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Abstract

Societal growth thrives on the performance of critical infrastructure systems

such as water supply systems, transportation networks or electrical distribution

systems. This makes the reliability analysis of these systems a core focus for

researchers today. The survival signature is a novel tool for analysing complex

networks efficiently and outperforms traditional techniques in several key factors.

Its most unique feature being a full separation of the system structure from

probabilistic information. This in turn allows for the consideration of diverse

component failure descriptions such as dependencies, common causes of failure

and imprecise probabilities. However, the numerical effort to compute the

survival signature increases with network size and prevents analysis of complex

systems. This work presents a new method to approximate the survival signature,

where system configurations of low interest are first excluded using percolation

theory, while the remaining parts of the signature are approximated by Monte

Carlo simulation. The approach is able to accurately approximate the survival

signature with very small error at a massive reduction in computational demands.

The accuracy and performance are highlighted using several simple test systems

as well as two real world problems.
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analysis

1. Introduction

Critical infrastructure systems such as electrical, gas and water distribution

systems, traffic networks and communication networks are cornerstones of modern

societies. Our dependence on these systems comes with a demand for accurate

reliability analyses to ensure their functionality. However, with increasing size5

and complexity, the analysis and assessment of reliability of these systems comes

with an increase of computational effort. Extensive research on algorithms for the

reliability analysis of systems and networks is readily available [1]. Past research

has highlighted the importance of considering effects such as dependencies,

common causes of failure and imprecision [2, 3, 4] during the analysis. This is10

where traditional approaches, e.g. fault tree analysis or reliability block diagrams

reach their limits. A recent development in system analysis aiming to alleviate

these shortcomings is the survival signature [5].

The survival signature was developed as a generalization of the systems

signature [6] to allow for multiple component types. Perhaps the greatest15

advantage of the survival signature to traditional approaches is the full separation

of system structure from probabilistic information. This is a clear advantage

over more common tools for system reliability, where the structure of the system

needs to be modified or extra failure events need to be modelled to allow for

consideration of the aforementioned effects, as for example pointed out by Li20

et al. [7]. Recent research showed that repairable systems [8], mission-stage-

behaviour [9] and the combination of subsystems [10] can easily be implemented

into the survival signature ecosystem. Reliability analysis using the survival

signature has been widely studied in recent years, including a variety of simulation

algorithms [11], dependent failures [12], imprecision [13] and more.25

Just like the traditional techniques, the survival signature suffers greatly

from the curse of dimensionality. This means, that with increasing network size

and number of component types the numerical demand increases as well with
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non-polynomial growth. At the number of components and types typical of

real infrastructures the computational effort required to evaluate the survival30

signature becomes prohibitive. Several works aimed at working around this

limitation have been published in recent years. Reed [14] presented an efficient

method of calculating the survival signature based on transforming a fault tree

representation of a system to a binary decision diagram. While this method

performs very well in cases where the fault tree or binary decision diagram35

is already known, it becomes increasingly impractical with growing network

size/complexity. Another recently developed approach is based on the extended

universal generating function (UGF) [15]. However, deriving the UGF is a non-

trivial task itself and restricts the application to systems defined as reliability

block diagrams.40

This paper presents a new approach to the approximation of the survival

signature based on percolation theory and Monte Carlo simulation. First,

percolation theory is used to find areas of the survival signature that can be

safely excluded [16]. Then, the remaining entries are approximated using Monte

Carlo simulation [17]. The method is able to efficiently compute the signatures45

of arbitrary systems and structure functions.

The remainder of the paper is structured as follows. Section 2 presents

the theory on the survival signature while Section 3 introduces percolation

theory. The developed simulation algorithm is discussed in Section 4 including

the application to toy examples and quantification of errors. Section 5 applies50

the proposed approach to more complex real world examples, followed by some

concluding remarks in Section 6.

2. Survival Signature

The current state of a system consisting of m components can conveniently

be described by a state vector x ∈ {0, 1}m. An entry xi = 1 denotes a functional55

component i, while xi = 0 indicates a non-functional or failed component. The

labeling must be consistent although its initial choice is arbitrary. The global
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state of the system is defined by a structure function ϕ : {0, 1}m → {0, 1}.

The structure function is defined for every possible state x of the system and

evaluates whether the system is operational (ϕ(x) = 1) or not (ϕ(x) = 0).60

It is safe to assume in most cases that the system analysed is coherent. A

system is labeled as such if the structure function ϕ is not decreasing if the

amount of working components |x| increases (and vice-versa), i.e., the repair of

a component will not lead to a less functional system. A related, however not

necessary assumption is that the system is always fully operational in the case65

of all components working (ϕ(1) = 1) and not operational if all components are

broken (ϕ(0) = 0).

In case of systems consisting of multiple component types, let K ≥ 2 be the

number of component types, and mk the amount of components of one specific

type k. It follows that
∑K
k=1mk = m. As the labeling of the components in the70

state vector is arbitrary, it can be written in groups ordered by component type:

x = (x1, x2, . . . , xK). Each of these sub-vectors now indicate the states of all

components of that specific type, for example xk = (xk1 , x
k
2 , . . . , x

k
mk

).

For any such kind of system, the survival signature Φ(l1, l2, . . . , lK) is now

defined as follows: Given that exactly lk out of mk components of every type75

are working, the probability that the system is operational is Φ. In other words,

Φ denotes the percentage of working system configurations when lk out of mk

components are working, without taking into account the reasons (e.g., failure

modes) behind the failure of these components. Additionally, it should be pointed

out that components of the same type are indistinguishable, i.e., it is possible to80

know how many components of a specific type are working, but not in which

part of the system. Thus, the survival signature is a k-dimensional array of size

(m1 + 1) × (m2 + 1) × · · · × (mk + 1) (including case lk = 0 that none of the

components of a type are working) [5]. In the remainder of the paper, l is used

as a shorthand for l1, l2, . . . , lK .85
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From the coherency assumptions mentioned above, it trivially follows that

Φ(l = 0) = 0,

Φ(l = 1) = 1,

Φ(la) ≤ Φ(lb) if lak ≤ lbk, ∀k ∈ (1, 2, . . . ,K), (1)

where 0 and 1 refer to system configurations with all components failed or

working respectively. The vectors la and lb represent two arbitrary entries of the

survival signature.

The direct computation of one specific entry Φ(l) of the survival signature is

achieved by enumeration of all working states that satisfy the condition that lk

out of mk components are functional for components k = 1, . . . ,K. The total

amount of possible combinations are
(
mk

lk

)
for all k. The set of all these allowed

combinations for all components is denoted by Sl1,...,lK . Thus the magnitude of

this set is
∏K
k=1

(
mk

lk

)
. The fraction of functional states over the amount of all

possible states now yields the probability of the system being operational:

Φ(l) =

[
K∏
k=1

(
mk

lk

)]−1

×
∑

x∈Sl1,...,lK

ϕ(x), (2)

under the condition that the failure times of the individual components of one

type are equally likely to occur. The complete survival signature for a simple90

system of two component types as shown in Fig. 1 is presented in Table 1.

The structural information of the system functionality is completely separated

from the temporal behaviour of the individual components. The component

failure times are included as the probability P (Ckt ) that a specific amount C of

component type k is functional at a given point in time t:

P (Ts > t) =

m1∑
l1=0

. . .

mK∑
lK=0

Φ(l) P

(
K⋂
k=1

{Ckt = lk}

)
, (3)

providing the probability that the system failure time Ts is after the current

point in time (the system’s survival function). However, in the case that for any

type k the failure times are independently and identically distributed (iid) with
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l1 l2 Φ(l1, l2) l1 l2 Φ(l1, l2)

0 0 0 2 0 0

0 1 0 2 1 0

0 2 0 2 2 4/9

0 3 0 2 3 6/9

1 0 0 3 0 1

1 1 0 3 1 1

1 2 1/9 3 2 1

1 3 3/9 3 3 1

Table 1: Survival signature of the system in Fig. 1.

a known cumulative distribution function Fk(t), the probabilistic part of the

survival function can be simplified to

P

(
K⋂
k=1

{Ckt = lk}

)
=

K∏
k=1

P (Ckt = lk) = · · ·

· · · =
K∏
k=1

((
mk

lk

)
Fk(t)

mk−lk [1− Fk(t)]
lk

)
.

(4)

It is in this separation of structural and probabilistic information where

the advantages of the survival signature compared to traditional approaches

lie. Inclusion of complex effects such as imprecise probabilities or dependent

componant failures have no influence on the structural evaluation of the system.95

Note, that the method presented in this paper is only applicable to the structural

(signature) part of the survival function. Simulation techniques for the proba-

bilistic part of the equation and consideration of imprecision and dependencies

are already available [11, 18].

In this work, application of the survival signature is restricted to systems100

consisting of binary components, in accordance with its original definition [5].

Generalization of the survival signature to multi-state systems is still actively

being researched [19, 20].
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Figure 1: Example system with K = 2 component types and m1 +m2 = 3 + 3 = 6 components.

The component types are represented by different shapes.

3. Percolation

If a system’s structure function is given as a logical block diagram, it is105

referred to as a reliability block diagram (RBD). The individual components (or

subsystems of several components) are represented by blocks connected through

edges. Typically two completely reliable nodes are given on both ends of the

diagram. The system is operational, if these two source (s) and target (t) nodes

are connected.110

Evaluation of the structure function is now equivalent to finding the s-t-

connectivity of an undirected and unweighted graph as the edges of the RBD

are exclusively logical connections without any distinction between edges. Addi-

tionally, the system can be decomposed into series- and parallel-subsystems to

reduce network size.115

In the context of survival signature computation the s-t-connectivity needs

to be computed for all x ∈ Sl1,...,lK for all lk = 0, 1, . . . ,mk considering all K

component types. This fact leads to high numerical costs even for medium-sized

systems due to the increase in combinations of components to check.

The search of connections between two ends of complex networks or lattices120

(and the formation of clusters inside a network, which is a related concept) is one

of the main aspects of percolation theory. Albeit usually introduced as a theory

for multidimensional lattice networks [21], the results obtained in percolation

theory can easily be applied to graphs and networks. Network robustness is one
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of the many applications of percolation to graph theory other than the classical125

use in material sciences. This provides an opportunity to improve the handling

of vast state spaces during analysis of structure functions. Percolation theory

has been successfully applied to network reliability problems in the past [22].

3.1. Percolation processes

A percolation process is defined as the random deletion of nodes from the130

network without any rewiring of the edges connected to the deleted nodes. The

amount of deleted nodes can be determined as fraction of removed nodes, denoted

by f .

In cases of small fractions f , i.e. where only a small number of nodes is

removed from the network, this results in a high probability that a large, system-135

spanning structure connecting s and t (and all nodes if f → 0) exists. This

structure is called a giant connected cluster or giant connected component [23].

For increasing values of f , more nodes are removed eventually leading to the

collapse of the network. The point where the giant connected cluster vanishes is

denoted by the critical fraction fc.140

The connection of two individual nodes has little value when analysing

networks/graphs in general, as opposed to reliability block diagrams. Thus,

the probability P∞(f) that a giant connected cluster exists [24] can be used to

evaluate the overall state of the network instead.

One of the main outcomes of percolation theory for graphs is that the behavior

of a network depends mainly on three different exponents and the critical value

fc [25]:

< s > ∼ |f − fc|−γ (avg. cluster size),

pin ∼ (f − fc)β (prob. that random node is in cluster),

ξ ∼ |f − fc|−ν (mean distance in cluster). (5)

This behaviour resembles phase transitions from statistical mechanics and the145

exponents are highly dependent on the global structure of the graph. The system

tends to maintain its large connected component until fc ·
∑K
k=1mk are taken
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away. Then, the system collapses into smaller, isolated clusters. While the

exponents are hard to obtain analytically, the critical fraction fc (where the

giant connected cluster vanishes) can easily be derived directly from the network150

structure.

3.2. Percolation threshold and survival signature

The Molloy-Reed Criterion is a simple condition for a giant cluster to exist:

For a graph to contain a giant connected component, most nodes need to be

connected to at least two other nodes [26]. For any graph, this can be expressed

as

κ =
< d2 >

< d >
> 2, (6)

with d being the node degree (sum of all connections going into a node), and

< d > and < d2 > being the first and second moment of the degree distribution

over the network. The value of κ can be directly computed from any graph

representation, e.g. a double loop over the network’s adjacency matrix. With

the ratio κ the critical threshold for any system is obtained by

fc = 1− 1

κ− 1
, (7)

without any further computation involving the system structure. From a survival

signature point of view, this means that if more than a fraction of components

fc has failed, there is only a negligible probability that the system is functional:

K∑
k=1

lk < (1− fc) ·
K∑
k=1

mk ⇒ Φ(l) ≈ 0. (8)

This way the computation of all entries in the survival signature below that

threshold can be omitted.

Equations 6 and 8 have also been independently developed by Cohen et al.155

[27].

4. Approximation of the survival signature

This section presents the developed method to estimate the survival signature.

After application of the percolation theory the remainder of the survival signature
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is approximated using Monte Carlo simulation. The proposed technique is then160

applied to simple benchmarking examples in order to quantify the errors resulting

from neglecting entries and approximation. A more complex numerical example

is presented in the subsequent section.

The method is divided into two steps:

(1) Identify the area to neglect based on the critical percolation threshold (Eq. 8)165

and set all entries to 0.

(2) Use Monte Carlo simulation to approximate the remaining entries, effectively

replacing the full combinatorial calculation (see Eq. 2) with a sampling

approach.

The algorithm to approximate a single unknown survival signature entry Φ(l)170

is as follows. As long as neither a pre-selected maximum number of samples

N or a target coefficient of variation C is reached, generate a random network

state for the state vector l denoted by s and increase the number of samples nl

by one. A simple way of choosing a random network state for a state vector is

to randomly shuffle the components of type k and choose the first lk for each175

k = 1, . . . ,K.

Consider a system with 10 components divided into two types as s1 =

[1, 3, 5, 7, 9] and s2 = [2, 4, 6, 8, 10]. In order to generate a random system for an

example state vector l = [3, 3] the component vectors are randomly permutated,

e.g. s1 = [3, 7, 5, 9, 1] and s2 = [2, 10, 6, 4, 8]. Selecting and merging subarrays180

of lengths l1 and l2 from s1 and s2 respectively, results in the random network

state s = [3, 7, 5, 2, 10, 6].

If the structure function evaluates the random network state as functioning,

i.e. ϕ(s) = 1, increase the counter wl by one. Next, update the approximation

using

Φ(l) ≈
wl
nl

(9)

and the current coefficient of variation by

cl =

√
(Φ(l)− Φ(l)

2
)/nl

Φ(l)
. (10)
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A pseudo-code implementation of the algorithm is presented in Algorithm 1.

Note, that entries where the number of possible network states is smaller than

N are calculated analytically through Eq. 2.185

Eq. 10 is based on the coefficient of variation definition for a standard Monte

Carlo simulation with continuous random variables. However, since the survival

signature approximation involves a very large number of possible combinations,

and entries with only a small number of combinations are always calculated

exactly, it can be applied here as well.190

The complete algorithm has been implemented in the Julia package Sur-

vivalSignature.jl and made publicly available on Github [28].

Algorithm 1 Approximate survival signature entry

function approximate(l, ϕ,N,C)

c, n, w,Φ← 0 . Initialise variables

while c > C and n ≤ N do

n← n+ 1

s← random network state for l

if ϕ(s) = 1 then

w ← w + 1

end if

Φ← w/n

c←
√

(Φ−Φ2)/n

Φ

end while

return Φ, c . Signature entry and coefficient of variation

end function

To prove the suitability of the method and quantify the error resulting from

the approximation, the proposed technique is applied to several example networks

of varying sizes. The networks used are simple n×m grid networks of the form195

shown in Fig. 2. The nodes distributed among two types in such a way, that any

component is only connected to components of the other type. Figure 3 shows

the convergence of the approximation of Φ(14, 14) with increasing sample size for
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the 6× 6 network. The associated mean squared errors are presented in Figure 4.

Next, the algorithm is applied to the full networks in oder to understand the200

resulting errors and their effect on a reliability analysis using the approximated

survival signature.

s

t

n

m

Figure 2: Simple grid network of size 5 × 5 with 25 nodes and 40 edges. The nodes labeled s

and t are the source and target nodes.

4.1. Percolation

In a first step, the exact survival signature for all networks is computed

using the full combinatorial approach so that the approximation error can be

calculated. Next, the critical threshold fc of the networks is estimated using

Eq. 7. For each network, a second survival signature denoted by Φfc is created

by copying all entries from the exact signature in line with Eq. 8. Then, the

absolute error

Efc = ‖Φ− Φfc‖F (11)

and relative error

Ẽfc =
Efc
‖Φ‖F

(12)

made by excluding the entries below the threshold is calculated. The results are

presented in Tab. 2. It can be seen that the fc slowly increases with network size205

which is also represented in the error. For example, the relative error made by
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Figure 3: Convergence of the approximated signature entry Φ(14, 14) for the 6 × 6 network

to the exact value of 0.4741594. The number of state vector evaluations needed for the exact

solution is 9 363 600.

excluding 120 entries from the survival signature of the 6× 6 network is already

less than 0.01 %.

n×m fc n N Efc Ẽfc

5× 5 0.574468 66 182 0.000761789 0.000209180

5× 6 0.584746 91 256 0.000524625 0.000129065

6× 6 0.594595 120 361 0.000356815 0.000068137

Table 2: Critical thresholds and errors made by percolation of the grid networks. The number

of neglected entries based on the critical threshold fc is denoted by n. N represents the total

number of entries in the survival signature.

Percolation is usually applied to large-scale networks. However, in the

context of this work, the application is restricted so smaller networks where210

the computation of the analytical survival signature is still possible in order

to be able to quantify the errors made by the exclusion of low interest system

configurations. The effect of applying percolation to the survival signature of
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Figure 4: Evolution of the mean squared error when approximating the survival signature

entry Φ(14, 14) for the 6×6 network with increasing sample size.

large-scale networks should be studied more closely in the future.

4.2. Monte Carlo Approximation215

After applying the percolation based selection criterion, the entries of the

survival signature not excluded by the critical percolation threshold are approxi-

mated using Monte Carlo simulation (see Section 4). The maximum number of

samples used for each entry of the survival signature is increased with the network

size to reach comparable levels of accuracy. As stated before, the absolute error

Emc = ‖Φfc − Φmc‖F (13)

and relative error

Ẽmc =
Emc
‖Φfc‖F

(14)

introduced by the simulation-based approximation are calculated. Note that Φmc

is compared to Φfc instead of the extact survival signature Φ when quantifying

the error. This is to ensure that estimated error results only from the Monte

Carlo approximation. The results presented in Tab. 3 show that good accuracy

can be reached with a reasonable amount of samples per entry. For example,220
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using a maximum number of 104 samples for the 6×6 network leads to a relative

error of less than 1%.

The number of structure function evaluations for this simulation is nϕ =

2 099 933 compared to the 236 needed for the exact computation of the survival

signature, a reduction of more than 99%. This great reduction in numerical225

effort also reflects in the computation time. The simulation takes less than 3

minutes using a single process where the exact computation took 18 hours highly

parallelised on 64 processes.

n×m n nϕ Emc Ẽmc

5× 5 225 399256 0.0207 0.0056

5× 6 230 862400 0.0347 0.0085

6× 6 236 2099933 0.0451 0.0086

Table 3: Absolute and relative errors made by approximation of the survival signature. The

number of structure function evaluations required for the analytical solution is denoted by n

while the number of evaluations required for the approximation is denoted by nϕ.

4.3. Reliability analysis

Finally, the exact and approximated survival signatures are applied to a230

network reliability analysis using the analytical solution of the survival function,

see Eq. 3 and Eq. 4.

Let the failure times for components of type 1 have an Exponential distribution

with λ = 1 and the failure times of components of type 2 have a Weibull

distribution with k = 2 and λ = 1. The survival functions of the 6× 6 network235

using the exact and approximated signatures are presented in Fig. 5. The plot

clearly shows how the survival function Pmc using the approximated survival

signature Φmc matches the one resulting from the exact signature. The relative

error defined by ẼP = ‖P − Pmc‖F / ‖P‖F is approximately 0.13% in this case.

The absolute and relative errors for the survival functions of all three test240

networks are shown in Tab. 4.
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n×m EP ẼP

5× 5 0.0152 0.0011

5× 6 0.0235 0.0015

6× 6 0.0212 0.0013

Table 4: Absolute and relative errors resulting from a reliability analysis using the approximated

survival signatures.

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

t

P
(T

>
t)

P
Pmc

Figure 5: Survival functions of the 6 × 6 network. The approximated reliability of the network

denoted by Pmc closely matches the analytical solution P .

5. Numerical examples

This section presents the application of the developed methodology to more

involved, real world examples in comparison to the simple grid networks used in

Section 4.245

5.1. Example 1: Electricity transmission network

The first example used is a representative model of the electricity transmission

network of Great Britain as presented in [29]. The network consists of 29 nodes

that are split into two component types based on their bus type. Load buses
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Figure 6: Topology of the electricity transmission network used in example 1. Components of

type 1 are shown in blue. Components of type 2 are shown in orange. The locations of the

nodes in the figure are not related to their actual geographical location.

are assigned component type 1, while voltage controled buses are grouped in250

component type 2. The network’s slack bus (node 27) has not been separated

into its own type to reduce the complexity of the problem and allow for relatively

fast computation of the exact signature for comparison with the approximations.

Note, that this is not an attempt at solving the underlying power flow problem

but only a computation of the survival signature of the provided network topology.255

The network topology is displayed in Fig. 6.

A structure function is required in order to calculate the survival signature of

the power network. The existance of s-t-connectivity as applicable for reliability

block diagrams, shown in Section 4, has little meaning for this network. Instead,

the so called network efficiency [30] as defined in Eq. 15 is used to measure the260

state of the network for a given state vector.

E(G) =
1

n(n− 1)

∑
i 6=j∈G

1

d(i, j)
(15)

where G is the network with n nodes and d(i, j) denotes the length of the shortest

path between two nodes i and j.
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To define the (binary) structure function it is assumed that the network

completely collapses once the loss of efficiency due to failing components exceeds

50% as

ϕ(x) =
E(G(x))

E(G)
< 0.5. (16)

This value has been arbitrarily chosen for this example and implies no real world

relevance. It should be noted, that this threshold is not related to the percolation265

threshold imposed in the first step of the algorithm.

Since this requires to compute the shortest paths between all components for

every evaluated system configuration it is significantly more numerically demand-

ing than the s-t-connectivity structure function used previously. An efficient

algorithm to calculate the shortest paths is the Floyd-Warshall algorithm [31].270

Survival signature approximations are performed with increasing sample sizes

and compared to the exact solution to prove convergance. Figure 7 presents

the mean squared errors and associated standard deviations resulting from 1000

repeated evaluations. A target coefficient of variation of 0.001 was used for all

simulations. As evident from the plot, using a sample size of 1e4 per survival275

signature entry already results in an adequately low error of ≈ 1.9e−6. On a

single processor core running at a clock speed of 3600 MHz the Monte Carlo

approximation runs 509 s instead of 11 069 s for the full combinatorial evaluation.

5.2. Example 2: Berlin metro system

In this second example, the developed method is applied to the model of280

Berlin’s metro system taken from [32]. The model represents Berlin’s U-Bahn

and S-Bahn systems which, due to the large number of interconnections between

the systems, will be considered as a single system. The entire network consists

of 306 nodes and 350 edges with nodes separated into two types based on their

degree. Nodes with a maximum degree of two are grouped in type 1. Nodes with285

a degree larger than two are separated into type 2. This results in 245 nodes of

type 1 and 61 of type 2. The topology of the network is presented in Fig. 8. The

same structure function as in example 1 is applied to the network, see Eq. 16.
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Figure 7: Evolution of the mean squared error resulting from approximation of the survival

signature for the network shown in Fig. 6 with increasing number of samples used.

The full survival signature of this system has 15252 entries, the most numeri-

cally demanding entries being Φ (122, 30), Φ (122, 31), Φ (123, 30) and Φ (123, 31)290

each with a total number of approximately 6.69× 1089 possible combinations

to be evaluated. To put this into perspective, these are more combinations for

a single entry than the estimated number of atoms in the observable universe

(≈ 1080). Therefore, calculating the analytical survival signature for this net-

work is impossible using the traditional approaches on present day computers.295

However, it can be approximated using the presented simulation based technique.

The previous example has shown, that using 1e4 samples per signature entry

leads to sufficiently accurate results as evident from Fig. 7. The approximation

of a single survival signature is essentially the same as computing a probability

of failure. The minimum number of samples N required to estimate a probability

of failure or in this case survival signature entry Φ(l) is defined by

N ≤ 1

c2 · Φ(l)
, (17)

where c is the desired coefficient of variation [1]. This shows that the per entry

19



Figure 8: Topology of the Berlin metro system with 306 nodes. Nodes highlighted in blue

represent stations with more than two connections. Adapted from [32].

accuracy of the survival signature approximation using a certain number of

samples is the same regardless of network size. Based on this, 1e4 samples are

chosen to compute the survival signature of the metro system.300

The approximation of the survival signature is still numerically demanding,

running for 27 h 39 min 35 s using 64 threads on an AMD Ryzen Threadripper

3990X 64-Core Processor. Since no analytical solution is available for this system,

the final error resulting from the approximation can not be quantified.

While the results show a significant reduction in numerical demand in com-305

parison to the full combinatorial evaluation, it highlights the demand for more

efficient sampling strategy. With increasing size and dimensions of the survival

signature, brute force Monte Carlo simulation will still not be sufficient. Po-

tentially, advanced Monte Carlo methods such as line sampling [33] or subset

simulation [34] could drastically improve efficency.310
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6. Conclusion

This paper presented a new approach to the approximation of the survival

signature. The developed technique significantly outperforms traditional (full

combinatorial) approaches in the number of required structure function evalua-

tions and therefore in overall computation time. At the same time, the resulting315

approximation errors are sufficiently low enough for an accurate reliability anal-

ysis.

Both the application of percolation theory to reduce the number of com-

puted signature entries and the Monte Carlo simulation require no additional

information on the system other than the structure function. This allows the320

method to be applied to any problem where the numerical demand prohibts the

full evaluation of the survival signature.

The viability of the new method is proved by comparing simple toy examples

to their exact solutions and quantifying the errors. More complex and demanding

numerical examples are used to show application to real world problems.325

However, since the number of samples required for an accurate Monte Carlo

approximation increases with growing network size and number of component

types this approach will also reach its limits at some point. To analyze even larger

and more complex systems the method must be extended to apply advanced

simulation techniques such as line sampling or subset simulation in order to330

reduce the number of samples required to compute an entry of the survival

signature.

The developed method is implemented in an open source Julia library and

made available to fellow researchers.
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