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Abstract—In this paper, we consider massive multiple-input-
multiple-output (MIMO) communication systems with a uniform
planar array (UPA) at the base station (BS) and investigate
the downlink precoder design with imperfect channel state
information (CSI). By exploiting channel estimates and statis-
tical parameters of channel estimation error, we aim to design
precoding vectors to maximize the utility function on the ergodic
rates of users subject to a total transmit power constraint. By
employing an upper bound of the ergodic rate, we leverage the
corresponding Lagrangian formulation and identify the struc-
tural characteristics of the optimal precoder as the solution to a
generalized eigenvalue problem. The Lagrange multipliers play a
crucial role in determining both precoding directions and power
parameters, yet are challenging to be solved directly. To figure
out the Lagrange multipliers, we develop a general framework
underpinned by a properly designed neural network that learns
directly from CSI. To further relieve the computational burden,
we obtain a low-complexity framework by decomposing the
original problem into computationally efficient subproblems with
instantaneous and statistical CSI handled separately. With the
offline pre-trained neural network, the online computational
complexity of precoder is substantially reduced compared with
the existing iterative algorithm while maintaining nearly the same
performance.

Index Terms—Robust precoding, precoding structure, deep
learning, massive MIMO

I. INTRODUCTION

By deploying a large number of antennas at the base
station (BS), massive multiple-input-multiple-output (MIMO)
technique improves spectrum efficiency while serving multiple
users at the same time [2]. With a vast number of antennas,
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either in a linear or planar array, the BS can steer the precoding
directions accurately to alleviate the interference among users.

Over the past several years, downlink precoder design for
massive MIMO has attracted extensive interest [3]. In quasi-
static and low-mobility scenarios, the available instantaneous
channel state information (CSI) at the BS is relatively accurate.
In this situation, linear precoding methods, e.g., regularized
zero-forcing (RZF), signal-to-leakage-and-noise ratio (SLNR),
and weighted minimum mean-squared error (WMMSE) [4]–
[6], can easily achieve multiplexing gain [7]. The maximum
sum rate can also be achieved by using MAC-BC duality
iterative water filling [8]–[10]. The monotonic optimization
(MO) algorithms can obtain the global optimal solution to the
secrecy sum rate maximization problem while the sequential
parametric convex approximation (SPCA) algorithm balances
the complexity and the performance [11].

The performance of precoders depends on the accuracy of
available instantaneous CSI at the transmitter (CSIT) [12]. Its
availability relies on downlink estimation and uplink feedback
in a frequency division duplexing system. Nevertheless, it is
challenging to obtain the perfect CSIT in practical systems
due to heavy pilot overhead [13] and channel estimation errors
[14], etc. Furthermore, for high-mobility scenarios, relatively
short channel coherence time also results in more challenges
on CSI acquisition. In brief, CSIT obsolescence and error often
incur severe performance degradation for the precoders relying
highly on instantaneous CSI (ICSI).

The recent work in [15] has designed a robust precoder that
combines the channel estimates and statistical parameters of
channel estimation error into a posteriori channel model. The
statistical parameters of channel estimation error are modeled
as the scaled statistical CSI. Instantaneous CSI varies with
time while statistical CSI (SCSI) usually changes slowly.
The posteriori channel model can adapt to the change of
the varying communication environment. The spatial domain
correlation characteristics [16] can be further used to address
the effects of channel estimation error and channel ageing.

While the use of statistical CSI lends itself to robustness in
precoder design, it requires to average the computation over a
large number of channel samples to reach the corresponding
ergodic rate, which is challenging. The iterative algorithm in
[17] can achieve near-optimal performance at the expense of
high computational complexity and processing delay.

The recent success of deep learning in many related areas
has motivated its exploration in wireless communications [18],
including channel estimation [19], signal detection [20], [21],
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precoding [22], end-to-end systems [23], [24], resource allo-
cation [25], [26], etc. Specially for precoding, a multi-target
precoder based on a unified deep neural network is designed
in [27], [28], which reduces the computational complexity
by more than one order of magnitude. A neural network
structure, called auto-precoder, is proposed in [29], which can
jointly sense millimeter-wave channels and design a hybrid
precoding matrix with only a few training pilots. In [30],
DNN based training is used to select the hybrid precoder to
optimize the precoding process of mm-wave massive MIMO.
The recent work in [31] has used deep learning for downlink
beamforming with instantaneous CSI. The end-to-end learning
model in [32] jointly optimizes the weights of transmitter and
receiver networks in wireless channels. However, perfect CSI
is required in these methods.

We aim to investigate deep learning for low-complexity
robust precoder design. Despite many successful cases in deep
learning for wireless communications [33], if not infeasible,
it is challenging, to use deep learning for precoder design
for the high dimensional precoding vectors as the output
makes neural networks difficult to be trained. The numerical
algorithm proposed in [34] uses a modified iterative water-
filling approach based on a Lagrangian dual decomposition
technique for the Gaussian multiple-access channel. To mini-
mize the transmission powers while ensuring the SINR of each
user, efficient algorithms have been proposed in [35] for the
optimal beamforming problem. Based on an equivalent QoS
problem of sum rate maximization problem, a simple structure
of precoding vectors is provided in [36]. Note that the perfect
CSI is assumed in [34]–[36] while we aim to investigate the
precoding structure with imperfect CSI and find a way to
convert the high-dimensional precoding problem into a low-
dimensional parameter-learning one.

In this paper, we consider the posteriori channel model
and formulate robust precoder design as the problem of
maximizing the utility function on ergodic rates of users
subject to a power constraint. To make this problem tractable,
we employed an upper bound of the ergodic rate instead
and transform it into an improved Quality-of-Service (QoS)
problem, by which the structure of optimal precoding vectors
is characterized. The proposed structure can successfully re-
duce the dimension of the problem and achieve outstanding
performance. In summary, our contributions in this work are
three-fold.

• By a Lagrangian formulation, we characterize the struc-
ture of optimal precoding vectors, whose direction and
power can be associated with the solution to a generalized
eigenvalue problem. Once the Lagrange multipliers are
determined, the precoding vectors can be immediately
computed, which transforms the high-dimensional pre-
coder design problem into the low-dimensional Lagrange
multipliers design problem.

• To determine the Lagrange multipliers, we use neural
networks to learn the mapping from CSI to Lagrange
multipliers, and therefore can immediately obtain the
precoding vectors.

• We develop a low-complexity framework and decompose
the original problem into two parts with instantaneous

and statistical CSI-based precoders designed separately.
Thus, two Lagrange set of multipliers are computed
respectively, followed by a weighted combination.

Compared with the existing methods, the proposed frame-
work significantly reduces the computational complexity while
maintaining near-optimal performance.

The rest of this paper is organized as follows. In Section
II, we present the posteriori channel and signal model. In
Section III, we formulate the problem and further investigate
the optimal solution structure. In Section IV, we develop
a general framework for robust precoder design based on
neural networks. In Section V, we develop a low-complexity
framework to further reduce the computational complexity.
Simulation results are presented in Section VI and the paper
is concluded in Section VII.

Some of the notations used in this paper are listed as
follows:

• Upper and lower case boldface letters denote matrices
and column vectors, respectively.

• CM×N (RM×N ) denotes the M ×N dimensional com-
plex (real) matrix space, (·)H , (·)T , and (·)∗ denote
conjugate transpose, transpose, and complex conjugate
operations, respectively.

• E {·} denotes the expectation operation, IN denotes the
N × N identity matrix and the subscript for dimension
is sometimes omitted for brevity.

• ⊙ and ⊗ denote the Hadamard and Kronecker product of
two matrices, respectively.

• [·]i and [·]ij denote the i-th element of a vector and
the (i, j)-th element of a matrix, respectively, tr(·) and
det(·) represent matrix trace and determinant operations,
respectively.

• ∼ denotes ‘be distributed as’, ≜ denotes the defini-
tion, CN (α,B) denotes the circular symmetric complex
Gaussian distribution with mean α and covariance B.

• The inequality A ⪰ 0 means that A is Hermitian positive
semi-definite.

II. SYSTEM AND CHANNEL MODELS

The uniform planar array (UPA) is a typical array for
massive MIMO systems due to its advantages such as high
directivity [37], [38]. Thus, in this paper, we assume a uniform
planar array at the base station. Consider downlink transmis-
sion of massive MIMO consisting of one BS and K users.
The BS is equipped with an Mv ×Mh uniform planar array,
where Mv and Mh denote the numbers of vertical column and
horizontal row, respectively. Thus, the number of antennas at
the BS is Mt = MvMh. Each UE is equipped with a single
antenna. For a time division duplexing (TDD) system, down-
link and uplink transmissions are organized into slots, each
consisting of Nb blocks. As can be illustrated in Fig. 1, in each
slot, the blocks can be classified as ‘uplink’, or ‘downlink’ [39]
for uplink sounding and downlink transmission, respectively.
The first block of each slot contains the uplink sounding signal.
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Fig. 1. Time frame structure of TDD systems.

A. Channel Model

The widely-adopted jointly correlated channel model in [16]
uses the discrete Fourier transform (DFT) matrix to represent
the spatial sampling matrix, which can model the physical
channel accurately for uniform linear arrays with massive
antennas. However, due to the limited antennas at each column
or each row for uniform planar arrays, the simple solution
of the Kronecker product extension of the DFT matrices
may deviate from the physical model. Thus, we replace the
DFT matrix with the oversampling one to capture the spatial
correlation more precisely. Denote N = NhNv , where Nh

and Nv are the vertical and horizontal oversampling factors,
respectively. The spatial sampling matrix can therefore be
represented by [17], [40]

VMt = VMh
⊗VMv ∈ CMt×NMt , (1)

where the oversampling DFT matrices for the horizontal and
vertical directions are respectively given by

VMh
=

1√
Mh

(
e

−j2πmn
NhMh

)
m=0,...,Mh−1,n=0,...,NhMh−1

, (2)

and

VMv
=

1√
Mv

(
e

−j2πmn
NvMv

)
m=0,...,Mv−1,n=0,...,NvMv−1

. (3)

It is assumed that the channel keeps unchanged at each
block and varies across blocks, so that the precoder is carried
once at each block. The obtained channel estimation at the
first block will be used for the current slot. Thus, to capture
the correlation across different blocks, the channel of the k-th
user at the n-th block of the m-th slot can be represented by
the posteriori model [17]

hk,m,n = βk,m,nh̄k,m

+
√
1− β2

k,m,nVMt(mk ⊙wk,m,n) ∈ CMt×1, (4)

where h̄k,m denotes the channel estimate, mk ∈ CNMt×1 is
a deterministic vector with nonnegative elements, wk,m,n ∈
CNMt×1 is a complex Gaussian random vector of independent
and identically distributed (i.i.d.) entries with zero mean and
unit variance. The time correlation coefficient, βk,m,n ∈ [0, 1],
describes the uncertainty of the channel. The more severe
the channel aging is, the more inaccurate the channel could
be, i.e. the smaller the βk,m,n value. By adjusting βk,m,n,
the posteriori model can leverage channel uncertainties in
various mobile scenarios, e.g., βk,m,n = 1 corresponds to a
quasi-static scenario where the channel is precisely known,
and βk,m,n = 0 corresponds to a high-mobility scenario

where the channel is obsolete and only the statistical CSI
is known. In this paper, we use the correlation coefficient
between channels to characterize the channel uncertainty.
Since only the estimated channel at the first block of each slot
is available at the base station, we compute the correlation
coefficients of the estimated channel between the current slot
and the previous slot and then the correlation coefficients
between the blocks are obtained by uniform interpolation, i.e.,
βk,m,n = 1− n−1

Nb

(
1− |h̄H

k,m−1h̄k,m|
∥h̄k,m−1∥∥h̄k,m∥

)
.

Define the channel coupling vectors [41] as ωk = mk⊙mk,
where [ωk]n indicates the average amount of energy that is
coupled from the n-th spatial beam of the base station to the
k-th user. Assume that h̄k,m and ωk are known at the base
station through the channel sounding process. The posteriori
model covers both the large-scale and small-scale fading [42],
where the large-scale fading coefficient is embedded in ωk.
As the large-scale fading factor varies slow, we assume that
ωk is constant within a relatively long period.

B. Downlink Transmission

We now consider the downlink transmission in one block
of one slot. As the precoding method is uniform for arbitrary
block, we omit m and n in the subscript hereafter. Denote xk

the transmitted signal to the k-th user, satisfying E{|xk|2} = 1.
The received signal of the k-th user is given by

yk = hH
k pkxk +

K∑
j ̸=k

hH
k pjxj + nk, (5)

where pk ∈ CMt×1 is the precoding vector of the k-th user,
and nk ∼ CN (0, σ2

n) is a complex Gaussian noise. As the
noise variances can be absorbed by the channel vectors, we
here assume the noise variances of different users are the
same without loss of generality [43]. In addition, we treat
the aggregate interference-plus-noise

∑K
j ̸=k h

H
k pjxj + nk as

Gaussian noise, and its covariance can be expressed as

rk = σ2
n +

K∑
i̸=k

E
{
hH
k pip

H
i hk

}
. (6)

By assume that the covariance rk is known at the k-th user,
the ergodic achievable rate of the k-th user is given by [8],
[17], [44]

Rk = E
{
log

(
1 + r−1

k hH
k pkp

H
k hk

)}
. (7)

III. OPTIMAL PRECODING STRUCTURE ANALYSIS

In this section, we formulate the robust precoding problem
and characterize the structure of optimal precoding vectors by
employing an upper bound of the ergodic rate.

A. Problem Formulation

The objective is to design precoding vectors p1, ...,pK

that maximize an utility function on ergodic rates of users
as follows

max
p1,...,pK

f(R1, . . . ,RK),
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s.t.
K∑

k=1

pH
k pk ≤ P, k = 1, . . . ,K, (8)

where f(R1, . . . ,RK) can be any function, e.g, sum rate,∑K
k=1Rk, for overall data rate, and minimum rate, minkRk,

for fairness among users, and P denotes the total power
budget. Focusing on the ergodic rate efficiency, the precoding
vectors satisfy widely-adopted total power constraint.

This optimization problem involves high-dimensional vari-
ables, and the objective function is non-convex in general. As
a result, the exact solution is intractable. Although there exist
various approximation methods, the high dimensionality of
the optimization variables usually demands high computation
to achieve optimal performance. For example, the iterative
approach in [17] can nearly achieve the maximum sum rate.
To reduce computational complexity, we aim to explore a
solution structure of the precoding vectors to transform the
high-dimensional optimization problem to a low-dimensional
one.

B. Problem Transformation

As there exists no closed-form of the ergodic rate, direct
optimization is intractable. Thus, we employ the following
upper bound

Rk ≤ Rub
k ≜ log

(
1 + r−1

k E
{
hH
k pkp

H
k hk

})
, (9)

which is due to Jensen’s inequality, making the problem more
tractable. The optimization problem can be reformulated as

P1 : max
p1,...,pK

f(Rub
1 , . . . ,Rub

K ),

s.t.

K∑
k=1

pH
k pk ≤ P, k = 1, . . . ,K. (10)

Define the signal-to-interference-plus-noise-ratio (SINR) of
the k-th user by

SINRk =
pH
k Rkpk

σ2
n +

∑K
i̸=k p

H
i Rkpi

, (11)

where Rk = E{hkh
H
k } ∈ CMt×Mt . We have Rub

k = log(1 +
SINRk). Next, we introduce the following lemma to bridge
our formulation to a QoS problem, proved in Appendix A.

Lemma 1: Denote γ1, . . . , γK the SINR achieved by a
solution (referred to as S1) of P1. The optimal solution
(referred to as S2) of the following QoS problem achieves
the same ergodic rate upper bounds as S1 but with lower or
equal total power.

P2 : min
p1,...,pK

K∑
k=1

pH
k pk,

s.t. SINRk ≥ γk, k = 1, . . . ,K. (12)

When S1 is the global optimal, S2 is equivalent to S1, i.e.,
achieves the same ergodic rate upper bounds and total power.

Lemma 1 indicates P2 can improve or maintain any solu-
tion of P1. In the original problem, the ergodic rates (upper
bounds) of different users are coupled with the function f(·).
In contrast, by converting into such a QoS problem, they

are decoupled to different constraints in the form of SINRs,
which is helpful for the subsequent derivations. As these
optimal SINRs are demanded, this reformulation, while does
not directly help solve P1, can help understand the structure
of the optimal precoding vectors.

C. Optimal Solution Structure

Note that the constraint SINRk ≥ γk always holds in the
case of γk = 0 and clearly the corresponding solution is pk =
0, we conclude that the users with zero-rate can be eliminated
from P2. Consequently, we here assume γk > 0 without loss
of generality.

The constraints can be transformed into the following
tractable quadratic form

SINRk ≥ γk ⇐⇒ Ck ≤ 0, ∀k, (13)

where the constraint function is defined as

Ck ≜ 1 +
K∑
i̸=k

1

σ2
n

pH
i Rkpi −

1

σ2
nγk

pH
k Rkpk. (14)

The optimization problem can be reformulated as

P3 : min
p1,...,pK

K∑
k=1

pH
k pk,

s.t. Ck ≤ 0, k = 1, . . . ,K. (15)

The appropriate transformation lends itself to the analysis of
the following solution structure.

The Lagrangian of P3 can be expressed as

LR =
K∑

k=1

pH
k pk +

K∑
k=1

µkCk, (16)

where µk is the Lagrange multiplier. The derivative of LR can
be written as

∂LR

∂pk
= pk +

K∑
i̸=k

µi

σ2
n

Ripk −
µk

σ2
nγk

Rkpk. (17)

Denote that µ = [µ1 µ2 . . . µK ]T ∈ CK×1. The optimal
solution of P3 should satisfy the following Karush-Kuhn-
Tucker (KKT) conditions

∂LR

∂pk
(µ,pk) = 0, k = 1, . . . ,K, (18)

µkCk = 0, k = 1, . . . ,K, (19)
µk ≥ 0, k = 1, . . . ,K. (20)

Denote pk =
√
ρkpk

, where ρk is the power parameter of the
k-th user, p

k
is the normalized precoding vector satisfying

pH
k
p
k
= 1. Note that even if the constraints are non-convex,

the KKT condition is still a necessary condition for the optimal
solution [45]. According to the above derivation, we can
investigate the precoding characteristics in the following.

1) Generalized Eigen Domain Precoding: According to
(18), we can obtain

µkRkpk
= γk

(
σ2
nI+

K∑
i̸=k

µiRi

)
p
k
. (21)
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This is a well-known generalized eigenvalue problem. Accord-
ing to (4), the covariance matrices can be computed by

Rk = β2
kh̄kh̄

H
k + (1− β2

k)VMt
ΛkV

H
Mt

, (22)

where Λk ∈ CNMt×NMt is diagonal with [Λk]ii = [ωk]i, ∀i.
The computation of µk will be discussed in the next section.
Denote

Sk = µkRk, (23)

and

Nk = σ2
nI+

K∑
i̸=k

µiRi, (24)

then p
k

is the generalized eigenvector with respect to gener-
alized eigenvalue γk of matrix pair (Sk,Nk). Although γk’s
are unknown, it is not necessary to compute them in advance
due to the following theorem, proved in Appendix B.

Theorem 1: The optimal solution of P3 is the generalized
eigenvector with respect to the maximum generalized eigen-
value of matrix pair (Sk,Nk), i.e.,

p
k
= max .generalized eigenvector(Sk,Nk), (25a)

γk = max .generalized eigenvalue(Sk,Nk). (25b)

Theorem 1 indicates that once the Lagrange multipliers
are determined, the precoding direction p

k
can be computed

immediately. The key of the precoder is the introduction of
the Lagrange multipliers, which is conducive to reduce the
dimension of the problem. As the optimal Lagrange multipliers
are implicit, we propose to compute them by deep neural
networks in Section IV-B. The γk’s also play a crucial role
in computing the power parameters, as discussed in Section
III-C2. Although P3 is parameterized by the solution to P1,
i.e., {γk}, these SINRs can also be computed by {µk} and
unnecessary to be obtained in advance.

It is worth pointing out that the structure in [36] is dedicated
to the vector channel with the rank of covariance matrix
being 1. Our proposed structure covers the general case with
arbitrary rank. Note that the structure in [36] can be regarded
as a special case of (25a), so are some other existing methods,
which implies the universality of the proposed structure. Below
we give the brief analyses.

Remark 1: From [5], [46], we can accordingly define the
SLNR of the k-th user with an imperfect channel as

SLNRk =
pH
k Rkpk

σ2
n +

∑K
i̸=k p

H
k Ripk

. (26)

As the precoder is decoupled from the users and independent
of the allocated powers, the SLNR precoder usually considers
equal power allocation [47], [48], and the robust SLNR
precoder is

p
k
= max .generalized eigenvector(Rk,

Kσ2
n

P
I+

K∑
i̸=k

Ri). (27)

If we set µk = P
K , ∀k, (25a) boils down to (27), which is the

optimal precoder that maximizes SLNR. In this sense, (25a)
can be regarded as the weighted SLNR precoder.

Remark 2: When βk = 1, ∀k, (21) turns to the structure in
[36]

p
k
= ξkµk

(
σ2
nI+

∑K

i=1
µih̄ih̄

H
i

)−1
h̄k, (28)

where ξk = (1 + 1
γk
)h̄H

k p
k
. Similarly, if we set µk = P

K , ∀k,
it becomes the RZF precoder. By introducing the Lagrange
multipliers, the performance of the RZF precoder can be
immediately improved to WMMSE precoder.

Remark 3: When βk = 0, ∀k, we have Rk = VMt
ΛkV

H
Mt

.
If we set Nh = Nv = 1, then VH

Mt
VMt = IMt , (21) becomes

µkΛkqk
= γk

(
σ2
nI+

∑
i̸=k

µiΛi

)
q
k
⇐⇒ Ξkqk

= γkqk
, (29)

where q
k
= VH

Mt
p
k

and Ξk is diagonal and with [Ξk]ii =

[µk

(
σ2
nI+

∑
i̸=k µiΛi

)−1
Λk]ii. Denote mk = argmax

i
[Ξk]ii

the index of the maximum diagonal element, we have

[q
k
]i =

{
1, if i = mk,
0, otherwise. (30)

As such, the precoding vector p
k

= VMt
q
k

is the mk-th
column of VMt

. In this sense, (25a) can be regarded as an
extension of beam division multiple access (BDMA) trans-
mission [49] and the introduction of the Lagrange multipliers
provides a criterion of beam selection.

Note that the generalized eigenvector only contains the
precoding direction information. The power parameters ρk
can be computed by another KKT condition, which will be
discussed below.

2) Generalized Eigen Domain Power Control: As has been
proved in Appendix A, the constraint of the optimal solution
in P2 takes the equal sign, i.e., Ck = 0. Thus, we have

σ2
n +

K∑
i̸=k

pH
i
Rkpi

· ρi −
1

γk
pH
k
Rkpk

· ρk = 0. (31)

Denote

tki =

{
1
γk
pH
i
Rkpi

, k = i,

−pH
i
Rkpi

, k ̸= i.
(32)

We can rewritten (31) as
K∑
i=1

tkiρi = σ2
n, k = 1, . . . ,K, (33)

the matrix form of which is Tρ = σ2
n1K×1, where [T]ki = tki

and ρ = [ρ1 ρ2 . . . ρK ]T . To compute the power vector ρ,
we first propose the following lemma, proved in Appendix C.

Lemma 2: The matrix T is non-singular.
Thus, the power vector can be computed by

ρ = σ2
nT

−11K×1. (34)

It is worth mentioning that the precoding vectors computed
by the solution structure, i.e., (25a) and (34), always satisfy
the total power constraint as the optimal Lagrange multipliers
satisfy (proved in Appendix B)∑K

k=1
ρk =

∑K

k=1
µk ≤ P. (35)
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The power parameters cannot be determined directly as the
γk’s are unknown. However, it can be connected with the La-
grange multipliers thanks to Theorem 1. Beyond the precoding
direction, the Lagrange multipliers also determine the γk’s,
which further determine the power parameters.

IV. ROBUST PRECODER DESIGN BASED ON NEURAL
NETWORKS

Note that P2 and P3 are only used to assist in deriving the
solution structure; it is unnecessary to be solved. Based on
the previous analysis, we conclude that the precoding vectors
can be generated losslessly by the Lagrange multipliers. The
precoding direction can be computed by solving the gener-
alized eigenvalue problem in (21), and the power parameters
can be further computed by the closed-form expression in (34).
As such, the high-dimensional computation of the precoding
vectors turns into low-dimensional Lagrange multipliers, i.e.,
the key to downlink precoder design. Learning the precoding
vectors directly is complicated and difficult to train due to the
high dimension of precoding vectors. However, learning the
Lagrange multipliers has no such limitation as the dimension
has been much reduced. In this section, we will propose a
general framework for robust precoder design by taking ad-
vantage of this optimal solution structure, where the Lagrange
multipliers are computed by a well-trained neural network.

A. Framework Structure

The following theorem, proved in Appendix D, provides the
physical meaning of the Lagrange multipliers.

Theorem 2: Denote (µ3
1 , . . . , µ

3
K) the optimal solution of

the following optimization problem, P4, then the precoding
vectors constructed by the structure in (25a) and (34) using
{µ3

k } is the optimal solution of P1.

P4 : max
µ1,...,µK

f(Ř1, . . . , ŘK),

s.t.
K∑

k=1

µk ≤ P, (36)

where Řk = log
(
1 + ρ

(
N−1

k Sk

))
and ρ(·) denotes the

function of the maximum eigenvalue.
Theorem 2 establishes a relationship between the solutions

of P1 and P4. Given a feasible solution of P4, the precoding
vectors constructed by the structure in (25a) and (34) are a
feasible solution of P1, whose objective is equal to that of
P4. When the solution of P4 is globally optimal, then the
corresponding constructed precoder is also globally optimal
for P1.

Remark 4: If we set βk = 1, ∀k, as the rank of matrix
N−1

k Sk is 1, we have

Řk = log det(σ2
nI+

K∑
i=1

µiRi)− log det(σ2
nI+

K∑
i̸=k

µiRi). (37)

As such, the Lagrange multipliers can be regarded as the
uplink power parameters, and P4 can be regarded as the power
allocation. For sum rate maximization, it can be solved by the
WMMSE approach [50].

However, for the general case, there is no closed-form
exact solution available in the literature to solve P4 di-
rectly. The existing algorithms, e.g., augmented Lagrangian
method, are numerical iterative. On the contrary, once the
neural network is well-trained, the Lagrange multipliers can
be immediately computed without resorting to the iteration.
The training process is offline to reduce online computation,
which is one of the advantages of deep learning for wireless
communications. Further, once the Lagrange multipliers are
computed, the precoding vectors can be immediately computed
without resorting to the iterative algorithms in [17], which
significantly reduce the complexity (see Sec. VI).

The general framework for robust precoder design can be
decomposed into three parts:

i) Learn the optimal Lagrange multipliers from the obtained
channel vectors;

ii) Compute precoding direction by solving a generalized
eigenvalue problem;

iii) Compute power parameters by a closed-form expression
in (34).

The corresponding algorithm is summarized in Algorithm
1. Noting that pk = 0 if µk = 0, as there exist slight errors of
the neural network, we delete the k-th user if µk ≤ ϵ, where
ϵ is a preset threshold.

Algorithm 1 General Framework for Robust Precoder Design
Input: The channel vectors h̄k , ωk , the noise variance σn and total power

constraint P
Output: The precoding vectors pk, k = 1, . . . ,K
1: Compute the corresponding parameters βk, k = 1, . . . ,K.
2: Compute the corresponding Lagrange multipliers µk, k = 1, . . . ,K and

delete users with µk ≤ ϵ.
3: Compute the normalized precoding vector p

k
and the parameter γk, k =

1, . . . ,K by (25a).
4: Compute the power allocated on the users ρk, k = 1, . . . ,K by (34).
5: Compute the precoding vectors pk =

√
ρkpk

, k = 1, . . . ,K.

B. Lagrange Multiplier Neural Network

The excellent representation ability of the neural network,
such as the function (mapping) approximation, is beyond
the traditional method. Besides, thanks to its generalization
ability, it can be deployed in different wireless scenarios while
the traditional method needs to be re-optimized when the
environment or parameters change.

The objective is to approximate Lagrange multipliers from
channel vectors. According to the posteriori model, denote

H̄β = [β1h̄1, . . . , βK h̄K ]H ∈ CK×Mt , (38)

Ωβ = [(1− β2
1)ω1, . . . , (1− β2

k)ωK ]H ∈ CK×NMt , (39)

as the input of the neural network. As VMt
is constructed

from the oversampling DFT matrices, ωk is generally sparse.
Besides, the CSI contains two-dimensional information. Both
of the characteristics can be taken advantages by convolutional
neural network (CNN) [51]. The CNNs have been widely-
adopted for feature extraction from CSI [52], [53]. Although
these features are recessive, simulations and practical appli-
cations have proven its effectiveness. Compared with fully
connected, the convolutional neural networks can reduce the
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number of learned parameters by parameter sharing. Moreover,
the pooling adopted in CNN can reduce the dimensionality
of the input data, which means the computational complexity
of the network can be reduced. For these considerations, we
utilize CNN to learn the Lagrange multipliers.

The convolutional neural network is composed of sev-
eral convolution modules, a flatten layer and several fully-
connected layers. Each convolution module consists of a
convolutional layer, an activation function and a pooling layer.
The convolutional layer performs convolutions on the input to
extract the feature. Besides, the max-pooling is chosen for
down-sampling and the widely-adopted rectified linear unit
(ReLU) (i.e., h(x) = max(0, x)) is chosen as an activation
function, which removes negative values to increase nonlin-
earity. Next, the flatten layer transforms the feature into a
suitable form (i.e., a vector) for the next layers. Finally, the
fully-connected layers accomplish the advanced reasoning by
matrix multiplications, where the activation function is also
chosen as ReLU. The Lagrange multipliers are also related to
the total power constraint P and noise covariance σ2

n, which
determines the signal-to-noise ratio (SNR) at the transmitter

ν = 10 lg
P

σ2
n

. (40)

It can be included in the channel vectors, however, may cause
great fluctuations in the order of magnitude of the input value
under samples with different constraints.

As such, we construct the neural network consisting of
a CNN and a fully-connected neural network (FNN), as
shown in Fig. 2. The former encodes the channel vectors as
the implicit feature, and the latter decodes the feature with
SNRs as the Lagrange multipliers. The channel matrix, H̄β,
is divided into the real and imaginary parts. The Lagrange
multipliers learning can be decomposed into two steps:
1) Encoder: Several convolution modules to encode the CSI as

hidden layer feature κ = fen(H̄β,Ωβ;wen), where wen

denotes the weight vector of the encoder.
2) Decoder: Several fully-connected layers to decode the

hidden layer feature κ and the SNR ν as the Lagrange
multipliers µ = fde(ν,κ;wde), where wde denotes the
weights vector of the decoder.

Thus, the function of Lagrange Multipliers Neural Network
can be written in the form

µ = fµ(H̄β,Ωβ, ν;w), (41)

where the set of all weight and bias parameters have been
grouped together into a vector w.

C. Dataset Generation and Neural Network Training

It has been proved that the precoding vectors can be com-
puted by Lagrange multipliers, and interestingly vice versa.
Thus, given the channel vectors, we propose to compute the
Lagrange multipliers from precoding vectors by the existing
iterative method. Left-multiplied by pH

k
, (21) becomes

1

γk
pH
k
Rkpk

· µk −
K∑
i̸=k

pH
k
Ripk

· µi = σ2
n. (42)

Algorithm 2 Dataset Generation
Input: The number of data samples ND
Output: The dataset D
1: Initialize i = 1.
2: while i < ND do
3: Generate the channel vectors h̄

(i)
k and ω

(i)
k , the noise variance σ

(i)
n

and total power constraint P (i), compute the coefficient β
(i)
k , k =

1, . . . ,K and the SNR ν(i).
4: Solve the problem (10) by the iterative approach in (46), compute

the precoding vectors p
(i)
k and the corresponding parameter γ

(i)
k , k =

1, . . . ,K.
5: Construct the matrix T(i) by (32) and compute the corresponding

Lagrange multipliers µ
(i)
k , k = 1, . . . ,K by (44).

6: Group β
(i)
k , h̄

(i)
k , ω

(i)
k , ν(i) and µ

(i)
k , k = 1, . . . ,K as the i-th

sample.
7: Set i = i+ 1.
8: end while

We can rewritten (42) as
K∑
i=1

tikµi = σ2
n, k = 1, . . . ,K, (43)

the matrix form of which is THµ = σ2
n1K×1. As matrix T is

non-singular, we can compute the Lagrange multipliers vector
by

µ = σ2
n(T

−1)H1K×1. (44)

In this paper, we consider the sum rate maximization as an
example

f(R1, . . . ,RK) = Rsum =
∑K

k=1
Rk. (45)

The precoding vectors can be computed by the following
iterative equations [17]

λt ←
K∑

k=1

tr
((

pt
k

)H (
At

k −Bt
)
pt
k

)
, (46a)

pt+1
k ←

(
Bt + λtIMt

)−1
At

kp
t
k, (46b)

where t denotes the number of iterations, Ak = (σ2
n +∑K

i̸=k p
H
i Rkpi)

−1Rk and B =
∑K

k=1

(
Ak − (σ2

n +∑K
i=1 p

H
i Rkpi)

−1Rk

)
.

In the offline stage, we compute the precoding vectors
in advance by the above iterative approach and then obtain
the Lagrange multipliers. Thus, the dataset can be generated,
and the neural network can be trained. In the online stage,
we can directly obtain the Lagrange multipliers by the well-
trained neural network without knowing the precoding vectors
in advance.

The dataset generation is illustrated in Algorithm 2. As the
training is offline, the precoding vectors can be computed by
the high-performance iterative approach without considering
much complexity. In such a case, a sufficiently large enough
number of iterations can be set until convergence. Further-
more, we can select multiple initial values to iterate and choose
the best one to avoid some bad local optimal solutions. The
dataset contains a large number of samples of different channel
environments and qualities; therefore, the neural network can
generalize well in unseen data and work for practical channels.
For practical systems, the trained neural network can be
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Fig. 2. The proposed neural network for Lagrange multipliers learning.

directly applied to each time slot without retraining. We only
need to take the CSI of the current block as the input of the
neural network to get the desired Lagrange multipliers. The
channel samples are not limited to be generated by channel
models but also can be practical measurements. Note that the
training is offline; therefore, the neural network can be applied
for online communication systems without training overhead.

Given the training set D generated by Algorithm 2, the
objective is to minimize the loss function

LD =
1

ND

ND∑
i=1

∥∥µ(i) − µ̂(i)
∥∥2, (47)

where µ̂(i) is the predicted results of the i-th sample. In
the training progress, the procedure of dropout is utilized to
avoid over-fitting. Finally, we employ the widely-used adaptive
moment estimation (ADAM) algorithm to train the neural
network and weights vector w can be obtained.

V. LOW-COMPLEXITY WEIGHTING FRAMEWORK

The proposed general precoding framework based on the
neural network can achieve near-optimal performance, and
the complexity has been significantly reduced compared with
the existing iterative algorithm. However, further simplified
computation is desired to be applied in a real-time system. To
this end, we further propose a low-complexity framework in
this section.

A. Weighting Strategy for Robust Precoder

The complexity is mainly in the following three parts:
1) The neural network for the Lagrange multipliers;
2) The generalized eigenvalue problem for the precoding

direction;
3) The computation of the power parameters (including the

construction of matrix T).
When only instantaneous CSI is available, the computa-

tional complexity can be much simplified by utilizing math-
ematical manipulation (e.g., matrix inversion lemma). When
only statistical CSI is used, only once the computation is
required as it remains unchanged for the whole period of
time-frequency resources. Thus, it is an efficient strategy
to decompose the general framework into instantaneous and

statistical parts. As the Lagrange multipliers should still satisfy∑K
k=1 µk = P , we compute the Lagrange multipliers as

µk = β2
k[µh]k + (1− β2

k)[µω]k, (48)

where µh and µω denote the Lagrange multipliers of the two
extremes, respectively. As the construction of matrix T is also
time-consuming, we weight the powers with the same strategy.
The power parameters can be computed as

ρk = β2
k[ρh]k + (1− β2

k)[ρω]k, (49)

where ρh and ρω denote the power of the two extremes.
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Fig. 3. Low-complexity Framework for Robust Precoder Design.

The low-complexity framework is shown in Fig. 3. As the
Lagrange multipliers and the power parameters can be com-
puted efficiently by the weighting strategy, now we focus on
the efficient computation of generalized eigenvalue problem.
It can be solved by transforming it into a standard eigenvalue
problem with the operation of matrix inversion. However, due
to the high dimension, the matrix inversion is exactly what
needs to be avoided. To solve the generalized eigenvalue
problem with acceptable complexity, we have utilized the
conjugate gradient (CG) methods [54], which approaches the
minimum generalized eigenvalue by an iterative method. The
algorithm of the low-complexity framework is illustrated in
Algorithm 3.

To develop the low-complexity framework, we heuristically
decomposing the original problem into computationally effi-
cient sub-problems by the weighting strategy. Nonetheless, it
provides a promising sum rate performance with low complex-
ity, which will be confirmed by simulation results in Sec. VI.
In the rest of this section, we will provide a detailed analysis
of the precoder in the two extremes.
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Algorithm 3 Low-complexity Framework for Robust Precoder
Design
Input: The channel vectors h̄k and ωk , the noise variance σn, and total

power constraint P
Output: The precoding vectors p̂k, k = 1, . . . ,K
1: Compute the corresponding parameters βk, k = 1, . . . ,K.
2: Compute the Lagrange multipliers µh and the power parameters ρh based

on the instantaneous CSI.
3: Compute the Lagrange multipliers µω and the power parameters ρω

based on the statistical CSI.
4: Compute the Lagrange multipliers by (48) and the power parameters by

(49). Delete users with µk ≤ ϵ.
5: Compute the normalized precoding vector p

k
and the parameter γk, k =

1, . . . ,K in (25a) by conjugate gradient method.
6: Compute the precoding vectors pk =

√
ρkpk

, k = 1, . . . ,K.

B. Instantaneous CSI-Based Precoder

As has been analyzed in IV-A, the Lagrange multipliers
can be computed by the WMMSE approach when only in-
stantaneous CSI is available. Besides, we can similarly train a
neural network which takes H̄ = [h̄1, . . . , h̄K ] ∈ CK×Mt as
the input and µh ∈ CK×1 as the output. However, due to the
high dimension of channel vectors, the complexity of either
WMMSE or neural network is not as low as expected. Thus,
to further reduce the complexity without pursuing the optimal
solution, the Lagrange multipliers can be computed by some
suboptimal precoding vectors such as the RZF precoder.

C. Statistical CSI-Based Precoder

As analyzed before, only once the computation is required
during the period of time-frequency resources. Thus, it is
acceptable to compute the precoding vector by an iterative
approach. However, in some specific communication systems,
different subcarriers and slots may be assigned to different
users, where the statistical CSI is not the same. To expand the
scope of application, we propose to compute the statistical La-
grange multipliers by statistical CSI learning, which is similar
to the strategy in the general framework. To be more specific,
the Lagrange multipliers are computed by the neural networks,
whose structure is similar to Fig. 3, the only difference is that
the input is only statistical CSI. The detailed training progress
can be seen in Section IV.

VI. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
performance of the proposed approaches, using the QuaDRiGa
channel model [55], which is a 3-D geometry-based stochastic
model with time evolution. In particular, we consider a massive
MIMO system consisting of one BS and K = 40 users. The
BS is equipped with Mt = 128 antennas (UPA, Mv = 8,
Mh = 16) and the height of BS is 25m. Users with single
antenna are randomly distributed in the cell with radius r
= 100m at 1.5m height. Each time slot takes up 0.5ms and
consists of 10 blocks. The centre frequency is set at 4.8 GHz
and the bandwidth is 20 MHZ. For the QuaDRiGa model, we
consider the 3GPP_3D_UMa_NLOS (urban macro) scenario
[55] and utilize oversampling DFT matrix (oversampling fac-
tor Nv = 2, Nh = 2) to transform channels into the beam
domain. Three mobile scenarios with moving speeds 30, 80

and 240 kmph, are considered. Since the channel correlation
among different blocks decreases with increasing mobility, the
moving speed is connected to the estimated channel correlation
coefficient, βk,m,n.

A. Neural Network Performance

The neural network structure and major parameters are
shown in Table I. Considering that the dataset generation and
neural network training is offline, on the balance of generaliza-
tion performance and the consuming time, we choose the size
of 160,000. The input of Lagrange multipliers neural network
can be expressed as

X = [Re(Hβ) Im(Hβ) Ωβ]
H . (50)

The dimension of input is and 768 × 40 and the size of
extracted feature after four convolution modules is 1×40×2,
which can be flattened into a vector m. Furthermore, group m
and P into a 81× 1 vector as the input of the fully-connected
layers, the unit number of hidden layer is 1024, and the output
is µ. The structure of the statistical Lagrange multipliers
neural network is similar; the differences are that the input
of convolution modules is Ωβ and the hyper-parameters are
partially different. The other main parameters are shown on the
right side of the table, which are shared by the two networks.
The neural networks are trained by GeForce RTX 3080 GPU,
and cost 276 minutes and 191 minutes, respectively.

As the dataset is generated offline, the computational com-
plexity of the iterative approach is affordable. Thus, the
number of iterations is set as Niter = 20, which suffices
to converge as observed in [17]. Besides, to enhance the
generalization performance, various scenarios are considered
in the dataset, e.g., different mobile velocities, SNRs, user
distributions, etc. As such, the trained neural network can be
applied to various practical scenarios. Once the neural network
is well-trained, it can be used in real-time communication
without training overhead, as it is unnecessary to be re-trained
when the channel changes.

It is worth mentioning that the iterative algorithm achieves
local optimal solutions by optimizing precoding vectors in-
stead of the Lagrange multipliers to maximize the sum rate.
Thus, the iterative approach with different initial values may
achieve solutions with a similar sum rate, and the correspond-
ing Lagrange multipliers may differ sometimes. Table II shows
an example of the above situation, which means different local
optimum Lagrange multipliers may achieve similar sum rate.
To find a better one (if not global optimal), 10 different initial
values are used, respectively, and the best one is chosen to
be one sample for robustness against accidentally bad local
optimal solutions.

To evaluate the performance of the proposed neural net-
works, we first simulate the upper bound of the ergodic
rate. Fig. 4 (a) shows the sum rate upper bound of general
framework versus SNR in various mobile scenarios. Since the
data set is generated from the iterative approach in (46), we
take it as a benchmark. As can be seen, the general frame-
work achieves near-optimal performance in various mobile
scenarios. Fig. 4 (b) shows the sum rate upper bound of low-
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TABLE I
NEURAL NETWORK STRUCTURE AND MAJOR PARAMETERS

Lagrange Multipliers Neural Network (Input Size: 768 × 40) Statistical Only (Input Size: 512 × 40) Major Hyper-parameter

Kernel Size (Num) Pooling Feature Size kernel Size (Num) Pooling Feature Size Dataset Size 160000
48 × 5 (4) 8 × 1 96 × 40 × 4 32 × 5 (4) 8 × 1 64 × 40 × 4 Batchsize 1024
24 × 5 (8) 6 × 1 16 × 40 × 8 16 × 5 (8) 4 × 1 16 × 40 × 8 Algorithm ADMA
8 × 5 (4) 4 × 1 4 × 40 × 4 8 × 5 (4) 4 × 1 4 × 40 × 4 Learning Rate 0.001
4 × 5 (2) 4 × 1 1 × 40 × 2 4 × 5 (2) 4 × 1 1 × 40 × 2 Dropout 0.5

81 − 1024 − 40 81 − 1024 − 40 Training Steps 10000

TABLE II
AN EXAMPLE OF LAGRANGE MULTIPLIERS AND SUM RATE

Lagrange multipliers sum rate (bit/s/Hz)
[0.3976, 0.5054, 0.4801, 0, 0.4821, . . .] 221.9684
[0.6659, 0, 0, 0.8371, 0.6224, . . .] 219.6985
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Fig. 4. Sum rate upper bound of general and low-complexity frameworks
versus SNR in various mobile scenarios.

complexity framework versus SNR in various mobile scenar-
ios. The iterative approach and the weighting strategy with
the optimal Lagrange multipliers (computed by the solution
of iterative approach) are presented here as benchmarks to
evaluate the loss of the weighting strategy and the neural
network, respectively. There exists a little performance loss in

the low-complexity framework due to the weighting operation.
Besides, little gap between the optimal and approximated
Lagrange multipliers implies that the neural network is robust
to new scenarios not available in the training set as the training
set, validation set, and testing set are separate.

To adapt to the wireless networks with a dynamic number
of users, we design the neural network with fixed input
size, where the dataset contains samples with different user
configurations under the maximum number of users allowed
in a cell. For the underload system, e.g., K ≤ 40, the
input dimension does not exceed this fixed value and the
corresponding lack portion of its channel matrix is set to be
zero; the proposed neural network can automatically output
the desired solution. For the overload system, e.g., K > 40,
user selection should be applied before applying the neural
network. In addition, the work in [56] uses transfer learning
to address this kind of issues. Another possibility to deal with
the varying number of users is to employ graph neural network
as in [57]. This is a very interesting topic to be investigated
in the future work.

B. Sum Rate Performance of Proposed Frameworks
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Fig. 5. Sum rate versus SNR with respect to different precoding approaches.

We first simulate the sum rate to evaluate the performance of
the proposed general frameworks. Fig. 5 shows the sum rate
versus SNR with respect to different precoding approaches.
Compared with Fig. 4, we have that the upper bound is tight
to the ergodic rate. The robust RZF precoder in [58] and the
robust SLNR precoder in (27) are presented here as a baseline.
As can be seen, the robust RZF precoder works well in the

Authorized licensed use limited to: University of Liverpool. Downloaded on August 19,2021 at 13:34:12 UTC from IEEE Xplore.  Restrictions apply. 



0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2021.3105569, IEEE
Transactions on Communications

11

low-mobility scenario and deteriorates as the mobile velocity
increases. Besides, the SLNR precoder works slightly better
than RZF. However, the gap between the SLNR precoder and
the proposed frameworks grows with the increasing speed. In
the case of 240 kmph at 20 dB, there exists about 19.3%
and 29.0% gains of the sum rate in the general framework
compared with the robust SLNR and the robust RZF precoders,
respectively. As the robust SLNR precoder is a special case
of the proposed structure, this gain implies that the precoding
vectors are sensitive over the Lagrange multipliers. It is not
surprising that the performance of the robust RZF and the
robust SLNR precoders are unsatisfactory as both of them
do not directly maximize the sum rate. The results show the
improved performance of the proposed frameworks, especially
in high-mobility scenarios.

We further simulate the sum rate to evaluate the perfor-
mance of the proposed low-complexity frameworks. As can be
seen in Fig. 6, the sum rate performance is unsatisfactory when
only the ICSI-based or SCSI-based precoder. The former will
be obsolete in high-mobility scenarios while the latter ignores
channel estimates. By a weighting strategy, the low-complexity
framework integrates the instantaneous or statistical Lagrange
multipliers to achieve the robustness. In the case of 240 kmph
at 20 dB, there exists about 29.5% gain on the sum rate in
the low-complexity framework compared with the ICSI-based
precoder.
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Fig. 6. Sum rate versus SNR with respect to different precoding approaches.

Table III illustrates the complexity of different precoding
approaches. The typical numbers for multiplication operations
are given, where parameters are set so that the performance
of the corresponding algorithm is asymptotically optimal. Here
we employ the CG method to reduce the complexity of the
matrix inversion operation. Compared with the existing itera-
tive approach in [17] for sum rate maximization, the general
framework significantly reduces complexity while maintaining
the near-optimal sum rate performance. The low-complexity
framework further reduces the complexity with negligible
performance loss. Compared with the robust SLNR precoder,
it improves 15.6% sum rate with almost the same complex-
ity. The robust RZF can achieve relatively low complexity;
however, at the cost of degraded performance.

VII. CONCLUSION

In this paper, we have proposed a deep learning approach
for downlink precoder design in massive MIMO, making use
of channel estimates and statistical parameters of channel
estimation error simultaneously. By transforming the original
maximization problem into a QoS one, the optimal solution
structure is characterized. With a Lagrangian formulation,
the precoding directions and powers can be computed by
solving a generalized eigenvalue problem that relies only on
available CSI and the Lagrange multipliers. As such, the high-
dimensional precoder design can be alternatively done by low-
dimensional Lagrange multipliers, which can be computed
by a learning approach. To further reduce the computational
complexity, we decompose each Lagrange multiplier into
two parts, corresponding to instantaneous and statistical CSI,
respectively, so that these two parts can be learned separately
with reduced complexity. It is observed from simulation re-
sults that the general framework achieves the near-optimal
performance and the low-complexity framework significantly
reduces the computational complexity but with negligible
performance degradation.

APPENDIX A
PROOF OF LEMMA 1

Denote pk =
√
ρkpk

, where ρk is the power allocated to
the k-th user, p

k
is normalized precoding vector satisfying

pH
k
p
k
= 1. The SINR of k-th user can be rewritten as

SINRk =
ρkp

H
k
Rkpk

σ2
n +

∑K
i̸=k ρip

H
i
Rkpi

. (51)

Then P2 can be rewritten as

min
ρ1,...,ρK ,p

1
,...,p

k

K∑
k=1

ρk,

s.t. SINRk ≥ γk,
pH
k
p
k
= 1,

(52)

whose optimal solution and corresponding SINRs are denoted
by (ρ31 , ..., ρ

3
K ,p3

1
, ...,p3

K
) and γ3

1 , . . . , γ
3
K , respectively.

Owing to the constraints SINRk ≥ γk, ∀k, assume there
exists γ3

m satisfying
γ3
m > γm. (53)

It is easy to verify that SINRk monotonically increases with
the power allocated to itself ρk and decreases with the power
allocated to other user ρi, i ̸= k. As SINRk is continuous
with respect to ρm, there always exists a sufficiently small
ε to establish a solution (ρ31 , ..., ρ

3
m − ε, ..., ρ3K ,p3

1
, ...,p3

K
)

whose corresponding SINRs γ⋆
1 , . . . , γ

⋆
K satisfy

γ⋆
k =

{
γ3
k − εk > γk, k = m

γ3
k + εk > γk, k ̸= m

, (54)

where variables εk > 0 are sufficiently small. Thus, the solu-
tion (ρ31 , ..., ρ

3
m−ε, ..., ρ3K ,p3

1
, ...,p3

K
) satisfies the constraint

and achieves lower objective, simultaneously. This is contrary
to that (ρ31 , ..., ρ

3
K ,p3

1
, ...,p3

K
) is the optimal solution. As a

result, we can obtain that (53) does not hold and

γ3
m = γm, (55)
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TABLE III
COMPARISON OF COMPLEXITY AMONG DIFFERENT PRECODING APPROACHES

Algorithm Complexity Typical Value Denotation

Iterative Approach [17] O
(
Niter(NcgM

2
t + K2M2

t )
)

5.68E8 Sk: Size of convolutional kernel

General Framework O
(
NMtKSkNk + (Nf + K)Nh + Ncg(KM2

t + K2)
)

8.46E7 Nk: Number of convolutional kernel

Low-complexity O
(
NcgK

2 + K2M + NcgKM2
t

)
1.34E7 Nf : Input size of fully-connected

Robust SLNR O
(
NcgKM2

t

)
1.31E7 Nh: Number of hidden layers neurons

Robust RZF O
(
M3

t + KM2
t

)
2.75E6 Ncg : Iterative number in CG method

i.e., S2 achieves the same SINRs as S1. In addition, obviously
S1 is a flexible solution for P2 so that the optimal solution
S2 achieve lower or equal objective (total power).

When S1 is global optimal, obviously S2 is also optimal for
P1, as it achieves the same objective as S1. This completes
the proof.

APPENDIX B
PROOF OF THEOREM 1

Let λ[nk]
k denote the nk-th largest generalized eigenvalue of

matrix pair (Sk,Nk), we have

µkRkp
[nk]
k

= λ
[nk]
k

(
σ2
nI+

K∑
i̸=k

µiRi

)
p[nk]
k

, ∀k. (56)

Construct the precoding vector p
[nk]
k =

√
ρ
[nk]
k p

[nk]
k , where

ρ
[nk]
k , ∀k satisfies the following equations

σ2
n +

K∑
i̸=k

(p[ni]
i

)HRkp
[ni]
i
· ρ[ni]

i

− 1

λ
[nk]
k

(p[nk]
k

)HRkp
[nk]
k
· ρ[nk]

k = 0, ∀k. (57)

Similar to Lemma 2, ρ
[nk]
k uniquely exists. Let (56) left-

multiplied by ρ
[nk]
k (p

[nk]
k )H/σ2

n and let (57) left-multiplied by
µk/σ

2
n, then sum up these equations of all users, we have
K∑

k=1

(1 +
1

λ
[nk]
k

)
µk

σ2
n

(p
[nk]
k )HRkp

[nk]
k

=
K∑

k=1

(
ρ
[nk]
k +

K∑
i=1

µi

σ2
n

(p
[nk]
k )HRip

[nk]
k

)
, (58)

K∑
k=1

(1 +
1

λ
[nk]
k

)
µk

σ2
n

(p
[nk]
k )HRkp

[nk]
k

=

K∑
k=1

(
µk +

K∑
i=1

µk

σ2
n

(p
[ni]
i )HRkp

[ni]
i

)
. (59)

By combining the results, we have
K∑

k=1

µk =
K∑

k=1

ρ
[nk]
k ≤ P, ∀nk, (60)

where the sign ‘≤’ is because that one set of {ρ[nk]
k } is

the power of optimal solution. This means for arbitrary nk,

p
[n1]
1 , . . . ,p

[nK ]
K can achieve the minimum power although it

may not be flexible.
Assume that γk is not the maximum generalized eigenval-

ues, then there always exists another eigenvector of a larger
eigenvalue, which simultaneously achieves the minimum total
power and higher SINR, while the SINRs of other users remain
unchanged because of the power control of (57). Similar
to Appendix A, we can reduce the power of this user to
achieve lower total power and simultaneously still satisfy the
constraints, resulting in the contradiction. Thus, γk is the
maximum generalized eigenvalue. This completes the proof.

APPENDIX C
PROOF OF LEMMA 2

Denote the matrix Q = TΛ, where Λ is diagonal and with
[Λ]kk = ρk. According to (31), we have

K∑
j ̸=k

qkj = qkk − 1 < qkk, k = 1, . . . ,K, (61)

where [Q]ki = qki. This means the matrix Q is strictly
diagonally dominant. Thus, we have that Q is non-singular
[59, Theorem 6.1.10 (a)]. As Λ ≻ 0 is non-singular, the matrix
T = QΛ−1 is non-singular. This completes the proof.

APPENDIX D
PROOF OF THEOREM 2

As proved in Appendix B, for all µk, k = 1, . . . ,K
which satisfying

∑K
k=1 µk ≤ P , a set of precoding vectors

(p1, . . . ,pK) satisfying
∑K

k=1 p
H
k pk ≤ P can be constructed

using the structure in (25a) and (34). The corresponding SINRs
satisfy SINRk = ρ

(
N−1

k Sk), ∀k; thus, the corresponding
upper bounds of ergodic rates satisfy

Rub
k = log(1 + SINRk) = Řk, ∀k. (62)

Similarly, for all (p1, . . . ,pK) satisfying
∑K

k=1 p
H
k pk ≤ P ,

we can construct the corresponding Lagrange multipliers sat-
isfying

∑K
k=1 µk ≤ P by (44).

In the following, we use the superscript ⋆ and 3 to denote
the optimal solutions (and their derivates) of P1 and P4,
respectively. As (µ3

1 , . . . , µ
3
K) is optimal for P4, we have

f(Ř3
1 , . . . , Ř3

K) ≥ f(Ř⋆
1, . . . , Ř⋆

K). (63)

As (p⋆
1, . . . ,p

⋆
K) is optimal for P1, we have

f(Rub
1

⋆
, . . . ,Rub

K

⋆
) ≥ f(Rub

1

3
, . . . ,Rub

K

3
). (64)
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Combine (62) - (64), we have

f(Rub
1

⋆
, . . . ,Rub

K

⋆
) = f(Rub

1

3
, . . . ,Rub

K

3
), (65)

which means the precoding vectors (p3
1 , . . . ,p

3
K) constructed

by (µ3
1 , . . . , µ

3
K) achieve the maximum objective of P1.

Besides, as proved in Appendix B, we have
K∑

k=1

(p3
k )

Hp3
k =

K∑
k=1

µ3
k ≤ P, (66)

which means (p3
1 , . . . ,p

3
K) is feasible for P1.

Thus, the precoding vectors constructed by the structure in
(25a) and (34) using {µ3

k } is the optimal solution of P1. This
completes the proof.
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