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0. ABSTRACT 

Objective 

Models of the cerebral microvasculature are required at many different scales in order to 

understand the effects of microvascular topology on CBF. There are, however, no data-driven 

models at the arteriolar/venular scale. In this paper we develop a data-driven algorithm based 

on available data to generate statistically accurate penetrating arterioles and venules. 

Methods 

A novel order-based density-filling algorithm is developed, based on statistical data including 

bifurcating angles, LDRs, and area-ratios. Three thousand simulations are presented, and the 

results validated against morphological data. These are combined with a previous capillary 

network in order to calculate full vascular network parameters. 

Results 

Statistically accurate penetrating trees were successfully generated. All properties provided a 

good fit to experimental data. The k exponent had a median of 2.5 and an interquartile range of 

1.75 – 3.7. CBF showed a standard deviation ranging from ±18% to ±34% of the mean, 

depending on the penetrating vessel diameter. 

Conclusions 

Small CBF variations indicate that the topology of the penetrating vessels plays only a small 

part in the large regional variations of CBF seen in the brain. These results open up the 

possibility of efficient oxygen and blood flow simulations at MRI voxel scales which can be 

directly validated against MRI data. 
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List of Abbreviations 

LDR – Length-to-diameter ratio 

CBF – Cerebral blood flow 

BOLD – Blood oxygen level dependent 

fMRI – Functional magnetic resonance imaging 

IQR – Interquartile range 

OEF – Oxygen extraction fraction 

MTT – Mean transit time 
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1. Introduction 

The brain's energy use, relative to its mass, is extremely high. Whilst on average the brain takes 

up just 2% of the mass of an adult human, it consumes 20% of the oxygen supply of the whole 

body [6]. This makes it particularly susceptible to damage and death when there are significant 

reductions in blood supply. The microvascular architecture is recognized as being key to the 

perfusion rate and the delivery of oxygen to the surrounding tissue [3,18,30]. Changes in the 

cerebral microvasculature topology have been linked to Alzheimer’s disease and vascular 

dementia [15,23], vascular occlusions [25], and brain tumours [2,14]. 

However, little is known about the link between the microvascular topology and global scale 

blood and oxygen perfusion in the cortex. Imaging techniques, such as perfusion MRI, have 

spatial resolutions that are much larger than the microvasculature and hence are unable to 

easily discern the link between the microvasculature and global perfusion. Functional magnetic 

resonance imaging (fMRI) uses the blood oxygen level dependent (BOLD) technique as a 

surrogate signal to indicate neuronal activity. Its usefulness, however, “depends on an 

understanding of neurovascular coupling and the underlying vascular architecture” [4]. For 

example, Gagnon et al. recently attempted to quantify this link using two-photon microscopy on 

mice [11]. However, in order to better understand the interplay between the micro- and macro-

scale we need mathematical models based on experimental data of the cerebral 

microvasculature. This will allow us to generate and analyse many different models and 

configurations of the cerebral vasculature. These statistical models, informed by one-off casts 

and animal experiments, can then be used in conjunction with these methods to help us better 

understand blood flow in the microvasculature, and simulate blood flow in a way that is not 

restricted to particular experimental conditions. 
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A wealth of data has recently become available on the architecture of the microvasculature in 

the human cortex. A series of studies by Duvernoy, Cassot, Lauwers, and Lorthois have 

produced statistical data on the structure and connectivity of the cerebral microvasculature, from 

the “tree-like” penetrating arterioles and venules that branch off the surface pial vessels, down 

to the “mesh-like” capillary networks that fill the grey matter [3-5,18,21]. Distinctions are made 

between the bifurcating arterioles and venules, and the highly connected capillary network. 

Bifurcating angles, area ratios, length-to-diameter ratios (LDR), vessel densities, and lengths 

are among the variables quantified in the data sets analysed, affording the opportunity to build 

statistically accurate microvascular models of the cortex. 

A statistically accurate capillary model based on this data has already been established by Su et 

al. [32]. This model, however, modelled capillaries discretely, and so generating voxel size 

models of the capillary network (order of mm3) proved computationally very expensive. As a 

result, El-Bouri and Payne [9] used multi-scale methods to homogenize the network and to 

convert it into a continuum based problem where the permeability of the capillary network is 

used to generate large voxel size models. A standard MRI voxel will, however, contain both 

capillaries and penetrating vessels. Therefore, a statistical model of the penetrating arterioles 

and venules is required in order to couple it with the capillary network in a given voxel. This 

would then give a representative model of the microvasculature in a typical MRI voxel, allowing 

us to explore the link between the microvasculature and perfusion measurements. This will also 

allow us to look at the relationship between flow and metabolism in more detail. 

In previous studies, Lorthois et al. [20] used image segmentation to reconstruct the arteriole, 

venule, and capillary networks of a given region of the cortex. Guibert et al. [12] also used 

image segmentation to reconstruct a region of the microvasculature for the primate cortex. 

Although these reconstructed networks are useful, they are specific to only the region of the 

microvasculature that has been simulated and hence are neither generalizable nor scalable. 
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Karch et al. [17] used constrained constructive optimization combined with staged growth to 

generate arterial model trees. This framework works to minimise the intravascular volume of the 

tree whilst “optimizing the geometric location and topological site of each new connection” [17]. 

This method was also used by Linninger et al. [19] to generate penetrating arterioles and 

venules. Although choosing to minimise intravascular volume is reasonable, it is probably not 

the only principle at work [17], and recent analysis of human arterioles and venules has shown 

that the k value in Murray’s law can vary by 3 orders of magnitude [5]. Additionally, none of 

these models use the wealth of statistical data now available to construct their models, relying 

instead on a volume minimisation assumption; they are thus not data-driven models. 

Supplementary data in [4] give statistical means, medians, and standard deviations of the area 

ratios and angles at bifurcations in the arterioles and venules analysed. These are listed by 

order of the vessel starting at order 4 – being the largest diameter vessels – to order 0 being the 

terminal vessels. As well as these, vessel densities are given, along with LDR distributions by 

order [21]. These distributions can be used to generate statistically accurate penetrating 

arterioles and venules in the human cortex. Using this data to construct these vessels therefore 

removes the need for any assumptions to be made regarding the minimisation of tree volume or 

form of the tree. 

This work thus introduces a data-driven statistical 3-dimensional model of the penetrating 

arterioles and venules based on available morphological data, removing the need for any 

assumptions as used in previous models. A novel order-based density-filling algorithm is 

developed which generates statistically accurate arteriolar and venular penetrating trees. Three 

thousand simulations are run and the variables of interest are validated against penetrating 

vessel morphological parameters found in the literature. The penetrating vessels are then 

combined with the capillary network already available [32] and the total network parameters are 

validated against morphological values. The k exponent of Murray’s Law is calculated and 
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compared to the theoretical value. The vascular resistance of the penetrating trees is calculated 

to give a first order approximation to the CBF and to assess the variability of the CBF with the 

variations in topology modelled by the algorithm. 

2. Materials and Methods 

2.1. Morphological parameters 

The data collation of the morphological parameters used in the model is split into two parts. The 

first part deals with parameters required to model the penetrating arteriolar or venular trunk. The 

second part concerns the parameters used to model the branching vessels that bifurcate from 

the main trunk. 

2.1.1. Penetrating Arterioles/Venules 

Penetrating arterioles and venules are randomly spaced at the pial surface and show 

conspicuous large arteriole and venular columns orthogonal to the cortical surface [25]. This 

observation suggests that penetrating vessels can be modelled individually and the various 

columns combined to form a volume of the cortex. Cuboid voxels are chosen here in which to 

model the individual trees. The surface area density of the penetrating vessels ranges from 8.44 

– 15 /mm2 [31] with approximately 2/3 of these vessels being arterioles and 1/3 venules [4,12]. 

As such, a surface area density of 12 vessels/mm2 was chosen, in the ratio 8 arterioles to 4 

venules. Assuming a square surface area at which the penetrating vessel enters the grey 

matter, this fixes the lengths of the square for the arterioles and venules. A square surface is 

chosen here as the penetrating trees are collated to form a realistic cuboidal voxel later on. 

Most penetrating arterioles and venules penetrate to the middle of the cortex (although some 

penetrate all the way to the white matter) [8]. The depth of the cortex is approximately 2.5mm 
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[8], hence the depth of the cube was chosen here to be 1.25mm. Therefore an arteriole model 

will have dimensions of 0.35x0.35x1.25mm, and a venule model will be 0.5x0.5x1.25mm. Eight 

arterioles along with four venules embedded in a capillary bed running the depth of the cortex 

will have dimensions of 1x1x2.5mm, the same dimensions of a typical MRI voxel. 

The most numerous penetrating arterioles range in diameter from 15 – 40 μm, with larger 

diameter vessels reaching 240 μm [8]. All arterioles of diameter 50 μm or less penetrate the 

cortex surface, with the largest diameter arterioles penetrating through to the white matter. Most 

of these penetrating arterioles have a diameter of approximately 40 μm [8]. The diameters 

remain approximately constant throughout the cortex, although some do have significant taper 

[25]. As a result, the diameter of the penetrating arterioles was chosen here to be 40 μm with 

the diameter remaining constant throughout the depth of the cube. Similarly, for the venules, a 

diameter of 110 μm was chosen, in keeping with experimental observation [8]. 

Finally, an initial order must be assigned to the penetrating trunk, as the parameters used in the 

construction of the artificial trees are order-based. The order system used here is the diameter-

defined Strahler taxonomy [16] with the highest orders being assigned to the penetrating trunk 

and order 0 being terminal vessels. Cassot et al. [3] identified between 3 – 5 orders of arterioles 

before the capillary bed (where a capillary is defined as a vessel with a diameter less than 10 

μm). As a result, the penetrating trunk is given an initial order of 4, which is changed if the final 

tree density is not within 5% of the morphological value. The variable values used for the 

construction of the penetrating trunks, along with their justification, are given in Table 1. 

2.1.2. Branching Vessels 

A wealth of data has recently become available on the geometric properties of penetrating 

arterioles and venules in the cortex [4]. This provides an opportunity to generate statistically and 

geometrically accurate penetrating arterioles and venules, similar to the statistical model already 
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in place for the capillary network in the cortex [9,32], without having to make any assumptions 

about the form of the branching. 

Area-ratios, LDRs, and bifurcation angle distributions are all available in [21] and the 

supplementary material of [4]. The data are recorded by order of vessel, as well as for the total 

network of vessels in the cortex, making it straightforward to implement an order-based 

algorithm and to compare the results to the overall network parameters. The LDR distribution 

was found to be lognormal [21] , but no data on the standard deviation and mean of each order 

were given (although the median at each order was given). As a result, at each order, a mean 

was chosen and the standard deviation was altered so that the total network LDR matched the 

experimental data. Normal distributions were assumed at each order. 

Area ratios were given at a bifurcation between the parent branch and large daughter branch 

(A01), the parent and the small daughter (A02), and the large daughter and small daughter 

(A12). The distributions were all lognormal with given mean, median, and standard deviation [4]. 

Similarly, the bifurcation angles were given between the various branches (α01, α02, α12). 

These were found to be approximately normally distributed with a given mean and standard 

deviation at each order.  

2.1.3. Vessel Density 

The algorithm developed here terminates when the appropriate vessel density has been 

reached for a given volume of the cortex. Cassot et al. found that in 28.6 mm3 there were 11014 

arteriolar segments and 8042 venular segments (with a ratio of 2:1 arteriolar arborisations to 

venular arborisations) [4]. Based on these values the vessel density required for the arterioles is 

385.1 /mm3 and for the venules is 281.2 /mm3 (indicating that venules have more vessels per 

individual tree). These density values are used here to generate appropriate arteriolar and 

venular networks. 
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2.2. Algorithm 

The novel order-based density-filling algorithm presented here produces statistically accurate 

columns of arteriolar and venular trees. The steps taken to produce these penetrating vessels 

are shown in the flowchart in Fig.1. 

The length, diameter, order, and dimensions of the column are input to generate the initial trunk 

of the penetrating arteriole. The trunk is then randomly seeded with nodes following the 

probability density function of primary branches given in Blinder et al. [1]. The first bifurcation 

generated from these nodes will always be the small daughter. The order of this branch is found 

by sampling from the morphological probability distribution of the connectivity of varying orders 

of vessel given by Cassot et al. [4]. The LDR, area ratio, and bifurcation angle distributions for 

the small daughter branch are next used to find the length, radius, and angles of the first 

bifurcation, determining the position of the end node of that branch. The primary branches are 

oriented randomly about the penetrating trunk.  

For the next bifurcation, again the orders of the daughter vessels are found by sampling from 

the morphological probability distributions. Values of radius and length for both the large 

daughter and small daughter are found and all 3 bifurcation angles are sampled from the normal 

distributions [4]. As a result, a constraint is imposed so that the sum of the three angles is 

always less than 2π (as the solid angle must be less than 2π). The radii, lengths, and 

bifurcation angles then uniquely determine the end nodes of the vessels. For arterioles, a twist 

about the parent branch of 90° is imposed to mimic the characteristic shape observed for 

arterioles. For venules, a random twist is imposed emulating their more lateral branching [8]. 

This branching is repeated until 4 orders of bifurcation have been reached, or all the terminal 

vessels are of order 0. 
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At this stage, the diameter-defined Strahler algorithm is used to calculate the mean and 

standard deviation of the diameters at each order. The vessels are then reassigned orders 

based on which order their diameter falls into. The density of the vessels is also calculated. 

Then three filters are used to ensure that the density is morphologically accurate. If a vessel is 

order 0 and has daughter branches, all the daughter branches are deleted. This filter is always 

used as an order 0 vessel must be terminal. Depending on whether the vessel density is too 

small or too large, two other filters are implemented. If the vessel density is too small, order 0 

vessels are added to non-order 0 terminal vessels. If the density is too large, vessels are 

deleted starting with the smallest diameter vessels. Once a morphologically accurate density is 

finally reached the algorithm is terminated. 

2.3. Vascular Resistance 

The total vascular resistance of a penetrating tree is calculated and used to calculate blood 

perfusion as a first order approximation. Poiseuille flow is assumed in each vessel from which 

the resistance of the vessel can be found 

 ∆𝑃𝑃 = 𝑅𝑅𝑅𝑅 (A.1)  

 𝑅𝑅 =  
8𝜇𝜇(𝑟𝑟)𝐿𝐿
𝜋𝜋𝑟𝑟4

 
(A.2)  

where ∆𝑃𝑃 is the pressure drop in the vessel, 𝑄𝑄 is the flowrate, 𝑅𝑅 is the resistance of the vessel, 

𝐿𝐿 is the length of the vessel, 𝑟𝑟 is the radius of the vessel, and 𝜇𝜇(𝑟𝑟) is the apparent viscosity of 

the blood, which is dependent on the radius due to the Fahraeus-Lindqvist effect [10]. The 

apparent in-vivo viscosity can be calculated using the following relationship describing the 

variation of 𝜇𝜇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 as a function of vessel diameter 𝐷𝐷 (in micrometers) and discharge hematocrit 

𝐻𝐻𝑐𝑐𝑐𝑐 (which is set here to be 0.45) [29]. 
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𝜇𝜇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝜇𝜇𝑝𝑝 �1 + (𝜂𝜂0.45 − 1)

(1 − 𝐻𝐻𝑐𝑐𝑐𝑐)𝐶𝐶𝐷𝐷 − 1
(1 − 0.45)𝐶𝐶𝐷𝐷 − 1

� 
(A.3)  

 𝜂𝜂0.45 = 220𝑒𝑒−1.3𝐷𝐷 + 3.2 − 2.44𝑒𝑒−0.06𝐷𝐷0.645 (A.4)  

 𝐶𝐶𝐷𝐷 = (0.8 +  𝑒𝑒−0.075𝐷𝐷) �−1 +  
1

1 + 10−11.𝐷𝐷12
�

+  
1

1 + 10−11.𝐷𝐷12
 

(A.5)  

 
𝜇𝜇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝜇𝜇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 .�

𝐷𝐷
𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒

�
4

 
(A.6)  

𝜇𝜇𝑝𝑝 is the viscosity of blood plasma (1.2 mPa s), 𝜇𝜇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the in-vitro blood viscosity, and 𝜂𝜂0.45 is 

the relative apparent viscosity of blood for a discharge hematocrit of 0.45. 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 is the effective 

diameter of the blood vessel that takes into account the thickness of the endothelial surface 

layer and is derived using correlations detailed in Pries and Secomb [29]. 

Using equations A.2 – A.6 the resistance of any given vessel can be calculated. For a given 

tree, the resistances at bifurcations are calculated in parallel and added to the parent vessel 

resistance. This is repeated until a given tree has one resistance, 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. It is assumed here for 

simplicity that all the terminal vessels exit to one pressure Pout. For arterioles the pressure drop 

across the penetrating arteriole (∆𝑃𝑃) is set to be 35 mmHg, and for venules the pressure drop is 

set to be 15 mmHg [34]. Using the pressure drop and the total resistance, the flow rate 𝑄𝑄 

through the tree can be calculated using equation A.1 and from that the CBF using the following 

equation 
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𝐶𝐶𝐶𝐶𝐶𝐶 =

𝑄𝑄ｘ1𝑥𝑥106ｘ60ｘ100
𝑉𝑉ｘ𝜌𝜌

 
(A.7)  

where 𝑉𝑉 is the volume of tissue the tree feeds, 𝜌𝜌 is the cerebral tissue density (0.96 g cm-3) 

[7,22], 1𝑥𝑥106 converts m3 to mL, and 60 and 100 convert seconds to mins and g to 100g 

respectively. The volume of tissue fed by a given tree is unknown in this model. As a result it is 

chosen to be the cuboid volume that each arteriole/venule is generated in (the cuboid having a 

depth of 1.25mm). This of course may not be the region of influence of the penetrating vessel, 

but as we are only interested in the variation of the CBF with varying topology, this will not have 

an effect on our analysis. 

2.4. Validation 

Arterioles and venules are simulated over 1500 runs each. The algorithm uses statistics given at 

each order of vessel. Therefore the bifurcation area ratios, bifurcation angles, and LDRs can be 

calculated and compared against experimental data. As well as this, the arteriole/venule trees 

can be combined with a statistically accurate capillary network in order to calculate total network 

statistics such as total length, mean segment length, and vascular volume. 

3. Results 

Examples of random arteriolar trees generated using the algorithm outlined are shown in Fig. 2. 

They show clearly the variability in the shape and density of the penetrating vessels that the 

algorithm introduces due to its use of sampling from statistical data. The blood vessels were 

assumed to be straight thin-walled cylinders, hence the slightly artificial look of the penetrating 

trees in Fig. 2. 
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Three thousand simulations were run here in total, 1500 arterioles and 1500 venules. The 

results were then analysed and compared to morphological measurements. 

3.1. LDR, Area Ratios & Bifurcation Angles 

Histograms of the generated values of LDR, area ratios, and bifurcation angles for all the 

bifurcations in the 3000 simulations are given in Fig. 3, along with the approximate 

morphological distributions calculated by Lorthois et al. and Cassot et al. [4,21]. Note that, for a 

given bifurcation, A0 refers to the cross-sectional area of the parent vessel, A1 the cross-

sectional area of the large daughter vessel, and A2 the cross-sectional area of the smaller 

daughter vessel. Similarly, α01 is the angle between the parent and large daughter, α02 is the 

angle between the parent and smaller daughter vessel, α12 is the angle between the two 

daughter vessels, and the asymmetry is the difference between α01 and α02. The mean and 

standard deviations of the distributions fitted to the simulations presented here can be found in 

Table 2, along with the morphologically calculated parameters. 

As can be seen by inspection there is, on the whole, a good fit to the morphological 

measurements. All the variables computed have a mean within the standard deviation of the 

experimental values (note that the mean vessel density values have no standard deviation as 

they are calculated from one 28.6 mm3 sample). No hypothesis testing was undertaken due to 

the large number of vessels analysed and hence vanishingly small values of standard error 

involved. 

The LDR and three area ratios were approximated as lognormal distributions by Cassot et al. 

[4], whilst the bifurcation angles were approximated as normal distributions. It should be noted 

that these are only approximations and that the real distributions from experimental 
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measurement are neither perfectly normal or perfectly lognormal. Hence exact agreement is not 

expected. 

The bifurcation angle distributions from experimental data are also approximated as normal by 

Cassot et al. and hence extend beyond a value of 180º. However, no angle can be greater than 

180º, as the algorithm always takes the smaller angle at a junction of two vessels; hence the 

histograms are cut off at this value whilst the experimental distribution extends beyond it. 

3.2. Stem-Crown Analysis & Murray’s Law 

The normalized cumulative length (L/Lmax) and volume (V/Vmax) was computed for all the 

bifurcations generated by the model and these are shown in Fig. 4. Lmax and Vmax are the total 

cumulative length and the total cumulative volume respectively of a given penetrating tree. Each 

point in Fig. 4 corresponds to a stem-crown unit on a given tree, where a vessel segment is 

defined as a stem and the entire tree downstream of the stem is defined as the crown [33]. A 

power law relationship is found between the normalized length and normalized volume of the 

form: 

 𝑉𝑉
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

=  𝜅𝜅 �
𝐿𝐿

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
�
𝛾𝛾
 (A.8)  

with parameter values γ = 1.239 ± 0.007 and κ = 1.17 ± 0.02. Cassot et al. [5] had previously 

found γ = 1.187 ± 0.003 and κ = 0.965 from morphological measurements. Both lines of best fit 

are plotted on a logarithmic graph in Fig. 4. As can be seen, there is very good agreement 

between the experimental and modelled results. 

As well as this, the distribution of the exponent, k, of the generalized Murray’s Law was 

calculated at every bifurcation (A.9). 
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 𝑑𝑑𝑜𝑜𝑘𝑘 = 𝑑𝑑1𝑘𝑘 + 𝑑𝑑2𝑘𝑘 (A.9)  

where 𝑑𝑑0 is the parent vessel diameter, 𝑑𝑑1 is the large daughter vessel diameter, and 𝑑𝑑2 is the 

small daughter vessel diameter. According to the minimum energy principle (and hence 

minimum volume principle) proposed by Murray [24], the k exponent is expected to have a value 

of 3. The median value of k found here was 2.5 with an interquartile range of 1.75 – 3.7. This is 

remarkably close to the value derived from physical principles by Murray. The spread of the k 

exponents over the different bifurcations is shown in Fig. 5. As can be seen, the k exponent 

varies from values below 1 all the way up to 25. There also appear to be peaks in the 

distribution at k values of 2, 3, 4, 6, 8, and 12. Despite investigation, the reason for these peaks 

is uncertain. 

The spread in k shows that, although Murray’s Law with a k exponent of 3 is a useful modelling 

rule, it is likely to over-simplify the complex geometry and interactions of the microvasculature. 

Therefore models that use a single k value of 3 to model the microvasculature should be used 

with caution. 

3.3. Full Vascular Network 

Su et al. [32] previously developed a statistically accurate capillary network of the human cortex, 

which was later homogenized and scaled-up by El-Bouri and Payne [9]. The geometric 

properties of that network can now be combined with the geometric properties of the 

arteriole/venule network developed here in order to analyse statistically the full vascular 

network, looking at parameters such as total length/mm3, vascular surface/mm3, and vascular 

volume. The results are summarised in Table 3. It should be noted that the vascular volume was 

calculated assuming that the capillary network extended the depth of the grey matter (2.5mm), 

but that the penetrating tree only extended halfway into the grey matter. 
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A specific morphological data set was used to compare against the model here. The data set in 

question had maximum vessel diameters of 25 μm [18]. Therefore in order to gain a meaningful 

comparison the algorithm was run with penetrating arterioles of diameter 25 μm. The resulting 

values of total length/mm3, vascular surface/mm3, vascular volume, volume/surface, and mean 

segment length are all remarkably close to the morphologically measured values, validating the 

volume filling algorithm. As a comparison, Linninger et al. [19] calculated a vascular 

surface/mm3 of 13.60 mm2/mm3 and a vascular volume fraction of 2.49% using a volume 

minimisation algorithm for the arterioles/venules, which are also in good agreement with the 

morphological parameters. 

We have thus shown that using order-based data extracted experimentally it is possible to 

reconstruct morphologically accurate penetrating arteriolar/venular trees, and full vascular 

networks in the cortex, without any assumptions. The algorithm is easily adaptable for different 

regions of the brain where the parameters may be different. As more data are obtained it will be 

possible to construct larger, morphologically accurate models of the blood vessels across 

different regions of the brain. 

3.4. Vascular Resistance and CBF 

The mean and standard deviation of the vascular resistance for the venule and arteriole trees, 

along with the calculated CBF is summarised in Table 4. 

The 110 μm venule tree gives an accurate value for CBF of 46.0 mL min-1 100g-1 which is close 

to the CBF values observed experimentally of 54.7 ± 6.1 mL min-1 100g-1 [26]. The 40 μm and 

25 μm arterioles, however, are one and two orders of magnitude smaller respectively than the 

morphologically value. From equation A.2 it can be seen that the vascular resistance is 

extremely sensitive to the radius as it is inversely proportional to the fourth power of the radii. 
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This leads to substantially larger resistances for smaller diameter vessels. When calculating 

CBF (A.7) the only variable is 𝑉𝑉, the volume of tissue the penetrating vessel perfuses. This 

depends on the assumption of the ratio of arterioles-to-venules and the number of penetrating 

vessels per mm2. In this paper a 2:1 ratio of arterioles to venules has been assumed, but other 

papers assume a 3:1 ratio which would lead to larger values of  arteriolar CBF [8,19]. As well as 

this, the region of influence of the penetrating vessel is unknown, making it difficult to accurately 

calculate the CBF using tree vascular resistances. Similarly, the assumption that a 25 μm 

arteriole will perfuse the same volume as a 40 μm arteriole is unlikely and also leads to the non-

morphological values of CBF. 

Of more interest, however, is the relative variability in CBF introduced by the statistical nature of 

the algorithm. Regardless of the penetrating vessel diameter, 50% of the CBF values remain 

within 20% of the mean CBF, indicating a tight distribution of the CBF. The interquartile range 

shows a slight asymmetry towards smaller CBF values. Therefore, it seems to be the case that 

the variations in CBF in various regions of the brain are only minimally affected by the varying 

topology of the vessels. The diameter of the penetrating vessel conversely has a much larger 

impact on the CBF, and hence oxygen delivery. 

4. Discussion 

In this paper, we have developed an algorithm to generate statistically accurate 3-dimensional 

models of the penetrating arterioles and venules based on data from a region of the cortex in 

the temporal lobe. The use of this data to generate penetrating arterioles/venules has meant 

that the assumptions of volume and energy minimisation previously used to model these trees 

[19] could be relaxed. This order-based density-filling algorithm was used to simulate 3000 

penetrating trees from which morphological parameters of interest were calculated and 

validated against experimental data. A stem-crown analysis was conducted showing very close 
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agreement between the model and morphological measurements. Murray’s k exponent was 

found to have a median of 2.5 with an IQR 1.75 – 3.7. This is an interesting result as no 

assumption was made with regards to the k exponent in the algorithm, yet it came out in very 

good agreement with the minimum energy k exponent of 3, indicating it is an emergent property 

of the model. 

This penetrating vessel algorithm was then combined to a statistically accurate capillary 

generating algorithm [32] in order to calculate geometric parameters for the full vascular 

network. The resulting parameters of interest were all in very close agreement with the 

morphologically measured values (Table 3), validating the order-based density-filling algorithm 

developed here. Finally, the vascular resistance was calculated for the penetrating trees and 

from this, a first order approximation for CBF was calculated. The CBF was heavily affected by 

the radius of the penetrating vessel and the assumed volume of tissue the tree perfuses. 

However, the variability of the CBF with the quasi-random topology of the algorithm was < 34% 

of the mean CBF. This suggests that the variation of CBF in the brain is only nominally affected 

by the topology of the vessels, and is more likely to be affected by the varying vessel radii. 

The only other 3-dimensional geometric construction algorithm for the cerebral microvasculature 

that we were able to find was that by Linninger et al. [19]. Minimum tree volume optimization 

was used to generate the penetrating arteriolar and venular trees which also provided a good 

match to the morphological data. This is based on the “minimum cost” concept proposed by 

Murray [24], a weighted minimum between the work needed to overcome the wall viscous stress 

and the building costs of the blood flow system. However, it is unlikely that minimising 

intravascular volume is the only principle at work in the construction of the penetrating vessels 

[17]. The model presented in this paper found a spread in the k exponent of less than 1 up to 

25, with a median of 2.5. Therefore, a model built on this principle is likely to over-simplify the 

complex reality of the microvasculature. The k exponent is an emergent property of this model; 
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it was not specifically included as a property in the construction of the model. A model based on 

statistical data, like the one presented here, allows there to be a much more complex 

representation of the microvasculature without making assumptions with regards to minimising 

volume or energy. Therefore, a much more general model of the arterioles and venules can 

easily be adapted to differing regions of the brain when statistical data becomes available. 

One limitation of this statistical model, however, is the lack of differentiation in the statistics 

between the arterioles and venules. The order-based data, given in the supplementary material 

of Cassot et al. [4], are not segregated by type of vessel (arteriole or venule). As a result, the 

penetrating trees generated use ‘averaged’ properties based on both the arterioles and venules. 

If vessel specific order-based data become available, however, it would be straightforward to 

adapt the distributions being sampled from accordingly and hence to generate more accurate 

arterioles and venules. Another limitation of the model is a lack of tortuosity in the vessels; they 

are approximated as straight thin-walled cylinders, as seen in Fig. 2. The curvature of 

penetrating arterioles and venules has been quantified by Lorthois et al. [21] and should be 

included in future works to generate more realistic networks, although it is anticipated that the 

effect on the blood flow through the vessels will be of second order due to the small curvature of 

individual vessels. 

It should be noted that the algorithm developed in this paper is based on one set of 

experimental morphometric data, 28.6 mm3 in size [4] (due to a lack of other accurate data on 

the human cerebral microvasculature). Therefore, the penetrating vessels generated in this 

paper characterize only a small region of the brain. It is very likely that different regions of the 

brain will have different statistics. However, once more information about the topology and 

geometry of the arterioles and venules in other areas of the human brain becomes available, the 

algorithm presented here is easily modifiable to generate realistic networks for individual 

regions. 
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The current algorithm is able to model voxel-size regions of penetrating vessels. The next step 

will be to couple the penetrating vessel network to the homogenized capillary network previously 

established [9] and to simulate blood flow. This would then be a mathematically rigorous data-

driven multi-scale model of the blood flow in the cortex, where perturbation theory was used to 

generate statistically accurate homogenized capillary networks that can easily be scaled to large 

volumes, and the algorithm in this paper produced data-driven models of the penetrating 

vessels. The coupling of these two models will allow for the modelling of realistically sized MRI 

voxels from which cerebral blood flow and perfusion will be measured and compared to MRI 

data. This would help to establish the link between the microvasculature and the macro-scale 

flow in the cortex. Once the blood flow model has been established, it can then be coupled to 

oxygen transport models, from which mean transit time (MTT) and oxygen extraction fraction 

(OEF) can be calculated [27,28] and compared to experimental values. This will allow us to 

explore the interplay between topology and nutrient delivery and its robustness, as well as the 

effect of ischemic stroke on these values [13]. 

5. Perspectives 

Through development of a novel data-driven algorithm to simulate the penetrating vessels in the 

microvasculature accurately, it is now possible to simulate cerebral blood flow at both the 

capillary and arteriole/venule scale in a way that is not restricted to particular experimental 

conditions. It is also possible to easily model the penetrating vessels in varying regions of the 

brain due to the data-driven aspect of the model as long as the statistical data are available. 

The coupling of the arteriole/venule and homogenized capillary models allows for MRI voxel 

scale simulations to be run efficiently which will allow us to better assess the impact of the 

microvascular architecture on blood and oxygen perfusion on the global scale. 
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TABLES 

Table 1. Table of values chosen to model penetrating vessels. 

Variable Morphological Values Model Values 

Arteriole Diameter (µm) 15 – 240a 40 

Venule Diameter (μm) 20 – 125a 110 

Length (mm) Up to 2.5a 1.25 

Surface density (/mm2) 8.44 – 15b 12 

Penetrating Vessel Order 3 – 5c 4 

a Duvernoy et al. [8] b Risser et al. [31] c Cassot et al. [3] 
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Table 2 Mean and standard deviation of computed variables of interest and their corresponding 

morphological measurements. 

 Computed Model Values Morphological 

Measurements 

Arteriole Mean Vessel 

Density (/mm3) 

382.1 ± 68.7 385.1a 

Venule Mean Vessel Density 

(/mm3) 

280.1 ± 42.5 281.2a 

Length-to-Diameter Ratio 9.46 ± 8.42 10.37 ± 9.41b 

A1/A0 1.06 ± 0.54 0.984 ± 0.46a 

A2/A0 0.646 ± 0.45 0.642 ± 0.294a 

A2/A1 0.614 ± 0.28 0.686 ± 0.213a 

(A1+A2)/A0 1.70 ± 0.90  1.626 ± 0.684a 

α01 (rads) 1.047 ± 0.20 1.109 ± 0.238a 

α02 (rads) 0.942 ± 0.18 0.999 ± 0.227a 

α12 (rads) 0.820 ± 0.223 0.906 ± 0.239a 

Asymmetry (rads) 0.106± 0.291 0.111 ± 0.373a 

a Cassot et al. (including supplementary material) [4]; b Lorthois et al. [21] 
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Table 3 Parameters calculated for the full vascular network (including capillary network) using 

40 μm penetrating vessels and 25 μm penetrating vessels, as well as the equivalent 

morphological measurements. 

Parameter 25 μm Penetrating 

Arteriole 

40 μm Penetrating 

Arteriole 

Morphological 

Measurementsa 

Total Length/mm3 

(mm/mm3) 

497.5 ± 12.2 527.4 ± 20.7 411.16 – 613.17 

Vascular 

Surface/mm3 

(mm2/mm3) 

11.5 ± 1.18 15.9 ± 3.28 10.19 – 12.85  

Vascular Volume (% 

of total volume) – 

2.5mm depth 

2.15 ± 0.54 4.55 ± 2.6 2.39 – 3.02 

Volume/Surface (μm) 3.41 ± 1.77 5.69 ± 2.95 2.1 – 2.4  

Mean Segment 

Length (μm) 

59.7 ± 9.4 65.7 ± 15.9 52.67 ± 50.38 

a Lauwers et al. [18]. 
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Table 4 The mean tree resistance (Rμ) and standard deviation of the tree resistance (Rσ) along 

with the CBF for each diameter of penetrating vessel. The CBF is calculated assuming a 2:1 

ratio of arterioles to venules and 12 trees/mm2 surface density.  

Penetrating Diameter 25 μm (arteriole) 40 μm (arteriole) 110 μm (venule) 

Rμ (kg m-4 s-1)  3.4846 x 1014 4.2801 x 1013 8.9092 x 1011 

Rσ (kg m-4 s-1) 7.899 x 1013 8.6576 x 1012 1.2307 x 1011 

Mean CBF (mL min-1 100g-1) 0.58 4.60 46.0 

σ CBF(%) 36 27  18  

IQR CBF (%) 80 – 108  82 - 110 89 - 106 
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Input variables: diameter, 
length, and order of 

penetrating trunk, voxel 
dimensions 

Seed a node on pial surface 
and one at the end of the 

penetrating trunk. Seed nodes 
along the length of the trunk 

based on morphological 
distributions [1] 

Branch daughter vessels off 
nodes. Assign order of 

daughter vessels based on 
morphological connectivity [4] 

Sample from LDR and area ratio 
distributions given in [4] and [21] 
based on the order of the big and 
small daughter vessels. Use these 

to calculate length and radii of 
the daughter vessels 

Sample from bifurcation angle 
distributions given in [4]. 

Calculate the sum of the three 
bifurcation angles 

Is sum of 
angles < 2𝜋𝜋? 

Delete all order 0 nodes that 
branch off order 0 vessels  

Reached 4 orders 
of bifurcation or 
terminal nodes 

order 0? 

Calculate mean diameter and standard 
deviation at each order of vessel. Reassign 

vessel orders based on the diameter-defined 
Strahler taxonomy. Iterate until convergence. 

Calculate co-ordinates of 
daughter nodes based on the 
above sampled information.  

Is vessel density 
morphologically 

accurate? 

Is density 
too low? 

Add vessels to non-order 
0 terminal vessels 

Delete vessels starting from 
smallest diameter vessels until 

appropriate vessel density 
reached 

Terminate 
algorithm 

Yes 

Yes 

Yes 

Yes 

No 

FIG. 1 Flowchart detailing the algorithm to generate a 

statistically accurate arteriolar/venular tree  
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No 
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FIG. 2 Three examples of randomly generated morphologically accurate penetrating arterioles 
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FIG. 3 Histograms of the simulation data (blue bars) generated using the algorithm, and the 

morphologically calculated distributions (red dotted line) taken from [4,21] 
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FIG. 4 Normalized cumulative volume-length relationships for all bifurcations simulated, along 

with power law fit (solid black line), and experimental fit (solid red line). 
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FIG. 5 Distribution of k exponent over all the bifurcations simulated by the algorithm 

 


