent with each other

Some reflection may be in order as to why Lemma 7 holds. Suppose that M,w |=∧
♦a〈↑〉ϕi. So for every i, there are some world wi that a considers possible as well as

some event Ui and outcome oi such that of (Ui, oi) were to happen in wi, then ϕi would
become true.

Now let us look at the arrow update model (U, o) that we constructed. Effectively,
this arrow update model represents us telling a that “we are performing one of the actions
Ui, oi, but we are not telling you which one.” Now, for every i agent a considers it possible
that wi is the actual world, and that (Ui, oi) is the event that happened. As such, after we
execute our event we are in a situation where every ϕi is held possible by a.

So far, we have only considered diamonds. Now, let us add a box modality.
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Lemma 8 For every ϕ1, · · · , ϕn, ψ ∈ L and every a ∈ A, we have

|= 〈↑〉(
∧

1≤i≤n

♦aϕi ∧�aψ) ↔
∧

1≤i≤n

♦a〈↑〉(ϕi ∧ ψ)

Proof The left to right direction is obvious, so we only show right to left. So suppose that
M,w |=

∧
♦a〈↑〉(ϕi ∧ ψ). Then for every 1 ≤ i ≤ n, there are Ui, oi and an a-successor wi

of w such that M,wi |= 〈U,oi〉(ϕi ∧ ψ).
Now, let (U, o) be the model obtained by taking the union of all Ui, and adding a single

outcome o with arrows (o,⊤) →a (oi, 〈Ui, oi〉ψ) for every i.
Now, consider (M ∗ U, (w, o)). By assumption, M,wi |= 〈Ui, oi〉ψ, so (wi, oi) is an

a-successor of (w, o) in (M ∗ U). Furthermore, M ∗ U, (wi, oi) |= ϕi. It follows that
M ∗ U, (w, o) |= ♦aϕi.

Additionally, note that for every outgoing a-arrow in (U, o) the postcondition of the
arrow is 〈Ui, oi〉ψ, and that (M ∗ U, (wi, oi)) is bisimilar to (M ∗ Ui, (wi, oi)). For every
(wi, oi) that is an a-successor of (w, o), we therefore have M ∗ U, (wi, oi) |= ψ for all i. It
follows that M ∗ U, (w, o) |= �aψ.

Taken together, the above shows that M,w |= 〈U, o〉(
∧
♦aϕi ∧ �aψ), and therefore

M,w |= 〈↑〉(
∧
♦aϕ1 ∧�aψ) as was to be shown. �

Once again, the proof is constructive. Note that on the right-hand side we have eliminated
the�a connective. This is a consequence of the fact that as the designer of the arrow update
model U , we have the freedom to inform a that certain worlds, which she might previously
have considered possible, are not in fact the actual world. This results in the removal of
the a-arrows to these worlds. So if we want to make �aψ true after the application of U ,
then we can simply have a eliminate all successors where ψ would otherwise become false.
In the construction used in the lemma, we do this using the postcondition 〈Ui, oi〉ψ.

In the preceding three lemmas, we only considered ♦a and �a operators for one single
agent a. However, when constructing (U, o) we can place arrows for different agents in-
dependently, so the same construction works for multiple agents at the same time. This
yields the following lemma.

Lemma 9 For every a ∈ A, let Φa ⊆ L be a finite set of formulas, and let ψa ∈ L be a
formula. Then

|= 〈↑〉
∧

a∈A

(
∧

ϕa∈Φa

♦aϕa ∧�aψa) ↔
∧

a∈A

∧

ϕa∈Φa

♦a〈↑〉(ϕa ∧ ψa)

Lemma 9 is the most important reduction axiom for AAUML. However, not every
formula is of a form such that the lemma can be applied. We therefore need two validities
that allow us to put formulas in the correct form.
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Lemma 10 For very ϕ1, ϕ2 ∈ L and every ϕ0 ∈ Lpl , we have

|= 〈↑〉(ϕ1 ∨ ϕ2) ↔ (〈↑〉ϕ1 ∨ 〈↑〉ϕ2)

and
|= 〈↑〉(ϕ0 ∧ ϕ1) ↔ (ϕ0 ∧ 〈↑〉ϕ1).

The proof of this lemma is rather trivial, so we omit it. It is, however, important and
non-trivial to note that the disjunction case can be made constructive.

Suppose that we have already synthesized (U1, o1) and (U2, o2) such that |= 〈↑〉ϕ1 ↔
〈U1, o1〉ϕ1 and |= 〈↑〉ϕ1 ↔ 〈U2, o2〉ϕ2. So we have two arrow update models that make
ϕ1 and ϕ2 true whenever possible. This does not, however, immediately give us a single-
pointed arrow update model (U, o) that guarantees ϕ = ϕ1 ∨ ϕ2 whenever possible.1 In
order to find this (U, o), we have to combine (U1, o1) and (U2, o2). We do this in the
following way.

First, we take the set of outcomes of U to be the union of the sets of outcomes of U1

and U2, plus one extra outcome o. Then, we add arrows as follows to U .

For every (o1, ψ) →a (o
′, ψ′) of U1, add an arrow (o, ψ∧〈↑〉ϕ1) →a (o

′, ψ′). Then,
for every (o2, ψ) →a (o

′, ψ) of U2, add an arrow (o, ψ ∧ ¬〈↑〉ϕ1) →a (o
′, ψ).

When executed in a 〈↑〉ϕ1 world, this arrow update model (U, o) will act as (U1, o1), since
we added all arrows from o1 with an extra 〈↑〉ϕ1 precondition. When executed in any
¬〈↑〉ϕ1 world, (U, o) acts as (U2, o2). As long as either 〈↑〉ϕ1 or 〈↑〉ϕ2 holds, we therefore
have 〈U, o〉(ϕ1 ∨ ϕ2).

More formally, we have the following lemma.

Lemma 11 Let ϕ1, ϕ2 ∈ L, and for i = 1, 2 let (Ui, oi) be such that |= 〈↑〉ϕi ↔ 〈Ui, oi〉ϕi,
where Ui = (Oi, RRi). Furthermore, let U = (O,RR) be given as follows:

• O = {o} ∪ O1 ∪O2,

• RR contains exactly the following arrows:

1. (o′, ψ′) →a (o
′′, ψ′′) ∈ RRi, for i = 1, 2,

2. (o, ψ ∧ 〈↑〉ϕ1) →a (o
′, ψ′) where (o1, ψ) →a (o

′, ψ′) ∈ RR1,

3. (o, ψ ∧ ¬〈↑〉ϕ1) →a (o
′, ψ′) where (o2, ψ) →a (o

′, ψ′) ∈ RR2.

Then |= 〈↑〉(ϕ1 ∨ ϕ2) ↔ 〈U, o〉(ϕ1 ∨ ϕ2). ⊣

Proof The right to left direction is obvious. We show the left to right direction. Suppose
therefore that M,w |= 〈↑〉(ϕ1 ∨ ϕ2). Then, by Lemma 10, we have M,w |= 〈↑〉ϕ1 ∨ 〈↑〉ϕ2.
We continue by a case distinction.

1An alternative technique to synthesize an arrow update model for the disjunction is to take the double-
pointed direct sum of (U1, o1) and (U2, o2); its points are {o1, o2}. This method is followed in [12].
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First, suppose that M,w |= 〈↑〉ϕ1. Then none of the (o, ψ ∧ ¬〈↑〉ϕ1) →a (o′, ψ′)
arrows are applicable in w. The (o, ψ ∧ 〈↑〉ϕ1) →a (o

′, ψ′) arrows, on the other hand, are
applicable if and only if (o1, ψ) →a (o

′, ψ′) applies. It follows that M ∗U, (w, o) is bisimilar
to M ∗ U1, (w, o1), so M,w |= 〈U, o〉ϕ1.

Suppose then that M,w 6|= 〈↑〉ϕ1. Then we must have M,w |= 〈↑〉ϕ2. In this case,
the (o, ψ ∧ 〈↑〉ϕ1) →a (o

′, ψ′) are inapplicable while the (o, ψ ∧ ¬〈↑〉ϕ1) →a (o
′, ψ′) arrows

apply if and only if (o2, ψ) →a (o
′, ψ′) does. So M ∗U, (w, o) is bisimilar to M ∗U2, (w, o2),

and therefore M,w |= 〈U, o〉ϕ2. �

3.3 Reduction

In Section 3.1, we showed that [U, o] commutes with ¬, distributes over ∧ and, in a some-
what complicated way, commutes with �a. Finally, whenever we encounter a formula of
the form [U, o]p, we can simply remove the part [U, o]. So if ϕ is a formula of modal logic
(and therefore doesn’t contain [U ′, o] or [↑] operators), then we can transform [U, o]ϕ into
an equivalent formula ϕ′ of modal logic.

Additionally, in Section 3.2, we showed that 〈↑〉 commutes, in a very complicated way,
with Boolean combinations of modal formulas. Also, like [U, o], a 〈↑〉 operator disappears
once it encounters a propositional atom. So if ϕ is a formula of modal logic, then we can
transform 〈↑〉ϕ into an equivalent formula ϕ′ of modal logic.

By successively eliminating the innermost [U, o] or 〈↑〉 operators, we can transform any
formula of AAUML into an equivalent formula of modal logic. In other words, we have the
following theorem.

Theorem 12 For every ϕ ∈ L there is a formula ϕ′ ∈ Lml such that |= ϕ↔ ϕ′. ⊣

For the next section, it is important to keep in mind that the reduction axioms not only
guarantee the existence of ϕ′, but also enable us to find it.

Theorem 12 also allows us to prove a claim that we made in Section 2.3. There, we
defined M, s |= [↑]ϕ by

M, s |= [↑]ϕ iff (M, s |= [U, o]ϕ for every arrow update model (U, o) that has
source and target conditions only in Lml).

Now that we have shown that every formula of L is equivalent to a formula of Lml , it
follows immediately that the requirement of the source and target conditions being in Lml

is unnecessary.

Proposition 13 For every ϕ ∈ L and every pointed model (M, s), we have

M, s |= [↑]ϕ iff M, s |= [U, o]ϕ for every arrow update model (U, o). ⊣
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Procedure Synth(ϕ)

Input: ϕ ∈ L.

Output: (Uϕ, oϕ) such that |= 〈↑〉ϕ↔ 〈Uϕ, oϕ〉ϕ.

1. If ϕ 6∈ Lml , then use the reduction axioms to find a formula ϕmodal ∈ Lml

such that |= ϕ↔ ϕmodal , and return Synth(ϕmodal ). Otherwise, continue.

2. If ϕ is not in disjunction normal form, compute the DNF ϕDNF of ϕ and

return Synth(ϕDNF ). Otherwise, continue.

3. If ϕ = ϕ1 ∨ ϕ2, then compute Synth(ϕ1) and Synth(ϕ2), and combine

the two arrow update models as in Lemma 11. Return the combined

arrow update model.

4. If ϕ is not a disjunction, then since it is in DNF it must be a conjunction,

where each conjunct is (i) a literal, (ii) of the form ♦aψ, or (iii) of the form �aχ.

Assume w.l.o.g. that for every a there is exactly one conjunct �aχa.

For every ♦aψ, compute Synth(ψ ∧ χa). Then use Lemma 8 to combine

the arrow update models, and return the result. If there are no ♦a operators for any

agent a, return the trivial arrow update model with one outcome and no arrows.

Table 1: Synthesis procedure

3.4 Synthesis

Recall that our goal, when performing synthesis, is to find, for given ϕ ∈ L, an arrow update
model (Uϕ, oϕ) such that |= 〈↑〉ϕ↔ 〈Uϕ, oϕ〉ϕ. Using Theorem 12, we can transform ϕ into
an equivalent formula of modal logic. Then, using the procedure outlined in Section 3.2,
we can find (Uϕ, oϕ). The procedure is found in detail in Table 1.

3.5 Example

In order to gain better understanding of Synth(ϕ), let us consider an example. Suppose
ϕ = ♦a�bp ∧ ♦b(♦aq ∧ ♦ar) ∧�bp). We want to perform synthesis for this ϕ.

Goal: find Synth(♦a�bp ∧ ♦b(♦aq ∨ ♦ar) ∧�bp).
Because ϕ ∈ Lml , ϕ is in DNF and ϕ is not a disjunction, we continue past steps 1, 2

and 3. In step 4, it is assumed that for every agent there is exactly one � conjunct. This
means we need to add a trivial conjunct �a⊤.

Of the conjuncts of ϕ, two have ♦ as primary operator. So we need to perform synthesis
for two more formulas; because of ♦a�bp and �a⊤ we need to find Synth(�bp ∧ ⊤), and
because of ♦b(♦aq ∨ ♦ar) and �bp we need to find Synth((♦aq ∨ ♦ar) ∧ p).

Subgoal 1: find Synth(�bp ∧ ⊤).
Since we are doing synthesis for a conjunction, we continue in steps 1, 2 and 3.
Because there are no ♦ operators in �bp ∧ ⊤, we return the trivial arrow update
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model in step 4.
Subgoal 2: find Synth((♦aq ∨ ♦ar) ∧ p). In step 2, we need to put the formula
in DNF. We therefore continue with (♦aq ∧ p) ∨ (♦ar ∧ p). In step 3 we are then
instructed to perform synthesis for the two disjuncts.

Sub-subgoal 2.1: find Synth(♦aq ∧ p).
We continue up to step 4. There, we first add a a trivial conjunct �a⊤. Then,
we are instructed to find Synth(q ∧ ⊤).

Sub-sub-subgoal 2.1.1: find Synth(q ∧ ⊤).
We proceed to step 4. There, since there are no ♦ operators in q ∧ ⊤, we
return the trivial arrow update model (U0, o0).

Now, in order to find Synth(♦aq ∧ p), we take the trivial arrow update model
found in sub-sub-subgoal 2.1.1, and add one extra outcome. Then, we connect
this extra outcome to the trivial model by a ⊤ →a 〈U0, o0〉⊤ arrow. The source
condition of this arrow is ⊤ because step 4 uses the construction from Lemma 8,
and that construction always gives precondition ⊤. The arrow is for agent a,
because we started with a ♦a operator. Finally, the postcondition is 〈U0, o0〉⊤
because the arrow update model that the arrow points to is (U0, o0) and the �a

conjunct was �a⊤.

In other words, we obtain the following arrow update model, where the framed
state indicates the designated outcome:

⊤ a 〈U0, o0〉⊤

Sub-subgoal 2.2: find Synth(♦ar ∧ p).
Replacing the q of ♦aq ∧ p for an r does not change the arrow update model
that we end up with. So in this sub-subgoal we find the same model as in
sub-subgoal 2.1.

Now, in order to find Synth((♦aq∧p)∨(♦ar∧p)), we need to combine the models found
in sub-subgoals 2.1 and 2.2. Since we are working with a disjunction, we combine
them as described in Lemma 11. That, is, we take copies of the two (identical)
models and add one extra outcome. Then, we add two more arrows: every world that
is reachable from the origin world of the model from sub-subgoal 2.1 by ψ1 →a ψ2,
becomes reachable from the extra world by a ψ1∧〈↑〉(♦aq∧p) →a ψ2 arrow. Likewise,
every world reachable by ψ1 →a ψ2 from the origin of the model from sub-subgoal
2.2 becomes reachable from the extra world by ψ1 ∧ ¬〈↑〉(♦aq ∧ p) →a ψ2.
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⊤ a 〈U0, o0〉⊤

⊤ a 〈U0, o0〉⊤

⊤ ∧ 〈↑〉(
♦a

q ∧
p) a

〈U0
, o0

〉⊤

⊤ ∧ ¬〈↑〉(♦
aq ∧ p)

a 〈U
0 , o

0〉⊤

Now, all that is left to do is to combine the arrow update models found in subgoals 1 and
2. The model we obtain is

⊤ a 〈U0, o0〉⊤

⊤ a 〈U0, o0〉⊤

⊤ ∧ 〈↑〉(
♦a

q ∧
p) a

〈U0
, o0

〉⊤

⊤ ∧ ¬〈↑〉(♦
aq ∧ p)

a 〈U
0 , o

0〉⊤

⊤
a

〈U
0
, o0

〉⊤

⊤
b 〈U

1 , o
1〉p

where (U1, o1) is the model that we found in subgoal 2. The root of the model is the leftmost
outcome. Note that the depth (i.e., the maximum path length) of this arrow update model
is 2, just like the depth (i.e., the maximum number of nested � or ♦ operators) of ϕ.
In general, the depth of the synthesized arrow update model is bounded by that of the
formula for which synthesis is performed.

Also, note that the arrow update model that we obtained can quite easily be modified
to obtain a smaller model that is still sufficient. In particular:

• the two outcomes that are not reachable from the root can be eliminated,

• the formulas 〈U0, o0〉⊤, 〈U1, o1〉p, ⊤ ∧ 〈↑〉(♦aq ∧ p) and ⊤ ∧ ¬〈↑〉(♦aq ∧ p) can be
replaced by the equivalent formulas ⊤, p, ♦aq ∧ p and ¬(♦aq ∧ p), respectively,
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• the three leaf outcomes can be merged into one,

• and ♦aq ∧ p→a ⊤ and ¬(♦aq ∧ p) →a ⊤ can be merged into one ⊤ →a ⊤ arrow.

With these optimizations, we get the more aesthetically pleasing arrow update model

⊤
b

p

⊤
a ⊤

⊤ b ⊤

4 Axiomatization

Using the reduction axioms introduced before, we can find an axiomatization for AAUML.
Let AAUML be the axiomatization shown in Table 2. In this section we show that the
axiomatization AAUML is sound and complete, and we give some derivable (well-known)
axiom schemata.

Prop All tautologies of propositional logic
K ✷a(ϕ→ ψ) → (✷aϕ→ ✷aψ)
U1 [U, o]p↔ p
U2 [U, o]¬ϕ↔ ¬[U, o]ϕ
U3 [U, o](ϕ ∧ ψ) ↔ ([U, o]ϕ ∧ [U, o]ψ)
U4 [U, o]✷aϕ↔

∧
(o,ψ)→a(o′,ψ′)(ψ → ✷a(ψ

′ → [U, o′]ϕ))

A1 〈↑〉ϕ0 ↔ ϕ0 where ϕ0 ∈ Lpl

A2 〈↑〉(ϕ ∨ ψ) ↔ (〈↑〉ϕ ∨ 〈↑〉ψ)
A3 〈↑〉(ϕ0 ∧ ϕ) ↔ (ϕ0 ∧ 〈↑〉ϕ) where ϕ0 ∈ Lpl

A4 〈↑〉
∧
a∈A(

∧
ϕa∈Φa

♦aϕa ∧�aψa) ↔
∧
a∈B

∧
ϕa∈Φa

♦a〈↑〉(ϕa ∧ ψa)
MP from ϕ→ ψ and ϕ infer ψ
NecK from ϕ infer ✷aϕ
RE from χ↔ ψ infer ϕ[χ/p] ↔ ϕ[ψ/p]

Table 2: The axiomatization AAUML of the logic AAUML

Lemma 14 Axiomatization AAUML is sound for the logic AAUML. ⊣

Proof Prop, K, MP, NecK, RE are known from modal logic, U1—U4 were demon-
strated in Section 3.1 and originate in [16], A1—A4 were shown to be valid in Section 3.2.

�
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It is important to note that U1—U4 and A1—A4 are so-called reduction axioms for the
operators [U, o] and 〈↑〉, respectively, as mentioned in the previous section. This means
that they are equivalences, where the formula inside the scope of the [U, o] or 〈↑〉 operator
on the left-hand side is more complex than the formulas inside the scope of that operator
on the right-hand side.

The derivation rule RE is important as our reductions are inside-out, not outside-in.
Without it, for example, the validity [U, o][U, o](p ∨ ¬p) would not be derivable.

The axioms A1—A4 could just as well have been formulated with the [↑] dual of the
modality 〈↑〉, e.g., A2′ [↑](ϕ ∧ ψ) ↔ ([↑]ϕ ∧ [↑]ψ). We prefer the 〈↑〉 versions as they
match our usage of these axioms in synthesis. Further note that there is no reduction of
shape 〈↑〉¬ϕ ↔ . . . . We assume that subformulas bound by 〈↑〉 are first massaged into
disjunctive normal form before a further reduction can take place (and again, for this, the
derivation rule RE is essential).

Lemma 15 Axiomatization AAUML is complete for the logic AAUML. ⊣

Proof Let ϕ ∈ L be valid. Using an induction argument, we can eliminate all [U, o] and
〈↑〉 operators from it: ϕ must be provably equivalent to a formula ϕ′ ∈ Lml . As ϕ′ must
also be valid (Theorem 12), ϕ′ is provable in modal logic. From the provable equivalence
between ϕ and ϕ′ and the derivation of ϕ′ we construct a derivation of ϕ in AAUML. �

We have now shown that:

Theorem 16 Axiomatization AAUML is sound and complete for the logic AAUML. ⊣

In the proof system AAUML, we do not have necessitation for the [U, o] and [↑]
operators. Such necessitation rules are derivable, however.

Proposition 17 The following two rules are derivable in AAUML.

• NecU: from ϕ infer [U, o]ϕ;

• NecA: from ϕ infer [↑]ϕ. ⊣

Proof First, note that the rule

U1′ [U, o]ϕ0 ↔ ϕ0 where ϕ0 ∈ Lpl

is derivable, using Prop, U1–U3 and MP. It is also convenient to use a variant of MP
directly on bi-implications, instead of first converting the bi-implication to a single impli-
cation.

MP′ from ϕ↔ ψ and ϕ infer ψ, and from ϕ↔ ψ and ψ infer ϕ.

This MP′ is, of course, also easily derived. Using U1′ and MP′, we can derive NecU in
a reasonable number of steps:
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1. ϕ premise
2. ϕ→ (ϕ↔ ⊤) Prop
3. ϕ↔ ⊤ MP(1,2)
4. [U, o]⊤ ↔ ⊤ U1′

5. ⊤ Prop
6. [U, o]⊤ MP′(5,4)
7. [U, o]⊤ ↔ [U, o]ϕ RE(3)
8. [U, o]ϕ MP′(6,7)

A derivation of NecA can be found in a similar way. Here, too, it is convenient to first
derive an auxiliary axiom.

A1′ [↑]ϕ0 ↔ ϕ0 where ϕ0 ∈ Lpl

This [↑]-version of A1 is of course derivable. We can then derive NecA analogously to
how we derived NecU, with the application of U1′ replaced by A1′. �

5 Update expressivity

5.1 Expressivity

Recall that we are considering the basic modal logic ML and the update logics PAL, APAL,
AML, AAML, AUL, AAUL, AUML, AAUML, and RML, as shown in Figure 1 on page
6. One natural thing to do with such related logics is to compare their power. The most
straightforward way to make such a comparison is to compare their expressivity.

Formally, a language L1 is at least as expressive as a language L2 if for every formula
of L2 there is an equivalent formula of L1. Having equal expressivity or higher expressivity
(by which we always mean strictly higher expressivity) can be defined from the “at least
as expressive” relation in the usual way. If neither language is at least as expressive as the
other, we say that they are incomparable in expressivity.

In [18] that introduced PAL it was shown that PAL is equally expressive as ML (on
the class of relational models where all accessibility relations are equivalence relations, but
this does not matter for the reduction), and in [5] that introduced AML it was also shown
that AML is equally expressive as ML. It is trivial to show that PAL and AML are at
least as expressive as ML, as they extend the logical language. That every formula of
PAL or AML is equivalent to a formula in ML, was shown by reduction axioms and rules.
Similarly, AUL [15], AUML [16] and AAML [12] were shown to be equally expressive as
ML, and therefore also equally expressive as PAL and AML. In [8] it was shown that RML
is equally expressive as ML. Here, in Theorem 12 in Section 3, we showed that AAUML is
also equally expressive as ML.

The two remaining logics are APAL and AAUL. The logic APAL was shown to be more
expressive than ML in [4] and AAUL was shown to be more expressive than ML in [28],
wherein it was also shown that APAL and AAUL are incomparable. This means that the
expressivity landscape is as shown in Figure 2.
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ML, PAL, AML, AAML, AUL, AUML, AAUML, RML

APAL AAUL

Figure 2: The relative expressivity of the update logics discussed in the paper. Arrows
indicate increasing expressivity. Absence of arrows indicates incomparable expressivity.

5.2 Update expressivity hierarchy

There is something a bit strange about this comparison, however. Although AML and
PAL have the same expressivity, AML is clearly in some sense more powerful, since action
models represent a far larger class of updates than public announcements. In order to
capture the sense in which AML is more powerful than PAL, we use the term update

expressivity. This concept was introduced as action equivalence in [31] (and its precursors)
and also subsequently used in that sense in [16]. The definitions from [31, 16] do not
deal very well with multi-pointed update modalities and with arbitrary update modalities,
however, so we use a slightly adapted version.

The updates X we consider are relational model transformers and such transformations
are defined by pairwise relating pointed models, so an updateX should be seen as a relation
between pointed relational models. In fact, three different things are called update: the
update relation between pointed models, the update modality in a logical language, and, in
some sense, the update object, often a name, that can be associated with the modality or
the relation, such as an arrow update (U, o). To simplify the presentation in this section
we call the relations X, Y, . . . and the modalities [X ], [Y ], . . . and we do not consider the
update objects separately: we identify them with the update relations.

A relation between pointed relational models can be a one-to-one relation, i.e., a func-
tion or a partial function, a one-to-finitely-many relation, and a one-to-infinitely-many
relation. For example, it is a function for a pointed arrow update model, a partial func-
tion for a public announcement, a one-to-many relation for a multi-pointed arrow update
model, and a one-to-infinitely-many relation for an arrow update quantifier. In the first
place, one would now like to say that update relations X and Y are the same (are equiv-
alent) if they define the same relation between pointed models, modulo bisimulation. In
the second place, we also want to compare an update X that is a partial function to an
update Y that is a total function (or similarly for relations with restricted domains). In
that kind of situation one would maybe like to say that updates X and Y are the same if
X and Y define the same relation on the domain of X : we will then say that X is condi-
tionally equivalent to Y (this relation is asymmetric). Such a requirement seems common
practice in dynamic epistemic logic, and it is also respected in [16]. We recall from Section
1 the ‘state eliminating’ public announcement of p (i) and the ‘arrow eliminating’ public
announcement of p (ii), originating with [10]: whenever p can be truthfully announced,
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the pointed relational models resulting from executing (i) and (ii) are bisimilar, as in the
example. But when p is false, (ii) can be executed but not (i). So (i) and (ii) are equivalent
on condition of the truth of the announcement. In view of these considerations, we propose
the following definition. For X(M, s) read {(M ′, s′) | ((M, s), (M ′, s′)) ∈ X}, and let D(X)
be the domain of X , i.e., D(X) = {(M, s) | X(M, s) 6= ∅}.

Definition 18 (Update equivalence, update expressivity) Given updates X and Y ,
X is conditionally update equivalent to Y , if for all (M, s) such that s ∈ D(X), X(M, s)↔

Y (M, s). Further, X is update equivalent to Y , if X is conditionally update equivalent
to Y , and Y is conditionally update equivalent to X . Update modalities [X ] and [Y ] are
(conditionally) update equivalent, if X and Y are (conditionally) update equivalent.

A language L is at least as update expressive as L′ if for every update modality [X ] of
L′ there is an update modality [Y ] of L such that X is conditionally update equivalent
to Y ; L is equally update expressive as L′ (or ‘as update expressive as’) if L is at least as
update expressive as L′ and L′ is at least as update expressive as L. ⊣

We define ‘(strictly) more update expressive’ and ‘incomparable in update expressivity’ as
usual. We also extend the usage of ‘update expressive’ to the logics for the languages that
we compare. Instead of ‘update equivalent’ we may use ‘equivalent’ if the context is clear.
If updates X and Y are update equivalent, then [X ]ϕ↔ [Y ]ϕ is valid. This may not hold
in the other direction! In Section 7 we give a counterexample.

We should stress that we do not claim that our definition is appropriate for all situations,
merely that it gives an accurate view of the strengths of the different logics that we consider
in this particular paper.

Let us now fill in the expressivity hierarchy for our target logics. The update expressiv-
ity of AUL is higher than that of PAL, and lower than that of AML [15]. The comparison
between AML and AUML that we will address in Section 6 is less straightforward than
that. In [16] it was shown that AML and AUML have the same update expressivity. That
result does not distinguish between single-pointed and multi-pointed action models and
arrow update models, however. Here, we therefore provide an alternative proof of their
results that makes that distinction. Specifically, we show that the result from [16] only
applies to the multi-pointed case, but that single-pointed arrow update models are more
update expressive than single-pointed action models.

Adding quantification increases update expressivity, since the non-quantified logics can-
not simulate a one-to-infinity relation. So, for example, APAL is more update expressive
than PAL, and AAUML is more update expressive than AUML. When comparing the
quantified logics among themselves, most pairs are incomparable. These incomparability
results are all rather trivial, so we do not prove them here. The only comparable pair is
AAUML and AAML, which have the same update expressivity because their underlying
updates have the same update expressivity (Section 6). In Section 7 we will show that
RML is incomparable to the other quantified logics, and in particular that the AAUML
and AAML quantifiers are contained in the RML quantifier.

The landscape of update expressivity is therefore as shown in Figure 3.
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APAL AAUL

ML PAL AUL

AML1 AUML1

AML AUML

AAML AAUML

RML

Figure 3: The relative update expressivity of the update logics discussed in the paper. We
assume transitive closure of arrows. AML1 and AUML1 are the single-pointed versions.

6 Arrow updates versus action models

6.1 Action model logic

Arrow update model logic AUML is equally expressive as action model logic AML and
their update expressivity relates in interesting ways. We build upon the results known
from [16] but our constructions and proofs are slightly different. First we need to define
action models and their execution in relational models. An action model [5] is a structure
like a relational model but with a precondition function instead of a valuation function.
Executing an action model into a relational model means computing what is known as
their restricted modal product. This product encodes the new state of information, after
action execution. These are the technicalities:

An action modelE = (S,R, pre) consists of a domain S of actions e, f, . . . , an accessibility

function R : A → P(S × S), where each Ra is an accessibility relation, and a precondition

function pre : S → L, where L is a logical language.
Let additional to a pointed action model (E, e) as above a pointed relational model

(M, s) be given where M = (S,R, V ). Let M, s |= pre(s). The update (M ⊗ E, (s, e)) is
the pointed relational model where M ⊗ E = (S ′, R′, V ′) such that

S ′ = {(t, f) |M, t |= pre(f)}
((t, f), (t′, f ′)) ∈ R′

a iff (t, t′) ∈ Ra and (f, f ′) ∈ Ra
(t, f) ∈ V ′(p) iff t ∈ V (p)
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Action model modalities [E, e] are interpreted similarly to arrow update modalities but
unlike arrow update modalities are partial and not functional. Their execution depends
on the truth of the precondition of the actual action (point) e in the actual state s:

M, s |= [E, e]ϕ iff M, s |= pre(e) implies M ⊗ E, (s, e) |= ϕ

Similarly to arrow update modalities we can conceive a modal logical language with [E, e]ϕ
as an inductive language construct, for action models E with finite domains. The logic
is called action model logic AML. And also similarly we can define multi-pointed action
model by notational abbreviation, or if we wish to rule that out call the logic AML1.
Also similarly to AUML ([16], and Section 4) there is a complete axiomatization, that is a
rewrite system allowing to eliminate dynamic modalities [5, 27]. If we further extend the
logical language with a quantifier [⊗] over action models, such that

M, s |= [⊗]ϕ iff M, s |= [E, e]ϕ for all action models (E, e) satisfying (∗)

where (*) requires all preconditions of actions in E to be in Lml , we get the language and
logic of arbitrary action model logic AAML. Hales showed in [12] that the (*) requirement
can be relaxed, similarly to our Proposition 13.

Example action models that are update equivalent to the example arrow update models
of Section 2 are as follows. We also depict their execution. The actions are given their
preconditions as names. Note that the pointed relational model resulting from the (second)
action of Anne privately learning that p is bisimilar to the four-state model in Section 2.

¬p pab

ab ab

⊗ ⊤

¬p p

bb

b

ab

abab

= (¬p,⊤) (p,⊤)

(¬p,¬p) (p, p)

ab

b

b b

ab ab

ab ab

¬p pab

ab ab

⊗ ⊤

p

b

ab

a

= (¬p,⊤) (p,⊤)

(p, p)

ab

bb

ab ab

a

6.2 From action models to arrow updates

A given action model can be transformed into an arrow update model by decorating each
arrow in the action model with a source condition that is the precondition of the source
action and with a target condition that is the precondition of the target action. That is
all. Technically:
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Let E = (S,R, pre) be given. Arrow update model U(E) = (O,RR) is defined as: O = S,
and for all agents a and actions e, e′, (e, pre(e)) →a (e′, pre(e′)) iff (e, e′) ∈ Ra.

2 We can
now show that (E, e) is update equivalent to (U(E), e), on condition of the executability
of the action e, i.e., restricted to the denotation of pre(e).

Proposition 19 ([16]) (E, e) is conditionally update equivalent to (U(E), e). ⊣

Proof Let M = (S,R, V ). To distinguish E from U(E) in the proof, let us ‘prime’
the actions in the domain of U(E): e′, f ′, . . . instead of e, f, . . . . Define relation R :
D(M ⊗E) → D(M ∗ U(E)) as R : (s, e) 7→ (s, e′), for all s ∈ S and e ∈ S. The full modal
product M ∗ U(E) will typically have a larger domain than the restricted modal product
M ⊗E (only states wherein actions in S can be executed, survive). We will now show that
this does not matter, as the surplus of (state,action) pairs are unreachable.

Let M, s |= pre(e). Then R : (M ∗ E, (s, e))↔(M ⊗ U(E), (s, e′)).
Let ((s, e), (s, e′)) ∈ R. The atoms clause is trivially satisfied as the states s match

(and as update do not change facts). We now consider forth. Let ((s, e), (t, f)) ∈ R′
a,

where R′
a is the accessibility relation for a in M ⊗E. Given the definition of action model

execution, ((s, e), (t, f)) ∈ R′
a iff (s, t) ∈ Ra, (e, f) ∈ Ra, M, s |= pre(e), and M, t |= pre(f).

We claim that pair (t, f ′) in M ∗ U(E) satisfies the requirements of the bisimulation.
Firstly, ((s, e′), (t, f ′)) ∈ R′′

a (in M ∗ U(E)) because (e′, pre(e′)) →a (f
′, pre(f ′)). Secondly,

(t, f), (t, f ′)) ∈ R by the definition of R. The proof of back is like forth, with the main
important difference that the assumption in the back step that a pair (t, f ′) in M ∗ U(E)
is a-accessible, means that we are in the ‘good’ part of the domain of M ∗ U(E), as this
implies that (e′, pre(e′)) →a (f

′, pre(f ′)), so that in the construction ofM⊗E, action e can
be executed in s and action f in t. So (t, f) exists in M ⊗ E and this obviously satisfies
the requirement for back. �

Corollary 20 Let F ⊆ D(E). Then (E, F ) is conditionally update equivalent to (U(E), F ).⊣

From Proposition 19 follows that, for all ϕ ∈ Lml , [E, e]ϕ is equivalent to pre(e) →
[U(E), e]ϕ. See also [16][Cor. 3.9]. This can be used as a clause in an inductively defined
translation from the language of AUML to the language of AML. In Corollary 20 the
condition for update equivalence is

∨
e∈F pre(e).

The arrow update models constructed by the above procedure from the action model
for Anne reading the letter containing p while Bill may notice her doing so, and for Anne
privately learning p, are as follows. Note that they are update equivalent (namely on their
domain of execution) to the arrow update models for these actions presented in Section 2.
In the figure, by ϕ ab ϕ

′ we mean the two arrows ϕ →a ϕ
′, ϕ →b ϕ

′. On the left, the dual
arrows for b between outcomes have not been labelled. They are as expected: ⊤ →b ¬p,
p →b ¬p, p →b ⊤. (They are update equivalent to the example arrow update models in
Section 2.4.)

2In [16], arrows (e,⊤) →a (e′, ϕ′) instead of (e, ϕ) →a (e′, ϕ′) are stipulated. Both constructions deliver
the desired update equivalence.
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6.3 From arrow updates to action models

A given arrow update model can be transformed into an update equivalent action model
by conditionalizing in each outcome over any possible ‘valuation’ of (any subset of) the
source and target conditions of all outcomes. This leads to an exponential blowup. (See
[16, Theorem 3.7]. Our construction and subsequent proof are different.) We proceed with
the construction.

Let U = (O,RR) be given. Let Φ be the collection of all source and target conditions
occurring in U :

Φ = {ϕ | there are a ∈ A,ϕ′ ∈ L, o, o′ ∈ O s.t. (o, ϕ) →a (o
′, ϕ′) or (o, ϕ′) →a (o

′, ϕ)}.

We consider the formulas in Φ as ‘atomic constituents’ over which we consider ‘valuations’
v ∈ 2Φ (lower case, to distinguish it from the relational model valuation V , upper case).
The characteristic formula of a valuation is δv :=

∧
ϕ∈Φ ϕ, where ϕ = ϕ if v(ϕ) = 1 and

ϕ = ¬ϕ if v(ϕ) = 0. Action model E(U) = (S,R, pre) is now such that:

S = O × 2Φ

((o, v), (o′, v′)) ∈ Ra iff ∃ϕ, ϕ′ : (o, ϕ) →a (o
′, ϕ′), v(ϕ) = 1, v′(ϕ′) = 1

pre(o, v) = δv

Further, given (U, o), its single point o becomes a set of actions E(o) := {o} × 2Φ. The
corresponding action model (E(U), E(o)) is therefore multi-pointed (unless Φ = {⊤} or
Φ = {⊥}). We note that the preconditions of actions need not be consistent formulas, just
as source and target conditions of arrows need not be consistent formulas. Our construction
is therefore different from that in [16], wherein only v ∈ 2Φ are considered for which δv is
consistent. That construction is more economical, but computational efficiency is not our
goal. We can now show that (U, o) is update equivalent to (E(U), E(o)). Note that they
both can be executed on the entire domain.

Proposition 21 (U, o) is update equivalent to (E(U), E(o)). ⊣

Proof Let (M, s) be given. We show that for some (o, v) ∈ E(o), (M ∗ U, (s, o))↔(M ⊗
E(U), (s, o, v)). Define relation R as follows:

R : (s, o) 7→ (s, o, v) iff M, s |= δv

28



We show thatR : (M∗U, (s, o))↔(M⊗E(U), (s, o, v)). For forth, assume ((s, o), (s, o, v)) ∈
R and ((s, o), (s′, o′)) ∈ R′

a (in M ∗ U). The latter implies that there are ϕ, ϕ′ ∈ L such
that (o, ϕ) →a (o

′, ϕ′), and that M, s |= ϕ and M, s′ |= ϕ′. Choose v′ such that M, s′ |= δv′
(note that v′ exists and is unique). AsM, s |= ϕ andM, s′ |= ϕ′ respectively M, s |= δv and
M, s′ |= δv′ , we have that v(ϕ) = 1 and v′(ϕ′) = 1. We claim that (s′, o′, v′) is the requested
witness to close the forth argument. Firstly, ((s, o, v), (s′, o′, v′)) ∈ R′′

a (in M ⊗E(U)) be-
cause (s, s′) ∈ Ra (in M) and ((o, v), (o′, v′)) ∈ Ra (in E(U)), where the latter follows from
(o, ϕ) →a (o′, ϕ′), v(ϕ) = 1 and v′(ϕ′) = 1 (see the definition of E(U) above). Secondly,
((s′, o′), (s′, o′, v′) ∈ R. Step back is very similar; now use that pre(o, v) = δv and that
pre(o′, v′) = δv′ , and observe that (E(U), E(o)) can always be executed, it has precondition
⊤ (

∨
v∈2Φ δv is equivalent to ⊤). �

Corollary 22 Let now Q ⊆ D(U). Then (U,Q) is update equivalent to (E(U), E(Q)). ⊣

As an example we now show the action models constructed by the above procedure
from the two example arrow update models of Section 2. The set of source and target
condition formulas is {p,¬p,⊤}. Of their 8 valuations the two non-trivial (and different)
valuations are characterized by p and ¬p. These formulas are also the action preconditions
in the action points of the resulting action models. The reader may observe that these
action models are, again, update equivalent to their ‘original’ action models at the start of
this section.

(•,¬p) (•, p)

(◦,¬p) (◦, p)

ab

b

b b

ab ab

ab ab

(•,¬p) (•, p)

(◦,¬p) (◦, p)

ab

a

b b

ab ab

a

6.4 Relative update expressivity

We are now prepared to harvest the update expressivity results. First, let us show that
AUML1 is more update expressive than AML1.

Proposition 23 AUML1 is more update expressive than AML1. ⊣

Proof From Proposition 19 follows that AUML1 is at least as update expressive as AML1.
To show that the inclusion is strict, we need to show that for some (U, o), there is no (E, e)
that induces the same relation.

Let U be the arrow update model with a single outcome o, and a single arrow (o, p) →a

(o,⊤). Suppose towards a contradiction that there is a single-pointed action model (E, e)
such that (M ∗U, (s, o))↔(M ⊗E, (s, e)) for every (M, s). Then, in particular, (E, e) must
be executable everywhere, so pre(e) is equivalent to ⊤. Furthermore, if M, s |= p ∧ ♦a⊤,
then (M ∗ U, (s, o)) has at least one a-successor (s′, o′). By assumption, (M ⊗ E, (s, e)) is
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bisimilar to (M ∗ U, (s, o)), so it has an a-successor (s′, e′). This implies that eRe′. Now,
consider a different model (M ′, s) such that (i) M ′, s |= ¬p and (ii) s has an a-successors
s′ such that M ′, s′ |= pre(e′). Then (M ′ ⊗E, (s, e)) has an a-successor, but (M ′ ∗ U, (s, o))
has no a-successor. This contradicts the assumption that (M ∗ U, (s, o))↔(M ⊗ E, (s, e))
for every (M, s). �

Proposition 24 AUML is equally update expressive as AML. ⊣

Proof From Corollary 20 follows that AUML is at least as update expressive as AML.
From Corollary 22 follows that AML is at least as update expressive as AUML. �

It is obvious that AUML is more update expressive than AUML1, and that AUML is more
update expressive than AUML1.

6.5 Applications illustrating the succinctness of arrow updates

In this section we give some application areas for the modelling of information change,
where arrow updates are more succinct that corresponding (i.e., update equivalent) action
models.

Lying You are lying if you say that something is true while you believe that it is false —
and with the intention for the addressee(s) to believe that it is true. In the setting of public
announcement logic a lie is a public announcement that is false. This is then contrasted
to the (usual) public announcement that is true. Both are combined in the announcement
that has no relation to its truth. This is known as the conscious update ([10], see the
introduction) or, in a setting where lying is also distinguished, as the manipulative update
[30]. The arrow update for the conscious/manipulative update of ϕ is the singleton arrow
update model with arrows

(o,⊤) →a (o, ϕ)

for all agents. Lying as such, wherein ϕ is required to be false, is not an arrow update as
arrow update models have no preconditions, but such executability preconditions can be
simulated as antecedents of logical implications.

A problem with the manipulative update is that an agent who already believes the
opposite of the lie, believes everything after incorporating the lie into her beliefs (believing
a contradiction comes at that price). This is because the accessibility of that agent becomes
empty as a result of the update. A solution to that is the cautious update that is also
known as lying to sceptical agents [19, 15, 23]: the agent only updates her beliefs if the
new information is consistent with her current beliefs. The arrow update for the sceptical

update of ϕ (again, we cannot model sceptical lying as this requires ϕ to be false) is a
singleton arrow update model with arrows

(o,✸aϕ) →a (o, ϕ)
(o,✷a¬ϕ) →a (o,⊤)
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for all agents [15].
Given a group of agents, some may believe the announcement, and others not. The

arrow update modelling allows for this. However, if we make an action model for announce-
ments to sceptical agents, we need to distinguish all combinations explicitly (we used a
similar construction to get action model E(U) from arrow update U , above, in order to
prove Prop. 21). For example, for two agents a and b, the action model consists of eight
actions, with preconditions and accessibility relations as follows. In the picture we ‘name’
the actions with their preconditions. To simplify the visualization, we do not label arrows
with a and b: solid arrows are for a and dashed arrows for b. We also assume transitive
closure of accessibility.

✸aϕ ∧✸bϕ ∧ ϕ ✸aϕ ∧ ✷b¬ϕ ∧ ϕ

✷a¬ϕ ∧✸bϕ ∧ ϕ ✷a¬ϕ ∧ ✷b¬ϕ ∧ ϕ

✸aϕ ∧✸bϕ ∧ ¬ϕ ✸aϕ ∧ ✷b¬ϕ ∧ ¬ϕ

✷a¬ϕ ∧✸bϕ ∧ ¬ϕ ✷a¬ϕ ∧ ✷b¬ϕ ∧ ¬ϕ

For n agents there are O(2n) actions in the action model. In [15] this example is treated
in greater detail, and also other, similar, examples are shown for which arrow updates are
shown to be more succinct (exponentially smaller).

Attentive announcements Another example where action models are exponentially
bigger than arrow updates is that of the attention-based announcements of [7]. This work
presents a logic of announcements that are only ‘heard’ (received) by agents paying at-
tention to it, paying attention to the announcer, so to speak. Such announcements are
modelled employing an auxiliary set of designated ‘attention (propositional) variables’ ha
expressing that agent a pays attention. The corresponding arrow update model has domain
{o, o′}, both outcomes designated, and with arrows

(o, ha) →a (o, ϕ)
(o,¬ha) →a (o′,⊤)
(o′,⊤) →a (o′,⊤)

for all agents. It cannot be modelled with a (singleton) [15] arrow update, the resulting
relational model is typically larger than then model before the update, as the agents not
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paying attention believe that no announcement was made, and thus reason about the
structure of the entire initial model. Incorporating the announcements depends on ha
being true or false, just as for sceptical announcements it depends on ✸aϕ being true or
false. So, this is similar. But not entirely so, because an agent not paying attention is, so to
speak, inconscious of the announcement, and thus believes that the (entire) original model
still encodes her beliefs), whereas an agent believing the opposite of the announcement
‘knows’ that if she where to have found the announcement believable, she would have
changed her beliefs. So these are different parts of the same model, it is a mere restriction
of the accessibility relation. Again, for attentive announcements, a corresponding action
model is of exponential size, as any subset of agents may or may not be paying attention.
See [7].

Comparative size of action models and arrow updates In general, if the observa-
tional powers of all agents are commonly known to be partial, then we can expect arrow
updates for such dynamic phenomena to be exponentially smaller than corresponding ac-
tion models. This was the case for announcements to sceptical lying and for attention-based
announcements, and also for: agents making broadcasts (to all agents), agents seeing each
other depending on their orientation, partial networks representing agents with neighbours
or friends, etc. On the other hand, dynamic phenomena where all agents observe (some,
few) designated agents have similarly-sized arrow updates and action models, such as: the
private announcement to an individual agent or a subgroup of agents, and gossip scenarios
where two agents call each other in order to exchange secrets, and where this call may be
partially observed by all other agents. We do not know of scenarios where action models
are more succinct than arrow updates.

7 Arbitrary arrow updates versus refinements

7.1 Refinement modal logic

We now compare the arbitrary arrow update modality of AAUML to the refinement quan-
tifier of refinement modal logic RML [8]. Let us first be precise about its syntax and
semantics.

We recall the definition of bisimulation in Section 2.1. If atoms and back hold, we
call the relation a refinement (and dually, if atoms and forth hold, we call the relation
a simulation). In [8] such a refinement relation is considered for any subset of the set of
agents and defined as follows:

A relation RB that satisfies atoms, back-a, and forth-a for every a ∈ A\B, and that
satisfies atoms, and back-b for every b ∈ B, is a B-refinement, we say that (M ′, s′) refines
(M, s) for group of agents B, and we write (M, s) �B (M ′, s′). An A-refinement we call a
refinement (clearly any B-refinement is also an A-refinement and thus a ‘refinement’ plain
and simple), and (M, s) �A (M ′, s′) is denoted (M, s) � (M ′, s′). With this relation comes
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a corresponding modality in the obvious way. Let B ⊆ A, and (M, s) and ϕ given, then

M, s |= [�]Bϕ iff M ′, s′ |= ϕ for all (M ′, s′) such that (M, s) �B (M ′, s′).

Comparison of three quantifiers We now first focus on the refinement relation �
for the set of all agents, to which corresponds the [�] modality. Consider three different
ways to define quantification in information changing modal logics. We formulate them
suggestively so that their correspondences stand out, where we recall Proposition 13 that
the restrictions on source and target conditions need not be met when interpreting [↑]ϕ,
and similarly, [12] showed that the restrictions on action preconditions need not be met
when interpreting [⊗].

M, s |= [↑]ϕ iff M, s |= [U, o]ϕ for all arrow update models (U, o)
M, s |= [�]ϕ iff M ′, s′ |= ϕ for all refinements (M ′, s′)
M, s |= [⊗]ϕ iff M ′, s′ |= [E, e]ϕ for all action models (E, e)

Theorem 25 Let ϕ ∈ Lml . Then [↑]ϕ, [�]ϕ, [⊗]ϕ are pairwise equivalent. ⊣

Proof

• The validity of [�]ϕ↔ [⊗]ϕ was shown in [12].

• To show that [⊗]ϕ ↔ [↑]ϕ, we use the semantics of these modalities. Let us do this
for the diamond version. Both directions of the equivalence need to be shown.

M, s |= 〈⊗〉ϕ
⇔
∃(E, e) :M, s |= 〈E, e〉ϕ
⇔ Proposition 19
∃(U(E), e) :M, s |= pre(e) & M, s |= 〈U(E), e〉ϕ
⇒
∃(U(E), e) :M, s |= 〈U(E), e〉ϕ
⇔
M, s |= 〈↑〉ϕ

For the other direction we get this:

M, s |= 〈↑〉ϕ
⇔
∃(U, o) :M, s |= 〈U, o〉ϕ
⇔ Proposition 21
∃(E(U), E(o)) :M, s |= 〈E(U), E(o)〉ϕ
⇒ where e ∈ E(o)
∃(E(U), e) :M, s |= 〈E(U), e〉ϕ
⇔
M, s |= 〈⊗〉ϕ
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• To show that [↑]ϕ↔ [�]ϕ we use the previous two equivalences. �

The theorem is formulated to make the correspondence between the three quantifiers
stand out. Alternatively, we can have a inductively defined translation between the lan-
guage L (of AAUML) and the language of arbitrary action model logic AAML that is
compositional to the extent that arrow update quantifiers are translated into action model
quantifiers (Theorem 25) and arrow update models into action models (Proposition 21),
and vice versa (Proposition 19).

7.2 Update expressivity

Considering that [⊗]ϕ, [↑]ϕ and [�]ϕ are equivalent (Theorem 25), and that [⊗] and [↑]
have the same update expressivity (Section 5), one might expect all three to have the same
update expressivity. This, however, is not so, because [⊗] and [↑] are finitary quantifiers —
they quantify over, respectively, finite action models and over finite arrow update models
— whereas refinements can be infinitary.

For one example, consider the relational model N consisting of all valuations, with
the universal relation on that domain for all agents, and any state t in that domain.
Clearly, the restriction of N to the singleton model consisting of t (wherein the agents
have common knowledge of the valuation in t) is a refinement of (N, t). It can be obtained
by successively announcing the value of each of the infinite number of atoms. However, it
cannot be obtained by a single announcement (or, equivalently, by any finite sequence of
those).

For another example, consider the following model M , with as single state s0:

a

Now, consider the following model M ′, with s0 as its leftmost state:

· · ·
a a a a

a a

a

a

a

a

The pointed model (M ′, s0) is a refinement of (M, s0). But M ′ contains infinitely many
states that are not bisimilar to one another. Furthermore, every arrow update model U
is finite, so every product of U with M is finite (and therefore contains finitely many
non-bisimilar states). As a result, there is no (U, o) such that (M ′, s0) is bisimilar to
(M ∗ U, (s, o)).
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It follows that arbitrary arrow updates are not at least as update expressive as re-
finements. But it also follows that refinements are not at least as update expressive as
arbitrary arrow updates, since you cannot choose to exclude the above model (M ′, s0)
when performing a refinement in (M, s0).

Proposition 26 RML and AAUML are incomparable in update expressivity. ⊣

And therefore RML and AAML are also incomparable. The reason that [↑]ϕ and [�]ϕ
(and [⊗]ϕ) are nonetheless equivalent is that while there is no (U, o) such that (M ∗
U, (s0, o)) is bisimilar to (M ′, s0), it is the case that for every n there is an (Un, on) such
that (M ∗Un, (s0, on)) is n-bisimilar to (M ′, s0). Since every formula in the languages under
consideration is of finite depth, such finite approximations of M ′ suffice.

Finally, we should note that the incomparability already applies to the language for
RML with only the [�] modality. The language above, as in [8], has [�]B modalities for
any subgroup B ⊆ A, meaning that, modulo bisimulation, only arrows in B are removed
from a relational model. Similarly to the argument above it follows that this would only
further increase expressivity.

7.3 Comparing the axiomatizations of AAUML and RML

We have seen that the refinement modality corresponds to the arrow update modality in the
sense that [�]ϕ is equivalent to [↑]ϕ. Given this identification, the language and semantics
of AAUML thus extends that of RML. A comparison between the axiomatization RML
of refinement modal logic RML (Table 3) and the axiomatization AAUML of AAUML
(Table 2 on page 20) seems in order. In RML, in Table 3, ∇ is the coalgebraic cover

modality of [17], defined as ∇Φ :=
∧
ϕ∈Φ ✸ϕ ∧ ✷

∨
ϕ∈Φ ϕ. From now on we abbreviate the

right-hand term, and similar expressions, as ∇Φ :=
∧
✸Φ ∧✷

∨
Φ.

Prop all tautologies of propositional logic
K ✷a(ϕ→ ψ) → ✷aϕ→ ✷aψ
R [�]a(ϕ→ ψ) → [�]aϕ→ [�]aψ
RProp [�]ap↔ p and [�]a¬p↔ ¬p
RK 〈�〉a∇aΦ ↔

∧
✸a〈�〉aΦ

RKmulti 〈�〉a∇bΦ ↔ ∇b〈�〉aΦ where a 6= b
RKconj 〈�〉a

∧
b∈B∇bΦ

b ↔
∧
b∈B〈�〉a∇bΦ

b

MP from ϕ→ ψ and ϕ infer ψ
NecK from ϕ infer ✷aϕ
NecR from ϕ infer [�]aϕ

Table 3: The axiomatization RML of RML

If we replace 〈↑〉 by 〈�〉 in axiom A4 of Table 2 we get this principle A4�:

A4� 〈�〉
∧
a∈A(

∧
♦aΦa ∧�aψa) ↔

∧
a∈B

∧
♦a〈�〉(Φa ∧ ψa)
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Obviously, given Theorem 25, A4� is valid in RML. More interesting is to derive it in
RML from the axioms RK, RKmulti, and RKconj relating the refinement modality to
basic modalities.

Let us first demonstrate this for the single agent versions of the logics (where w.l.o.g.
we assume that the language is arrow update model free, to simplify the proof). In other
words, we compare:

A4�

1 〈�〉(
∧

✸Φ ∧ ✷ψ) ↔
∧

✸〈�〉(Φ ∧ ψ)
RK1 〈�〉∇Φ ↔

∧
✸〈�〉Φ

Proposition 27 Axioms RK1 and A4�

1 are interchangeable in RML1. ⊣

Proof Let Ax ⊢ ϕ denote that ϕ is a theorem of system Ax. We first show that (RML1−
RK1 +A4�

1 ) ⊢ RK1. Below, the equivalences either spell out definitions or correspond to
provable equivalences.

〈�〉∇Φ
⇔ by definition of ∇
〈�〉(

∧
✸Φ ∧ ✷

∨
Φ)

⇔ A4�

1 , where ψ =
∨

Φ∧
〈�〉(Φ ∧

∨
Φ)

⇔ use equivalence ϕ↔ (ϕ ∧
∨
Φ) for all ϕ ∈ Φ∧

〈�〉Φ

We now show that RML1 ⊢ A4�

1

〈�〉(
∧

✸Φ ∧ ✷ψ)
⇔ propositional logic
〈�〉(

∧
✸(Φ ∧ ψ) ∧✷

∨
(Φ ∧ ψ))

⇔ RK1, for the set {ϕ ∧ ψ | ϕ ∈ Φ}∧
✸〈�〉(Φ ∧ ψ) �

To compare RK and A4� for the multi-agent version we need to use the axioms
RKmulti and RMconj as well. We also use the following validity: let the set of agents
A be {b1, . . . , bn}, then 〈�〉ϕ (i.e., 〈�〉Aϕ) is equivalent to 〈�〉b1 . . . 〈�〉bnϕ in any order of
these agents. We may therefore additionally assume that bn = a. If the language has [�]B
as primitives, in the axiomatization RML we may therefore so to speak have an additional
axiom RG: [�]Bϕ ↔ [�]b1 . . . [�]bnϕ. Finally, below, note that Lemmas 6 (page 6) and 7
(page 13) can be assumed provable equivalences.

Proposition 28 Axiom A4� is derivable in RML. ⊣

Proof
〈�〉

∧
b∈A(

∧
♦aΦa ∧�aψa)

⇔ RG
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〈�〉b1 . . . 〈�〉a
∧
a∈A(

∧
♦aΦa ∧�aψa)

⇔ n applications of RKconj∧
a∈A〈�〉b1 . . . 〈�〉a(

∧
♦aΦa ∧�aψa)

⇔ RK1 (Prop. 27)∧
b∈A〈�〉b1 · · ·

∧
✸a〈�〉a(Φa ∧ ψa)

⇔ repeated applications of Lemmas 6 and 7∧
b∈A

∧
〈�〉b1 . . .✸a〈�〉a(Φa ∧ ψa)

⇔ repeated applications of RKmulti, as bi 6= a for i < n∧
b∈A

∧
♦a〈�〉b1 . . . 〈�〉a(Φa ∧ ψa)

⇔ RG∧
a∈A

∧
♦a〈�〉(Φa ∧ ψa) �

Alternative axiomatization for RML Although we have now shown that A4� is
derivable from RML, it is of course impossible to show that RK is derivable from RML−
RK+A4�, because the axiomatizationRML uses individual refinements [�]a as primitives
and not [�]. As both logics are equally expressive as the base (multi-agent) modal logic,
at some level there is a correspondence but this is not very interesting.

The axiomatization AAUML provides us with an alternative axiomatization for RML,
for the language with [�] as the unique update modality. Given the system AAUML of
Table 2, remove axioms U1 — U4, and replace in the axioms A1 — A4 〈↑〉 by 〈�〉 and
call the result A1� — A4�. The resulting proof system is an alternative axiomatization
for refinement modal logic. Let us call it RMLalt. It is displayed in Table 4. The corre-
spondence between RKProp and A1� is trivial. Other differences may be considered of
interest. For example, RMLalt contains RE (replacement of equivalents), whereas RML
contains NecR (necessitation for the refinement quantifier — we recall that necessitation
for the arbitrary update quantifier is indeed derivable using RE).

Prop all tautologies of propositional logic
K �a(ϕ→ ψ) → (�aϕ→ �aψ)
A1� 〈�〉ϕ0 ↔ ϕ0 where ϕ0 ∈ Lpl

A2� 〈�〉(ϕ ∨ ψ) ↔ (〈�〉ϕ ∨ 〈�〉ψ)
A3� 〈�〉(ϕ0 ∧ ϕ) ↔ (ϕ0 ∧ 〈�〉ϕ) where ϕ0 ∈ Lpl

A4� 〈�〉
∧
a∈A(

∧
♦aΦa ∧�aψa) ↔

∧
a∈A

∧
♦a〈�〉(Φa ∧ ψa)

MP from ϕ→ ψ and ϕ infer ψ
NecK from ϕ infer �aϕ
RE from χ↔ ψ infer ϕ[χ/p] ↔ ϕ[ψ/p]

Table 4: The alternative axiomatization RMLalt of RML
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8 Conclusions and further research

Conclusions We presented arbitrary arrow update model logic (AAUML). We provided
an axiomatization of AAUML, which also demonstrates that AAUML is decidable and
equally expressive as multi-agent modal logic. We established arrow update model synthesis
for AAUML. We determined the update expressivity hierarchy including AAUML and
many other update logics, including other arrow update logics, action model logics, and
refinement modal logic. We also provided a novel axiomatization for refinement modal
logic.

Further research: B-restricted arrow update synthesis Let B be any subset of
the set of all agents. Building upon the B-refinements of [8] and motivated by a similar
approach used in [12], a variant of the synthesis problem for AAUML is to consider B-

restricted arrow update models. Roughly speaking, a B-restricted arrow update model
represents an event where only the agents in B can gain more factual information, while
the agents outside B remain at least as uncertain as they were before the event. The
B-restricted synthesis problem can be solved in a very similar way to the unrestricted
problem that we presented in this paper.

Similarly to how arrow update models have the same update expressivity as action mod-
els and refinements, B-restricted arrow update models have the same update expressivity
as B-restricted action models, and B-refinements have larger update expressivity.

Formally introducing B-restricted arrow update models, and showing that the results
apply there as well, would require a lot of complicate notation and several complex defini-
tions. So for the sake of readability we did not include them in this paper.

Further research: complexity of synthesis We have shown that it is possible to
perform synthesis for AAUML, and described an algorithm that does this synthesis. We
have not, however, discussed the computational complexity of that algorithm. In fact, it is
non-elementary. We suspect that this is unavoidable, i.e., that the difficulty of the synthesis
problem is non-elementary. We do not, for now, have a hardness proof, however. For the
related problem of B-restricted arrow update model synthesis we do have a hardness proof,
and can show that, in the worst case, it takes non-elementary time.
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