
An Exploration of Microprocessor Self-Test
Optimisation Based On Safe Faults

Anuraag Narang1, Balaji Venu2, Saqib Khursheed1, and Peter Harrod2

1Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
2Arm Ltd., Cambridge, United Kingdom

Abstract—Microprocessor software test libraries (STLs) must
provide maximum fault coverage with minimum overhead. Prun-
ing safe faults, which cannot cause errors in the output of
the processor, from the fault list can increase fault coverage
without adding test overhead. Applying more application-specific
constraints can lead to the identification of more safe faults, and
some such constraints are yet to be explored.

This work explores the use of signal combination-based con-
straints alongside well-known constant signal-based constraints
for identifying safe faults. Also, for the first time, information on
safe faults is utilised during test compaction in order to further
minimise test overhead. Results for an OpenRISC processor
design show up to 2.33% improvement in fault coverage with
the use of the proposed constraints. In one test program, a
code segment contributing only to the coverage of safe faults is
identified, with its removal providing a 1.09% code size reduction
on top of existing compaction techniques. The results may vary
for a larger and more complex commercial design with greater
scope for redundant logic.

Index Terms—software-based self-test, software test library,
test quality, test compaction

I. INTRODUCTION

In the safety-critical domain, functional safety standards
for electronic systems impose major technical and economic
challenges on engineers, who look to meet safety goals without
compromising the functionality and profitability of their prod-
uct. This motivates research into the optimisation of safety
mechanisms with respect to the aforementioned parameters.

A. STL Optimisation

With microprocessor-based embedded systems increasingly
used in safety-critical applications such as advanced driver-
assistance systems (ADAS) and autonomous vehicles, the
optimisation of safety mechanisms that are used in these
systems, such as software-based self-test (SBST), is of great
importance. The fault coverage or test quality (ratio of faults
covered by a test to the total faults targeted by the test) of
the software test library (STL) deployed as part of an SBST
mechanism must comply with the targeted standard. Also, the
STL must not violate the in-field resource constraints such
as memory footprint, test application time (TAT) and power
consumption.

Instead of writing additional test sequences and potentially
violating resource constraints, fault coverage requirements

This work is funded by the Engineering and Physical Sciences Research
Council (EPSRC) (UK). Grant number EP/N509693/1 under DTP programme.

may be met by classifying faults not covered by the STL in a
way such that they can be discounted from the fault list.

To further improve resource utilisation, a test program may
be compacted by removing redundant code, i.e., code that does
not contribute to the coverage of faults and thus unnecessarily
increases memory footprint and TAT. Additional compaction
may be achieved by considering the faults that have been
classified and discounted from the target fault list, but this
opportunity has not been explored in previous works.

B. Safe Faults

Safe faults, named as such due to their inability to cause
errors in the output of the design-under-test (DUT), have been
explored in various forms for several years and are generally
classed according to what causes them to be safe:

• Structurally safe faults are those that are untestable due
to the structure of the design itself.

• On-line functionally safe faults are those that do not pose
a threat during operation mode, such as faults in the debug
circuitry.

• Application-specific safe faults (ASSFs) are those that do
not pose a threat as they are located in logic that is not
exercised by the mission application program, such as
unused address bits or a floating-point unit (FPU).

The relationship between faults and errors is detailed further
in [1].

Safe faults are generally identified with the use of an auto-
matic test pattern generator (ATPG) or formal tool for func-
tional safety verification. On-line functionally and application-
specific safe faults are identified by first extracting information
about values taken by signals in the microprocessor DUT
during application program execution and converting the infor-
mation into design constraints, then applying the constraints
to the design prior to running the ATPG or formal tool to
return a list of untestable or “safe” faults. The number of
safe faults identified depends, among other things, on how
much information regarding the behaviour of the application
program is captured in the aforementioned constraints.

When generating constraints, existing techniques for iden-
tifying ASSFs typically look at signals whose values are
constant during application program execution, and do not
give serious consideration to the potential for identifying faults
that are safe due to a limited number of combinations being

1



used by the application program for various signals in the
microprocessor DUT.

C. This Work

The main contribution of this work is the demonstration
of the significance of the increase in STL fault coverage
when applying signal combination-based application-specific
constraints to identify safe faults, and the increase in test com-
paction when considering safe faults during the compaction
process. The proposed methodology was applied to several
modules in the OpenRISC 1000-compliant Marocchino mi-
croprocessor [10] running representative application program
tasks, with the signal combination-based constraints yielding
up to 2.33% additional fault coverage compared to the constant
signal-based constraints alone. Thus far, the safe faults-aware
test compaction campaign has yielded a 1.09% reduction in
the size of one test program out of eight that constitute the
STL.

In the rest of this paper, Section II surveys existing literature
on the use of ASSFs for optimising STLs, and explains the po-
tential improvements offered by the signal combination-based
constraints and safe faults-aware test compaction considered in
this work. Sections III, IV and V describe the methodology
and results obtained using industry standard tools. Section VI
concludes the paper with comments on future work.

II. STL OPTIMISATION BY DISCOUNTING SAFE FAULTS

A. Software Test Library (STL) Optimisation

Software-based self-test (SBST) works by executing test
programs alongside functional programs on the processor
DUT, allowing for less invasive periodic testing than methods
involving scan chains. An STL is the set of test programs
used in SBST. The STL must provide enough fault coverage
to satisfy the safety goal with minimal resource overhead. If
fault coverage is insufficient, it can be increased by writing
additional tests to target uncovered faults, or by classifying
such faults as “safe” so that they can be removed from the
target fault list [5]. Test programs can be compacted to reduce
memory footprint, and also to reduce test application time
(TAT) which lowers power consumption and makes it easier
to schedule test programs alongside mission tasks without
violating the latter’s real-time constraints [6]–[9].

B. Application-Specific Safe Faults Identification

Previous works extensively consider the phenomenon of idle
signals existing in processors while application program tasks
are being executed, indicating unused logic such as certain
processor states or buffer entries. Various methods have been
presented in literature to identify and translate these signals
and their constant values into constraints in order to identify
more safe faults [2]–[5].

The authors in [2] demonstrate how to identify idle input
and flip-flop signals in a given processor module-under-test
(MUT), then constrain them to their constant values during
the ATPG process which returns a list of safe faults for the
given constraints.

In [4], the authors similarly identify and constrain such
idle signals at the inputs of the combinational logic in the
DUT and then apply a static analysis at the DUT top-level
to identify related safe faults. Performing the analysis at the
top-level of the processor DUT may increase the complexity
and thus reduce the number of safe faults that the flow is able
to identify within a given time. On the other hand, performing
the analysis at the module-level may result in some faults
not being classed as safe since they propagate to the module
outputs, even though they may not propagate to the processor
primary outputs. An ATPG-based method may be limited to
the module-level where the state space can be handled.

Other works have given some attention to signal
combination-based constraints [3] [5].

The authors in [3] look at common safe faults categories
in microprocessors and how to identify them for different
MUTs. When considering the decoder module, it is noted that,
due to application programs typically not utilising the full
instruction set of the target processor, several combinations
of the multi-bit operational code (opcode) input signal to the
decoder module are not utilised. Two opcodes (mul and div)
are selected by the authors to represent unused combinations
in order to demonstrate the point that more safe faults can be
identified by introducing such constraints.

In [5], the authors utilise commercial register transfer-level
(RTL) block and toggle coverage tools to identify idle or
unused signals in a Controller Area Network (CAN) con-
troller connected in a microprocessor system-on-chip (SoC)
while executing test cases (design verification programs). This
information is then translated into constraints in the form
of SystemVerilog assume statements and fault propagation
barriers which are applied in the Cadence JasperGold FSV
tool, which, in turn, returns a list of safe faults including
those caused by the applied constraints. The work detailed
in [5] targets logic in the DUT that does not violate safety
goals, which may be any parts not utilised in operational
mode. In other words, the work primarily targets on-line
functionally safe faults. However, the described technique
could be deployed to identify ASSFs.

So far, no research has looked at the presence of safe
faults across different processor modules derived from signal
combination-based constraints. The work described in [3] only
considers the decoder module for such constraints, that too
without any profiling of a representative application program.
The method presented in [5] may be capable of capturing safe
faults due to signal combination-based constraints as it looks
at unused registers, which are unused as a result of unused
address combinations, however only a CAN bus controller
design has been considered rather than a processor design. In
addition, the increase in the number of safe faults identified
due to such constraints is not examined, making it difficult
to trade-off the improvement in fault coverage as a result of
employing such constraints against the overhead of identifying
the said constraints. These points are addressed in this paper.

2



C. Application-Specific Signal Combination-Based
Constraints

An illustrative example to explain how considering
application-specific signal combination-based constraints can
help to identify more safe faults is given below with reference
to Fig. 1. In the example, the application program behaviour
is such that the combination of flip-flops {A,B} only takes
the values {1,0} and {0,1}, causing the NAND gate output to
be constant at 1 throughout the execution of the application
program. This means a stuck-at-1 fault on this node is safe
under the target application. If only constant signal-based
constraints are considered, where a signal is either a primary
input or a flip-flop, the safe fault will not be identified since
none of the primary inputs or flip-flops in this example are
at a constant value. However if signal combination-based
constraints are taken into account then the safe fault at the
output node of the NAND gate would be identified as the
ATPG or formal tool would have the relevant information
regarding the application program’s behaviour.

Fig. 1. Example circuit where signal combination-based constraints would
help to identify the safe stuck-at-1 fault at the output of the NAND gate.

The number of safe faults identified is expected to increase
with the use of the proposed constraints. The impact of this
increase on the fault coverage for various processor modules
is to be investigated in this work, and traded off against the
additional effort needed to identify such constraints.

D. Test Compaction

Several works have looked at STL compaction. Techniques
involving test instruction and program re-ordering aim to
achieve the target fault coverage as soon as possible during the
test, allowing for instructions (or programs) at the bottom end
of the re-ordered test program (or STL) to be removed, thereby
reducing TAT and improving code density [6] [7]. Compaction
methods based on instruction removal and restoration have
also been presented [8] [9]. The general methodology for
compacting a test program is to remove instructions from
the program and leave them out if the fault coverage does
not change, otherwise restoring them in the program. In [8],
removed instructions are replaced with NOP instructions to
maintain coverage of length-dependent faults (LDFs), i.e.,
faults that can only be tested with a pattern of a certain
length, while minimising TAT overhead. The granularity at
which code is removed and restored can vary from blocks of
instructions to individual instructions.

In [4], after the identification of ASSFs, a new STL was
generated targeting the reduced fault list. This effectively

reduces the STL size based on ASSFs, but includes the
overhead of developing a new STL instead of making use
of an existing STL provided by the processor IP developer,
which is a common scenario in industry.

Thus far, no works have considered to enhance the com-
paction of an existing STL by identifying and removing code
that only helps to cover on-line functionally and application-
specific safe faults. This work explores the potential of such
compaction. Structurally safe faults would not be considered
here as they are not covered by STLs anyway due to being
undetectable.

III. METHODOLOGY

This section details the proposed methodology for identify-
ing ASSFs and then using the information to optimise STL
fault coverage and memory footprint.

A. Application-specific constraints

For any module-under-test (MUT), constraints related to two
classes of signals are to be extracted:

• Application constants - These are bits belonging to MUT
primary input and flip-flop signals that do not toggle
during application program execution.

• Application combinations - These are the combinations
of MUT primary input signals seen during application
program execution, which are typically a subset of all
the possible combinations.

B. Application-Specific Safe Faults Identification

For a given MUT and application program task, the process
for identifying ASSFs is shown in Fig. 2. The task is simu-
lated on the processor DUT, returning a value change dump
(VCD). The application-specific constraints for signals present
in the MUT netlist are then extracted from the VCD. Finally,
the constraints, MUT netlist, and relevant technology library
information are passed to a formal tool to identify related safe
faults (alternatively, an ATPG tool can be used for this step).

Fig. 2. Methodology for identifying ASSFs for a given application task
and module-under-test (MUT). Inputs and outputs to the methodology are
indicated by the boxes with the dashed line borders. Data being generated in
each step of the methodology is shown.

3



For any application program, the first two steps must be
carried out for every possible execution profile, while also
ensuring that signals that may vary in-field, such as data and
and interrupt signals, are excluded from the analysis. The
purpose of excluding such signals is that if any safe faults
are derived from such a signal being constrained, then the
faults are not guaranteed to be safe in-the-field. Such signals
can be excluded either manually or automatically based on
available design information. This design time overhead of
the methodology has been acknowledged in related works [2].

Each task of the application program shall be put through
the safe faults identification flow separately. Then, the inter-
section of the resulting safe fault lists under each task shall
be taken as the safe fault list for the application program as a
whole. This is represented in (1), where SF is the list of safe
faults for the application program as a whole and SFi is the
safe fault list for the ith task1.

SF ⊇
n⋂

i=1

SFi = SF1 ∩ SF2 ∩ ... ∩ SFn (1)

If a fault is not common to the safe fault lists of each
task, then it is not considered to be safe under the application
program as a whole.

If the application code is updated after system deployment,
the ASSF identification and related STL optimisation flow
should be re-run, and the system updated with the correct STL.

Memory limitations of the formal or ATPG tool may ne-
cessitate that constraints are simplified. For this, a choice can
be made to only monitor specific MUT primary inputs when
identifying the different combinations used by the application.

C. Re-evaluating Fault Coverage

Once safe faults have been identified, they can be removed
from the fault list and the fault coverage can be re-evaluated
to check for improvement. Pruning safe faults from the fault
list that are covered by the STL may reduce the improvement
in fault coverage. To maximise fault coverage, only safe faults
that are not covered by the STL can be removed, as described
in [5]. On the other hand, it may be sensible to discount
even those safe faults that are covered by the STL since
such coverage is not relevant from a safety standpoint. This
latter fault coverage calculation method would also be used
when compacting an STL based on safe faults and checking
for maintained coverage of dangerous faults only. The latter
method is deployed in this work.

D. Safe Faults-Aware Test Compaction

The methodology presented in [9] is adapted for safe faults-
aware test compaction of a given test program, and is shown in
Algorithm 1. The key change is that even if fault coverage is
lost after removing a segment of code from the test program,
the segment may still be dropped if the coverage of dangerous
faults is not compromised. As shown in step 7 of Algorithm 1,

1(1) has been adapted from (1) in [13] which discusses uncontrollable lines
instead of safe faults.

if coverage of both dangerous and safe faults is lost, then the
segment is broken down further until the loss is only on the
latter.

If a redundant test code segment is identified when exper-
imenting on a given MUT, then, prior to dropping the code,
the reduced test program is fault simulated on all other MUTs
to check that no coverage of dangerous faults is lost.

This is one of many possible schemes for test compaction.
Other schemes may be explored in future work.

Algorithm 1: Safe faults-aware test compaction.
1 Fault simulate the test program TP; let DF and SF

be the sets of dangerous and safe faults detected by
TP respectively;

2 Split TP into m segments S0, ..., Sm−1;
Remove segments as long as DF does not decrease:
3 for i = m− 1 down to 0; do
4 Set TP’ = TP \ Si (i.e., remove Si from TP);
5 Fault simulate TP’ to obtain SF’ and DF’;
6 if (DF’ < DF); then
7 if (SF’ < SF); then

Select one instruction I from Si;
Set TP’ = TP’ ∪ I (i.e., restore I);
Go to 5 (i.e., refined analysis);

8 else;
TP = TP’ + Si (i.e., restore Si).
Go to 3 (i.e., check next segment);

9 else; (Si does not contribute to DF)
Set TP = TP’ (i.e., drop Si from TP);
Go to 3 (i.e., check next segment);

end for

IV. EXPERIMENTAL SETUP

Experiments have been conducted to determine the increase
in determined safe faults through the inclusion of application-
specific signal combination-based constraints, and the corre-
sponding increase in faut coverage of the STL. In addition,
the improvement in test compaction through the consideration
of safe faults has been explored.

A. Application-Specific Safe Faults Identification

The processor DUT is the superscalar out-of-order
Marocchino processor [10]. The application program is repre-
sented by a set of four EEMBC Autobench 1.1 [12] bench-
marks implementing algorithims for various different functions
that may be found in an autononous system - aifftr01 (Fast
Fourier Transform), bitmnp01 (Bit Manipulation), canrdr01
(CAN protocol), and puwmod01 (Pulse Width Modulation).

The Cadence Xcelium logic simulator is used to simulate
the benchmarks executing on the DUT and return a VCD
file for each benchmark. A C++ program has been developed
to parse the VCD files and extract application constants and
combinations, which are then formatted as SystemVerilog
assume statements. Any signals that can change in-field from
their simulation values, such as data signals, are specified
manually so that they are not considered for constraints. MUTs

4



are synthesised to the NanGate 15nm open cell library [11]
using Cadence Genus synthesis solution. The synthesised DUT
consists of 14,033 flip-flops, 334,640 logic gates, 22 primary
inputs (PIs) and 19 primary outputs (POs). For each MUT,
for each benchmark, the netlist and constraints are passed to
the Cadence JasperGold Functional Safety Verification (FSV)
tool, which tries to activate and propagate faults under the
specified constraints in order to determine related safe faults.

The benchmarks are treated as separate tasks that make up
an application program as a whole. Then, as per (1), for each
MUT, the safe fault lists obtained for each task are merged.

B. Resource Consideration

The time allotted for running the JasperGold FSV check is
dependent on the available development time, server memory
and disk space. The default timeout is 24 hours, however
after experimenting, this has been reduced to 1 hour to enable
experiments to run without excessive design time overhead
and without burdening the compute resources, while still
demonstrating improvement in the number of safe faults
identified through the proposed methodology. There is little to
no variation in results past the 1 hour mark. The FSV check
is run on a shared server, so memory usage and time must be
managed in order to avoid interrupting the use of the server by
other users. Comparing to related works, authors in [2] cite
runtime for safe faults identification on the entire processor
DUT “in the order of a few hours”, while in [5] the FSV
check timeout was set to the default 24 hours.

C. STL Development

The STL is built from existing verification programs for the
DUT2. Fault coverage for stuck-at-{0, 1} faults is evaluated
using gate-level fault injection in Xcelium logic simulator.

D. Safe Faults-Aware Test Compaction

Test program segmentation is performed manually by in-
specting the test programs and inserting comments to mark
the segments. Then the various test program versions are
automatically generated. Fault simulations are performed using
the aforementioned method. Further refinements are performed
manually to segments where both safe and dangerous faults
are being covered, in an effort to isolate code that can be
removed without compromising coverage of dangerous faults.

V. EXPERIMENTAL RESULTS

A. Identification of Application-Specific Safe Faults

Table I presents statistics on the number of safe faults
identified when the following types of constraints are applied:
1) Structural (the design itself), 2) Structural and Application
Constants, 3) Structural, Application Constants and Applica-
tion Combinations. The data shown for each MUT is for the
faults that are safe under every benchmark task, as per (1).

From Table I it can be seen that out of the six modules
experimented on, there is an increase in the number of

2Available: https://github.com/openrisc/or1k-tests.

TABLE I
THE AMOUNT OF SAFE FAULTS IDENTIFIED UNDER CONSTRAINTS OF

VARIOUS EEMBC BENCHMARKS, IN RAW TERMS AND AS A PERCENTAGE
OF THE MUTS.

Module Total Determined Safe Faults Under Different Constraints
Name Faults Structural + App Constants + App Combos

Decode 4790 175 (3.65%) 214 (4.47%) 759 (15.85%)
Control 19656 647 (3.22%) 1018 (5.18%) 1046 (5.32%)
Reg File 3836 16 (0.42%) 40 (1.04%) 54 (1.41%)

ALU 8848 78 (0.88%) 632 (7.14%) 646 (7.30%)
Load-Store 86622 5168 (5.97%) 5454 (6.30%) 5454 (6.30%)
Ticktimer 4872 227 (4.66%) 429 (8.81%) 472 (9.69%)

determined safe faults of five of them due to the proposed
application program signal combination-based constraints. For
the Decode module, there is a more than 3X increase in safe
faults, which may be because several opcodes are not being
used by the application code. Among the unused instructions
are divide, rotate right and find last 1. All but one extend
and floating point instruction variants are unused. An unsigned
variant of the multiply instruction is also not used.

Variation between benchmarks in numbers of ASSFs is
relatively small. Under the bitmnp01 and canrdr01 tasks, the
Decode module had 760 determined safe faults in the ‘+ App
Signal Combos’ constraint category. Under the aifftr01 and
puwmod01 programs, the Control module had 1025 and 1053
determined safe faults for the ‘+ App Constants’ and ‘+ App
Signal Combos’ constraint categories respectively.

B. STL Fault coverage

The STL was evaluated on the processor modules shown in
Table II, which shows the raw fault coverage (FC), the fault
coverage after discounting structual safe faults (FC S), then
after discounting ASSFs derived from constant signal-based
constraints (FC C) and, on top of that, signal combination-
based constraints (FC CC).

TABLE II
FAULT COVERAGE WITH AND WITHOUT CONSIDERING SAFE FAULTS.

Module FC FC S FC C FC CC FC CC FC CC
(%) (%) (%) (%) -FC S(%) -FC C (%)

Decode 82.78 85.92 87.23 89.56 +3.64 +2.33
Control 53.46 55.28 55.82 55.9 +0.62 +0.08
Reg File 84.18 84.42 84.71 84.84 +0.42 +0.13

ALU 83.65 84.39 84.64 84.78 +0.39 +0.14
Ticktimer 72.62 76.17 75.8 76.55 +0.38 +0.75

As shown in Table II, the fault coverage for each module-
under-test (MUT) increases after discounting ASSFs, which
agrees with the results presented in related works. The im-
provement in fault coverage due to the proposed application
signal combination-based constraints, as opposed to only using
application constant-based constraints, is shown in the final
column of Table II. Fault coverage increases with each added
constraint for all tested modules apart from the Ticktimer
module. When only constant-based constraints are applied,
the fault coverage for the Ticktimer decreases from 76.17%
(FC S) to 75.8% (FC C). In this case, the proportion of
additional safe faults identified that are covered by the STL is
enough to decrease the fault coverage, indicating that the STL’s

5



effectiveness given the application program is not as good as
initially thought. However when considering the safe faults
identified with the aid of signal combination-based constraints,
the fault coverage increases above FC S to 76.55% (FC CC),
yielding a gain in fault coverage from the safe faults analysis
process. It is indeed possible that for some other DUT and
STL, the use of the proposed combination-based constraints
could lead to a drop in fault coverage for the same reason
explained in the case of constant-based constraints on the
Ticktimer. The results presented in this paper are for a small
open-source processor design, and may vary for a larger
commercial design. A larger design would have a wider variety
of functionalities, increasing the scope for there to be unused
logic and thus more safe faults for a given application program.

The overhead of identifying primary input and flip-flop
signals that can vary in-field exists whether or not the proposed
signal combination-based constraints are used alongside the
constant signal-based constraints, so there is no additional
design time overhead incurred in that regard. The identification
of the proposed constraints has a design time overhead in the
order of a few minutes. As shown in Table II, these constraints
can lead to an improvement in fault coverage and are worth
including in the safe faults identification flow.

C. Safe Faults-Aware Test Compaction

Test compaction experiments were performed on the avail-
able test programs. For one program, a segment of 8 instruc-
tions was identified to be contributing to the coverage of two
safe and no dangerous faults in the integer arithemtic and logic
unit (ALU), and was thus dropped from the test program.
The subject test program consists of several procedures for
targeting various structures such as register, arithmetic, shift
and logical circuitry. The compacted test program was re-
evaluated on the other modules-under-test without a loss in
fault coverage. The compaction results are shown in Table III.

TABLE III
TEST COMPACTION DUE TO CONSIDERATION OF SAFE FAULTS.

Module-under-test ALU
Original program size 670 instructions; 2.936KB

Compacted program size 662 instructions; 2.904KB
Size compaction 8 instructions (1.19%); 0.032KB (1.09%)

Original program runtime 170,345 ns
Compacted program runtime 169,985 ns

Runtime compaction 360 ns (0.21%)

These results only represent the removal of instructions con-
tributing to the coverage of safe faults, and are complementary
to any compaction achieved by removing code not contributing
the coverage of any faults.

Assuming that ASSFs have already been identified for
improving fault coverage, the design time overhead of this
safe faults-aware test compaction method is negligible when
integrated into an existing test compaction flow. The main
change required is that when a code segment is considered for
dropping from a program, the criteria is that the code removal
does not compromise dangerous fault coverage, rather than
total coverage of dangerous and safe faults together.

VI. CONCLUSIONS

This work explores the use of safe faults in microprocessor
STL optimisation with respect to fault coverage and test
overhead. Signal combination-based constraints are employed
for improving fault coverage, looking at the impact on modules
across the processor that have not been considered in related
works. Safe faults are considered during test compaction,
where code segments contributing to coverage of ASSFs are
identified and removed from the STL without compromising
coverage of dangerous faults.

The results show improvements in fault coverage and test
overhead with very low additional overhead in the constraints
extraction and test compaction process. The effectiveness of
the proposed methodology is design- and STL-dependent,
and here results have been obtained for a small open-source
processor with an STL that was constructed from existing
verification programs for the processor architecture.

Future work will investigate the impact of the proposed
methodology on a commercial safety-critical processor and
STL, and the use of a more representative application program
such as software for an autonomous system.

REFERENCES

[1] A. Avizienis, J. Laprie, B. Randell and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” in IEEE Transac-
tions on Dependable and Secure Computing, Jan.-March 2004.

[2] R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. S. Reorda and J.
Mess, “An analysis of test solutions for COTS-based systems in space
applications,” IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), 2018.

[3] C. Gursoy et al., “New categories of Safe Faults in a processor-based
Embedded System,” IEEE 22nd International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), 2019.

[4] A. Ruospo, R. Cantoro, E. Sanchez, P. D. Schiavone, A. Garofalo and
L. Benini, “On-line testing for autonomous systems driven by RISC-V
processor design verification,” IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2019.

[5] F. A. da Silva et al., “Determined-Safe Faults Identification: A step
towards ISO26262 hardware compliant designs,” IEEE European Test
Symposium (ETS), 2020.

[6] A. Touati, A. Bosio, P. Girard, A. Virazel, P. Bernardi and M. S. Reorda,
“An effective approach for functional test programs compaction,” IEEE
19th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS), 2016.

[7] R. Cantoro, E. Cetrulo, E. Sanchez, M. S. Reorda and A. Voza, “Auto-
mated test program reordering for efficient SBST,” 32nd Conference on
Design of Circuits and Integrated Systems (DCIS), 2017.

[8] R. Cantoro, E. Sanchez, M. S. Reorda, G. Squillerò and E. Valea, “On
the optimization of SBST test program compaction,” IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2017.

[9] M. Gaudesi, I. Pomeranz, M. S. Reorda and G. Squillero, “New
techniques to reduce the execution time of functional test programs,”
in IEEE Transactions on Computers, vol. 66, no. 7, pp. 1268-1273, 1
July 2017.

[10] or1k marocchino. Available: https://github.com/openrisc/or1k marocch
ino (Accessed 26th May 2021)

[11] 15NM OPEN-CELL LIBRARY AND 45NM FREEPDK. Available:
https://si2.org/open-cell-library/ (Accessed 21st May 2021)

[12] About the EEMBC AutoBench™ Performance Benchmark Suite. Avail-
able: https://www.eembc.org/autobench/ (Accessed 31st March 2021)

[13] N. I. Deligiannis, R. Cantora, M. Sauer, B. Becker, M.S. Reorda, “New
techniques for the automatic identification of uncontrollable lines in a
CPU core,” 2021. In press.

6


