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ABSTRACT 

Economic decisions are continuously made throughout daily life and involve 

subjective value (SV) assignment and subsequent selection of the option with the 

highest SV amongst competing alternatives. The precise temporal characteristics of 

early value computation are unknown, and, to date, no research has examined the 

neural dynamics of subjective valuation in naturalistic environments, which have 

different perceptual and motivational characteristics which could alter SV. The current 

thesis examined the spatiotemporal neural dynamics underpinning subjective 

valuation of products in naturalistic settings using mobile electroencephalography 

(EEG) and eye-tracking.  

Eye-movement related potentials (EMRPs) underpinning SV of products were 

examined in a product gallery for 2-D images, and a custom-built mock shop for real 

3-D products. Stimulus onset corresponded to the first instance of the gaze touching 

an object. Products were viewed and rated whilst mobile electroencephalography and 

eye-tracking recordings were taken. Willingness to pay (WTP) values were used as a 

measure of SV and were elicited using a Becker-DeGroot-Marschak (BDM) auction 

following the mobile EEG task. ICA was used to reduce contamination of eye-

movement artefacts. Source dipole modelling was used to estimate cortical generators 

of EMRP components.  

Results from three experimental chapters suggest early encoding of unique 

bands of SVs for 2-D and 3-D products in multiple distinct cortical clusters. Low- and 

high-value products were discriminated binarily in early latencies of EMRPs, with 

facilitated encoding of low-value items. Intermediate-value items were discriminated 
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in later components of EMRPs, both within parietal/occipital cortex. Linear encoding 

of SV was observed for 3-D products.  

The current thesis demonstrates, using novel methodologies and mobile EEG 

and eye-tracking recordings in realistic settings, that early SVs assigned to 2-D and 3-

D products are computed on a coarse grid, within multiple distinct components of 

EMRPS within parietal/occipital cortex, with facilitated binary representations of low- 

and high-value products and later encoding of intermediate-value products. 
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1. GENERAL INTRODUCTION 
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1.1. Overview 

Value-based decisions are a natural part of everyday life and subjective values (SVs) 

are continuously assigned, either consciously or unconsciously (Rangel et al., 2008). 

Value-based decisions involving the assignment of SVs to competing alternative 

options can range from the relatively trivial to the highly consequential and life-

changing, with a whole spectrum of decisions in between (Clark et al., 2012; Rangel 

et al., 2008). Effective value-based decision making is essential for surviving and 

thriving in the world, and maladaptive patterns of salience attribution and value-based 

decision making can lead to issues of substance abuse (Galandra et al., 2018), 

hoarding, obsessive-compulsive disorder (Pushkarskaya et al., 2017) and pathological 

gambling (Kräplin et al., 2014) among other issues. 

It is an important research agenda to understand how a decision maker 

processes and assigns SVs to competing alternatives (Rangel et al., 2008), how SVs 

are compared, how a decision is reached based on these comparisons (Brosch & 

Sander, 2013), and how the consequences of these decisions are evaluated and inform 

future choices (Rangel et al., 2008). The recently-emerged field of neuroeconomics 

combines disparate fields of neuroscience, psychology, economics and computer 

science to integrate theory and practice to determine the neurobiological 

underpinnings of value-based decisions (Camerer et al., 2004; Fehr & Rangel, 2011). 

The field of neuroeconomics has led to the comprehensive mapping of the neural 

substrates of the brain valuation system (BVS) (Rangel et al., 2008). However, as 

functional magnetic resonance imaging (fMRI) has been the dominant neuroeconomic 

technique for examining value-based decisions, questions of whether value-based 

decisions are processed within the same or distinct brain regions, and their time-
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course, remain unanswered due to the method’s limited temporal resolution. 

Therefore, some aspects of the BVS remain largely unknown, and investigation of the 

spatio-temporal dynamics of the BVS is essential to gain a more holistic insight into 

the ways in which the brain processes SV. Traditional laboratory-based neuroimaging 

experiments have also been criticised for their lack of ecological validity, preventing 

them from being generalised to real-world settings (Andrade, 2018). 

Mobile brain/body imaging (MoBI) has emerged over the last decade to 

investigate embodied cognitive processes in their natural context (Parada, 2018), 

overcoming the limitations of previous research methodologies. Mobile neuroimaging 

has revolutionised the investigation of cognition by affording the opportunity to 

compare natural contextualised neural processing with findings generated in more 

restrictive laboratory-based studies to verify their generalisability (Ladouce et al., 

2017). The MoBI approach can provide new insights into the neural dynamics 

underlying value-based decision making by allowing for examination of value-based 

processing in naturalistic contexts during free viewing. Examination of natural 

behaviours is essential as brain states differ during movement (Ladouce et al., 2017), 

information can be processed in the periphery of the visual field (Dias et al., 2013), 

and immediate availability of products can alter motivated behaviours (Jędras et al., 

2019; Jones et al., 2012). However, to investigate value-based decisions using MoBI, 

methodological issues related to the recording and extracting of mobile EEG data need 

to be addressed, including the precise synchronisation of EEG and eye-tracking data 

streams and the minimisation and effective removal of movement-related artefacts. 

Therefore, the aim of the current thesis is to determine the spatio-temporal dynamics 

of value-based decisions for products in freely behaving participants in natural 
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environments, whilst ensuring high-quality of recording by effective reduction of 

artefactual noise. 

1.2. Purchasing decisions and consumer theory  

1.2.1. Rational choice and utility maximisation 

Buying decision making incorporates a series of stages which precede product 

purchase. Dewey (1910) described the five stages of buyer decision making as 

problem/need recognition, informative search, evaluation of options, purchase 

decision and post-purchase behaviour (Bruner & Pomazal, 1988). These stages are 

considered to be the central pillar of popular consumer behaviour model, and 

demonstrate that the purchase decision is a process of cost-benefit analysis which 

directs a customer from the initial identification of their needs to purchase behaviours, 

motivated by a desire to achieve homeostasis between the actual and desired state 

(Bruner & Pomazal, 1988). Consumer theory is a branch of microeconomics which 

examines how people make financial decisions considering their resources, 

preferences, the products available and their respective prices (Bondarenko, 2020; 

Hess et al., 2018). Consumer theory is built around the concept of utility maximisation 

and assumes that customers are inherently rational and make calculated purchase 

decisions (Bondarenko, 2020; Hess et al., 2018). 

Pioneering the study of economic decision-making and purchase decisions in 

the 17th century, Smith (1759) proposed the invisible hand theory in his book ‘The 

Theory of Moral Sentiments’. Smith suggested that acting in one’s own self-interest, 

including its individual and social context, is one of the key principles governing 

rational individual economic decisions which drive a free market economy. Smith also 

argued that such self-interested behaviour actually maximises the interests of society 



 

5  

as a whole and thus, is morally justified (Smith (1759) as cited in Bishop, (1995)). 

Smith is considered the founder of Rational Choice Theory, which proposes that 

individuals are fundamentally rational and are focused on expected utility 

maximisation; obtaining the best reward at the lowest price to satisfy motivation 

ranging from selfishness to altruism (Elster, 2001). 

Utility maximisation can be modelled by the Marshallian demand function 

which illustrates rational customer decision-making (Marshall, 1890). The 

Marshallian model makes purchase predictions in the context of price and income and 

assumes that customers are able to provide a perfect solution to the utility 

maximisation problem by spending money whilst maximising utility (Marshall, 1890). 

The Marshallian demand curve demonstrates the relationship between price and 

demand under the assumptions that the prices of alternative products and consumers 

income are constant. However, critics of the Marshallian model point out that the 

model does not define what is in customer’s best interest, which is likely subjective, 

and offers logical norms for purely rational buyers. The normative stance may likely 

be appropriate for the purchase of the most expensive goods, such as a car, but may 

not be applicable to essential items such as which brand of tissues to purchase (Kotler, 

1965). Additionally, human decision making can be inconsistent and irrational and the 

desire to purchase can be motivated by many different factors, both within and beyond 

conscious awareness, not just driven by the pursuit to maximise utility (Fine, 2008). 

For example, consumers might be less likely to purchase a previously favoured 

product when it is on offer, as they might perceive a price reduction as a reduction in 

product quality or in their social status (Kotler, 1965). Ultimately, the Marshallian 

model is unable to explain how product preferences are formed, highlighting the 
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importance of investigating the decision-making process outside of the bounds of pure 

rationality. 

1.2.2. Alternative models of consumer decision making; Pavlovian, 

Psychoanalytic, Veblenian and Maslow’s theory of motivation 

Psychological models and methods can be used to understand preference formation 

and decision irrationality, which is not considered in purely economic models of 

decision making. The Pavlovian model of decision making, named after the Russian 

physiologist Ivan Pavlov, offers a limited yet important insight into purchasing 

behaviour, indicating that purchasing is a form of learned behaviour which can be 

developed through repetitive actions and learned relationships between stimuli (Clark 

et al., 2012; Kotler, 1965). According to the Pavlovian model, conditioned stimuli 

trigger previously acquired behavioural responses which are capable of reinforcing 

novel behaviour acquisition, and can produce behaviours that act against optimal 

outcomes which would maximise utility (Clark et al., 2012). The Pavlovian model 

utilises four concepts to explain purchase decisions; drives, cues, responses and 

reinforcement (Dollard & Miller, 1950; Kotler, 1965). Drives refer to primary 

physiological or learned social internal motives which motivate purchase (e.g. 

acquisitiveness or fear). Cues and their intensity (e.g. promotions, discounts) are 

environmental or internal stimuli which can trigger buying behaviour. A response is a 

buyer’s action which is activated by a combination of cues which may lead to 

purchase. Reinforcement learning means that purchase behaviours which were 

rewarding are more likely to be repeated (e.g. brand preference) (Dollard & Miller, 

1950; Kotler, 1965). However, the Pavlovian model does not offer insight into 
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perception or unconscious processes associated with purchasing decisions (Kotler, 

1965). 

The psychoanalytical approach to consumer behaviour and purchase decision 

originates in work of psychoanalyst and neurologist Sigmund Freud (Cluley, 2008). 

The psychoanalytical account suggests that many of the consumer decisions are 

motivated by drives and environmental conditions in response to symbolic concerns 

(e.g. feelings, attitudes), which can operate outside of awareness, indicating that 

customers may become receptive to a message even before experiencing it (Cialdini, 

2016). Freud’s nephew, Edward Bernays, pioneered the use of psychoanalytic tactics 

in sales and public relations (Bernays, 1928; Tye, 1998). Bernays realised that it was 

possible to manipulate the irrational forces that drive human behaviour to influence 

purchasing behaviours (Bernays, 1928). For example, during the Lucky Strike 

cigarette campaign, he convinced women to smoke despite the societal taboo by 

promoting the symbolism of female smoking as a challenge to male power and female 

independence, referring to them as ‘torches of freedom’ at a publicised parade in 

which female suffragettes smoked (Amos & Haglund, 2000). Bernays simultaneously 

tapped into the emerging stereotype that women should be ‘slim’ using the slogan 

‘reach for Lucky, instead of a sweet’ (Amos & Haglund, 2000). Ultimately, Bernays 

used symbols to appeal to unconscious desires, suggesting that the product is able to 

fulfil them, and these tactics are still embedded within marketing, advertising, 

branding and public relations today (Cluley, 2008). 

The Veblenian (Veblen, 1899) model of consumer behaviour emphasises the 

role of society and culture in shaping purchasing decisions (Hodgson, 2004; 

Rutherford, 2011). According to the Veblenian perspective, psychological habits, 

social institutions and anthropological and economic factors, such as income, all 
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contribute to purchasing behaviour. Veblen argued that predatory and competitive 

habits led to the stratification of society into lower- and upper- socioeconomic classes, 

in which high-status members are involved in unproductive occupations and low-

status individuals are economically productive. Consequently, the consumer’s social 

and cultural background plays an important role in purchase decisions, as consumers 

purchase goods to emulate the higher-class which arguably uses the best and the most 

desirable goods available. Therefore, the conspicuous consumer does not purchase 

goods to satisfy physical needs but, rather, to provide social satisfaction, prestige and 

the maintenance of social class (Almeida, 2016; Kotler, 1965). Maslow’s Theory of 

Motivation (Maslow et al., 1970; Maslow & Murphy, 1954) divides human needs into 

one of five hierarchical categories; physiological (e.g. food), security (e.g. safety), 

social (e.g. belongingness) Ego (e.g. success) and self-actualisation (e.g. self-

fulfilment). According to the theory, individuals will first satisfy basic physiological 

needs, but once fulfilled, people then move up the hierarchy and are driven to satisfy 

the next need. The theory of motivation has been used to understand consumer 

behaviour by mapping each aspect of product marketing onto the hierarchy of human 

needs and relating this to purchasing decisions. For example, products that satisfy 

basic physiological needs are abundant and cheap, whereas products that map onto 

self-actualisation at the top of the hierarchy are more scarce, reflecting product supply 

and demand. WTP and product prices should also be reflected by the hierarchy, with 

consumers willing to pay more for products at the highest level of the hierarchy. Yalch 

& Brunel, (1996) applied the needs hierarchy in consumer evaluation of product 

designs and found that consumers were 30% more likely to pay more for an 

aesthetically pleasing shaver and 22% more likely to pay more for an aesthetically 

pleasing toothbrush compared to basic equivalent items, reflecting the higher value of 
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items which are able to satisfy self-actualisation needs. More recently, Cui et al. (2021) 

showed that purchase of electric vehicles in China was significantly predicted by 

environmental concern then price, experience, social influence and finally self-esteem, 

reflecting Maslow’s hierarchy of needs. 

Contrary to the assumptions of early rational choice theories, the Pavlovian, 

Freudian model, the Veblenian model and Maslow’s Needs Hierarchy highlight the 

complexity of the purchasing decisions and the multitude of factors that can influence 

consumer behaviour. Internal influences on consumer behaviour include perception, 

motivation, personality, learning, attitudes and needs, emotions and physiological 

states (Hawkins & Mothersbaugh, 2010; Vainikka, 2015). External factors include 

social (Akar et al., 2015; Kotler, 1965), cultural (and subcultural) (Nayeem, 2012) 

influences, the influence of family (Kaur & Singh, 2019), demographic (Martins et al., 

2011) and socioeconomic factors (Kamakura & Mazzon, 2013). Situational factors 

include the amount of resources available in terms of money (as well as the economic 

situation) (Unger et al., 2014), time (Hornik & Zakay, 1996), mood, the presence of 

others, (Zhuang et al., 2006), price expectations (Puto, 1987), brand loyalty (Khan et 

al., 2014; Philiastides & Ratcliff, 2013), own product expertise or the presence of an 

expert (Cordell, 1997; Klucharev et al., 2008), previous experience (Gustafson et al., 

2016) and any competing demands which could dominate attention. Many of these 

factors are subject to fluctuations according to the environment and can increase or 

decrease susceptibility to particular marketing strategies which can influence 

purchasing behaviours. Such strategies include packaging (size, shape, colour, 

information) (Silayoi & Speece, 2004), elicitation of emotion (Kemp et al., 2012), 

creating urgency (Childs & Jin, 2020), and shopping environment (Michon et al., 

2005). Given the complexity of purchasing decisions, the current thesis will focus 
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specifically on economic aspects of product purchasing decisions; specifically, on 

early economic value-based decisions for products in naturalistic environments. 

1.3. Economic theory of value-based decisions 

1.3.1. Expected utility theory 

Most psychological, economic and neuroscientific research has investigated value-

based decision making and purchasing decisions based on concepts outlined in 

expected utility theory (EUT) and later, prospect theory (PT). EUT (Bernoulli, 1738) 

is the dominant normative rational choice model of economic decisions and is used to 

describe decision making under conditions of risk and uncertainty (Savage, 1954; Von 

Neumann & Morgenstern, 1944). According to EUT, decision agents will consider the 

respective value of each alternative outcome, otherwise known as their utility, predict 

the probability of each outcome occurring, combine each options utility with their 

respective likelihoods into a single expected utility and select the option with the 

highest expected utility (Mongin, 1998; Moscati, 2016). EUT outlines four axioms for 

the rational decision maker; completeness, transitivity, independence and continuity. 

According to the completeness axiom, the decision maker has well defined preferences 

and can always decide between two alternatives. Transitivity refers to the consistency 

of decisions between the same two alternatives on different occasions. Independence 

is the assumption that when an irrelevant third alternative is presented, the two relevant 

decisions will maintain their order of preference. Finally, the continuity axiom is the 

assumption that preferences are continuous and linear, and therefore, there are no 

jumps in preferences (von Neumann & Morgenstern, 1944). While EUT has been 

incredibly influential in economics, it has come under criticism for failing to explain 

certain behaviours, particularly when participants did not behave in a rational and 
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consistent way (e.g. the endowment effect, when participants value a possessed item 

more highly than it is worth). In these cases, most of EUTs axioms were violated and 

failed to explain outcome interpretation (Tversky, 1975). Being a normative model, 

EUT does not capture many aspects of natural human decision-making as it does not 

consider the decision makers subjective preferences, wants or needs (Bossaerts & 

Murawski, 2015), nor include intuitive or emotional responses, context or framing (De 

Martino et al., 2006). 

1.3.2. Prospect theory 

In order to make sense of decisions when the axioms of EUT were violated, such as 

under conditions of risk, Kahneman et al., (1979) developed PT. PT proposes that the 

decision maker evaluates the value of different decision prospects, and the prospect 

with the highest SV is subsequently chosen (Kahneman et al., 1979). Importantly, PT 

assumes that outcomes are evaluated as relative gains or losses to a subjective 

reference point, rather than objective states of wealth as considered by utility theory. 

PT describes maximisation of utility according to this reference point, and also 

incorporates how cognitive biases and heuristics can influence choices. 

According to (Tversky & Kahneman 1974), when faced with conditions of 

uncertainty, decision makers often rely on heuristics, biases and intuition and attempt 

to match information with a stored representation. Tversky and Kahneman (1981) 

demonstrated that, although risky prospects are evaluated based on their potential 

outcomes and their relative probabilities, the same prospect can be framed differently 

and this will influence decisions. For example, if options are framed as possible gains 

(compared to a reference state of gaining nothing), preferences tend to favour risk 

aversion, whereas if options are framed as potential losses with a reference state in 
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which nothing is lost, people tend to show risk seeking preference (Tversky & 

Kahneman, 1981). 

In line with PT, the SV of an item is a concave function of the size of a gain, 

and the same applies to losses. When the value function for gains and losses are 

compared side by side, an S-shaped function illustrates the value function, which is 

concave for gains and convex for losses, and considerably steeper for losses compared 

to gains (Kahneman & Tversky, 1984), relative to a neutral reference point 

(Kahneman, 2011). Tversky and Kahneman (1974) refer to this as loss aversion, 

whereby the loss of monetary resources is evaluated more negatively than a gain of 

the same amount is considered attractive, or in other words, the response to losses is 

stronger than the response to corresponding gains (Kahneman, 2011). Therefore, the 

amount of money available to win must be greater than the amount that could be lost 

in order for a gamble to be accepted. PT is able to account for individual variations in 

risk seeking or risk aversive attitudes by explaining how cognitive biases and framing 

can influence choices. 

 

Figure 1. Hypothetic value function for gains and losses. Adapted from Tversky and 

Kahneman (1981).  
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Moreover, Kahneman and Tversky (1984) show that people tend to 

underweight moderate and high probabilities relative to a sure thing, contributing to 

risk aversion. However, for losses, people tend to overweight low probabilities which 

enhances the value of long shots in gambles in the case of severe loss, contributing to 

risk seeking. Ultimately, people tend to be risk seeking in the context of unlikely gains 

and risk averse in the context of unlikely loss. Loss aversion is considered to be a 

manifestation of negativity bias, as the motivation to avoid negative outcomes is much 

greater than to obtain positive outcomes (Kahneman, 2011). Additionally, Kahneman 

(1990; 1991) used features of the valuation function to explain the endowment effect, 

which is the reluctancy to part with a good that one owns for the same price that they 

are willing to pay for the same good. Rather, the value of a good increases when one 

owns the good, and more money is required to part with the good. 

1.4. Neuroeconomics and the neural basis of economic value-based 

decisions 

The discipline of neuroeconomics was formed in the 1990s to provide an 

encompassing perspective on the neurobiological mechanisms of decision making by 

utilising knowledge, theory and practice derived from the diverse fields of economics, 

psychology, neuroscience and computer science (Camerer et al., 2004). The 

neuroeconomic approach aims to answer the questions of how does the brain make 

different types of decisions, what are the brain structures underlying these processes, 

and how does this relate to real-world decision-making contexts (Fehr & Rangel, 

2011). 

The question of how humans make decisions has long evaded understanding 

(Sanfey et al., 2006). The multi-disciplinary field of neuroeconomics was an attempt 
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to bring together the best theories and techniques from economics, psychology, 

neuroscience and computer science in an attempt to bridge the knowledge gap, to make 

better predictions and to ultimately determine the neurobiological mechanisms that 

underpin value-based decisions once and for all (Camerer et al., 2004). Since its 

conception, the neuroeconomic approach to decision making has led to an exponential 

increase in research publications and, consequently, a whole host of new insights 

regarding the neural dynamics of value-based decision making and avenues for further 

exploration (Glimcher & Fehr, 2013). 

Primarily, neuroeconomic studies have endeavoured to comprehensively map 

out the neural structures of the BVS. Aiding empirical investigation, Rangel et al. 

(2008) devised a neuroeconomic framework describing the distinct stages of the neural 

valuation process, including; representation, valuation, action selection and outcome 

evaluation. Representation and valuation are subjected to internal and external 

demands, such as hunger or available resources, and outcome evaluation is fed back 

to inform future decisions about similar stimuli (Rangel et al., 2008). The discrete 

neural stages outlined by the model have been used to examine specific aspects of the 

brain valuation process (Chib et al., 2009; Kurniawan et al., 2013; Lin & Vartanian, 

2017). According to Rangel et al. (2008), there are three value subsystems operating 

within the BVS which can operate independently or concurrently, and each subsystem 

has its unique brain activation patterns. These include the Pavlovian, habitual and 

goal-directed subsystems. The Pavlovian subsystem is activated during stimulus-

response valuations for natural stimuli; mapping on to approach-avoidance behaviours 

(Wright et al., 2013). Consequently, the Pavlovian system includes a neural circuit of 

brain areas associated with emotion and reward, including the basolateral amygdala, 

the ventral striatum and the orbitofrontal cortex (Cardinal et al., 2002; Holland & 



 

15  

Gallagher, 2004). The habitual subsystem is responsible for valuation resulting from 

learned associations which are accumulated through repetition and includes brain 

structures such as the dorsolateral striatum and the thalamus (Ashby et al., 2010; 

Rangel et al., 2008). Lastly, the goal-directed subsystem is responsible for top-down 

outcome-based valuation and operates during novel situations, predicting and 

evaluating outcomes. The suggestion of discrete brain areas for the processing of 

different value-based decisions is supported by research which shows activation of 

unique voxels for discrete categories of stimuli (Bulthé et al., 2014; Diana et al., 2008; 

Haxby et al., 2001; Haxby et al., 2000; Howard et al., 2009; Kragel & LaBar, 2016). 

The Rangel et al. (2008) framework has been extensively used to investigate the BVS 

by examining neural correlates at each of the decision stages. 

As an alternative to the proposal of discrete value systems within the brain set 

out by Rangel et al. (2008), the common neural currency hypothesis holds that all 

value-based decisions are computed within the same neural valuation system, which 

is domain general and generic, and SVs are assigned persistently and automatically to 

stimuli in the environment (Bartra et al., 2013; Levy & Glimcher, 2011; Westbrook et 

al., 2019). In line with the common neural currency hypothesis, SV computation 

involves comparison of costs and benefits across different domains for multiple 

competing alternatives on a common scale, which are then ranked to form a decision, 

and the BVS must account for this cross-domain comparison (Bartra et al., 2013; 

Westbrook et al., 2019). Support for the common neural currency hypothesis comes 

from research which shows activation of the BVS regardless of whether a valuation is 

explicitly needed, demonstrating the automaticity of the BVS (Lebreton et al., 2009; 

Tyson-Carr et al., 2018). 
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Kahneman (2011) proposed that there are two neural systems which govern 

consumer thought and decisions; System 1 and System 2, which are individually 

responsible for automatic and more conscious decisions, respectively. According to 

Kahneman (2011), System 1 is a ‘quick thinking’ system which is intuitive and relies 

on ‘gut response’. It is automatic and fast and requires little or no effort, has a high 

processing capacity, relies on biases, heuristics, habits and associative memory 

processes and is often emotionally charged (Kahneman, 2003). Importantly, 

Kahneman suggests that System 1 is in perpetual operation unless the individual’s 

attention is focussed elsewhere. System 1 can produce emotional reactions and 

physical behaviours in response to stimuli which replicate previous reactions to similar 

events, such as reacting with aversion to the word vomit, due to the fact that cognition 

is embodied. Conversely, System 2, the ‘slow thinking’ system, is conscious and 

controlled and relies on cognitive effort, deductive reasoning and conscious attention. 

Consequently, System 2 operates more infrequently and has a limited capacity, so it is 

deployed when System 1 is unable to provide an answer, and monitors the progress of 

System 1, exercising impulse control over System 1 when necessary. Kahneman 

(2011) argues that System 1 is innate and exists within most animal species, whereas 

System 2 is specific to humans. There can also be crossover between the two systems, 

for instance, System 1 creates impressions, intentions and feelings which can be 

endorsed by System 2 and turned into beliefs, making it more likely that System 2 will 

accept the impressions of System 1 in the future. Kahneman (2011) argues that in 

familiar situations, System 1 predictions are usually accurate and appropriate. System 

1 and System 2 exist to maximise performance speed and accuracy, whilst exerting 

the minimum amount of effort. From an evolutionary perspective, System 1 provides 

continuous assessment of the environment to promote survival, therefore, it is 
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associated with approach and avoidance and detecting threats and opportunities, which 

has been adapted to issues in the modern world. 

In decision making, heuristics and biases are cognitive shortcuts based on 

stored examples which reduce cognitive load and facilitate fast responses to similar 

events, however, they deviate from rational judgement and can be flawed (Ehrlinger 

et al., 2016). Different heuristics and biases can influence decision making in both 

System 1 and 2. One such heuristic is the law of small numbers, i.e. the tendency to 

believe that a sample is highly representative of the population and that the law of 

large numbers (large samples will certainly be representative of the population) also 

applies to small numbers (Tversky & Kahneman, 1971). Furthermore, an anchoring 

effect can occur as a result of priming (System 1), or in a deliberate process of evidence 

gathering and estimate adjustment (System 2) (Kahneman, 2011). Additionally, the 

availability heuristic can produce biases that are more influential on system 1. 

The Somatic-Marker Hypothesis (Damasio, 1994) provides neurobiological 

support for judgements made based on intuition, as in System 1 of Kahneman and 

Tversky’s theory (Bechara & Damasio, 2005). The Somatic Marker Hypothesis is a 

neural theory of economic decision making, which stipulates that natural decisions 

must be quick and require less computation to be effective, therefore, they must be 

grounded in emotional ‘gut’ responses. Damasio (1994) suggested that emotions or 

‘gut instincts’ are essential in guiding behaviour and decisions as they facilitate 

immediate rejection of aversive actions and reduce the amount of decision alternatives, 

protecting against future losses and supporting more efficient and accurate decisions 

(Damasio, 1994; Wilkinson & Klaes, 2012). Damasio argued that emotion, or somatic 

markers, can consciously and unconsciously assist cognitive processing during 

decisions and index subsequent decision making. Specifically, somatic markers 
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function to assign initial values to decision alternatives, ultimately resulting in 

approach and avoidance and guiding later decisions (Bechara, 2013). If people are 

unable to activate the somatic states that facilitate early value attribution during 

decision making, for instance, in patients with ventromedial prefrontal cortex 

(vmPFC) impairment, this results in decision-making impairments and problems with 

emotion (Bechara, 2013). 

An alternative explanation comes from drift diffusion model (DDM), which 

proposes that, in natural environments where multiple options are available, value-

based decisions are made via noisy evidence accumulation over time, which is 

modulated by visual attention (Krajbich & Rangel, 2011; Milosavljevic et al., 2010). 

For a decision to be made, the costs and benefits of each alternative must be integrated 

and weighed against each other until a decision boundary is reached, stimulating the 

binary choice of acceptance or rejection based on anticipated rewards or losses (Basten 

et al., 2010). The DDM of value-based choices holds that relative value signals are 

persistently computed while evidence is gathered in favour of a heuristic-based 

‘hypothesis’ that one item is more highly valued than another. Once a value signal 

reaches some upper or lower threshold following evidence integration, SV is reached 

(Milosavljevic et al., 2010). Therefore, according to the DDM approach, the brain 

assigns value sequentially and stochastically by extracting stimulus features through 

evidence accumulation and integrating the values over time (Milosavljevic et al., 

2010). The DDM is conceptually similar to the embodied predictive processing 

account of embodied cognition (Clark, 2015; Friston et al., 2010), which holds that 

serial and hierarchical perception would take a long time and, thus, be disadvantageous 

in natural environments. In the real-world, information is accumulated in a continuous 

forward flow and constructs representations as more evidence is gathered, interacting 
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with and updating stored representations as it goes, and is subject to top-down 

attention modulation (Clark, 2015). As a result, predictions and attempts to optimise 

predictions and minimise prediction errors are made (Friston et al., 2010; Kirchhoff, 

2018). In this way, interactions with the world are akin to sensory experiments and 

hypotheses are tested by gathering further evidence through actions (Friston, 2012). 

The DDM holds that the process of cost-benefit comparison is related to the 

competing behavioural tendencies of approach or avoidance, therefore, the cost-

benefit comparison is modelled as drifting towards accept or reject decision 

boundaries (Basten et al., 2010). Basten et al. (2010) found evidence to support the 

DDM when examining the neural mechanisms underlying cost-benefit comparisons, 

with increased blood-oxygen-level-dependent (BOLD) activity in the nucleus 

accumbens (NAcc) and amygdala during evidence accumulation for costs and 

benefits, in the vmPFC, reflecting and comparison of reward and loss, and increased 

activity in the intraparietal sulcus reflecting integration of the difference signal, 

accumulated until a decision threshold is reached. 

1.4.1. Neural substrates of the brain valuation system 

The main priority for neuroeconomic research has been to comprehensively map out 

the BVS during the different value stages outlined by Rangel et al., (2008) using 

methods such as fMRI and single neuron recordings (Konovalov & Krajbich, 2019; 

Rangel et al., 2008). Studies have suggested that the BVS incorporates a diverse 

network of brain structures in the occipital, temporal and parietal cortices (Lebreton 

et al., 2009), including the striatum, the ventromedial prefrontal cortex, orbitofrontal 

cortex (OFC), posterior cingulate cortex (PCC), hippocampus, amygdala, insula, 

dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). 
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The striatum is thought to encode positive SVs of primary and secondary 

rewards at the time of choice and during outcome evaluation (Bartra et al., 2013), 

overall reward magnitude (Elliott et al., 2000), monetary gains and losses (Delgado et 

al., 2000), anticipation of an increasingly rewarding (Knutson et al., 2001) or aversive 

stimulus (Jensen et al., 2003) and prediction errors (Hare et al., 2008). Similarly, the 

vmPFC also plays a role in SV computation at the time of choice for primary and 

secondary rewards (Hare et al., 2010; Kable & Glimcher, 2007; Padoa-Schioppa & 

Assad, 2006; Plassman et al., 2007) and evaluation of decision outcomes (Clithero & 

Rangel, 2014; Levy & Glimcher, 2012; Padoa-Schioppa & Cai, 2011; Rangel & Hare, 

2010) and correlates with subjective desirability of goods (Plassmann et al., 2007), 

expected value (Kable & Glimcher, 2009), reward outcome value (Knutson et al., 

2003), experienced pleasure (Grabenhorst & Rolls, 2011), and the difference between 

chosen and unchosen options (Grabenhorst & Rolls, 2011). Moreover, different areas 

of the vmPFC might encode distinct aspects of the valuation process, with anterior 

vmPFC activity reflecting experienced value, and posterior vmPFC activity indexing 

decision value (Smith et al., 2010). Both the vmPFC and striatum activity elicited in 

the absence of value choices have been shown to predict subsequent choices, 

suggesting that these areas encode SV automatically (Levy et al., 2011) and activation 

of the vmPFC and striatum correlate with the value of fixated targets, suggesting that 

these value signals are modulated by visual attention (Lim et al., 2011). 

The OFC is one of the main projection areas in dopaminergic pathways and is 

thought to index reward processing (Liu et al., 2011), particularly, reward learning and 

adaptive decision making in dynamic environments (Walton et al., 2011). OFC 

activity has been shown to correlate with positive rewards (Liu et al., 2011), reward 

availability and anticipation (Blechert et al., 2016; Jędras et al., 2013), expected value 



 

21  

and experienced value, and subjective pleasantness (Grabenhorst & Rolls, 2009). In 

primates, neurones in the OFC encode SVs of alternative options and chosen options 

(Padoa-Schioppa & Assad, 2006), and reward amount (Wallis & Miller, 2003). 

Additionally, it has been shown that OFC lesions impair goal-directed decisions 

(Padoa-Schioppa & Conen, 2017) in uncertain environments (Walton et al., 2011). 

Moreover, OFC neurones encoded gaze position and value, which was amplified when 

primates fixated on a cue, demonstrating the importance of gaze behaviour in the 

neural mechanisms of value-based decisions in ecologically valid settings (McGinty 

et al., 2016). Therefore, the OFC is thought to be an essential structure in economic 

decision making (Padoa-Schioppa & Conen, 2017). 

The PCC, involved in memory retrieval (Lebreton et al., 2009), has been linked 

to SV computation and information integration during decisions (Clithero & Rangel, 

2014), and correlates with value coding for delayed rewards (Peters & Büchel, 2009), 

expected rewards, punishments, and planning of saccadic eye-movements to target 

stimuli in primates (Iyer et al., 2010). The PCC may also index decision salience and 

attention (Heilbronner et al., 2011). The hippocampus, another memory-related neural 

structure, also plays a role in the BVS. Hippocampal activity is modulated when 

preference decisions are based on brand information (McClure et al., 2004; Schaefer 

& Rotte, 2007), for example, increased preferences for Coca-Cola compared to Pepsi 

Cola correlated with hippocampal activation (McClure et al., 2004). Additionally, 

hippocampal activity is correlated with sensitivity to financial loss, and the 

hippocampus might have an inhibitory effect on reward experience, forming part of 

the behavioural inhibition system (Elliott et al., 2000). 

The amygdala is associated with monetary loss aversion and there is evidence 

to suggest that it could be important in inhibiting behaviour which is likely to produce 
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negative outcomes (De Martino et al., 2010). The amygdala is also thought to be 

involved in generating value expectancy (Holland & Gallagher, 2004). Alternatively, 

the insula is involved in the encoding of subjective unpleasantness (Grabenhorst & 

Rolls, 2009), and processing of aversive outcomes (Tanaka et al., 2004), including the 

encoding of low-value products (Tyson-Carr et al., 2018). 

The DLPFC is known to be involved in working memory and mental 

manipulations, and is thought to index relative value computations according to 

contextual demands (Lee & Seo, 2007; Saraiva & Marshall, 2015). The DLPFC and 

VMPFC interact during value-guided decisions and the DLPFC might modulate the 

value encoded by the VMPFC when decision conflict occurs (Saraiva & Marshall, 

2015) and during cost-benefit decisions (Basten et al., 2010). Moreover, DLPFC 

activity is thought to encode goal-value signal in primates and in humans (Rangel et 

al., 2008) and values of actions correlate with DLPFC (Morris et al., 2014). 

Similarly, the ACC is thought to guide adaptive decision making and value 

through cognitive control mechanisms and integration of choice history and outcomes, 

particularly in dynamic naturalistic environments (Walton et al., 2007). ACC activity 

has been linked to processing of response conflict and adaptive modification of 

behaviour following reinforcement learning (Botvinick et al., 2001), as well as 

cognitive control, motivation, inhibitory control, surprise and reward-based decision-

making (Shenhav et al., 2016; Vassena et al., 2020). 

It has been suggested that because the vmPFC/OFC, striatum and insula show 

activation to a variety of rewarding stimuli in the same participants, these brain areas 

might represent a common neural currency for economic value decisions, allowing for 

comparison between different stimulus categories (Brosch & Sander, 2013). Complex 
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decisions involving a cost-benefit analysis could involve interactions between the 

vmPFC/OFC and insula, whereas issues of delaying gratification and value 

discounting might be subject to interactions between vmPPFC/OFC and ventral 

striatum (Brosch & Sander, 2013). 

Although not part of the BVS, brain areas responsible for visual attention may 

also play a role in early value-based decisions during free viewing, as crude, 

preliminary SVs, derived from learned values or heuristics, may be assigned to 

competing stimuli to selectively guide attention to salient stimuli (Itthipuripat et al., 

2015). Supporting the role of visual attention in valuation, studies have demonstrated 

that highly rewarding stimuli receive neural prioritization of attention in the visual 

cortex, despite the fact that they are not physically salient (Itthipuripat et al., 2015). 

Therefore, visual attention could interact with the BVS during early automatic 

valuation to ensure facilitated attention to salient stimuli, promoting approach and 

avoidance behaviours. 

1.4.2. Temporal dynamics of value-based decisions; electrophysiological 

evidence 

The majority of neuroeconomic research has investigated the BVS using 

neuroimaging methods such as fMRI, providing an overview of brain regions that 

comprise the BVS (Bartra et al., 2013; Lebreton et al., 2009). However, the limited 

temporal resolution of fMRI cannot provide insight into the temporal properties of the 

brain valuation process during decision-making and, consequently, much less is 

known about the temporal dynamics underpinning valuation decisions (Larsen & 

O’Doherty, 2014). To date, a limited amount of research has targeted the 

electrophysiological correlates of valuation in evoked potentials, providing mixed 
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results. MoBI research has found equivalents for some visual evoked potentials 

(VEPs). However, currently, no specific investigations of valuation decisions using 

eye movement related potentials (EMRPs) have been conducted. Such investigation is 

essential for uncovering the spatio-temporal dynamics of the BVS, which can help to 

reveal the ways in which the brain processes SV in realistic settings. The following 

paragraphs will provide an overview of visually evoked ERPs, or VEPs, associated 

with valuation and, where applicable, the EMRP or MoBI-derived equivalent ERPs. 

1.4.2.1. P200 

The P200 is an early VEP component showing a positivity in central-frontal and 

parietal-occipital scalp regions and peaking between 150–250 ms after the onset of a 

visual stimulus (Bourisly & Shuaib, 2018; Hu et al., 2017). The P200 is often 

associated with visual attention to salient stimuli (Carretié et al., 2001b). Specifically, 

research has shown modulation of P200 when attending to emotional stimuli (Carretié 

et al., 2001b; Gerdes et al., 2013; Schirmer et al., 2011), particularly negative cues, 

which might reflect a negativity bias in the brain (Carretié et al., 2001b; Correll et al., 

2006; Gerdes et al., 2013; Huang & Luo, 2006; Rigoni et al., 2010; Wang & Han, 

2014; Wang et al., 2012). Moreover, P200 is thought to index early valuation of 

rewards (Gui et al., 2016), as well as outcome evaluation, predictability of outcomes 

and risk (Polezzi et al., 2008; Rigoni et al., 2010; Schuermann et al., 2012), and 

desirability of products (Tyson-Carr et al., 2018). In wireless EEG recordings of 

natural behaviours, the P200 has been observed during piano playing (Zamm et al., 

2019) and natural reading of unexpected words (Fjaellingsdal et al., 2020).  
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1.4.2.2. N200 

The N200 is a negative evoked potential occurring between 180–325 ms in posterior 

electrodes and is thought to be essential for stimulus evaluation, discrimination, 

conflict processing and selective attention (Dennis & Chen, 2007; Gajewski et al., 

2016; Hakim & Levy, 2019; Patel & Azzam, 2005), including attention encoding 

during free viewing (Natraj et al., 2018). The N200 might reflect a reinforcement 

learning signal for adaptive decision making, as it is sensitive to outcome valence and 

emotion processing (Hajihosseini & Holroyd, 2013; Kanske & Kotz, 2010). It has 

been suggested that the N200 indexes prediction errors and encoding of product 

preference (Goto et al., 2017; Schaefer et al., 2016; Telpaz et al., 2015; Tyson-Carr et 

al., 2018). In relation to MoBI research, the N200 has been shown to reflect automatic 

inhibition of motor control during sitting and walking in a go/no go task (De Sanctis 

et al., 2014), and has been investigated in the context of deviant stimuli during 

skateboarding and driving (Robles et al., 2020; Zander et al., 2017). 

1.4.2.3. P300 

Later event related potential (ERP) components such as the P300, a positive wave 

occurring 250–450 ms in midline electrodes (Pozharliev et al., 2015), have also been 

linked to value processing in the brain. Similarly to the N200, the P300 is thought to 

index attention (Polich, 2007; Schuermann et al., 2012), particularly for novel stimuli 

(Ladouce et al., 2019; Suwazono et al., 2000). Specifically, it has been suggested that 

the P300 represents a later revision or mismatch detection between incoming stimuli 

and the initial processing which occurred in earlier components such as the N100, 

P200 and N200 (Polich, 2007). Consequently, if the new stimulus aligns with the 

initial representation, the ‘schema’ outlined by earlier components is maintained, 
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however if the stimulus is novel, additional P300 attention-related processes are 

needed to update previous stimulus representations (Polich, 2007). Therefore, P300 is 

thought to involve higher-level processing and working memory processes pertaining 

to attention (Polich, 2007). The P300 is also modulated by the positive or negative 

valence of stimuli (Cano et al., 2009; Conroy & Polich, 2007; Keil et al., 2002; Onishi 

& Nakagawa, 2019; Yeung & Sanfey, 2004), and allocation of attention when 

evaluating reward outcomes in terms of valence, magnitude and expectancy (Wu & 

Zhou, 2009; Yeung & Sanfey, 2004). In relation to MoBI research, the P300 has 

shown sensitivity for attentional resources for objects during dual-task walking (Shaw 

et al., 2018), and has been observed during sitting or walking (Debener et al., 2012), 

with reduced P300 amplitude during walking compared to standing still due to 

enhanced processing demands (Ladouce et al., 2019). 

1.4.2.4. Late positive potential (LPP)/Feedback-related negativity 

(FRN)/Error-related negativity (ERN) 

Other later components which are thought to be related to valuation include the LPP, 

the FRN and ERN, and these are thought to index valuation of outcomes. The LPP is 

a slow wave occurring 500–700 ms and is modulated by the emotional significance of 

stimulus valence (Hajcak & Olvet, 2008; Keil et al., 2002; Schupp et al., 2000), and 

reflects attention allocation for motivationally salient stimuli, including products 

(Goto et al., 2017; Lang & Bradley, 2010; Pozharliev et al., 2015). Findings regarding 

the LPP are mixed, however, as Pozharliev et al. (2015) only observed modulation of 

the LPP in a social context when others were present. The FRN is a negative deflection 

occurring in frontal-central electrodes with a peak latency of 250 ms (San Martín, 

2012). Like the P300, the FRN is thought to encode aspects of outcome evaluation 
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following feedback (Yeung & Sanfey, 2004), and is specific to negative feedback 

(Huang & Yu, 2014). The FRN is thought to reflect prediction errors and depend on 

the relationship between expected rewards and actual rewards, with worse than 

expected outcomes eliciting enhanced FRN (Huang & Yu, 2014). For example, the 

FRN is sensitive to price expectation violations during shopping (Schaefer et al., 

2016), and aversion to monetary loss (Kokmotou et al., 2017). The ERN is a negative 

deflection which peaks approximately 80 ms in frontal scalp regions in response to 

errors (Chang, 2016; Holroyd & Coles, 2002), and is thought to reflect higher-level 

conflict monitoring and error detection (Holroyd & Coles, 2002; Wessel, 2012). MoBI 

research has reported modulation of the ERN for incorrect responses of a go/no-go 

task during sitting and treadmill walking (De Sanctis et al., 2012). Recently, the LPP 

for threatening faces has been observed in virtual reality (VR) conditions (Stolz et al., 

2019). However, to date, modulations of the FRN have not been detected in MoBI 

studies in ecologically valid settings, which could indicate operation of different 

processes (Lange & Osinsky, 2020). 

1.4.3. Exploratory data-driven analyses to examine value-based decisions 

There is much research investigating the brain areas involved in value computation, 

however, much less research has investigated the activation of brain networks over 

time during value-based decisions, and the temporal dynamics of the brain valuation 

process remain elusive (Tyson-Carr et al., 2020). Converging neuroscientific evidence 

has suggested that choices involve initial assignment of SVs which are then compared, 

resulting in selection of the optimal option (Gold & Shadlen, 2007; Harris et al., 2011; 

Kable & Glimcher, 2009; Montague & Berns, 2002; Rangel et al., 2008; Rangel & 

Hare, 2010). In dynamic real-world environments, it may be essential to encode and 
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compare information from the environment over time to successfully weigh 

alternatives and form a decision, which is in line with the DDM (Basten et al., 2010; 

Milosavljevic et al., 2010; Ratcliff, 1978; Tzovara et al., 2015). 

It has been shown that modulation of value occurs across multiple time 

windows, ranging from 150 – 800 ms post stimulus onset (Harris et al., 2011). 

Categorisation of valence emerges from 120 ms (Smith et al., 2003), and value 

categorisation has been reported as early as 150 ms (Harris et al., 2011), suggesting 

that the BVS is capable of rapidly encoding stimulus value. Harris et al. (2011) 

conducted an exploratory analysis of EEG data over an extended time window and 

observed early cortical modulation of value between 150 – 250 ms in the parietal and 

temporal lobe, reflecting value signal computation, suggesting that early ERP 

components involved in early sensory processing can also encode stimulus value, not 

just salience. Later modulation of value (400 – 550 ms) was observed in the vmPFC, 

reflecting value comparison during decision making and, for the latest time bin (700 

– 800 ms), value-related modulation was observed in the intraparietal sulcus, 

reflecting transformation of goal-value into motor action. Taken together, Harris et 

al’s (2011) data demonstrated the temporal stages of valuation leading to action 

execution. Tzovara et al. (2015) examined the time course of single decisions 

following stimulus presentation to detect trial-to-trial level variation in decisions, 

allowing for identification of decision stages. A data-driven approach was utilised to 

avoid bias and overlooking decision-making phenomena occurring outside of a 

predefined time interval of interest. Results revealed an early time-locked component 

around 150 ms after stimulus presentation, reflecting evidence accumulation, and a 

later component which shifted across trials depending on level of difficulty of the 

decision. Easy decisions were detected at approximately 500 ms compared to hard 
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decisions which were detected around 700 ms, and decision onset could be predicted 

340 ms prior to the subject’s behavioural response by detecting correlates of when 

single decisions were made. 

The exploration of the time course of decision-making processes requires an 

exploratory or data-driven research approach utilising methods with a high temporal 

resolution such as EEG. Only a limited number of studies have specifically examined 

modulation of economic value, as determined by willingness to pay (WTP), across an 

extended time-course (Tyson-Carr et al., 2018, 2020). Tyson-Carr et al. (2018) 

conducted an exploratory analysis to examine the spatiotemporal characteristics of 

brain valuation, with WTP as a measure of SV for products in tasks where valuation 

was either relevant or irrelevant to ascertain the automaticity of valuation. The authors 

found an N200 component was modulated by value, with enhanced activation for low-

value items in the anterior insula and OFC, regardless of valuation context, suggesting 

that an automatic valuation process operates in the brain which promotes avoidance 

of unwanted items. Furthermore, Tyson-Carr et al. (2020) extended previous findings 

by examining eye-fixation related potentials for products over the entire period of 

natural object viewing; separating viewing into 800 ms time bins to determine how 

neural valuation decision temporally evolved. Following an independent component 

analysis (ICA), results revealed distinct spatio-temporal encoding of value. 

Importantly, each of these independent components (ICs) distinctly encoded product 

value early in the viewing period, within the N200, and persisted throughout the 

viewing period in free- and forced-bid trials. Results also suggested that high-value 

items did not significantly vary throughout the valuation stage and received increased 

fixations, therefore, increased cognitive processing may be required for these items. 

Tyson-Carr et al.’s (2020) results suggest that products of different SVs receive unique 
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neural encoding which begins as an automatic provisional value categorisation which 

persists across the decision period in successive fixations and is updated according to 

information gathered from the environment. These findings support the DDM 

perspective of valuation processing, whereby evidence is accumulated until a decision 

threshold is reached, and this can occur rapidly resulting in automatic value encoding 

in the brain (Harris et al., 2011; Milosavljevic et al., 2010; Tyson-Carr et al., 2020). 

Despite these initial findings, the identification of a decision-making timeline and 

neural correlates has been an important yet largely overlooked research avenue which 

could provide a better insight into decision-making processes in real-world settings. 

1.4.4. Linear versus distinct neural encoding 

Because the temporal dynamics of value-based decisions are not well understood, it is 

not known how the brain encodes SV. Studies have found some evidence for distinct 

SV encoding in unique spatio-temporal cortical clusters (Tyson-Carr et al., 2018, 

2020). For example, Tyson-Carr et al (2020) observed distinct cortical clusters for 

products of different SV as measured by WTP, with one component encoding high-

value products in the left parietal cortex, one encoding intermediate value items in the 

frontal-central region of the cortex, and one in the frontal cortex encoding intermediate 

and low-value products. Category specific neural selectivity has also been observed in 

other domains, such as for faces in the N170 component (Cao et al., 2014), and for 

negative stimuli in the P100, N100, P200 and N200 components (Huang & Luo, 2006; 

Lithari et al., 2010; Smith et al., 2003). 

Alternatively, there is some evidence which contends that SV could be linearly 

encoded by the brain (Abitbol et al., 2015; Bartra et al., 2013; Lebreton et al., 2009). 

Bartra et al (2013) questioned whether neural correlates of SV follow a linear or 
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nonlinear function, indicated by a monotonic increase in BOLD fMRI signal as a 

function of SV, compared to a U-shaped function showing maximal activation for at 

the polar ends of SVs. Bartra et al. (2013) found that some structures within the BVS 

demonstrated linear encoding, including the vmPFC and PCC, whereas the anterior 

insula displayed non-linear encoding. They also found evidence for distinctive neural 

structures encoding positive or negative value and combined encoding of valence in 

other structures. Therefore, further research is needed to determine whether SVs are 

encoded linearly or in distinct neural clusters within the BVS. 

1.4.5. Automatic valuation processing in the brain 

Decision-making was initially considered to be a conscious and deliberative process. 

However, because the real-world contains a multitude of complex information to be 

processed and because humans have limited attentional resources and higher order 

processing capacities including memory, in recent years is has been suggested that the 

BVS must assign some SVs automatically without conscious attention (Anderson, 

2013). 

Previous studies have reasoned that in order to adaptively and efficiently 

respond to stimuli in the environment, the BVS must automatically assign values to 

objects in the environment, and these SVs can influence behaviour even if the object 

is not explicitly attended to, or if they are choice irrelevant (Grueschow et al., 2015; 

Lebreton et al., 2009). This phenomenon is known as value-based attentional capture 

(Anderson, 2013), referring to the neural process of persistently monitoring the 

environment for behaviourally relevant or salient stimuli and automatically assigning 

SVs to efficiently guide choices promoting behavioural approach or avoidance. Rapid 

attention for a stimulus maximises the time that the decision-maker has to act upon the 
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stimulus, making it more likely that they can obtain a reward or avoid a negative 

outcome, increasing the likelihood that the individual will survive or thrive (Anderson, 

2013). In line with an adaptive response to stimuli, Cortese et al., (2020) demonstrated 

that value-based predictions drove motivated behaviours which allowed tasks to be 

solved more quickly, suggesting that decision-making in the brain is able to tap into 

higher-order summarisations of the task states. Furthermore, it has been suggested that 

an automatic BVS should be generic and encode both primary and secondary rewards, 

allowing for stimuli comparison across multiple dimensions (Lebreton et al., 2009). 

Additionally, it is unknown whether multiple distinct neural systems operating in 

parallel, one domain-general neural system, or a sequential evidence accumulation 

threshold mechanism operates in the brain when assigning SVs during value-based 

decisions. The automaticity of the BVS has been empirically supported, with studies 

finding activation of valuation neural circuits during explicit valuation and during 

distractor tasks when value computation was not required (Grueschow et al., 2015; 

Lebreton et al., 2009; Polanía et al., 2014), during forced choice tasks (Plassmann et 

al., 2007) or hypothetical purchase decisions (Tusche et al., 2010), suggesting that 

value is persistently and implicitly computed by the BVS (Lebreton et al., 2009). 

In addition to persistently encoding value, another indication of automatic 

valuation in the brain is rapid encoding of SV prior to conscious elaboration. 

Automatic processing and facilitated attention are allocated to motivationally salient 

stimuli to promote approach or avoidance, explaining the negativity bias. 

Additionally, target detection is facilitated when stimuli are associated with rewards 

(Kiss et al., 2009), and a history of previously rewarding or reward-associated stimuli 

can facilitate attentional priority for those items (Anderson, 2013). It has also been 

suggested that SV is closely linked to decision confidence, with high-value and low- 
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value options linked to high confidence, thereby stimulating approach-avoidance 

behaviours, whereas medium-value options are associated with more uncertainty and 

lower confidence (Bobadilla-Suarez et al., 2020). 

Previous ERP studies have shown facilitated processing of salient stimuli 

suggesting automatic value encoding. For example, research has shown that the 

amplitude of the P200, which is thought to reflect early automatic attention allocation, 

is modulated according to negative stimuli (Carretié et al., 2001b; Huang & Luo, 2006; 

Jin et al., 2017; Wang et al., 2012), and the N200 has been linked to automatic 

preference encoding (Goto et al., 2017; Kiss et al., 2009; Telpaz et al., 2015), as well 

as to automatic valuation for low-value products (Tyson-Carr et al., 2018) and 

low/medium-value products (Tyson-Carr et al., 2020). 

The role of the body and the environment has been largely overlooked when 

investigating automatic valuation. Because automatic valuation forms part of a process 

which stimulates approach and avoidance, the body plays an essential role, however, 

all of the studies to date examine neural responses while participants are sitting or 

reclining, omitting opportunities for approach-avoidance. Additionally, cues in the 

environment which signal the availability of items can facilitate attentional bias and 

alter motivated behaviours (Jędras et al., 2019; Jones et al., 2012; Maas et al., 2012), 

necessitating investigation of automatic valuation in natural environments. Despite the 

influence of the body on valuation and motivated behaviour, to date, no studies have 

examined the automaticity of the BVS in natural conditions using methods with high 

temporal resolution such as mobile EEG, and this is the focus of the experiments in 

the current thesis. 
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1.4.6. Interim summary of electrophysiological studies investigating value  

Many studies have examined the neural correlates of value, however, relatively fewer 

experiments have been dedicated to examining the temporal sequencing of value-

based decisions. Most of the electrophysiological literature on valuation has focused 

on electrical potentials that occur during processing of choice outcomes, such as the 

FRN, ERN and LPP. ERP correlates of value that are time-locked to the onset of the 

stimulus highlighted the P200, N200 and P300 ERP components, which are also 

thought to index visual attention for salient stimuli, although the literature is divided 

on how or whether these components are related to value encoding. Studies have 

observed value-based neural modulation across multiple time windows, ranging from 

150 – 800 ms post stimulus onset, with very early modulation of value in the brain at 

around 120 ms (Harris et al., 2011). Because the exact spatio-temporal dynamics of 

the neural valuation process are unknown, to avoid overlooking effects of valuation 

due to cherry picking the data, an exploratory-based data-driven approach 

investigating the entire time-course of the decision and utilisation of methods with a 

high temporal resolution, such as EEG, offers the most promising solution. A data-

driven approach affords investigation of outstanding research questions regarding 

whether value is encoded distinctly by separate cortical clusters or linearly within the 

same neural structures, to what extent value is automatically encoded within the brain, 

and whether an environment that is concordant with shopping will impact the 

valuation processes and behaviours.  
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1.5. The mobile brain/body imaging (MoBI) approach for investigating 

real-world value-based decisions 

1.5.1. MoBI and embodied cognition  

The MoBI approach was introduced in the seminal paper by Makeig et al., (2009) as 

a way of combining high density EEG measurements with body and eye-movement 

recordings in freely moving participants. The approach was developed to better 

understand the complex and multidimensional brain dynamics supporting cognition 

and motivated behaviour in realistic environments (Gramann et al., 2010; Gramann et 

al., 2011; Gwin et al., 2010; Liao et al., 2012; Makeig et al., 2009; Ojeda et al., 2014). 

Although other MoBI techniques exist, including mobile magnetoencephalography 

(MEG) (Boto et al., 2018) and mobile functional near-infrared spectroscopy (fNIRS) 

(Krampe et al., 2018; Park et al., 2018), the high temporal resolution of mobile EEG 

recordings makes it well suited for examining natural cognitive processes in real time 

(Makeig et al., 2004; Parada et al., 2020). 

Central to the MoBI approach is the issue of ecological validity, which is the 

question of whether data obtained in restrictive laboratory-based environments is 

generalisable to real-world conditions, and has been debated since the 1940s 

(Andrade, 2018; Brofenbrenner, 1977; Neisser, 1976). Despite static laboratory-based 

experiments affording enhanced control over experimental variables increasing 

internal validity, humans are active agents and cognitive processes are not made in 

isolation (Parada et al., 2020). Therefore, according to the MoBI approach, unimodal 

laboratory-based neural data can only inform about neural processes that occur in that 

specific environment and are not necessarily generalisable to real-world contexts 

(Ladouce et al., 2017; Neisser, 1976). Decision-making is strongly influenced by 
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fluctuations in internal demands, such as needs and desires, which are updated 

according to contextual changes within a complex and multifaceted environment 

(Makeig et al., 2009). 

The fundamental assumptions underlying the MoBI approach are consistent 

with the concept of embodied cognition, emphasising reciprocal interactions of 

agents’ mind and body in their environmental context (Lepora & Pezzulo, 2015). 

Embodied cognition can be understood from an evolutionary perspective, whereby 

cognition is holistically built upon perceptual and motor functions of the body, which 

evolved together through interactions with the environment (Gallagher, 2018). Such 

systems progressively adapted to increase effective (i.e. action selection) and efficient 

(i.e. action performance) utilisation of the available internal and external resources 

(Anderson & College, 2016; Gallagher, 2018). 

 For instance, during natural cognition, many aspects of a human body interact 

with environmental stimuli, including hands for grasping, eyes for focusing on stimuli, 

an upright posture and many other bodily states (Gallagher, 2018). Therefore, contrary 

to the neurocentric view that it is only the brain in isolation which determines 

perception, cognition and behaviours, the embodied cognition account posits that 

perception, cognition and behaviour are intrinsically linked to many embodied 

processes, including the endocrine and autonomic systems, and can mutually influence 

each other, altering neural processes (Gallagher, 2018; Gallagher & Allen, 2018). 

Moreover, there is a bi-directional interplay between decisions, choices and actions 

during natural cognition in ecologically valid settings, and these are continuously 

updated according to changes in the environment (Lepora & Pezzulo, 2015; Makeig 

et al., 2009). Sensory input, introspective bodily states, perception, cognition and 

motor actions all interact to inform natural decisions (Lepora & Pezzulo, 2015; Petit 



 

37  

et al., 2016) to facilitate actions within the environment (Makeig et al., 2009). 

Supporting the MoBI approach and embodied cognition perspective, research has 

demonstrated activation of the mirror neuron system in both humans and primates 

during action observation and execution, demonstrating the interdependence between 

visual perception (observation of action), cognition (inner representation of action) 

and action (mimicking the movement; Kilner & Lemon, 2013).  

To successfully examine the brain dynamics supporting natural cognition, it is 

essential to extend the traditional structured and controlled laboratory setting towards 

less controlled unstructured or semi-structured experiments that are embedded within 

their natural context (Parada, 2018). Examination and imaging of cognition in more 

naturalistic settings was made possible by advancements in the MoBI approach over 

the last decade, owing to advancements in EEG hardware such as the development of 

lightweight wireless EEG systems (Gramann, 2014; Oliveira et al., 2016) and active 

shielded electrodes (Gramann, 2014). The implementation of advanced data 

processing techniques such as ICA and principal component analysis (PCA) to remove 

movement-related artefacts, and the co-registration of eye-tracking data, combined 

with methods for synchronising multimodal data, have led to a marked increase in 

MoBI research (Artoni et al., 2017; Delorme et al., 2007; Gramann et al., 2014; 

Ladouce et al., 2017; Makeig et al., 1996; Makeig et al., 1999; Parada, 2018). MoBI 

methods allow for examination of neural dynamics during a number of natural 

behaviours including walking (Gwin et al., 2010; Severens et al., 2012; Wagner et al., 

2012), running (Gwin et al., 2010), cycling (Zink et al., 2016), driving a car (Protzak 

& Gramann, 2018) and piloting an airplane (Callan et al., 2015). MoBI methods have 

a wide spectrum of other applications and can be used to examine behaviours in a 

limitless number of natural contexts, such as during artistic performance (Cruz-Garza 
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et al., 2020), dance (Barnstaple et al., 2020), military training exercises (Ko et al., 

2015), an office work place (Wascher et al., 2014) and in brain-computer interfaces 

(BCI) for real-time game play (Liao et al., 2012). The broad applications of MoBI 

systems demonstrates their potential for investigation of novel settings, which expand 

research horizons beyond the scope of more conservative approaches. 

1.5.2. Free viewing in natural environments 

Real-world vision involves a multitude of information in the environment which must 

be selectively processed and attended to, necessitating many different types of eye-

movements by the visual system (Dimigen, 2014). The most frequent form of eye-

movement used to explore information in natural environments are rapid, planned 

movements of the eyes known as saccades (Dimigen, 2014). High visual acuity is 

limited to 1-2 degrees around the point of visual fixation, known as the fovea centralis, 

however, outside of the fovea, parafoveal and peripheral processing is still capable of 

detecting a lower resolution visual image. The function of saccades is to direct the 

fovea to the most salient information in the environment at each moment in time to 

produce the highest-resolution image allowing as much information as possible to be 

detected (Dimigen, 2014). As a result, visual processing in natural environments is an 

active, trans-saccadic and goal-directed process, involving persistent shifts of visual 

attention across saccades during exploration of the environment in order to attend to 

salient stimuli in line with task demands (Canosa, 2009; Jia & Tyler, 2019; Kretch & 

Adolph, 2015; Schall, 2013). 

Traditional laboratory experiments have precluded eye-movements during 

EEG measurement due to eye artefacts distorting the EEG signal (Jia & Tyler, 2019). 

Restricting eye-movements using serial presentation of stimuli can prevent expression 
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of natural behaviours and omit investigation of a large portion of visual information 

processing and associated neural responses, sacrificing external validity and not 

allowing for understanding of data in a broader context (Dimigen et al., 2011; Jia & 

Tyler, 2019). In order to truly understand early valuation responses (which as seen in 

the previous section are likely linked to visual selective attention) it is essential to 

examine natural viewing behaviours during free visual exploration without restricting 

the subject’s gaze (Kretch & Adolph, 2015). MoBI and eye-tracking can be combined 

to examine co-registration of eye movements and neural dynamics during natural free 

viewing and uncover aspects of cognitive processing and attention that could not be 

observed under more restrictive conditions (Dimigen, 2014; Fischer et al., 2013; 

Nikolaev et al., 2014, 2016). 

Data recorded during co-registration of EEG and eye movements have shown 

that the way in which information is processed in natural environments differs from 

responses elicited from laboratory and computer-based stimuli, demonstrating the 

complexity of oculomotor behaviour (Dimigen, 2014). In laboratory experiments, 

correlates of visual cognition examined using EEG are often recorded during periods 

of prolonged fixation (Dimigen, 2014). However, natural vision involves active 

sampling of environmental information across several saccadic eye movements per 

second (Dimigen, 2014), and not all information is processed serially as salient 

information can be pre-processed in the fovea from non-central viewing positions 

(Dimigen et al., 2011). Active, natural vision also involves the prediction and pre-

selection of future saccade targets in parafovea and periphery, motor preparatory 

processes, and anticipation which facilitates the rapid processing of stimuli affording 

swift responses in a dynamic environment (Dimigen, 2014). Trans-saccadic 

processing during natural vision also means that multiple visual representations 
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gathered over time need to be spatially integrated across saccades, and this cannot be 

accounted for by restrictive laboratory studies (Ray et al., 2011). As such, working 

memory must be involved in trans-saccadic processing to maintain information about 

salient objects across successive saccades in order to guide subsequent saccades 

through goal-directed visual attention (Melcher, 2007). Therefore, salient aspects of 

the scene can be encoded prior to fixation and used to guide visual behaviour 

(Nikolaev et al., 2013). Taken together, the complexity of natural, active vision 

necessitates the importance of examining cognition using co-registration of EEG and 

eye-tracking under naturalistic free eye-movement conditions. 

1.5.3. The importance of context and physical product presence for real-world 

value-based decisions 

When valuation decisions for products are made in natural shopping contexts, 

environmental information must be attended in order to facilitate goal-directed 

exploration. This will be updated during movement, facilitating goals through 

interdependent perception, cognition and action (Ladouce et al., 2017). The 

neuroeconomic literature has shown that context can significantly modulate valuation 

responses (Kahneman et al., 1979), which can alter underlying brain activity (Tymula 

& Plassmann, 2016). Context-dependent expectations surrounding a product, such as 

beliefs and predictions regarding price or quality (Tymula & Plassmann, 2016), 

modulation of expectation congruency (Noseworthy et al., 2014), or context-induced 

changes in arousal (Griskevicius et al., 2009), can influence product valuation even 

when the physical properties of the good remain constant. For example, modulation 

of the price of an identical wine altered beliefs about its taste and modulated value-

related brain areas (Plassmann et al., 2008). Conceptual and perceptual congruence 
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between products and the environment can facilitate their positive evaluation and 

purchase selection by making them more accessible and easier to process (Berger & 

Fitzsimons, 2008). Additionally, priming of fear or desire can influence product 

desirability ratings (Griskevicius et al., 2009). Therefore, because decisions are 

formed as part of a complex and dynamic interaction with an environment, conclusions 

drawn from highly controlled laboratory experiments which omit these interactions 

and context might be limited or misleading. MoBI affords the opportunity for 

examining value-based decisions within their natural contexts, and the neural 

dynamics that underpin natural decisions, thereby greatly improving external validity. 

An additional issue to consider when examining value-based decisions for 

products in naturalistic environments is the type of visual stimuli used. 3-D products 

can be examined from multiple different angles, which can differ in visual features 

such as luminance, contrast, size and shape. The physical presence of a product can 

influence motivated behaviours, with objects that are within reach being more likely 

to stimulate a purchase (Painter et al., 2002). Moreover, with 3-D objects, the 

participant is able to properly appraise the product using all of their senses. 

Alternatively, 2-D images can be standardised on basic visual dimensions, ensuring 

that responses elicited during product valuation are not due to low-level visual 

features. Factors related to utilisation of 2-D and 3-D stimuli should be carefully 

considered when developing a naturalistic paradigm to investigate valuation responses 

using MoBI.  
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2. GENERAL METHODS 
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2.1. Electroencephalography (EEG) 

EEG is a technology that can be used to examine brain waves, i.e., the electrical 

outputs of neurones in the brain (Borck, 2018; Luck, 2005). Hans Berger (1873-1941) 

pioneered this neuroscientific research method in humans. His seminal paper “On the 

Electroencephalographram of Man” demonstrated that the rhythmic firing of groups 

of neurones, called neural oscillations, could generate an electrical field which could 

be detected and measured using a scalp sensor (Berger, 1929; Luck, 2005). However, 

it was not until 1964 that modern cognitive event related potential (ERP) experiments 

were developed, allowing for measuring brain responses to specific events (Luck, 

2005). 

2.1.1. Physiological basis of the EEG signal  

The human brain contains approximately 100 billion neurones (Freberg, 2016; 

Herculano-Houzel, 2009). EEG measures oscillating electrical potentials from the 

cerebral cortex that are generated when neurones fire by placing electrodes on the 

scalp. Each EEG scalp electrode records many cortical sources, as neurones are 

densely packed in 105 per mm2 of surface, with broad synaptic interconnectivity 

(Nunez & Srinivasan, 2006). 

Neurones are volume conductors, meaning that currents can flow through 

them. They can also generate a variety of currents, including receptor potentials, 

synaptic potentials and action potentials (Gazzaniga, Ivry & Mangun, 2002). Neurones 

are comprised of a soma, the presynaptic axon, receptor dendrites and the synapse 

(Lodish et al., 2000; Speckman et al., 2011). The intracellular space contains high 

concentrations of potassium (K+) ions and small concentrations of sodium (Na+) and 

chloride (Cl-) ions. The extracellular space contains high concentrations of Na+ and 



 

44  

Cl-, with small concentrations of K+ ions. These unequal distributions of ions from the 

inside relative to the outside of the neuronal membrane create a resting potential 

voltage ranging between -60 to -70 mV (Barnett & Larkman, 2007; Speckman et al., 

2011). The action potential results from the rapid depolarization of the neuronal 

membrane caused by a rapid influx of positively charged ions across the cell 

membrane, reversing the resting potential polarity. When a threshold is reached 

(between -50 and -55 mV), the presynaptic neuron fires an action potential, releasing 

neurotransmitters across the synapse (Gazzaniga, Irvy & Magnun, 2002). The changes 

in the membrane potential of the post-synaptic neuron following signal transmission 

are referred to as postsynaptic potentials (PSPs) (Freberg, 2015). Excitatory PSPs 

(EPSPs) propagate positive charges to the postsynaptic cell increasing the likelihood 

of an action potential firing, producing local membrane current sinks with distributed 

passive sources, which preserves current conservation. Inhibitory PSPs (IPSPs) 

produce the opposite effect, making it less likely for an action potential to be triggered 

in the post synaptic neuron, producing local membrane current sources with distant 

distributed passive sinks. The source of EEG signals recorded on the scalp are largely 

represented by EPSPs and IPSPs, rather than the action potentials themselves, as 

synaptic potentials have a larger temporal duration of around 5 to 10 ms up to 100 ms 

compared to action potentials which only last for less than 2 ms (Freberg, 2015; 

Speckman et al., 2011). 

2.1.2. EEG measurement of electrocortical activity on the scalp 

EEG measures modulations of synaptic and action potential fields from their 

background levels (Nunez & Srinivasan, 2006). Current flows between two cortical 

areas with different potentials (Freberg, 2016; Olejniczak, 2006). At the peak of the 
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action potential, within the axon segment, there is a positive potential compared to the 

axon segment downstream, which is inactive and more negative. Current flows within 

the axon from the active to the inactive part of the axon, and the inactive part of the 

axon then reaches the threshold and becomes active. Simultaneously, current flows 

across the membrane to the extracellular fluid and back into the cell, completing the 

loop. Because current follows the path of least resistance, the extracellular current will 

produce differences in potential at the scalp, which can be detected using electrodes 

(Freberg, 2015). Electrical fields of individual neurones are usually not powerful 

enough to be detected using scalp sensors (Woodman, 2010). It is thought that due to 

the short latency of the action potential (< 1 ms) and the high-frequency of the signal, 

action potentials are only measurable at short distances from the scalp. Postsynaptic 

potentials have a longer duration, increasing the likelihood of summation and greater 

local field potential. To create electrical fields that are strong enough to penetrate the 

brain, dura mater, skull and skin, large groups of neurones must fire synchronously 

(Woodman, 2010). As a result, the current view among neuroscientists is that EEG 

measures the postsynaptic low-frequency current resulting from the synchronized 

activation of groups of neurones in a local network (Nunez & Srinivasan 2006; 

Logothetis et al., 2001; Luck, 2005). 

Local field potentials are recorded on the cortical surface when pyramidal cells 

are arranged orthogonally to the cortical surface (Luck, 2005; Nunez & Srinivasan, 

2006; Speckman et al., 2011). Synchronous field activation across a cortical patch 

stimulates the far-field potentials that are subject to volume conduction, which is 

measured by scalp electrodes (Makeig & Onton, 2011). Only local field activity that 

is synchronous across a particular source domain will contribute to the potential 

registered by scalp electrodes. Therefore, the distance of the sensor from the cerebral 
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source will determine accuracy of modelling for that particular source, along with 

interference from artefactual extra-cerebral sources (Makeig & Onton, 2011). 

2.1.3. Source dipole modelling  

Identification of cortical generators of scalp potentials and oscillations is a challenging 

issue in EEG research and practice. The need to identify cortical generators is 

essential, especially if EEG data are affected with extracerebral artefacts such as in 

wireless EEG recordings in freely behaving humans. Extracerebral artefacts, which 

can impede the ability to identify underlying neural events, include; eye-movement 

artefacts, muscle contractions, cardiac activity, cable sway, line noise and EEG sensor 

displacement. Broad local field potentials are attenuated by the different materials 

through which they must pass to be detected by scalp electrodes (Nunez & Srinivasan, 

2006), including the scalp, the skull, cerebrospinal fluid (CSF) and the brain itself 

(Makeig & Onton, 2011; Nunez et al., 2019; Nunez & Srinivasan, 2009). These 

cortical field potentials are met with resistance at each of these materials, which 

spatially distorts and diminishes the signal, and the resulting signal is registered on 

scalp electrodes (Makeig & Onton, 2011). 

Loci of neural activity that produce a particular voltage distribution on the 

scalp in event related potentials (ERPs) can be estimated using source localisation 

techniques (Slotnick, 2005). Source localisation estimation is hindered by the inverse 

problem, which refers to the fact that when researchers work backwards to predict 

accurate source locations, there are multiple possible configurations of cortical 

generators that can explain a particular scalp voltage topography (Grech et al., 2008; 

Lopez, Rincon & Shimoda, 2016; Slotnick, 2005). Therefore, there are many possible 

inverse solutions, and selecting a solution depends on a-priori information and 
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additional mathematical or anatomical parameter constraints (Durka et al., 2005; 

Slotnick, 2005). The forward problem refers to estimation of electrical scalp potentials 

resulting from primary current sources using models (Mosher et al., 1999). 

The forward solution modelling accounts for signal distortion and alterations 

caused by different tissue properties and assumes a specific model for cortical activity, 

since only certain configurations of neurons can produce far field potentials 

measurable at the scalp. The cortical activity is modelled using location of source 

activity, assuming a spherical head model with Cartesian coordinates (0, 0, 0) 

representing the centre and location coordinates of the dipole (x, y, z) are fitted in 

reference to the centre. As can be seen in Figure 2, to provide forward solution, vector 

r from the negative charge towards the positive charge is then fitted using spherical 

moment parameters (m - dipole magnitude, and Θ, Φ defining orientation) and M 

representing dipole moment (i.e., measure of separation between the positive and 

negative ends of the dipole), are used to calculate the area of interception of the dipole 

and the matrix of electrode coordinates defining their localisation on the surface of the 

spherical head model (Figure 2). While dipole moment, magnitude and orientation 

parameters can vary over time, it is assumed that a particular dipole is invariant in 

terms of location and orientation over time (Scherg, 1990; Slotnick, 2005), resulting 

in the forward solution. 
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Figure 2. Dipole and matrix of electrode coordinates defining their localisation on the 

surface of the spherical head model, with Cartesian coordinate location parameters r 

(x, y, z), and dipole moment parameters M consisting of m, representing dipole 

magnitude and Θ, Φ defining orientation of the dipole. Reproduced from (Slotnick, 

2005). 

Building on the forward solution, the inverse solution involves non-linear 

model fitting algorithms to iteratively modify the parameters outlined by the forward 

solution, such as dipole location, time course, orientation and magnitude, in a way that 

minimises the sum of squares error, reducing the discrepancy between the model fit 

and the data (Slotnick, 2005). Specifically, the dipole fitting method of source 

localisation involves the iterative adjustment of the model voltage parameters (Vmodel), 

generated by the forward solution to best fit the neural data reflected in voltages 

recorded at the scalp electrodes (Vdata). Dipole time course parameters can be fitted 
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using a linear regression separately to the dipole fitting routine. Such parameter fitting 

routines include the Levenberg-Marquart method (Marquardt, 1963), the simplex 

method (Nelder & Mead, 1965), simulated annealing (Kirkpatrick, 1984) and generic 

algorithms (McNay et al., 1996; Slotnick, 2005). 

The following factors are essential for the optimisation of the inverse solution: 

number of electrodes, solution constraining, head models and source localisation 

accuracy (Slotnick, 2005). An increased number of electrodes provides more 

information about underlying signal generators, thus, increases source localisation 

accuracy. It has been indicated that around 100 electrodes is likely to produce optimal 

source localisation as it allows adequate sampling of scalp voltage topographies 

(Laarne et al., 2000). Parameter constraints can increase the accuracy of source 

localisation, such as rejecting dipole solutions that are located outside of the head or 

limiting the number of dipoles by matching them to the expected number of neural 

sources. Initial dipole parameters can be randomly varied to reduce user involvement 

and convergent results represent the global minimum rather than the local minima of 

dipole parameters (Huang et al., 1998; Slotnick, 2005). Alternatively, a-priori 

knowledge regarding number of expected dipoles can be employed to specify initial 

parameters. Realistic head models, using the boundary element method or the finite 

element method, can provide more accurate approximations of head shape and 

conductivities of the skull, brain and scalp. However, such methods are extremely 

computationally demanding and still do not reflect accurate representations of the 

head, suffering from model misspecification and source localisation errors, 

particularly when multiple cortical sources are present. Source localisation has been 

shown to accurately predict sources up to approximately 1 cm using four-shell 

spherical head models (Slotnick, 2005). 
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Overall, while analysis of the voltage topography of an ERP can allow 

researchers to indicate underlying source generators of activation, source localisation 

techniques take this one step further, affording the accurate estimation of the location 

of the voltage source in the cortex (Slotnick, 2005). To estimate cortical sources, 

experimental chapter 1 in the current thesis estimated equivalent current dipoles using 

a sequential strategy describing the 3-dimensional source currents (Hoechstetter et al., 

2010; Scherg & Von Cramon, 1986) and experimental chapters 2 and 3 used a 

spherical head model in Dipfit 2.  

2.1.4. Independent component analysis (ICA) 

ICA is a higher order statistical spatial-filtering technique which can be used to 

linearly decompose mixed EEG signals recorded on the scalp into independent source 

components, allowing researchers to detect signal sources and to measure the spatio-

temporal characteristics of the brain (Calhoun et al., 2009; Ullsperger & Debener, 

2010). Importantly, ICA affords separation of cerebral from extra-cerebral artefactual 

activity facilitating the removal of artefactual noise, and is able to linearly decompose 

neural activity into independent sources, assisting the interpretation of  distinct spatial-

temporal components that comprise the EEG signal (Vigârio et al., 2000). There are a 

number of different ICA techniques available including InfoMax (Bell & Sejnowski, 

1995), joint approximation diagonalization of eigen-matrices (Cardoso & Souloumiac, 

1993), FastICA (Hyvärinen, 1999), second-order blind identification (Belouchrani & 

Abed-meraim, 1997) and adaptive mixture ICA (Palmer et al., 2011). 

ICA does not assume prior knowledge and uses blind source separation to 

decompose the multi-channel EEG signal (Bell & Sejnowski, 1995). Unlike PCA, 

there is no order of magnitude associated with the components in ICA (Langlois et al., 
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2010). The ICA method assumes that scalp signals are an amalgamation of constituent 

signals, both neural and artefactual, with spatially-fixed scalp distributions and 

independent temporal properties (Jung et al., 2000). When applied to multiple 

electrodes, ICA trains spatial filters which each focus on a single source in the data 

(Makeig & Onton, 2011). ICA assumes that the number of components that comprise 

the signal should be equal to the number of channels utilised during the recording and 

does not impose conditions on spatial filters, enabling IC components that overlap 

spatially to be separated temporally (Jung et al., 2000). Consequently, this provides 

more precise measurement of individual EEG source potentials and reduction of 

source signal mixing despite broad spread due to conduction through the brain, skull, 

and scalp (Makeig & Onton, 2012). When PCA cannot be used because amplitudes 

are comparable, ICA is an effective method for separating intra-cerebral neural data 

from a wide range of extra-cerebral artefacts (Jung et al., 2000).  Central to the 

assumption of applying ICA to artefact removal in EEG data is the idea that artefacts 

and neural components are temporally distinct at the statistical level (Jung et al., 2000), 

allowing for removal of stereotypical ocular artefacts such as eye-blinks, vertical and 

horizontal saccades (Nikolaev et al., 2016). ICA is the gold standard routinely used in 

EEG artefact removal, particularly for mobile brain/body imaging (MoBI) data 

obtained in naturalistic settings, which is prone to an increased number of artefacts 

associated with free movement of the body and eyes (Delorme & Makeig, 2004a; 

Nikolaev et al., 2016; Protzak & Gramann, 2018). However, artefacts with atypical 

topographies and waveforms must be precisely marked in order to be detected using 

blind source separation methods such as ICA. ICA decomposition is influenced by 

multiple factors including movement, number of EEG channels and high-pass filter, 

which can affect estimation of neural sources (Klug & Gramann, 2020). To ensure 
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adequate ICA decomposition, high-density EEG recordings should be obtained from 

no less than 64 electrodes and a high-pass filter of 1 – 2 Hz should be used depending 

on noise level (Klug & Gramann, 2020). 

2.1.5. Principal component analysis (PCA) 

PCA is a statistical technique used to decompose averaged ERPs into their component 

parts to extract linear combinations of variables whilst accounting for covariance in 

the data, particularly when the EEG signal is an amalgamation of many highly 

correlated variables (Dien & Frishkoff, 2005; Dien, 2012). PCA is a type of factor 

analysis applied across time points and electrodes to extract latent components 

associated with separate ERPs, providing statistical separation of neural data detected 

at the scalp (Dien & Frishkoff, 2005). PCA is useful for reducing data dimensionallity, 

data cleaning and filtering prior to analysis, and can also be applied to detect events 

by using spatial patterns to decompose the data into latent temporal patterns (Dien & 

Frishkoff, 2005). There are a number of PCA techniques, including temporal (Dien & 

Frishkoff, 2005), spatial (Dien, 1998), sequential (Spencer et al., 2001) PCAs and 

partial least squares (Lobaugh et al., 2001). 

There are three stages to a PCA. Firstly, the continuous variables are 

standardised to prevent distortion due to extended ranges between variables, a 

covariance matrix is computed which allows investigation of the relationship between 

continuous variables and whether they co-vary with respect to the mean. Next, 

eigenvectors (direction of axes where there is maximal variance) and eigenvalues 

(amount of variance in each principal component) are computed from the covariance 

matrix to determine the principal components. The principal components which 

explain the largest amount of variance in the data are presented first, with other 
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principal components arranged in descending order of amount of variance explained. 

Eigenvalues of each component are divided by the sum of eigenvalues to determine 

the percentage variance explained by each principal component. Principal components 

that explain less variance in the data can be disregarded at this stage to reduce data 

dimensionality in the feature vector. Finally, the feature vector created from selected 

principal components reorients the data from the original axis to the one represented 

by only selected principal components by multiplying the transpose of the original 

data by the transpose of the feature vector (Jaadi, 2019). 

In Brain Electrical Source Analysis (BESA, MEGIS Software GmbH, Munich, 

Germany, version 6.1), the EEG data can be reduced using PCA prior to ICA 

decomposition, with components that explain less than 1% of variance ignored. 

Additionally, artefacts can be removed using adaptive spatial filtering in BESA. The 

adaptive artefact correction method involves scanning of specific defined epochs 

considered to represent artefactual activity, and the segment is thought to reflect 

artefactual activity if the correlation between data and the artefact exceeds a certain 

threshold and the signal amplitudes are above a certain threshold. Subsequently, a 

PCA (Berg & Scherg, 1994) is then performed on the segments and the components 

that explain more than the minimum variance specified by the adaptive model have 

their topographies maintained. The PCA decomposes the matched components and 

the component with the highest p value explaining the least variance (e.g., below 5 to 

10% of data variance) is then subtracted from the EEG data (Ille et al., 2002), 

effectively removing the artefactual signals from the continuous EEG data. Overall, 

PCA can be an effective tool allowing for decomposition of EEG data in order to 

determine their temporally or spatially distinct components (Dien & Frishkoff, 2005). 
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2.1.6. Placement of EEG electrodes 

EEG is a technology that measures the modulation of local field potentials on the 

cortical surface over time using specialised sensors placed at specified locations across 

the scalp. As standard practice, EEG electrodes are placed into elasticated caps which 

are developed based on the internationally recognised 10-20 system, a standardised 

guideline for distribution of electrodes on the scalp based on proximity to anatomical 

landmarks of the skull, including the nasion, the inion, and the left and right pre-

auricular points (Jasper, 1958; Klem et al., 1999). The 10-20 system affords equal 

spacing of electrodes relative to each other across the scalp. It is vital that electrodes 

are placed consistently across participants, as even small errors in electrode 

positioning can lead to large changes in the measurement of electrical potentials on 

the scalp. 

To place the caps in a standardized manner across participants, a measurement 

of the circumference of the head is made to determine cap size. If the subject is in 

between cap sizes, the experimenter rounds down the measurement and the smaller 

cap is selected to receive a better connection between the scalp and the sensor. To 

place the cap according to the 10-20 system, a measurement is taken from the anterior 

(nasion) to the posterior plane (inion) through the vertex and a vertical line is marked 

at the midpoint using a blunt water-soluble pen. Following this, a measurement is 

made between the left and right pre-auricular points and a horizontal line is marked at 

the midpoint, converging with the vertical line to form a cross in the centre of the head. 

Electrode Cz is then positioned at the intersection where the two lines converge, 

indicating that the horizontal and vertical planes of the head have been correctly 

aligned (Figure 3). 



 

55  

 

Figure 3. (A) Diagram illustrating how the cap is placed according to the standardized 

10:20 system, relative to the midpoint between known anatomical landmarks. Red line 

indicates pen marks made in order to identify the midpoint and consequently Cz 

location on the X and Y axis. (B) Schematic representation of the Brain Products 

actiCHamp standardized 64-electrode layout (Brain Products, GmbH, Munich, 

Germany), with the red cross indicating a central placement of the cap on the 

participants head. 

Adequate scalp connection is important for maintenance of EEG signal quality 

which allows for optimal ICA decomposition and source localisation. The highly 

viscous Super Visc electrolyte gel (Brain Products) creates a column of gel between 

the hair within the electrode holder, reducing the gap between the sensor and the scalp, 

helping to maintain stable signal quality and low impedance levels during the task. 

Less viscous electrolyte gels tend to degrade over the course of the experiment, 

requiring the addition of more gel to maintain signal quality, which can produce 
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electrical bridging between nearby electrodes and this can reduce the ICA 

decomposition accuracy (Alschuler et al., 2014).  

Although as few as 35 channels are sufficient for identification of some 

dominant neural sources (Lau et al., 2012), a minimum of 64 electrodes are required 

for optimal ICA decomposition and identification of underlying source components 

(Klug & Gramann, 2020; Lau et al., 2012). 64 electrodes are more applicable in the 

mobile settings than more precise 128-channels as they significantly reduce time for 

equipment application and experimental set-ups, reducing likelihood of signal 

degradation. 

The EEG signal reflects the voltage potential difference between an electrode 

and a reference electrode (Luck, 2005), which can be a unipolar reference electrode 

(Cz, Fz, Oz, FCz are commonly used), the nose, or linked mastoids. Moreover, a 

Laplacian reference can be used, which detects the difference between the potential at 

each electrode and the averaged potential of nearest four neighbouring electrodes, or 

averaged reference can be utilised, which is an average potential over all electrodes 

(Yao et al., 2019). 

2.2. Mobile EEG signal acquisition and pre-processing 

A new generation of neuroscientific research has sought to examine the neural 

dynamics underlying natural cognition in more ecologically valid environments 

utilising mobile neuroimaging techniques such as mobile fNIRS (Krampe et al., 2018) 

and mobile EEG (Lau-Zhu et al., 2019). The MoBI approach typically investigates 

natural cognition and embodied dynamics using mobile EEG whilst participants freely 

move and behave, often in conjunction with other body imaging methods such 

movement analysis or eye-tracking. The MoBI approach affords investigation of the 
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relationship between movement, cognition and the brain in natural settings 

(Jungnickel & Gramann, 2016). A number of different mobile EEG systems exist, 

ranging from consumer grade wearable systems with a low number of electrodes such 

as Muse, (Interaxon, Toronto, Canada), Mindwave (Neurosky, San Jose, USA) and 

Epoch (Emotiv, California, USA),  to electrode dense research grade systems such as 

Brain Products MOVE (Brain Products, GmbH, Munich, Germany), LiveAmp 64 

(Brain Products), eego (Ant Neuro, Hengelo, Netherlands), SMARTING mobile EEG 

amplifier (mBrainTrain, Beograd, Serbia) and Quick wireless headset (Cognionics, 

San Diago, USA). 

 

Figure 4. A participant wearing the 64 channel Brain Products actiCap, 64 active 

shielded electrodes which are plugged into the Brain Products MOVE system 

transmitter, attached to a Velcro belt worn by the participant. The MOVE system 

receiver is attached to the actiChamp amplifier.  



 

58  

The Brain Products 64 channel MOVE system is a commonly used research 

grade mobile EEG system  (Gramann, 2014; Jungnickel & Gramann, 2016; Marini et 

al., 2019), see Figure 4. The Brain Products MOVE system utilises active Ag/AgCl 

electrodes which contain active circuits called impedance converters which make it 

possible to record high quality EEG signals in situations where high impedance levels 

are likely, such as during walking. Optimising the connection between the scalp and 

the electrode is even more essential in mobile EEG recordings as participants are 

walking and the signal quality could suffer from high-impedances due to electrode 

movement. Active electrodes reduce resistance between the sensor and the scalp using 

a voltage divider, which acts as a 1:1 amplifier, reducing the impedance of the signal 

and not allowing any feedback from the output of the conversion. By decreasing the 

resistance, the signal is amplified, and protected from electrode lines and external 

source interference; see Figure 5. Mobile EEG systems often utilise active electrodes 

to reduce the presence of line noise and movement artefacts in the EEG data. 

 

Figure 5. Schematic representation of an impedance converter inputs and outputs 

signals in active shielded electrodes, adapted from the actiCHamp documentation 

(2016, Brain Products, GmbH). Us and Rs refer to source current and source 

resistance, respectively. Ui refers to the input voltage at the input resistance Ri. Ii 

refers to impedance input and Io refers to impedance output. Ro is output resistance, 

which is smaller, and acts as a power amplifier. Uo is the output voltage.  
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2.2.1. Methods for synchronisation of eye-tracking and mobile EEG data 

streams 

The inability to control stimulus onset in natural conditions presents a methodological 

issue for mobile EEG, and, as such, a secondary eye-tracking data stream is necessary 

to provide natural stimulus onsets when the subject’s gaze touches an object. The 

addition of an eye-tracking data stream is one of the biggest challenges within the field 

of MoBI, as it must be precisely synchronised to the EEG data stream in order for 

ERPs to be accurately time-locked to the onset of the visual stimulus (Artoni et al., 

2018). Synchronisation of multimodal data is challenging as different data streams are 

likely to have different sampling rates, and there could be sporadic delays in the 

individual equipment, the recording software, the operating system, or if using an 

online platform, the network, which can all introduce temporal jitter (Delorme et al., 

2011). Different methods have been proposed to overcome the issue of data stream 

synchronisation in MoBI research, including online synchronisation platforms (lab 

streaming layer, LSL); the experimental real-time interactive control and analysis 

(ERICA) framework, and hardware (combined TTL and light pulse) solutions.  

LSL (Kothe, 2014) is an online open source synchronisation platform which is 

capable of synchronising multimodal data streams over a network in real time during 

recording. LSL consists of an LSL application programming interface and a core 

library (liblsl) available across programming platforms for communication between 

multiple systems. Liblsl incorporates a suite of tools such as a recording program, file 

importer, viewing recorder, and apps for acquisition software such as eye-tracking, 

EEG, motion capture audio and video. Data is provided to LSL by creating a program 

which pushes a data stream through an outlet sample by sample as a multichannel 
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vector. Receiving data involves discovering the stream on the network by the type of 

data stream; once discovered, an inlet is opened and samples of the data stream are 

pulled out. 

A limitation of LSL is that it relies on optimal network latency, a strong battery 

life and a high bandwidth for reliable transmission of data over the network and, 

ultimately, accurate synchronisation of data streams. A major issue with LSL is that 

because it is reliant on the network, it is possible to fall out of network range which 

can result in data loss. Furthermore, differences in refresh rates can cause temporal 

jitter in the time stamps of the data sets during synchronisation and even refresh rates 

of up to 120 Hz are unable to account for this issue (Ladouce et al., 2017). 

Additionally, not all hardware is currently supported by LSL. EEG hardware 

supported include Biosemi, Cognionics, Mindo, EGI Ampserver and eye-tracking 

hardware supported include SR Research Eyelink and custom 2 camera setup. 

Therefore, LSL only provides a solution for certain MoBI systems (Artoni et al., 

2018). 

The ERICA framework (Delorme et al., 2011) consists of an online multimodal 

data collection, synchronisation and processing platform which synchronises 

multimodal data in real time using an application called DataRiver which streams from 

Matlab (Delorme et al., 2011). Within the ERICA framework, data streams are 

individually converted into a device-independent stream which is merged in real time 

into a river over a local area network or internet subnet. The data can be viewed and 

processed in real time using the DataRiver client running in MATLAB. The 

framework offers a high synchronisation accuracy of up to 2 ms between data streams 
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(Delorme et al., 2011). However, the DataRiver application is available for a limited 

number of EEG systems (Biosemi) and relies on local network connection. 

An alternative method of EEG and eye-tracking data synchronisation which is 

not dependent on network performance or recording hardware involves delivery of a 

transistor-transistor logic (TTL) pulse to the EEG with a simultaneous light pulse 

delivered to the eye-tracker. The TTL light pulse method has proved effective for 

synchronisation of EEG, magnetoencephalography and eye-tracking data streams in 

naturalistic settings (Artoni et al., 2018; Soto et al., 2018). The combined TTL and 

light hardware solution to data stream synchronisation provides a useful alternative to 

online synchronisation techniques and can be used as a backup method of 

synchronisation in all instances so that data is never lost due to network dropout. 

Consequently, a combined TTL and light synchronization method was utilised in the 

experimental chapters of the current thesis.  

2.2.2. EMRPs 

EMRPs, or saccadic eye-movement related potentials, afford investigation of 

cognitive processes elicited during free eye-movement, such as sensorimotor 

integration (Jagla et al., 2007). Traditional laboratory-based experiments have limited 

saccade-related eye-movements due to the large number of associated artefacts that 

are produced. However, saccades can carry important information as natural cognition 

involves rapid shifting of the gaze and integration of visual information over 

successive saccades (Jagla et al., 2007; Melcher & Colby, 2008; Prime et al., 2011), 

short-term memory processes (Hollingworth et al., 2008) anticipation and prediction 

of visual information (Dias et al., 2013) and parafoveal processing of information prior 

to fixation (Degno & Liversedge, 2020). 
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In accordance with VEPs, EMRPs encompass averaged electro-

encephalographic cortical potentials time-locked to the onset or offset of a saccade 

(Jagla et al., 2007; Nikolaev et al., 2014; Thickbroom et al., 1991; Yagi, 1979), rather 

than to a static visual image. EMRPs display similar characteristics to VEPs as they 

are both thought to be generated by retinal stimulation and elicit voltage potential 

deflections relative to baseline (Thickbroom et al., 1991). Conversely, fixation-related 

potentials are time-locked to the onset or offset of a fixation, when the eye-movement 

is ceased (Wenzel et al., 2016). The earliest reported EMRP was a positive occipital 

wave in occipital cortex following rapid saccades, known as the lambda potential 

(Green., 1957). The well documented lambda component is an EMRP that is elicited 

in response to visual stimuli with a peak around 100 ms post stimulus onset and an 

occipital positive maximum (Kazai & Yagi, 2003; Thickbroom et al., 1991; Yagi, 

1979; Yagi, 1981). The lambda potential is known to be modulated by the structure of 

the visual background and illumination (Gaarder et al., 1964). 

 Saccadic EMRPs time-locked to the onset of saccades have been recorded 

over the occipital and posterior parietal cortex, reflecting premotor eye-activity known 

as the saccadic spike potential (SSP) (Thickbroom & Mastaglia, 1986). SSP reflects 

the use of oculomotor muscles initiating the saccadic eye-movement, peaking shortly 

after the onset of the saccade (Jagla et al., 2007). The SSP can modulate the amplitude 

of the lambda component (Yagi, 1979). Other EMRP components have been reported 

in posterior parietal cortex and frontal eye-fields, with modulation according to 

attention, information processing and command-related functions (Jagla et al., 2007; 

Kurtzberg & Vaughan, 1982). Saccades have been shown to represent important 

indexes of selective attention in natural environments, and have been investigated in 

the scanning of scenes, pictures, and during reading (Liversedge & Findlay, 2000). 
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Experiments investigating saccade-related potentials have demonstrated the influence 

of lower-level and higher-level semantic influences on eye movements and the 

processing of information (Liversedge & Findlay, 2000) and pre-saccadic extra-foveal 

neural activity has been linked to trans-saccadic prediction of stimulus category 

(Buonocore et al., 2020). 

2.2.3. Technical and methodological issues in MoBI research 

There are a wide range of hardware and software solutions available for recording and 

analysing brain activity during active behaviour (Jungnickel & Gramann, 2016) and a 

standard MoBI approach is yet to be determined. However, a number of 

methodological and technical issues have already been identified, and each must be 

considered when examining neural dynamics in natural environments using the MoBI 

approach (Gramann, 2014; Gramann et al., 2010; Gwin et al., 2010; Makeig et al., 

2009; Ojeda et al., 2014) to ensure high-quality data reflected in its accuracy, 

completeness, consistency and reliability. 

One of the most challenging issues for MoBI research is minimising the large 

amount of artefactual noise associated with free-movement in unconstrained 

environments (Gramann, 2014; Gramann et al., 2010; Gwin et al., 2010; Makeig et al., 

2009; Ojeda et al., 2014) to increase the signal to noise ratio (Gwin et al., 2010; 

Ladouce et al., 2017). The EEG signal can become contaminated by many artefacts, 

both within and outside of the body, which can fluctuate during movement in natural 

paradigms. Extra-cerebral artefacts originating from non-neural events include 

movement of the head and neck when the subject orients their head towards a stimulus 

in the environment (Gwin et al., 2010). Eye-movement artefacts including blinks, 

saccades or the saccadic spike potential can distort underlying neural data and are 
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generated by an eyelid movement, rotation of the corneo-retinal dipole or extra-ocular 

muscle contractions (Keren et al., 2010). Further biological artefacts include cardiac 

activity, movement and muscle contractions (Jung et al., 2000). Artefacts originating 

from non-biological sources which can occur during movement and through the use 

of natural paradigms include cable sway artefacts, line noise, and displacement of EEG 

sensors during movement which can alter ICA decomposition (Makoto, EEGLAB 

Wiki, SCCN 2019) and limit the ability to estimate neural sources of evoked 

potentials. 

Other issues associated with recording natural behaviours concern the inherent 

trade-off between maintaining experimental control to limit artefactual noise and 

maintain a high signal-to-noise-ratio, and enhancing ecological validity by the 

facilitation of free behaviours and associated neural responses within natural 

environments (Ladouce et al., 2017). For example, in comparison to standard EEG, 

MoBI set-ups are longer, which can cause electroconductive gel to dry out contributing 

to the degradation of signal quality over the course of the experiment. Addressing the 

conductivity issues by topping up electroconductive gel or saline solution during a 

naturalistic recording can impede the flow of the experiment and can result in electrical 

bridging across electrodes (Alschuler et al., 2014; Gramann et al., 2014). High-density 

dry electrode systems that perform at the same level as the wet systems are yet to be 

developed to resolve this issue (Ladouce et al., 2017; Oliveira et al., 2016). 

Another issue for naturalistic MoBI recordings is the lack of triggers to define 

stimulus onset. Body dynamics can be used to define stimulus onset during MoBI 

experiments, including heel strikes for measurement of movement dynamics (Gwin et 

al., 2011; Ladouce et al., 2017) or delivery of an auditory stimulus while the subject 
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navigates a natural environment (Reiser et al., 2019). Investigation of visual attention 

in natural environments necessitates the use of a secondary eye-tracking data stream 

to determine precisely when the participant’s gaze first touches a stimulus, and this 

can be used as an onset trigger during everyday real-world cognition (Ladouce et al., 

2017). However, eye-trackers rely on accurate gaze calibration, and this cannot be 

ascertained in natural environments without stable reference points, therefore it is 

essential for gaze to be accurately deciphered to allow for examination of evoked 

potentials (Nikolaev et al., 2016). Moreover, the addition of another data stream can 

be problematic as both data-sets need to be precisely synchronised in order for triggers 

to be precisely time-locked to the onset of the visual stimulus (Dimigen & Ehinger, 

2019). Finally, due to the lack of control over visual presentation during free-viewing 

in natural environments, evoked potentials elicited from MoBI and eye-tracking data 

can temporally overlap and must be distinguished (Dimigen et al., 2011; Stephani et 

al., 2019). 

2.2.4. Solutions for artefact identification and removal in mobile EEG 

The separation of cerebral from extra-cerebral artefacts is one of the most pressing 

challenges for mobile EEG research. Consequently, a number of practical and data 

cleaning solutions have been proposed to prevent or detect and remove movement- 

related artefacts, which are described below. 

Practical measures can be taken during mobile EEG recordings to reduce 

artefact contamination; for example,  cable sway artefacts can be reduced by clipping 

electrode strands to the subject’s clothes (Soto et al., 2018). Additionally, using digital 

filters can allow identification and removal of extra-cerebral EEG contaminants and 

line noise can be reduced by using a 50 Hz notch filter (Leske & Dalal, 2019). 
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A traditional technique used for artefact removal in EEG is the regression 

method (Jiang & Bian, 2019). The regression method assumes that activity at each 

EEG electrode reflects a mixture of neural and artefactual activity. Amplitude relations 

between the reference channel and each EEG electrode are defined by transmission 

factors and then estimated artefacts are subtracted from the data. A limitation of 

regressions is that they require one or more reference EOG and ECG channels for the 

removal of artefacts (Jiang et al., 2019). 

PCA (Berg & Scherg, 1991) is a well-known blind source separation method 

that is widely used to separate artefacts from neural data (Jiang et al., 2019). The PCA 

technique involves converting the correlated variables that make up the EEG signal 

into uncorrelated values called principal components, which are ordered from most to 

least explained variance in the data. Artefacts explaining a large proportion of variance 

in the data such as eye-blinks can then be identified and removed from the data using 

an inverse operation (Berg & Scherg, 1991; Jiang & Bian, 2019). Although it has been 

suggested that PCA is more efficient in terms of computation than regression methods, 

PCA is limited in that similar artefacts are not separated  (Casarotto et al., 2004; Jiang 

& Bian, 2019). 

ICA (Bell & Sejnowski, 1995) is a blind source separation method that is a 

widely applied to the remove artefactual contaminants such as ECG, EMG, eye-

movements and blinks from EEG data (Makeig et al., 2009). A minimum of 64 

electrodes are recommended for optimal ICA decomposition (Klug & Gramann, 

2020). ICA is often utilised for MoBI data obtained in naturalistic settings as it is 

useful for extracting  artefacts associated with free movement of the body, head and 

neck muscles and the eyes (Delorme & Makeig, 2004; Makeig  & Jung, 1996; Makeig 
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et al., 2002; Nikolaev et al., 2016; Protzak & Gramann, 2018). In addition to detecting 

artefacts, ICA can also be used to detect independent spatially and temporally distinct 

source activities that contribute to the overall observed scalp signal (Makeig et al., 

2009). However, spatial filtering techniques such as ICA are unable to detect non-

typical artefacts, such as saccades from every angle of viewing excluding vertical and 

horizontal saccades, unless they are discretely marked out. Therefore, methods of 

detecting atypical artefact topographies prior to ICA decomposition are needed. A 

combination of practical measures and ICA and PCA methods were utilised in the 

current thesis to correct ocular artefacts, drawing on guided saccade recordings for 

discrete marking of eye-movement artefacts. 

2.2.5. Advantages and limitations of mobile EEG 

Mobile EEG offers excellent temporal resolution which affords investigation of neural 

dynamics in real time with millisecond precision without constraining movements, 

which could alter natural responses. Neural dynamics underpinning behaviour in 

naturalistic environments is often guided by visual attention (Nikolaev et al., 2014). 

For instance, visual exploration of the environment is multi- and trans-saccadic, and 

information is integrated across successive saccades and fixations to direct visual 

attention (Dimigen et al., 2011; Prime et al., 2011; Ray et al., 2011). EEG experiments 

which do not allow for free eye-movements omit context, which can alter neural 

activations (Ladouce et al., 2017; Neisser, 1976), and brain states are known to differ 

during movement. Therefore, it is essential to verify laboratory-based findings of the 

neural dynamics of cognition in natural environments in order to determine whether 

findings actually reflect natural cognition. 
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Mobile EEG has a number of technical limitations which must be considered; 

these include the lack of triggers necessitating eye-tracking which must be precisely 

synchronised to the EEG, the lack of stable reference points for accurate gaze detection 

(Nikolaev et al., 2016), the large number of artefacts associated with movement (Gwin 

et al., 2010; Jung et al., 2000) and the degradation of signal quality over time (Lau-

Zhu et al., 2019). Although the spatial resolution of EEG is limited compared to 

neuroimaging methods such as fMRI, cortical sources can often be accurately 

estimated using source modelling techniques (Lystad & Pollard, 2009). Additionally, 

there is currently no standard procedures for MoBI data collection and artefact 

removal. To investigate the spatio-temporal dynamics of SV in naturalistic settings, 

the experimental chapters of this thesis utilised mobile EEG and developed 

experimental paradigms to overcome the technical limitations associated with mobile 

EEG recordings. 

2.3. Eye-tracking 

Investigation of visual behaviours predates the 19th century, with early 

experimenters using mirrors to examine eye-movements during reading. During 

exploration of a natural visual scene, participants make a number of rapid eye-

movements called saccades which are interrupted by pauses called fixations (Salvucci 

& Goldberg, 2000). Javal (1879) and Lamare (1892) pioneered the eye-tracking 

technique and discovered the presence of saccades and fixations. The first modern day 

computer-based eye-tracker, the oculometer, was developed in the 1960s (Merchant, 

1966). Portable head-mounted eye-tracking revolutionized the investigation of visual 

behaviour in 1994 by allowing for movement of the head (Mohamed et al., 2007), 

affording examination of more naturalistic visual behaviours in the real-world.  
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2.3.1. General principles of eye-tracking 

Eye-tracking is a standard research method directly measuring visual attention. 

Continuous recording of eye-movements allows for precise estimation of the location 

of the participants gaze by measuring the position of their eyes relative to their 

surroundings, or to their head (Singh & Singh, 2012). High sampling rates of eye-

trackers provide excellent temporal resolution, affording investigation of gaze 

behaviour in an environment over time (Nikolaev et al., 2016). Underlying cognitive 

processes are inferred through examination visual angle, duration, length and 

frequency of saccades and fixations (Raney et al., 2014). A saccade is characterised 

by higher thresholds of velocity and acceleration (Konig & Buffalo, 2014), whereas 

fixations have lower thresholds and are relatively static despite containing micro-

saccades, tremor and drift (Duchowski, 2017). Fixations can last from tens of 

milliseconds to several seconds, and are thought to index visual attention as 

information is taken in by the fovea (Holmqvist et al., 2011). 

In the human eye, the iris permits light to the retina by expanding and 

contracting the pupil and the lens focuses the image on the retina, within the fovea 

which is filled with photoreceptors. These cells transduce light into electrical impulses 

and relay this to the optic nerve, which translates the information to the visual cortex 

(Singh & Singh, 2012). A dominant method for gaze estimation in eye-tracking relies 

on identification of eye-movements through detecting the pupil relative to the 

surrounding iris, and the corneal reflection is sometimes used as an additional 

reference point (Holmqvist et al., 2011). 

In recent years, a range of head mounted eye-trackers have become available, 

affording investigation of natural behaviours in conjunction with mobile EEG. Head 
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mounted eye-trackers include the EyeLink II (SR Research, EyeLink, Ontario, 

Canada), which incorporates three cameras on a padded headband, two eye-cameras, 

and a head-tracking camera to track the subject’s field of view. Furthermore, the Tobii 

Pro Glasses (Tobii Pro, AB (publ), Stockholm, Sweden) utilise four eye-cameras 

which incorporate dark pupil detection, a gyroscope, an accelerometer, and a scene 

camera for the subject’s point of view, all within a lightweight pair of glasses, which 

wirelessly transmits the data. More recently, the Tobii Pro 3 glasses have been 

developed which integrate all eye-tracking components including 4 eye-cameras and 

a scene camera within the frame of the glasses, making them perfect for blending into 

natural environments. A cheaper alternative to the Tobii system is the wearable head-

mounted Pupil Labs Binocular eye-tracking glasses (Pupil Labs, GmbH, Berlin, 

Germany), a lightweight, modular system that relies on infrared (IR) video-based 

oculography. These glasses incorporate two eye-movement recording cameras using 

dark pupil detection, and a forward-facing world-view camera to record the subject’s 

field of view (Kassner et al., 2014). The Pupil Labs eye-tracking glasses were used to 

track the subject’s gaze during free viewing of products in naturalistic environments 

in the experimental chapters of the current thesis. 

2.3.2. Pupil detection 

A leading technique for head mounted eye-trackers to detect the pupils is the dark 

pupil detection method, which was utilised by the head mounted eye-tracking 

hardware utilised in the experiments presented in the current thesis. The dark pupil 

detection method is an algorithm which converts the eye-recording to grayscale to 

increase contrast, enhancing estimation of the dark pupil region of interest, with the 

strongest response for the pupil according to the centre surround feature (Swirski et 
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al., 2012). Subsequently, the contours of the eye are detected using the Canny edge 

detection algorithm (Canny, 1986). The darkest region within the eye is specified 

using the lowest spike in the pixel intensity histogram, which reflects the distribution 

of tonal range in the grey-level video. The remaining edges, outside of the darkest 

area, are filtered to exclude spectral reflections and the non-spectral reflected edges 

can be extracted into contours corresponding with the iris and connected components, 

whereby similar pixels are clustered. Sub-contours are isolated using curvature 

continuity criteria to define the common edge between iris and pupil. Potential pupil 

ellipses are then established through ellipse fitting using least square good-fit criteria, 

and an augmented combinatorial search is used to construct the final ellipses with 

supporting edges, encompassing the centre and surrounding of the pupil. The final 

ellipse’s edges are assessed based on their length and circumference and must pass 

confidence thresholding in order to be reported as a detected pupil contour, otherwise, 

the ellipse must be redefined. Figure 6 shows an example of pupils detected using this 

method. 

 

Figure 6. Calibrated left and right eye using the Pupil Labs Binocular eye-tracking 

glasses (Pupil Labs GmbH, Berlin, Germany). The pupils of both eyes were detected 

in the IR eye-cameras, indicated by the red ellipse, with the grey scale recording 

enhancing detection of the pupil.  The pupils were detected with a high confidence 

threshold of 1.00 in both instances, indicating highly accurate pupil detection. 
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2.3.3. Eye-movements 

Human eyes have a three-dimensional orientation inside the head facilitating 

horizontal, vertical and torsional eye-movements, and the orientation of the eyes 

determines the direction of the gaze (Holmqvist et al., 2011; Tweed & Vilis, 1990). 

The movement of the eyes can be broken down into three broad subdivisions; 

saccades, fixations and smooth pursuits. Saccades and fixations can be distinguished 

by their characteristics including velocity, acceleration, duration, and frequency. 

Saccades reflect frequent rapid movements of the eyes between stimuli in the 

environment, with enhanced velocity (30 – 100 º/s) and acceleration (4000 – 8000 º/s) 

thresholds (Holmqvist et al., 2011). Conversely, fixations have lower velocity and 

acceleration thresholds and must remain in a fixed position for a predetermined 

duration to be considered, ranging between 50 – 100 ms (Holmqvist et al., 2011).  

Scan paths contain a sequence of saccades and fixations across a visual image. 

Within a scan path, the amplitude of the saccade can be measured as a vector between 

the origin fixation point A (F1) and the end of the saccade; fixation point B (F2), using 

the absolute direction φ and the relative direction φ′. The saccade angle θ can be 

calculated by computing the angle between the saccade axis and horizontal axis. These 

computations can be used to determine angle and amplitude for saccades of any 

orientation within a 360º circle; see Figure 7 for a visual schematic of saccade angles 

and direction computation. 
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Figure 7. Saccade amplitude measurements adapted from (Holmqvist et al., 2011). (A) 

Saccade amplitude can be measured as a vector of fixation 1 (F1) relative to fixation 2 

(F2), with the absolute direction φ and relative direction φ′. (B) A scan path containing 

a series of vectors, with the lines representing saccades and the arrows representing 

fixations (F1 – F6). (C) Saccade direction φ calculated by determining the angle 

between the saccade and horizontal axis, representing the saccade angle θ. (D) 

Absolute saccade direction (E) Relative saccade direction (C) Segmented saccade 

directions. 

2.3.4. Gaze-tracking  

To track a subject’s gaze using a video-based binocular eye-tracker, 3-D gaze points 

must be estimated according to the relative positions of both eyes along the horizontal 

axis, according to principles of binocular geometry (Duchowski, 2017). Specifically, 

the pupils of both eyes are mapped and the vergence angle is calculated, which reflects 

the mid-point of the two eyes (Essig et al., 2006). The vergence angle is then 
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geometrically computed in relation to the 3-D environment, providing a 3-D gaze 

position estimate which is extrapolated into the world-view video (Essig et al., 2006; 

Mlot et al., 2016). 

The Pupil Labs binocular eye-tracker, utilised in the experimental chapters of 

the current thesis, relies on 3-D calibration to estimate gaze points, mapping the eye-

position to the gaze direction, and a 9-point grid is commonly utilised for accurate 

gaze estimation (Cognolato et al., 2018; Hassoumi et al., 2019). For calibration, 

sequential fixations on screen calibration markers are required, or fixations on manual 

calibration markers moved sequentially in a 3-D environment. 

2.3.5. Free viewing and removal of eye-movement-related EEG artefacts 

Although traditional EEG has limited eye-movements to limit the number of artefacts 

contaminating the data, natural vision is highly trans-saccadic and 2–4 saccades are 

made per second (Dimigen, 2020). In recent years, The advent of head-mounted eye-

trackers has afforded investigation of gaze behaviour and natural cognition during 

naturalistic free-viewing and whole-body movement (Niehorster et al., 2020) through 

co-registration of eye-movement and EEG recordings (Dimigen et al., 2011; Fischer 

et al., 2013; Nikolaev et al., 2011, 2013, 2016; Simola et al., 2015).  

Head mounted eye-trackers incorporate a world-view camera, in addition to 

eye-cameras, to examine the subject’s point of view and examine visual responses in 

natural environments (Gidlöf et al., 2013, 2017). Increased sampling rates for head 

mounted eye-trackers has improved their temporal resolution (Cognolato et al., 2018). 

However, head mounted eye-trackers have been criticised for providing less precise 

gaze detection due to movement making the device become uncalibrated (Cognolato 

et al., 2018; Kolakowski & Pelz, 2005; Niehorster et al., 2020). Lighting conditions 
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can also influence the ability of eye-trackers to detect the pupil by producing corneal 

reflections which is more likely to fluctuate in moving participants (Cognolato et al., 

2018; Kolakowski & Pelz, 2005), and eye-glasses or contact lenses can exacerbate 

these effects (Gwon et al., 2014). 

As saccade-related artefacts are highly prevalent in naturalistic recordings, it 

is essential to detect and remove artefacts associated with voltage distortions due to 

the following three types of ocular artefacts: movement of the eyeballs, movement of 

the eyelids and EMG activity due to contraction of the extraocular muscles at saccade 

onset (known as the saccadic spike potential) (Berg & Scherg, 1991; Keren et al., 

2010; Picton et al., 2000; Plöchl et al., 2012; Thickbroom & Mastaglia, 1986). These 

artefacts preclude examination of neural events which have smaller amplitudes 

(Dimigen, 2020). 

A number of ocular correction methods have been proposed in order to 

examine neural signals elicited during free viewing, including EEG on EOG 

regression, dipole modelling and beamforming, PCA, and ICA (Dimigen, 2020). Of 

these methods, ICA is the most commonly used method for removal of saccade and 

blink artefacts from free viewing EEG data (Delorme et al., 2007; Jung et al., 2000). 

ICs that are believed to reflect neural components are back projected to the electrode 

space, producing artefact free EEG data (Dimigen, 2020). Guided saccades can also 

be employed to objectively classify ICs as either artefacts or neural data (Plöchl et al., 

2012) by detecting saccades of each angle (Berg & Scherg, 1991; Dimigen, 2019; Ille 

et al., 2002) and adaptive spatial filtering (ASF; Berg & Scherg, 1994; Ille et al., 2002) 

can then be used to remove the marked artefacts, although these methods have not yet 

been used in conjunction for ocular artefact correction. 
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2.3.6. Viewing 2-D versus 3-D products 

Laboratory-based experiments assume that 2-D stimuli presented on a computer 

screen will elicit the same neural responses as 3-D versions of the stimuli that would 

be encountered in the real-world. However, this cannot be taken for granted. 

Translation from a 2-D image to a 3-D image poses perceptual challenges, as 2-D 

images tend to be smaller compared to real objects, with reduced resolution, altered 

colour and cues associated with depth such as motion, shadow and gradient are often 

absent or very different (Barr, 2010). Additionally, it has been shown that until the age 

of 3 years, children learn more from live demonstrations than they do from television, 

a phenomenon termed the video deficit, demonstrating the difficulty of transfer 

learning from 2-D to 3-D contexts (Barr, 2010). Further, Anderson & Jamniczky 

(2019) found that students who learned to recognise neuroanatomical structures using 

3-D models showed greater object recognition and N250 amplitude compared to 

students who learned the structures using 2-D models. This demonstrates neural 

differences in perception and object recognition of 2-D and 3-D objects, which could 

be due to stereopsis in the 3-D condition facilitating object recognition (Anderson & 

Jamniczky, 2019). 

The additional depth parameter in a naturalistic free-viewing situation affords 

examination of the stimulus from multiple viewpoints, and, as natural cognition is 

trans-saccadic, spatial relations and information obtained between these viewpoints is 

likely integrated over time to form a holistic representation. This is not accounted for 

by traditional laboratory-based fixed viewing research (Meilinger et al., 2011). 

Moreover, a moving subject might observe different luminance, contrast, shape, size, 

and position of the stimulus over time, and the stimulus might be viewed from atypical 
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viewpoints causing difficulties in processing and identification, all of which needs to 

be consolidated by the brain. It may also require additional time, holding of 

information in working memory, additional visual information or further processing 

compared to static 2-D images (Biederman & Gerhardstein, 1993; Murphy et al., 

2013). Taken together, evaluating 3-D relative to 2-D product representations could 

involve different neural processes and cognitive operations, which should be 

investigated in ecologically valid conditions. 

2.4. Experimental techniques to measure SVs 

SVs of choice options are often complex, multifaceted and context dependent. A 

holistic SV for an item might depend on a interaction between the products physical 

properties (e.g., size, shape, colour, function), the decision makers internal, emotional 

or motivational states (personal values, social values, anticipated feelings 

emotionally/physically towards the product, attitudes towards risk/ambiguity) and 

their external states (affordability, time delay, effort, risk, ambiguity, context) 

(Appelhans et al., 2019; Bagozzi et al., 2016; Bouzakraoui et al., 2017; Desrochers & 

Outreville, 2013; Nwankwo et al., 2014; Rangel et al., 2008). Consequently, it is 

essential to carefully consider experimental design to determine whether SVs are 

actually being examined and if SVs are reflective of those that would be produced in 

real-world conditions, as over-simplification may not produce data that is reflective of 

realistic SVs. 

2.4.1. Forced bid paradigms 

Traditionally, investigation of SV has relied on two alternative forced choice (2-AFC) 

paradigms whereby individuals make a binary decision between one product and one 

or more alternative products, and the selected product is considered to be the preferred 
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option (Deneve, 2009). Alternatively, 2-AFC paradigms can involve asking 

participants to bid a set amount of money for one product over another (Plassmann et 

al., 2007, 2010). Although 2-AFC tasks afford enhanced control over experimental 

conditions, these paradigms are only able to provide a limited amount of information 

regarding SV, as the decision maker is unable to opt out of a purchase whereas during 

real-world decision making, individuals can always choose not to buy (Dhar & 

Simonson, 2003). Moreover, the decision-maker could just choose the least 

unpreferred option; therefore, the 2-AFC paradigm can generate artefactual 

‘preference’ of a stimulus. Information about whether the product is preferred or 

unpreferred relative to an alternative in that specific context cannot necessarily provide 

understanding about the overall SV of the product in terms of high-value attribution 

or preference. 

2.4.2. Auction tasks and WTP 

Alternatively, free-bid paradigms such as auctions afford the participant the 

opportunity to submit their own monetary bid for a product, otherwise known as the 

willingness to pay (WTP) value. WTP refers to the maximum amount of resources that 

the consumer is willing to relinquish to obtain a good or service (Chib et al., 2009; 

Peters & Büchel, 2010; Plassmann et al., 2012). 

Auction tasks are better suited to examining SV compared to forced bid tasks, as 

they require WTP value computation, and a bid of £0 can be submitted, giving the 

participant the opportunity to opt out (Plassmann et al., 2007). WTP values can be 

examined on a continuous scale, allowing the experimenter to rank SVs for products 

in a linear fashion. This allows for the determination of the most and least preferred 

items and can be used to examine whether brain areas correlate with the economic 
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computation of WTP (Plassmann et al., 2007). Auction bids are also reflective of real-

world SV attribution as they are incentive compatible, as participants are given an 

endowment to spend and actually receive products that they bid on and win (Keller, 

Segal & Wang, 1993; Lusk et al., 2004; Wertenbroch & Skiera, 2002), and submitting 

monetary bids and winning items is something that is prevalent in everyday life in 

online auction environments such as eBay (Grzesiuk & Cypryjański, 2017). 

Consequently, WTP values elicited via auction tasks are more likely to reflect real- 

world SVs (Keller et al., 1993). 

There are a number of different auction paradigms available for the 

examination of WTP as a measure of SV. Open first-price ascending auction tasks, 

such as an English auction, involve participants submitting bids which increase until 

a single bidder remains, and the amount of money paid is equal to the final winning 

bid amount (Chow & Ooi, 2014). Alternatively, open first-price descending auction 

tasks, such as a Dutch auction, begins with a high maximum asking price which is 

then incrementally lowered until all bids are submitted, and the first bid, which is also 

the highest bid, wins the auction (Carare & Rothkopf, 2005). Open first price auctions 

are subject to strategies, due to the presence of opponents, which can alter detection 

of intrinsic SV. For instance, the winner’s curse, the tendency for the winning bid to 

exceed the true SV of an item, and bid shading, a technique used to avoid overpaying 

for an item, both of which can obscure detection of the subject’s true SV (Gligorijevic 

et al., 2020; Kagel et al., 1989). Therefore, the bidding behaviour in first-price auctions 

is not necessarily indicative of true SV. In contrast, second price sealed bid auctions 

such as the Vickrey auction (Vickrey, 1961) involves the participant submitting a bid 

of the amount that they would be WTP, without knowing the bids of competitors, and 
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if they are the highest bidder, they pay the sum equal to the second highest bid 

(Ausubel & Milgrom, 2013).  

One of the most influential auction tasks used in neuroeconomics is the 

Becker-DeGroot-Marschak auction task (BDM) (Becker et al., 1964), which is another 

example of a second-price sealed bid auction. During the BDM, a bid reflecting the 

participant’s WTP for a product is submitted and, the participant wins the auction if 

their bid is greater than or equal to a randomly generated number, paying the price 

equal to the random number. Importantly, the optimal bidding strategy of the second 

price sealed-bid auction is to bid one’s exact WTP value, as overbidding increases the 

chances of paying an amount higher than their WTP value and underbidding increases 

the risk of losing the auction. WTP values elicited from BDM auction tasks have been 

linked to real consumer choices (Roberts et al., 2018; Rozan et al., 2004; Tyson-Carr 

et al., 2018; 2020; Wertenbroch & Skiera, 2002) and are known to activate the brain 

valuation system (Chib et al., 2009; Plassmann et al., 2007; Plassmann et al., 2010; 

Tyson-Carr, et al, 2018; 2020). 

In conclusion, free bid paradigms are more likely to provide an accurate 

measure of true WTP than forced bid paradigms, as they give participants the option 

to opt out of a purchase, allow ranking of SVs to ensure that items are actually highly 

valued, and they are incentive compatible, as participants bid real money and actually 

receive winning items. Of the free bid auctions, second price sealed-bid auctions are 

the most influential in neuroeconomics research, as the optimal bidding strategy is to 

bid one’s true SV, regardless of the strategies or behaviours of other bidders, therefore, 

they are thought to index true SV. Although the Vickrey auction and the BDM auction 

are theoretically comparable, behavioural data has shown that, during Vickrey 
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auctions, the participant’s bidding behaviour diverges from the dominant strategy in 

the presence of rival bidders, altering the participant’s SV according to social 

dynamics (Toelch et al., 2014; van den Bos et al., 2008; Zeng et al., 2013). Therefore, 

the BDM auction is an optimal solution for measuring individual WTP outside of a 

social context (Flynn et al., 2016). As the current research is primarily interested in 

measuring true SV to products outside of social influence, the BDM auction was 

utilised in the experimental chapters of the current thesis.  



 

82  

3. RESEARCH PROBLEMS, HYPOTHESES AND 

THESIS OVERVIEW 
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3.1. Research problems 

Recording value-based decisions in naturalistic environments is accompanied by a 

number of research problems, both technical and theoretical. Specifically, it is not 

known whether it is possible to examine EMRPs underpinning SVs of products in 

wirelessly recorded data, as it has not been examined in the neuroeconomic literature. 

Lack of EEG research investigating the spatio-temporal processes of valuation during 

free-movement in natural environments is primarily due to the presence of a large 

number of artefacts distorting the EEG data. In particular, during free eye-movements, 

saccade-related artefacts produce atypical topographies preventing their complete 

removal using techniques such as PCA or ICA. To examine the neural dynamics 

underlying naturalistic value-based decisions, it is essential to determine the best way 

of detecting and removing movement-related artefacts in naturalistic experiments 

involving wireless EEG and eye-tracking. Such methods are particularly needed when 

detailed information about the eyes is not available, and currently there is no standard 

approach to artefact removal within the field of MoBI. 

The neuroeconomic literature detailing the temporal properties of the valuation 

process using EEG is scarce, although it has been suggested that SV can be computed 

rapidly by the brain (Goto et al., 2017; Ma et al., 2018; Telpaz et al., 2015; Tyson-

Carr et al., 2018; Tyson-Carr et al., 2020). However, examination of the neural 

temporal dynamics of valuation in natural settings is non-existent, and it is unknown 

how the brain valuation system encodes products of different SVs in natural settings 

and how rapidly SVs are computed. An additional problem is that it is not known 

whether neural components for SVs will be encoded linearly within the same clusters, 

as suggested in fMRI experiments (Abitbol et al., 2015; Lebreton et al., 2009) or 

whether SV categories will be distinctly encoded in unique clusters within the BVS. 
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Attempts must be made to characterise the spatio-temporal properties of neural 

components underpinning SV for products in ecologically valid settings using 

wirelessly recorded EEG. Moreover, it is important to determine whether SV is 

linearly or uniquely encoded within the BVS.   

Finally, it is assumed in the neuroeconomic literature that 2-D images of 

products are reflective of valuation responses to real products. This is problematic as 

3-D products contain depth information affording examination from multiple 

viewpoints, which could require integration over time, additional processing and 

different neural dynamics (Meilinger et al., 2011; Murphy et al., 2013). Likewise, the 

presence of a product can produce attentional bias, modulating motivation-related 

brain areas and consumption behaviours (Blechert et al., 2016; Jędras et al., 2019;. 

Jones et al., 2012; Maas et al., 2012; Painter et al., 2002). Therefore, examination of 

neural responses during 3-D product valuation is necessary to determine the 

generalisability of findings derived from 2-D product images. 

The current thesis investigated, for the first time, the spatio-temporal properties 

of the brain valuation process during free movement in naturalistic settings close to 

real life. The use of mobile EEG and eye-tracking methods allowed examination of 

the temporal dynamics of SV attribution to determine the latency of EMRP 

components encoding SV, and whether SV categories are encoded linearly or in 

distinct neural bands. Novel methods were developed to reduce the influence of 

artefactual noise, improving the quality of the mobile EEG data. The influence of 3-D 

products on the neural dynamics underpinning SV were explored. Utilising the high 

temporal resolution of EEG, data presented in the experimental chapters of the current 

thesis could facilitate deeper understanding of the spatio-temporal dynamics of the 

BVS and, for the first time, allow investigation of these dynamics in naturalistic 
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environments, bridging a gap in the neuroeconomic literature. Such research could 

have broad implications as value-based decisions are continually made in daily life 

and are essential for surviving and thriving, with negative impacts on health and 

wellbeing during maladaptive valuation. Therefore, the current research could provide 

deeper insight into how SV is computed by the brain in naturalistic environments. 

3.2. Hypotheses 

Hypothesis 1:  Components of EMRPs will distinguish between WTP values 

(SVs) for product images in a mock gallery. 

Hypothesis 2:  SVs of products will be linearly encoded by distinct 

components of EMRPs recorded using mobile EEG and eye-

tracking. 

Hypothesis 3:  EMRP components of SVs will be determined early on during 

free viewing, reflecting the automaticity of the brain valuation 

process in naturalistic environments. 

Hypothesis 4:  Combining guided saccades and ASF will significantly reduce 

the presence of saccade-related artefacts in EEG data obtained 

from freely behaving participants in naturalistic environments, 

compared to standard eye-blink removal. 

Hypothesis 5: Valuation decisions for 3-D products in a naturalistic shop will 

influence early neural valuation responses of EMRPs, reflecting 

enhanced complexity of stimuli.  
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3.3. Thesis chapter outline 

Chapter 4 describes a combined EEG and eye-tracking experiment which determined 

whether it was possible to examine the early spatio-temporal neural dynamics 

underpinning SVs for products in a free viewing naturalistic setting (Hypothesis 1). It 

was anticipated that SVs would show linear encoding in distinct neural clusters during 

early intervals (Hypothesis 2, 3). The experiment examined EMRPs in a novel product 

gallery setting and used ICA back-projection to separate independent generators of 

activity, with source dipole modelling to investigate neural sources for ICs modulated 

by SV.  

Chapter 5 is a continuation of the experiment described in chapter 4 and 

similarly aimed to determine if components of EMRP encoded SVs of products in the 

product gallery monotonically and linearly in early latencies (Hypothesis 1, 2, 3). The 

experiment extended the price range of products in an effort to examine neural 

responses to high-value items. Guided saccade recordings and ASF successfully 

removed residual saccade-related artefacts from the EEG data, outperforming standard 

eye-blink removal (Hypothesis 4). The study utilised an ICA cluster technique to 

determine distinct neural clusters reflecting SV conditions. 

Chapter 6 involved the examination of the neural dynamics underlying SVs for 

real 3-D products in a custom-built mock shop using mobile EEG and eye-tracking. It 

was anticipated, in line with previous experiments, that independent components (ICs) 

of EMRP would encode SVs of products monotonically and linearly in early latencies 

(Hypothesis 1, 2, 3). Additionally, it was anticipated that the use of real 3-D products 

in a naturalistic shop would influence neural processing of SVs (Hypothesis 5). 
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Chapter 7 provides a general discussion of results obtained in all experimental 

chapters, with interpretation of their theoretical and practical significance in 

neuroeconomics, the limitations of the experiments, and discussion of directions for 

future avenues of research. 
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4. TRACKING THE ECONOMIC VALUE OF 

PRODUCTS IN NATURAL SETTINGS: A 

WIRELESS EEG STUDY 

  



 

89  

Tracking the Economic Value of Products in Natural Settings: A 

Wireless EEG Study 

Hannah Roberts1*, Vicente Soto1, John Tyson-Carr1, 

Katerina Kokmotou1,2, Stephanie Cook1,3, Nicholas Fallon1, 

Timo Giesbrecht4 and Andrej Stancak1,2 

1Department of Psychological Sciences, Institute of Psychology, Health and Society, University of 

Liverpool, Liverpool, United Kingdom 

2Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom 

3Division of Psychology, De Montfort University, Leicester, United Kingdom 

4Unilever Research & Development, Port Sunlight, United Kingdom 

This experiment investigated the spatio-temporal dynamics underpinning the SVs of 

products in naturalistic settings using mobile EEG. This paper was published in 

Frontiers in Neuroscience (2018), doi:10.3389/fnins.2018.00910. The format of the 

text has been modified to match the style of this thesis. 

The roles of the co-authors are summarised below: 

Myself and Andrej Stancak, Nick Fallon and Timo Giesbrecht contributed to the 

development of the experimental design and planning of the current project. Myself, 

Vicente Soto and John Tyson-Carr contributed to the development of the stimuli and 

materials. Andrej Stancak and I contributed to the development of the behavioral 

rating task and carried out the data acquisition, pre-processing, synchronisation and 

analysis of the collected data as well as figure creation and production of the final 

written manuscript. Matlab scripts were created by Andrej Stancak. Vicente Soto, 

Katerina Kokmotou, John Tyson-Carr and Stephanie Cook assisted me with the data 

collection.  

http://www.frontiersin.org/people/u/118551
http://www.frontiersin.org/people/u/628234
http://www.frontiersin.org/people/u/243585
http://www.frontiersin.org/people/u/110613
http://www.frontiersin.org/people/u/137730
http://www.frontiersin.org/people/u/86604


 

90  

4.1. Abstract  

Economic decision making refers to the process of individuals translating their 

preference into SV. Little is known about the dynamics of the neural processes that 

underpin this form of value-based decision making and no studies have investigated 

these processes outside of controlled laboratory settings. The current study 

investigated the spatio-temporal dynamics that accompany economic valuation of 

products using mobile EEG and eye-tracking techniques. 

Participants viewed and rated images of household products in a gallery while 

EEG and eye-tracking data were collected wirelessly. A BDM auction task was 

subsequently used to quantify the individual’s WTP for each product. WTP was used 

to classify products into low, low medium, high medium and high economic value 

conditions. EMRP were examined, and ICA was used to separate sources of activity 

from grand averaged EEG data. 

Four ICs of EMRPs were modulated by WTP (i.e., SV) in the latency range of 

150–250 ms. Of the four value-sensitive ICs, one IC displayed enhanced amplitude 

for all value conditions excluding low-value, and another IC presented enhanced 

amplitude for low-value products only. The remaining two value-sensitive ICs 

resolved inter-mediate levels of SV. 

Our study quantified, for the first time, the neural processes involved in 

economic value-based decisions in a natural setting. Results suggest that multiple 

spatio-temporal brain activation patterns mediate the attention and aversion of 

products which could reflect an early valuation system. The EMRP parietal P200 

component could reflect an attention allocation mechanism that separates the lowest-

value products (IC7) from products of all other value (IC4), suggesting that low-value 
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items are categorized early on as being aversive. While none of the ICs showed linear 

amplitude changes that parallel SV’s of products, results suggest that a combination 

of multiple components may sub-serve a fine-grained resolution of the SV of products. 

4.2. Introduction 

Rewarding and aversive stimuli that occur in natural environments prompt humans to 

make a large number of value-based decisions. Such decisions can be computed 

consciously, or can be reached without conscious awareness. Determining the SV of 

each parallel option is a key input for the decision process. Economic decisions occur 

when an individual evaluates how much a product is worth by computing subjective 

preferences reflecting their current needs and desires (Gluth et al., 2012; Polanía et al., 

2014; Ruff & Fehr, 2014; Stott & Redish, 2015). According to the value maximization 

framework (Kahneman & Tversky, 1979; Samuelson, 1937), economic decisions 

involve the initial assignment of SVs to competing alternatives and the option with the 

highest SV is consequently selected (Bartra et al., 2013; Rangel et al., 2008; Wallis & 

Rich, 2011). 

There is only a limited number of studies examining the temporal sequencing 

of economic value-based decisions in the brain using event related potential (ERP) 

methods, particularly for low-value products (Gajewski et al., 2016; Goto et al., 2017). 

Although limited, some studies have suggested that the N200 VEP represents an early 

selective attentional response to relevant stimuli and, hence, could be related to 

consumer preferences (Goto et al., 2017; Telpaz et al., 2015; Tyson-Carr et al., 2018). 

For example, Telpaz et al. (2015) employed a binary choice paradigm and found a 

smaller N200 for preferred products. Likewise, the P200, which is thought to index 

early selective attention, has also been implicated in economic decision making and 
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buying decisions (Jones et al., 2012; Pozharliev et al., 2015; Tyson-Carr et al., 2018). 

Studies regarding later ERP components in relation to economic decisions, however, 

show conflicting results (Goto et al., 2017; Pozharliev et al., 2015; Telpaz et al., 2015). 

For instance, Pozharliev et al. (2015) found that the late positive potential (LPP) was 

modulated by product preferences for luxury items, but only when in the presence of 

other people. These components detailed above, including the N200 (Handy et al., 

2010), P200 (Carretié et al., 2001b), and LPP (Schupp et al., 2000), have also been 

implicated in general hedonic processing. An important question for researchers is 

how making economic value-based decisions for low-value items differs from high-

value items, and whether such decisions employ the same neural circuitry (Xie & 

Padoa-Schioppa, 2016) or multiple neural systems (Daw et al., 2005; Dickinson & 

Balleine, 2002; Rangel et al., 2008). 

The SV of a good can be approximated by the amount of money an individual 

is willing to pay for an item (Chib et al., 2009; Peters & Büchel, 2010). WTP can be 

estimated using the BDM auction (Becker et al., 1964). The construction of the auction 

is such that a value smaller or larger than the actual value that a participant would be 

willing to pay would produce a disadvantageous outcome, whereas bidding their true 

WTP would maximise expected utility, and participants were made aware of this 

(Berry et al., 2012). The validity of the BDM has been supported by experiments 

demonstrating that it reliably activates brain areas that have been associated with value 

processing, such as the medial orbitofrontal cortex (Plassmann et al., 2007, 2010), the 

ventral striatum (De Martino et al., 2009) and the dorsomedial prefrontal cortex 

(Plassmann et al., 2007). The BDM auction paradigm is motivationally relevant as the 

subject receives a subset of items that have been purchased successfully, making it 

more likely that participants will provide a true economic value (Keller et al., 1993). 
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Recently, Tyson-Carr et al. (2018) used the BDM auction to examine the spatio-

temporal dynamics of economic decisions for everyday household products in a 

laboratory-based setting. A negative component peaking at about 200 ms with a source 

in the right anterior insula was found to be stronger in low compared to high-value 

products, possibly due to an aversion to the risk of the financial loss associated with 

purchasing an unwanted item. 

It has been argued that laboratory environments elicit unrealistic behavioral 

and neural responses and, as such, findings might not be generalizable to real-world 

scenarios (Brofenbrenner, 1977; Ladouce et al., 2017). In particular, the limiting 

environmental conditions could hamper important aspects of embodied human 

cognition that are essential to the decision-making process, such as the interactions 

between perception, cognition and action that occur in complex natural environments 

(Gramann et al., 2014; Ladouce et al., 2017). As such, to gain a more encompassing 

and realistic insight into economic value-based decisions for products, it is essential 

to examine these processes whilst participants navigate a real-world environment, 

moving toward analysing brain responses during a realistic shopping experience 

(Minguillon et al., 2017; Pradeep, 2010). Owing to recent advancements in mobile 

EEG technology and signal processing techniques, it is now possible to examine 

neural responses while participants move freely in the real-world (Banaei et al., 2017; 

Gwin et al., 2010; Jungnickel & Gramann, 2016). As a case in point, Soto et al. 

(2018) used mobile EEG and eye-tracking techniques to demonstrate the feasibility of 

using EMRPs to examine faces and objects within a valuation context in naturalistic 

conditions. The current study represents an initial attempt to examine economic value 

related ERPs in naturalistic settings where purchase decisions would be made, such as 

in a supermarket or shop. 
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The aim of the current experiment was to determine whether it is possible to 

resolve the spatio-temporal neural responses that encode the economic value of 

everyday household products during free viewing in a naturalistic, economically valid 

environment. A mobile EEG system was utilized to examine brain responses to 

products whilst participants viewed and selected the objects that they would be most 

or least likely to purchase in the gallery setting. Eye-tracking was used in tandem for 

real-world triggering and the procedure was based on a recent experiment by Soto et 

al. (2018). The BDM auction (Becker et al., 1964) was utilized to elicit WTP for 

products, which participants could freely inspect beforehand in a mock gallery. 

4.3. Materials and Methods 

4.3.1. Participants 

Twenty-eight healthy participants (14 females) were recruited for the current 

experiment. Nine participants were removed from the final data analysis due to poor 

signal quality in EEG recordings (six participants) or insufficient eye-tracking data, 

such as a missing light emitting transistor–transistor logic (TTL) trigger in the world 

view camera (three participants). The amount of data loss in the current study can be 

attributed to the difficulties associated with acquisition of mobile EEG data in 

naturalistic conditions. For instance, some free movements in the real-world do not 

follow a stereotyped pattern and, as such, cannot be extracted using principal 

component analysis (PCA) or ICA methods (Jungnickel & Gramann, 2016). Data loss 

can also be attributed to difficulties associated with the collection of eye movement 

data. A TTL light emitting trigger box was used for synchronization of the data streams 

and, on three occasions, the light was not registered either due to misplacement of the 

light relative to the world view camera (two participants), or due to a computer 
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buffering error (one subject). The final sample consisted of 19 participants (seven 

females) with an average age of 25 ± 5.02 (mean ± SD) years, three of which were left 

handed. All participants were provided with information about the nature of the 

experiment and gave written informed consent prior to the commencement of the 

experiment. Full ethical approval was obtained from the University of Liverpool 

Research Ethics Committee (reference number 1145), and all experimental procedures 

were conducted in accordance with the Declaration of Helsinki. Participants received 

a £10 reimbursement for their time and an average of £12.26 ± 1.96 (mean ± SD) was 

retained from the £16.00 endowment given during the BDM task, which was added to 

their final payment. 

4.3.2. Product Images 

The stimuli used in the current experiment consisted of 198 colour images of everyday 

household items from a shopping catalogue (2016, December 12). The images were 

split into three distinctive value categories; images of low-value products costing 

between £0.35 and £2.80, images of medium-value products costing between £3.00 

and £5.50 and images of high-value products costing between £6.00 and £8.00, with 

a total of 66 images in each value category. All stimuli were pseudo-randomly 

distributed within their value conditions for all tasks. Due to the pseudo-random 

distribution of products around the fixation cross combined with the fact that value 

categories were subjectively defined, i.e., one product could be considered high-value 

for one subject and low-value for another subject, the researchers did not anticipate 

any order effects of value category, and this was not analysed in the current 

experiment. Furthermore, an effort was made to ensure that no two products of the 

same semantic category were displayed on the same board, i.e., it did not contain two 

toasters. Most participants tended to view the products beginning at the top middle 
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image on a panel and sequentially viewing the products in a clockwise manner as this 

tends to be the easiest method in order to remember which products have already been 

viewed. 

All images were presented on 22 A0 sized poster sheets which were mounted 

on to Styrofoam panels of equal size using adhesive tape (Figure 8A). Each panel 

displayed three images from each value category (low, medium and high) with a total 

of nine images per panel. All panels were mounted on to the walls of two hallways 

within a building at the University of Liverpool using adhesive Velcro, creating a 

product gallery setting (Figure 8B). All images (sized at around 15 cm × 20 cm) were 

arranged around a central fixation cross (14.3 cm × 14.3 cm, see Figure 8C). Across 

all panels, the accumulative value for all objects on each panel ranged between £32.30 

and £42.24, with a mean price of £38.16 ± £0.53 (mean ± SD).  
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Figure 8. Mobile EEG set up and product gallery. (A) Example of a subject wearing 

the 64 channel actiCAP with active shielded electrodes attached to the Mobile EEG 

transmitter, located on the subject’s belt. The subject also wears PupiLabs eyetracking 

glasses which are plugged into a laptop located in a backpack. Subject looks at product 

panel. (B) Schematic representation of the corridor where the product gallery task took 

place. The white rectangles represent the locations of the product panels on the 

walls. (C) Schematic representation of a product panel located within the gallery. 

Product images in the figure were created using 3D Warehouse templates in SketchUp 

2018. Each panel contained nine images of household products from a shopping 

catalog. The nine images were divided into three images from three different retail 

price categories, high (£6.00–£8.00), medium (£3.00–£5.50), and low (£0.35–£2.80).  
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4.3.3. Procedure 

The experiment was split into two separate sessions due to the time intensive 

nature of the mobile EEG and eye-tracking set up. Session 1 included the product 

gallery task followed by the BDM auction task, and session 2 consisted of a behavioral 

rating task for hedonic aspects of the stimuli. In the first experimental session, 

participants arrived at a laboratory in a building at the University of Liverpool. 

Instructions were delivered and full informed consent was obtained. Participants had 

their heads measured and were then fitted with an EEG cap (actiCAP, Brain Products, 

GmbH). Electrolyte gel was applied to the scalp using a syringe and 64 electrodes 

were then attached to the cap, with care taken to ensure that electrode impedances 

were kept under 50 kΩ. Following impedance checks, participants were connected to 

the mobile EEG system and wireless signals were visually inspected during 

movement. Eye-tracking glasses (Pupil Binocular Eye Tracking Glasses, PupiLabs, 

Germany) were then fitted to the participant over the EEG cap and plugged into a 

lightweight Lenovo laptop using a universal serial bus connector. The subject’s gaze 

was manually calibrated against a blank A0 sized panel using a 3D calibration routine 

with manual markers kept at a distance of 1 m. 

The laptop was placed in a backpack which was worn by the participant during 

the mobile part of the experiment. The EEG electrode cables that ran from the EEG 

cap to the MOVE system transmitter (MOVE, Brain Products, GmbH, Mnich, 

Germany) on the subject’s belt were clipped on to the backpack in order to reduce the 

likelihood of generating cable sway artifacts during gait (Gramann et al., 2010; Gwin 

et al., 2010, see Figure 8A for an example of the set up). The MOVE system receiver, 

amplifier and battery were plugged into a Toshiba laptop and all of the equipment was 

seated on a mobile trolley, which the experimenter pushed during the experiment. If 
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the subject was moving too far out of range of the cart, the experimenter would push 

the cart closer to the transmitter in order to maintain optimal signal. As the subject was 

moving freely, it is possible that the distance between the subject and the receiver 

varied over the course of the experiment, however, the raw signal was consistently 

monitored throughout the experiment, and the distance between the transmitter and 

receiver never exceeded 7 m, after which the signal to noise ratio (SNR) is known to 

deteriorate (Reis et al., 2014). 

Likewise, impedances were lowered to 50 kΩ at the beginning of the 

experiment and were checked in the break between the experimental blocks, as 

impedances can change during movement. If individual electrodes became noisy 

during the experiment, they were corrected using electrolyte gel while the subject 

made their ratings on an A4 sheet of paper, so as to distract them as little as possible 

during the task. Examination of whether there was any temporal modulation of the 

SNR over time during the experiment was also conducted by computing the broadband 

spectral power in the data at three time bins in block one and block two for all 

participants. No significant modulation of the broadband spectral power of the data 

was observed (all p-values > 0.05), which suggests that the signal quality was 

maintained throughout the experiment. 

The product gallery task consisted of two experimental blocks and took 

approximately 30 min to complete. Following the product gallery task, the EEG 

equipment and eye-tracking glasses were removed and participants then took part in 

BDM auction task for the same 198 products in a laboratory space at the University of 

Liverpool. The task took approximately 35 min to complete. The second part of the 

experiment took place within 7 days of the first experimental session. Participants 

arrived in the same laboratory space at the University of Liverpool and took part in a 
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behavioral rating task for the same 198 products. This task took approximately 35 min 

to complete. Afterward, participants received two random items that they had bid on 

and won in the BDM auction task, were asked to fill in a payment form and were 

debriefed and thanked for their time. 

4.3.4. The Product Gallery Task 

Following the mobile EEG and eye-tracking set up in the first session, participants 

took part in the product gallery task, which was conducted in two adjoining corridors 

at the University of Liverpool (see Figure 8B). At the beginning of both blocks of the 

product gallery task, a light emitting trigger box was used in order to synchronize EEG 

and eye-tracking data sets. In both blocks, participants were instructed to move in a 

natural manner through the gallery. Participants were informed that they could view 

the panels and the images on the panels in any order, provided that they viewed all of 

the images on one panel before continuing on to the next. Participants were also 

instructed to look at each object for a minimum of 3 s, and should always return their 

gaze to the fixation cross in the centre of the panel before moving on to look at another 

image. After viewing a complete panel, participants were required to indicate two 

objects that they would be most likely to buy and two objects that they would be least 

likely to buy on an A4 version of the panel using the pen provided. Importantly, to 

produce a more natural environment, the corridor was not isolated from the rest of the 

building and people were free to walk past at any point. 

The decision to create a product gallery rather than use actual 3D products was 

to try and observe, for the first time, whether eye movement related potentials to 

EMRPs for products could be recorded outside of a laboratory-based environment at 

all before moving on to create a more ecologically valid setting in which 3D objects 
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are evaluated. By using product images, it was possible to introduce some level of 

control into the experiment, while still maintaining a naturalistic gallery-like scenario. 

This allowed researchers to standardize the front facing view of the objects, the size 

of the objects, the lighting, and other aspects of the stimuli that could have influenced 

ERPs, to see whether it was possible to record ERPs at all in this naturalistic context. 

4.3.5. The BDM Auction Task 

Following the product gallery task, participants took part in a BDM auction task, 

which was displayed on a Dell monitor using a HP Compaq 8200 Elite computer. 

Presentation of the stimuli was controlled using Cogent 2000 (UCL, London, United 

Kingdom) running on MATLAB (version R2014a, The MathWorks, Inc., United 

States). The BDM task (Becker et al., 1964; Wilkinson & Klaes, 2012) was adapted 

from previous studies (Plassmann et al., 2007, 2010; Tyson-Carr et al., 2018). During 

the auction, 198 images of everyday household products from a shopping catalogue 

were presented once. Each trial in the auction task was comprised of a fixation cross 

(presented for 2 s), followed by an evaluation stage for the product (image presented 

for 3 s) and then a bidding stage (presented until button press) where participants were 

required to bid the amount they would be willing to pay for the product. Participants 

were required to bid between £0 and £8 on the products in increments of £0.50 and 

increments of £1 from £3.00 onward, producing a total of 11 bidding options. 

During the feedback stage, participants were notified as to whether the item 

was ‘purchased’ or ‘not purchased.’ The purchasing outcome was dependent on the 

subject’s bid and its relationship with a randomly generated number. An item would 

be purchased if b ≥ r, where b represents the subject’s bid and r represents the 

randomly generated number for each individual trial. Afterward, two ‘purchase’ 
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auction trials were randomly selected, and for both items, the corresponding price 

of r was deducted from the subject’s endowment of £16, which covered a maximum 

of £8 being spent on each trial. The subject received these winning items during the 

second experimental session. The task took approximately 35 minutes to complete.  

4.3.6. Behavioral Rating Task 

In the second experimental session, which took place within a week of the first 

experimental session, participants took part in a behavioral rating task in the same 

laboratory space at the University of Liverpool. Presentation of stimuli was again 

controlled using Cogent 2000 (UCL, London, United Kingdom) running on MATLAB 

(version R2014a). During the task, participants provided hedonic ratings for the same 

198 product images using two sliding visual analog scales (VAS), which were sized 

at 10 cm and were anchored from ‘not desirable’ to ‘very desirable’ and from 

‘unpleasant’ to ‘pleasant’. Each trial consisted of a fixation cross (presented for 1 s), 

followed by an evaluation stage (presented for 2.5 s) and, finally, a rating screen 

(presented until button press). This task took approximately 35 minutes to complete. 

4.3.7. EEG Recordings 

EEG was continuously recorded over the whole scalp using a 64-channel wireless 

mobile EEG system (MOVE, Brain Products, GmbH, Münich, Germany). The 

wireless system included a lightweight signal transmitter which was carried by the 

subject on a Velcro belt tied around their waist, and a signal receiver, which was 

connected to the EEG amplifier and battery, see Figure 8A. Active Ag/AgCl 

electrodes were connected to the scalp via an elastic cap (actiCAP, Brain Products, 

GmbH) according to the 10-20 electrode system, using electrolyte gel to ensure 

electrode-to-skin impedances were consistently kept under 50 kΩ (SignaGel, Parker 
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Laboratories, Inc., Fairfield, NJ, United States). EEG recordings were sampled at a 

rate of 1,000 Hz, with electrode FPz used as the system ground and all electrodes were 

referenced to Fz. The EEG cap was placed in accordance with the midpoint of the 

anatomical landmarks of the nasion, the inion and the left and right pre-auricular 

points. EEG average reference was applied to all electrodes and signals were digitized 

to 1 kHz on a BrainAmp DC amplifier running on Brain Vision Recorder version 

1.20.0601 for Windows on a Toshiba Satellite P875-149 laptop. A 50 Hz notch filter 

was utilized during the recording. 

Given that the current study was exploratory in nature, high density recordings 

were necessary in order to investigate not only the temporal sequencing of economic 

decision making, but also to spatially estimate which brain regions were activated 

during decision making. Furthermore, high density EEG systems afford the use of 

advanced computational methods such as ICA to remove many artifacts that 

contaminate the data, as the more channels that are provided, the more effective ICA 

is at separating cerebral from non-cerebral artifacts (Gramann et al., 2010; Gwin, 

Gramann, et al., 2010; Lau et al., 2012; Palmer et al., 2008). A 64-electrode system 

represented a compromise between high density recordings in naturalistic 

environments, and more quick, convenient and wearer-friendly experimental set ups. 

4.3.8. Eye-Tracking Recordings and Analysis 

Eye-tracking recordings were taken on Pupil Binocular Eye Tracking Hardware using 

Pupil Capture software (version 0.9.6) running on Ubuntu SMP for Linux on a Lenovo 

Thinkpad x250 Ultrabook laptop (see Figure 8A). Both eye cameras and the world 

view video data streams maintained 800 × 600 resolution. The sampling rate for the 

world view camera was set at 60 Hz and the eye cameras were sampled at 120 Hz, 
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however, the actual sampling rate of the world view camera was calculated offline to 

be 48.29 Hz (± 2.58) on average across all participants. The pupils of both eyes were 

detected using a plugin for Pupil Capture software that algorithmically separates the 

pupil from the cornea (center-surround detection algorithm, Świrski et al., 2012). A 

manual 3D calibration method was employed, whereby a grid of a minimum nine 

points was generated on a blank A0 sized panel in the world view camera of the 

subject. This protocol was repeated until gaze positions were ascertained to be accurate 

at all points where stimuli occurred on the panel. Mid-recording calibrations were 

conducted if pupil gaze was lost or misaligned during the product gallery recording. 

The video streams were then exported and eye tracking data was subsequently 

processed using the Pupil Player Program (version 0.9.6). If the gaze fixation marker 

was off centre, fixation offsets were manually corrected using the Manual Gaze 

Correction plugin and fixation jitters were accounted for using in-house scripts in 

MATLAB version R2014a. Raw gaze positions were exported using the Raw Data 

Exporter plugin. Raw data exported files contained gaze positions, eye positions and 

level of confidence for each individual frame, as well as a corresponding time stamp 

based on the computer’s real time clock. Eye-tracking videos were then visually 

inspected and the onset for a stimulus was defined as the first instance in which the 

gaze touched any part of the stimulus. The image reference number, value level and 

the onset frame was manually tabulated into an excel spreadsheet. Two participants’ 

data were excluded from the sample due to loss of gaze calibration during the 

recordings. Analysis of gaze duration was not included as no information was 

registered for the last instance in which the participants gaze left the object. This was 

due to researchers only being interested in using gaze onset for real-world triggering. 
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Participants were asked to view each product for a minimum of 3–4 s, and could 

continue viewing the products for as long as they liked. 

4.3.9. EEG and Eye-Tracking Data Synchronization 

A trigger box with a light emitting diode was used to temporally synchronize the eye- 

tracking and EEG data streams. A pulse of light was delivered into the world view 

camera whilst a TTL pulse was inputted into the continuous EEG data and, from this, 

the frame in which the pulse of light was offset in the eye-tracking data and the last 

TTL trigger registered in the EEG data was recorded and used to zero both clocks. The 

temporal accuracy of the synchronization trigger was tested previously in a 15-min 

recording whereby 15 synchronizing light/TTL pulses were produced every minute 

and the temporal asynchrony between triggers in both data streams was 0.022 ± 0.020 

ms (mean ± SD) within a 15-min period. 

Using a custom MATLAB script, subject’s BDM ratings were split into 

quartiles based on monetary values assigned to the products, producing four SV levels: 

low-value, low medium value, high medium value, and high-value, and these were 

used to retrospectively redefine the value conditions. These subjective BDM values 

for each object were combined with the timestamp of the computer’s real time clock 

that corresponded to the tabulated frames where the eye first hit each object, and this 

was combined with a set file for each block in order to create an event file to import 

the triggers into the EEG data. In this way, value conditions were defined by each 

individual subjectively rather than by retail price. 

4.3.10. Eye Movement Related Potentials and Handling Eye Movement Artefacts 

EEG data was pre-processed using Brain Electrical Source Analysis (BESA) software 

version 6.1 (MEGIS Software GmbH, Munich, Germany). The data was referenced to 
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a common average (Lehmann, 1987), and, following visual inspection, eye blink 

artifacts were identified by defining their topographies and removed using a principal 

component analysis pattern selection algorithm which identifies artifacts based on 

topographies of marked segments and excludes them from the data (Berg & Scherg, 

1994). Muscle artefacts were manually selected and removed from the data. Event 

markers were inserted into the data by temporally synchronizing the EEG and eye- 

tracking data sets using custom Matlab scripts. The time period for baseline correction 

was from -300 ms to 0 ms, and the data was epoched from -300 pre-stimulus to 600 ms 

after the instance when the eye first hit the object (0 ms). The data was filtered from 1 

to 35 Hz and all time-locked post-saccadic EMRPs from all participants across four 

value conditions (low-, low-medium, high-medium, and high-value) were analysed. 

Due to the time locking of EMRPs to the offset of saccades, a number of 

saccade- related artefacts needed to be extracted from the data. Saccade related 

artifacts are generated by rotation of the corneoretinal dipole of the eye (Berg & 

Scherg, 1994; Dimigen et al., 2011), movement of the eyelid during blinking and 

vertical or horizontal saccades (Dimigen et al., 2011; Picton et al., 2000) and muscular 

activation at the beginning of a saccade, referred to as the saccadic spike potential 

(Dimigen et al., 2011; Nikolaev et al., 2016; Thickbroom & Mastaglia, 1986). 

To separate further eye movement artifacts such as saccade-related potentials 

from genuine cortical activity, an infomax ICA analysis (Iriarte et al., 2003; Jung et 

al., 2000; Khushaba et al., 2013; Nikolaev et al., 2016) was performed which 

algorithmically separates the grand average signal into its maximally statistically 

independent constituents. An infomax ICA was conducted using concatenated grand 

averaged data from four different value conditions (2,400 time points). ICs weights 

were estimated, and, of these, ICs were selected based on spatial and temporal 
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properties as well as responsiveness to value conditions. Subsequently, individual ICs 

were back projected onto single subject average data by loading the grand average 

ICA weights on single subject averages and exporting only the individual IC data of 

interest (Debener et al., 2010). This method allowed for the removal of ICs that 

represented residual saccadic artefacts from the grand averaged sensor signal by only 

back projecting the ICs of interest. 

4.3.11. Source Dipole Modelling 

To localize the generators of cortical potentials represented in ICs of interest, IC 

waveforms were analysed using source dipole analysis in BESA version 6.1 program. 

Using a sequential strategy (Hoechstetter et al., 2010; Stancak et al., 2002), equivalent 

current dipoles (ECDs) were fitted to describe the 3-dimensional source currents in 

the regions contributing predominantly to the data (Scherg & Von Cramon, 1986). 

ECDs were fitted one at a time to explain the latency components starting with the 

shortest latency. ECDs had free origins and orientations. The fitting procedure was 

stopped when the ECD explained the maximum amount of variance (at least 90%) or 

if the dipole was located outside of the head. A 4-shell ellipsoidal volume conductor 

model was used to create the source dipole model with the following conductivity 

levels assumed; head = 0.33 S/m, scalp = 0.33 S/m, bone = 0.00 S/m, and cerebral 

spinal fluid = 1.00 S/m. 

4.3.12. Statistical Analyses 

For behavioral ratings, separate one-way repeated measures ANOVAs (four levels) 

were employed to examine the relationship between value level (as defined by BDM 

rating) and BDM rating, retail price, desirability and pleasantness ratings. 

Greenhouse-Geisser corrections were used to overcome the violation of sphericity 
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assumption when necessary. All significant effects were further analysed using t-tests 

and a critical threshold of p < 0.005 was utilized. All standard statistical tests were 

carried out in SPSS v. 24 (IBM Corp, 2016). 

Independent component analysis waveforms for each individual IC were 

exported and one-way repeated measures ANOVAs were conducted using the 

EEGLab toolbox (Delorme & Makeig, 2004). The four SV levels (low-value, low-

medium value, high-medium value, and high-value) were compared against IC 

amplitude across time windows where amplitude was maximal for each IC. T-tests 

were also used to compare all low versus all high-value conditions for each IC of 

interest. A 95% confidence level was always employed. To reduce the likelihood of 

generating false positives, p-values were corrected using 1,000 permutations (Maris 

& Oostenveld, 2007) and a critical threshold of p < 0.005 was utilized. 

4.4. Results 

4.4.1. Behavioral Results 

Figure 9A–D show the mean values of WTP, retail price, desirability and pleasantness 

in four different levels of values ranging from low to high-value, respectively. All of 

these measures showed a statistically significant relationship with SV level according 

to one-way ANOVAs for repeated measures with four levels of values as the 

independent variable [BDM: F(1,24) = 141.22, p < 0.001; retail price: F(2,43) = 

72.61, p < 0.001; desirability: F(1,37) = 89.13, p < 0.001; pleasantness: F(2,38) = 

75.53, p < 0.001]. In all dependent measures, the t-tests showed statistically 

significant differences across all value levels (p < 0.005). Additionally, there was a 

highly significant linear trend component (p < 0.001 in all cases), confirming a linear 

increase in WTP, retail price and subjective ratings across all SV categories. 
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Figure 9. Average behavioral ratings. (A) Bar graph showing the mean BDM auction 

bids for four different value levels: low, low medium, high medium, and high-value. 

The value conditions are split by subject’s auction rating, and the bar graph shows 

significant differences between all value conditions. A double asterisk (∗∗) indicates 

presence of high statistical significance (p < 0.001), and a single asterisk indicates 

statistical significance (p < 0.05). This provides validation for the splitting product 

stimuli into four value categories based on BDM auction value. (B) Bar graph showing 

mean retail price across the four BDM auction value conditions. Highly significant 

differences were indicated with a double asterisk, and p < 0.05 was indicated with a 

single asterisk. The bar graph indicates that significant differences were found in retail 

price across all value levels (p < 0.05), suggesting that BDM auction value ratings 

mirror the actual retail price of the product. (C) Bar graph showing mean product 

desirability rating across four value conditions. From the graph it can be seen that 

mean desirability increased incrementally with BDM value (all p < 0.001). (D) Bar 

graph showing mean product pleasantness rating across all value levels. Again, this 

graph shows that mean pleasantness increases incrementally with BDM value (all p < 

0.001).  
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4.4.2. Eye Movement Related Potentials 

Figure 10A displays a grand average butterfly plot demonstrating EMRPs across all 

value conditions and all 19 participants.  Figure 10B illustrates the topographic maps 

corresponding to time points of interest that are highlighted in Figure 10A. During the 

pre-stimulus interval prior to onset of fixation, the topographic map displays a large 

frontal positivity which is maximal in the region of the eyes at -18 ms across all 

conditions and participants. This potential component represented a corneoretinal 

artifact, and was associated with the offset of the saccadic eye movement when the 

subject directed their gaze toward a particular stimulus. At stimulus onset (0 ms), there 

was residual corneoretinal artifact associated with a saccadic eye movement. The 

lambda potential (Thickbroom et al., 1991; Yagi, 1979, 1981) (Figure 10A,B) peaked 

at 88 ms and demonstrated a large positivity across occipital electrodes similar to P100 

component in a visual evoked potential. Figure 10A also demonstrates a positive peak 

around 168 ms, which was associated with positivity in parietal electrodes (Figure 

10B). Another peak emerging at 227 ms demonstrated bilateral posterior positivity 

(Figure 10A, B). 

https://www.frontiersin.org/articles/10.3389/fnins.2018.00910/full#F3
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Figure 10. Grand average EMRPs waveforms and topographic maps. (A) Butterfly 

plot showing grand average EMRPs waveforms across all participants and all product 

value conditions with key points of interest highlighted with arrows. The butterfly plot 

demonstrates that eye movement activity is present in the baseline (–18 ms) and 

residual eye movement is present when the eye first touches the image (0 ms). The 

lambda component is highlighted (88 ms) and two later value related peaks are 

observed at 168 ms and 227 ms. (B) 3D whole head topographic maps displaying 

grand average EMRP cortical activation at key time points (–18 ms, 0 ms, 88 ms) and 

value related peaks (168 ms and 227 ms). 

4.4.3. ICA Reconstruction of Eye Movement Related Potentials 

Figure 11A shows the grand average IC activities for five separately back-projected 

IC components collapsed across four value conditions (low, low medium, high 

medium, and high-value products). Figure 11A also shows the topographic maps and 

source dipole solutions for each of the ICs. Figure 11B demonstrates how individual 

IC amplitude responds separately for each of the four value conditions. 



 

112  

 

Figure 11. Grand average IC activity (nV) and value. (A) Grand average waveforms 

for each isolated IC of interest between –200 and 600 ms, with peak activity for each 

component indicated with an arrow. Source dipole modeling was used to estimate 

equivalent current dipoles (ECDs) in order to explain the cortical sources of activation 

for each IC. ECDs for each IC can be observed in a glass brain showing the location 

and orientation of estimated cortical activity, with no more than three sources 

utilized. (B) The grand average waveforms for each individual IC were split by 

condition in order to illustrate how each IC responds to value over time. 
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IC2 showed a strong positive peak at 76 ms, and the topographic maps 

presented a strong positive potential in the right occipital region of the scalp (Figure 

11A). This spatio-temporal pattern was modeled with one ECD (ECD1IC2) which was 

fitted in the visual association area (Brodmann area 18, approximate Talairach 

coordinates x = -4.5, y = -56.3, z = -10.4 mm). The peak in IC2 was seen in all four 

value conditions (Figure 11B). 

IC3 displayed a positive potential maximum in the right occipito-temporal 

electrodes and a negative potential in the left frontal region of the scalp (Figure 11A). 

The time course of IC3 manifested a peak at 112 ms followed by a double peak around 

210 ms and later around 250 ms. The spatial pattern of IC3 was modeled with two 

ECDs. ECD1IC3 explained the most variance for left frontal negative activation in the 

dorsolateral prefrontal cortex (Brodmann area 46, approximate Talairach 

coordinates x = -41.7, y = 37.1, z = 5.4 mm). ECD2IC3 accounted for the right occipital 

positivity and was placed in the visual association area (Brodmann area 19, 

approximate Talairach coordinates x = 24.9, y = -78.9, z = -4.4 mm). While the later 

latency peak at 250 ms was seen in all four value conditions, the earlier peak (212 ms) 

was prominent only in the low- and high-medium value conditions (Figure 11B). 

IC4 showed a peak at 169 ms (Figure 11A). The spatio-temporal maps of IC4 

showed two large positive and negative component maxima in frontal and occipital 

regions of the scalp, respectively, and further positive maxima in centroparietal 

electrodes. This complex spatio-temporal configuration required a model with three 

ECDs (Figure 11A). ECD1IC4 explained the large negative potential maxima in the left 

frontal region and was located in the frontal eye field area of the cortex (Brodmann 

area 8, approximate Talairach coordinates x = 28.8, y = 20.6, z = 44.7 mm), which was 

maximal around 169 ms. ECD2IC4 was fitted into the left parietal area (Brodmann area 
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39, approximate Talairach coordinates x = -45.9, y = -50, z = 33.4 mm), to explain the 

temporal positivity. ECD3IC4 was fitted to the right primary somatosensory cortex 

(approximate Talairach coordinates x = 56.3, y = -16.7, z = 35.8 mm) and explained 

right localized parietal negativity and right occipital positivity at 169 ms. The IC4 

component peak at about 169 ms was seen in all value conditions except the low-value 

condition (Figure 11B). 

IC6 demonstrated a positive peak occurring at 151 ms (Figure 11A). The 

topographic map manifested a frontal negative potential, a parietal positivity, and a 

localized negative potential in the midline occipital electrodes. Two ECDs explained 

this topographic map. ECD1IC6, located in the parietal cortex (Brodmann area 40, 

approximate Talairach coordinates x = -28.4, y = -32.7, z = 21.5 mm) accounted for 

frontal negativity. ECD2IC6 pointed to the negative potential in the midline occipital 

electrodes (Brodmann area 18, approximate Talairach coordinates x = 22.5, y = -

97.0, z = 9.4 mm) and was located in the right visual association area. The peak at 

about 150 ms was seen in all four value conditions (Figure 11B). 

Figure 11A displays a peak for IC7 at 99 ms, and a second smaller peak at 208 

ms, with large frontal negativity and occipital positivity. Three ECDs were used to 

explain this activation, and this can be seen in Figure 11A. ECD1IC7 explained most 

variance in the frontal cortex (Brodmann area 19, approximate Talairach 

coordinates x = -48.7, y = -65.9, z = 6.7 mm), which peaked at 208 ms and accounted 

for negativity in the frontal cortex. ECD2IC7 explained most variance in the left 

occipital region (Brodmann area 18, approximate Talairach coordinates x = -0.3, y = -

71.2, z = 7.3 mm), in the left primary visual area, peaking at 208 ms and explaining 

the occipital positivity. ECD3IC7 explained a source in the parietal cortex (right 

Brodmann area 39, approximate Talairach coordinates x = 39.4, y = -55.8, z = 44.9 
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mm), in the angular gyrus, and this accounted for right frontal negativity peaking at 

208 ms. In Figure 11B, IC7 displays a peak for low-value objects at 208 ms that does 

not seem to appear for other value conditions. 

Notably, the use of ICA afforded the separation of components that had a 

cerebral origin and responded to product values from the potentials caused by 

oculomotor activity such as saccades, spike potentials and residual eye blinks (Berg & 

Scherg, 1991; Dimigen et al., 2011; Nikolaev et al., 2016; Picton et al., 2000; 

Thickbroom & Mastaglia, 1986). Examples of the artefact-related ICs are shown in 

Figure 12A, B. For instance, IC11 showed strong positive activation around the eyes 

which peaked at 6 ms indicating that this IC represents artefactual saccadic activity. 

Likewise, IC16 showed a positive potential maximum that was biased to the right eye 

with a peak at 5 ms. This suggests that the subject was making a right sided saccade 

when their gaze touched the first image. 
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Figure 12. Grand average IC waveforms and corresponding 3D whole head 

topographic maps (nV) for two ICs that represent eye movement related 

artifacts. (A) IC11 showed peak activity around image onset (6 ms), with a positive 

maxima around the eyes, suggesting that this component represented left biased 

saccadic eye movement related activity. (B) IC16 showed peak activation around 

product image onset (5 ms) and positivity maximal around the right eye, suggesting 

that that this component represents right-biased saccadic eye movement related 

activity. 

4.4.4. The Effect of Value on ICs 

Figure 13A–D show, for each individual IC, statistically significant effects of values 

with all value conditions superimposed and bar graphs with mean voltage amplitude 

differences at key time points of interest for each IC, with standard error bars. IC3, 

IC4, IC6, and IC7 showed statistically significant effects of value categories according 

to a one-way ANOVA for repeated measures which was conducted for five 

components, including IC2, across all time points ranging from -200 ms to 600 ms. 
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Figure 13. Statistical differences in product value for ICs of interest measured in 

nanovolts (nV). (A–D) Figures illustrating grand average EMRP activity split across 

four value conditions, indicated by different colored lines, for four isolated ICs of 

interest including IC3, IC4, IC6 and IC7 respectively. The corresponding bar graphs 

illustrate differences in mean amplitude across the four SV conditions for each isolated 

IC of interest. Significant differences between mean amplitude across conditions are 

indicated with a single asterisk for differences significant at p < 0.05.  
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In IC3, a statistically significant effect of value was found in two latency 

intervals, 207–222 ms and 246–258 ms. In the time window 207–222 ms [F(2, 42) = 

7.22, p < 0.005, Figure 13A], the effect of product value was largely driven by the 

low-medium value products demonstrating a significantly lower amplitude compared 

to low- (p = 0.014) and high-medium value products (p = 0.006). The high-medium 

value also demonstrated a significantly higher IC3 amplitude than the high-value 

category (p = 0.033). When all low- and all high-value conditions were compiled, 

there were no statistically significant differences (p > 0.05). 

In the latency interval 246–258 ms, the effect of product values [F(2, 51) = 

6.67, p = 0.001] was related to the high-medium products producing lower IC3 

amplitude compared to low-value (p = 0.013) and low-medium product amplitude (p = 

0.007). When all low- and all high-value conditions were compiled and compared 

using a t-test, we found low-value products produced higher IC3 amplitude (116 ± 26 

nV, mean ± SEM) compared to high-value products (33 ± 21 nV, mean ± SEM), and 

this difference was statistically significant [t(36) = 4.02, p < 0.001]. 

In IC4 (Figure 13B), a statistically significant effect of product values was 

found in the latency interval 164–205 ms [F(2, 42) = 7.36, p < 0.005], with low-value 

products producing significantly smaller amplitude compared to low-medium value 

(p = 0.002), high-medium value (p = 0.03), and high-value products (p = 0.04). When 

low- and high-value levels were compiled, products showed no statistically significant 

differences (p > 0.05). 

In IC6 (Figure 13C), the product values differed significantly in the latency 

interval 144–151 ms [F(2, 41) = 5.61, p = 0.005] with low-value products producing 

significantly higher IC6 amplitude compared to low-medium value products (p = 
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0.005), and high-medium value producing significantly higher IC6 amplitude 

compared to low-medium products (p = 0.023). When low and high-values were 

compiled, the difference between low- and high-value was not statistically significant 

(p > 0.05). 

Finally, IC7 showed no statistically significant effect on the peak at 99 ms, but 

did show a statistically significant effect of product values in the latency interval 200–

219 ms [F(2, 45) = 6.95, p = 0.001, Figure 13D]. This effect was driven by the low-

value category producing significantly higher IC7 amplitude compared to low-

medium (p = 0.009), high-medium (p = 0.017) and high-value conditions (p = 0.010). 

When all low-and all high-values were compiled, the difference was not statistically 

significant (p > 0.05). 

4.5. Discussion 

The present study explored the cortical representations of economic decisions for 

products using EMRPs extracted from mobile EEG. ICA revealed a typical lambda 

component as well as four components that were modulated by subjective economic 

value in the latency range of 150 – 200 ms. The most important finding in the current 

study was that two ICs demonstrated contrasting responses to low-value products, with 

IC4 modulating amplitude for all except the lowest value products, and IC7 exhibiting 

enhanced amplitude for lowest value products. 

Viewing high and intermediate value items was associated with comparatively 

strong IC4 activity peaking at 169 ms. This enhanced responsiveness of IC4 to all 

value conditions excluding low suggests that there is early enhanced attentional 

processing for higher-valued items and this could point toward a relatively automatic 

valuation system that preferentially attends to more highly-valued items (Anderson et 



 

120  

al., 2011; Glimcher & Fehr, 2014). Support for this interpretation comes from research 

demonstrating that a shorter latency and larger amplitude of the P200 component was 

associated with early preferential attention (Hanatani et al., 2005). In a recent 

study, Tyson-Carr et al. (2018) found that the P200 component was modulated by 

valuation context during product preference decisions. The authors observed enhanced 

P200 activation when participants considered product desirability, which they 

suggested was related to attention allocation during valuation decisions. These results 

align with the present experiment in that more highly valued, desirable stimuli 

received enhanced attention, making it more likely that they would be readily 

purchased at a later stage. Likewise, the P200 has also been associated with 

preferential processing of primary reinforcers such as sugary foods (Schienele et al., 

2017). Our data suggests that the cortical response captured by IC4 represents an 

automatic attention allocation mechanism that responds preferentially to higher-

valued stimuli in order to facilitate purchasing for higher valued items and to avoid 

aversive low-value stimuli, irrespective of product category. An ECD for IC4 was 

estimated in the left parietal area (BA39). The parietal cortex has been shown to 

become activated during explicit comparisons (Cappelletti et al., 2010; Hsu & Goh, 

2016; Menon et al., 2000) and correlated with evidence seeking during reward related 

decisions (Furl & Averbeck, 2011). An ECD for IC4 was also observed in the right 

primary somatosensory cortex, which has shown modulation following rewards in a 

somatosensory task (Pessoa & Engelmann, 2010). These results lend some support to 

the interpretation that IC4 represents an early neural attention allocation mechanism 

that selectively responds to more highly valued stimuli and is insensitive to the stimuli 

that are the least positively valued, even in the case of everyday household products. 
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In contrast to IC4, IC7 responded to low-value items around 200 ms. This early 

enhanced processing for the low-value objects can be understood in terms of very low-

value products representing an aversive stimulus, due to the potential for the loss of 

monetary resources. In support of this interpretation, the P200 ERP component has 

been found to be modulated by emotional valence of a stimulus (Ashley et al., 2004; 

Carretié et al., 2001a; Huang & Luo, 2006), and to moderate attention allocation 

(Carretié et al., 2001b) for products of different valence (Carretié et al., 2001a; Polezzi 

et al., 2008). Moreover, some studies suggest that the P200 ERP component is 

reflective of a subjectively negative assessment (Polezzi et al., 2008). For 

instance, Carretié et al. (2001b) found a higher P200 amplitude and shorter latency 

when viewing negative stimuli, which they attributed to enhanced attention for 

aversive stimuli. Source dipole modeling for IC7 revealed an ECD in the visual 

association area, which has been shown to be modulated by the motivational relevance 

of a stimulus (Krawczyk et al., 2007). Another ECD was located in the angular gyrus, 

which is associated with numerical problem solving, (Seghier, 2013), attention 

allocation for salient stimuli (Gottlieb, 2007), response inhibition (Gottlieb, 2007; Nee 

et al., 2007; Seghier, 2013) and stimulus value (Lin et al., 2012). Angular gyrus 

activation has also been observed in gambling tasks, with more activation for potential 

losses (Minati et al., 2012). Therefore, it is likely that the angular gyrus is involved in 

enhancing attention toward low-value stimuli to inhibit buying and avoid monetary 

loss. Taken together, we suggest that IC4 and IC7 reflect attention-related and aversive 

responses which are likely part of an early valuation system that serves to enhance 

attention for intermediate and high-value stimuli to facilitate purchasing and to 

enhance attention for aversive low-value stimuli in order to facilitate avoidance 

(Libera & Chelazzi, 2009). In this way, basic economic decision making appears to 
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occur quickly in order to isolate the lowest value products and to ensure monetary 

resources are being economically optimized. The authors recognize, however, that IC7 

represents a very small component that peaks close to baseline, therefore, any 

conclusions should be viewed with caution. 

Two other ICs, IC3, and IC6, preferentially responded to medium-value 

products, although these responses are more difficult to interpret. IC6 peaked at 151 

ms and exhibited higher amplitude for low and high medium-value products. The P150 

ERP component has been associated with a basic rapid visual categorization process 

and it might be that it forms part of a ‘tagging’ mechanism that marks items out for 

later enhanced processing downstream (Cesarei et al., 2015; Kirchner & Thorpe, 2006; 

Nikolaev et al., 2013). In support of this interpretation, an ECD was located in the left 

supramarginal gyrus, which has been implicated in semantic categorization of visual 

stimuli (Pexman et al., 2007), and economic decisions for products (Deppe et al., 

2005). Another dipole was observed in the visual association area, which has been 

shown to be modulated by the motivational relevance of a stimulus (Krawczyk et al., 

2007). 

IC3 showed statistically significant increases in activity for medium-value 

categories in two latency windows within the range of the P200 ERP component. 

Further data and replications are needed to fully understand the role of IC3 in product 

evaluations in natural settings. However, the finding of a source contributing to IC3 

in the dorsolateral prefrontal cortex suggests that this component was related to value-

based decision-making as important components of decision making such as WTP, 

moderation of risk, and top down attention have been shown to be mediated by this 

brain region (Bartra et al., 2013; Hubert & Kenning, 2008; Mahesan et al., 2016; 

Morris et al., 2014; Plassmann et al., 2007). 
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Our data suggests that attention or aversion reflecting SV is attributed to 

products during free viewing in quasi-naturalistic settings as early as 200 ms. Further 

support for this comes from studies of single neurons in monkey’s orbitofrontal cortex, 

which have been shown to respond to values and risks as early as 180 ms (Critchley 

& Rolls, 1996; Padoa-Schioppa & Assad, 2006; Schultz et al., 1993). The data also 

suggest that this early automatic valuation is mediated by a set of cortical activation 

patterns, none of which encodes values in a linear fashion. Rather, our results prompt 

the hypothesis that certain cortical regions or sub regions of larger brain areas are 

tuned to respond predominantly to low -or high- value items. Value-tuned brain 

modules that are responsible for spotting low- or high-value items in our environment 

would allow rapid categorization and prompt behavioral avoidance or approach 

responses. 

The fast bottom-up responses for low and higher value products and the 

potentially more deliberative top-down responses for more ‘difficult’ medium-value 

decisions can be better understood from the perspective of the Fuzzy Trace Theory 

(Brainerd & Reyna, 1990). The theory postulates that decisions in the real-world are 

calculated based on two processes that are computed in parallel; verbatim 

representations, which involve automatically matching characteristics to 

representations stored in memory, and more meaningful top-down gist representations 

(Corbin et al., 2015). In the current study, it is possible that high and low-value items 

elicit an automatic verbatim representation as they have been experienced before, 

whereas medium-value products require more top-down deliberation and elicit a 

semantic ‘gist’ representation. As such, the Fuzzy Trace Theory provides explanation 

for the similar latencies of the ICs as they are processed in parallel and clarifies the 

recruitment of top-down brain areas for medium-value decisions. This draws 
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similarities to the neuroeconomic concept that multiple brain systems are involved in 

the computation of value (Dickinson & Balleine, 2002; Rangel et al., 2008). Daw et 

al. (2005) propose that different brain systems might be involved when choosing 

between options with different values under varying levels of uncertainty. These 

systems include habitual processing, which represents fast responses that are learned 

through trial and error, and goal-directed responses, which involve the assignment of 

value through outcome assessment and reward calculation for multiple options. In the 

current study it could be the case that the habitual processing system was employed 

for valuation of products that participants had more experience of choosing between, 

i.e., high and low-value products. Conversely, when the product is not categorized as 

either high or low-value, the goal-directed system dominates as further assessments 

are needed in order to determine the products’ worth. The results of the current study 

are also highly relevant to the field of neuromarketing as it was shown that, within the 

first 200 ms of viewing a product, the brain already computes and assigns a value 

(Jones et al., 2012; Pozharliev et al., 2015; Tyson-Carr et al., 2018). As such, it appears 

that first impressions are very important when deciding whether to purchase a product 

and previous experience and expertise can influence purchase decisions. 

There are, however, several limitations associated with the current study. One 

limitation of this experiment is that we were unable to detect EMRPs occurring later 

than 300 ms post stimulus. Previous research has highlighted the role of the P300 (San 

Martín, 2012; Yeung & Sanfey, 2004) in outcome evaluation during economic 

decisions. In traditional laboratory-based experiments, participants are presented with 

a fixation cross followed by a stimulus in the same predefined position in order to 

avoid saccade related artefacts (Dimigen et al., 2011). In contrast, free-viewing in the 

real-world is both a multi-and-trans-saccadic process in which the visual stream is 



 

125  

constantly being updated and integrates new sensory information into continuous 

perceptual and cognitive processes (Dimigen et al., 2011). As a result, the new sensory 

information does not show a fixed phase relative to the time-locked event and 

distortion of the signal occurs later in the EMRP (i.e., after 300 ms; Dimigen et al., 

2011). This is an ongoing issue for experiments that combine free eye movements with 

EEG, as it is difficult to ensure that continuous visual updating does not distort the 

EMRP without compromising the ecological validity of the experiment. As a result, 

the current findings should be viewed as preliminary, and more research is needed to 

determine how the brain computes valuation decisions later in the decision-making 

process. Another limitation of the current study is that source dipole modelling was 

used to estimate sources for EMRP activity. It must be emphasized that any 

conclusions drawn from source dipole modelling in mobile EEG should always be 

viewed with caution and any interpretations are tentative. As such, no statistics were 

performed on the dipole analysis, which was conducted purely for exploratory 

purposes. This is because of the difficulties associated with source localization in EEG 

data (Luck, 2005), which are exacerbated in mobile EEG data (Grech et al., 2008).  

Moreover, to avoid explicitly asking participants to provide an economic value 

for a product, participants were asked to rate whether they would purchase products 

during the gallery task and were later required to bid on the items, and these bids were 

used to retrospectively define the value conditions. However, it cannot be ruled out 

that participants considered other factors such as desirability and pleasantness to 

inform their decision in the gallery. These factors could theoretically influence 

attention or aversion, as our results show that desirability and pleasantness ratings 

echoed the economic value of the stimulus. Future studies should endeavour to isolate 

value related from non-value related attentional processes, although this is very 
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difficult to achieve. Likewise, attention, aversion and early economic valuation 

decisions should be further explored using fMRI and fMRI informed source analysis 

techniques in EEG. Finally, it is possible that the limited price range could have 

influenced economic value responses as the current experiment failed to show a 

component that responded exclusively to the highest value condition. This could be 

because objects within the £8 price bracket are only considered to be high-value within 

the context of products on offer. Future experiments may benefit from expanding the 

price range to better examine how the temporal sequencing of economic value 

attribution occurs in the brain. 

Finally, findings from the current study can be compared with results obtained 

from a standard laboratory recording. The present study follows a laboratory-based 

experiment from our research group by Tyson-Carr et al. (2018), who found, using the 

same BDM auction paradigm, that the N200 resolved the valuation of everyday 

household products, with a bias toward low-value objects. The authors suggested that 

the modulation of the N200 for low-value objects hints toward an automatic valuation 

system, which is similar to what was observed in the current study. Therefore, as the 

current study provides further support for automatic valuation of products even in 

naturalistic environments, this adds validity to the data. This is an extremely important 

and novel contribution as the current experiment was able to demonstrate the 

feasibility of examining EMRPs for products in naturalistic environments. 

4.6. Conclusion 

In conclusion, the current experiment demonstrated that, to some extent, the 

neural spatio-temporal dynamics that underpin economic decisions for household 

products can be resolved in a naturalistic setting. Findings suggest that the EMRP 

parietal P200 component reflects an attention allocation mechanism that responds 
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extremely quickly to isolate the lowest (IC7) value stimuli from all other value stimuli 

(IC4), as these represent important decisions in terms of maximizing economic 

resources. Other components responded to medium-value products and may indicate 

a fine grating of more difficult decisions (IC3, IC6). Overall, while none of the ICs 

displayed linear amplitude changes that parallel the SVs of products, results suggest 

that a combination of multiple ICs may sub-serve a fine-grained resolution of the 

subjective economic values of products. In order to fully disentangle the spatio-

temporal neural processes that underpin economic decisions for products in the real 

world and to better understand how medium and high-value products are represented, 

more research is needed with a broader range of stimuli. 
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5. INVESTIGATING NEURAL RESPONSES 

UNDERLYING PRODUCT VALUATION IN THE 

REAL-WORLD USING WIRELESS 

ELECTROENCEPHALOGRAPHY AND EYE- 

TRACKING  
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5.1. Abstract 

Previous laboratory-based EEG studies have shown that SV of objects within the 

visual field can be computed within hundreds of milliseconds. Our recent study 

(Roberts et al., 2018) used wireless EEG recordings and eye-tracking to identify 

components of EMRPs resolving SVs of household and office items viewed on a tour 

through a mock gallery. The P200 component of EMRPs has been shown to resolve 

low- versus high-value items. The present study investigated if EMRPs during product 

viewing would encode their SVs linearly by expanding the range of retail values of 

displayed products and by implementing a guided-saccade method for removal of 

saccade-related potentials that contaminate EMRPs and worsen the signal-to-noise 

ratio. 

Participants viewed 216 product images in a gallery whilst a 64-channel 

wireless EEG and eye-tracking data were recorded. Afterwards, an auction task was 

used to elicit WTP to establish the SV of items. SVs were used to retrospectively 

categorise products into four distinct SV categories. ASF was used to remove saccade-

related potentials extracted from guided saccade recordings. EMRPs were analysed 

using IC analysis and a clustering analysis of group data. 

The guided-saccade method removed saccade-related artefacts more 

efficiently than a standard pattern-matching algorithm fitted to eyeblink artefacts. Four 

ICs peaking in the latency window 50 ̵ 230 ms resolved the SV of items. One IC 

operating in the latency period of the lambda potential showed a linearly decreasing 

component activity paralleling increasing SV with the strongest IC activity seen 

during viewing of the low-value items. The rest of ICs responded preferentially to one 
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of the medium-value categories. The components resolving SVs early on (50 ̵ 60 ms) 

differentiated the low-value category from other categories. 

Results suggest that the cortical activation components elicited during free- 

viewing of household and office items in quasi-naturalistic settings are tuned to 

specific values bands, with the lowest-value items producing early activations. SV of 

items formed automatically during the initial period of viewing is based on a coarse 

grid of values, with low-values being attributed early on during free-viewing of items. 

5.2. Introduction  

The real-world contains large amounts of complex visual information competing for 

our attention, so it is essential to selectively allocate attentional resources towards 

salient information that supports the attainment of current goals (Oberauer, 2019). 

Despite the belief that decision making is an entirely conscious process, many of the 

decision making processes that are responsible for execution of repetitive procedures 

are fast, automatic and unconscious, preventing the conscious mind from information 

overload (Lebreton et al., 2009; Milosavljevic et al., 2011; Soon et al., 2008; Telpaz 

et al., 2015). According to the common neural currency hypothesis (Levy & Glimcher, 

2012), irrespective of demand, values are continuously and automatically computed 

and assigned to objects in the environment (Bartra et al., 2013; Lebreton et al., 2009; 

Levy & Glimcher, 2012; Tyson-Carr et al., 2018; Westbrook et al., 2019). In support 

of the automaticity of the brain valuation process, single neuron recordings from 

monkey prefrontal cortex have shown that valuation occurs early in the brain between 

100 ̵ 200 ms (Padoa-Schioppa, 2013). The ventromedial prefrontal cortex has shown 

encoding of SV of objects such as paintings houses or music in a linear fashion in 
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humans (Lebreton et al., 2009) and in primates (Abitbol et al., 2015; Lebreton et al., 

2009). 

In humans, event-related potentials (ERPs) facilitate investigation of how 

value-based decisions evolve in the brain over time (Milosavljevic, Koch, & Rangel, 

2011; Roberts et al., 2018; Telpaz, Webb, & Levy, 2015; Tyson-Carr et al., 2018; 

2020). Electroencephalographic (EEG) research in laboratory settings has indicated 

that early ERP components such as the N200 (Telpaz, Webb & Levy, 2015; Tyson-

Carr et al., 2018; 2020; Goto et al 2017) and the P200 (Ma et al., 2018) are modulated 

for products of different SV, particularly for the more extreme categories of least and 

most valued products, supporting the presence of an early attention-based neural 

valuation system. 

Because humans are active agents who navigate the environment according to 

their current needs and goals (Makeig et al., 2009), it could be hypothesised that the 

purpose of this early valuation process is to filter relevant from irrelevant stimuli, 

promoting automatic approach and avoidance responses, facilitating this navigation 

(Krieglmeyer et al., 2010, 2013). However, it is not known how the valuation process 

works in naturalistic settings during free-viewing. Naturalistic settings provide a 

different framing to objects occurring in the visual field due to the presence of a natural 

context influencing neural activations in humans (Ladouce et al., 2017; Neisser, 1976). 

Exploration of a visual scene (e.g., during shopping) involves multi- and trans-

saccadic operations in the brain to integrate information obtained in series of 

successive eye-fixations and to anticipate the visual features before the next saccade 

(Melcher & Colby, 2008). Upright posture in freely moving individuals compared to 

the sitting posture utilised in laboratory settings has been shown to affect brain activity 

and cognition (Thibault et al., 2014, 2015). Presenting one stimulus at a time removes 
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the opportunity for detecting trans-saccadic operations, including integration of 

information accumulated from the environment across saccades to guide attention 

(Dimigen et al., 2011; Prime et al., 2011; Ray et al., 2011) and interactions with short 

term memory (Hollingworth et al., 2008). Such operations are important for decision 

making in natural environments when multiple stimuli are present. 

Technological constraints have prevented the examination of valuation 

decisions within naturalistic settings in the past. However, recent advances in 

technological aspects of EEG recordings and data analysis have opened up 

possibilities for exploring brain activations in freely behaving individuals. MoBI is a 

novel non-invasive brain imaging approach to investigate brain activations occurring 

in freely behaving individuals (Gramann et al., 2011; Makeig et al., 2009). MoBI 

incorporates wireless EEG recordings and a multi-modal approach to data analysis 

which combines EEG recordings with recordings of muscle activity, spatial head 

coordinates, and eye movements (Ojeda et al., 2014). A MoBI approach has been 

implemented in a range of natural settings and activities including walking (Severens 

et al., 2012; Wagner et al., 2012), cycling (Zink et al., 2016), or piloting an airplane 

while airborne (Callan et al., 2015). 

We have implemented a MoBI approach to study the encoding of SVs in early 

electrocortical responses associated with viewing household and office items of 

different SVs displayed in a mock gallery (Roberts et al., 2018). The preliminary study 

employed wireless EEG and a lightweight eye-tracking device to record eye-

movements. After synchronising EEG and eye-tracking data streams and using the 

first instant of eye-fixation on an item image in the visual field of the participant, 

averaged EMRPs were computed. WTP was elicited for every item using Becker-

DeGroot-Marschack (BDM) auction (Becker et al., 1964). Results revealed a lambda 
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potential component in EMRP which is an equivalent of the P100 visual evoked 

potential (Thickbroom et al., 1991; Yagi, 1979a, 1981a) and EMRP components in the 

latency of 200 ms. differentiated the lowest-value products from all mid- and high-

value items, suggesting that early cortical activation might automatically resolve 

values in a binary and coarse manner. 

However, the coarse and binary resolution of values in EMRPs observed by 

Roberts et al. (2018) might have reflected the limited range of values in the study, 

which could have prevented the detection of a component responding exclusively to 

high-value, as products with a maximum retail value of £8 may not be attributed a 

high SV. The limited range of SVs may have reduced possibilities to identify the 

cortical activation components that would encode SV linearly. Therefore, the present 

study aimed to explore encoding of SVs in EMRPs using a larger range of values, with 

the highest retail price reaching £12. 

Another factor that may have limited the possibilities of resolving linear 

encoding of SVs in our previous study (Roberts et al., 2018) may be the presence of 

residual saccade-related potentials that would increase the noise levels in EMRP data 

and increase the risk of Type I error. Notably, saccade-related potentials originating 

from the corneoretinal potential of the eye (Berg & Scherg, 1991b; Dimigen et al., 

2011), movements of the eye lid (Picton et al., 2000) and contractions of eye muscles 

(Dimigen et al., 2011; Nikolaev et al., 2016; Thickbroom & Mastaglia, 1986) also 

affect scalp potentials in remote parietal or occipital electrodes (Forgacs et al., 2008).  

During free-viewing, saccade-related artefacts are of particular concern due to 

their increased prevalence (Cao et al., 2020; Dimigen, 2018; Dimigen et al., 2011; Ille, 

Berg & Scherg, 2002) and methods have been developed to reduce saccade-related 
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artefacts (Nikolaev et al., 2016; Plöchl et al., 2012; Roberts et al., 2018; Soto et al., 

2018; Tyson-Carr et al., 2020). Soto et al. (2018) approached removal of saccade-

related potentials by placing regional sources with three orthogonal equivalent source 

dipoles into the eye orbits. Roberts et al. (2018) employed a pattern-matching 

algorithm and PCA (Berg & Scherg, 1994) to identify and remove eyeblink artefacts. 

To further remove saccade-related artefacts, we employed an infomax ICA to 

decompose grand averaged data and subsequently back projected selected IC weights 

onto single-subject averaged data by exporting only the IC of interest (Debener et al., 

2010). To further improve on removal of saccade-related potentials, guided-saccade 

recordings can be employed, which was initially suggested by Berg and Scherg and 

later adopted by others (Berg & Scherg, 1991; Dimigen, 2019; Ille et al., 2002). In this 

way, saccades of various viewing angles can be produced prior to the recording 

allowing for precise detection and extraction of saccade-related artefacts by applying 

the ASF method (Berg & Scherg, 1994; Ille et al., 2002). ASF models and subtracts 

the saccade-related artefacts from the EEG data using a PCA spatial filter. Guided-

saccade recordings combined with ASF offer an alternative saccade removal solution 

for naturalistic recordings. Alternatives for saccade-related artefact removal are 

necessary when detailed information about saccade amplitudes and angles is not 

available, preventing implementation of linear deconvolution methods such as Unfold 

Toolbox (Ehinger et al., 2018). 

The current study aimed to examine the automatic valuation process in 

naturalistic settings elicited during free-viewing of products to investigate whether 

components of EMRP encoded SVs of household and office items monotonically and 

linearly. The primary objective of the present study was to address the limitations of 

our preliminary study (Roberts et al., 2018) by exploring the cortical activation 
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patterns underlying product valuation with an extended range of retail values. The 

current study achieved this by increasing the number of products and the monetary 

retail value threshold of the products. WTP values of items were evaluated using a 

BDM auction task, similar to Roberts et al. (2018). 

A secondary objective of the study was to implement guided-saccade 

recordings and ASF to remove saccade-related artefacts from wirelessly recorded 

EMRPs and to evaluate the effectiveness of this procedure by examining amplitude 

reduction of EMRP in frontal electrodes in the vicinity of the eye orbits. It was 

hypothesised that by incorporating a larger range of values, one or more independent 

components would show monotonically rising or decreasing activation paralleling 

SVs. Furthermore, it was hypothesised that low-value products would show neural 

prioritisation reflected in a shorter latency of early EMRP components (Roberts et al., 

2018; Tyson-Carr et al., 2018). Finally, it was hypothesised that the combined guided- 

saccade recordings and ASF would outperform the standard eyeblink artefact removal 

method implemented in Roberts et al. (2018). 

5.3. Materials and methods  

5.3.1. Participants 

Twenty-three participants (13 females) were recruited for the current experiment. 

Three participants were excluded from the final analysis due to inability to export the 

eye-tracking data (1 subject), insufficient eye-tracking calibration resulting in a low 

number of trials (1 subject) or high residual variance in the EEG data at the ICA level 

(1 subject > 40% RV). A final sample of twenty participants was retained (11 female), 

with an average age of 27 ± 5.9 years (mean ± SD), two of which were left-handed. 
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All participants received information about the experimental procedure prior to the 

commencement of the study.  

5.3.2. Ethical standards  

Full informed consent was obtained before the study began and ethical approval was 

awarded from the Health and Life Sciences Research Ethics Committee (Psychology, 

Health and Society) reference number 1145 (extended). All experimental proceedings 

were conducted in accordance with the Declaration of Helsinki. Participants were 

remunerated £10 for their participation. The remaining balance from their endowment 

received during a BDM auction task was added to their final payment (after deducting 

the price equal to the random number assigned to the winning products), with an 

average of £16.52 ± 2.42 (mean ± SD) retained. Participants also received two 

household products worth up to £12 each. 

5.3.3. Product images  

Two hundred and sixteen colour images of everyday household products taken from a 

shopping catalogue were utilized in the current experiment. Three retail price 

categories ranging between £0.50 and £12.00 were developed. Low-value products 

were priced between £0.50 – £4.00 (2.32 ± 1.16), medium-value products were priced 

between £4.50 – £8.00 (£6.31 ± 1.17) and high- value products priced between £8.40 

– £12.00 (10.46 ± 1.12), with 72 product images in each category. The product images 

were roughly sized at 20 × 20 cm and were presented on an A0 sized panel arranged 

around a central fixation cross (14.3 cm × 14.3 cm). All product images were pseudo-

randomly distributed around the central fixation cross, with care taken to ensure than 

no two products of the same type (i.e., two kettles) were included on the same panel. 
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All A0 sheets containing the stimuli and fixation crosses were mounted onto 

Styrofoam panels, with adhesive Velcro to secure them to the wall (see Figure 14A).  

All 12 panels were double sided with stimuli for block two on the reverse side. Panels 

were mounted onto the walls of two adjoining corridors in the Eleanor Rathbone 

Building at the University of Liverpool, creating a product gallery (Figure 14B). The 

retail value of products per panel ranged between £47 – £64, with an average value 

per panel of £56.93 ± £4.49 and an aggregate retail value across all panels of £1366.40.  

5.3.4. Procedure  

Participants took part in two experimental sessions over two days, with session two 

taking place within one week. Session one involved the mobile EEG and eye-tracking 

set up, the product viewing task and the computerized BDM auction task. Session two 

involved a computerized hedonic rating task. 

During the first experimental session, participants arrived at a laboratory space 

in the Eleanor Rathbone Building at the University of Liverpool. Participants were 

greeted, the experimental procedures were outlined, and fully informed consent was 

given. Participants had their heads measured and were fitted with a 64 channel actiCap 

(Brain Products, GmbH), which was placed according to the centre point between the 

anatomical landmarks of the nasion, the inion and the right and left pre-auricular 

points. Electrolyte gel was applied using a blunt syringe and 64 active shielded 

electrodes were connected, in accordance with the international 10 – 20 system. Once 

impendences were lowered to below 50 KΩ, the subject was connected to the wireless 

MOVE system (Figure 14A). 

Pupilabs binocular eye-tracking glasses (Pupil Binocular Eye Tracking 

Glasses, PupiLabs, Germany) were applied and plugged into a lightweight Lenovo 
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laptop. Once the eyes were calibrated using the 3D calibration routine on a blank A0 

panel with manual markers kept at a distance of 1 meter, the recording was started. 

Participants were asked to make a number of saccades on a circular template in order 

to map saccade-related artefacts (Figure 14C). Afterwards, the laptop was placed in a 

backpack which was carried by the participant during the task, with the electrodes that 

run from the EEG cap to the transmitter were clipped onto the backpack in order to 

avoid cable sway artefacts (Gramann et al., 2010; Gwin et al., 2010; Roberts et al., 

2018; Soto et al., 2018).  

Before the product viewing task began, a light-emitting transistor-transistor-

logic (TTL) pulse synchronized the eye-tracking and EEG data sets, indicating the 

beginning of the experiment. Participants navigated a gallery-like setting containing 

216 images of products over 2 blocks. Following the product viewing task, the 

equipment was disconnected and participants took part in a computerized BDM 

auction experiment to elicit subjective economic WTP values for each of the 216 

products.  In the second experimental session, participants completed a hedonic rating 

task, rating the 216 stimuli for desirability and pleasantness. Afterwards, they received 

a random two products that they bid on and won during the BDM auction task and 

were debriefed and thanked for their participation.   

5.3.5. Product Viewing Task  

When the mobile EEG and eye-tracking systems were running, participants walked 

through a product gallery, viewing each product on a panel to determine which two 

products on a panel that they would be most and least likely to purchase. Central 

fixation crosses were viewed in between image evaluation, serving as a neutral 

baseline and allowing gaze correction. The product viewing task included two 
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experimental blocks with 12 panels per block displaying 9 images per panel (108 

images per block). On average, participants took 15 minutes per block to view and rate 

the images. The corridor was not closed off, maintaining a naturalistic environment 

(Figures 14A–B). 

 

Figure 14. Stimuli and set up for Mobile EEG product viewing task. (A) Example of 

the mobile EEG and eye-tracking set up in the product gallery setting. The participant 

wears a 64 channel actiCAP with active-shielded electrodes attached to the move 

system transmitter, which is attached to the participant’s belt. The subject wears 

PupiLabs eye-tracking glasses which are plugged into a laptop contained in a backpack 

that is worn during the task. Participants view a product panel during the task 



 

141  

containing 9 household products and a central fixation cross to check gaze accuracy. 

(B) Template of the mock gallery in which the products were viewed and rated while 

EEG and eye-tracking recordings were taken. (C). Guided saccade template. 

Participants made a saccade from the centre fixation cross to a number and back to the 

cross three times sequentially from 1-9, mirroring the angle and distance that each 

product would be viewed. 

5.3.6. BDM Auction task  

Once the product viewing task was completed, participants took part in a computerized 

BDM auction task in a laboratory. Stimulus presentation was controlled using Cogent 

2000 (UCL, London, United Kingdom) running on Matlab (version R2014a, The 

MathWorks, Inc, United States) on a Dell monitor on a HP Compaq 8200 computer. 

Participants were endowed with £24, which was refreshed for each trial, and were 

asked to bid between 0 – £12 the amount that they would be willing to pay for each of 

the 216 products, with 14 bidding options available in increments of £0.50 from £0.00 ̵ 

£0.50, and in increments of £1 from £1 ̵ £12. Feedback was given regarding whether 

a bid resulted in a purchase. Importantly, the auction task required participants to bid 

their true WTP value, as there was no optimal ‘strategy’ for bidding. Importantly, 

participants actually received two products that they were bidding on, therefore, the 

task was incentive compatible and more likely to reflect true SV. The task took 

approximately 35 minutes to complete. The BDM auction task was used in a previous 

experiment in our laboratory (see Roberts et al., 2018 for a full outline of the task). 

Individual WTP values for each product were retrospectively used to subjectively 

categorize each product that the participant viewed in the gallery task, creating four 

categories for EMRPs; low, low medium, high medium and high. The task took 

approximately 35 minutes. 
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5.3.7. Hedonic rating task 

In the second experimental session, within one week of the first experimental session, 

participants took part in a computerized hedonic rating task in the same laboratory 

space. Stimuli were again presented using cogent 2000 running on MATLAB (version 

R2014a). Participants viewed the same 216 stimuli once and rated them for both 

desirability and pleasantness. The task took approximately 30 minutes to complete. 

5.3.8. Electrophysiological recordings  

EEG was recorded continuously over the whole scalp using a 64-channel wireless 

mobile EEG system (MOVE system, Brain Products, GmbH, Munich, Germany). In 

addition to the amplifier and battery, the wireless EEG system included a signal 

transmitter which connected to electrodes and was attached to a Velcro belt and a 

signal receiver. 64 active-shielded Ag/AgCl electrodes were applied to the scalp using 

an Elastic cap (ActiCap, Brain Products, Munich, Germany), in accordance with the 

international 10 – 20 system. The centre of the cap was placed in line with the centre 

of the nasion, the inion and the right and left pre-auricular landmarks. Electrolyte gel 

was applied to each hole before the sensors were connected, maintaining signals under 

50 KΩ (SuperVisc Gel, Brain products). EEG was sampled at 1,000 Hz, electrode FPz 

was utilized as the system ground, and Fz was used as a reference for all electrodes. 

The signal was digitized to 1 kHz on an ActiChamp amplifier (Brain Vision Recorder 

v 1.20.0601) on a Toshiba Satellite (P875-149) laptop. A 50 Hz notch filter was also 

used during the recording. PupiLabs Binocular Eye Tracking glasses tracked visual 

behaviour and were connected to a Lenovo Thinkpad x250 Ultrabook laptop. The eye- 

tracking data was continuously recorded via the pupil capture software (PupiLabs, 

version 1.4.1) on Ubuntu SMP which was carried in a backpack during the recording. 
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The pupils of both eyes were detected using the pupil gaze centre-surround algorithm 

(Świrski et al., 2012) and a 3D calibration was used against a blank A0 panel. The 

resolution of the world camera was set to 1280 × 720 and was sampled at 60 frames 

per second, however, the actual sampling rate of the world view camera was calculated 

to be 46.55 (±12) frames per second on average across all participants. The resolution 

of the right eye was 192 × 192 and the frame rate was 200 samples per second. The 

left eye maintained a resolution of 380 × 240 with a frame rate of 120 samples per 

second. The eye-tracking data was imported into Pupil Player version 1.7.42 and if the 

gaze was considered to be off centre (i.e. when viewing the central fixation cross), the 

gaze marker was manually corrected using the manual gaze correction plugin. Fixation 

jitters were corrected using in-house scripts in MATLAB (R2017a). Raw data were 

exported using the Raw Data Exporter plugin. Gaze onset was exclusively used for 

triggering stimulus onset in the real-world. EEG and eye-tracking data sets were 

synchronized using a light emitting TTL trigger box by aligning the offset of a button 

press (the last TTL) with the light offset of the LED in the world view camera, 

indicating time zero (see Roberts et al. (2018) for full details).  

5.3.9. Eye-Movement-Related Potentials guided saccade recordings and ASF 

Once the triggers were created and imported, EEG data was processed using Brain 

Electrical Source Analysis (BESA) software version 6.1 (MEGIS Software, GmbH, 

Munich, Germany). A common average reference was employed, and muscle artefacts 

were removed upon visual inspection. 

Because eye-movement-related potentials (EMRPs) were time time-locked to 

the offset of the saccade, when the gaze first hit an image, a number of saccade-related 

artefacts were present in the data. To reduce saccade-related artefacts in the EEG data, 
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guided saccade recordings were taken prior to commencement of the experiment 

reflecting each angle of viewing from the central fixation cross to each image in the 

product gallery. Participants viewed an A4 panel displaying a circular template with 

nine 15 cm lines spaced 40 degrees apart that converged in the centre (Figure 14C). 

At the end of the lines were nine boxes labelled from 1 to 9 and participants were 

asked to make a saccade from the centre of the circle to box one, make a saccade back 

to the centre, and to repeat this process for all numbered boxes at least three times. 

Saccade angles were calculated by measuring the angle that the object would be 

viewed given the maximum distance that the subject could stand away from the panel 

(94 cm) in the corridor and the distance from the floor to the lowest image (38 cm). 

The effectiveness of this saccade-removal method was calculated for all participants. 

 Because each saccade angle was linked to an onset trigger in guided saccade 

recordings, typical saccade-related artefact topographies for each angle of viewing 

could be identified in the continuous EEG data, which were subsequently removed 

using ASF (Ille et al., 2002) in Brain Electrical Source Analysis (BESA) software 

version 6.1 (MEGIS Software GmbH, Munich, Germany). Specifically, ASF modelled 

each saccade-related artefact defined by visual inspection of topographies, using the 

amplitude criterion exceeding normal range (such as eye blinks, eye movements), and 

correlation criterion indicating similarity between the marked segment and 

topographies at certain time points throughout the recording. Next, a PCA (Berg & 

Scherg, 1994) decomposed the subset of matched components to model the activity 

and explain the variance and the component with the highest p value explaining the 

least variance (e.g., below 5 to 10% of data variance) is then subtracted from the EEG 

data (Ille et al., 2002). 
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The effectiveness of saccade-related artefact removal technique was examined 

by comparing amplitude for eye electrodes FP1 and FP2 during saccades made before 

stimulus onset (-7 ms). EMRP data for 20 participants with saccade-related artefacts 

removed using guided saccades and ASF were compared with EMRP data in the same 

participants with only eye blinks removed using ASF and with uncorrected EMRPs. 

Once the raw data was clean of muscle, eye blink and saccade-related artefacts, 

the EMRP data was exported to EEGLAB (Derlorme & Makeig, 2004) running in 

MATLAB R2017a (MathWorks, Inc., United States), and input into the EEGLAB 

STUDY structure to allow clustering of ICs across participants. The data was epoched 

from -200 to 600ms, baseline corrected -200 to -100 and filtered from 1–30 Hz. Set 

files were merged across experimental blocks to create four set files for the four value 

conditions for each subject. 

5.3.10. ICA decomposition, equivalent current dipole fitting and component 

clustering 

The block-concatenated single-subject epochs were subjected to an infomax 

independent component analysis (ICA; Delorme & Makeig, 2004; Makeig et al., 1996) 

using the ‘run.ica’ function in the EEGLAB toolbox (Bell & Sejnowski, 1995) 

individually for each subject in order to decompose the grand averaged EEG signal 

into its maximally temporal independent and spatially fixed component processes or 

ICs (Makeig et al., 1996). ICA was performed on 20 individual data sets for all 

conditions from -200 to 600 ms.  

Using the ICA weights for each subject, for each independent component map 

an equivalent current dipole was automatically computed using the spherical head 

model within the DIPFIT2 toolbox (Delorme et al., 2011; Maris & Oostenveld, 2007) 
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running in EEGLAB. The amount of residual variance for the dipoles was set to 30%. 

The study design comprised one independent variable having four levels (low-, low-

medium-, high-medium-, high-value). 

Clustering methods are employed to identify and categorise components of 

EEG data into similar and dissimilar component clusters  (Ding, & Xiaofeng, 2004). 

The dimensionality of the data was reduced using a PCA method so patterns of clusters 

could be detected more readily (Ding & He, 2004). A K-means clustering solution was 

then be applied in the lower-dimensional subspace (Ding & Xiaofeng, 2004; Zha, 

Ding, Gu, He, & Simon, 2001). Clustering of independent components was performed 

on ICA decomposed grand averaged EMRP data for 20 participants using the PCA 

method in EEGLAB (Delorme & Makeig, 2004a). The data were pre-clustered across 

participants using event-related potentials, scalp maps and equivalent current dipole 

locations for each subject, condition and cluster to determine the disparity between 

each IC, using the default weightings. In line with the EEGLAB protocol, a PCA 

reduced the dimensionality of these measures down to the first 10 principal 

components. 

A k-means clustering algorithm was then employed in EEGLAB with the 

number of clusters set to 8. The number of components was estimated in pilot analyses 

by observing the residual variance and strengths of extracted components. ICs located 

outside of the head were considered not reflective of brain activation and any 

components with a distance of more than 3 SDs from the mean of any cluster centroid 

in the joint measure space were automatically assigned to an outlier cluster and were 

excluded from further analysis. The parent cluster had 165 ICs and clusters were only 

subjected to further analysis if they had a minimum of 10 ICs and occurred in at least 

nine of the participants. 
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In order to identify significant clusters and latencies in a more objective way, 

for each cluster in the solution, 95% confidence intervals for the mean IC cluster 

activity were calculated across the whole epoch; -200 to 600 ms. Only clusters in 

which the confidence intervals deviated from baseline were subjected to further 

statistical analysis. 

5.3.11. Statistical analyses  

Four one-way repeated measures ANOVAs were conducted in order to analyse the 

effect of four value categories on retail price, desirability, pleasantness and willingness 

to pay. Greenhouse-Geisser corrections were used to overcome a violation of the 

sphericity assumption due to larger than two levels in the independent variable. 

Significant differences outlined in the ANOVA were subjected to pairwise t-tests and 

a critical threshold of p <. 05 was maintained. To examine the effectiveness of guided 

saccade and ASF for removal of saccade-related artefacts, one-way repeated measures 

ANOVAs were computed for FP1 and FP2 respectively, comparing amplitude in 

electrodes in the eye orbit for saccade corrected, blink corrected and uncorrected data. 

Greenhouse-Geisser corrections were used when sphericity was violated and p < .05 

was utilized. 

To analyse the effects of value on EMRPs, one-way ANOVAs for repeated 

measures were carried out to compare SV category (low, low-medium, high-medium, 

high) for each mean IC cluster activity over the latency interval 50 – 450 ms using the 

‘statcond’ function in EEGLAB (Derlorme & Makeig, 2004). In order to reduce the 

likelihood of generating false positives, p values were corrected using 5000 

permutations (Maris & Oostenveld, 2007). Significant main effects regarding a cluster 
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at a certain latency interval were further investigated using post hoc paired t-tests. A 

critical threshold of p <.05 was always adhered to. 

5.4. Results 

5.4.1. Behavioural results  

Figure 15A – D show that, for all behavioural measures, a significant relationship 

between SV level (low, low-medium, high-medium and high) was observed in the 

following variables; WTP: F (1, 27) = 186.95, p < .001; desirability: F (1, 40) = 79.62, 

p < .001; pleasantness F (1, 39) = 64.42, p <. 001 and retail price F (1, 32) = 56.81, p 

< .001. There was also a highly statistically significant linear relationship between SV 

and all dependent measures (p < .001 in all instances). Post hoc t-tests revealed 

significant differences between all conditions for all dependent measures (p < .005) 

except for retail price, as low- and low-medium-value conditions did not significantly 

differ (p = .134). 
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Figure 15. Bar graphs showing mean behavioural ratings for 20 participants. (A) Mean 

auction bids split into quartiles creating the four SV conditions; low, low-medium, 

high-medium and high. There were highly statistically significant differences across 

all SV conditions (B), in retail price for all SV conditions except between low- and 

low-medium-value and in pleasantness ratings (D) and in desirability ratings across 

all SV conditions, showing a linear increase with SV in all cases **p <. 001. 

5.4.2. Saccade-related artefact removal  

Figure 16(A) demonstrates a progressively decreased amplitude of potentials in FP1 

(right) and FP2 (left) amplitude from non-eye-artefact corrected data (uncorrected) to 

eye-blink artefact corrected (blink corrected) and saccade-related artefact corrected 

(saccade corrected) methods at -7 ms. Statistical analysis revealed that electrode FP1 

was significantly modulated by correction method F (2, 78) = 27.80, p < .001, with 

significantly reduced FP1 amplitude for saccade corrected data (4.51 ± 2.22) compared 
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to uncorrected (17.48 ± 11.64; p < .001) and eye-blink corrected (11.00 ± 9.02; p < 

.001), and reduced amplitude for eye-blink corrected data compared to uncorrected (p 

= .006, Figure 16B). A similar effect was seen in FP2 electrode (F (2, 78) = 40.08, p 

< .001) with significantly reduced amplitude for saccade corrected data (4.93 ± 2.19) 

compared to uncorrected (17.80 ± 10.19; p < .001) and eye-blink corrected (10.44 ± 

7.90; p < .001), and reduced amplitude for eye-bink corrected compared to 

uncorrected (p < .001, Figure 16C). 

 

Figure 16. Comparison of grand averages for guided saccade and ASF cleaned data 

(saccade-related artefact corrected), blink ASF-cleaned data (eye blink artefact 

corrected) and uncorrected data in electrodes around the eye orbit. (A) Grand averaged 

topographic maps show visual monotonic reduction of amplitude at eye electrodes FP1 

(right circle) and FP2 (left circle) from uncorrected to saccade corrected methods. (B-

C). Bar graphs showing statistically reduced amplitude at FP1 and FP2 eye electrodes, 

respectively for saccade-corrected compared to uncorrected and blink corrected, and 

for blink-corrected compared to uncorrected. **p < .001. 
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5.4.3. Eye-movement-related potentials 

Figure 17 shows the grand averaged EMRPs across conditions for 20 participants in 

form of a butterfly plot, with corresponding topographic maps for key time points that 

show deflections from baseline. Small baseline noise is present, however, across all 

participants as a saccade was made towards a stimulus (-7 ms) and at stimulus onset 

(0 ms), a lack of activation around eye electrodes was observed indicating attenuation 

of saccade-related artefacts in EMRP data. The lambda potential can be observed at 

88 ms and manifests as a large positivity at occipital electrodes (Thickbroom et al., 

1991; Yagi, 1979a, 1979b, 1981a). The lambda potential represents a visual response 

to a stimulus and is the free eye movement equivalent of the visually evoked P100 

component (Kazai & Yagi, 2003; Roberts et al., 2018; Soto et al., 2018). At 145 ms, 

a peak can also be observed displaying both parietal positivity and occipital negativity. 

 

Figure 17. Butterfly plot and topographic maps of EMRPs at selected latency points. 

Butterfly plot displays grand averaged EMRP activation across all participants and 

across low, low- medium, high-medium and high SV conditions between -100 and 500 
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ms. Topographic maps show attenuation of saccade-related artefacts in the saccade 

period between -7 and 0 ms. The lambda potential component is present at 88 ms, and 

the corresponding occipital positivity can be seen in the topographic map. A value-

related peak is observed at 145 ms and displays parietal positivity and occipital 

negative potential. 

5.4.4. ICA clustering of EMRPs with source dipole reconstruction 

Four IC clusters showed significant differences in cluster amplitude across value 

conditions between 50 – 230 ms. Cluster 3 (Figure 18A) displayed a positive potential 

in right occipital electrodes and negativity in central midline electrodes and peaking 

at 81 ms. An equivalent current dipole (ECD) was fitted to the mean cluster centroid. 

The ECD representing Cluster 3 was located in the right visual association area 

(Brodmann area 18, approximate Talairach coordinates x = 11, y = -66, z = 3) and 

explained 87.54% of variance. 

Cluster 5 featured a negative potential in the right occipital-parietal electrodes 

and a positive potential in the right occipital electrodes with a peak at 79 ms (Figure 

18B). An ECD was fitted to the left visual association area (Brodmann area 19; x = -

1, y = -90, z = -12) and explained 81.42% of variance.  

Cluster 6 was represented by a large positive potential in central midline 

electrodes peaking at 144 ms. An ECD was fitted to the ventral posterior cingulate 

area (right Brodmann area 23, x = 1, y = -38, z = 37, Figure 18C).  

Cluster 9 was featured by a negative potential in the medial central-parietal 

region of the scalp and a positive potential in occipital electrodes, with a strong 

positive deflection occurring at 78 ms. An equivalent current dipole was fitted to the 

left primary visual cortex (Brodmann area 17, x = -1, y = -71, z = 12, Figure 18D).  
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Figure 18. Averaged IC cluster amplitude between -200 and 400 ms for independent 

clusters across four SV condition and source dipole reconstruction from EMRPs. (A) 

Averaged cluster 3 amplitude comprising 9 participants and 32 ICs. A positive 

potential peaked at 81 ms and the averaged source dipole was localized to the visual 

association area. (B) Averaged Cluster 5 amplitude comprising 9 participants and 13 

ICs, displaying a strong positive peak at 79 ms. Averaged source dipole was localized 

to the left visual association area. (C) Averaged Cluster 6 amplitude comprising 15 

participants and 33 ICs, with a positive peak at 144 ms, and source dipole localized to 

the ventral posterior cingulate area. (D) Averaged Cluster 9 amplitude consisting of 

11 participants and 13 ICs, with a positive peak at 78 ms. An equivalent current dipole 

was fitted to the left primary visual cortex. 
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5.4.5. The effect of SV on IC clusters  

In Cluster 3, the component activity differed significantly across four value categories 

in the latency interval 116 – 127 ms (F(3, 24) = 3.88, p = .023) with a stronger 

component amplitude for low- compared to high-medium (p = .025) and high-value 

items (p = .032).  Moreover, between 193 and 204 ms (F(3, 24) = 2.56, p = .03), low-

medium-value products showed higher cluster 3 amplitude compared to high (p = 

.031), and high-medium-value products showed higher cluster 3 amplitude compared 

to high-value products (p = .033, Figure 19A). 

Figure 19B shows statistically significant effects of value categories in Cluster 

5 between 50 and 63 ms (F(3, 24) = 3.268, p = .035), with low-value products 

displaying larger amplitude compared to low-medium products (p = .034). Between 

132 – 148 ms (F(3, 24) = 3.116, p = .029), low-value products showed larger amplitude 

compared to low medium (p = .024) and high (p = .029). Likewise, between 170 and 

183 ms, low-value products showed significantly larger amplitude compared to low-

medium (p = .003) and high-medium items (p = .045) (F(3, 24) = 4.74, p = .010). 

Figure 19C highlights a statistically significant main effect of SV categories 

for Cluster 6 between 55 – 58 ms (F(3, 42) = 2.85, p = .045) with low-value products 

showing larger amplitude compared to high-medium (p = .002), and high-value 

products (p = .044). Between 226 – 230 ms, a statistically significant effect of four 

value categories was also observed (F(3, 42) = 2.974, p  = .042), with high-medium-

value products showing reduced amplitude compared to low (p = .015), low-medium 

(p = 0.031) and high-value products (p = .039). 

Finally, a statistically significant effect of value categories was seen in Cluster 

9 between 157 – 184 ms (F(3, 30) = 5.05, p = .006), with a larger component amplitude 
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in high-medium-value products to low- (p = .011), low-medium- ( p = .007) and high-

value products (p = .011) (Figure 19D). 
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Figure 19. The effect of SV on IC cluster amplitude. (A) Cluster 3 amplitude shows a 

statistically significant relationship with SV between 116 – 127 ms, with low-value 
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significantly differing from both high-value conditions. Between 193 – 204 ms, high-

value significantly differed from both medium-value products. (B) Cluster 5 amplitude 

shows a statistically significant difference between SV, with low-value differing from 

low-medium-value between 50 – 63 ms, low-value differing from low-medium and 

high-value between 132 – 148 ms, and low-value differing from both medium-values 

between 170 – 183 ms. (C) Cluster 6 amplitude shows a statistically significant 

difference between low and both high-value conditions between 56 –58 ms, followed 

by a difference between high-medium and all value conditions between 225 – 230 ms. 

(D) Cluster 9 amplitude shows a statistically significant effect of SV, with high-

medium-value differing from all others between 158 – 185 ms. 

5.4.6. IC cluster amplitude and WTP 

To check whether WTP had a linear association with amplitudes of ICs, simple linear 

regressions were conducted individually for each cluster and latency interval of 

interest, with mean WTP (SV) as a predictor and cluster amplitude as a dependent 

variable. Only Cluster 3 showed a comparatively modest but statistically significant 

linear relationship with WTP in the latency epoch of 116 ̵ 127 ms. A mean adjusted R2 

of 0.46 ± 0.32 was found across participants. A one sample t-test of the beta-

coefficients representing a linear association between WTP and IC amplitude 

confirmed that beta coefficients were different from zero (t(8) = -3.24, p = .01). Thus, 

amplitude of Cluster 3 was inversely related to WTP between 116 ̵ 127 ms, with the 

highest amplitude of Cluster 3 for low-value products. While the linear association 

between IC amplitude and WTP in Cluster 3 was statistically significant, the pair-wise 

contrasts in IC3 (Figure 19A) were statistically significant only between low- and 

high-medium and high-value items but not among any other categories suggesting that 

this component still offers only a limited resolution of SV. 
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5.5. Discussion  

The current study examined wirelessly recorded EMRPs in freely moving participants 

during automatic valuation of household and office items in a mock gallery. SVs of 

all items were evaluated using a BDM auction. Compared to our previous study 

(Roberts et al., 2018), items displayed included higher retail values of up to £12. 

Furthermore, an improved method of saccade-related artefact removal based on 

guided saccade recordings and ASF was implemented to probe a linear association 

between amplitudes of EMRPs and SV, which was previously reported in fMRI data 

(Abitbol et al., 2015; Lebreton et al., 2009). 

Results showed that implementation of guided saccade recordings and ASF 

significantly attenuated the saccade-related artefacts occurring during the saccade 

period. Three out of four ICs that demonstrated a statistically significant effect of value 

categories singled out the low-value category as showing the strongest component 

activity. Stronger IC activity in the low-value category compared to other value 

categories was observed in the early latency intervals, starting as early as 50 ms post 

stimulus. The low-medium and high-medium products showed the strongest IC 

activities in the latency epochs >150 ms in three out of four ICs. Only one IC showed 

a statistically significant linear association with SV and this linear association was 

largely due to the contrast between low- and high-medium and high-value categories. 

The present study replicated the findings of our previous study (Roberts et al., 

2018) by revealing that the early cortical activations manifested in EMRPs resolve 

SVs of products on a course grid by contrasting low-value items against items with 

higher SV. Furthermore, the low-value items elicit an early cortical response starting 

as early as 50 – 60 ms after the end of a saccade.  
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Clusters 3, 5 and 6 presented enhanced activation for low-value, compared to 

low- medium and high-value products, within the latency of the lambda component. 

Moreover, activation favouring low-value products occurred early on during the 

lambda component between 50 – 60 ms in Cluster 5. A fast and binary assignment of 

SVs reflected in early cortical responses, can be essential for survival, for instance, 

when deciding which food to eat and which to avoid (Polanía et al., 2014). Therefore, 

the observed early neural responses could reflect an adaptive dichotomous 

representation of low- and high-value within a domain-general system, facilitating 

approach and avoidance behaviours (Bartra et al., 2013; Westbrook et al., 2019). In 

line with a common neural system facilitating approach and avoidance, research has 

shown an overlap between neural circuits for processing of a wide range of appetitive 

and aversive stimuli (Delgado, 2007; Levy & Glimcher, 2012; Pessiglione & Delgado, 

Mauricio, 2015; Tyson-Carr et al., 2018). Furthermore, when considering low-value 

choices, potentially rewarding stimuli can be treated as aversive if they do not match 

expectations (Shenhav et al., 2018) generating avoidance motivation, feelings of 

anxiety (Shenhav et al., 2018) and activation of anxiety-related brain areas (Blair et 

al., 2006). Therefore, low-value items could have elicited an aversive response as 

participants were instructed that they would actually be receiving two of the items and 

the early activation might reflect an avoidance mechanism towards unattractive 

prospects to protect against potential financial loss. Notably, a previous ERP study 

conducted in a laboratory setting showed a larger amplitude of N200 component after 

presenting low-value compared to medium- or high-value products (Tyson-Carr et al., 

2018). 

A strong representation of low-value category in EMRPs is evidenced by the 

short latencies in which effects of low-value items have manifested. The earliest 
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latency interval featured enhanced activation for the low-value category between 50–

63 ms in Cluster 5. In contrast, low-medium and high-medium-value categories were 

only resolved in the latency intervals >150 ms in Clusters 3, 6 and 9. Enhanced early 

activation for the low-value category could reflect a loss-aversion response to low-

value stimuli, in line with previous research (Roberts et al., 2018; Tyson-Carr et al., 

2018; 2020). Enhanced motivational salience, arousal and neural activation for losses 

compared to relative gains (Baumeister et al., 2001; Rozin & Royzman, 2001; Sokol-

Hessner et al., 2009; Stancak et al., 2015) and a comparable negativity bias have been 

consistently reported in value processing, reflected in a reduced latency and enhanced 

amplitude of early ERPs such as the P100 (Cacioppo & Berntson, 1994; Vaish et al., 

2008; Williams et al., 2006; Yuan et al., 2015), P200 (Carretié et al., 2001b; Huang & 

Luo, 2006; Roberts et al., 2018; Schuermann et al., 2012) and N200 (Lithari et al., 

2009; Tyson-Carr et al., 2018; 2020) in response to negatively-valenced stimuli 

(Baumeister et al., 2001; Forbes & Leitner, 2014; Hofmann et al., 2009; Leleu et al., 

2015; Williams et al., 2006). The reduced latency of the component responding to the 

low-value category, between 50–63 ms, can be explained in terms of the free-viewing 

paradigm. Inclusion of eye-movements can facilitate processing of unpleasant 

information, suggesting facilitated attentional capture during free-viewing due to 

parafoveal processes, as covert attention can be allocated to a stimulus prior to the 

eyes reaching it during the saccade period (Simola et al., 2013). Low-value products 

were also contrasted against the higher-value categories in early latency periods for 

Clusters 3, 5 and 6. Modulation for positively-valenced stimuli have also been reported 

within P100 (Smith et al., 2003), P200 (Ma et al., 2018) and N200 (Goto et al., 2017; 

Kiss et al., 2009; Telpaz et al., 2015), supporting the interpretation that distinctive 

cortical components reflect binary categorisation of high- and low-value categories 
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within an early automatic valuation system. Medium-value products were 

discriminated in Clusters 3, 5, 6 and 9 in later latency intervals exceeding 158 ms, 

therefore, intermediate-value products could require further processing before value 

categorisation (Philiastides & Heekeren, 2009; Roberts et al., 2018), indicating that 

the early binary mechanism does not allow for rapid categorisation of intermediate 

values. Research supports this interpretation by highlighting the role of the P200 in 

outcome unpredictability during uncertain decisions (Polezzi et al., 2008; Beate 

Schuermann et al., 2012; Xu et al., 2011) and ‘anchors’ determined by the binary 

mechanism could be used to facilitate further value estimation leading to 

categorisation of these uncertain items (Mussweiler & Strack, 2000). 

Cluster 5 showed a statistically significant negative linear relationship between 

SV and component activity. While this finding would match previous reports of a 

linear association between SV, defined by pleasantness rating, and brain activation 

(Abitbol et al., 2015; Lebreton et al., 2009), the present finding is limited by the lack 

of statistically significant contrasts among neighbouring value categories, defined by 

WTP, with contrasts only observed between low- and high-medium and high-value 

items. Inspection of the scatter plots representing associations between SV and fMRI-

BOLD activity in the ventromedial prefrontal cortex in Figure 5 of Lebreton et al. 

(2009) study suggests only modest differences between medium-value categories. It 

is therefore possible, that the linear association between SV and Cluster 5 activity 

builds primarily on a steep difference between low- and high-value items. 

Clusters 3, 5 and 6 resolved low-value, versus high-value in the latency of the 

lambda EMRP, whereas Clusters 3 and 9 showed increased activity exclusively for 

viewing low-medium-value and high-medium-value items, from 158 ms onwards. The 

current results support the interpretation that distinct EMRP components resolve 
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specific bands of values during early valuation (Roberts et al., 2018; Tyson-Carr et al., 

2020). The possibility of multiple cortical activation patterns each encoding a distinct 

value category is consistent with a wealth of brain imaging data which supports the 

presence of unique patterns of voxels tuned to specific qualities of odours (Howard et 

al., 2009), visual objects (Haxby et al., 2000; 2001), emotions (Kragel & LaBar, 2016) 

or abstract stimuli such as scenes (Diana et al., 2008) or numbers (Bulthé et al., 2014). 

The combined implementation of guided-saccade recordings and ASF, first 

proposed by Berg and Scherg (1991), allowed for removal of the saccade-related 

artefacts generated in naturalistic free-viewing conditions. Therefore, it is unlikely that 

a linear association between EMRP component amplitudes and SV were smeared by 

the presence of saccade-related artefacts in the data. The viable alternative method for 

saccade removal utilised in the current study is important for MoBI research with co-

registered eye-tracking as detailed saccade-related information such as saccade angle 

amplitude and duration, required for sophisticated linear deconvolution techniques 

such as Unfold Toolbox (Ehinger et al., 2018), is unavailable in recordings taken in 

freely behaving individuals. Therefore, MoBI research could benefit from 

implementing a combination of guided-saccade recordings  (Berg & Scherg, 1991) 

and ASF (Ille et al., 2002) in the examination of neural responses in more naturalistic 

settings. 

The current study, building upon preliminary work by Roberts et al (2018), 

examined EMRPs in a product gallery to increase experimental control while 

maintaining a naturalistic scenario, affording examination of EMRPs for medium- and 

high-value products. However, 2-D product images might be processed differently to 

more complex 3-D images, as they can be observed from many different viewpoints 

and visual features and spatial relations must be integrated over time by the brain to 
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form a holistic representation of an object (Bülthoff et al., 1995; Orlov & Zohary, 

2018). Future research should endeavour to develop a mock-shop environment 

displaying 3-D products to determine whether distinct neural categorisation for low 

and high compared to medium-value products can also be resolved. However, the lack 

of experimental control over product size, luminance, contrast (Dimigen et al., 2011; 

Nikolaev et al., 2016), and multiple 3-D items in the visual field (Martin Eimer & 

Grubert, 2014; Tjan & Legge, 1998) must be accounted for, as these can influence 

early evoked potentials. Additionally, future studies should examine the influence of 

socioeconomic status on bidding behaviour, as data from the marketing sector suggests 

a positive relationship between purchasing and socioeconomic status (Slama & 

Tashchian, 1985). 

5.6. Conclusion 

To conclude, economic valuation of objects in the visual field rests on a coarse grid of 

SVs which primarily differentiates low-value items from items with higher SV. The 

low-value items evoked a cortical response early on during an EMRP. Furthermore, 

data suggest that multiple cortical activation components and latency intervals are 

tuned to specific bands of SVs. A linear association between SV and cortical activity 

was found in one EMRP component without resolving the differences between 

adjacent value categories. Our study contributes to the understanding of early, 

automatic valuation processing in naturalistic settings and demonstrates a viable 

method for controlling saccade-related artefacts in wirelessly recorded EEG data in 

humans engaged in free-viewing of visual scenes.  



 

164  

6. EXAMINING REAL-WORLD PRODUCT 

VALUATION IN A MOCK SHOP LABORATORY 

USING MOBILE 

ELECTROENCEPHALOGRAPHY AND EYE-

TRACKING 
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6.1. Abstract  

Stationary laboratory EEG studies have revealed encoding of product SV within 

hundreds of milliseconds, and wireless EEG studies have demonstrated binary 

encoding of low- and higher SV within distinct clusters of lambda and P200 EMRP 

components during economic decisions for 2-D product images. Real 3-D products 

have different physical and motivational properties to 2-D product representations, 

which could alter SV and underlying components. The current study investigated, for 

the first time, whether binary or linear encoding of SV would be observed for real 3-

D products in a novel mock shop.  

EEG and eye-tracking data was obtained from participants viewing 216 3-D 

products displayed in a mock shop, whilst deciding which products to purchase at the 

end of the session. Subsequently, a BDM auction was used to determine WTP for 

products to ascertain product SV. EMRPs were analysed using ICA clustering analysis 

of group data. 

IC analysis of EMRPs revealed four IC clusters modulated by SV in the latency 

window of 72–359 ms. Low- and high-value products were discriminated binarily 

between 72–139 ms, and a positive linear association with SV and cluster amplitude 

was observed between 129–139 ms. Intermediately-valued products were resolved 

between 170–359 ms, with high-medium discriminated last. A positive linear 

relationship between cluster amplitude and SV was observed between 323–359 ms. 

Results indicate that EMRPs rapidly discriminate different bands of SVs for 3-

D products, with facilitated binary encoding of low- and high-value products and later 

encoding of intermediate-value products. Initial attribution of SV to real 3-D products 
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is accomplished on a coarse grid, with different cortical activation patterns responding 

to bands of SVs monotonically and linearly. 

6.2. Introduction  

Purchasing encompasses a dynamic process of forming a preference for one or a 

number of products, comparing relative costs and benefits within and across products 

to form SVs, ultimately resulting in a binary choice; to purchase or not to purchase 

(Beresford & Sloper, 2008; Chawla & Miyapuram, 2018; Padoa-Schioppa, 2011). In 

natural contexts such as a shop, valuation decisions might be modulated by visual 

attention (Tovar et al., 2019) as items are not presented in isolation and multiple 

stimuli compete for attention in complex real-world environments (Scalf et al., 2013). 

To prevent cognitive overload, computation and assignment of SVs is often conducted 

automatically, unconsciously and continuously (Anderson, 2013; Lebreton et al., 

2009; Tyson-Carr et al., 2018; 2020). Although laboratory research has highlighted 

that automatic value-based decisions could occur as early as 150 ms following 

stimulus presentation, the precise temporal sequencing of early SV assignment is not 

well understood due to lack of research (Harris et al., 2011; Larsen & O’Doherty, 

2014; Tyson-Carr et al., 2018; 2020; Tzovara et al., 2015). Moreover, it has been 

debated whether SVs are represented linearly within single cortical components 

(Abitbol et al., 2015; Lebreton et al., 2009) or whether multiple unique cortical clusters 

encode each SV (Tyson-Carr et al., 2020).  

Previous stationary lab-based EEG studies incorporating product images 

displayed on a computer screen have provided evidence for the existence of unique 

cortical activation patterns that selectively and automatically respond to products of 

different SV during early product valuation, within the latency of the N200 (Tyson-
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Carr 2018; Tyson-Carr 2020) and P200 VEPs (Goto et al., 2017; Ma et al., 2018; 

Telpaz et al., 2015;). However, stationary laboratory environments bypass a plethora 

of information which can be essential in influencing the neural dynamics that underpin 

valuation processes (Ladouce et al., 2017; Neisser, 1976). 

Processes which may affect valuation of products in more naturalistic settings 

include the trans-saccadic integration of information across successive eye fixations 

(Melcher & Colby, 2008; Prime et al., 2011), visual anticipation and prediction (Dias 

et al., 2013) and the influence of short-term memory (Hollingworth, et al., 2007). 

Furthermore, in the real-world, early automatic modulation of attention for products 

of different SV could be used to facilitate approach-avoidance responses for these 

items during purchasing (Krieglmeyer et al., 2010, 2013). Despite the importance of 

examining the neural dynamics of SV within their natural context, the majority of 

neuroeconomic research has prevented movements and environmental stimulation 

when examining the neural dynamics of valuation decisions (Rangel et al., 2008; 

Sanfey et al., 2006; Tremblay, 2018) due to technical and methodological limitations 

preventing detection of underlying neural dynamics (Makeig et al., 2009; Reis et al., 

2014). During stationary laboratory EEG recordings, movement of the head and neck 

is traditionally prohibited in an attempt to reduce distortion of underlying neural 

components caused by movement artefacts (Gwin et al., 2010; Symeonidou et al., 

2018) including movement of the eyes (Cao et al., 2020) and the muscles (Jung et al., 

2000). Thus, stationary EEG introduces considerable limitations and restraints to the 

understanding of early SV attribution in everyday environments and examination of 

SV in naturalistic settings in which the subject is free to move is essential to validate 

and expand upon the laboratory-based findings. 
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Capitalising on recent methdological and technical advancements in MoBI and 

eye-tracking research (Dimigen, 2014; Fischer et al., 2013; Gramann et al., 2010; 

Gramann et al., 2011; Gwin et al., 2010; Liao et al., 2012; Makeig et al., 2009; 

Nikolaev et al., 2014, 2016; Ojeda et al., 2014), recent research has shown, using 

wireless EEG recordings in quasi-natural settings, a set of independently tuned brain 

activation components for unique bands of SVs elicited by household products images 

in a mock gallery (Roberts et al., 2018; Roberts et al., in preparation). In particular, 

Roberts et al. (2018) showed an EMRP component at 200 ms responding to low-value 

compared to all other products. Using an increased value range in the subsequent study 

(Roberts et al., in preparation), independent cortical clusters highlighted low- and 

higher-value products within the lambda component (EMRP equivalent of P100 VEP), 

and medium-value products showed activation clusters within 200 ms latency (See 

Study 2). Therefore, recent studies examining SVs of product images under 

naturalistic conditions suggested early encoding of SV in multiple distinct cortical 

clusters of EMRPs, similar to laboratory-based VEP findings. SV may be represented 

earlier in more realistic settings as indicated by modulation of low- and higher SV in 

the lambda component latency. 

Viewing and categorising 3-D products invokes different neural processes 

compared to viewing and categorising 2-D product photographs. For instance, the 

addition of depth affords examination from multiple viewpoints, therefore, a moving 

subject might observe different luminance, contrast, shape, size, and position of the 

stimulus (Murphy et al., 2013). Spatial relations between these viewpoints need to be 

integrated over time to form a holistic visual representation (Meilinger et al., 2011). 

3-D products viewed from atypical angles can require additional visual information, 

processing, and time for identification (Biederman & Gerhardstein, 1993). 
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Furthermore, a previous study has shown that multisensory evaluation defines product 

perception, both consciously and subconsciously (Krishna, 2012). The presence of a 

physical product affords consumers the opportunity to validate as they can touch, feel 

and smell it (Haridasan & Fernando, 2018; Peck & Wiggins, 2006). Therefore, the 

sensory and perceptual experience of a 3-D product could be significantly more 

complex and different from the interactions with 2-D images representing the same 

items, which could influence valuation processes, and this has previously not been 

considered.  

The sensory and perceptual aspects of 3-D products, compared to 2-D images, 

could signal their imminent availability which could influence their motivational 

salience, behavioural responses and associated neural dynamics. Environmental cues 

signalling product availability can increase attentional bias for related product cues 

(Jędras et al., 2019; Jones et al., 2012). Enhanced visibility and close within-reach 

proximity to food products can promote consumption (Maas et al., 2012; Painter et al., 

2002), increasing their palatability and activation of motivation-related reward circuits 

(Blechert et al., 2016). Due to the imminent availability of a product, reduced effort is 

needed to obtain it, and inclusion of real 3-D products could culminate in a more 

convenient shopping experience compared to an online sale which includes 2-D 

product representations (Haridasan & Fernando, 2018; Noble et al., 2005; Pauwels & 

Neslin, 2015). The changes in product salience and motivated behaviours related to 

product availability and accessibility demonstrate the importance of these factors in 

product valuation. Thus, the importance of using real 3-D products in the investigation 

of early SV attribution and associated neural responses must be considered. 

Despite the important differences between 3-D products and their 2-D 

representations, to date, no studies have investigated the neural dynamics of early SV 



 

171  

of realistic 3-D products. The present study aimed to expand initial findings (Roberts 

et al., 2018; Roberts  et al., in preparation; Tyson-Carr et al., 2018, 2020), examining 

the neural underpinnings of early automatic product valuation for real 3-D products in 

a naturalistic shopping environment. Previously, product luminance, size and spacing 

were standardised to determine the feasibility of detecting EMRPs to products in 

naturalistic settings (Roberts et al., 2018; Roberts et al., in preparation).  

In the current study, control over the environment was maintained by reducing 

the influence of low-level visual features such as luminance, contrast, distancing and 

position, whilst allowing the subject to freely roam and view the products from any 

angle, affording maintenance of a controlled environment to elicit evoked potentials 

whilst still facilitating a naturalistic shop context. As the previous study in this series 

partially supported the presence of linear encoding of value for 2-D product images 

(Roberts et al., in preparation), the study also aimed to determine whether cortical 

activation components could encode SV in a linear manner for real products. It was 

hypothesised that, in line with previous experiments (Roberts et al., 2018; Roberts et 

al., in preparation; Tyson-Carr et al., 2018), multiple distinct components would be 

detected in EMRPs monotonically and linearly for low-, high- and medium-value 

items and low-value products would show neural prioritisation reflected in reduced 

EMRP latency. 

6.3. Methods and materials  

6.3.1. Participants  

Thirty-seven participants (24 females) were recruited for the current experiment. 

Participants were excluded due to bidding too low (4 participants. In these participants 

the mean difference between the two low-price groups of items was only £0.51), 
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insufficient eye-tracking calibration (1 subject), a glitch in the Pupil Labs recorder 

resulting in no world view video export (1 subject), noise in the EEG data (1 subject) 

and residual variance in EEG at the ICA level exceeding 40% (3 participants). A final 

sample of 27 participants (17 female) was retained, with a mean age of 29 ± 6.25 years 

and one left handed participant. 

6.3.2. Ethical standards  

Full informed consent was obtained prior to commencement of the study. 

Ethical approval was awarded by the Health and Life Sciences Research Ethics 

Committee (Psychology, Health and Society; reference number 4693). The study was 

conducted in accordance with proceedings outlined in the Declaration of Helsinki. 

participants were remunerated £25.27 ± 5.70 (mean ± SD) and received a minimum 

of two products of their choice worth an average of £21.85 ± 5.73. 

6.3.3. Materials and procedures  

A mock shop was constructed in two adjoining rooms in the Brain and Behaviour Lab 

at the University of Liverpool. To optimise the number of products that could be 

displayed, thus increasing the number of trials for the EEG analysis, 18 shelves were 

constructed and divided into two using Styrofoam panel boards, resulting in 36 shelves 

(see Figure 20A).  
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Figure 20.(A) Schematic representation of the mock shop, with 36 shelves across six 

aisles displaying products. (B) An example of an aisle in the mock shop experiment 

with floor markers for participant position measurement, fixation crosses for gaze 

calibration and cardboard stands to ensure front facing view of the product. 

The room length was 1021 cm and the room width was 407 cm. The shelves 

were purchased from a DIY retailer and were sized at 182 cm × 78.50 cm × 40 cm. 

The shelves were spaced 11 cm apart within their aisles. All aisles maintained a 

viewing distance of 116 cm as this was the minimum distance that the world camera 

could view every single product on the shelf. The minimum distance was marked out 

with adhesive tape indicating generally where participants should stand when viewing 

a shelf (Figure 20B). Eight images of geometric fractals, taken from Google images, 
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were mounted on the walls at the start of every aisle and in the walk ways. Participants 

were instructed to observe the fractals while equipment was being readjusted at the 

beginning of the experiment and in between aisles to prevent boredom during inactive 

periods and to serve as a neutral baseline. 

6.3.4. Products 

Two hundred and sixteen everyday household products from online retailers 

(Tesco, Argos, The Range, Wilko) were displayed in the current study. Products were 

equally divided (n = 72) into three retail price categories of low (£0.50 – £4; £2.32 ± 

£1.20), medium (£4.50 – £8; 6.77 ± 1.21) and high (£8.50 – £12; 10.27 ± 1.17). One 

product from each retail category was pseudo-randomly positioned on each of the top 

two shelves, with six products in total displayed on each unit. The retail value of 

products displayed on each shelving unit ranged between £30.99 and £45.49 (£38.30 

± 3.23) and a cumulative value across all shelves of £1378.90. Products were spaced 

as evenly as possible, preventing product overlap. 

In order to reduce the impact of low-level visual features of displayed objects, 

measures were taken to space products evenly according to the lighting in the room 

(with pseudo-random positioning of one product from each retail category on each 

shelf). To increase visual contrast for dark products, white paper was attached to the 

bottom of the product and white card was mounted behind the products to increase 

visual contrast and to produce a neutral background for all items.  Products were 

arranged so that they maintained a front-facing view for the participant and, where 

necessary, stands were used to maintain this position (Figure 20B). To avoid product 

overlap, only medium- and small-sized products were displayed on shelves and 

products were spaced as evenly apart as possible. 
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Front-facing colour images of the 216 products (white background, 400 × 400 

pixels, 300 dpi) were displayed in the mock shop were taken from online shopping 

catalogues and used in the Becker-DeGroot-Marschak (BDM) auction paradigm and 

hedonic rating tasks. 

6.3.5. Procedure 

The experiment consisted of two testing sessions conducted on two separate occasions 

within 7 days. The first session involved mobile EEG and eye-tracking setup and the 

shopping experiment. The second session involved two computerized tasks; a BDM 

auction task and a desirability/pleasantness rating task. 

Participants were briefed at least one day prior to arrival and the consent form 

was signed before the experiment commenced. The participant’s head was measured 

and they were fitted with an EEG cap and electrodes and electrolyte gel was applied. 

Subsequently, participants were connected to the wireless EEG system and eye- 

tracking glasses were fitted and calibrated. A short EEG recording was acquired to 

register guided-saccades for different directions (Figure 21). Once completed, the 

laptop recording the eye movements was placed into a backpack on the participants 

back and the electrodes were secured to the backpack to reduce cable sway artefacts 

(Gramann et al., 2010; Gwin et al., 2010; Roberts et al., 2018). 

For the first part of the shop task, participants were asked to view a geometric 

fractal mounted on the wall of the first aisle of the mock shop. The eye-tracking, EEG 

and camcorder recordings were initiated and a synchronization flash was produced, 

indicating the start of the experiment. Participants then navigated the shop setting, 

viewing each of the products at least once across two experimental blocks. In the 
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second block, participants made their purchases. Afterwards, the equipment was 

removed and the next session was scheduled. 

The second experimental session involved a computerized BDM auction 

experiment for the products previously seen in the mock shop and participants 

subsequently completed a computerized pleasantness/desirability rating task for the 

same products. Finally, participants were debriefed, thanked for their participation and 

received the products that they purchased and their winning BDM item within one 

week. 

6.3.6. Shopping task 

The shopping task consisted of two experimental blocks. The first 

experimental block was a window-shopping task during which participants were asked 

to think about what products they would like to purchase in block two with a £20 

endowment. There was a caveat in that they had to purchase at least one product and 

could spend as much of the money as they wanted or retain the remaining endowment. 

Participants were instructed to stand as far back from the shelf as possible, to look at 

the central fixation cross, to observe a product for at least 4 seconds and to return their 

gaze to the fixation cross before observing the next product on the shelf. Participants 

were told that they could view the products on the shelf in any order that they desired 

and as many times as they liked, but they had to look at each product on the shelving 

unit at least once before moving on. Participants observed all products following a 

predetermined path around the room. First participants observed aisle 1 (shelves 1 – 

4), followed by aisle 2 (shelves 5 – 9) and aisle 3 which was double sided (viewing 

shelves 10–13 and then turning and viewing shelves 14 – 17).  Next, participants 

viewed products on aisle 4 (also double sided and viewed shelves 18 – 22 before 
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turning and viewing shelves (23 – 27), aisle 5 (shelves 28 – 32) and aisle 6 (shelves 

33–36; Figure 20A). 

In the second (purchase) block, participants were encouraged to shop as 

naturally as possible, including picking the products up and asking questions. 

Participants were informed that they only needed to observe the products that they 

were interested in. Participants made their purchases during this block by asking the 

experimenter about the retail prices of the products that they wanted to purchase and 

calculating how much of their £20 endowment they wanted to spend on the products. 

Block two was recorded for purposes beyond the current experiment and consequently 

no data from block two is recorded in the current study. 

6.3.7. Becker-DeGroot-Marschak auction task 

The computerized BDM auction task took place during the second 

experimental session, developed and described in more detail in Roberts et al (2018). 

In short, the task elicited subject’s willingness to pay (WTP) values for each of the 

216 products. Participants placed bids reflecting how much they were willing to pay 

for each product between £0 and £12. If the participant’s bid was greater than or equal 

to a random number, the bid resulted in a purchase. Of the purchased trials, a random 

product was selected for the participant to take home and the price equal to the random 

number was deducted from their £12 endowment. The task took approximately 35 

minutes. 

6.3.8. Hedonic rating task  

After the BDM auction task, participants took part in a computerized hedonic rating 

task, described in full in previous work (Roberts et al., 2018). In brief, participants 
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rated 216 products for desirability and pleasantness on two sliding VAS scales 

anchored from ‘desirable’ to ‘undesirable’ and from ‘pleasant’ to ‘unpleasant’. The 

task took approximately 35 minutes. 

6.3.9. EEG recordings  

EEG was recorded continuously over the whole scalp using a 64-channel 

ActiCHamp EEG and wireless MOVE system (Brain Products, GmbH, Münich, 

Germany). The MOVE system included a lightweight signal transmitter mounted on 

a Velcro belt worn by the participant and a receiver, which was plugged into an 

amplifier and battery located on a mobile trolley. The trolley was manoeuvred by the 

experimenter in order to maintain a distance of no more than 7 m from the transmitter 

(after which the signal is known to deteriorate). 64 active shielded Ag/AgCl electrodes 

were applied to the scalp using an elastic cap (ActiCap, Brain Products GmbH, 

Munich, Germany), in accordance with the international 10–20 system. The centre of 

the cap was placed in line with the mid-point of the anatomical landmarks of the 

nasion, the inion and the right and left pre-auricular points. Electrolyte gel was applied 

to each hole to ensure that every sensor maintained a good connection with the scalp 

and impedances were kept under 50 KΩ (Super Visc, Brain Products, GmbH, Münich, 

Germany). EEG was sampled at 1,000 Hz, electrode FPz was utilized as the system 

ground and Fz was used as a reference for all electrodes. EEG average reference was 

applied to all electrodes after the recording and the signal was digitized to 1 kHz on 

an ActiChamp amplifier running on Brain Vision Recorder (version 1.20.0601) for 

Windows on a Toshiba Satellite P875-149 laptop. A 50 Hz notch filter was also used 

during the recording. An Ansteker HD 1080P camcorder (Shenzhen BaoBei Yuan 

Technology Co., Ltd, China) recorded the participant’s location in the room. 
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6.3.10. Eye-tracking recordings 

Binocular Eye Tracking glasses (Pupil Labs, GmbH, Berlin, Germany) were utilized 

in the current experiment. The glasses were connected to a lightweight Lenovo 

Ultrabook laptop using a micro USB cable and data was recorded via the Pupil Capture 

software (Pupil Labs, version 1.12.17) running on Ubuntu SMP for Linux, which was 

carried by participants in a backpack. The pupils of both eyes were detected using the 

pupil gaze centre-surround algorithm for Pupil Capture (Swirski et al., 2012). A 3-D 

calibration was utilized to calibrate the eyes to the shelf using a 9-point grid. The 

calibration was checked via the live video feed at the beginning of the experiment and 

in between experimental blocks to ensure sufficient gaze accuracy. The resolution of 

the world camera was set to 1280 ×720 and was sampled at 60 frames per second, 

however, the actual sampling rate of the world view camera was calculated to be 49 

± 8 frames per second across all participants. The resolution of the left and right eye 

was 200 ×200 and the frame rate was 200 samples per second. 

The eye-tracking data was imported into Pupil Player (Pupil Labs, version 

1.12.17). Fixation jitters were corrected using in-house scripts in MATLAB (R2017a, 

The MathWorks, Inc., United States). The raw data were exported using the Raw Data 

Exporter plugin. Gaze onset was exclusively used for triggering stimulus onset from 

freely behaving individuals in naturalistic environment. 

6.3.11. Synchronization of data streams 

Data were recorded in three streams: a camcorder, EEG, and eye-tracking. To 

synchronise these data streams, a synchronization mark was delivered into all three 

data streams marking the beginning of the recordings, the start of a new shelf in block 

one and the beginning of each new aisle in block two.  Each synchronisation mark was 
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a combination of a TTL pulse and a Canon Speedlite 430 EX III-RT Flash pulse, which 

was initiated by pressing a membrane switch keypad attached to the button. When the 

switch was pressed, this initiated a flash from the flashgun and also delivered a TTL 

pulse into the EEG amplifier using a custom-built Arduino. The powerful flash was 

used as this allowed delivery of synchronization flashes from across the room rather 

than directly in front of the world view camera as in previous studies (Roberts et al., 

2018), allowing for multiple synchronizations, enhancing the accuracy of data stream 

temporal alignment without compromising the flow of the experiment. The offset of 

the light in the world view of the eye tracker was aligned to the last TTL trigger by 

setting both data streams to zero in a custom MATLAB script. The temporal 

asynchrony between data streams was checked in a 25-minute recording of EEG and 

eye-tracking data in which the flash was triggered every minute. There was a 50 ms 

lag between the button press and flash discharge, which was corrected in a custom 

MATLAB script during EEG data processing. 

The alignment of EEG and eye-tracking data was tested in a pilot experiment 

by comparing time intervals between successive synchronization pulses in both data 

streams. While the mean difference in timing of successive pulses was zero, there was 

a standard deviation of 16.61 ms suggesting minor variability in time-locking of the 

EEG and the eye-tracking data. The variability was possibly related to the accuracy of 

detection of flash onsets in eye-tracking data which was limited by the eye-tracker’s 

sampling rate of 60 Hz, yielding a 16.61 ms time grid. 

The frames in which the subject’s gaze first touched any part of a product were 

tabulated in Pupil Player program and combined with the timestamp of the computer’s 

real-time clock and a set file. Each product fell into one of four value categories which 
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were determined according to individual WTP values; low, low-medium, high-

medium, and high. 

6.3.12. EEG data pre-processing. 

The initial pre-processing of EEG data was carried out using BESA software (version 

6.1). A common average reference was employed, and gross movement and muscle 

artefacts were removed upon visual inspection. Before analysing EEG data from the 

shopping task, guided saccade recordings were examined. A PCA pattern matching 

algorithm was used to detect saccades of each of the nine angles in the guided saccade 

EEG recording. All instances of saccades that matched the marked segments in the 

continuous data were removed (Berg & Scherg, 1994). The artefact pattern file was 

then imported into the continuous EEG data recorded during the shopping task and all 

saccade patterns were removed using PCA. Figure 21 shows typical saccade patterns 

for selected directions of gaze. 

Cleaned EEG data was exported to EEGLAB (Derlorme & Makeig, 2004) 

running in MATLAB. Data were filtered from 1 Hz to 25 Hz during export. The 

artefact-free event files were used to create four EEGLAB files for each subject 

reflecting each SV condition. The data was epoched from -200 to 600ms, baseline 

corrected -200 to -100 and filtered from 1–25 Hz. 

6.3.13. Guided-saccade recordings  

EMRPs were time-locked to the offset of the saccade and, consequently when the gaze 

first hit an image, a number of saccade-related artefacts were present in the data. The 

artefacts can be produced by either the movement of the eyelid muscles during eye 

movements, the rotation of the corneoretinal dipole of the eye, or the saccadic spike 
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potential which refers to the contraction of extra-ocular muscles during saccade onset 

(Carl et al., 2012; Nikolaev et al., 2018). All such processes can distort the ability to 

identify the underlying neural signal. 

Roberts et al. (in preparation) utilised a combination of guided-saccade 

recordings (Berg & Scherg, 1991) to identify saccade-related artefacts and ASF to 

remove the saccade-related artefacts from the data (Berg & Scherg, 1994; Ille et al., 

2002) and this protocol was followed in the current experiment. Participants were 

asked to stand behind a marked line which was 116 cm away from an A0 sized portrait-

oriented panel. The panel housed a circular template with a central fixation cross. 

Extending from the centre of the cross were 15 cm lines spaced 40 degrees apart 

ending in numbered boxes labelled 1 – 9. The template was designed to mimic every 

saccade direction that could occur when viewing products on a shelf. Once the guided 

saccade recording was initiated, a flash synchronised with a TTL pulse delivered to 

the EEG amplifier indicated the first saccade angle and participants made 5 

consecutive saccades from the central fixation cross to number 1 and back. The same 

procedure was repeated for all numbers from 1 – 9 clockwise. The procedure allowed 

recording and quantification of a typical saccade topography for each angle of product 

viewing to be identified in the continuous EEG data, which were subsequently 

removed using Adaptive Spatial Filtering in BESA (Version 6.1) (Figure 21). These 

artefact topographies were then be imported and removed from the EEG recording 

obtained during the shop task.  
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Figure 21. Template used for guided-saccade recordings. Topographic maps show 

saccade-related potential configurations for different gaze directions, including when 

subject made a saccade to number 1, 40º to the right to number 2 and 40º to the left to 

number 9. 

6.3.14. ICA decomposition and equivalent current dipole fitting 

Four EEGLAB files for every subject, representing four value categories, were merged 

and the concatenated epochs were subjected to an Infomax ICA (Bell & Sejnowski, 

1995). For each independent component map in each subject, an equivalent current 

dipole was automatically computed using the spherical head model within the 

DIPFIT2 toolbox (Delorme et al., 2011; Maris & Oostenveld, 2007) running in 

EEGLAB. 

Group analysis of individual ICA data was carried out as a Study project in 

EEGLAB. The amount of residual variance for the dipoles was set to 35%. The study 
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design comprised one factor with four conditions standing for four value categories. 

Clustering of independent components was performed on ICA decomposed grand 

averaged EMRP data for 27 participants using the PCA EEGLAB routine. The data 

was pre-clustered using event related potentials, scalp maps and equivalent current 

dipole locations for each subject, condition and cluster to determine the disparity 

between each IC, using the default weightings. A PCA reduced the dimensionality of 

these measures down to the first 10 principal components. 

A k-means clustering algorithm was employed in EEGLAB with the number 

of clusters set to 7. ICs located outside of the head were considered not reflective of 

brain activation and any components with a distance of more than 3 SDs from the 

mean of any cluster centroid were automatically assigned to an outlier cluster and were 

excluded from further analysis. The parent cluster had 87 ICs and were only subjected 

to further analysis if they had a minimum of 10 ICs and occurred in at least eight 

participants. To identify significant clusters and latencies in a more objective way, 

95% confidence intervals for the mean IC cluster activity were calculated across the 

whole epoch between -200 to 600 ms for each cluster. Only clusters in which the 

confidence intervals deviated from baseline were subjected to further statistical 

analysis. 

6.3.15. Statistical analysis 

One-way ANOVA for repeated measures was conducted to examine the effect of value 

categories on retail price, desirability, pleasantness and WTP. To check whether 

socioeconomic status altered bidding behaviours, which was highlighted as a 

limitation of previous research (Roberts et al., in preparation), an index of multiple 

deprivation (IMD) was calculated for each participant (The English Index of Multiple 
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Deprivation, 2015). Participants were divided into two groups based on their IMD 

decile. Participants in group 1 had an IMD decile of 5 or less (where decile 1 is 

amongst the most deprived areas in England, 19 participants) and participants in group 

2 had an IMD decile between 6 and 10 (least economically deprived; 8 participants). 

To examine the effects of socioeconomic status on BDM bid, a 2 × 4 ANOVA for 

repeated measures was conducted comparing the effects of socioeconomic status 

(IMD low vs. high) and value category (low-, low-medium-, high-medium-, high-

value) on BDM auction bid. Greenhouse-Geisser corrections were utilised whenever 

sphericity was violated. Significant differences outlined in the ANOVA were 

subjected to pairwise t-tests and a critical threshold of p < .05 was upheld. 

One-way ANOVAs for repeated measures were used to compare mean 

amplitude in eye electrodes Fp1 and Fp2 for uncorrected, blink corrected and saccade 

corrected methods to determine whether effective saccade-related artefact removal 

seen in Study 2 could be replicated. To reduce the likelihood of false positive 

generation, p values were corrected with 1000 permutations. p < .005 was always 

upheld. 

To investigate the effects of value categories on EMRPs, one-way ANOVAs 

for repeated measures were carried out to compare value category (low, low-medium, 

high-medium, high) for each mean IC cluster amplitude over the latency interval 50–

450 ms using the statcond function in EEGLAB (Derlorme & Makeig, 2004). To 

reduce the likelihood of generating false positives, p values were corrected using 5000 

permutations (Maris & Oostenveld, 2007). Significant main effects were further 

investigated using post hoc paired t-tests for individual clusters. A critical threshold 

of p < .05 was always adhered to. 
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6.4. Results  

6.4.1. Product values and ratings 

Product retail prices, WTP, pleasantness and desirability ratings were analysed to 

check if value categories yielded linearly increasing trends from low to high-value 

categories. Figure 22A-D show significant effects of product categories (low, low-

medium, high-medium, high) in retail price (F(1, 49) = 235.2, p < .001); willingness 

to pay (F(1, 31) = 331.3, p < .001); product pleasantness (F(1, 40) = 122.3, p < .001) 

and product desirability (F(1, 41) = 117.6, p < .001). T-tests showed significant 

differences between all value categories in all dependent measures (p < .001). 
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Figure 22. Mean values and standard deviations of retail price (A), willingness to pay 

(B) product pleasantness rating (C) and product desirability rating (D) across four 

value categories of products. Significant differences between SV conditions p < .001 

are indicated with a double asterisk.  
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There was no significant main effect of socioeconomic status (IMD) on WTP 

values (p = .451) and no interaction effect between value categories and 

socioeconomic status (p = .316). Therefore, the socioeconomic status was not 

considered in further analyses. 

6.4.2. Saccade-related artefact removal 

Figure 23A demonstrates reduction of potential activation in eye electrodes FP1 

(right) and FP2 (left) from non-eye-artefact corrected data (uncorrected) to eye blink 

artefact corrected (blink corrected) and saccade-related artefact corrected (saccade 

corrected) methods at -7 ms. Statistical analysis revealed that electrode FP1 was 

significantly modulated by correction method F(1.485, 28.217) = 16.072, p < .001 

(Figure 23B). Saccade corrected data (5.50 ± 1.84 μV) showed significantly reduced 

amplitude compared to uncorrected (10.84 ± 5.36 μV; p < .001) and eye blink 

corrected methods (8.89 ± 3.54 μV; p < .001), however, eye blink corrected data did 

not significantly differ in amplitude compared to uncorrected data (p = .157). FP2 

electrode also displayed significant amplitude modulation according to correction 

method F(1.944, 36.937) = 55.327, p < .001, with significantly reduced amplitude for 

saccade corrected data (4.91 ± 1.61) compared to uncorrected (13.65 ± 4.82; p < .001) 

and blink corrected (8.39 ± 4.18; p = .001), and reduced amplitude for bink corrected 

compared to uncorrected (p < .001, Figure 23C).  
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Figure 23. (A) Topographic maps showing attenuation of saccadic artefacts at frontal 

and occipital electrodes for the saccade corrected compared to uncorrected and blink 

corrected methods at -7 ms. Statistically significant amplitude modulation was 

observed in electrodes Fp1 (B) and Fp2 (C) according to correction methods. **p < 

.001. 

6.4.3. Eye movement related potentials  

Figure 24A displays, in form of a butterfly plot, grand averaged EMRP signals in all 

63 electrodes collapsed across four value categories. Key latency points of interest are 

indicated with arrows showing deflections from baseline and these are also displayed 

in topographic maps (Figure 24B). The first time point reflects the offset of a saccade 

at 0 ms and shows no residual eye movement activity around the eyes or in the occipital 

cortex, suggesting that the method for isolating and removing saccades was effective. 

The next time point indicated at 130 ms was featured by a positive potential in occipital 
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electrodes which corresponded to the lambda potential (Roberts et al., 2018; 

Thickbroom et al., 1991; Yagi, 1979a, 1981a). At 152 ms, the positive potential shifted 

to more occipital regions, with negativity in parietal electrodes. At 276 ms, the EMRP 

showed a strong positive potential at vertex electrodes Cz, and FCz. The peak latency 

and the topographic configuration of this latency component resemble a P300 

component seen in event-related potentials (Jiang et al., 2017; Polich et al., 1997; 

Strüber & Polich, 2002; Wang et al., 1999). 

 

Figure 24. (A) Butterfly plot shows grand averaged EMRP waveforms across 27 

participants and four value categories, with key time points of interest indicated with 

arrows. (B) 3-D whole head topographic maps at key latency points 0 ms, 130 ms, 152 

ms and 276 ms.  
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6.4.4. EMRP independent component clusters  

Of the 7 clusters produced in the k-means clustering solution, clusters 7, 8 and 9 were 

excluded (Figure 25A–C).  Specifically, clusters 7 and 8 were excluded due to 

occurring in a low number of participants and containing a low number of ICs, 

demonstrating a lack of clear deviations from baseline and an atypical spreading of 

diverse sources across the scalp, suggesting that these clusters likely represented 

artefactual noise. Cluster 9 displayed a topography more typical of cortical activation, 

a distinctive peak around 200 ms and contained more ICs, however, it only occurred 

in 4 participants so was excluded from further analysis. 

 

Figure 25. Topographic maps, grand averaged waveforms and source dipoles for 

artefactual clusters 7 (A), 8 (B) and cluster 9 (C) were excluded from further statistical 

analysis due a low number of ICs in a low number of participants < 5.  
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Four IC clusters containing >10 ICs occurring in a minimum of 8 participants 

(3, 4, 5, 6) showed significant modulation from baseline, with peaks between 143–331 

ms. Figure 26A illustrates cluster 3 which showed a negative component peaking at 

143 ms in central midline electrodes. The component originated in the posterior 

parietal cortex (PPC; Brodmann area 23, approximate Talairach coordinates x = 0, y = 

-40, z = 23) and explained 86.76% of variance. Figure 26B shows cluster 4 which 

presented a positive peak at 160 ms in right occipital electrodes, originating in the 

visual cortex (right BA 19; approximate Talairach coordinates x = 23 y = -82, z = 23) 

explaining 80.34 % variance. The component accounted for the lambda potential. 

Cluster 5 (Figure 26C) was featured by a positive peak at 152 ms originating in the 

left visual association area (Brodmann area 18, approximate Talairach coordinates; x 

= -28, y = -80, z = 3), explaining 79.2 % of variance. Cluster 6 (Figure 26D) peaked 

at 331 ms with activity originating from the midline and the left visual cortex 

(Brodmann area 19; approximate Talairach coordinates x = -7; y = -77; z = 31), and 

explained 77.7% variance.  
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Figure 26. (A-D). Topographic maps, averaged IC (µV) waveforms collapsed across 

conditions and equivalent current dipoles for clusters 3-8 showing statistically 

significant deviations from baseline. The peak latencies are also indicated.  
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6.4.5. Effects of value categories on EMRP clusters 

Cluster 3 showed significant modulation by the value category factor in two latency 

epochs (Figure 27A). In the first epoch 217–250 ms (F(3, 33) = 6.53, p = .001), cluster 

3 amplitude was the smallest in high-medium category compared to low- (p = .033), 

low-medium (p = .005) or high-value products (p = .011).  In the second epoch 

between 323–359 ms (F(3, 33) = 4.77, p = .006), low-value products showed 

significantly reduced amplitude compared to low-medium (p = .006), high-medium (p 

= .027) and high-value products (p = .008). In cluster 4 (Figure 27B), the statistically 

significant effects of value categories were present in epoch 129–139 ms (F(3, 45) = 

3.128, p = .035). In this epoch, the amplitude of cluster 4 was stronger in low- and 

low-medium category compared to high-value products (p < .05). Cluster 5 was 

significantly modulated by value categories between 170 and 183 ms (F(3, 21) = 3.83, 

p = .01) (Figure 27C), with low-value products showing significantly reduced 

amplitude compared to low medium (p = .019), high-medium (p = .051) and high-

value products (p = .053). Finally, a statistically significant effect of value category 

on cluster 6 amplitude occurred between 72–83 ms (F(3, 30) = 3.23, p = .026) (see 

Figure 27D), with low-value products showing significantly reduced amplitude 

compared to low-medium (p = .041) and high-value products (p = .017).  
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Figure 27. (A-D). IC waveforms showing effects of value categories on cluster activity 

in clusters 3–6. Bar graphs show significant modulation of value condition on cluster 

amplitude between 72–359 ms for clusters 3–6, respectively. * p > .05, ** p > .01. 

6.4.6. Correlations between subjective value and IC amplitudes.  

To examine whether individual WTP values in four value categories linearly 

influenced cluster amplitude, simple linear regressions were conducted for significant 

time intervals for each cluster with mean WTP in four value categories as the predictor 
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and cluster amplitude as the observed variable. WTP significantly predicted cluster 3 

amplitude between 323 – 359 ms, showing a comparatively weak but statistically 

significant positive relationship between amplitude and WTP across four value 

categories. The mean standardised β coefficient was 0.03 ± 0.05 and a one sample t-

test showed that this was significantly different from zero (t(11) = 2.89, p = .015). A 

mean adjusted R2 of 0.35 ± 0.28 was found across participants. WTP also significantly 

predicted cluster 4 amplitude between 129 – 139 ms. The association in cluster 4 was 

negative with a mean standardised β coefficient of 0.037 ± 0.043. The association was 

different from zero across the whole group of participant [t(15) = 3.47, p = .003], with 

a mean adjusted R2 of 0.40 ± 0.34 across participants. No other clusters or time points 

showed any significant relationship with WTP (all p > .05). 

6.5. Discussion 

The current study examined wirelessly recorded EMRPs for real 3-D household and 

office products in a naturalistic mock shop environment. SVs of products were 

examined using a BDM auction. The experimental paradigm advanced previous 

research by producing environmental conditions that were more concordant with real- 

world economic decisions for products, examining early neural valuation responses to 

real 3-D products. In line with previous research (Roberts et al., 2018; Roberts et al., 

in preparation; Tyson-Carr et al., 2018; 2020), distinct cortical EMRP components 

were expected to uniquely and monotonically encode low-, high- and medium-value 

items, with neural prioritisation for low-value products reflected in reduced latency of 

the lambda and P200 EMRP components. 

The present study revealed four distinct IC clusters of EMRPs that were 

significantly modulated by SV category, supporting previous findings observed when 
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participants assigned SVs to 2-D product representations (Roberts et al., 2018; Roberts 

et al., in preparation; Tyson-Carr et al., 2018; Tyson-Carr et al., 2020), confirming that 

multiple cortical components of EMRPs represented different SVs of products at early 

latencies. Specifically, the data revealed that low-value products were binarily singled 

out against the highest-value category as early as 72 ms within the latency of the 

lambda component (Thickbroom et al., 1991; Yagi, 1979; Yagi, 1981a), replicating 

previous findings of early binary encoding of low-and higher-value (Roberts et al., 

2018; Roberts et al., in preparation), and extending findings by observing enhanced 

activation exclusively for the highest value category. In line with previous studies, 

high- and low-medium value products were encoded slightly later in latencies 

exceeding 170 ms, and differentiated only after 217 ms. Importantly, unlike previous 

results (Roberts et al., 2018; Roberts et al., in preparation), the investigation of real 3-

D products revealed significant linear modulation of SV within lambda component 

latency, and, for the first time, a P300-like component between 323 –359 ms, which 

also showed a positive linear association with SV. 

At the earliest latency, enhanced amplitude was observed for high-value items 

compared to both low-value conditions in cluster 6 between 72–83 ms, followed by 

the opposite activation in cluster 4 between 129–139 ms, with both low-value 

conditions displaying enhanced amplitude compared to high-value items. The 

observed activation was consistent with the latency and topography of the lambda 

component which is reported to occur in visual cortex with a peak of 100 ms 

(Thickbroom et al., 1991; Yagi, 1979, 1981b). Importantly, cluster 4 amplitude 

displayed a positive linear relationship with SV, with the lowest SVs showing the 

lowest activation. A fast binary assignment of low- and high- SVs, reflected in early 

cortical responses within the latency of the lambda component, could reflect motivated 
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automatic attention selection (Rellecke et al., 2011). The current findings partially 

replicate and extend previous results by observing enhanced amplitude for exclusively 

low- and exclusively high-value products, as opposed to low-value products versus 

higher-value products, demonstrated in previous research (Roberts et al., 2018; 

Roberts et al, in preparation). 

A fast, binary separation of the lowest from the highest value suggests early 

detection and identification of goal relevant items, thereby preferentially avoiding 

costs associated with behaviours that are incongruent with current goals (e.g. 

approaching an unwanted item). Feedback between higher and lower visual areas has 

been reported to begin around 100 ms, supporting early conscious visual experience 

(Koivisto & Grassini, 2016). Enhanced lambda activation has been linked to selective 

attention during eye-movement (Yagi, 1981b). Likewise, the P100, the VEP 

equivalent of the lambda component, is modulated by attention and suppression of 

task irrelevant processing (Finnigan et al., 2011; Herrmann & Knight, 2001; Hillyard 

& Anllo-Vento, 1998), as demonstrated by enhanced processing of both positive and 

negative emotionally valenced stimuli (Burt et al., 2017; Rellecke et al., 2011; 

Ventura-Bort et al., 2016). Attention allocation precedes action selection (Armel et al., 

2008; Krajbich et al., 2010) and an early binary neural system, revealed by enhanced 

lambda component activity in visual cortex for low- and high-value products (Clark 

& Hillyard, 1996; Hillyard & Anllo-Vento, 1998) could allow rapid and accurate 

categorisation of extreme values, planning and facilitation of approach and avoidance 

tendencies leading to goal accomplishment  (Balconi et al., 2012; Helie et al., 2017; 

Simola et al., 2013), whilst navigating complex distraction-rich real-world 

environments (Barbot & Carrasco, 2018), promoting survival (Polanía et al., 2014). 



 

199  

The detection of cortical components responding exclusively to the highest 

value category, as well as the lowest value category, was not observed in previous 

studies involving 2-D product images (Roberts et al., 2018; Roberts et al., in 

preparation). The detection of the highest-value category could be due to the 

experimental paradigm used in the current study. Interaction with real 3-D products 

and their imminent availability could have selectively captured attention and triggered 

reward anticipation, specifically enhancing the relevance and salience of high-value 

products. Cues signalling imminent availability of products and related anticipatory 

processes can alter consumption behaviours due to reward signalling which enhances 

the motivation to consume the item and stimulates approach tendencies (Jędras et al., 

2013). Thus, stimulating realistic approach-avoidance behaviours that could be seen 

in a real-world shopping environment during purchase decisions could potentially 

explain the additional effects for high-value products observed for real products 

compared to 2-D representations. 

Cluster 5 showed significant modulation of SV in the occipital cortex between 

170 –183 ms, displaying a positive linear relationship between SV and amplitude, with 

low-value products displaying the lowest amplitude compared to all other value 

conditions. The activation could reflect a slightly delayed visual lambda component 

(Van Humbeeck et al., 2018). The lambda component is sensitive to pre-saccadic 

activity such as saccade size and magnitude, which is modulated by the salience of 

stimuli during free-viewing (Ries et al., 2018b; Van Humbeeck et al., 2018) and linear 

encoding of SV within the lambda component could reflect an initial coarse estimation 

of intermediate value categories. A highly salient subsequent fixation location can 

reduce perisaccadic amplitude, whereas low salience can increase saccadic amplitude, 

suggesting that more attentional effort is required for less salient stimuli (Van 
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Humbeeck et al., 2018). The reduced saliency of intermediate value items could have 

delayed their initial categorisation, delaying the latency of the lambda component. A 

similar positive linear relationship with cluster 3 amplitude was also observed within 

the latency of the P300, which has been proposed to function as a mismatch detector 

for information encoded in earlier components (Polich, 2007). Therefore, initial rough 

categorisation of intermediate items within the lambda component could be later 

revised by P200 (Roberts et al., 2018; Roberts et al., in preparation) and then be 

moderated by top-down processing within the P300 component. 

Following binary encoding of low- and high-value and initial rough linear 

encoding of intermediate SV in the lambda component, intermediate items were 

differentiated in latencies exceeding 217 ms in cluster 3, with reduced amplitude for 

high-medium items in the PPC.  

Cluster 3 could reflect parietal P200 activity which further iteratively 

distinguished between medium-value products as the distinctions between 

intermediate-value categories is less extreme than the distinctions between low- and 

high-value categories. Therefore, more information could be required to precisely 

categorise intermediately-valued items in relation to each other. Enhanced processing 

for medium-value products reflected in the enhanced amplitude of cluster 3 for low-

medium value items and the statistically significant lower amplitude of high-medium 

value items compared to all other value items could reflect a parietal P200 EMRP 

which underpins the more precise categorisation of more uncertain intermediately 

valued products. P200 EFRPs have been shown to distinguish between stimuli based 

on semantic or salient features (Baccino, 2012) and could index selective attention to 

stimuli during natural viewing (Fischer et al., 2013). It has been suggested that 

intermediately-valued items are associated with more uncertainty (Bobadilla-Suarez 
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et al., 2020), and the P200 VEP, an analogue of the P200 EMRP, has been shown to 

be modulated by decision uncertainty and the predictability of decision outcomes 

(Polezzi et al., 2008; Beate Schuermann et al., 2012; Xu et al., 2011), as well as 

stimulus valence (Carretié et al., 2001a,b; Polezzi et al., 2008). 

Cluster 3 amplitude showed a positive linear association with SV in the latency 

interval of 323 – 359 ms, with activation in central parietal electrodes which was 

generated by electrical source dipoles located in mid- and posterior parietal cortex, 

forming a distinct peak at 300 ms. The negative sign of the IC map corresponds to the 

positive potential at vertex seen in the grand average EMRP waveforms at 276 ms. 

Therefore, SV amplitude modulation in the 323 – 359 latency epoch could reflect an 

EMRP analogue of the P300 ERP component. It is possible that the initial rough 

categorisation of intermediate value items in Cluster 5, within the lambda component, 

is moderated within the P300 component and if the initial categorisation is congruent 

with the top-down interpretation, the ‘schema’ outlined by earlier components is 

maintained, otherwise, top-down attentional processes could update the mismatched 

representation within the P300 EMRP (Polich, 2007). Centroparietal P300 EMRP has 

been reliably detected during natural free-viewing for target objects (Devillez et al., 

2015) and in naturalistic mobile EEG paradigms during locomotion (De Vos et al., 

2014c; De Vos et al., 2014a), displaying similar topography and amplitudes to 

laboratory-recorded P300 VEP (De Vos et al., 2014b). The parietal P300 VEP 

component is thought to index goal-directed attention when salient stimuli activate the 

PPC (Bledowski et al., 2004; Corbetta & Shulman, 2002; Linden, 2005) and P300 

could reflect a mismatch detector for information represented in earlier components 

such as the N100, P200 and N200 (Polich, 2007).  Therefore, in the current study, the 

later activation of cluster 3 could be indicative of top-down attention to salient 



 

202  

information during valuation, allowing for linear categorisation of intermediately 

valued products. 

The detection of a clear component in the PPC within 300 ms, which likely 

reflects the P300 ERP component, was not observed in previous studies using 2-D 

product images (Roberts et al., 2018; Roberts et al., in preparation). The detection of 

a P300-like component in the current data, but not in previous data (Roberts et al., 

2018; Roberts et al., in preparation), could be due to the use of 3-D products. The 

addition of depth afforded examination of the products from multiple viewpoints 

which could have different processing demands compared to 2-D items (Biederman & 

Gerhardstein, 1993; Murphy et al., 2013), producing later neural components. 

Observation of a previously unseen P300 component highlights the importance of 

considering potential processing differences when examining valuation responses to 

2-D and 3-D products to ensure that the neural responses observed are reflective of 

those produced under naturalistic conditions. Moreover, the P300 has been related to 

enhanced attentional processing and attention allocation for motivationally salient 

products (Nijs et al., 2009) and other salient stimuli (Wu & Zhou, 2009; Yeung & 

Sanfey, 2004). In addition, the imminent availability of products could influence 

attentional bias (Jędras et al., 2019; Jones et al., 2012). In the current data, attentional 

bias for real products could manifest in facilitated avoidance responses for low-value 

products, as the P300 has been linked to behavioural inhibition or avoidance of 

dysfunctional behaviours (Balconi & Crivelli, 2010).  
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6.6. Conclusion  

The current findings support previous research (Roberts et al., 2018; Roberts et al., in 

preparation; Tyson-Carr et al., 2018; Tyson-Carr et al., 2020), with SVs for 3-D 

products represented in multiple distinct components of EMRPs. Similarly, early 

binary encoding of low- and higher-value, and later representation of intermediate-

value, was observed for 3-D products. Uniquely, 3-D products elicited encoding of 

high-value products and early linear encoding of SV in the occipital lambda 

component, potentially reflecting rough discrimination of SV. Furthermore, an 

analogue of the P300 ERP was observed, which demonstrated linear encoding, 

potentially reflecting further top-down categorisation of SV. The current findings 

support the interpretation of an automatic valuation system which serves to maximise 

economic resources by initially allocating enhanced visual attention to low- and high-

value items, facilitating approach-avoidance to real products in a naturalistic shop 

environment.  
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7. GENERAL DISCUSSION AND CONCLUSIONS 
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The overarching aim of the current thesis was to utilise mobile EEG and eye-tracking 

methods to characterise the temporal dynamics underlying early subjective product 

valuation in increasingly realistic environments.  A secondary aim was to improve the 

signal quality of EEG data collected in freely moving participants by identifying and 

removing artefactual components and enhancing synchronicity between EEG and eye-

tracking data streams. 

7.1. Summary of findings 

• Different SVs of products were encoded in multiple distinct EMRP components 

documented in Studies 1–3. 

• SV categories were modulated in the lambda component (Studies 2–3) and the 

P200 (Studies 1–3) EMRP latencies. 

• In Studies 1–3, low-value products, compared to high-value products were 

always categorised early on in the EMRP suggesting early automatic processing. 

• Higher-value products were also distinguished at early latencies (Studies 1–3), 

with exclusively high-value distinguished rapidly in Study 3, suggesting an early 

detection and binary separation of low- and high-value by the brain. 

• Intermediate-value products were categorised following early binary 

discrimination of low- and high(er)-value items, potentially due to the increased 

processing demands required for intermediate-value products (Studies 1–3). 

• Study 2 revealed a weak and limited linear encoding of SV in one component, 

however, Study 3 revealed linear encoding of SV in two component clusters of 

EMRPs. 
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• In Studies 2 and 3, guided saccade recordings and ASF allowed for effective 

removal of saccade-related artefacts demonstrating their suitability for research 

in natural settings. 

• In Study 3, investigation of real 3-D products in a naturalistic shop produced an 

additional P300 EMRP component unseen during valuation of 2-D product 

images, which could reflect top-down valuation processes. 

7.2. Overarching themes emerging from the data 

7.2.1. Multiple distinct cortical components of EMRPs encode SV categories  

Studies 1, 2 and 3 showed encoding of unique bands of SV in multiple distinct neural 

components. In Study 1, low-value products were encoded in a distinct neural 

component (IC7) from all other higher-value products (IC4) within the parietal P200 

component latency; however, the spatio-temporal characteristics underpinning 

medium-value-products was not as clear. In Study 2, low-value products showed 

enhanced amplitude within the lambda component compared to higher-value products, 

beginning as early as 50 ms post stimulus, and low- and high-medium value products 

showed the strongest IC cluster activities in the latency epochs > 150 ms. In Study 3, 

low- and high-value products were binarily encoded in early components in the latency 

of the lambda component, whereas intermediate-value products were resolved in 

components exceeding 170 ms. 

Few studies have examined the temporal dynamics of the BVS, and therefore, 

it is not well known how the brain encodes SVs. A fundamental question within the 

neuroeconomic literature is whether the brain automatically computes all SVs in a 

linear manner within the same value-related brain structures (Abitbol et al., 2015; 

Lebreton et al., 2009), or whether multiple distinct cortical clusters encode unique 
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bands of SVs automatically within the BVS. The current findings provide support for 

the latter account (Studies 1-3), however, there is also evidence for linear encoding of 

SV within distinct cortical clusters, which was only observed for real products (Study 

3).  

In line with the account of unique cortical clusters encoding SV, previous 

research examining the temporal dynamics underpinning economic decisions for 

products have shown SV activation in unique cortical clusters. Tyson-Carr et al. 

(2020) reported non-linear encoding of SV for high-value items in the right parietal 

cortex, distinct encoding of intermediate SV in the frontal cortex, and separate 

encoding for low SV items in a different cluster of the frontal cortex. In line with the 

idea of distinct cortical encoding of SV, there is a plethora of research studies 

demonstrating distinct cortical activation patterns in voxels uniquely tuned to specific 

stimulus qualities (Bulthé et al., 2014; Diana et al., 2008; Haxby et al., 2001; Haxby 

et al., 2000; Howard et al., 2009; Kragel & LaBar, 2016). The results presented in the 

current thesis supports and extends previous findings by demonstrating, for the first 

time, unique encoding of SV in distinct cortical clusters in naturalistic environments, 

using mobile EEG. Specifically, in Studies 1, 2 and 3, components of EMRPs 

selectively encoded low-value compared to higher- or high-value products in early 

latencies, whereas intermediate-value products were resolved in later components of 

EMRPS. 

A potential reason for multiple unique cortical clusters encoding SV is that 

simultaneous encoding of SV allows information in the environment to be rapidly 

encoded and acted upon for low- and high-value stimuli, facilitating avoidance and 

approach behaviours. In support of quick processing of multiple task-relevant objects, 

previous research has demonstrated that when two objects are presented nearly 
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simultaneously, the second object can receive attentional focus within milliseconds of 

the first, whilst attention for the first object is maintained, suggesting rapid parallel 

attention for objects (Eimer & Grubert, 2014). The unique and fast encoding of SVs 

of products and preferential attention for low- and high-value products could function 

to facilitate motivated behaviours in natural environments. 

In addition to unique cortical clusters encoding SV, Study 2 revealed a linear 

trend in some components, and Study 3 showed some linear encoding of SV within 

the lambda and P300 components. Previous research has attempted to ascertain 

whether neural coding of SV follows a linear or non-linear function (Abitbol et al., 

2015; Bartra et al., 2013; Lebreton et al., 2009). However, the current findings suggest 

that SV is encoded in multiple distinct cortical components, some of which process 

SV linearly. In Study 3, the linearity of SV encoding can be interpreted as an initial 

coarse encoding of intermediate values within the lambda component, which could 

then be flagged for further top-down processing for more precise categorisation. In the 

P300, SV is more precisely encoded following a linear function, as top-down 

processes allow for categorisation of intermediate values. The current interpretation 

aligns with research which places the P300 as a mismatch detector for information 

encoded in earlier components (Polich, 2007) and accords with fMRI data which 

showed both linear and non-linear encoding of SV in distinct neural structures of the 

BVS (Bartra et al., 2013). Although research examining economic decisions suggests 

that SV follows either a linear function or non-linear function in distinct cortical 

clusters, the current data suggests that a combination of multiple unique cortical 

clusters, and linear processing within some of these clusters, are involved in 

processing SV. 
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7.2.2. Facilitated neural processing for low-value products; a negativity bias in 

the brain 

Distinct and rapid neural encoding for low-value products was persistently observed 

throughout studies. In Study 1, unique clusters within the P200 EMRP showed 

enhanced amplitude for low-value products, compared to products of all other SVs in 

the parietal cortex. In Study 2, low-value stimuli elicited the strongest IC of EMRP 

activity within the latency of the lambda component, beginning as early as 50 ms post-

stimulus onset. In Study 3, in a realistic shopping environment, low-value products 

were singled out against high-value products within two distinct ICs of the lambda 

component, beginning as early as 72 ms post stimulus. The consistent rapid encoding 

of low-value products implicates a negativity bias in the brain. 

Facilitated neural encoding of products with low SV, reflected in early cortical 

responses, could facilitate goal-directed behaviour. From an evolutionary perspective, 

survival is afforded by prioritising avoidance of negative stimuli, such as poisonous 

food, before approaching positive stimuli (Polanía et al., 2014). The products used in 

the current research were not primarily aversive or directly threating stimuli as they 

were potentially rewarding, however, it has been shown that rewards can be 

considered aversive if they do not match expectations (Shenhav et al., 2018). 

Incongruencies between expectations and reality can generate avoidance responses 

and aversive motivational states, and the activation of valance and anxiety-related 

brain circuits (Blair et al., 2006; Shenhav et al., 2018). In the context of current 

experimental procedure and results, undesired low-value products could have violated 

expectations, thus triggering aversive responses, as reflected by the associated reduced 

latency of cortical components. Rapidly processing and avoiding low-value items 
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could represent the negativity bias, affording avoidance of the risk of an unfavourable 

outcome such as selecting low-value products instead of preferred high-value 

products. The avoidance of risks associated with obtaining unfavourable outcomes by 

selecting low-value products could be considered as consistent with PT. PT stipulates 

that losses (such as the financial loss associated with purchasing unwanted low-value 

products) are weighted more heavily than gains, preserving financial resources and 

avoiding unwanted outcomes (Kahneman & Tversky, 1984). 

In accordance with the current findings which indicate negativity bias for low-

value products, numerous ERP studies have shown a negativity bias during value 

processing, reflected in reduced latency and enhanced amplitude of early neural 

components such as the P100 (Cacioppo & Berntson, 1994; Vaish et al., 2008; 

Williams et al., 2006; Yuan et al., 2015), the P200 (Carretié et al., 2001b; Correll et 

al., 2006; Gerdes et al., 2013; Huang & Luo, 2006; Rigoni et al., 2010; Schuermann 

et al., 2012; Wang & Han, 2014; Wang et al., 2012) and the N200 (Lithari et al., 2009; 

Tyson-Carr et al., 2018; 2020). Furthermore, enhanced motivational salience, arousal 

and facilitated neural activation have been observed for losses as opposed to gains of 

the same amount (Baumeister et al., 2001; Rozin & Royzman, 2001; Sokol-Hessner 

et al., 2009; Stancak et al., 2015). 

Enhanced neural processing of low SV products is likely to coincide with 

System 1 outlined by Kahneman (2011). According to Kahneman, System 1 

incorporates quick thinking that is usually in response to emotionally charged 

information and requires little to no conscious effort, operating continuously and 

automatically outside of conscious awareness. The early neural categorisation of low-

value captured in the current studies was likely operating below conscious awareness 

as illustrated by the early latency of the components. In Study 1, low-value was 
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categorised at ~ 200 ms, and in Studies 2 and 3, low-value was detected in the brain 

within the latency of the lambda component, as early as 50 ms post stimulus. 

The negativity bias was characterised by neural components responding to the 

low-value categories as early as 50–63 ms, which is earlier than previously reported 

in laboratory-based EEG studies (Carretié et al., 2001b; Huang & Luo, 2006; Williams 

et al., 2006; Yuan et al., 2015). The reduced latency can be explained in terms of the 

free-viewing paradigm. As a result of parafoveal processing, inclusion of eye-

movements can facilitate processing of unpleasant information with enhanced 

attentional capture during free-viewing. Covert attention can be allocated to a stimulus 

prior to the eyes reaching fixation during the saccade period (Simola et al., 2013). As 

a result, the naturalistic paradigms utilised in the current studies may have provided a 

more realistic insight into the way that low-value information is processed in real-

world settings. By affording participants the ability to move and engage with the 

stimuli, the brain may need to process information more quickly to facilitate planning 

and to provide quick responses that will allow for the avoidance of negative goal 

incongruent stimuli (Helie et al., 2017; Simola et al., 2013). 

7.2.3. Early binary SV resolution of low- and high-value within an automatic 

neural valuation system 

Studies 1 and 2 showed rapid encoding of low- versus higher values in ICs of EMRPs 

in the latencies of the lambda component and P200 component. In Study 3, low-and 

high-value products were binarily discriminated. The observed early neural responses 

could reflect an adaptive dichotomous representation of low- and high- values within 

a domain-general BVS, facilitating both early avoidance and approach behaviours 

(Bartra et al., 2013; Westbrook et al., 2019). Binary isolation of low- and high- value 
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item categories is a useful adaptation, prioritising the likelihood of one’s survival. Fast 

categorisation of items with the lowest and highest SVs stimulates quick avoidance 

responses for unwanted items and approach responses for wanted items, preserving 

resources and optimising time. 

Motivationally salient cues can influence attention selection, action selection 

and response speed (Chelazzi et al., 2013; Eimer, 1996; Kiss et al., 2009; Mendelsohn 

et al., 2014). In addition to prompted avoidance responses triggered by negative cues, 

it has been shown that target detection is facilitated by reward-related cues (Kiss et al., 

2009), and a history of positive reinforcement can facilitate attentional priority for 

those items (Anderson, 2013). 

There is a large amount of research to suggest that there may be a common 

neural system facilitating avoidance and approach, with many studies reporting an 

overlap between neural circuits responsible for both processes (Delgado, 2007; Levy 

& Glimcher, 2012; Pessiglione & Delgado, Mauricio, 2015; Tyson-Carr et al., 2018). 

Supporting the overlap of salience processing in the BVS, early ERP components 

show reduced latency and enhanced amplitude for both negatively and positively 

valanced stimuli, including the P100 (Cacioppo & Berntson, 1994; Smith et al., 2003; 

Vaish et al., 2008; Williams et al., 2006; Yuan et al., 2015), P200 (Huang & Luo, 

2006; Ma et al., 2018; Roberts et al., 2018; Schuermann et al., 2012) and N200 (Goto 

et al., 2017; Kiss et al., 2009; Lithari et al., 2010; Telpaz et al., 2015; Tyson-Carr et 

al., 2018, 2020). 

Facilitated processing for low- and high- value stimuli could be related to 

decision confidence, as it has been suggested that SVs at the extreme end of the 

spectrum are more likely to be associated with a high level of decision confidence and 
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consequent approach-avoidance behaviours (Bobadilla-Suarez et al., 2020). 

Alternatively, items of intermediate SV are considered to be associated with more 

uncertainty and lower decision confidence (Bobadilla-Suarez et al., 2020). The current 

interpretation links to the concepts of System 1 versus System 2 processing, as 

categorisation of low- and high- SV is likely to be carried out by System 1, which is 

thought to replicate reactions to similar events and rest more on emotional gut 

responses (Kahneman, 2011). 

The detection of early components which exclusively responded to low- and 

high-value, compared to Studies 1 and 2 which showed components for low and 

higher-value categories, could be due to the experimental paradigm. The physical 

presence of products within a shopping environment in Study 3 might have stimulated 

real avoidance-approach behaviours which could be observed in a real-world shopping 

environment as the products were immediately in front of them in a simulated shop. 

As such, the environment may have created more of a sense of immediacy and urgency 

related to current goals of selecting a product to purchase, therefore, necessitating the 

fast detection of wanted and unwanted items to facilitate approach of the favoured 

item. 

The above interpretation is supported by research demonstrating that imminent 

availability of products altered consumption behaviours (Jędras et al., 2013, 2019; 

Jones et al., 2012). The actual presence of products can act as conditioned stimuli 

signalling the imminent availability of the reward (Jędras et al., 2013), enhancing 

motivation and conditioned responses, such as approach tendencies, attentional 

processing and consumer behaviours. These effects are more pronounced when there 

are signals of availability that are consistent with the behavioural goals (Jędras et al., 

2013), which, in Study 3, was ‘purchase at least one item’. 



 

214  

7.2.4. Later encoding of intermediate-value products within an early attention-

based neural valuation system 

The current findings indicate that a non-linear iterative process could occur whereby 

SV resolution becomes progressively refined over time to decipher the full range of 

SV categories. The data revealed that medium-value products were categorised 

following early binary discrimination of low- and high-value items, between 150 – 

200 ms in Studies 1 and 2, and between 170 – 359 ms in Study 3, falling within the 

latencies of the P150, P200 and P300 EMRPs. 

Delayed categorisation of medium-value products is likely due to the contrasts 

between intermediate values being less obvious than between more extreme low- and 

high-value items. Therefore, intermediate-value processing may represent a finer 

resolution of value. As a result, the neural system that affords rapid categorisation of 

low- and high-value may not allow comparable fast categorisation of medium-value 

items, suggesting that two systems may be involved in the processing of early SV, 

with intermediate values receiving further processing (Philiastides & Heekeren, 2009). 

Whilst low- and high- value options are associated with high decision 

confidence, medium-value options are linked with lower decision confidence and 

more uncertainty (Bobadilla-Suarez et al., 2020). P200 can be modulated by outcome 

predictability and decision uncertainty (Polezzi et al., 2008; Schuermann et al., 2012; 

Xu et al., 2011). Consequently, categorisation of medium SV may require input from 

the ‘slow thinking’ System 2, which is deployed when further processing is required 

as the habitual, emotional responses of System 1 do not suffice (Kahneman, 2011). 

Supporting the current interpretation, resolution of medium SV corresponded with 

neural sources in areas of the cortex that are typically associated with the top-down 
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attention function of System 2 (Kahneman, 2011), such as the dorsolateral PFC (Bartra 

et al., 2013; Hubert & Kenning, 2008; Mahesan et al., 2016; Morris et al., 2014; 

Plassman et al., 2007) (See Chapter 4), and the PPC (Shomstein, 2012; Small et al., 

2005) (See Chapter 6). 

7.2.5. Examining real 3-D products versus product images.  

In Studies 1 and 2, images of products were displayed in a mock gallery, and neural 

activity corresponding with product valuation was recorded whilst participants freely 

roamed and evaluated products. In contrast, in Study 3, real 3-D products were 

displayed on shelves mimicking a realistic shopping environment, and neural activity 

corresponding with product valuation was recorded whilst participants freely roamed 

and evaluated products. Like Study 1 and 2, Study 3 results revealed multiple 

components of EMRPs encoding distinct SV, with early components encoding low- 

and high-value products, and intermediate products encoded by slightly later 

components in latencies exceeding 170 ms. Unlike Studies 1 and 2, Study 3 data 

revealed a later component within the latency of the P300, with a source in the PPC 

which showed an almost linear negative encoding of SV, with the lowest activation 

for low-value and the highest activation for high-value products. 

Encoding of SV in the later P300 component could indicate a top-down 

verification of SV, whereby the initial rapid binary and intermediate-value products 

categorisations are checked. P300 has been shown to be associated with enhanced 

attentional processing of motivationally salient products (Cano et al., 2009; Conroy & 

Polich, 2007; Keil et al., 2002; Nijs et al., 2009; Onishi & Nakagawa, 2019; Yeung & 

Sanfey, 2004), and allocation of attention, when evaluating reward outcomes in terms 

of valence, magnitude and expectancy (Wu & Zhou, 2009; Yeung & Sanfey, 2004). 
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The P300 also promotes behavioural inhibition, allowing for avoidance of behaviours 

which could jeopardise goal achievement (Balconi & Crivelli, 2010). P300 can 

represent a later revision or mismatch-detection between incoming stimuli and the 

initial processing, which may have occurred in earlier components such as the N100, 

P200 and N200 (Polich, 2007). If the initial representation is congruent with the new 

updated representation, the ‘schema’ outlined by earlier components is maintained. 

However, if the stimulus is novel, higher-level processing involving working memory 

and attention-related processes update previous stimulus representations, and the 

mismatch could be indexed by P300 (Polich, 2007). Because the lowest-value 

products were categorised first, within the early binary system (in cluster 6 between 

72-83 ms), it is possible that low-value items are used as a reference point against 

which all other items are checked in the P300, explaining why low-value products 

significantly differed from all other value conditions in the P300 component. 

The later processing in the P300 could be associated more with the slow 

thinking System 2, outlined by Kahneman (2011), which is tasked with monitoring the 

progress of System 1 and exercising impulse control. System 2 is a more conscious 

and controlled neural system which requires attention and conscious effort, therefore, 

initial impressions developed by System 1 may be checked by System 2 within the 

P300. 

The reason for the detection of a P300 in Study 3, but not in Studies 1 and 2, 

could be due to the additional depth dimension affording viewing from multiple 

perspectives, including atypical angles. Therefore, a moving subject might observe 

differences in product luminance, contrast, shape, size, and position over time 

(Murphy et al., 2013). It is possible that for 3-D products, compared to 2-D product 

images, the added complexity of spatial relations between these viewpoints need to be 
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integrated over time to form a holistic visual representation (Meilinger et al., 2011). 

Additional visual information processing could be required for identification and 

valuation to occur (Biederman & Gerhardstein, 1993), necessitating the additional 

validation of the initial categorisation within the P300. 

A further difference in the results of Study 3 compared to Studies 1 and 2 is 

the observation of a cluster encoding exclusively high-value items. The detection of 

neural components responding exclusively to high-value items could be a function of 

the shopping environment which, compared to the picture galleries used in Studies 1 

and 2, signalled the imminent availability of products. Imminent availability of 

products can increase their motivational salience, enhancing attentional bias for 

product-related cues, (Jędras et al., 2013, 2019; Jones et al., 2012) and consumption 

behaviours (Maas et al., 2012; Painter et al., 2002). The imminent availability of 

products can increase their palatability, as less effort is needed to obtain them, and this 

is associated with activation of motivation-related reward circuits (Blechert et al., 

2016). Therefore, although Study 2 increased the price range to allow for a finer 

resolution of SV in the brain, perhaps it is necessary to create environmental 

conditions which are congruent with consumption behaviours to observe realistic 

valuation responses and the full range of SV resolution in the brain. Conceptual and 

perceptual congruence between products and the environment can facilitate their 

positive evaluation and purchase selection by making them more accessible and easier 

to process (Berger & Fitzsimons, 2008; Fiore, 2008; Sherman et al., 1997), and 

equally, environmental irritants can negatively influence product evaluation 

(D’Astous, 2000). Characteristics of store environments can have a significant impact 

on emotions, affecting approach-avoidance behaviours reflected in the amount of 
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money spent, number of products purchased and time spent shopping (Sherman et al., 

1997). 

7.2.6. Removing saccade-related artefacts in the wild 

MoBI and eye-tracking methodologies can be combined to examine eye movements 

and neural dynamics during natural free-viewing, affording investigation of aspects of 

cognition which could not be observed under laboratory conditions (Dimigen, 2014; 

Fischer et al., 2013; Nikolaev et al., 2014, 2016). The present studies capitalised on 

recent methodological and technological progress in MoBI and eye-tracking research 

(Dimigen, 2014; Fischer et al., 2013; Gramann et al., 2010; Gramann et al., 2011; 

Gwin et al., 2010; Liao et al., 2012; Makeig et al., 2009; Nikolaev et al., 2014, 2016; 

Ojeda et al., 2014). to explore economic valuation of objects in freely behaving 

individuals. In the literature, co-registration of MoBI and eye-movement recordings 

for investigation of natural cognition has suffered from contamination of the neural 

signal by many saccade-related artefacts, which has severely hampered progress in the 

investigation of natural cognition. As such, to successfully examine the neural 

dynamics of value-based decisions in realistic environments, it was essential to 

develop a method for effectively removing saccade-related artefactual activity. 

In Study 1, saccade-related artefacts were removed from the data using an ICA 

decomposition and back-projection technique (Debener et al., 2010). The grand 

averaged EMRP activity was decomposed into ICs and only individual ICs which were 

thought to reflect genuine cortical activity, based on their latency and topographies, 

were back-projected to the scalp. While the ICA back projection method was effective 

in removing saccade-related artefacts, some residual eye-movement artefacts 

remained in the data, preventing detection of later neural responses. Residual eye-
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movement contamination is evident in the increased artefactual noise >300 ms in 

Figure 10 (Chapter 4). As such, it was essential to mark out and remove saccades of 

each angle using advanced data cleaning methods. In Study 2, saccade-related artefacts 

were first detected using a short guided-saccade recording (Berg & Scherg, 1991) in 

which participants made saccades for 9 angles around a circle, beginning at a central 

fixation cross. The procedure allowed recording and quantification of a typical saccade 

topography for each angle of product viewing to be identified in the continuous EEG 

data for the valuation task. The saccades were subsequently removed using ASF in 

BESA (version 6.1) and the artefact topographies could then be imported and removed 

from the EEG recording obtained during the valuation task. The method of guided-

saccade artefact removal showed a highly statistically significant decrease of residual 

activity in frontal electrodes compared to an eye-blink-corrected data and uncorrected 

data in Study 2 (Figure 16), demonstrating the effectiveness of the current method for 

saccade-related artefact correction. The guided saccade/ASF method was then further 

employed in Study 3 in the realistic mock shop experiment and effectively reduced 

artefactual noise in eye electrodes (Figure 23). 

The utility of the current method for saccade-related artefact removal could 

have wide-reaching implications for MoBI research and studies employing co-

registration of eye-tracking and EEG. Many methods have been developed to reduce 

the number of saccade-related artefacts contaminating MoBI recordings during free- 

viewing behaviour, including restriction of movement, regression (Jiang & Bian, 

2019), PCA (Berg & Scherg, 1991), ICA (Bell & Sejnowski, 1995) and linear 

deconvolution methods (Ehinger et al., 2018). However, restriction of movement 

decreases the generalizability of findings to the real-world and restricts the 

investigation of certain behaviours such as those related to locomotion. Additionally, 
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regressions are limited as they require one or more reference EOG and ECG channels 

(Jiang et al., 2019), and ICA and PCA methods cannot separate out similar artefacts 

unless they are marked out. Likewise, methods such as the Unfold Toolbox (Ehinger 

et al., 2018) require detailed information about saccade amplitude and angles to be 

utilised, which is not always possible to obtain in naturalistic settings. Alternatively, 

as shown in the current data, guided saccade recordings can be used to successfully 

detect saccades of every angle, which can then be removed using ASF, optimising 

decompositions using PCA and ICA techniques by marking out the data for removal. 

As the method can be utilised easily with any MoBI and eye-tracking system, it 

provides a necessary alternative to linear deconvolution methods as it does not require 

detailed information regarding saccades. When combined, guided saccade recordings 

and ASF are able to successfully remove a large portion of artefacts from the eye-

orbits which would contaminate detection of neural signals in naturalistic settings 

during free-viewing. Many naturalistic paradigms can employ the method to 

successfully remove contamination during free-viewing recordings, opening up a 

range of new possibilities for investigation of brain dynamics underpinning natural 

viewing behaviours in real-world environments. 

7.2.7. System 1 and System 2 (Kahneman, 2011) and their relation to the 

lambda component, parietal P200 and centroparietal P300 of EMRPs 

In Studies 1, 2 and 3, low- and high-value products were categorised early on by the 

brain and there was a clear role of the parietal P200 in the processing of product SV 

in naturalistic settings. In Studies 2 and 3, the inclusion of a broader range of stimuli 

and removal of residual saccadic artefacts lead to the detection of earlier processing 

of low- and high-value products within the visual lambda component in the occipital 
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cortex, in latencies beginning from 50 ms. In Study 3, examination of neural dynamics 

in a more naturalistic shop setting using real 3-D products, lead to the detection of a 

centroparietal P300 component which showed linear processing of SV. The current 

findings can be interpreted in the context of the System 1 and System 2 decision-

making model, introduced by Kahneman (2011). 

Due to the early latency modulation of SV within the lambda component, as 

early as 50 ms in Study 2 and 72 ms in Study 3, it is likely that SV was encoded 

automatically and without conscious awareness. Therefore, early encoding of salient 

low- versus high-value categories could form a part of System 1 (Kahneman, 2011). 

System 1 is an automatic and rapid neural system which categorises stimuli 

continually and with no expenditure of effort, relying on emotionally charged 

information as well as previous experience and heuristics. Supporting the current 

interpretation, the lambda component has been shown to index the afferent flow of 

information to the visual cortex and is modulated by bottom up low-level stimulus 

features such as luminance, contrast, size and spatial frequency (Kazai & Yagi, 2003; 

Ries et al., 2018a; Thickbroom et al., 1991; Yagi, 1979). As such, the lambda 

component likely operates within System 1, which automatically generates a limited 

set of basic assessments and impressions of stimuli, which are then later evaluated by 

System 2 (Kahneman, 2011). Furthermore, the lambda component is the EMRP 

equivalent of the VEP P100, which has been shown to be modulated by the value of a 

stimulus, reflecting bottom up rapid automatic valence detection and is considered to 

reflect System 1 processing (Marzi & Viggiano, 2007). The lambda component is also 

modulated by saccade size and magnitude, which are thought to be influenced by top-

down attention (Ries et al., 2018a). This suggests that System 2 has top-down 

influence on the bottom-up processing of System 1 in order to plan and execute eye-
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movements in line with task demands. Kahneman (2011) supported the top-down 

influence of System 2 on System 1, suggesting that it is possible for System 2 to 

executively program the automatic System 1 functions of attention and memory. 

Additionally, due to the early latency of components, the P200 has been linked 

to early value categorisation (Gui et al., 2016), in particular, directing visual attention 

to salient stimuli (Carretié et al., 2001a,b). Therefore, the P200 also likely forms a part 

of System 1 processing. However, intermediate value products were also processed 

slightly after low- and high-value items, within the latency of the P200. Therefore, it 

is possible that the P200 is able, to some extent, to recruit top-down processing for 

further fine-tuned categorisation of intermediate values within the early valuation 

system, or provide a rough estimate within System 1 which then flags intermediate 

items for further top-down processing by System 2. Supporting this interpretation, 

research has shown that both top-down and bottom-up processing occur when 

evaluating visual stimuli, with salient stimuli receiving bottom-up attention and task-

relevant stimuli receiving volitional top-down attention (Ligeza et al., 2017). 

Furthermore, the P200 has been associated with functional reallocation of executive 

attentional resources (Lai et al., 2019). 

In Study 3, a P300 was observed showing linear encoding of value, with low-

value products showing significantly lower amplitude compared to all other value 

conditions, with a cortical source in the posterior parietal cortex. A small but 

statistically significant positive correlation was also observed for cluster 3 and WTP 

in the latency period of 323 – 359 ms, suggesting linear influence of value category 

on cluster 3 amplitude. The linear encoding of value in the P300 could reflect encoding 

of value in System 2 (Kahneman, 2011), which is responsible for top-down decision- 

making, deductive reasoning and conscious attention whenever System 1 is unable to 
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adequately categorise a product. In the current data, it is possible that medium-value 

products were unable to be adequately categorised by System 1, which binarily 

encodes the more extreme low- and high-value products, therefore they are flagged by 

System 1, and System 2 is deployed to gather further evidence for categorization of 

more difficult intermediate-value items. The current interpretation is supported by 

research which suggests that P300 is a later revision or mismatch detection between 

incoming stimuli and initial processing conducted in components such as the P200. 

Therefore, if the stimulus is novel, additional attention is needed to update stimulus 

representations (Polich, 2007). Additionally, studies have linked the P300 to higher-

level processing and attention-related processes (Polich, 2007; Shaw et al., 2018). 

P300 has also shown reduction in amplitude with increasing task demands during 

walking (Ladouce et al., 2019), suggesting that it is tapping into finite higher-level 

attentional resources, in line with System 2. Finally, the cortical source in the PPC 

supports the current interpretation that P300 relates to System 2, as the PPC is 

associated with attention, information processing and command related functions 

(Jagla et al., 2007; Kurtzberg & Vaughan, 1982). 

The interpretation of the lambda, P200 and P300 components operating within 

Kahneman’s System 1 and System 2 can be considered from the perspective of the 

cusp catastrophe model (CCM) (Thom, 1974). The CCM is a mathematical model 

which explains discontinuous and divergent phenomena (Zeeman, 1976). The CCM 

can be used to interpret the initial binary processing of low- and high-value within the 

lambda and P200 components within System 1, and the recruitment of System 2 to 

characterise more difficult intermediate stimuli, including the later top-down linear 

encoding of SV within the P300 (Figure 28).  
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Figure 28. Schematic representation of the CCM, adapted from Zeeman (1976), 

integrating System 1 and System 2 to explain the rapid binary and slow linear encoding 

of product SV observed in the current data. The model shows automatic binary 

encoding of extreme low- and high-values within System 1. However, intermediate-

value items are unavailable in relation to automatic bimodal categories of System 1 

and must be categorised at the cusp point (C) by top-down, conscious and linear 

System 2. If the evidence gathered by System 2 makes the product less desirable, it 

will follow trajectory A (low-medium value), and if the evidence gathered by System 

2 makes the product more desirable, it will follow trajectory B (high-medium 

value).12 

In line with the CCM, the subjective valuation of products can be broken down 

into the initial bimodal categories of low-value (linked to avoidance behaviours) and 

high-value (linked to approach behaviours). These are both likely computed within the 

automatic and rapid System 1, which could correspond to the lambda and P200 

components of EMRPs in the current data. SVs of all products must exist somewhere 

along the axis of values ranging from low- to high-value. According to the CCM, 

because of the splitting factor (i.e. categorisation automaticity), linear middle values 
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are not accessible past the bifurcation point (C) (i.e. the border between linear and 

bimodal categorisation) as they do not fall into the bimodal set (A, B), causing the 

cusp catastrophe, to occur (Zeeman, 1976) (Figure 28). Further information is needed 

in order to categorise the intermediate items in relation to the bimodal categories, 

therefore, a trajectory must be chosen for intermediate items at point C (the cusp 

point). A graphical representation of this model can be seen in Figure 28. The further 

information required for categorisation of intermediate values at point C likely 

requires input from the top-down System 2, therefore intermediate-value items are 

initially categorized within the P200 and flagged for further top-down processing in 

the P300. If the evidence gathered makes the product less desirable, it will follow 

trajectory A and be categorized along the low-medium axis. If the information 

gathered makes the product more desirable, the intermediate-value item is categorized 

along trajectory B, and is categorized along the high-medium axis. In this way, small 

deviations in stimuli in intermediate categories in System 1 can produce relatively 

large changes in behaviour in System 2. Meanwhile, the relatively large qualitative 

difference between low- and high-value items in System 2 which are closely aligned 

to the bifurcation set can lead to small differences when evaluation is moved to System 

1. However, the extreme low and high SVs remain constant across System 1 and 2, 

providing stable anchors for categorisation of intermediate SV. Further top-down 

categorisation of intermediate items could correspond to P300 processing in the 

current data. Hence, the model could provide a potential explanation why certain 

studies demonstrate linear categorisation whereas others represent binary 

categorisation, or both are demonstrated together (Bartra et al., 2013). The CCM 

topology provides a potential explanation for why the current data showed early binary 

encoding of SV in lambda and P200 components, and why later components such as 
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the P300 followed a linear encoding of SV, as they include the ranked categorisation 

of intermediate values. 

7.3. Limitations  

Many factors can influence realistic purchasing behaviours in natural environments, 

and, although the data presented in the current thesis goes some way towards 

uncovering the neural dynamics underpinning real-world economic decisions for 

products, time limitations have meant that it was only possible to examine some of 

these factors. Research has shown that the shopping environment can influence 

purchase intentions and consumption behaviours by altering the consumers mood 

(Sherman et al., 1997). Mood was not explicitly measured in the current research, 

although we did measure more hedonic aspects of product valuation in terms of 

‘pleasantness’ and ‘desirability’, which closely corresponded to SV in each Study. 

Furthermore, to avoid explicitly questioning participants about their economic 

value ratings of products during the mobile EEG recording, participants later took part 

in an auction task in which they submitted their WTP value for each item, and these 

bid values retrospectively defined value conditions. It cannot be ruled out that 

participants did not consider other factors, such as visual appeal or current need, to 

form their economic value ratings for products in the product gallery and mock shop 

settings. These factors could theoretically influence attention or aversion of stimuli.  

A further limitation of the current work is the inability to automatically detect 

stimulus onset in the real-world. Not only does manual tabulation introduce an element 

of subjectivity regarding what eye-tracking frame corresponds to stimulus onset, it 

also introduces time constraints associated with manual tabulation of many stimulus 

onsets over many experimental blocks and participants. However, due to the 
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uncontrolled nature of naturalistic neuroimaging experiments, a degree of subjectivity 

is essential, as computers often cannot account for the variations caused by movement 

of the camera to reliably detect stimulus onset, and these factors must be considered 

to improve the quality of data in the future. 

Although the method of synchronization in Study 3 both improved the 

synchronisation of the data streams and made it less intrusive than the method utilised 

in Studies 1 and 2, the synchronization between EEG and eye-tracking data stream can 

be further improved to reduce asynchrony. There are online synchronisation platforms 

available with greater synchronisation accuracy, such as the LSL (Kothe, 2014). 

However, they are more unreliable as the software is dependent on network signal 

making it susceptible to data loss if the participant falls out of range, and the LSL is 

only compatible with some hardware. Hardware synchronisation solutions are much 

more reliable and measures should be taken to improve their accuracy. 

Contamination of eye-movements on brain potentials was addressed using ICA 

back projection in Study 1, and using guided saccade recordings and ASF in Studies 

2 and 3, the latter of which was extremely effective in removing saccadic artefacts. 

Despite the reduction in amplitude around eye electrodes, some remnants of eye-

movements may have remained in electrodes surrounding the eyes. In the current 

thesis, some effort was made to account for cortical potentials overlapping by not 

including stimulus onset triggers that were too close together. However, methods 

which extract the temporal overlap of neural events, such as Unfold Toolbox (Ehinger 

et al., 2018), could not be utilised in the current research as detailed information about 

gaze angle was not available. Additionally, Studies 1, 2 and 3 required fixation crosses 

to ensure that the gaze was aligned to confirm accurate stimulus onset, and a subtler 

method is required for a more naturalistic approach. 
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The effectiveness of the guided saccade and ASF method used in Studies 2 and 

3 should be validated in future research in a range of increasingly realistic settings 

and, if found to be robust, should be incorporated as a standard practice in combined 

MoBI and eye-tracking research. Future research would benefit from identifying 

affordable and easily implementable solutions for marking out movement artefacts in 

a similar way that would allow them to be removed using ASF. This would afford 

investigation of later neural components associated with decision outcomes, and for 

more unconstrained paradigms to be successful in identifying neural components. 

Another limitation of the current research is the spatial resolution of neural 

components. In Study 1, a source dipole analysis was conducted in BESA (version 

6.1) using a sequential strategy, and in Studies 2 and 3, ECDs were fitted to mean 

cluster centroids in EEGLAB, producing a single dipole to explain the distribution of 

neural potentials. The sequential dipole fitting strategy, as used in Study 1, could more 

accurately represent the neural generators compared to the strategy used in Studies 2 

and 3, as it does not produce a single mean cluster. Because the spatial resolution 

afforded by mobile EEG is limited, particularly due to movement due to locomotion, 

caution should be exercised when interpreting of cortical sources in Studies 1, 2 and 

3. 

Finally, in Studies 1, 2 and 3, participants were recruited primarily from the staff 

and student population at the University of Liverpool, which may not have produced 

a sample group that is representative of the entire population. Although it is possible 

that the sample used may have influenced economic decisions, socioeconomic 

background was checked in Study 3 and there was no statistically significant effects 

of socioeconomic status and value category on BDM auction bid. Moreover, there was 

quite a spread of socioeconomic status, with many participants in residing among the 
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most deprived areas in England, and 8 participants in residing in the most privileged 

areas, suggesting that the sample was quite representative in terms of SES in England. 

7.4. Directions for future research  

The data presented in Studies 1, 2 and 3, for the first time, afforded investigation and 

characterisation of the spatiotemporal dynamics underpinning economic decisions for 

products in the real-world opening up new research avenues. There are many factors 

which could influence economic decisions in natural environments that, due to time 

constraints, were unable to be explored in the current thesis and should be examined 

in future research. 

One avenue for exploration is the influence of product branding on SV 

processing in the brain. Research has shown that branding can have an important 

impact on consumer behaviour, explaining why companies carefully curate their 

brands so that visual features such as colour, shape, text and images are easily 

recognisable and capture early bottom up and top-down attention (Plassmann et al., 

2012). Brand anticipation and associations could be important factors modulating SV 

of a product, highlighting the importance of memory-related processes in valuation 

(McClure et al., 2004). Furthermore, social factors, such as the presence of other 

shoppers, can modulate electrophysiological responses to brand type (Pozharliev et 

al., 2015). Therefore, future research should examine the influence of branding, 

learning processes and social context on early SV encoding of products using mobile 

EEG in naturalistic environments. 

In a similar vein, familiarity and expertise with products and brands have been 

shown to influence economic decisions and should be considered as an avenue for 

further research (McClure et al., 2004; Morrin & Ratneshwar, 2000; Rossion et al., 
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2004; Schaefer et al., 2006). For instance, research has shown distinct cortical 

encoding for logos of culturally familiar brands (Schaefer et al., 2006) and ambient 

scents have been shown to increase recall for familiar brands but not for unfamiliar 

brands (Morrin & Ratneshwar, 2000). Brand familiarity might be particularly 

important with more expensive purchases (Schaefer et al., 2006), where knowledge 

could allow for avoiding financial risk, in line with PT, and thus, the impact of 

familiarity on SV could be of interest for future research. For instance, visual expertise 

with objects can also modulate early categorization processes (Rossion et al., 2004), 

and expert knowledge of products can alter consumer preferences regarding product 

attributes (Gustafson et al., 2016). Therefore, examination of the neural dynamics 

underlying product preferences for experts and non-experts could provide insight into 

the ways in which preferences are formed for different groups of consumers. The 

utilisation of MoBI in this area would allow for examination of expertise in the specific 

relevant context when the knowledge was originally encoded to investigate the impact 

of environmental congruence, expertise and SV (Park & Donaldson, 2019). 

Other areas for future research include the role of packaging within the 

shopping environment to examine the early visual saliency effect (Milosavljevic et al., 

2012). Packaging can have an important impact on consumer behaviour and SV 

(Milosavljevic et al., 2012) and is used as a marketing strategy to attract attention and 

to communicate key points about a products attributes. The perceived quality of a 

product is often determined by the quality of its packaging and its visual 

characteristics, and time constraints during purchasing can influence purchase 

behaviour through affecting bottom-up and top-down processing of products (Silayoi 

& Speece, 2004). Thus, future research could investigate to what extent product 

packaging affects encoding of SV and under what conditions. Such research could also 
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have implications for public health and the investigation of the impact of health 

messages on products considered to be harmful. 

Further factors which could influence EMRPs to products include the retail 

price of the product (Albari & Safitri, 2018), the motivation behind the purchase (Cui 

et al., 2021) and the emotional state of the consumer during the time of product 

evaluation. This can also be stimulated by the shopping context as companies often 

try to emotionally link products with particular experiences in a multisensory way to 

increase likelihood of purchase (Domenico, 2009; Helmefalk & Hultén, 2017). These 

factors could modulate SVs assigned to products in the real-world and merit 

investigation in future studies. 

Future research could also benefit from examining the neural dynamics 

underpinning SVs for products using other MoBI neuroimaging modalities, such as 

mobile fNIRS, which has been applied in the field of marketing to examine the first 

choice brand effect (Krampe et al., 2018). Biological measurements of arousal such as 

heart rate (Klaassen et al., 2021), skin conductance (Klaassen et al., 2021), 

electromyography (Kozlik et al., 2015) and pupillometry (Mckinnon et al., 2020) 

could be used to examine autonomic arousal for salient stimuli and task related 

engagement during approach and avoidance of products in naturalistic environments.  

The current work could also have clinical implications related to the 

measurement of approach and avoidance behaviours under naturalistic conditions 

where avoidance (e.g. anxiety, depression) and approach (e.g. substance use, 

gambling) tendencies, overvaluation of cues (Robinson & Berridge, 1993; Yiend, 

2010) and value-based decision-making biases have a negative impact on mental and 

physical health (e.g. Boffo et al., 2018; Livermore et al., 2021; Martínez-Vispo et al., 
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2018). The utilisation of MoBI could allow for gaining better insight into valuation 

mechanisms associated with mental health problems in naturalistic settings, affording 

a better understanding of clinical populations and enabling more realistic, and hence 

more effective, validation of the efficacy of clinical or health interventions. 

Finally, the current research would benefit from replications in other cultures. 

The current research was conducted in a Western society and therefore purchases can 

be influenced by culture specific phenomena and motivations. Therefore, replication 

in different cultures is essential to determine whether such neural dynamics 

underpinning economic decisions for products is culture specific or transcends cultural 

boundaries. 

7.5. Concluding remarks 

In contrast to traditional economic accounts, which posit that economic valuation is 

based on utilitarian functionality and the principle of utility maximisation, the current 

data suggest that early SV of products in realistic environments relies on low-level 

categorisation of SV, which is perhaps later validated by top-down processes. The data 

suggest that SV of products is encoded by multiple distinct neural clusters in 

naturalistic settings, and follows a non-linear function for low- and high-value items, 

which appear to be encoded binarily, rapidly and automatically, and could be encoded 

within Kahneman’s (2011) System 1. Conversely, medium-value products could 

follow a linear function in order to fine-tune the resolution of SV, with initial estimates 

within early EMRP components followed by top-down linear encoding of intermediate 

items within the P300, which could reflect Kahneman’s System 2. The rapid encoding 

of low-value items, as well as high-value items, could reflect facilitated processing by 

the brain to promote fast avoidance-approach behaviours. Low-value products 
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received quick encoding compared to all other value conditions, reflected in the 

reduced latency and enhanced amplitude of many components throughout the Studies, 

and may have been used as an anchoring point of comparison for linear encoding in 

P300 in Study 3, supporting the negativity bias.  Study 3 data suggest that 2-D images 

should not be assumed to produce identical responses to 3-D images, as 3-D products 

could require additional visual information processing and imminent availability could 

alter motivation, consumption behaviour and associated neural responses. Finally, the 

successful reduction of saccade-related artefactual activity using a combination of 

guided-saccade recordings and ASF could open up new possibilities for recording 

neural responses in naturalistic settings using combined eye-tracking and EEG. The 

current research enhances understanding of the spatiotemporal neural dynamics 

underpinning economic decisions for products in the real-world. 

  



 

234  

8. REFERENCES 

  



 

235  

Abitbol, R., Lebreton, M., Hollard, G., Richmond, B. J., Bouret, S., & Pessiglione, 

M. (2015). Neural mechanisms underlying contextual dependency of subjective 

values: converging evidence from monkeys and humans. Journal of 

Neuroscience, 35(5), 2308–2320. https://doi.org/10.1523/JNEUROSCI.1878-

14.2015 

Akar, E., Yüksel, H. F., & Bulut, Z. A. (2015). The Impact of Social Influence on the 

Decision-Making Process of Sports Consumers on Facebook. Journal of 

Internet Applications and Management, 6(2), 5–27. 

https://doi.org/10.5505/iuyd.2015.40412 

Albari, & Safitri, I. (2018). The influence of product price on consumers’ purchasing 

decisions. Review of Integrative Business and Economics Research, 7(2), 328–

337. 

Almeida, F. (2016). Society and brain: A complementary approach to Thorstein 

Veblen’s conspicuous consumer based on Tibor Scitovsky’s neuropsychology. 

Nova Economia, 26(2), 347–367. https://doi.org/10.1590/0103-6351/2994 

Alschuler, D., Tenke, C., Bruder, G. & Kayser, J. (2014). Identifying electrode 

bridging from electrical distance distribiutions: a survey of publicly-available 

EEG data using a new method. Clinical Neurophysiology, 125(3), 484–490. 

https://doi.org/10.1016/j.clinph.2013.08.024.Identifying 

Anderson, B. (2013). A value-driven mechanism of attentional selection. Journal of 

Vision, 13(3), 1–16. https://doi.org/10.1167/13.3.7 

Anderson, B., Laurent, P., & Yantis, S. (2011). Value-driven attentional capture. 

Proceedings of the National Academy of Sciences, 108(25), 10367–10371. 

https://doi.org/10.1073/pnas.1104047108 

Anderson, M., & College, M. (2016). The Brain Evolved to Guide Action. In The 

Wiley Handbook of Evolutionary Neuroscience (pp. 1–22). Germany: Wiley. 

Anderson, S. J., & Jamniczky, H. A. Krigolson, O.E., Coderre, S.P. & Hecker, K.G. 

(2019). Quantifying two-dimensional and three-dimensional stereoscopic 

learning in anatomy using electroencephalography. Npj Science of Learning, 

4(10). https://doi.org/10.1038/s41539-019-0050-4 

Andrade, C. (2018). Internal, external, and ecological validity in research design, 

conduct, and evaluation. In Indian Journal of Psychological Medicine, 40(5), 



 

236  

498–499. https://doi.org/10.4103/IJPSYM.IJPSYM_334_18 

Appelhans, B.M., Tangney, C.C., French, S.A., Crane, M.M., and Wang, Y. (2019). 

Delay discounting and household food purchasing decisions: the SHoPPER 

study. Health Psychology, 38(4), 334–324. https://doi.org/10.1037/hea0000727.  

Armel, K. C., Beaumel, A., & Rangel, A. (2008). Biasing simple choices by 

manipulating relative visual attention. Judgment and Decision Making, 3(5), 

396–403. 

Artoni, F., Barsotti, A., Guanziroli, E., Micera, S., Landi, A., & Molteni, F. (2018). 

Effective synchronization of EEG and EMG for mobile brain/body imaging in 

clinical settings. Frontiers in Human Neuroscience, 11, 1–9. 

https://doi.org/10.3389/fnhum.2017.00652 

Artoni, F., Fanciullacci, C., Bertolucci, F., Panarese, A., Makeig, S., Micera, S., & 

Chisari, C. (2017). Unidirectional brain to muscle connectivity reveals motor 

cortex control of leg muscles during stereotyped walking. NeuroImage, 159, 

403–416. https://doi.org/10.1016/j.neuroimage.2017.07.013 

Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia 

contributions to habit learning and automaticity. Trends in Cognitive Sciences, 

14(5), 208–215. https://doi.org/10.1016/j.tics.2010.02.001.Cortical 

Ashley, V., Vuilleumier, C. A. P., & Swick, D. (2004). Time course and specificity 

of event-related potentials to emotional expressions. NeuroReport, 15(1), 211–

216. https://doi.org/10.1097/01.wnr.0000091411.19795.f5 

Ausubel, L. M., & Milgrom, P. (2013). The Lovely but Lonely Vickrey Auction. In 

Combinatorial Auctions (Issue January 2006). 

https://doi.org/10.7551/mitpress/9780262033428.003.0002 

Baccino, T. (2012). Eye movements and concurrent event-related potentials: Eye 

fixation-related potential investigations in reading. The Oxford Handbook of 

Eye Movements, https://doi.org/10.1093/oxfordhb/9780199539789.013.0047 

Bagozzi, R. P., Belanche, D., Casaló, L. V., & Flavian, C. (2016). The Role of 

Anticipated Emotions in Decision Making. Paper Presented at a Conference on 

the Role of Anticipation and Regret in Decision Making, La Jolla, CA. 

https://doi.org/10.1002/mar.20905.This 

Balconi, M., & Crivelli, D. (2010). FRN and P300 ERP effect modulation in 



 

237  

response to feedback sensitivity: The contribution of punishment-reward system 

(BIS/BAS) and Behaviour Identification of action. Neuroscience Research, 

66(2), 162–172. https://doi.org/10.1016/j.neures.2009.10.011 

Balconi, M., Falbo, L., & Conte, V. A. (2012). BIS and BAS correlates with 

psychophysiological and cortical response systems during aversive and 

appetitive emotional stimuli processing. Motivation and Emotion, 36(2), 218–

231. https://doi.org/10.1007/s11031-011-9244-7 

Banaei, M., Hatami, J., Yazdanfar, A., & Gramann, K. (2017). Walking through 

Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. 

Frontiers in Human Neuroscience, 11, 1–14. 

https://doi.org/10.3389/fnhum.2017.00477 

Barbot, A., & Carrasco, M. (2018). Emotion and anxiety potentiate the way attention 

alters visual appearance. Scientific Reports, 8(1), 1–10. 

https://doi.org/10.1038/s41598-018-23686-8 

Barnett, M. W., & Larkman, P. M. (2007). The action potential. Practical 

Neurology, 7(3), 192 – 197. http://pn.bmj.com/content/7/3/192. 

Barnstaple, R., Protzak, J., DeSouza, J. F. X., & Gramann, K. (2020). Mobile 

brain/body Imaging in dance: A dynamic transdisciplinary field for applied 

research. European Journal of Neuroscience. https://doi.org/10.1111/ejn.14866 

Barr, R. (2010). Transfer of learning between 2D and 3D sources during infancy: 

Informing theory and practice. Developmental Review, 30(1), 128–154. 

https://doi.org/10.1016/j.dr.2010.03.001.Transfer 

Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A 

coordinate-based meta-analysis of BOLD fMRI experiments examining neural 

correlates of subjective value. NeuroImage, 76, 412–427. 

https://doi.org/10.1016/j.neuroimage.2013.02.063 

Basten, U., Biele, G., Heekeren, H. R., & Fiebach, C. J. (2010). How the brain 

integrates costs and benefits during decision making. Proceedings of the 

National Academy of Sciences of the United States of America, 107(50), 21767–

21772. https://doi.org/10.1073/pnas.0908104107 

Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad Is 

Stronger Than Good. Review of General Psychology, 5(4), 323–370. 



 

238  

https://doi.org/10.1037/1089-2680.5.4.323 

Bechara, A., & Damasio, A. R. (2005). The somatic marker hypothesis: A neural 

theory of economic decision. Games and Economic Behavior, 52(2), 336–372. 

https://doi.org/10.1016/j.geb.2004.06.010 

Becker, G. M., Degroot, M. H., & Marschak, J. (1964). Measuring utility by a 

single-response sequential method. Behavioral Science, 9(3), 226–232. 

https://doi.org/10.1002/bs.3830090304 

Bell, A.J., Sejnowski, T.J. (1995). An information-maximization approach to blind 

separation and blind deconvolution. Neural Computation, 7(6), 1004–1034. 

https://doi.org/doi:10.1162/neco.1995.7.6.1129 

Belouchrani, A., Abed-meraim, K., Cardoso, J-F. & Moulines, E. (1997). A Blind 

Source Separation Technique Using Second-Order Statistics. IEEE 

TRANSACTIONS ON SIGNAL PROCESSING, 45(2), 434–444. 

Beresford, B., & Sloper, P. (2008). Understanding the dynamics of decision-making 

and choice: A scoping study of key psychological theories to inform the design 

and analysis of the panel study (Issue January). 

http://www.york.ac.uk/inst/spru/pubs/pdf/decisionmaking.pdf 

Berg, P., & Scherg, M. (1991). Dipole modelling of eye activity and its application 

to the removal of eye artefacts from the eeg and meg. Clinical Physics and 

Physiological Measurement, 12, 49–54. https://doi.org/10.1088/0143-

0815/12/A/010 

Berg, P., & Scherg, M. (1994). A multiple source approach to the correction of eye 

artifacts. Electroencephalography and Clinical Neurophysiology, 90(3), 229–

241. https://doi.org/10.1016/0013-4694(94)90094-9 

Berger, J., & Fitzsimons, G. (2008). Dogs on the street, pumas on your feet: How 

cues in the environment influence product evaluation and choice. Journal of 

Marketing Research, 45(1), 1–14. https://doi.org/10.1509/jmkr.45.1.1 

Bernays, E. L. (1928). Propaganda. Liveright: New York. 

Berry, J., Fischer, G., & Guiteras, R. (2012). Eliciting and Utilizing Willingness to 

Pay: Evidence from Field Trials in Northern Ghana. IGC Working Paper 

12/0188, December. http://personal.lse.ac.uk/fischerg/Assets/BFG-BDM-April-

2012.pdf%5Cnhttp://www.economics.cornell.edu/jwb295/BFG-BDM-April-



 

239  

2012.pdf 

Biederman, I., & Gerhardstein, P. C. (1993). Recognizing Depth-Rotated Objects: 

Evidence and Conditions for Three-Dimensional Viewpoint Invariance. Journal 

of Experimental Psychology: Human Perception and Performance, 19(6), 

1162–1182. https://doi.org/10.1037/0096-1523.19.6.1162 

Bishop, J. D. (1995). Adam Smiths Invisible Hand Argument. Journal of Business 

Ethics, 14, 165–180. 

Blair, K., Marsh, A. A., Morton, J., Vythilingam, M., Jones, M., Mondillo, K., Pine, 

D. C., Drevets, W. C., & Blair, J. R. (2006). Choosing the lesser of two evils, 

the better of two goods: Specifying the roles of ventromedial prefrontal cortex 

and dorsal anterior cingulate in object choice. The Journal of Neuroscience, 

26(44), 11379–11386. https://doi.org/10.1523/JNEUROSCI.1640-06.2006 

Blechert, J., Klackl, J., Miedl, S. F., & Wilhelm, F. H. (2016). To eat or not to eat: 

Effects of food availability on reward system activity during food picture 

viewing. Appetite, 99, 254–261. https://doi.org/10.1016/j.appet.2016.01.006 

Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R., 

& Linden, D. E. J. (2004). Localizing P300 generators in visual target and 

distractor processing: A combined event-related potential and functional 

magnetic resonance imaging study. Journal of Neuroscience, 24(42), 9353–

9360. https://doi.org/10.1523/JNEUROSCI.1897-04.2004 

Bobadilla-Suarez, S., Guest, O., & Love, B. C. (2020). Subjective value and decision 

entropy are jointly encoded by aligned gradients across the human brain. 

Communications Biology, 3(1), 1–9. https://doi.org/10.1038/s42003-020-01315-

3 

Boffo, M., Smits, R., Salmon, J. P., Cowie, M. E., de Jong, D. T. H. A., Salemink, 

E., Collins, P., Stewart, S. H., & Wiers, R. W. (2018). Luck, come here! 

Automatic approach tendencies toward gambling cues in moderate- to high-risk 

gamblers. Addiction, 113(2), 289–298. https://doi.org/10.1111/add.14071 

Bondarenko, P. (2020). Microeconomics. In Encyclopedia Britannica. 

Borck, C. (2018). Brainwaves: A Cultural History of Electroencephalography. 

Routledge. 

Bossaerts, P., & Murawski, C. (2015). From behavioural economics to 



 

240  

neuroeconomics to decision neuroscience: The ascent of biology in research on 

human decision making. Current Opinion in Behavioral Sciences, 5, 37–42. 

https://doi.org/10.1016/j.cobeha.2015.07.001 

Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., Muñoz, L. D., 

Mullinger, K. J., Tierney, T. M., Bestmann, S., Barnes, G. R., Bowtell, R., & 

Brookes, M. J. (2018). Moving magnetoencephalography towards real-world 

applications with a wearable system. Nature, 555(7698), 657–661. 

https://doi.org/10.1038/nature26147 

Botvinick, M. M., Carter, C. S., Braver, T. S., Barch, D. M., & Cohen, J. D. (2001). 

Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–

652. https://doi.org/10.1037/0033-295X.108.3.624 

Bourisly, A. K., & Shuaib, A. (2018). Sex differences in electrophysiology: P200 

event-related potential evidence. Translational Neuroscience, 9(1), 72–77. 

https://doi.org/10.1515/tnsci-2018-0013 

Bouzakraoui, M. S., Sadiq, A., & Enneya, N. (2017). Towards a framework for 

customer emotion detection. Proceedings of IEEE/ACS International 

Conference on Computer Systems and Applications, AICCSA. 

https://doi.org/10.1109/AICCSA.2016.7945830 

Brainerd, C. J., & Reyna, V. F. (1990). Gist is the grist: Fuzzy trace theory and the 

new intuitionism. Developmental Review, 10(1), 3–47. 

https://doi.org/10.1016/0273-2297(90)90003-M 

Brofenbrenner, U. (1977). Toward an Experimental Ecology of Human 

Development. American Psychologist, 32(7), 513–531. 

https://doi.org/10.1037/0003-066X.32.7.513 

Brosch, T., & Sander, D. (2013). Neurocognitive mechanisms underlying value-

based decision-making: from core values to economic value. Frontiers in 

Human Neuroscience, 7, 398. https://doi.org/10.3389/fnhum.2013.00398 

Bruner, G. C., & Pomazal, R. J. (1988). Problem recognition: The crucial first stage 

of the consumer decision process. Journal of Services Marketing, 2(3), 43–53. 

https://doi.org/10.1108/eb024733 

Bulthé, J., De Smedt, B., & Op de Beeck, H. P. (2014). Format-dependent 

representations of symbolic and non-symbolic numbers in the human cortex as 



 

241  

revealed by multi-voxel pattern analyses. NeuroImage, 87, 311–322. 

https://doi.org/10.1016/j.neuroimage.2013.10.049 

Bülthoff, H. H., Edelman, S. Y., & Tarr, M. J. (1995). How are three-dimensional 

objects represented in the brain? Cerebral Cortex, 5(3), 247–260. 

https://doi.org/10.1093/cercor/5.3.247 

Buonocore, A., Dimigen, O., & Melcher, D. (2020). Post-saccadic face processing is 

modulated by pre-saccadic preview: Evidence from fixation-related potentials. 

Journal of Neuroscience, 40(11), 2305–2313. 

https://doi.org/10.1523/JNEUROSCI.0861-19.2020 

Burt, A., Hugrass, L., Frith-Belvedere, T., & Crewther, D. (2017). Insensitivity to 

fearful emotion for early ERP components in high autistic tendency is 

associated with lower magnocellular efficiency. Frontiers in Human 

Neuroscience, 11, 1–12. https://doi.org/10.3389/fnhum.2017.00495 

Cacioppo, J. T., & Berntson, G. G. (1994). Relationship between attitudes and 

evaluative space : A critical review , with emphasis on the separability of 

positive ... Relationship Between Attitudes and Evaluative Space : A Critical 

Review , With Emphasis on the Separability of Positive and Negative 

substrates. Psychological Bulletin, 115(3), 401–423. 

Callan, D. E., Durantin, G., & Terzibas, C. (2015). Classification of single-trial 

auditory events using dry-wireless EEG during real and motion simulated flight. 

Frontiers in Systems Neuroscience, 9, 11. 

https://doi.org/10.3389/fnsys.2015.00011 

Camerer, C. F., Loewenstein, G., & Prelec, D. (2004). Neuroeconomics: Why 

economics needs brains. Scandinavian Journal of Economics, 106(3), 555–579. 

https://doi.org/10.1111/j.0347-0520.2004.00377 

Cano, M. E., Class, Q. A., & Polich, J. (2009). Affective Valence, Stimulus 

Attributes, and P300: Color vs. Black/ White and Normal vs. Scrambled 

Images. International Journal of Psychophysiology, 71(1), 17–24. 

https://doi.org/10.1016/j.ijpsycho.2008.07.016 

Canosa, R. L. (2009). Real-world vision: Selective perception and task. ACM 

Transactions on Applied Perception, 6(2). 

https://doi.org/10.1145/1498700.1498705 



 

242  

Cao, L., Chen, X., & Haendel, B. F. (2020). Overground Walking Decreases Alpha 

Activity and Entrains Eye Movements in Humans. Frontiers in Human 

Neuroscience, 14, 1–16. https://doi.org/10.3389/fnhum.2020.561755 

Cao, X., Jiang, B., Gaspar, C., & Li, C. (2014). The overlap of neural selectivity 

between faces and words: Evidences from the N170 adaptation effect. 

Experimental Brain Research, 232(9), 3015–3021. 

https://doi.org/10.1007/s00221-014-3986-x 

Cappelletti, M., Lee, H. L., Freeman, E. D., & Price, C. J. (2010). The role of the 

right and left parietal lobes in the conceptual processing of numbers. Journal of 

Cognitive Neuroscience, 22(2), 331–346. 

https://doi.org/10.1162/jocn.2009.21246.THE 

Carare, O., & Rothkopf, M. (2005). Slow Dutch auctions. Management Science, 

51(3), 365–373. https://doi.org/10.1287/mnsc.1040.0328 

Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and 

motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. 

Neuroscience and Biobehavioral Reviews, 26(3), 321–352. 

https://doi.org/10.1016/S0149-7634(02)00007-6 

Cardoso, J. F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian 

signals. IEE Proceedings, Part F: Radar and Signal Processing, 140(6), 362–

370. https://doi.org/10.1049/ip-f-2.1993.0054 

Carl, C., Açik, A., König, P., Engel, A. K., & Hipp, J. F. (2012). The saccadic spike 

artifact in MEG. NeuroImage, 59(2), 1657–1667. 

https://doi.org/10.1016/j.neuroimage.2011.09.020 

Carretié, L., Martin-Loeches, M., Hinojosa, J., & Mercado, F. (2001a). Emotion and 

Attenton Iteraction Studied through Event-Related Potentials. Journal of 

Cognitive Neuroscience, 13(8), 1109–1128. https://doi.org/10.1016/S0167-

8760(00)00195-1 

Carretié, L., Mercado, F., Tapia, M., & Hinojosa, J. A. (2001b). Emotion, attention, 

and the “negativity bias”, studied through event-related potentials. International 

Journal of Psychophysiology, 41(1), 75–85. https://doi.org/10.1016/S0167-

8760(00)00195-1 

Casarotto, S., Bianchi, A. M., Cerutti, S., & Chiarenza, G. A. (2004). Principal 



 

243  

component analysis for reduction of ocular artefacts in event-related potentials 

of normal and dyslexic children. Clinical Neurophysiology, 115, 609–619. 

https://doi.org/10.1016/j.clinph.2003.10.018 

De cesarei, A., Peverato, I. A., Mastria, S. & Codispoti, M. (2015). Modulation of 

early ERPs by accurate categorization of objects in scenes. Journal of Vision, 

15(8), 1–14. https://doi.org/10.1167/15.8.14.doi 

Chang, Y. K. (2016). Acute Exercise and Event-Related Potential: Current Status 

and Future Prospects. In Exercise-Cognition Interaction: Neuroscience 

Perspectives. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800778-5.00005-

0 

Chawla, M., & Miyapuram, K. P. (2018). Context-Sensitive Computational 

Mechanisms of Decision Making. Journal of Experimental Neuroscience, 12. 

https://doi.org/10.1177/1179069518809057 

Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach 

visual selective attention. Vision Research, 85, 58–72. 

https://doi.org/10.1016/j.visres.2012.12.005 

Chib, V. S., Rangel, A., Shimojo, S., & O’Doherty, J. P. (2009). Evidence for a 

common representation of decision values for dissimilar goods in human 

ventromedial prefrontal cortex. The Journal of Neuroscience, 29(39), 12315–

12320. https://doi.org/10.1523/JNEUROSCI.2575-09.2009 

Childs, M., & Jin, B. E. (2020). Retailer-brand collaborations: testing key strategies 

to increase consumers’ urgency to buy. International Journal of Retail and 

Distribution Management, 48(4), 380–394. https://doi.org/10.1108/IJRDM-06-

2019-0199 

Chow, Y. L., & Ooi, J. T. L. (2014). First-price sealed-bid tender versus English 

open auction: Evidence from land auctions. Real Estate Economics, 42(2), 253–

278. https://doi.org/10.1111/1540-6229.12035 

Cialdini, R. B. (2016). Pre-Suasion. Penguin Random House. 

https://books.google.co.uk/books?id=-GcNDQAAQBAJ 

Clark, J., Hollona, N., & Phillips, P. (2012). Pavlovian valuation systems in learning 

and decision making. Current Opinion in Neurobiology, 22(6), 1054–1061. 

https://doi.org/10.1016/j.conb.2012.06.004.Pavlovian 



 

244  

Clark, V. P., & Hillyard, S. A. (1996). Spatial Selective Attention Affects Early 

Extrastriate But Not Striate Components of the Visual Evoked Potential. 

Journal of Cognitive Neuroscience, 8(5), 387–402. 

https://doi.org/10.1162/jocn.1996.8.5.387 

Clithero, J.A., & Rangel, A. (2014). Informatic parcellation of the network involved 

in the computation of subjective value. Social Cognitive and Affective 

Neuroscience, 9(9), 1289–1302. https://doi.org/10.1093/scan/nst106 

Cluley, R. (2008). Psychoanalysis as marketing theory. Marketing Theory Virtual 

Special Issue, 5–26. 

Cognolato, M., Atzori, M., & Müller, H. (2018). Head-mounted eye gaze tracking 

devices: An overview of modern devices and recent advances. Journal of 

Rehabilitation and Assistive Technologies Engineering, 5, 205566831877399. 

https://doi.org/10.1177/2055668318773991 

Conroy, M. A., & Polich, J. (2007). Affective valence and P300 when stimulus 

arousal level is controlled. Cognition and Emotion, 21(4), 891–901. 

https://doi.org/10.1080/02699930600926752 

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven 

attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. 

https://doi.org/10.1038/nrn755 

Corbin, J., Reyna, V., Weldon, R., & Brainerd, C. (2015). How reasoning, judgment, 

and decision making are colored by gist-based inutition: A fuzz-trace theory 

appraoch. Journal of Applied Research in Memory and Cognition, 4(4), 344–

355. https://doi.org/10.1146/annurev-immunol-032713-120240.Microglia 

Cordell, V. (1997). Consumer Knowledge Measures as Predictors in Product 

Evaluation. Psychology & Marketing, 14(3), 241–260. 

Correll, J., Urland, G. R., & Ito, T. A. (2006). Event-related potentials and the 

decision to shoot: The role of threat perception and cognitive control. Journal of 

Experimental Social Psychology, 42(1), 120–128. 

https://doi.org/10.1016/j.jesp.2005.02.006 

Cortese, A., Yamamoto, A., Hashemzadeh, M., Sepulveda, P., Kawato, M., & de 

Martino, B. (2020). Value shapes abstraction during learning. BioRxiv, 1–36. 

https://doi.org/10.1101/2020.10.29.361469 



 

245  

Critchley, H. D., & Rolls, E. T. (1996). Hunger and satiety modify the responses of 

olfactory and visual neurons in the primate orbitofrontal cortex. Journal of 

Neurophysiology, 75(4), 1673–1686. https://doi.org/Cited By (since 1996) 

183\rExport Date 13 January 2012 

Cruz-Garza. J., Chatufale, G., Robleto, D., Jose, L. &, & Vidal, C. (2020). Your 

Brain on Art: A New Paradigm to Study Artistic Creativity Based on the 

‘Exquisite Corpse’ Using Mobile Brain-Body Imaging. In “Brain art: Brain-

computer interfaces for artistic expression” (Vol. 7, Issues 1–2, pp. 36–37). 

https://doi.org/10.1080/2326263X.2020.1756573 

Cui, L., Wang, Y., Chen, W., Wen, W., & Han, M. S. (2021). Predicting 

determinants of consumers’ purchase motivation for electric vehicles: An 

application of Maslow’s hierarchy of needs model. Energy Policy, 151, 112167. 

https://doi.org/10.1016/j.enpol.2021.112167 

D’Astous, A. (2000). Irritating aspects of the shopping environment. Journal of 

Business Research, 49(2), 149–156. https://doi.org/10.1016/S0148-

2963(99)00002-8 

Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between 

prefrontal and dorsolateral striatal systems for behavioral control. Nature 

Neuroscience, 8(12), 1704–1711. https://doi.org/10.1038/nn1560 

De Martino, B., Camerer, C. F., & Adolphs, R. (2010). Amygdala damage eliminates 

monetary loss aversion. Proceedings of the National Academy of Sciences, 

107(8), 3788–3792. https://doi.org/10.1073/pnas.0910230107 

De Martino, B., Kumaran, D., Holt, B., & Dolan, R. J. (2009). The Neurobiology of 

Reference-Dependent Value Computation. Journal of Neuroscience, 29(12), 

3833–3842. https://doi.org/10.1523/JNEUROSCI.4832-08.2009 

De Martino, Benedetto, Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, 

biases and rational decision-making in the human brain. Science, 313(5787), 

684–687. https://doi.org/10.1126/science.1128356 

De Sanctis, P., Butler, J. S., Green, J. M., Snyder, A. C., & Foxe, J. J. (2012). Mobile 

brain/body imaging (MoBI): High-density electrical mapping of inhibitory 

processes during walking. Proceedings of the Annual International Conference 

of the IEEE Engineering in Medicine and Biology Society, EMBS, 1542–1545. 



 

246  

https://doi.org/10.1109/EMBC.2012.6346236 

De Sanctis, P., Butler, J. S., Malcolm, B. R., & Foxe, J. J. (2014). Recalibration of 

inhibitory control systems during walking-related dual-task interference: A 

Mobile Brain-Body Imaging (MOBI) Study. NeuroImage, 94, 55–64. 

https://doi.org/10.1016/j.neuroimage.2014.03.016 

De Vos, M., Gandras, K., & Debener, S. (2014). Towards a truly mobile auditory 

brain-computer interface: Exploring the P300 to take away. International 

Journal of Psychophysiology, 91(1), 46–53. 

https://doi.org/10.1016/j.ijpsycho.2013.08.010 

De Vos, M., Kroesen, M., Emkes, R., & Debener, S. (2014a). P300 speller BCI with 

a mobile EEG system: comparison to a traditional amplifier. Journal of Neural 

Engineering, 11, 036008. https://doi.org/10.1088/1741-2560/11/3/036008 

Debener, S., Minow, F., Emkes, R., Gandras, K., & de Vos, M. (2012). How about 

taking a low-cost, small, and wireless EEG for a walk? Psychophysiology, 49, 

1617–1621. https://doi.org/10.1111/j.1469-8986.2012.01471 

Debener, S., Thorne, J., Schneider, T. R. & Campos Viola, F. (2010). Using ICA for 

the Analysis of Multi- Channel EEG Data. Oxford Scholarship Online, 6(38), 

45–66. https://doi.org/DOI: 10.1093/acprof:oso/9780195372731.001.0001 

Degno, F., & Liversedge, S. P. (2020). Eye movements and fixation-related 

potentials in reading: A review. Vision, 4(1). 

https://doi.org/10.3390/vision4010011 

Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). 

Tracking the hemodynamic responses to reward and punishment in the striatum. 

Journal of Neurophysiology, 84(6), 3072–3077. 

https://doi.org/10.1152/jn.2000.84.6.3072 

Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of 

the New York Academy of Sciences, 1104, 70–88. 

https://doi.org/10.1196/annals.1390.002 

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis 

of single-trial EEG dynamics including independent component analysis. 

Journal of Neuroscience Methods, 134(1), 9–21. 

https://doi.org/10.1016/j.jneumeth.2003.10.009 



 

247  

Delorme, A., Mullen, T., Kothe, C., Akalin Acar, Z., Bigdely-Shamlo, N., Vankov, 

A., & Makeig, S. (2011). EEGLAB, SIFT, NFT, BCILAB, and ERICA: New 

tools for advanced EEG processing. Computational Intelligence and 

Neuroscience, 2011. https://doi.org/10.1155/2011/130714 

Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in 

EEG data using higher-order statistics and independent component analysis. 

NeuroImage, 34(4), 1443–1449. 

https://doi.org/10.1016/j.neuroimage.2006.11.004 

Deneve, S. (2009). Bayesian decision making in two-alternative forced choices. In 

Handbook of Reward and Decision Making. Elsevier Inc. 

https://doi.org/10.1016/B978-0-12-374620-7.00021-2 

Dennis, T. A., & Chen, C. C. (2007). Neurophysiological mechanisms in the 

emotional modulation of attention: The interplay between threat sensitivity and 

attentional control. Biological Psychology, 76(1–2), 1–10. 

https://doi.org/10.1016/j.biopsycho.2007.05.001 

Deppe, M., Schwindt, W., Kugel, H., Plassmann, H., & Kenning, P. (2005). 

Nonlinear responses within the medial prefrontal cortex reveal when specific 

implicit information influences economic decision making. Journal of 

Neuroimaging, 15(2), 171–182. https://doi.org/10.1177/1051228405275074 

Desrochers, J., & Outreville, J. F. (2013). Uncertainty, Ambiguity and Risk Taking: 

An Experimental Investigation of Consumer Behavior and Demand for 

Insurance. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2363870 

Devillez, H., Guyader, N., & Guérin-Dugué, A. (2015). An eye fixation-related 

potentials analysis of the P300 potential for fixations onto a target object when 

exploring natural scenes. Journal of Vision, 15(13), 1–31. 

https://doi.org/10.1167/15.13.20 

Dewey, J. (1910). How We Think. D.C. Heath and Company. 

Dhar, R., & Simonson, I. (2003). The Effect of Forced Choice on Choice. Journal of 

Marketing Research, 40(2), 146–160. https://doi.org/10.3758/BF03209923 

Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2008). High-resolution multi-voxel 

pattern analysis of category selectivity in the medial temporal lobes. 

Hippocampus, 18(6), 536–541. https://doi.org/10.1002/hipo.20433 



 

248  

Dias, J. C., Sajda, P., Dmochowski, J. P., & Parra, L. C. (2013). EEG precursors of 

detected and missed targets during freeviewing search. Journal of Vision, 

13(13), 1–19. https://doi.org/10.1167/13.13.13 

Dickinson, A., & Balleine, B. (2002). The role of learning in the operation of 

motivational systems. In H. Pashler & R. Gallistel (Eds.), Steven’s Handbook of 

Experimental Psychology: Learning Motivation and Emotion (Vol. 72, Issue 4, 

pp. 497–533). Hoboken, NJ: John Wiley & Sons Inc. 

https://doi.org/10.7326/0003-4819-72-4-616_7 

Dien, J., Frishkoff, G. (2005). Principal components analysis of event-related 

potential datasets. In Event-related potentials: A methods handbook (pp. 189–

208). 

Dien, J. (1998). Addressing misallocation of variance in principal components 

analysis of event-related potentials. Brain Topography, 11(1), 43–55. 

https://doi.org/10.1023/A:1022218503558 

Dien, J. (2012). Applying principal components analysis to event-related potentials: 

A tutorial. Developmental Neuropsychology, 37(6), 497–517. 

https://doi.org/10.1080/87565641.2012.697503 

Dimigen, O. (2014). Co-registration of eye movements and EEG during active 

vision. Thesis Dissertation. 

Dimigen, O. (2020). Optimizing the ICA-based removal of ocular EEG artifacts 

from free viewing experiments. NeuroImage, 207, 116117. 

https://doi.org/10.1016/j.neuroimage.2019.116117 

Dimigen, O., & Ehinger, B. V. (2019). Analyzing combined eye-tracking/EEG 

experiments with (non)linear deconvolution models. BioRxiv, 0–49. 

https://doi.org/10.1101/735530 

Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M., & Kliegl, R. (2011). 

Coregistration of eye movements and EEG in natural reading: Analyses and 

review. Journal of Experimental Psychology: General, 140(4), 552–572. 

https://doi.org/10.1037/a0023885 

Ding, C., & He, X. (2004). K-means clustering via principal component analysis. 

Proceedings, Twenty-First International Conference on Machine Learning, 

ICML 2004, 225–232. 



 

249  

Dollard, J., & Miller, N. E. (1950). Personality and Psychotherapy; an Analsyis in 

Terms of Learning, Thinking, and Culture, by John Dollard and Neal E. Miller. 

McGraw-Hill. https://books.google.co.uk/books?id=-jZtcgAACAAJ 

Domenico, C. (2009). "Emotions That Influence Purchase Decisions And Their 

Electronic Processing ". Annales Universitatis Apulensis Series Oeconomica, 

2(11), 996–1008. https://doi.org/10.29302/oeconomica.2009.11.2.45 

Duchowski, A. T. (2017). Eye tracking methodology: Theory and practice: Third 

edition. In Eye Tracking Methodology: Theory and Practice: Third Edition. 

https://doi.org/10.1007/978-3-319-57883-5 

Durka, P. J., Matysiak, A., Montes, E. M., Sosa, P. V., & Blinowska, K. J. (2005). 

Multichannel matching pursuit and EEG inverse solutions. Journal of 

Neuroscience Methods, 148(1), 49–59. 

https://doi.org/10.1016/j.jneumeth.2005.04.001 

Ehinger, B. V. & Dimigen, O. (2018). Unfold: An integrated toolbox for overlap 

correction, non-linear modeling, and regression-based EEG analysis. BioRxiv, 

2018, 360156. https://doi.org/10.1101/360156 

Ehrlinger, J., Readinger, W. O., & Kim, B. (2016). Decision-Making and Cognitive 

Biases. Encyclopedia of Mental Health: Second Edition, October, 5–12. 

https://doi.org/10.1016/B978-0-12-397045-9.00206-8 

Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. 

Electroencephalography and Clinical Neurophysiology, 99(3), 225–234. 

https://doi.org/10.1016/s0921-884x(96)95711-2 

Eimer, Martin, & Grubert, A. (2014). Spatial attention can be allocated rapidly and 

in parallel to new visual objects. Current Biology, 24(2), 193–198. 

https://doi.org/10.1016/j.cub.2013.12.001 

Elliott, R., Friston, K. J., & Dolan, R. J. (2000). Dissociable neural responses in 

human reward systems. Journal of Neuroscience, 20(16), 6159–6165. 

https://doi.org/10.1523/jneurosci.20-16-06159.2000 

Elster, J. (2001). Rational Choice Theory: Cultural Concerns. In International 

Encyclopedia of the Social & Behavioral Sciences (pp. 12763–12768). 

Essig, K., Pomplun, M., & Ritter, H. (2006). A neural network for 3D gaze recording 

with binocular eye trackers. International Journal of Parallel, Emergent and 



 

250  

Distributed Systems, 21(2), 79–95. https://doi.org/10.1080/17445760500354440 

Fehr, E., & Rangel, A. (2011). Neuroeconomic foundations of economic choice-

recent advances. Journal of Economic Perspectives, 25(4), 3–30. 

https://doi.org/10.1257/jep.25.4.3 

Calhoun, V. D., Liu, J., & Adali, T. (2009). A review of group ICA for fMRI data 

and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage, 

45(1), 1–21. https://doi.org/10.1016/j.neuroimage.2008.10.057.A 

Fine, B. (2008). Consumers and Demand. SOAS University of London. 

https://eprints.soas.ac.uk/6072/5/diegocons.pdf 

Finnigan, S., O’Connell, R. G., Cummins, T. D. R., Broughton, M., & Robertson, I. 

H. (2011). ERP measures indicate both attention and working memory 

encoding decrements in aging. Psychophysiology, 48(5), 601–611. 

https://doi.org/10.1111/j.1469-8986.2010.01128.x 

Fiore, A. M. (2008). The shopping experience. In Product Experience. Elsevier Ltd. 

https://doi.org/10.1016/B978-008045089-6.50030-7 

Fischer, T., Graupnera, S., Velichkovsky, B., & Pannasch, S. (2013). Attentional 

dynamics during free picture viewing: evidence from oculomotor behaviour and 

electrocortical activity. Frontiers in Systems Neuroscience, 7(17), 1–9. 

https://doi.org/10.3389/fnsys.2013.00017 

Fjaellingsdal, T. G., Schwenke, D., Ruigendijk, E., Scherbaum, S., & Bleichner, M. 

G. (2020). Studying brain activity during word-by-word interactions using 

wireless EEG. PLoS ONE, 15(3), 1–21. 

https://doi.org/10.1371/journal.pone.0230280 

Flynn, N., Kah, C., & Kerschbamer, R. (2016). Vickrey auction vs BDM: difference 

in bidding behaviour and the impact of other-regarding motives. Journal of the 

Economic Science Association, 2(2), 101–108. https://doi.org/10.1007/s40881-

016-0027-5 

Forbes, C. E., & Leitner, J. B. (2014). Stereotype threat engenders neural attentional 

bias toward negative feedback to undermine performance. Biological 

Psychology, 102(1), 98–107. https://doi.org/10.1016/j.biopsycho.2014.07.007 

Forgacs, P. B., Von Gizycki, H., Selesnick, I., Syed, N. A., Ebrahim, K., Avitable, 

M., Amassian, V., Lytton, W., & Bodis-Wollner, I. (2008). Perisaccadic parietal 



 

251  

and occipital gamma power in light and in complete darkness. Perception, 

37(3), 419–432. https://doi.org/10.1068/p5875 

Freberg, L. (2015). Discovering Behavioral Neuroscience: An Introduction to 

Biological Psychology. Cengage Learning. 

https://books.google.co.uk/books?id=duouBgAAQBAJ 

Furl, N., & Averbeck, B. B. (2011). Parietal Cortex and Insula Relate to Evidence 

Seeking Relevant to Reward-Related Decisions. Journal of Neuroscience, 

31(48), 17572–17582. https://doi.org/10.1523/JNEUROSCI.4236-11.2011 

Gaarder, K., Krauskopf, J., Graf, V., Kropfl, W., & Armington, J. C. (1964). 

Averaged Brain Activity Following Saccadic Eye Movement. Science, 

146(3650), 1481–1483. 

Gajewski, P. D., Drizinsky, J., Zülch, J., & Falkenstein, M. (2016). ERP correlates of 

simulated purchase decisions. Frontiers in Neuroscience, 10(AUG), 1–13. 

https://doi.org/10.3389/fnins.2016.00360 

Galandra, C., Basso, G., Cappa, S., & Canessa, N. (2018). The alcoholic brain: 

neural bases of impaired reward-based decision-making in alcohol use 

disorders. Neurological Sciences, 39(3), 423–435. 

https://doi.org/10.1007/s10072-017-3205-1 

Gallagher, S. (2018). Decentering the brain: Embodied cognition and the critique of 

neurocentrism and narrow-minded philosophy of mind. Constructivist 

Foundations, 14(1), 8–21. 

Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2002). Cognitive neuroscience: The 

biology of the mind. Norton: New York. 

Gerdes, A. B. M., Wieser, M. J., Bublatzky, F., Kusay, A., Plichta, M. M., & Alpers, 

G. W. (2013). Emotional sounds modulate early neural processing of emotional 

pictures. Frontiers in Psychology, 4, 1–12. 

https://doi.org/10.3389/fpsyg.2013.00741 

Gidlöf, K., Anikin, A., Lingonblad, M., & Wallin, A. (2017). Looking is buying. 

How visual attention and choice are affected by consumer preferences and 

properties of the supermarket shelf. Appetite, 116, 29–38. 

https://doi.org/10.1016/j.appet.2017.04.020 

Gidlöf, K., Wallin, A., Dewhurst, R., & Holmqvist, K. (2013). Using eye tracking to 



 

252  

trace a cognitive process: Gaze behaviour during decision making in a natural 

environment. Journal of Eye Movement Research, 6(1). 

https://doi.org/10.16910/jemr.6.1.3 

Gligorijevic, D., Zhou, T., Shetty, B., Kitts, B., Pan, S., Pan, J., & Flores, A. (2020). 

Bid Shading in the Brave New World of First-Price Auctions. ArXiv, 2453–

2460. 

Glimcher, P. W., & Fehr, E. (2013). Neuroeconomics: Decision Making and the 

Brain: Second Edition. In Neuroeconomics: Decision Making and the Brain: 

Second Edition. https://doi.org/10.1016/C2011-0-05512-6 

Glimcher, P. W., & Fehr, E. (2014). Introduction: A Brief History of 

Neuroeconomics. In Neuroeconomics. Elsevier Inc. 

https://doi.org/10.1016/B978-0-12-416008-8.00035-8 

Gluth, S., Rieskamp, J., & Buchel, C. (2012). Deciding When to Decide: Time-

Variant Sequential Sampling Models Explain the Emergence of Value-Based 

Decisions in the Human Brain. Journal of Neuroscience, 32(31), 10686–10698. 

https://doi.org/10.1523/JNEUROSCI.0727-12.2012 

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual 

Reviews Neuroscience, 30, 535–574. 

https://doi.org/10.1146/annurev.neuro.29.051605.113038 

Goto, N., Mushtaq, F., Shee, D., Lim, X. L., Mortazavi, M., Watabe, M., & 

Schaefer, A. (2017). Neural signals of selective attention are modulated by 

subjective preferences and buying decisions in a virtual shopping task. 

Biological Psychology, 128, 11–20. 

https://doi.org/10.1016/j.biopsycho.2017.06.004 

Gottlieb, J. (2007). Review From Thought to Action : The Parietal Cortex as a bridge 

between perception action and cognition. Neuron, 53, 9–16. 

https://doi.org/10.1016/j.neuron.2006.12.009 

Grabenhorst, F., & Rolls, E. T. (2009). Different representations of relative and 

absolute subjective value in the human brain. NeuroImage, 48(1), 258–268. 

https://doi.org/10.1016/j.neuroimage.2009.06.045 

Grabenhorst, F., & Rolls, E. T. (2011). Value, pleasure and choice in the ventral 

prefrontal cortex. Trends in Cognitive Sciences, 15(2), 56–67. 



 

253  

https://doi.org/10.1016/j.tics.2010.12.004 

Gramann, K. (2014). An introduction to mobile brain / body imaging ( MoBI ). 

Brain Products Press Release, 1–4. 

Gramann, K., Gwin, J., Bigdely-Shamlo, N., Ferris, D., & Makeig, S. (2010). Visual 

evoked responses during standing and walking. Frontiers in Human 

Neuroscience, 4, 202. https://doi.org/10.3389/fnhum.2010.00202 

Gramann, K., Jung, T.-P., Ferris, D., Lin, C.-T., & Makeig, S. (2014). Toward a new 

cognitive neuroscience: modeling natural brain dynamics. Frontiers in Human 

Neuroscience, 8(444), 1–3. https://doi.org/10.3389/fnhum.2014.00444 

Gramann, K, Gwin, J. T., Bigdely-Shamlo, N., Ferris, D. P., & Makeig, S. (2010). 

Visual evoked responses during standing and walking. Frontiers in Human 

Neuroscience, 4(202), 1–12. https://doi.org/10.3389/fnhum.2010.00202 

Gramann, K., Gwin, J. T., Ferris, D. P., Oie, K., Jung, T. P., Lin, C. T., Liao, L. De, 

& Makeig, S. (2011). Cognition in action: Imaging brain/body dynamics in 

mobile humans. Reviews in the Neurosciences, 22(6), 593–608. 

https://doi.org/10.1515/RNS.2011.047 

Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., 

Xanthopoulos, P., Sakkalis, V., & Vanrumste, B. (2008). Review on solving the 

inverse problem in EEG source analysis. 33, 1–33. 

https://doi.org/10.1186/1743-0003-5-25 

Green., J. (1957). Some observations on lambda waves and peripheral stimulation. 

Electroencephalography and Clinical Neurophysiology, 9(4), 691–704. 

https://doi.org/10.1016/0013-4694(57)90089-5 

Griskevicius, V., Goldstein, N. J., Mortensen, C. R., Sundie, J. M., Cialdini, R. B., & 

Kenrick, D. T. (2009). Fear and loving in las vegas: Evolution, emotion, and 

persuasion. Journal of Marketing Research, 46(3), 384–395. 

https://doi.org/10.1509/jmkr.46.3.384 

Grueschow, M., Polania, R., Hare, T. A., & Ruff, C. C. (2015). Automatic versus 

Choice-Dependent Value Representations in the Human Brain. Neuron, 85(4), 

874–885. https://doi.org/10.1016/j.neuron.2014.12.054 

Grzesiuk, A., & Cypryjański, J. (2017). Reflections on Research Process: Online 

Experiments on Allegro Platform. In N. Kesra & M. Łatuszyńska (Eds.), 



 

254  

Neuroeconomic and Behavioral Aspects of Decision Making (pp. 397–408). 

Springer International Publishing. https://doi.org/10.1007/978-3-319-62938-

4_18 

Gui, D. Y., Li, J. Z., Li, X., & Luo, Y. J. (2016). Temporal dynamics of the 

interaction between reward and time delay during intertemporal choice. 

Frontiers in Psychology, 7, 1–9. https://doi.org/10.3389/fpsyg.2016.01526 

Gustafson, C. R., Lybbert, T. J., & Sumner, D. A. (2016). Consumer knowledge 

affects valuation of product attributes: Experimental results for wine. Journal of 

Behavioral and Experimental Economics, 65, 85–94. 

https://doi.org/10.1016/j.socec.2016.08.004 

Gwin, J., Gramann, K., Makeig, S., & Ferris, D. (2011). Electrocortical activity is 

coupled to gait cycle phase during treadmill walking. NeuroImage, 54, 1289–

1296. https://doi.org/10.1016/j.neuroimage.2010.08.066 

Gwin, J., Gramann, K., Makeig, S., & Ferris, D. P. (2010). Removal of Movement 

Artifact From High-Density EEG Recorded During Walking and Running. 

Journal of Neurophysiology, 103(6), 3526–3534. 

https://doi.org/10.1152/jn.00105.2010 

Gwon, S. Y., Cho, C. W., Lee, H. C., Lee, W. O., & Park, K. R. (2014). Gaze 

tracking system for user wearing glasses. Sensors, 14(2), 2110–2134. 

https://doi.org/10.3390/s140202110 

Hajcak, G., & Olvet, D. M. (2008). The Persistence of Attention to Emotion: Brain 

Potentials During and After Picture Presentation. Emotion, 8(2), 250–255. 

https://doi.org/10.1037/1528-3542.8.2.250 

Hajihosseini, A., & Holroyd, C. B. (2013). Frontal midline theta and N200 amplitude 

reflect complementary information about expectancy and outcome evaluation. 

Psychophysiology, 50(6), 550–562. https://doi.org/10.1111/psyp.12040 

Hakim, A., & Levy, D. J. (2019). A gateway to consumers’ minds: Achievements, 

caveats, and prospects of electroencephalography-based prediction in 

neuromarketing. Wiley Interdisciplinary Reviews: Cognitive Science, 10(2), 1–

21. https://doi.org/10.1002/wcs.1485 

Hanatani, T., Sumi, N., Taguchi, S., Fugimoto, O., Nan-no, H., & Takeda, M. 

(2005). Event-related potentials in panic disorder and generalized anxiety 



 

255  

disorder. Psychiatry and Clinical Neurosciences, 59, 83–88. 

Handy, T., Smilek, D., Geiger, L., Liu, C., & Schooler, J. (2010). ERP evidence for 

rapid hedonic evaluation of logos. Journal of Cognitive Neuroscience, 22(1), 

124–138. https://doi.org/10.1162/jocn.2008.21180 

Hare, T. A., Camerer, C. F., Knoepfle, D. T., O’Doherty, J. P., & Rangel, A. (2010). 

Value Computations in Ventral Medial Prefrontal Cortex during Charitable 

Decision Making Incorporate Input from Regions Involved in Social Cognition. 

Journal of Neuroscience, 30(2), 583–590. 

https://doi.org/10.1523/JNEUROSCI.4089-09.2010 

Hare, T. A, O’Doherty, J.P., Camerer, C. F., Schultz, W., & Rangel, A. (2008). 

Dissociating the role of the orbitofrontal cortex and the striatum in the 

computation of goal values and prediction errors. The Journal of Neuroscience : 

The Official Journal of the Society for Neuroscience, 28(22), 5623–5630. 

https://doi.org/10.1523/JNEUROSCI.1309-08.2008 

Haridasan, A. C., & Fernando, A. G. (2018). Online or in-store: unravelling 

consumer’s channel choice motives. Journal of Research in Interactive 

Marketing, 12(2), 215–230. https://doi.org/10.1108/JRIM-07-2017-0060 

Harris, T.A., Adolphs, R., Camerer, C.F., & Rangel, A. (2011). Dynamic 

construction of stimulus values in the ventromedial prefrontal cortex. PLoS 

ONE, 6(6). https://doi.org/10.1371/journal.pone.0021074 

Hassoumi, A., Peysakhovich, V., & Hurter, C. (2019). Improving eye-tracking 

calibration accuracy using symbolic regression. PLoS ONE, 14(3), 1–22. 

https://doi.org/10.1371/journal.pone.0213675 

Hawkins, D. I., & Mothersbaugh, D. L. (2010). Consumer Behaviour:Building 

Marketing Strategies. www.mhhe.com 

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. 

(2001). Distributed and overlapping representations of faces and objects in 

ventral temporal cortex. Science, 293, 2425–2430. 

Haxby, J. V, Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural 

system for face perception. Trends in Cognitive Sciences, 4(6), 223–233. 

Heilbronner, S. R., Hayden, B. Y., & Platt, M. L. (2011). Decision salience signals 

in posterior cingulate cortex. Frontiers in Neuroscience, 5, 1–9. 



 

256  

https://doi.org/10.3389/fnins.2011.00055 

Helie, Sebastien., Shamloo, Farzon., Novak, Keisha., Foti, D. (2017). The roles of 

valuation and reward processing in cognitive function and psychiatric disorders. 

Annals of the New York Academy of Sciences, 1395(1), 33–48. 

https://doi.org/10.1117/12.2549369.Hyperspectral 

Helmefalk, M., & Hultén, B. (2017). Multi-sensory congruent cues in designing 

retail store atmosphere: Effects on shoppers’ emotions and purchase behavior. 

Journal of Retailing and Consumer Services, 38, 1–11. 

https://doi.org/10.1016/j.jretconser.2017.04.007 

Herculano-Houzel, S. (2009). The human brain in numbers: A linearly scaled-up 

primate brain. Frontiers in Human Neuroscience, 3(31), 1–11. 

https://doi.org/10.3389/neuro.09.031.2009 

Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event-

related potentials and oscillations. Neuroscience and Biobehavioral Reviews, 

25(6), 465–476. https://doi.org/10.1016/S0149-7634(01)00027-6 

Hess, S., Daly, A., & Batley, R. (2018). Revisiting consistency with random utility 

maximisation: theory and implications for practical work. Theory and Decision, 

84(2), 181–204. https://doi.org/10.1007/s11238-017-9651-7 

Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study 

of visual selective attention. Proceedings of the National Academy of Sciences 

of the United States of America, 95(3), 781–787. 

https://doi.org/10.1073/pnas.95.3.781 

Hodgson, G. M. (2004). Veblen and Darwinism. International Review of Sociology, 

14(3), 343–361. https://doi.org/10.1080/0390670042000318241 

Hoechstetter, K., Berg, P., & Scherg, M. (2010). BESA Research Tutorial 4 : 

Distributed Source Imaging BESA Research Tutorial 4 : 1–29. 

Hofmann, M. J., Kuchinke, L., Tamm, S., Võ, M. L. H., & Jacobs, A. M. (2009). 

Affective processing within 1/10th of a second: High arousal is necessary for 

early facilitative processing of negative but not positive words. Cognitive, 

Affective and Behavioral Neuroscience, 9(4), 389–397. 

https://doi.org/10.3758/9.4.389 

Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward 



 

257  

expectancy. Current Opinion in Neurobiology, 14(2), 148–155. 

https://doi.org/10.1016/j.conb.2004.03.007 

Hollingworth, A., Richard, A., & Luck, S. (2008). Understanding the Function of 

Visual Short-Term Memory: Transsaccadic Memory, Object Correspondence, 

and Gaze Correction. Journal of Experimental Psychological Gen, 137(1), 163–

181. https://doi.org/10.1037/0096-3445.137.1.163.Understanding 

Holmqvist, K., Nystrom, M., Andersson, R., Dewhurt, R., Jarodzka, H., & Van De 

Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and 

measures. In Journal of Materials Processing Technology (Vol. 1, Issue 1). 

Oxford University Press. 

http://dx.doi.org/10.1016/j.cirp.2016.06.001%0Ahttp://dx.doi.org/10.1016/j.po

wtec.2016.12.055%0Ahttps://doi.org/10.1016/j.ijfatigue.2019.02.006%0Ahttps:

//doi.org/10.1016/j.matlet.2019.04.024%0Ahttps://doi.org/10.1016/j.matlet.201

9.127252%0Ahttp://dx.doi.o 

Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error 

processing: Reinforcement learning, dopamine, and the error-related negativity. 

Psychological Review, 109(4), 679–709. https://doi.org/10.1037/0033-

295X.109.4.679 

Hornik, J., & Zakay, D. (1996). Psychological Time: The Case of Time and 

Consumer Behaviour. Time & Society, 5(3), 385–397. 

https://doi.org/10.1177/0961463X96005003007 

Howard, J. D., Plailly, J., Grueschow, M., Haynes, J. D., & Gottfried, J. A. (2009). 

Odor quality coding and categorization in human posterior piriform cortex. 

Nature Neuroscience, 12(7), 932–938. https://doi.org/10.1038/nn.2324 

Hsu, C.-W., & Goh, J. O. S. (2016). Distinct and Overlapping Brain Areas Engaged 

during Value-Based, Mathematical, and Emotional Decision Processing. 

Frontiers in Human Neuroscience, 10, 1–20. 

https://doi.org/10.3389/fnhum.2016.00275 

Hu, B., Rao, J., Li, X., Cao, T., Li, J., Majoe, D., & Gutknecht, J. (2017). Emotion 

Regulating Attentional Control Abnormalities In Major Depressive Disorder: 

An Event-Related Potential Study. Scientific Reports, 7(1), 1–21. 

https://doi.org/10.1038/s41598-017-13626-3 



 

258  

Huang, M., Aine, C. J., Supek, S., Best, E., Ranken, D., & Flynn, E. R. (1998). 

Multi-start downhill simplex method for spatio-temporal source localization in 

magnetoencephalography. Electroencephalography and clinical 

Neurophysiology, 108, 32–44. 

Huang, Y-x., & Luo, Y. (2006). Temporal course of emotional negativity bias : An 

ERP study. Neuroscience Letters, 398, 91–96. 

https://doi.org/10.1016/j.neulet.2005.12.074 

Huang, Yi, & Yu, R. (2014). The feedback-related negativity reflects “more or less” 

prediction error in appetitive and aversive conditions. Frontiers in 

Neuroscience, 8, 1–6. https://doi.org/10.3389/fnins.2014.00108 

Hubert, M. & Kenning, P. (2008). A current overview of consumer neuroscience. 

Journal of Consumer Behaviour, 7, 272–292. https://doi.org/10.1002/cb 

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent 

component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634. 

https://doi.org/10.1109/72.761722 

Ille, N., Berg, P., & Scherg, M. (2002). Artifact correction of the ongoing EEG using 

spatial filters based on artifact and brain signal topographies. Journal of 

Clinical Neurophysiology, 19(2), 113–124. https://doi.org/10.1097/00004691-

200203000-00002 

Iriarte, J., Urrestarazu, E., Valencia, M., Alegre, M., Malanda, A., Viteri, C., & 

Artieda, J. (2003). Independent component analysis as a tool to eliminate 

artifacts in EEG: a quantitative study. Journal of Clinical Neurophysiology : 

Official Publication of the American Electroencephalographic Society, 20(4), 

249–257. https://doi.org/10.1097/00004691-200307000-00004 

Itthipuripat, S., Cha, K., Rangsipat, N., & Serences, J. T. (2015). Value-based 

attentional capture influences context-dependent decision-making. Journal of 

Neurophysiology, 114(1), 560–569. https://doi.org/10.1152/jn.00343.2015 

Iyer, A., Lindner, A., Kagan, I., & Andersen, R. A. (2010). Motor preparatory 

activity in posterior parietal cortex is modulated by subjective absolute value. 

PLoS Biology, 8(8), 23–24. https://doi.org/10.1371/journal.pbio.1000444 

Jaadi, Z. (2019). A Step-by-Step Explanation of Principal Component Analysis. Built 

in expert contributor network. 



 

259  

Jagla, F., Jergelová, M., & Riecanský, I. (2007). Saccadic eye movement related 

potentials. Physiological Research / Academia Scientiarum Bohemoslovaca, 

56(6), 707–713. 

Jędras, P., Jones, A., & Field, M. (2013). The role of anticipation in drug addiction 

and reward. Neuroscience and Neuroeconomics, 1. 

https://doi.org/10.2147/nan.s35917 

Jędras, P., Jones, A., Stancak, A., & Field, M. (2019). The effects of reward and loss 

anticipation on attentional bias for reward-related stimuli. Appetite, 133, 93–

100. https://doi.org/10.1016/j.appet.2018.10.007 

Jensen, J., McIntosh, A. R., Crawley, A. P., Mikulis, D. J., Remington, G., & Kapur, 

S. (2003). Direct activation of the ventral striatum in anticipation of aversive 

stimuli. Neuron, 40(6), 1251–1257. https://doi.org/10.1016/S0896-

6273(03)00724-4 

Jia, Y., & Tyler, C. W. (2019). Measurement of saccadic eye movements by 

electrooculography for simultaneous EEG recording. Behavior Research 

Methods, 51(5), 2139–2151. https://doi.org/10.3758/s13428-019-01280-8 

Jiang, C., Buchanan, T. W., Yao, Z., Zhang, K., Wu, J., & Zhang, L. (2017). Acute 

Psychological Stress Disrupts Attentional Bias to Threat-Related Stimuli. 

Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-14138-w 

Jiang, X., Bian, G., & Tian, Z. (2019). Removal of Artifacts from EEG Signals : A 

Review. Sensors, 19(987), 1–18. https://doi.org/10.3390/s19050987 

Jin, J., Zhang, W., & Chen, M. (2017). How consumers are affected by product 

descriptions in online shopping: Event-related potentials evidence of the 

attribute framing effect. Neuroscience Research, 125, 21–28. 

https://doi.org/10.1016/j.neures.2017.07.006 

Jones, A., Hogarth, L., Christiansen, P., Rose, A. K., Martinovic, J., & Field, M. 

(2012). Reward expectancy promotes generalized increases in attentional bias 

for rewarding stimuli. Quarterly Journal of Experimental Psychology, 65(12), 

2333–2342. https://doi.org/10.1080/17470218.2012.686513 

Jones, W., Childers, T., & Jiang, Y. (2012). The shopping brain: Math anxiety 

modulates brain responses to buying decisions. Biological Psychology, 89(1), 

201–213. https://doi.org/10.1016/j.biopsycho.2011.10.011 



 

260  

Jung, T., Makeig, S., Humphries, C., Lee, T., McKeown, M. J., Iragui, I., & 

Sejnowski, T. J. (2000). Removing Electroencephalographic aretfacts by blind 

source seperation. Psychophysiology, 37(02), 163–178. 

https://doi.org/10.1111/1469-8986.3720163 

Jungnickel, E., & Gramann, K. (2016). Mobile Brain/Body Imaging (MoBI) of 

Physical Interaction with Dynamically Moving Objects. Frontiers in Human 

Neuroscience, 10, 306. https://doi.org/10.3389/fnhum.2016.00306 

Kable, J. W., & Glimcher, P. W. (2009). The Neurobiology of Decision: Consensus 

and Controversy. Neuron, 63(6), 733–745. 

https://doi.org/10.1016/j.neuron.2009.09.003 

Kagel, J., Levin, D., Battalio, R., & Meyer, D. (1989). First‐Price Common Value 

Auctions: Bidder Behavior and the “Winner’S Curse.” Economic Inquiry, 27(2), 

241–258. https://doi.org/10.1111/j.1465-7295.1989.tb00780.x 

Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1990). Experimental Tests of the 

Endowment Effect and the Coase Theorem. Journal of Political Economy, 

98(6), 1325–1348. 

Kahneman, D., Knetsch, J., & Thaler, R. (1991). Anomalies: The endowment effect, 

loss aversion, and status quo bias. Journal of Economic Perspectives, 5(1), 159–

170. https://doi.org/10.1017/CBO9780511803475.009 

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision 

under Risk. Econometrica, 47(2), 263–291. https://doi.org/10.1111/j.1536-

7150.2011.00774.x 

Kahneman, D., & Tversky, A. (1984). Choices , Values , and Frames. American 

Psycologist, 39(4), 341–350. https://doi.org/10.1037/0003-066X.39.4.341 

Kahneman, D. (2011). Thinking, Fast and Slow. Straus and Giroux: New York. 

Kahneman, D. & Tversky, A. (1979). Prospect Theory : An Analysis of Decision 

under Risk, Econometrica, 47(2), 263–292. 

Kamakura, W. A., & Mazzon, J. A. (2013). Socioeconomic status and consumption 

in an emerging economy. International Journal of Research in Marketing, 

30(1), 4–18. https://doi.org/10.1016/j.ijresmar.2011.12.001 

Kanske, P., & Kotz, S. A. (2010). Modulation of early conflict processing: N200 

responses to emotional words in a flanker task. Neuropsychologia, 48(12), 



 

261  

3661–3664. https://doi.org/10.1016/j.neuropsychologia.2010.07.021 

Kassner, M., Patera, W., & Bulling, A. (2014). Pupil: An Open Source Platform for 

Pervasive Eye Tracking and Mobile Gaze-based Interaction. Proceedings of the 

2014 ACM International Joint Conference on Pervasive and Ubiquitous 

Computing: Adjunct Publication, 1151–1160. 

https://doi.org/10.1145/2638728.2641695 

Kaur, H., & Singh, C. D. (2019). Family and Consumer Behaviour. International 

Journal of Management and Social Sciences Research, 2(7), 2319–4421. 

https://doi.org/10.4324/9780367810276 

Kazai, K., & Yagi, A. (2003). Comparison between the lambda response of eye-

fixation-related potentials and the P100 component of pattern-reversal visual 

evoked potentials. Cognitive, Affective and Behavioral Neuroscience, 3(1), 46–

56. https://doi.org/10.3758/CABN.3.1.46 

Keil, A., Bradley, M. M., Hauk, O., Rockstroh, B., Elbert, T., & Lang, P. J. (2002). 

Large-scale neural correlates of affective picture processing. Psychophysiology, 

39(5), 641–649. https://doi.org/10.1111/1469-8986.3950641 

Keller, L., Segal, U., & Wang, T. (1993). the Becker-DeGroot-Marschak mechanism 

and generalized utility theories: Theoretical predictions and empirical 

observations. Theory and Decision, 34(2), 83–97. 

Kemp, E., Bui, M., & Chapa, S. (2012). The role of advertising in consumer emotion 

management. International Journal of Advertising, 31(3). 

https://doi.org/10.2501/IJA-31-2-339-353 

Keren, A. S., Yuval-Greenberg, S., & Deouell, L. Y. (2010). Saccadic spike 

potentials in gamma-band EEG: Characterization, detection and suppression. 

NeuroImage, 49(3), 2248–2263. 

https://doi.org/10.1016/j.neuroimage.2009.10.057 

Khan, N., Rahmani, S. H. R., Hoe, H. Y., & Chen, T. B. (2014). Causal 

Relationships among Dimensions of Consumer-Based Brand Equity and 

Purchase Intention: Fashion Industry. International Journal of Business and 

Management, 10(1), 1833–8119. https://doi.org/10.5539/ijbm.v10n1p172 

Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. 

(2013). Consumer neuroscience: Assessing the brain response to marketing 



 

262  

stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems 

with Applications, 40(9), 3803–3812. 

https://doi.org/10.1016/j.eswa.2012.12.095 

Kilner, J. M., & Lemon, R. N. (2013). What we know currently about mirror 

neurons. Current Biology, 23(23), R1057–R1062. 

https://doi.org/10.1016/j.cub.2013.10.051 

Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic eye 

movements : Visual processing speed revisited. Vision Research, 46(11), 1762–

1776. https://doi.org/10.1016/j.visres.2005.10.002 

Kirkpatrick, S. (1984). Optimization by simulated annealing: quantitative studies. 

Journal of Statistical Physics, 34, 975–986. 

Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons 

modulates ERP signatures of attentional selection. Psychological Science, 

20(2), 245–251. https://doi.org/10.1111/j.1467-9280.2009.02281.x.Reward 

Klaassen, F. H., Held, L., Figner, B., O’Reilly, J. X., Klumpers, F., de Voogd, L. D., 

& Roelofs, K. (2021). Defensive freezing and its relation to approach-avoidance 

decision-making under threat. BioRxiv, 2021.01.29.428809. 

http://biorxiv.org/content/early/2021/02/01/2021.01.29.428809.abstract 

Klem, G. H., Luders, H. O., Jasper, H. H., & Elger, C. (1999). The ten–twenty 

electrode system of the International Federation. In Recommendations for the 

Practice of Clinical Neurophysiology: Guidelines of the International 

Federation of Clinical Physiology EEG (Vol. 52, pp. 1–4). 

Klucharev, V., Smidts, A., & Fernández, G. (2008). Brain mechanisms of 

persuasion: How “expert power” modulates memory and attitudes. Social 

Cognitive and Affective Neuroscience, 3(4), 353–366. 

https://doi.org/10.1093/scan/nsn022 

Klug, M., & Gramann, K. (2020). Identifying key factors for improving ICA-based 

decomposition of EEG data in mobile and stationary experiments. European 

Journal of Neuroscience, 1–15. https://doi.org/10.1111/ejn.14992 

Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of 

increasing monetary reward selectively recruits nucleus accumbens. The 

Journal of Neuroscience, 21(16), 1–5. https://doi.org/10.1523/jneurosci.21-16-



 

263  

j0002.2001 

Ko, L. W., Lai, P. W., Yang, B. J., & Lin, C. T. (2015). Mobile EEG & ECG 

integration system for monitoring physiological states in peforming simulated 

war game training. 2015 IEEE Conference on Computational Intelligence and 

Games, CIG 2015 - Proceedings, 542–543. 

https://doi.org/10.1109/CIG.2015.7317900 

Koivisto, M., & Grassini, S. (2016). Neural processing around 200 ms after 

stimulus-onset correlates with subjective visual awareness. Neuropsychologia, 

84, 235–243. https://doi.org/10.1016/j.neuropsychologia.2016.02.024 

Kokmotou, K., Cook, S., Xie, Y., Wright, H., Soto, V., Fallon, N., Giesbrecht, T., 

Pantelous, A., & Stancak, A. (2017). Effects of loss aversion on neural 

responses to loss outcomes: An event-related potential study. Biological 

Psychology, 126(April), 30–40. 

https://doi.org/10.1016/j.biopsycho.2017.04.005 

Kolakowski, S. M., & Pelz, J. B. (2005). Compensating for eye tracker camera 

movement. Eye Tracking Research and Applications Symposium (ETRA), 79–

85. https://doi.org/10.1145/1117309.1117348 

Konig, S., & Buffalo, E. A. (2014). A Nonparametric Method for Detecting 

Fixations and Saccades Using Cluster Analysis: Removing the Need for 

Arbitrary Thresholds. Journal of Neuroscientific Methods, 227, 121–131. 

https://doi.org/10.1016/j.jneumeth.2014.01.032.A 

Konovalov, A., & Krajbich, I. (2019). Over a Decade of Neuroeconomics: What 

Have We Learned? Organizational Research Methods, 22(1), 148–173. 

https://doi.org/10.1177/1094428116644502 

Kothe, C. A. (2014). Demo 1 : The Lab Streaming Layer. Https://Github. 

Com/Sccn/Labstreaminglayer. Accessed in May. 

Kotler, P. (1965). Behavioral Models for Analyzing Buyers. Journal of Marketing, 

29(4), 37–45. https://doi.org/10.2307/1249700 

Kozlik, J., Neumann, R., & Lozo, L. (2015). Contrasting motivational orientation 

and evaluative coding accounts: On the need to differentiate the effectors of 

approach/avoidance responses. Frontiers in Psychology, 6, 1–10. 

https://doi.org/10.3389/fpsyg.2015.00563 



 

264  

Kragel, P. A., & LaBar, K. S. (2016). Decoding the Nature of Emotion in the Brain. 

Trends in Cognitive Sciences, 20(6), 444–455. 

https://doi.org/10.1016/j.tics.2016.03.011 

Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation 

and comparison of value in simple choice. Nature Neuroscience, 13(10), 1292–

1298. https://doi.org/10.1038/nn.2635 

Krampe, C., Gier, N. R., & Kenning, P. (2018). The application of mobile fNIRS in 

marketing research—detecting the “first-choice-brand” effect. Frontiers in 

Human Neuroscience, 12, 1–11. https://doi.org/10.3389/fnhum.2018.00433 

Kräplin, A., Dshemuchadse, M., Behrendt, S., Scherbaum, S., Goschke, T., & 

Bühringer, G. (2014). Dysfunctional decision-making in pathological gambling: 

Pattern specificity and the role of impulsivity. Psychiatry Research, 215(3), 

675–682. https://doi.org/10.1016/j.psychres.2013.12.041 

Krawczyk, D. C., Gazzaley, A., & D’Esposito, M. (2007). Reward modulation of 

prefrontal and visual association cortex during an incentive working memory 

task. Brain Research, 1141(1), 168–177. 

https://doi.org/10.1016/j.brainres.2007.01.052 

Kretch, K. S., & Adolph, K. E. (2015). Active vision in passive locomotion: Real-

world free viewing in infants and adults. Developmental Science, 18(5), 736–

750. https://doi.org/10.1111/desc.12251 

Krieglmeyer, R., De Houwer, J., & Deutsch, R. (2013). On the nature of 

automatically triggered approach-avoidance behavior. Emotion Review, 5(3), 

280–284. https://doi.org/10.1177/1754073913477501 

Krieglmeyer, R., Deutsch, R., de Houwer, J., & de Raedt, R. (2010). Being moved: 

Valence activates approach-avoidance behavior independently of evaluation 

and approach-avoidance intentions. Psychological Science, 21(4), 607–613. 

https://doi.org/10.1177/0956797610365131 

Krishna, A. (2012). An integrative review of sensory marketing: Engaging the senses 

to affect perception, judgment and behavior. Journal of Consumer Psychology, 

22(3), 332–351. https://doi.org/10.1016/j.jcps.2011.08.003 

Kurniawan, I. T., Guitart-Masip, M., Dayan, P., & Dolan, R. J. (2013). Effort and 

valuation in the brain: The effects of anticipation and execution. Journal of 



 

265  

Neuroscience, 33(14), 6160–6169. https://doi.org/10.1523/JNEUROSCI.4777-

12.2013 

Kurtzberg, D., & Vaughan, H. G. (1982). Topographic analysis of human cortical 

potentials preceding self-initiated and visually triggered saccades. Brain 

Research, 243(1), 1–9. https://doi.org/10.1016/0006-8993(82)91115-5 

Laarne, P. H., Tenhunen-Eskelinen, M. L., Hyttinen, J. K., & Eskola, H. J. (2000). 

Effect of EEG electrode density on dipole localization accuracy using two 

realistically shaped skull resistivity models. Brain Topography, 12(4), 249–254. 

https://doi.org/10.1023/A:1023422504025 

Ladouce, S., Donaldson, D. I., Dudchenko, P. A., & Ietswaart, M. (2017). 

Understanding Minds in Real-World Environments: Toward a Mobile 

Cognition Approach. Frontiers in Human Neuroscience, 10, 1–14. 

https://doi.org/10.3389/fnhum.2016.00694 

Ladouce, S., Donaldson, D. I., Dudchenko, P. A., & Ietswaart, M. (2019). Mobile 

EEG identifies the re-allocation of attention during real-world activity. 

Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-51996-y 

Lai, L. Y., Frömer, R., Festa, E. K., & Heindel, W. C. (2019). Age-Related Changes 

in the Neural Dynamics of Bottom-Up and Top-Down Processing During 

Visual Object Recognition: An Electrophysiological Investigation. BioRxiv, 

401. https://doi.org/10.1101/608240 

Lang, P. J., & Bradley, M. M. (2010). Emotion and the motivational brain. 

Biological Psychology, 84(3), 437–450. 

https://doi.org/10.1016/j.biopsycho.2009.10.007 

Lange, L., & Osinsky, R. (2020). Aiming at ecological validity—Midfrontal theta 

oscillations in a toy gun shooting task. European Journal of Neuroscience, 

August, 1–11. https://doi.org/10.1111/ejn.14977 

Langlois, D., Chartier, S., & Gosselin, D. (2010). An Introduction to Independent 

Component Analysis: InfoMax and FastICA algorithms. Tutorials in 

Quantitative Methods for Psychology, 6(1), 31–38. 

https://doi.org/10.1002/1099-128X(200005/06)14:3<123::AID-

CEM589>3.0.CO;2-1 

Larsen, T., & O’Doherty, J. P. (2014). Uncovering the spatio-temporal dynamics of 



 

266  

value-based decision-making in the human brain: a combined fMRI-EEG study. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 

369(1655), 20130473–20130473. https://doi.org/10.1098/rstb.2013.0473 

Lau-Zhu, A., Lau, M. P. H., & McLoughlin, G. (2019). Mobile EEG in research on 

neurodevelopmental disorders: Opportunities and challenges. Developmental 

Cognitive Neuroscience, 36, 100635. https://doi.org/10.1016/j.dcn.2019.100635 

Lau, T. M., Gwin, J. T., & Ferris, D. P. (2012). How Many Electrodes Are Really 

Needed for EEG-Based Mobile Brain Imaging? Journal of Behavioral and 

Brain Science, 2(3), 387–393. https://doi.org/10.4236/jbbs.2012.23044 

Lebreton, M., Jorge, S., Michel, V., Thirion, B., & Pessiglione, M. (2009). An 

Automatic Valuation System in the Human Brain: Evidence from Functional 

Neuroimaging. Neuron, 64(3), 431–439. 

https://doi.org/10.1016/j.neuron.2009.09.040 

Lee, D., & Seo, H. (2007). Mechanisms of reinforcement learning and decision 

making in the primate dorsolateral prefrontal cortex. Annals of the New York 

Academy of Sciences, 1104, 108–122. https://doi.org/10.1196/annals.1390.007 

Leleu, A., Godard, O., Dollion, N., Durand, K., & Schaal, B. (2015). 

Neuropsychologia Contextual odors modulate the visual processing of 

emotional facial expressions : An ERP study. Neuropsychologia, 77, 366–379. 

https://doi.org/10.1016/j.neuropsychologia.2015.09.014 

Lepora, N. F., & Pezzulo, G. (2015). Embodied Choice: How Action Influences 

Perceptual Decision Making. PLoS Computational Biology, 11(4), 1–22. 

https://doi.org/10.1371/journal.pcbi.1004110 

Leske, S., & Dalal, S. S. (2019). Reducing power line noise in EEG and MEG data 

via spectrum interpolation. NeuroImage, 189, 763–776. 

https://doi.org/10.1016/j.neuroimage.2019.01.026 

Levy, D. J., & Glimcher, P. W. (2012). The root of all value: A neural common 

currency for choice. Current Opinion in Neurobiology, 22(6), 1027–1038. 

https://doi.org/10.1016/j.conb.2012.06.001 

Levy, I., Lazzaro, S. C., Rutledge, R. B., & Glimcher, P. W. (2011). Choice from 

Non-Choice: Predicting Consumer Preferences from Blood Oxygenation Level-

Dependent Signals Obtained during Passive Viewing. Journal of Neuroscience, 



 

267  

31(1), 118–125. https://doi.org/10.1523/JNEUROSCI.3214-10.2011 

Liao, L. De, Chen, C. Y., Wang, I. J., Chen, S. F., Li, S. Y., Chen, B. W., Chang, J. 

Y., & Lin, C. T. (2012). Gaming control using a wearable and wireless EEG-

based brain-computer interface device with novel dry foam-based sensors. 

Journal of NeuroEngineering and Rehabilitation, 9(1). 

https://doi.org/10.1186/1743-0003-9-5 

Libera, C. Della, & Chelazzi, L. (2009). Learning to Attend and to Ignore Is a Matter 

of Gains and Losses. Psychological Science, 20(6), 778–784. 

Ligeza, T. S., Tymorek, A. D., & Wyczesany, M. (2017). Top-down and bottom-up 

competition in visual stimuli processing. Acta Neurobiologiae Experimentalis, 

77(4), 305–316. https://doi.org/10.21307/ane-2017-063 

Lim, S. L., O’Doherty, J. P., & Rangel, A. (2011). The decision value computations 

in the vmPFC and striatum use a relative value code that is guided by visual 

attention. Journal of Neuroscience, 31(37), 13214–13223. 

https://doi.org/10.1523/JNEUROSCI.1246-11.2011 

Lin, A., Adolphs, R., & Rangel, A. (2012). Social and monetary reward learning 

engage overlapping neural substrates. Social Cognitive and Affective 

Neuroscience, 7(3), 274–281. https://doi.org/10.1093/scan/nsr006 

Lin, H., & Vartanian, O. (2017). A Neuroeconomic Framework for Creative 

Cognition. BioRxiv, 53(9), 1–43. 

Linden, D. E. J. (2005). The P300: Where in the brain is it produced and what does it 

tell us? Neuroscientist, 11(6), 563–576. 

https://doi.org/10.1177/1073858405280524 

Lithari, C., Pappas, C., Bamidis, P. D., Ioannides, A. A., Kourtidou-Papadeli, C., 

Frantzidis, C. A., Vivas, A. B., Klados, M. A., & Papadelis, C. (2010). Are 

Females More Responsive to Emotional Stimuli? A Neurophysiological Study 

Across Arousal and Valence Dimensions. Brain Topography, 23(1), 27–40. 

https://doi.org/10.1007/s10548-009-0130-5 

Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks 

underlying reward valence and processing stages: A meta-analysis of functional 

neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35(5), 1219–

1236. https://doi.org/10.1016/j.neubiorev.2010.12.012 



 

268  

Livermore, J. J. A., Klaassen, F. H., Bramson, B., Hulsman, A. M., Meijer, S. W., 

Held, L., Klumpers, F., de Voogd, L. D., & Roelofs, K. (2021). Approach-

Avoidance Decisions Under Threat: The Role of Autonomic 

Psychophysiological States. Frontiers in Neuroscience, 15, 1–12. 

https://doi.org/10.3389/fnins.2021.621517 

Liversedge, S. P., & Findlay, J. M. (2000). Saccadic eye movements and cognition. 

Trends in Cognitive Sciences, 4(1), 6–14. https://doi.org/10.1016/S1364-

6613(99)01418-7 

Lobaugh, N. J., West, R., & McIntosh, A. R. (2001). Spatiotemporal analysis of 

experimental differences in event-related potential data with partial least 

squares. Psychophysiology, 38(3), 517–530. 

https://doi.org/10.1017/S0048577201991681 

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. 

(2000). Molecular Cell Biology. In W. H. Freeman (4th edition). W. H. 

Freeman. 

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). 

Neurophysiological investigation of the basis of the fMRI signal. Nature, 

412(6843), 150–157. https://doi.org/10.1038/35084005 

Lopez Rincon, A., & Shimoda, S. (2016). The inverse problem in 

electroencephalography using the bidomain model of electrical activity. Journal 

of Neuroscience Methods, 274, 94–105. 

https://doi.org/10.1016/j.jneumeth.2016.09.011 

Luck, S. J. (2005). An Introduction to the Event-related Potential Technique. MIT 

Press: Cambridge. https://books.google.co.uk/books?id=r-BqAAAAMAAJ 

Lusk, J. L., Feldkamp, T., & Schroeder, T. C. (2004). Experimental auction 

procedure: Impact on valuation of quality differentiated goods. American 

Journal of Agricultural Economics, 86(2), 389–405. 

https://doi.org/10.1111/j.0092-5853.2004.00586.x 

Lystad, R. P., & Pollard, H. (2009). Functional neuroimaging: a brief overview and 

feasibility for use in chiropractic research. The Journal of the Canadian 

Chiropractic Association, 53(1), 59–72. 

http://www.ncbi.nlm.nih.gov/pubmed/19421353%0Ahttp://www.pubmedcentra



 

269  

l.nih.gov/articlerender.fcgi?artid=PMC2652631 

Ma, Y., Jin, J., Yu, W., Zhang, W., Xu, Z., & Ma, Q. (2018). How Is the Neural 

Response to the Design of Experience Goods Related to Personalized 

Preference? An Implicit View. Frontiers in Neuroscience, 12, 1–8. 

https://doi.org/10.3389/fnins.2018.00760 

Maas, J., de Ridder, D. T. D., de Vet, E., & de Wit, J. B. F. (2012). Do distant foods 

decrease intake? The effect of food accessibility on consumption. Psychology 

and Health, 27(SUPPL. 2), 59–73. 

https://doi.org/10.1080/08870446.2011.565341 

Mahesan, D., Chawla, M., & Miyapuram, K. P. (2016). The effect of reward 

information on perceptual decision-making. In A. Hirose, S. Ozawa, K. Doya, 

K. Ikeda, M. Lee, & D. Liu (Eds.), Neural Information Processing ICONIP 

2016, Part IV (pp. 156–163). Springer International Publishing. 

Makeig, S., Bell, A., Jung, T.-P. & Sejnowski, T. (1996). Independent Component 

Analysis of Electroencephalographic Data. Advances in Neural Information 

Processing Systems, 2(3), 1548–1551. 

https://doi.org/10.1109/ICOSP.2002.1180091 

Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related 

brain dynamics. Trends in Cognitive Sciences, 8(5), 204–210. 

https://doi.org/10.1016/j.tics.2004.03.008 

Makeig, S., Gramann, K., Jung, T-P., Sejnowski, T. & Poizner, H. (2009). Linking 

brain, mind and behavior. International Journal of Psychophysiology, 73(2), 

95–100. https://doi.org/10.1016/j.ijpsycho.2008.11.008.Linking 

Makeig, S. & Jung, T.-P. (1996). Tonic, phasic and transient EEG correlates of 

auditory awareness in drowsiness. Cognitive Brain Research, 4, 15–25. 

Makeig, S., & Onton, J. (2011). ERP Features and EEG Dynamics. The Oxford 

Handbook of Event-Related Potential Components, July, 1–37. 

http://oxfordhandbooks.com/view/10.1093/oxfordhb/9780195374148.001.0001/

oxfordhb-9780195374148-e-003 

Makeig, S., Westerfield, M., Townsend, J., Jung, T. P., Courchesne, E., & 

Sejnowski, T. J. (1999). Functionally independent components of early event-

related potentials in a visual spatial attention task. Philosophical Transactions 

https://doi.org/10.1109/ICOSP.2002.1180091
https://doi.org/10.1016/j.ijpsycho.2008.11.008.Linking
http://oxfordhandbooks.com/view/10.1093/oxfordhb/9780195374148.001.0001/oxfordhb-9780195374148-e-003
http://oxfordhandbooks.com/view/10.1093/oxfordhb/9780195374148.001.0001/oxfordhb-9780195374148-e-003


 

270  

of the Royal Society B: Biological Sciences, 354(1387), 1135–1144. 

https://doi.org/10.1098/rstb.1999.0469 

Makeig, S., Westerfield, M., Jung, T. P., Enghoff, S., Townsend, J., Courchesne, E., 

& Sejnowski, T. J. (2002). Dynamic brain sources of visual evoked responses. 

Science, 295(5555), 690–694. https://doi.org/10.1126/science.1066168 

Marini, F., Lee, C., Wagner, J., Makeig, S., & Gola, M. (2019). A comparative 

evaluation of signal quality between a research-grade and a wireless dry-

electrode mobile EEG system. Journal of Neural Engineering, 16(5). 

https://doi.org/10.1088/1741-2552/ab21f2 

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and 

MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. 

https://doi.org/10.1016/j.jneumeth.2007.03.024 

Marquardt, D. (1963). An Algorithm for Least-Squares Estimation of Nonlinear 

Parameters. Journal of the Society for Industrial and Applied Mathematics, 

11(2), 431–441. 

Marshall, A. (1890). Principles of Economics (Issue v. 1). Macmillan and Company. 

https://books.google.co.uk/books?id=bykoAAAAYAAJ 

Martínez-Vispo, C., Martínez, Ú., López-Durán, A., Fernández del Río, E., & 

Becoña, E. (2018). Effects of behavioural activation on substance use and 

depression: A systematic review. Substance Abuse: Treatment, Prevention, and 

Policy, 13(1), 1–13. https://doi.org/10.1186/s13011-018-0173-2 

Martins, J. M., Yusuf, F., & Swanson, D. A. (2011). Consumer Demographics and 

Behaviour: Markets are People. Springer: Netherlands. 

https://books.google.co.uk/books?id=80FtZVMIDZgC 

Marzi, T., & Viggiano, M. P. (2007). Interplay between familiarity and orientation in 

face processing: An ERP study. International Journal of Psychophysiology, 

65(3), 182–192. https://doi.org/10.1016/j.ijpsycho.2007.04.003 

Maslow, A. H., Frager, R., Holtzman, W. G., & Murphy, G. (1970). Motivation and 

Personality. Harper & Row. 

https://books.google.co.uk/books?id=0V5qAAAAMAAJ 

McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. 

R. (2004). Neural correlates of behavioral preference for culturally familiar 

https://doi.org/10.1098/rstb.1999.0469


 

271  

drinks. Neuron, 44(2), 379–387. https://doi.org/10.1016/j.neuron.2004.09.019 

McGinty, V. B., Rangel, A., & Newsome, W. T. (2016). Orbitofrontal Cortex Value 

Signals Depend on Fixation Location during Free Viewing. Neuron, 90(6), 

1299–1311. https://doi.org/10.1016/j.neuron.2016.04.045 

Mckinnon, A. I., Gray, N. S., & Snowden, R. J. (2020). Enhanced emotional 

response to both negative and positive images in post-traumatic stress disorder: 

Evidence from pupillometry. Biological Psychology, 154, 107922. 

https://doi.org/10.1016/j.biopsycho.2020.107922 

McNay, D., Michielssen, E., Rogers, R. L., Taylor, S. A., Akhtari, M., & Sutherling, 

W. W. (1996). Multiple source localization using genetic algorithms. Journal of 

Neuroscience Methods, 64(2), 163–172. https://doi.org/10.1016/0165-

0270(95)00122-0 

Meilinger, T., Berthoz, A., & Wiener, J. M. (2011). The integration of spatial 

information across different viewpoints. Memory and Cognition, 39(6), 1042–

1054. https://doi.org/10.3758/s13421-011-0088-x 

Melcher, D. (2007). Predictive remapping of visual features precedes saccadic eye 

movements. Nature Neuroscience, 10(7), 903–907. 

https://doi.org/10.1038/nn1917 

Melcher, D., & Colby, C. L. (2008). Trans-saccadic perception. Trends in Cognitive 

Sciences, 12(12), 466–473. https://doi.org/10.1016/j.tics.2008.09.003 

Mendelsohn, A., Pine, A., & Schiller, D. (2014). Between Thoughts and Actions: 

Motivationally Salient Cues Invigorate Mental Action in the Human Brain. 

Neuron, 81(1), 207–217. https://doi.org/10.1016/j.neuron.2013.10.019 

Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000). 

Dissociating prefrontal and parietal cortex activation during arithmetic 

processing. NeuroImage, 12(4), 357–365. 

https://doi.org/10.1006/nimg.2000.0613 

Michon, R., Chebat, J. C., & Turley, L. W. (2005). Mall atmospherics: The 

interaction effects of the mall environment on shopping behavior. Journal of 

Business Research, 58(5), 576–583. 

https://doi.org/10.1016/j.jbusres.2003.07.004 

Milosavljevic, M., Koch, C., & Rangel, A. (2011). Consumers can make decisions in 



 

272  

as little as a third of a second. Judgement and Decision Making, 6(6), 520–530. 

Milosavljevic, M., Malmaud, J., Huth, A., Koch, C., & Rangel, A. (2010). The drift 

diffusion model can account for value-based choice response times under high 

and low time pressure. Judgement & Decision Making, 5(6), 437–449. 

https://www.researchgate.net/profile/Alexander_Huth/publication/47630977_T

he_Drift_Diffusion_Model_Can_Account_for_the_Accuracy_and_Reaction_Ti

me_of_Value-

Based_Choices_Under_High_and_Low_Time_Pressure/links/0046352f10dfd42

4ce000000.pdf 

Milosavljevic, M., Navalpakkam, V., Koch, C., & Rangel, A. (2012). Relative visual 

saliency differences induce sizable bias in consumer choice. Journal of 

Consumer Psychology, 22(1), 67–74. https://doi.org/10.1016/j.jcps.2011.10.002 

Minati, L., Grisoli, M., Franceschetti, S., Epifani, F., Granvillano, A., Medford, N., 

Harrison, N. A., Piacentini, S., & Critchley, H. D. (2012). Neural signatures of 

economic parameters during decision-Making: A functional MRI (fMRI), 

electroencephalography (EEG) and autonomic monitoring study. Brain 

Topography, 25(1), 73–96. https://doi.org/10.1007/s10548-011-0210-1 

Minguillon, J., Lopez-Gordo, M. A., & Pelayo, F. (2017). Trends in EEG-BCI for 

daily-life: Requirements for artifact removal. Biomedical Signal Processing and 

Control, 31(January), 407–418. https://doi.org/10.1016/j.bspc.2016.09.005 

Mlot, E. G., Bahmani, H., Wahl, S., & Kasneci, E. (2016). 3D gaze estimation using 

eye vergence. HEALTHINF 2016 - 9th International Conference on Health 

Informatics, Proceedings; Part of 9th International Joint Conference on 

Biomedical Engineering Systems and Technologies, BIOSTEC 2016, January, 

125–131. https://doi.org/10.5220/0005821201250131 

Mohamed, A., Da Silva, M., & Courboulay, V. (2007). A history of eye gaze 

tracking Abdallahi Ould Mohamed. May, 1–19. http://hal.archives-

ouvertes.fr/docs/00/21/59/67/PDF/Rapport_interne_1.pdf 

Mongin, P. (1998). Expected Utility Theory. Handbook of Economic Methodology, 

342–350. https://doi.org/10.2139/ssrn.1033982 

Montague, P. R., & Berns, G. S. (2002). Neural economics and the biological 

substrates of valuation. Neuron, 36(2), 265–284. https://doi.org/10.1016/S0896-



 

273  

6273(02)00974-1 

Morrin, M., & Ratneshwar, S. (2000). The Impact of Ambient Scent on Evaluation, 

Attention, and Memory for Familiar and Unfamiliar Brands. Journal of 

Business Research, 49, 157–165. 

Morris, R. W., Dezfouli, A., Griffiths, K. R., & Balleine, B. W. (2014). Action-value 

comparisons in the dorsolateral prefrontal cortex control choice between goal-

directed actions. Nature Communications, 5. 

https://doi.org/10.1038/ncomms5390 

Moscati, I. (2016). Retrospectives: How economists came to accept expected utility 

theory: The case of samuelson and savage. Journal of Economic Perspectives, 

30(2), 219–236. https://doi.org/10.1257/jep.30.2.219 

Mosher, J. C., Leahy, R. M., & Lewis, P. S. (1999). EEG and MEG: Forward 

solutions for inverse methods. IEEE Transactions on Biomedical Engineering, 

46(3), 245–259. https://doi.org/10.1109/10.748978 

Murphy, A. P., Ban, H., & Welchman, A. E. (2013). Integration of texture and 

disparity cues to surface slant in dorsal visual cortex. Journal of 

Neurophysiology, 110(1), 190–203. https://doi.org/10.1152/jn.01055.2012 

Mussweiler, T., & Strack, F. (2000). Numeric Judgments under Uncertainty: The 

Role of Knowledge in Anchoring. Journal of Experimental Social Psychology, 

36(5), 495–518. https://doi.org/10.1006/jesp.1999.1414 

Natraj, N., Alterman, B., Basunia, S., & Wheaton, L. A. (2018). The Role of 

Attention and Saccades on Parietofrontal Encoding of Contextual and Grasp-

specific Affordances of Tools: An ERP Study. Neuroscience, 394, 243–266. 

https://doi.org/10.1016/j.neuroscience.2018.10.019 

Nayeem, T. (2012). Cultural Influences on Consumer Behaviour. International 

Journal of Business and Management, 7(21), 78–91. 

https://doi.org/10.5539/ijbm.v7n21p78 

Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution : Insights 

from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral 

Neuroscience 2007, 7(1), 1–17. 

Neisser, U. (1976). Cognition and reality: Principles and implications of cognitive 

psychology. In Cognition and reality: Principles and implications of cognitive 



 

274  

psychology. W H Freeman/Times Books/ Henry Holt & Co. 

Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. 

The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308 

Niehorster, D. C., Santini, T., Hessels, R. S., Hooge, I. T. C., Kasneci, E., & 

Nyström, M. (2020). The impact of slippage on the data quality of head-worn 

eye trackers. Behavior Research Methods, 52(3), 1140–1160. 

https://doi.org/10.3758/s13428-019-01307-0 

Nijs, I. M. T., Franken, I. H. A., & Muris, P. (2009). Enhanced processing of food-

related pictures in female external eaters. Appetite, 53(3), 376–383. 

https://doi.org/10.1016/j.appet.2009.07.022 

Nikolaev, A. R., Jurica, P., Nakatani, C., Plomp, G., & Van Leeuwen, C. (2013). 

Visual encoding and fixation target selection in free viewing: Presaccadic brain 

potentials. Frontiers in Systems Neuroscience, 7, 1–12. 

https://doi.org/10.3389/fnsys.2013.00026 

Nikolaev, A. R., Meghanathan, R. N., & van Leeuwen, C. (2016). Combining EEG 

and eye movement recording in free viewing: Pitfalls and possibilities. Brain 

and Cognition, 107, 55–83. https://doi.org/10.1016/j.bandc.2016.06.004 

Nikolaev, A. R., Meghanathan, R. N., & van Leeuwen, C. (2018). Refixation control 

in free viewing: A specialized mechanism divulged by eye-movement-related 

brain activity. Journal of Neurophysiology, 120(5), 2311–2324. 

https://doi.org/10.1152/jn.00121.2018 

Nikolaev, A. R., Nakatani, C., Plomp, G., Jurica, P., & van Leeuwen, C. (2011). Eye 

fixation-related potentials in free viewing identify encoding failures in change 

detection. NeuroImage, 56(3), 1598–1607. 

https://doi.org/10.1016/j.neuroimage.2011.03.021 

Nikolaev, A. R., Pannasch, S., Ito, J., & Belopolsky, A. V. (2014). Eye movement-

related brain activity during perceptual and cognitive processing. Frontiers in 

Systems Neuroscience, 8(1 APR), 2013–2014. 

https://doi.org/10.3389/fnsys.2014.00062 

Noble, S. M., Griffith, D. A., & Weinberger, M. G. (2005). Consumer derived 

utilitarian value and channel utilization in a multi-channel retail context. 

Journal of Business Research, 58(12), 1643–1651. 



 

275  

https://doi.org/10.1016/j.jbusres.2004.10.005 

Noseworthy, T. J., Muro, F. Di, & Murray, K. B. (2014). The role of arousal in 

congruity-based product evaluation. Journal of Consumer Research, 41(4), 

1108–1126. https://doi.org/10.1086/678301 

Nunez, P. L., Nunez, M. D., & Srinivasan, R. (2019). Multi-Scale Neural Sources of 

EEG: Genuine, Equivalent, and Representative. A Tutorial Review. Brain 

Topography, 32(2), 193–214. https://doi.org/10.1007/s10548-019-00701-3 

Nunez, P., & Srinivasan, R. (2006). Electric Fields of the Brain: The neurophysics of 

EEG. In Electric Fields of the Brain: The neurophysics of EEG. 

https://doi.org/10.1093/acprof:oso/9780195050387.001.0001 

Nwankwo, S., Hamelin, N., & Khaled, M. (2014). Consumer values, motivation and 

purchase intention for luxury goods. Journal of Retailing and Consumer 

Services, 21(5), 735–744. https://doi.org/10.1016/j.jretconser.2014.05.003 

Oberauer, K. (2019). Working Memory and Attention – A Conceptual Analysis and 

Review. Journal of Cognition, 2(1), 1–23. https://doi.org/10.5334/joc.58 

Ojeda, A., Bigdely-Shamlo, N., & Makeig, S. (2014). MoBILAB: an open source 

toolbox for analysis and visualization of mobile brain/body imaging data. 

Frontiers in Human Neuroscience, 8, 121. 

https://doi.org/10.3389/fnhum.2014.00121 

Olejniczak, P. (2006). Neurophysiologic basis of EEG. Journal of Clinical 

Neurophysiology, 23(3), 186–189. 

https://doi.org/10.1097/01.wnp.0000220079.61973.6c 

Oliveira, A. S., Schlink, B. R., Hairston, W. D., König, P., & Ferris, D. P. (2016). 

Proposing metrics for benchmarking novel EEG technologies towards real-

world measurements. Frontiers in Human Neuroscience, 10, 1–15. 

https://doi.org/10.3389/fnhum.2016.00188 

Onishi, A., & Nakagawa, S. (2019). How does the degree of valence influence 

affective auditory P300-based BCIs? Frontiers in Neuroscience, 13, 1–8. 

https://doi.org/10.3389/fnins.2019.00045 

Orlov, T., & Zohary, E. (2018). Object representations in human visual cortex 

formed through temporal integration of dynamic partial shape views. Journal of 

Neuroscience, 38(3), 659–678. https://doi.org/10.1523/JNEUROSCI.1318-



 

276  

17.2017 

Padoa-Schioppa, C. (2011). Neurobiology of economic choice: a good-based model. 

Annual Review of Neuroscience, 34, 333–359. https://doi.org/10.1146/annurev-

neuro-061010-113648 

Padoa-Schioppa, C. (2013). Neuronal origins of choice variability in economic 

decisions. Neuron, 80(5), 1322–1336. 

https://doi.org/10.1016/j.neuron.2013.09.013 

Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the orbitofrontal cortex 

encode economic value. Nature, 441(7090), 223–226. 

https://doi.org/10.1038/nature04676 

Padoa-Schioppa, C., & Cai, X. (2011). The orbitofrontal cortex and the computation 

of subjective value: Consolidated concepts and new perspectives. Annals of the 

New York Academy of Sciences, 1239(1), 130–137. 

https://doi.org/10.1111/j.1749-6632.2011.06262.x 

Padoa-Schioppa, C., & Conen, K. E. (2017). Orbitofrontal Cortex: A Neural Circuit 

for Economic Decisions. Neuron, 96(4), 736–754. 

https://doi.org/10.1016/j.neuron.2017.09.031 

Painter, J. E., Wansink, B., & Hieggelke, J. B. (2002). How visibility and 

convenience influence candy consumption. Appetite, 38(3), 237–238. 

https://doi.org/10.1006/appe.2002.0485 

Palmer, J. A., Makeig, S., Kreutz-Delgado, K., & Rao, B. D. (2008). Newton method 

for the ica mixture model. ICASSP, IEEE International Conference on 

Acoustics, Speech and Signal Processing - Proceedings, 1805–1808. 

https://doi.org/10.1109/ICASSP.2008.4517982 

Palmer, J., Kreutz-Delgado, K., & Makeig, S. (2011). AMICA: An Adaptive 

Mixture of Independent Component Analyzers with Shared Components. San 

Diego, CA: Technical Report, Swartz Center for Computational Neuroscience, 

January, 1–15. 

http://sccn.ucsd.edu/~jason/amica_a.pdf%5Cnpapers2://publication/uuid/E6296

FC1-7F6B-400C-85D0-3A292A27F710 

Parada, F.J., Grasso-Cladera, A., Rossi, A., Costa-Cordella, S., & Fuchs, N. F. 

(2020). Mobile Brain/Body Imaging (MoBI): Epistemological and 2 



 

277  

methodological challenges and opportunities for the implementation 3 of 

research programs based on the 4E approach to cognition. PsyArXiv Preprints, 

4(434), 1–2. 

Parada, F. J. (2018). Understanding Natural Cognition in Everyday Settings: 3 

Pressing Challenges. Frontiers in Human Neuroscience, 12, 1–5. 

https://doi.org/10.3389/fnhum.2018.00386 

Park, J. L., & Donaldson, D. I. (2019). Detecting the neural correlates of episodic 

memory with mobile EEG: Recollecting objects in the real world. NeuroImage, 

193, 1–9. https://doi.org/10.1016/j.neuroimage.2019.03.013 

Park, J. L., Dudchenko, P. A., & Donaldson, D. I. (2018). Navigation in real-world 

environments: New opportunities afforded by advances in mobile brain 

imaging. Frontiers in Human Neuroscience, 12, 1–12. 

https://doi.org/10.3389/fnhum.2018.00361 

Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: Selected 

studies of the Event-Related Potential. International Journal of Medical 

Sciences, 2(4), 147–154. https://doi.org/10.7150/ijms.2.147 

Pauwels, K., & Neslin, S. A. (2015). Building With Bricks and Mortar: The Revenue 

Impact of Opening Physical Stores in a Multichannel Environment. Journal of 

Retailing, 91(2), 182–197. https://doi.org/10.1016/j.jretai.2015.02.001 

Peck, J., & Wiggins, J. (2006). It just feels good: Customers’ affective response to 

touch and its influence on persuasion. Journal of Marketing, 70(4), 56–69. 

https://doi.org/10.1509/jmkg.70.4.56 

Pessiglione, M., & Delgado, Mauricio. (2015). The good, the bad and the brain: 

Neural correlates of appetitive and aversive values underlying decision making. 

Current Opinion in Behavioural Sciences, 5, 78–84. 

https://doi.org/10.1016/j.cobeha.2015.08.006.The 

Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception 

and cognition. Frontiers in Neuroscience, 4, 1–17. 

https://doi.org/10.3389/fnins.2010.00017 

Peters, J., & Büchel, C. (2010). Neural representations of subjective reward value. 

Behavioural Brain Research, 213(2), 135–141. 

https://doi.org/10.1016/j.bbr.2010.04.031 



 

278  

Peters, Jan, & Büchel, C. (2009). Overlapping and distinct neural systems code for 

subjective value during intertemporal and risky decision making. Journal of 

Neuroscience, 29(50), 15727–15734. 

https://doi.org/10.1523/JNEUROSCI.3489-09.2009 

Petit, O., Basso, F., Merunka, D., Spence, C., Cheok, A., & & Oullier, O. (2016). 

Understanding the Acceptance of Mobile SMS Advertising among Young 

Chinese Consumers. Psychology & Marketing, 33(8), 608–619. 

https://doi.org/10.1002/mar 

Pexman, P. M., Hargreaves, I. S., Edwards, J. D., Henry, L. C., & Goodyear, B. G. 

(2007). The Neural Consequences of Semantic Richness When More Comes to 

Mind , Less Activation Is Observed. Psychological science,18(5), 401–407. 

Philiastides, M. G., & Heekeren, H. R. (2009). Spatiotemporal characteristics of 

perceptual decision making in the human brain. In Handbook of Reward and 

Decision Making. Elsevier Inc. https://doi.org/10.1016/B978-0-12-374620-

7.00008-X 

Philiastides, M. G., & Ratcliff, R. (2013). Influence of Branding on Preference-

Based Decision Making. Psychological Science, 24(7), 1208–1215. 

https://doi.org/10.1177/0956797612470701 

Picton, T., Bentin, S., & Berg, P. (2000). Guidelines for using human event‐related 

potentials to study cognition: Recording standards and publication criteria. 

Psychophysiology, 37, 127–152. https://doi.org/doi/10.1111/1469-

8986.3720127 

Plassman, H., Kenning, P., & Ahlert, D. (2007). Why companies should make their 

customers happy: The neural correlates of customer loyalty. Advances in 

Consumer Research, 34, 735–739. 

Plassmann, H., O’Doherty, J., & Rangel, A. (2007). Orbitofrontal Cortex Encodes 

Willingness to Pay in Everyday Economic Transactions. Journal of 

Neuroscience, 27(37), 9984–9988. https://doi.org/10.1523/JNEUROSCI.2131-

07.2007 

Plassmann, H., O’Doherty, J., & Rangel, A. (2010). Appetitive and aversive goal 

values are encoded in the medial orbitofrontal cortex at the time of decision 

making. The Journal of Neuroscience, 30(32), 10799–10808. 



 

279  

https://doi.org/10.1523/JNEUROSCI.0788-10.2010 

Plassmann, H., Ramsøy, T. &, & Milosavljevic, M. (2012). Branding the brain: A 

critical review and outlook. Journal of Consumer Psychology, 22(1), 18–36. 

https://doi.org/10.1016/j.jcps.2011.11.010 

Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can 

modulate neural representations of experienced pleasantness. Proceedings of 

the National Academy of Sciences of the United States of America, 105(3), 

1050–1054. https://doi.org/10.1073/pnas.0706929105 

Plöchl, M., Ossandón, J. P., & König, P. (2012). Combining EEG and eye tracking: 

Identification, characterization, and correction of eye movement artifacts in 

electroencephalographic data. Frontiers in Human Neuroscience, 6, 1–23. 

https://doi.org/10.3389/fnhum.2012.00278 

Polanía, R., Krajbich, I., Grueschow, M., & Ruff, C. C. (2014). Neural Oscillations 

and Synchronization Differentially Support Evidence Accumulation in 

Perceptual and Value-Based Decision Making. Neuron, 82(3), 709–720. 

https://doi.org/10.1016/j.neuron.2014.03.014 

Polezzi, D., Lotto, L., Daum, I., Sartori, G., & Rumiati, R. (2008). Predicting 

outcomes of decisions in the brain. Behavioural Brain Research, 187(1), 116–

122. https://doi.org/10.1016/j.bbr.2007.09.001 

Polich, J. (2007). Updating P300: An Integrative Theory of P3a and P3b. Clinical 

Neurophysiology, 118(10), 2128–2148. 

https://doi.org/10.1016/j.clinph.2007.04.019.Updating 

Polich, J., Alexander, J. E., Bauer, L. O., Kuperman, S., Morzorati, S., O’Connor, S. 

J., Porjesz, B., Rohrbaugh, J., & Begleiter, H. (1997). P300 topography of 

Amplitude/Latency correlations. Brain Topography, 9(4), 275–282. 

https://doi.org/10.1007/BF01464482 

Pozharliev, R., Verbeke, W. J. M. I., Strien, J. W. Van, & Bagozzi, R. P. (2015). 

Merely Being with You Increases My Attention to Luxury Products: Using 

EEG to Understand Consumers’ Emotional Experience with Luxury Branded 

Products. Journal of Marketing Research, 52(4), 546–558. 

https://doi.org/10.1509/JMR.13.0560 

Pradeep, A. K. (2010). The Buying Brain: Secrets for Selling to the Subconscious 



 

280  

Mind. Wiley. https://books.google.co.uk/books?id=-1juDwAAQBAJ 

Prime, S. L., Vesia, M., & Crawford, J. D. (2011). Cortical mechanisms for trans-

saccadic memory and integration of multiple object features. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 366(1564), 540–553. 

https://doi.org/10.1098/rstb.2010.0184 

Protzak, J., & Gramann, K. (2018). Investigating established EEG parameter during 

real-world driving. Frontiers in Psychology, 9, 1–11. 

https://doi.org/10.3389/fpsyg.2018.02289 

Pushkarskaya, H., Tolin, D., Ruderman, L., Henick, D., Kelly, J. M., Pittenger, C., 

Levy, I., Haven, N., Haven, N., Haven, N., Hospital, H., Haven, N., & Haven, 

N. (2017). Value-based decision making under uncertainty in hoarding and 

obsessive-compulsive disorders. Psychiatry Research, 258, 305–315. 

https://doi.org/10.1016/j.psychres.2017.08.058.Value-based 

Puto, C. P. (1987). The Framing of Buying Decisions. Journal of Consumer 

Research, 14(3), 301–315. 

Raney, G. E., Campbell, S. J., & Bovee, J. C. (2014). Using eye movements to 

evaluate the cognitive processes involved in text comprehension. Journal of 

Visualized Experiments, 83, 1–7. https://doi.org/10.3791/50780 

Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the 

neurobiology of value-based decision making. Nature Reviews Neuroscience, 

9(7), 545–556. https://doi.org/10.1038/nrn2357 

Rangel, A., & Hare, T. (2010). Neural computations associated with goal-directed 

choice. Current Opinion in Neurobiology, 20(2), 262–270. 

https://doi.org/10.1016/j.conb.2010.03.001 

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–

108. 

Ray, S., Bhutani, N., Kapoor, V., & Murthy, A. (2011). Trans-saccadic processing of 

visual and motor planning during sequential eye movements. Experimental 

Brain Research, 215(1), 13–25. https://doi.org/10.1007/s00221-011-2866-x 

Reis, P. M. R., Hebenstreit, F., Gabsteiger, F., Von Tscharner, V., Lochmann, M., 

König, P., & Busan, P. (2014). Methodological aspects of EEG and body 

dynamics measurements during motion. Frontiers in human neuroscience, 8, 1-



 

281  

156. https://doi.org/10.3389/fnhum.2014.00156 

Reiser, J. E., Wascher, E., & Arnau, S. (2019). Recording mobile EEG in an outdoor 

environment reveals cognitive-motor interference dependent on movement 

complexity. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-

49503-4 

Rellecke, J., Palazova, M., Sommer, W., & Schacht, A. (2011). On the automaticity 

of emotion processing in words and faces: Event-related brain potentials 

evidence from a superficial task. Brain and Cognition, 77(1), 23–32. 

https://doi.org/10.1016/j.bandc.2011.07.001 

Ries, A. J., Slayback, D., & Touryan, J. (2018a). The Effect of Visual Task 

Difficulty on the Fixation-Related Lambda Response. 2016 49th Hawaii 

International Conference on System Sciences (HICSS), ARL-TR-829, 1226–

1235. https://apps.dtic.mil/sti/citations/AD1048416 

Ries, A. J., Slayback, D., & Touryan, J. (2018b). The fixation-related lambda 

response: Effects of saccade magnitude, spatial frequency, and ocular artifact 

removal. International Journal of Psychophysiology, 134, 1–8. 

https://doi.org/10.1016/j.ijpsycho.2018.09.004 

Rigoni, D., Polezzi, D., Rumiati, R., Guarino, R., & Sartori, G. (2010). When people 

matter more than money: An ERPs study. Brain Research Bulletin, 81(4–5), 

445–452. https://doi.org/10.1016/j.brainresbull.2009.12.003 

Roberts, H., Soto, V., Tyson-Carr, J., Kokmotou, K., Cook, S., Fallon, N., 

Giesbrecht, T., & Stancak, A. (2018). Tracking Economic Value of Products in 

Natural Settings: A Wireless EEG Study. Frontiers in Neuroscience, 12, 1–16. 

https://doi.org/10.3389/fnins.2018.00910 

Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An 

incentive-sensitization theory of addiction. Brain Research Reviews, 18(3) 247–

291. https://doi.org/10.1016/0165-0173(93)90013-P 

Robles, D., Kuziek, J., Wlasitz, N., Bartlett, N., Hurd, P., & Mathewson, K. (2020). 

EEG in Motion: Using an Oddball Task to Explore Motor Interference in Active 

Skateboarding. https://doi.org/10.1101/2020.06.08.136960 

Rossion, B., Kung, C. C., & Tarr, M. J. (2004). Visual expertise with nonface objects 

leads to competition with the early perceptual processing of faces in the human 



 

282  

occipitotemporal cortex. Proceedings of the National Academy of Sciences of 

the United States of America, 101(40), 14521–14526. 

https://doi.org/10.1073/pnas.0405613101 

Rozan, A., Stenger, A., & Willinger, M. (2004). Willingness-to-pay for food safety: 

An experimental investigation of quality certification on bidding behaviour. 

European Review of Agricultural Economics, 31(4), 409–425. 

https://doi.org/10.1093/erae/31.4.409 

Rozin, P., & Royzman, E. B. (2001). Negativity bias, negativity dominance, and 

contagion. Personality and Social Psychology Review, 5(4), 296–320. 

https://doi.org/10.1207/S15327957PSPR0504_2 

Ruff, C., & Fehr, E. (2014). The neurobiology of rewards and values in social 

decision making. Nature Reviews Neuroscience, 15(8), 549–562. 

https://doi.org/10.1038/nrn3776 

Rutherford, M. (2011). The Institutionalist Movement in American Economics, 

1918–1947: Science and Social Control. Cambridge University Press. 

https://books.google.co.uk/books?id=XfX72hARkpsC 

Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-

tracking protocols. Proceedings of the Symposium on Eye Tracking Research & 

Applications  - ETRA ’00, 71–78. https://doi.org/10.1145/355017.355028 

Samuelson, P. (1937). Note on Measurement of Utility. The Review of Economic 

Studies, 4(2), 155–161. https://doi.org/10.1016/0001-6918(58)90027-1 

San Martín, R. (2012). Event-related potential studies of outcome processing and 

feedback-guided learning. Frontiers in Human Neuroscience, 6, 1–40. 

https://doi.org/10.3389/fnhum.2012.00304 

Sanfey, A. G., Loewenstein, G., McClure, S. M., & Cohen, J. D. (2006). 

Neuroeconomics: Cross-currents in research on decision-making. Trends in 

Cognitive Sciences, 10(3), 108–116. https://doi.org/10.1016/j.tics.2006.01.009 

Saraiva, A. C., & Marshall, L. (2015). Dorsolateral–ventromedial prefrontal cortex 

interactions during value-guided choice: A function of context or difficulty? 

Journal of Neuroscience, 35(13), 5087–5088. 

https://doi.org/10.1523/JNEUROSCI.0271-15.2015 

Savage, L. J. (1954). The Foundations of Statistics. Wiley. 



 

283  

Scalf, P. E., Torralbo, A., Tapia, E., & Beck, D. M. (2013). Competition explains 

limited attention and perceptual resources: Implications for perceptual load and 

dilution theories. Frontiers in Psychology, 4, 1–9. 

https://doi.org/10.3389/fpsyg.2013.00243 

Schaefer, A., Buratto, L. G., Goto, N., & Brotherhood, E. V. (2016). The feedback-

related negativity and the P300 brain potential are sensitive to price expectation 

violations in a virtual shopping task. PLoS ONE, 11(9), 1–21. 

https://doi.org/10.1371/journal.pone.0163150 

Schaefer, M., Berens, H., Heinze, H. J., & Rotte, M. (2006). Neural correlates of 

culturally familiar brands of car manufacturers. NeuroImage, 31(2), 861–865. 

https://doi.org/10.1016/j.neuroimage.2005.12.047 

Schaefer, M., & Rotte, M. (2007). Thinking on luxury or pragmatic brand products: 

Brain responses to different categories of culturally based brands. Brain 

Research, 1165(1), 98–104. https://doi.org/10.1016/j.brainres.2007.06.038 

Schall, J. D. (2013). Production, Control, and Visual Guidance of Saccadic Eye 

Movements. ISRN Neurology, 2013, 1–17. https://doi.org/10.1155/2013/752384 

Scherg, M. (1990). Fundamentals of Dipole Source Potential analysis. In Auditory 

evoked magnetic fields and electric potentials (6th ed., pp. 40–69). 

Scherg, M., & Von Cramon, D. (1986). Evoked dipole source potentials of the 

human auditory cortex. Electroencephalography and Clinical Neurophysiology, 

65(5), 344–360. https://doi.org/10.1016/0168-5597(86)90014-6 

Scherg, M., Ille, N., Bornfleth, H., & Berg, P. (2002). Advanced Tools for Digital 

EEG Review: Journal of Clinical Neurophysiology, 19(2), 91–112. 

https://doi.org/10.1097/00004691-200203000-00001 

Schienele, A., Scharmuller, W., & Schwab, D. (2017). Clinical Neurophysiology 

Processing of visual food cues during bitter taste perception in female patients 

with binge-eating symptoms : A cross-modal ERP study. Clinical 

Neurophysiology, 128(11), 2184–2190. 

https://doi.org/10.1016/j.clinph.2017.08.017 

Schirmer, A., Teh, K. S., Wang, S., Vijayakumar, R., Ching, A., Nithianantham, D., 

Escoffier, N., & Cheok, A. D. (2011). Squeeze me, but don’t tease me: Human 

and mechanical touch enhance visual attention and emotion discrimination. 



 

284  

Social Neuroscience, 6(3), 219–230. 

https://doi.org/10.1080/17470919.2010.507958 

Schuermann, B, Endrass, T., & Kathmann, N. (2012). Neural correlates of feedback 

processing in decision-making under risk. Front Hum Neurosci, 6, 204. 

https://doi.org/10.3389/fnhum.2012.00204 

Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine 

neurons to reward and conditioned stimuli during successive steps of learning a 

delayed response task. The Journal of Neuroscience, 13(3), 900–913. 

https://doi.org/8441015 

Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Cacioppo, J. T., Ito, T., & Lang, P. 

J. (2000). Affective picture processing: The late positive potential is modulated 

by motivacional relevance. Psychophysiology, 37, 257–261. 

Seghier, M. L. (2013). The Angular Gyrus : Multiple Functions and Multiple 

Subdivisions. https://doi.org/10.1177/1073858412440596 

Severens, M., Nienhuis, B., Desain, P., & Duysens, J. (2012). Feasibility of 

measuring event Related Desynchronization with electroencephalography 

during walking. Proceedings of the Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, EMBS, May, 2764–2767. 

https://doi.org/10.1109/EMBC.2012.6346537 

Shaw, E. P., Rietschel, J. C., Hendershot, B. D., Pruziner, A. L., Miller, M. W., 

Hatfield, B. D., & Gentili, R. J. (2018). Measurement of attentional reserve and 

mental effort for cognitive workload assessment under various task demands 

during dual-task walking. Biological Psychology, 134, 39–51. 

https://doi.org/10.1016/j.biopsycho.2018.01.009 

Shenhav, A., Cohen, J. D., & Botvinick, M. M. (2016). Dorsal anterior cingulate 

cortex and the value of control. Nature Neuroscience, 19(10), 1286–1291. 

https://doi.org/10.1038/nn.4382 

Shenhav, Amitai, Dean Wolf, C. K., & Karmarkar, U. R. (2018). The evil of 

banality: When choosing between the mundane feels like choosing between the 

worst. Journal of Experimental Psychology: General, 147(12), 1892–1904. 

https://doi.org/10.1037/xge0000433 

Sherman, E., Mathur, A., & Smith, R. B. (1997). Store Environment and Consumer 



 

285  

Purchase Behavior: Mediating Role of Consumer Emotions. Psychology & 

Marketing, 14(4), 361–379. 

Shomstein, S. (2012). Cognitive functions of the posterior parietal cortex: Top-down 

and bottom-up attentional control. Frontiers in Integrative Neuroscience, 6, 1–

7. https://doi.org/10.3389/fnint.2012.00038 

Silayoi, P., & Speece, M. (2004). Packaging and purchase decisions An exploratory 

study on the impact of involvement level and time pressure. British Food 

Journal, 106(8), 607–628. 

Simola, J., Le Fevre, K., Torniainen, J., & Baccino, T. (2015). Affective processing 

in natural scene viewing: Valence and arousal interactions in eye-fixation-

related potentials. NeuroImage, 106, 21–33. 

https://doi.org/10.1016/j.neuroimage.2014.11.030 

Simola, J., Torniainen, J., Moisala, M., Kivikangas, M., & Krause, C. M. (2013). 

Eye movement related brain responses to emotional scenes during free viewing. 

Frontiers in Systems Neuroscience, 7(JUL), 1–16. 

https://doi.org/10.3389/fnsys.2013.00041 

Singh, H., & Singh, J. (2012). Human Eye Tracking and Related Issues: A Review. 

International Journal of Scientific and Research Publications, 2(1), 2250–3153. 

www.ijsrp.org 

Slama, M. E., & Tashchian, A. (1985). Selected Socioeconomic and Demographic 

Characteristics Associated with Purchasing Involvement. Journal of Marketing, 

49(1), 72. https://doi.org/10.2307/1251177 

Slotnick, S. D. (2005). Source localization of ERP generators. In T. C. Handy (Ed.), 

Event- Related Potentials: A Methods Handbook (pp. 149–166). The MIT 

Press. 

Small, D. M., Gitelman, D., Simmons, K., Bloise, S. M., Parrish, T., & Mesulam, M. 

M. (2005). Monetary incentives enhance processing in brain regions mediating 

top-down control of attention. Cerebral Cortex, 15(12), 1855–1865. 

https://doi.org/10.1093/cercor/bhi063 

Smith, A. (1759). The Theory of Moral Sentiments (D. Raphael & A. Macfie (eds.)). 

Liberty Press. 

Smith, N., Cacioppo, J., Larsen, J., & Chartrand, T. (2003). May I have your 



 

286  

attention, please: Electrocortical responses to positive and negative stimuli. 

Neuropsychologia, 41(2), 171–183. https://doi.org/10.1016/S0028-

3932(02)00147-1 

Smith, D. V., Hayden, B. Y., Truong, T. K., Song, A. W., Platt, M. L., & Huettel, S. 

A. (2010). Distinct value signals in anterior and posterior ventromedial 

prefrontal cortex. Journal of Neuroscience, 30(7), 2490–2495. 

https://doi.org/10.1523/JNEUROSCI.3319-09.2010 

Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., & 

Phelps, E. a. (2009). Thinking like a trader selectively reduces individuals’ loss 

aversion. Proceedings of the National Academy of Sciences of the United States 

of America, 106(13), 5035–5040. https://doi.org/10.1073/pnas.0806761106 

Soon, C. S., Brass, M., Heinze, H. J., & Haynes, J. D. (2008). Unconscious 

determinants of free decisions in the human brain. Nature Neuroscience, 11(5), 

543–545. https://doi.org/10.1038/nn.2112 

Soto, V., Tyson-Carr, J., Kokmotou, K., Roberts, H., Cook, S., Fallon, N., 

Giesbrecht, T., & Stancak, A. (2018). Brain responses to emotional faces in 

natural settings: A wireless mobile EEG recording study. Frontiers in 

Psychology, 9. https://doi.org/10.3389/fpsyg.2018.02003 

Speckman, E.-J., Elger, C., & Gorgi, A. (2011). Neurophysiologic Basis of EEG and 

DC Potentials. In D. Schomer & F. Lopes da Silva (Eds.), Niedermeyer’s 

Electroencephalography: Basic Principles, Clinical Applications, and Related 

Fields: Sixth Edition (pp. 17–32). Wolters Kluwer LIPPINCOTT WILLIAMS 

& WILKINS,. 

Spencer, K. M., Dien, J., & Donchin, E. (2001). Spatiotemporal analysis of the late 

ERP responses to deviant stimuli. Psychophysiology, 38(2), 343–358. 

https://doi.org/10.1017/S0048577201000324 

Stancak, A., Hoechstetter, K., Tintera, J., Vrana, J., Rachmanova, R., Kralik, J., & 

Scherg, M. (2002). Source activity in the human secondary somatosensory 

cortex depends on the size of corpus callosum. Brain Research, 936(1–2), 47–

57. https://doi.org/10.1016/S0006-8993(02)02502-7 

Stancak, A., Xie, Y., Fallon, N., Bulsing, P., Giesbrecht, T., Thomas, A., & 

Pantelous, A. A. (2015). Unpleasant odors increase aversion to monetary losses. 



 

287  

Biological Psychology, 107, 1–9. 

https://doi.org/10.1016/j.biopsycho.2015.02.006 

Stephani, T., Kirk Driller, K., Dimigen, O., & Sommer, W. (2019). Eye contact in 

active and passive viewing: Event-related brain potential evidence from a 

combined eye tracking and EEG study. BioRxiv, 0–36. 

https://doi.org/10.1101/669341 

Stolz, C., Endres, D., & Mueller, E. M. (2019). Threat-conditioned contexts 

modulate the late positive potential to faces—A mobile EEG/virtual reality 

study. Psychophysiology, 56(4), 1–15. https://doi.org/10.1111/psyp.13308 

Stott, J., & Redish, D. (2015). Representations of value in the brain: An 

embarrassment of riches? PLoS Biology, 13(6), 1–7. 

https://doi.org/10.1371/journal.pbio.1002174 

Strüber, D., & Polich, J. (2002). P300 and slow wave from oddball and single-

stimulus visual tasks: Inter-stimulus interval effects. International Journal of 

Psychophysiology, 45(3), 187–196. https://doi.org/10.1016/S0167-

8760(02)00071-5 

Suwazono, S., MacHado, L., & Knight, R. T. (2000). Predictive value of novel 

stimuli modifies visual event-related potentials and behavior. Clinical 

Neurophysiology, 111(1), 29–39. https://doi.org/10.1016/S1388-

2457(99)00186-8 

Swirski, L., Bulling, A., & Dodgson, N. (2012). Robust real-time pupil tracking in 

highly off-axis images. Etra, 1–4. https://doi.org/10.1145/2168556.2168585 

Świrski, L., Bulling, A., & Dodgson, N. (2012). Robust real-time pupil tracking in 

highly off-axis images. Eye Tracking Research and Applications Symposium 

(ETRA), 173–176. https://doi.org/10.1145/2168556.2168585 

Tanaka, C. S., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. 

(2004). Prediction of immediate and future rewards differentially recruits 

cortico-basal ganglia loops. Nature Neuroscience, 7(8), 887–893. 

https://doi.org/10.1038/nn1279 

Telpaz, A., Webb, R., & Levy, D. J. (2015). Using EEG to Predict Consumers’ 

Future Choices. Journal of Marketing Research, 52(4), 511–529. 

https://doi.org/10.1509/jmr.13.0564 



 

288  

Thibault, R. T., Lifshitz, M., Jones, J. M., & Raz, A. (2014). Posture alters human 

resting-state. Cortex, 58, 199–205. https://doi.org/10.1016/j.cortex.2014.06.014 

Thibault, R. T., Lifshitz, M., & Raz, A. (2015). Body position alters human resting-

state: Insights from multi-postural magnetoencephalography. Brain Imaging 

and Behavior. https://doi.org/10.1007/s11682-015-9447-8 

Thickbroom, G. W., Knezevič, W., Carroll, W. M., & Mastaglia, F. L. (1991). 

Saccade onset and offset lambda waves: relation to pattern movement visually 

evoked potentials. Brain Research, 551(1–2), 150–156. 

https://doi.org/10.1016/0006-8993(91)90927-N 

Thickbroom, G. W., & Mastaglia, F. L. (1986). Presaccadic spike potential. Relation 

to eye movement direction. Electroencephalography and Clinical 

Neurophysiology, 64(3), 211–214. https://doi.org/10.1016/0013-

4694(86)90167-7 

Thom, R. (1974). Stabilité structurelle et morphogenèse. Poetics, 3(2), 7–19. 

https://doi.org/https://doi.org/10.1016/0304-422X(74)90010-2 

Tjan, B. S., & Legge, G. E. (1998). The viewpoint complexity of an object-

recognition task. Vision Research, 38(15–16), 2335–2350. 

https://doi.org/10.1016/S0042-6989(97)00255-1 

Toelch, U., Bach, D. R., & Dolan, R. J. (2014). The neural underpinnings of an 

optimal exploitation of social information under uncertainty. Social Cognitive 

and Affective Neuroscience, 9(11), 1746–1753. 

https://doi.org/10.1093/scan/nst173 

Tovar, D. A., Murray, M. M., & Wallace, M. T. (2019). Selective enhancement of 

object representations through multisensory integration. BioRxiv. 

https://doi.org/10.1101/740555 

Tremblay, C. H. (2018). Neuroeconomic studies in industrial organization: Brand, 

advertising and price effects on consumer valuation and choice. Handbook of 

Behavioral Industrial Organization, 343–367. 

https://doi.org/10.4337/9781784718985.00020 

Tusche, A., Bode, S., & Haynes, J.-D. (2010). Neural Responses to Unattended 

Products Predict Later Consumer Choices. Journal of Neuroscience, 30(23), 

8024–8031. https://doi.org/10.1523/JNEUROSCI.0064-10.2010 



 

289  

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and 

biases. Science, 185(4157), 1124–1131. https://doi.org/10.4324/9781912282562 

Tversky, A. (1975). A critique of expected utility theory: Descriptive and normative 

considerations. Erkenntnis, 9(2), 163–173. https://doi.org/10.1007/BF00226380 

Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology 

of choice. Experiments in Environmental Economics, 211, 173–178. 

https://doi.org/10.1007/978-1-4613-2391-4_2 

Tweed, D., & Vilis, T. (1990). Geometric Relations of Eye Position and. 30(1), 111–

127. 

Tymula, A., & Plassmann, H. (2016). Context-dependency in valuation. Current 

Opinion in Neurobiology, 40, 59–65. 

https://doi.org/10.1016/j.conb.2016.06.015 

Tyson-Carr, J., Kokmotou, K., Soto, V., Cook, S., Fallon, N., Giesbrecht, T., & 

Stancak, A. (2018). The neural correlates of economic value and valuation 

context: An event-related potentials study. Journal of Neurophysiology, 119, 

1924–1933. https://doi.org/10.1152/jn.00524.2017 

Tyson-Carr, J., Soto, V., Kokmotou, K., Roberts, H., Fallon, N., Byrne, A., 

Giesbrecht, T., & Stancak, A. (2020). Neural underpinnings of value-guided 

choice during auction tasks: An eye-fixation related potentials study. 

NeuroImage, 204, 116–213. https://doi.org/10.1016/j.neuroimage.2019.116213 

Tzovara, A., Chavarriaga, R., & De Lucia, M. (2015). Quantifying the time for 

accurate EEG decoding of single value-based decisions. Journal of 

Neuroscience Methods, 250, 114–125. 

https://doi.org/10.1016/j.jneumeth.2014.09.029 

Unger, A., Papastamatelou, J., Okan, E. Y., & Aytas, S. (2014). How the economic 

situation moderates the influence of available money on compulsive buying of 

students - A comparative study between Turkey and Greece. Journal of 

Behavioral Addictions, 3(3), 173–181. https://doi.org/10.1556/JBA.3.2014.018 

Vainikka, B. (2015). Psychological factors influencing consumer behaviour (pp. 1–

46). Centria University of Applied Sciences. 

https://doi.org/10.1109/ispsd.2003.1225237 

Vaish, A., Grossmann, T., & Woodward, A. (2008). Not All Emotions Are Created 



 

290  

Equal: The Negativity Bias in Social-Emotional Development. Psychological 

Bulletin, 134(3), 383–403. https://doi.org/10.1037/0033-2909.134.3.383 

Van den Bos, W., Li, J., Lau, T., Maskin, E., Cohen1, J., Montague, R., & McClure, 

S. (2008). The value of victory: social origins of the winner’s curse incommon 

value auctions. Judgement & Decision Making, 3(7), 483–492. 

Van Humbeeck, N., Meghanathan, R. N., Wagemans, J., van Leeuwen, C., & 

Nikolaev, A. R. (2018). Presaccadic EEG activity predicts visual saliency in 

free-viewing contour integration. Psychophysiology, 55(12), 1–22. 

https://doi.org/10.1111/psyp.13267 

Vassena, E., Deraeve, J., & Alexander, W. H. (2020). Surprise, value and control in 

anterior cingulate cortex during speeded decision-making. Nature Human 

Behaviour, 4(4), 412–422. https://doi.org/10.1038/s41562-019-0801-5 

Veblen, T. (1899). The Theory of the Leisure Class. Macmillan. 

https://books.google.co.uk/books?id=WqVq6SDhtjQC 

Ventura-Bort, C., Löw, A., Wendt, J., Dolcos, F., Hamm, A. O., & Weymar, M. 

(2016). When neutral turns significant: brain dynamics of rapidly formed 

associations between neutral stimuli and emotional contexts. European Journal 

of Neuroscience, 44(5), 2176–2183. https://doi.org/10.1111/ejn.13319 

Vickrey, W. (1961). American Finance Association Counterspeculation , Auctions , 

and Competitive Sealed Tenders Author ( s ): William Vickrey Source : The 

Journal of Finance , Vol . 16 , No . 1 ( Mar ., 1961 ), pp . 8-37 Published by : 

Wiley for the American Finance Associat. The Journal of Finance, 16(1), 8–37. 

Vigârio, R., Särelä, J., Jousmäki, V., Hämäläinen, M., & Oja, E. (2000). Independent 

component approach to the analysis of EEG and MEG recordings. IEEE 

Transactions on Biomedical Engineering, 47(5), 589–593. 

https://doi.org/10.1109/10.841330 

Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic 

behavior. Princeton University Press. 

Wagner, J., Solis-Escalante, T., Grieshofer, P., Neuper, C., Müller-Putz, G., & 

Scherer, R. (2012). Level of participation in robotic-assisted treadmill walking 

modulates midline sensorimotor EEG rhythms in able-bodied subjects. 

NeuroImage, 63(3), 1203–1211. 



 

291  

https://doi.org/10.1016/j.neuroimage.2012.08.019 

Wallis, J. D., & Miller, E. K. (2003). Neuronal activity in primate dorsolateral and 

orbital prefrontal cortex during performance of a reward preference task. 

European Journal of Neuroscience, 18(7), 2069–2081. 

https://doi.org/10.1046/j.1460-9568.2003.02922.x 

Wallis, J. D., & Rich, E. L. (2011). Challenges of interpreting frontal neurons during 

value-based decision-making. Frontiers in Neuroscience, 5, 1–12. 

https://doi.org/10.3389/fnins.2011.00124 

Walton, M. E., Behrens, T. E. J., Noonan, M. P., & Rushworth, M. F. S. (2011). 

Giving credit where credit is due: Orbitofrontal cortex and valuation in an 

uncertain world. Annals of the New York Academy of Sciences, 1239(1), 14–24. 

https://doi.org/10.1111/j.1749-6632.2011.06257.x 

Walton, M. E., Croxson, P. L., Behrens, T. E. J., Kennerley, S. W., & Rushworth, M. 

F. S. (2007). Adaptive decision making and value in the anterior cingulate 

cortex. NeuroImage, 36(SUPPL. 2), T142–T154. 

https://doi.org/10.1016/j.neuroimage.2007.03.029 

Wang, J., & Han, W. (2014). The impact of perceived quality on online buying 

decisions. NeuroReport, 25(14), 1091–1098. 

https://doi.org/10.1097/WNR.0000000000000233 

Wang, L., Kuroiwa, Y., Kamitani, T., Takahashi, T., Suzuki, Y., & Hasegawa, O. 

(1999). Effect of interstimulus interval on visual P300 in Parkinson’s disease. 

Journal of Neurology Neurosurgery and Psychiatry, 67(4), 497–503. 

https://doi.org/10.1136/jnnp.67.4.497 

Wang, X., Huang, Y., Ma, Q., & Li, N. (2012). Event-related potential P2 correlates 

of implicit aesthetic experience. NeuroReport, 23(14), 862–866. 

https://doi.org/10.1097/WNR.0b013e3283587161 

Wascher, E., Heppner, H., & Hoffmann, S. (2014). Towards the measurement of 

event-related EEG activity in real-life working environments. International 

Journal of Psychophysiology, 91(1), 3–9. 

https://doi.org/10.1016/j.ijpsycho.2013.10.006 

Wenzel, M. A., Golenia, J. E., & Blankertz, B. (2016). Classification of eye fixation 

related potentials for variable stimulus saliency. Frontiers in Neuroscience, 



 

292  

10(FEB), 1–14. https://doi.org/10.3389/fnins.2016.00023 

Wertenbroch, K., & Skiera, B. (2002). Measuring consumers’ willingness to pay at 

the point of purchase. Journal of Marketing Research, 39(2), 228–241. 

https://doi.org/10.1509/jmkr.39.2.228.19086 

Wessel, J. R. (2012). Error awareness and the error-related negativity: Evaluating the 

first decade of evidence. Frontiers in Human Neuroscience, 6, 1–16. 

https://doi.org/10.3389/fnhum.2012.00088 

Westbrook, A., Lamichhane, B., & Braver, T. (2019). The subjective value of 

cognitive effort is encoded by a domain-general valuation network. Journal of 

Neuroscience, 39(20), 3934–3947. https://doi.org/10.1523/JNEUROSCI.3071-

18.2019 

Wilkinson, N., & Klaes, M. (2012). An Introduction to Behavioral Economics. In 

Basingstoke, GB: Palgrave Macmillan. https://doi.org/10.1037/026600 

Williams, L. M., Palmer, D., Liddell, B. J., Song, L., & Gordon, E. (2006). The 

“when” and “where” of perceiving signals of threat versus non-threat. 

NeuroImage, 31(1), 458–467. https://doi.org/10.1016/j.neuroimage.2005.12.009 

Woodman, G. F. (2010). A brief introduction to the use of event-related potentials 

(ERPs) in studies of perception and attention. Attention and Perceptual 

Psychophysiology, 72(8), 1–29. https://doi.org/10.3758/APP.72.8.2031 

Wright, N. D., Morris, L. S., Guitart-Masip, M., & Dolan, R. J. (2013). Manipulating 

the contribution of approach-avoidance to the perturbation of economic choice 

by valence. Frontiers in Neuroscience, 7, 1–8. 

https://doi.org/10.3389/fnins.2013.00228 

Wu, Y., & Zhou, X. (2009). The P300 and reward valence, magnitude, and 

expectancy in outcome evaluation. Brain Research, 1286, 114–122. 

https://doi.org/10.1016/j.brainres.2009.06.032 

Xie, J., & Padoa-Schioppa, C. (2016). Neuronal remapping and circuit persistence in 

economic decisions. Nature Neuroscience, 19(6). 

https://doi.org/10.1038/nn.4300 

Xu, Q., Shen, Q., Chen, P., Ma, Q., Sun, D., & Pan, Y. (2011). How an uncertain cue 

modulates subsequent monetary outcome evaluation: An ERP study. 

Neuroscience Letters, 505(2), 200–204. 



 

293  

https://doi.org/10.1016/j.neulet.2011.10.024 

Yagi, A. (1979a). Lambda waves associated with offset of saccades: A subject with 

large lambda waves. Biological Psychology, 8(3), 235–238. 

https://doi.org/10.1016/0301-0511(79)90051-6 

Yagi, A. (1979b). Saccade size and lambda complex in man. Physiological 

Psychology, 7(4), 370–376. https://doi.org/10.3758/BF03326658 

Yagi, A. (1981a). Averaged cortical potentials (lambda responses) time-locked to 

onset an offset of saccades. Physiological Psychology, 9(3), 318–320. 

https://doi.org/10.3758/BF03326985 

Yagi, A. (1981b). Visual signal detection and lambda responses. 

Electroencephalography and Clinical Neurophysiology, 52(6), 604–610. 

https://doi.org/10.1016/0013-4694(81)91434-6 

Yalch, R., & Brunel, F. (1996). Need Hierarchies in Consumer Judgments of Product 

Designs: Is It Time to Reconsider Maslow’s Theory? In K. P. Corfman & J. G. 

Lynch (Eds.), NA - Advances in Consumer Research Volume 23 (pp. 405-410.). 

Association for Consumer Research. 

Yao, D., Qin, Y., Hu, S., Dong, L., Bringas Vega, M. L., & Valdés Sosa, P. A. 

(2019). Which Reference Should We Use for EEG and ERP practice? Brain 

Topography, 32(4), 530–549. https://doi.org/10.1007/s10548-019-00707-x 

Yeung, N., & Sanfey, A. (2004). Independent Coding of Reward Magnitude and 

Valence in the Human Brain. Journal of Neuroscience, 24(28), 6258–6264. 

https://doi.org/10.1523/JNEUROSCI.4537-03.2004 

Yiend, J. (2010). The effects of emotion on attention: A review of attentional 

processing of emotional information. Cognition and Emotion, 24(1), 3–47. 

https://doi.org/10.1080/02699930903205698 

Yuan, J., Ju, E., Meng, X., Chen, X., Zhu, S., Yang, J., & Li, H. (2015). Enhanced 

brain susceptibility to negative stimuli in adolescents: ERP evidences. Frontiers 

in Behavioral Neuroscience, 9, 1–13. https://doi.org/10.3389/fnbeh.2015.00098 

Zamm, A., Palmer, C., Bauer, A. K. R., Bleichner, M. G., Demos, A. P., & Debener, 

S. (2019). Synchronizing MIDI and wireless EEG measurements during natural 

piano performance. Brain Research, 1716, 27–38. 

https://doi.org/10.1016/j.brainres.2017.07.001 



 

294  

Zander, T. O., Andreessen, L. M., Berg, A., Bleuel, M., Pawlitzki, J., Zawallich, L., 

Krol, L. R., & Gramann, K. (2017). Evaluation of a dry EEG system for 

application of passive brain-computer interfaces in autonomous driving. 

Frontiers in Human Neuroscience, 11, 1–16. 

https://doi.org/10.3389/fnhum.2017.00078 

Zeeman, E. (1976). Catastrophe theory. Scientiific American, 31(9), 65–83. 

https://doi.org/10.1063/1.2995174 

Zeng, J., Zou, Y., & Zhang, Q. (2013). Social competition factor influences the 

neural response to rewards: An ERP study. Brain Research, 1501, 12–20. 

https://doi.org/10.1016/j.brainres.2013.01.030 

Zha, H., Ding, C., Gu, M., He, X., & Simon, H. (2001). Spectral relaxation for k-

means clustering. Advances in Neural Information Processing Systems, 14, 

1057–1064. papers2://publication/uuid/16FFAB42-9D62-4F7D-889E-

9A63C19B5A10 

Zhuang, G., Tsang, A. S. L., Zhou, N., Li, F., & Nicholls, J. A. F. (2006). Impacts of 

situational factors on buying decisions in shopping malls: An empirical study 

with multinational data. European Journal of Marketing, 40(1–2), 17–43. 

https://doi.org/10.1108/03090560610637293 

Zink, R., Hunyadi, B., Huffel, S. Van, & Vos, M. De. (2016). Mobile EEG on the 

bike: Disentangling attentional and physical contributions to auditory attention 

tasks. Journal of Neural Engineering, 13(4). https://doi.org/10.1088/1741-

2560/13/4/046017 

 


