
 

 

ENERGY AND SOCIETY: 

UNDERSTANDING THE COST OF 

CONSUMPTION 

 

Thesis submitted in accordance with the requirements of the University 

of Liverpool for the Degree of Doctor in Philosophy. 

 

ELLEN TALBOT 

Department of Geography and Planning 

School of Environmental Sciences 

University of Liverpool 

August 2021 



 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

Terence Talbot 

1954 – 2017 

 

 

 

 

 

 

 

 

 

“Outside of a dog, a book is a man’s best friend. Inside of a dog, it’s too dark to read” 

- Groucho Marx 

 



  



Declaration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I ,  El l en  Ta l b o t ,  c o n f i r m t h a t  t h e  w o r k  p r e s en t e d  in  t h i s  t h e s i s  i s  m y  ow n .  W h e r e  

i n f o r ma t i on  h a s  b e e n  d e r i v e d  f r om  o t h e r  s o u r c e s ,  I  c on f i r m  t h a t  t h i s  ha s  b e en  in d i ca t e d  

w i t h i n .   

 

Signed:  



 

  



Abstract 

Energy and Society: Understanding the Cost of Consumption 

Ellen Talbot 

Fuel poverty definitions have previously been limited by a monotopical monetary indicator and 

annualised statistics and UK policy directives are complicated by multiple fragmented and misaligned 

stakeholders. This thesis presents a holistic view of the current geographies of energy consumption, 

aiding the reimagining of the fuel poverty vernacular through the inclusion of socio-demographic 

indicators and novel consumer datasets in order that it be broadened to encompass the lived 

experience.  

The predominant aims of this work were to firstly provide a thorough exploration of the geography 

of energy consumption, and those factors that contextualise differentiated access to, and consumption 

of both gas and electricity in England and Wales. This work endeavoured to provide a substantive 

contribution to the integration of consumer datasets into social science research, by proving the utility 

in effective data linkage across novel commercially generated big data and other ancillary traditional 

data sources, as well as acting as a catalyst for increased collaboration between academic and 

commercial partners by highlighting the value of releasing consumer data for social science research. 
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1  Introduction 

 Background 

nergy consumption is an integral part of society and everyday life. Its governance has 

historically been disjointed, with multiple agencies acting independently of one another 

with limited capacity. As the issues of climate change become increasingly prevalent, 

governments in developed nations have begun to address these disparities and form 

cohesive bodies, yet issues of historic responsibility, burden sharing, and financing investments still 

make this global agreement an enormous challenge.  

In the UK, the reduction of carbon emissions and Greenhouse Gases is at the core of the 

Government’s energy policy, in which the residential sector plays a key role. Central policy measures 

have been introduced to support and encourage reductions in domestic energy consumption through 

efficiency improvements. In tandem to these policy objectives, the UK Government is also committed 

to reducing the number of households which find themselves struggling to meet their energy demands 

through cost-effective improvements such as insulation, which lasts for many years and has a positive 

impact on the UKs overall emissions target.  

Another element of this efficiency strategy is the upgrade of the existing energy infrastructure to a 

‘smart grid’, which encompasses introducing smart meters into domestic properties, replacing 

traditional meters with ones which allow two way connectivity as well as increased visibility over a 

household’s consumption at a highly granular level for both supplier and consumer. This lends itself 

to the collection of large scale digitised consumption datasets, housing information and metadata on 

people’s temporal patterns of consumption and geographic location. Commercially this can be utilised 

to a competitive advantage, but in a research context can provide new opportunities to enhance the 
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valuable geodemographic dimension and better comprehend the interactions, preferences and 

constraints exhibited by society.  

This emergence of ‘big data’ as a general trend across many domains has shaped what has been coined 

as the ‘fourth paradigm of science’, representing a fundamental shift to data driven research. Whilst 

the applications for such innovative datasets are numerous and wide ranging, epistemological, ethical 

and methodological questions have emerged which have implications with regards to the data’s 

content and coverage when reused in a research environment. For example, consumer generated ‘big 

data’ often exists as a by-product of an alternate process, leading to self-selected populations, built in 

bias and lack of quality control. However, given that the data is rarely available outside of their 

commercial environments, these issues remain an important consideration for academics.  

Given that such data has very rarely been shared for academic research, this thesis presents a unique 

opportunity to study a commercial and nationally expansive dataset. It is anticipated that through the 

combination of these big data with traditional data sources, these will present a holistic view of the 

contemporary geographies of energy consumption. This contributes to the current field of research 

and engenders benefits for applications where the characteristics of energy consumption are of high 

importance. Examples of this include the understanding and reimagining of fuel deprivation, where 

energy consumption is constrained to the extent that it negatively impacts upon households lives. Such 

applications would likely include the expansion of definitions in the fuel poverty vernacular away from 

a static, monetary measure to a multi-faceted indicator. Furthermore to provide guidance on smart 

meter roll-out programmes which ensure that the Domestic Energy Providers are achieving the 

greatest social improvement whilst also meeting the government mandated installation rates.  

 Research Aims 

As summarised above, the purpose of this research is to provide a thorough exploration of energy 

consumption, using innovative ‘big data’ alongside the close coupling of more traditional population 

and built environment data. The more specific aims of the analyses can be understood across two 

main themes. Firstly, to address the challenges encountered when considering innovative big data in 

an academic context, second to address the limitations of the current fuel poverty vernacular by 

utilising data tools to enrich the current understanding. As such, the objectives of this thesis are: 
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- An evaluation of the utility of big data, exploring the ability to extract relevant insight when 

making inferences about the general population. 

- The critical evaluation of traditional fuel poverty definitions, that incorporates demographic 

characteristics and highlights the multifaceted nature of the lived experience of fuel poverty. 

Which are set out to be achieved through the following research questions: 

1. What data quality issues are unique to consumer energy data and how can they be addressed 

pragmatically to enable the generation of useful insights? 

2. What are the limitations of the current UK fuel poverty definition? 

3. To what extent can smart meter, energy and demographic data inform the fuel poverty 

vernacular to address the limitations of the current fuel poverty definition? 

An underlying theme of all objectives of this work is evaluating the representativeness of these new 

forms of energy data, and thus appraising their potential application for matters of public and social 

good. This represents a stark contrast to commercial endeavours, which typically focus on 

understanding their consumer base to maximise profits. It was hypothesised that energy consumption 

data, both singularly and through linkage with traditional ancillary data, may advance our knowledge 

of the interactions of people and place by providing metrics which quantify the functional relationship 

between them.  

 Thesis Structure 

This thesis comprises seven chapters which begin with a review of relevant literature, and an overview 

of the innovative big data utilised by this study and associated methodologies that are core to this 

thesis. The analytical chapters that follow provide validation of the energy data utilised within the 

thesis, followed by their integration within a geodemographic framework to provide new insights into 

fuel poverty. The thesis  concludes with a discussion of the findings within the national policy context 

and makes some suggestions for future work. The following sub-sections provide a more detailed 

overview of each chapter as presented in the thesis.  
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 Chapter 2 – Literature Review 

This chapter provides an overview of concepts and literature that frame the analyses conducted 

throughout this thesis. This includes, firstly, an overview of the current global energy landscape and 

key limitations of policy that need addressing if this domain is to progress. The European Union (EU) 

and UK policy contexts are also considered, before a detailed examination of the implications of these 

policies in the UKs residential sector. This is followed by an overview of traditional and current 

consumption practises in the UK; the evolution of energy technologies from static, non-responsive 

infrastructure to an upgraded ‘smart grid’ and its associated benefits and limitations. This encompasses 

the emergence of first and second generation smart meters and the accompanying technologies of ‘in 

home display units’, again noting the benefits and impacts on suppliers, consumers and policy 

objectives.  

Discussion diversifies to consider the societal implications of these policy objectives, and the 

multifaceted discourse of material deprivation, and its relationship to fuel poverty is introduced before 

a detailed exploration of the validity of the current fuel poverty definition. Finally, an overview is 

provided of the big data, consumer data and energy data landscapes in regard to the study of people 

and populations, thus framing the social and spatial data sources drawn upon in the empirical chapters 

of the thesis. 

 Chapter 3 – Data and Methodological Framework 

Chapter 3 provides a contextual introduction to the attributes and characteristics of those datasets 

utilised within the thesis. Various data quality issues are discussed alongside data manipulation that 

was necessary in order to enable linkage and extract meaningful insight. In addition to energy data, 

this also includes discussion of other ancillary relevant sources including census variables, and a series 

of pre-compiled indicators that include the geodemographic Internet User Classification and the 

Indices of Multiple Deprivation. 

Following the presentation of the data sources, geographical scale is considered and the Modifiable 

Areal Unit Problem introduced. A discussion on postcode geographies and the justification for 

employing a bespoke dasymetric reweighting methodology is presented, evaluating the relative 

benefits of the selected technique in comparison to alternative methods.  



 

 
5 

The final section of the chapter details a framework for building new geodemographic classifications, 

giving an overview of the typical stages of construction.  

The purpose of this chapter was to inform the interpretations of the analysis presented in chapters 4, 

5 and 6, but also to provide data driven evidence of some of the issues outlined in the literature review, 

such as the bias and veracity of the smart meter data and the pragmatic steps required when aiming to 

reliably integrate them into academic research.  

 Chapter 4 – The Geographies of Smart Meter Users 

Chapter 4 is the first of three empirical chapters and examines the geography of smart meter adoption 

rates as well as address data quality issues inherent in the underlying consumer energy data. Analyses 

begin by investigating the extent of the geographic variations as a feature of the self-selective nature 

of those consumers recorded by the data before addressing those substantial cleaning procedures 

required before useful insight could be extracted. Secondly, aggregated energy consumption patterns 

are investigated at varying temporal granularities, before finally endeavouring to highlight the 

demographic trends present within the smart meter data. This is done firstly to reiterate the biases 

present within the dataset, and secondly to investigate the intersection between smart meter adoption 

rates and socio-demographic characteristics of deprivation.  

 Chapter 5 - Representing Fuel Poverty with an Energy User Classification 

Chapter 5 is the second empirical study that examines how Energy Performance Certificate (EPC) 

data can provide evidence of socio-demographic disparities in fuel poverty. This strengthens a 

narrative of fuel poverty being a  multifaceted problem which is developed through a segmentation 

based on energy efficiency and small area demographic characteristics. This typology presents a 

critique of those methods implemented to currently define fuel poverty. Methodological steps are 

outlined pertaining to the segmentation of small areas, followed by an exploration of each resulting 

clusters characteristics in terms of their geodemographic and consumption characteristics.  
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 Chapter 6 – Evaluating the Energy User Classification’s Utility; Suggesting Areas 

of Improvement for the Domestic Energy Provider to Achieve the Greatest Social 

Good. 

Chapter 6 presents an evaluation of the multivariate outputs from the previous chapter. Internal 

validation interrogates fit statistics for each resulting cluster, alongside an external validation of the 

utility of the EUC to conceptualise a more nuanced definition of fuel poverty. A final practical 

validation in the form of a case study highlights the intersection between smart meters and this new 

measure of fuel poverty. By combining these outputs from the previous chapters, it is possible to 

provide recommendation in order that the on-going rollout of smart metering technology achieves a 

greater social good, whilst also remaining mindful of the constraints faced by both the DEP and the 

consumer.  

 Chapter 7 – Discussion, Application and Future Works  

Chapter 7 consolidates the principle findings from each chapter and their overarching contribution to 

this thesis. Key methodological and knowledge contributions are highlighted in the context of both 

smart meter and EPC data, but also more widely for the extrapolation of consumer and energy data, 

particularly when identifying vulnerable populations. Key issues and limitations of the work are 

addressed, and the chapter concludes by highlighting paths for future development.  

 Notes on Software and Code 

The majority of analyses in this thesis were undertaken in R Open Source Software for Statistical 

Computing; an open source software freely downloadable from WWW.R-PROJECT.ORG. Associated codes 

http://www.r-project.org/
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are available on request or through Github1. Other software utilised included QGIS – an open source 

geographic information systems software.  

 Ethics 

This research was deemed exempt by a University of Liverpool Research Ethics and Integrity Officer. 

Proof is provided in Appendix 9.1 

  

 

1 HTTPS://GITHUB.COM/SGETALBO/THESIS_CODE - this is a private repository due to the nature of the work 

conducted on the DEP dataset – please send a request for access to ETALBOT1291@GMAIL.COM  

https://github.com/sgetalbo/thesis_code
mailto:etalbot1291@gmail.com
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2 Literature Review  

his chapter provides an overview of the concepts and literature relevant to the exploration 

and analysis conducted in this thesis. Section 2.1 provides an introduction to the global 

energy landscape and its necessary governance, followed by the implications across various 

geographic scales, notably: international, within the European Union and domestically in the UK. 

Section 2.2 gives an overview of the deprivation and fuel poverty vernacular; firstly understanding 

deprivation as a whole, before paying particular attention to the changing definitions of fuel poverty 

and their relative merits and pitfalls as well as the fundamental challenges that need addressing if we 

are to fully appreciate and begin to tackle the scope of the problem. Sections 2.3 then provides an 

overview of energy data and technologies as a changing landscape – from traditional to innovative and 

how the improved technologies can be utilised for population insight amongst other things, both 

commercially and in the social sciences. Section 2.4 concludes the chapter with an overview of the 

current data landscape and big data and addresses the practicalities of integrating this data into social 

science research. This includes a consideration of consumer data as a facet of big data, and smart 

meter data’s position within the consumer realm. Finally, geodemographics are introduced, and their 

utility in summarizing complex relationships across space.  

 Energy and Energy Policy in a Global Context 

Global energy governance is driven by three distinct areas of policy; climate change, energy security 

and energy access (Dubash and Florini, 2011). There is also a strong development component, 

sometimes regarded as the fourth area of influence (Goldthau and Witte, 2010).  

Climate change is a foregrounding issue for governments and policy makers as well as academia and 

the media; a rise in global temperatures of 0.8C since 1880 - the majority of this warming occurring 

since 1975 due to the increased release of greenhouse gases (GHGs) into the Earth’s atmosphere - 

shows a significant upward trend with potentially catastrophic results (Nejat et al., 2015). Climate policy 

carries significant consequences for the future of energy globally – energy activities in the three main 

domains of industry, transportation and residential consumption contribute disproportionately to 

T 
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local, regional and global pollution problems – two thirds of all GHGs are generated by these domains, 

leaving little doubt that governance must concentrate on them (Dubash and Florini, 2011). 

The International Energy Agency (The IEA) suggests that the impact of climate change can only be 

minimised if the global temperature increase is limited to less than 2C by 2050 (The International 

Energy Agency, 2017). The most likely way of achieving this result is thought to be through energy 

efficiency, which could contribute up to 49% of the energy related CO2 emission reductions that are 

needed. Given that energy efficiency “constitutes the optimum utilisation of energy resources” it is 

therefore considered one of the most important mechanisms through which countries can act to 

mitigate the effects of climate change in both the short and long term (G20, 2016, p.4). As such, 

energy efficiency and energy conservation are a long-term priority for G20 members (Figure 2-1) (who 

currently account for over 80% of both global energy consumption and greenhouse gas emissions 

worldwide). Work has already begun to this end and despite the massive emissions contributions they 

make, the G20 members have proven experience in achieving energy reduction and implementing 

energy efficiency measures; from 1990 to 2013, the G20s total energy consumption saving reached 

around 4.3 billion tonnes of oil equivalent and about 10.4 billion tonnes of carbon dioxide emissions 

were avoided.  

 

FIGURE 2-1 THE G20 COUNTRIES 
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Within the G20 countries, America and China account for about 40% of global greenhouse gas 

emissions, generating a staggering 50% and 80% of their respective electricity from coal (the most 

carbon intensive of the fossil fuels) and the role of China is to become even more pronounced given 

the rapid acceleration in its energy demand (Ekins et al., 2015, chap.2). Internationally, the UK comes 

tenth in terms of global CO2 emissions at 1.6%. This comes after China, the US, India, Russia, Japan, 

Germany, South Korea, Canada and Iran (Nejat et al., 2015). 

China provides a perfect example of the impact rapid urbanisation can have on a country’s energy 

demands, contributing significantly to a country’s consumption profile, especially regarding 

consumption of carbon intensive fossil fuels. It has witnessed rapid economic growth since their 

government implemented the ‘Reform and opening up policy’ in the late 1980s, with an average 

increase in yearly gross domestic product of more than 9% (Wang et al., 2016). Given that China has 

not yet completed the historical task of industrialisation and urbanisation, this level of growth poses a 

number of challenges for the nation; a large amount of empirical research confirms the existence of a 

correlation between economic growth and energy consumption, and thusly also an increase in CO2 

emissions (Wang et al., 2016; Hu et al., 2017). Furthermore, the rapid development of China’s economy 

has led to high concentrations of urban populations; China’s urbanisation rate increased from 37.7% 

in 2001 to 55% in 2014, promoting the growth in energy demand in a domestic setting, where 

consumption of electricity has tripled between 2001 and 2014 (Hu et al., 2017). As such, it remains 

that energy policy is central to climate change policy and vice versa for the simple reason that the 

combustion of fossil fuels is the single most important source of all the emissions responsible for 

anthropogenic climate change. 

As discussed, there is considerable evidence that access to energy and the quantum of its use is closely 

correlated with both economic growth and advances in human development (Dubash and Florini, 

2011). In low income and emerging economies especially, the replacement of low quality fuels such as 

biomass (organic material, usually burned to generate heat) with high quality ones such as oil and coal 

is central to their ability to participate in economic modernization (Smil, 2010; Grubler, 2012). 

Worldwide, 1.4 billion people lack access to electricity and 2.7 billion rely on biomass for daily tasks, 

“depriving them of any opportunity to participate in energy dependent processes of economic 

modernization” (Dubash and Florini, 2011, p.9) 
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As countries develop from rural communities into globalized economies, their changing consumption 

leads to altered priorities regarding their energy security. Despite there being no clear definition of 

energy security and the concept being ‘rather blurred’, for some it is taken to mean the reliable 

provisions of fuel - be that through the reduction of short term ‘shocks’ (political disruptions, technical 

failures or intermittency) or tackling long term stresses (depletion of fossil fuels, the accumulation of 

greenhouse gases or growing demand). For others the definition is linked to the protection of the poor 

against commodity price volatility (Löschel et al., 2010; Stern, 2011; Winzer, 2012). Throughout the 

urbanisation process, investments are made in infrastructure and technology, improving a countries 

short term energy security. In the longer term, the Organisation for Economic Co-operation and 

Development (OECD) promotes a global shift toward a greener future to tackle the climate crisis, 

whilst also recognising that policies are not simply a one size fits all and must be implemented at a 

national level to take account of local environmental, economic and developmental settings (OECD 

and The International Energy Agency, 2012). 

  The Governors of Global Energy  

 The successful governance of global energy requires the blurring of several boundaries – between 

global and national scales, state and non-state actors and between fuel sources and markets (Dubash 

and Florini, 2011). The significant and urgent realities of the 21st century are highly politicised and 

understanding the role that markets and institutions play in determining outcomes of global energy 

relations are crucial (Goldthau, 2016). 

Given that decentralised transnational agencies such as The IEA, The Organisation of Petroleum 

Exporting Countries and the Energy Charter Treaty as well as the G8 and G20 “have not yet shown 

the interest or ability to grapple with the full range of needs to address the trade-offs between them”, 

problems frequently arise and there is a movement to reduce the reliance on this fragmented 

infrastructure. Any newly developing international framework for climate change mitigation must 

include all stakeholders, including the developing countries and evolve with a mutual interdependence 

(Dubash and Florini, 2011, p.7). 

Stakeholders are often limited in scope and capacity, and exist only to deal with a specific problem or 

crises and have evolved over time into a piecemeal network of overlapping and partial frameworks of 

principles, rules, norms and processes and are inadequate to address many of the market or governance 
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failures (Dubash and Florini, 2011). This leads to a lack of effectiveness and swiftness in policy making 

at the transnational level, because of poor integration with policy making at the national level. These 

difficulties often mean that fundamental issues remain unresolved, and a coherent global agreement 

continues to be an enormous challenge. There needs to be a move away from the traditional notions 

of energy security in order to break the deadlock between market players (such as energy companies 

and commercial banks) and the public sector (governments, international organisation and policy 

makers) over burden sharing when it comes to developing a new energy architecture (Goldthau, 2016). 

Furthermore, globalised energy policies are particularly difficult to implement given the arguments 

over how the responsibility of emission reduction should be distributed, lack of agreement over 

historic responsibility and financing the investment in developing countries (Ekins et al., 2015). For 

the developing and newly developed there are mounting concerns over their levels of growth and the 

impact they will have on the acceleration of climate change as well as the sustainability of their usage.  

One example in particular pertains to the burden sharing associated with carbon leakage. This 

phenomenon occurs as a result of the disjointed global environmental policies and is the product of 

two conflicting economic factors. Firstly, a country with strict environmental policies may focus on 

reducing high emission production resulting in the price rises of these products, thereby stimulating 

another (less strict) country to increase production and export of such goods to meet the demand, 

leading to the increase in the CO2 emissions of the export country. Conversely the price of fossil fuels 

may also cause carbon leakage. Strict environmental regulation of one country will lead to decline in 

demand of fossil fuels, leading to price decline. As a result, countries with less strict environmental 

regulation may use fossil fuels as a substitute for other inputs in the industrial process, thus increasing 

greenhouse gas emissions (Guo et al., 2010) 

What can be agreed on however, is that these levels of growth are unsustainable and so a coherent set 

of standards must be agreed on. Especially pertinent is the access to oil and gas, which is certain to 

remain a key policy objective for governments around the world regardless (Goldthau and Witte, 

2010). In 2016, the Paris Agreement was ratified, replacing the Kyoto Agreement and bringing 

together 175 states and the European Union for the first time under a common clause to mitigate 

global climate change, thus beginning to tackle the obstacles outlined here. It relies on National 

Defined Contributions but also provides ‘enhanced support to assist developing nations’ (Jonas et al., 

2019). 
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 International Drivers of Change and Response to Global Energy Policy 

It is pertinent to look at the role of the many EU (European Union) institutions and their influence 

over national and international energy policies given that since the 1990s it has been a prominent actor 

in global climate change negotiations, with ambitious targets granting it world leading status 

(Skovgaard, 2014). Over recent years, the EU has agreed several new documents that promise to 

strengthen Europe’s presence in international energy policies (Goldthau, 2016). During the first 

decade of the 21st century, the EU underwent a profound change in its attitude towards energy policy 

and ended that decade with formalising its commitment to energy policy when it included a chapter 

in the 2009 Lisbon Treaty with the specific aim of fostering a more cohesive relationship between 

member states with regard to policy implementation (Birchfield and Duffield, 2011). Other documents 

which cement this commitment include the EU Energy 2020 Strategy and the Energy Roadmap 2050 

which illustrate energy scenarios for the next four decades (European Commission, 2010; Langsdorf, 

2011). 

The EU 2020 Energy Strategy stipulates that all EU countries must aim to reduce GHG emissions by 

20%, increase the share of renewable energy by 20% and to make a 20% improvement in energy 

efficiency on 1990 levels by the year 2020 (Bradshaw, 2013). However, sceptics doubted the logic 

behind these targets given the convenience of the 20/20/20 – 2020 title and the fact that only the 

emissions target was legally binding meant that some felt the targets arbitrary (Goldthau, 2016). At the 

time of writing it is too early to know whether the EU 2020 targets have been reached, but the latest 

report from the European Environment Agency states that it is on track to meet it’s 20% emissions 

reduction target for 2020. It does however also acknowledge that the global pandemic spanning the 

entirety of 2020 will have had a significant impact on GHG emissions and levels of consumption. The 

revised targets for 2030 and the long term targets for 2050 are set out, again acknowledging that 

changes may have to be made to reflect post-Covid recovery plans (European Environment Agency, 

2020). It is fair to say that there is still scepticism around the ‘political will’ of the EU and it’s nations 

and their ability to reach these targets without legal obligation to do so, especially given the impact of 

the UK contribution being removed from these targets following it’s exit from the EU (Sanchez 

Nicolas, 2020).  
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It is agreed that despite the EU being by far one of the largest importers of energy, (buying nearly 

twice as much as the US and five times that of China) it redeems itself by having the lowest energy 

intensity of all regions and the highest demand for renewables (Smart Energy GB, 2018a). The UK 

benefits from considerable fossil fuel resources ranking 4th among IEA members and 17th globally, 

however, a 50% reduction in domestic production in 2000 meant that the UK was forced to import 

17% of its oil needs and 38% of its natural gas needs (Nejat et al., 2015). However, this demand for 

renewables may in future come to cause problems; the EU is comparatively small compared to other 

individual nations and landmass is a valuable asset where renewable energy sources are concerned. As 

such, the EUs high targets for the development and deployment of these energy sources is cause for 

concern. Despite this, and of particular relevance to this thesis, the report does point to smart 

technology as the key to fully exploiting the potential for energy savings, the reasons for which are 

explored more fully in proceeding sections (European Commission, 2010). 

 The UK Energy Policy Landscape 

The UK has become one of the most committed EU states to combating climate change and has a 

key role in demonstrating international leadership on the issue as well as being central to securing the 

previously mentioned 2015 Paris agreement. The core of UK policy is one of CO2 emission mitigation. 

The 2008 Climate Change Act committed the UK to a 34% reduction in greenhouse gas emissions in 

comparison to 1990 levels by 2020 and an 80% reduction by 2050. As a result, central policy measures 

have been introduced to support and encourage reductions in energy usage. This is to be achieved 

through a process of setting 5 year caps on GHG emissions termed ‘Carbon Budgets’ (HM 

Government, 2009). The UK has launched a Green Investment Bank, with £3 billion capital and has 

given £125 million towards research and development in carbon capture and storage (Goldthau, 2016) 

It has also successfully reduced its GHG emissions over several decades, with a 44% fall from 1990 

levels in 2008 (Nejat et al., 2015; The Committee on Climate Change, 2019). This was largely driven 

by the decreasing combustion of coal for electricity generation, as well as reduced levels of fuel 

consumption by businesses and the industrial sector, and more efficient vehicles resulting in lower 

transport emissions (BEIS, 2019; Hausfather, 2019). In May 2019, The Committee on Climate Change 

reaffirmed the UKs commitment to the Paris Agreement by pledging to achieve a net zero GHG 

emission target for 2050 (The Committee on Climate Change, 2019).  
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As well as being a global player in the introduction of GHG reduction policy, the UK government are 

also committed to reducing energy consumption closer to home. The residential sector is a high 

priority when tackling overall CO2 emission reduction. The UK is above the EU average in terms of 

domestic energy consumption at 29% of overall usage. In 2016 the EU averaged 25.4% (Eurostat, 

2019). This variation could be explained by the relative age of the UK housing stock, which is the 

oldest in the EU (Nicol et al., 2016). Many UK homes date from the Victorian era and are as such, less 

well insulated and ultimately consuming more energy to maintain the same level of thermal comfort, 

especially given the UKs temperate climate and residential consumption and efficiency is discussed in 

more detail in the following section (Liddell and Morris, 2010). As one of the first countries to 

industrialise, the UK offers the longest observed record of energy transitions in the modern era (Ekins 

et al., 2015). An analysis of energy transitions since before the industrial revolution in the UK explains 

the dynamics of long-run change as a positive economic and welfare feedback loop and as previously 

discussed is now being replicated in developing countries such as China (Fouquet, 2010). 

Both the domestic and commercial energy sectors in the UK are regulated by the Department for 

Business, Energy and Industrial Strategy (BEIS) and the Office of Gas and Electricity Markets 

(Ofgem) who are in place to regulate the monopoly companies which run the gas and electricity 

networks. Increased energy prices globally have driven up costs for consumers and so these regulatory 

bodies act in the interest of consumers to ensure their energy security by taking decisions on fair 

pricing, facilitating decarbonisation and enabling competition and innovation (Ofgem, 2019a). In the 

domestic market, there are currently 12 large and 46 small energy providers. The market share is 

monitored by Ofgem and assessed based on how many electricity meters are installed on the 

distributional network by a supplier. As of 2016, British Gas were the largest provider with a 23% 

market share (Longley et al., 2018). Many of these providers also have a commercial offering although 

the market is very different.  

 Residential Energy Efficiency and Energy Consumption 

Given consistent increases in domestic energy consumption (the average household reported increases 

of 1.2% between 2000 and 2008) because of inefficiencies, increased appliance usage, and higher 

standards of comfort and convenience, dwellings have become an important target area for the UK 

government in terms of energy efficiency improvements and emissions savings (Firth et al., 2008). The 
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previously mentioned 2008 Climate Change Act included domestic reductions in its 20% target, and 

a government white paper published in 2009 stipulated a 29% decrease in domestic emissions on 2008 

levels by 2020 yet it is likely that these targets will also be missed (HM Government, 2009). Thusly in 

the UK, central policy measures have been introduced that support and encourage reductions in 

domestic energy use through efficiency improvements, (HM Government, 2009), and alongside these 

the UK government is committed to reducing the number of households who find themselves 

struggling to meet the energy demands and their associated costs whilst also having a positive impact 

on the UKs overall emissions target.  

To respond specifically to the problem of excess energy consumption through inefficient housing, 

regulations introduced for new buildings in 2006 mean that improvements have to be made to levels 

of insulation, air tightness and the efficiency of space and water heating and lighting, all of which aim 

to improve the energy efficiency of the building and reduce its emissions; and from 2016 the UK 

government introduced legislation to improve the efficiency of all newly built housing that ensured 

they were all zero carbon (Nejat et al., 2015). However, this focus on new build houses was challenged; 

it is estimated that up to 80% of existing housing stock will still be in use in 2050 when the targets 

need to be met and so it is argued that the legacy of older, hard to treat buildings, characterised by 

poor insulation and high consumption should be at the centre of the policy debate (Swan et al., 2013; 

Robinson et al., 2018a). Developing policies which invest in improving energy efficiency appear on the 

surface to make a lot of sense given that buildings account for up to 40% of total fuel consumption 

and a third of total emissions; it is a cost-effective approach to making long term improvements and 

savings; insulation on a home lasts for many years, not to mention the environmental benefits and the 

economic growth generated by this relatively new industry (Middlemiss, 2017). 

With regards to managing domestic energy consumption, historically, traditional energy meters - which 

are only variations of those present since the early 20th century - provided limited visibility to 

households of their energy consumption. They are still popular because of their low production price 

and excellent reliability but are often installed in difficult to reach locations displaying usage only in 

terms of Kilowatt Hours rather than cost. This makes it very difficult for residents to get an overview 

of particularly inefficient practises within the household. The government proposed a full transition 

away from these first generation meters to smart metering for both gas and electricity by 2020 (Haben 

et al., 2016). This target was revised in 2019 to 2024, and then again in 2021 to ‘mid-2025’ to reflect 
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the impact that the pandemic has had on ‘staff, customers and the supply chain’ (Ofgem, 2021). 

Upgrading of manually read gas and electricity meters to include smart grids and smart meters is 

considered instrumental to achieving emissions reduction and meeting energy efficiency targets. The 

associated technologies and their cost and benefits are discussed in greater detail in a following section.  

On the supply side, there is an operational setting in which Domestic Energy Providers (DEPs) are 

under increasing pressure to make improvements. For them, traditional meters limit their ability to 

accurately predict demand, whereas smart grids would allow more efficient planning in both the short 

and long term; real time responses to outages and emergencies, the ability to detect theft and to 

capitalise on dynamic pricing, implementing time of use tariffs to shift demand away from peak times, 

leading to more efficient generation and storage of energy and in turn reducing wastage and improving 

reliability (Guerreiro et al., 2015). For both suppliers and consumers, the Internet connected 

technology of the smart grid, smart meter and in home displays (IHDs) provide reliable real time 

readings on the consumption of energy at an unprecedented cadence. The overarching objective of 

such technology is that these lead to a shift in demand whereby consumers take more active interest 

in their consumption, ultimately leading to decreased consumption and therefore emissions. 

 Summary 

It is clear that the disjoined nature of global energy governance is impacting on individual nations 

abilities to achieve proposed climate change mitigation targets; distribution of responsibilities; support 

for developing nations and issues such as carbon leakage all create tensions between global actors. It 

is intended that the Paris Agreement will go some way to bringing all these actors together under a 

common clause by implementing national defined contributions to allow each member state to report 

their best efforts rather than defining a ‘one size fits all’ policy whilst also providing enhanced support 

to developing nations.  

The European Union presents a world leading stance on global climate change mitigation, and The 

UK is one of the most committed members. The intention is to reduce consumption by 80% of 1990 

levels by 2050, whilst also achieving a net zero carbon status by the same date (The Committee on 

Climate Change, 2019). With respect to domestic energy consumption, legislation is already in place 

to ensure that newly built homes are efficient and energy efficiency improvement policies are being 
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enacted, including the implementation of smart technologies on both the supply and demand side, but 

this is not without criticism and is thus covered in greater detail in a proceeding section.  

Domestic energy consumption is increasing, as are its costs, as households strive for comfort and 

convenience realised through increased appliance usage and indoor temperatures. This increasing 

usage is having a direct impact on the global climate, and governments are posturing to consistently 

reduce carbon emissions through a number of legislative measures. In the UK these include domestic 

energy reforms through improvements in energy efficiency level; a part of which is the installation of 

smart metering technology within homes. 

 Separating Deprivation and Fuel Poverty 

 Characterising Deprivation  

In human geography and studies of demography, deprivation is considered to be a multi-dimensional 

phenomenon, characterised by a range of domains encompassing finance, health, education and crime 

amongst others and is a consequence of a lack of income and other resources, which cumulatively can 

be seen as living in poverty (Payne and Abel, 2012). Material deprivation refers to an individual’s 

inability to afford or access basic resources such as food, heating or educational materials to such an 

extent that they find themselves excluded from the society in which they live (OECD, 2014). This 

definition moves away from an income based measure of poverty and increases the attention on non-

monetary indicators, adding important information which permits a greater understanding of the 

causal mechanisms at work (Boarini and D’Ercole, 2006).  

The probability of an individual experiencing material deprivation is dependent on a range of 

characteristics of themselves and the household where they live. Lower income individuals are more 

likely to experience material deprivation than higher income ones, and low education in the household 

head results in a higher probability of the household being deprived. Other factors which influence 

deprivation are; household structure; household tenure; employment status and to a lesser extent age 

and ethnicity (Boarini and D’Ercole, 2006). 
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The population living with deprivation and fuel poverty are likely overlapping. Of the commonly cited 

drivers of deprivation, as discussed above, many also relate to fuel poverty. As a result, understanding 

those predicting factors of overall deprivation is likely to reveal which are closely linked to fuel poverty. 

However, it is important to reiterate that fuel poverty is a distinct form of hardship, separate from 

material deprivation for reasons such as the fact that the rate of fuel poverty is linked to changes in 

energy prices and the energy efficiency of dwellings and appliances (Watson and Maitre, 2015). In the 

UK in particular, fuel poverty and poverty are divided by the politicisation of energy and welfare 

policies; chiefly that you can treat one with energy efficiency only but not the other. This emphasis 

means that it is possible to ignore the impact that austerity measures have had on the fuel poor and 

similarly, that other exploratory factors linked to fuel poverty are reduced, leading to an ignorance of 

the interrelated drivers of the problem and the lived experience of fuel poverty (Middlemiss, 2017). 

Furthermore, this entrenchment of the new austerity politics diminishes the responsibility to develop 

associated policy measures such as increasing income for the poorest household and controlling rising 

energy costs.  

 Energy Poverty and Fuel Poverty 

Globally, the literature attends to energy poverty and fuel poverty with one overarching definition, 

however, the terms are divergent in some important respects. In countries both developed and 

developing, the overarching condition of both energy and fuel poverty is “the inability to attain a 

socially and materially necessitated level of domestic energy services” (Bouzarovski and Petrova, 

2015).  

Importantly, fuel poverty is induced through high or rising energy prices, low incomes and inefficient 

housing stock, whereas energy poverty is driven by a lack of networked energy provision due to 

economic under-development. Energy poverty is expressed through a lack of access to adequate 

facilities and is consequently linked to negative impacts on health, equality, education and economic 

development (Pachauri and Spreng, 2003). Fuel poverty, however, manifests itself through inadequate 

heating in the home and the lack of important services such as lighting and appliances, leading to both 

short and long term mental and physical health problems as well as exclusions in wider society. In 

short, fuel poverty is the term widely used to refer to the societal inequalities rising from a person’s 

lack of ability to consume energy, largely due to the cost, and it is energy poverty that encompasses 
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the environmental injustices that lead to chronic under consumption of fuel in a domestic setting 

(Bouzarovski and Petrova, 2015) 

Across Europe, fuel prices have increased steadily, putting greater pressure on governments and policy 

makers to better define, measure and work to alleviate the phenomenon. The European Commission 

has suggested that a pan-European definition would be inappropriate given diversity of socio-political 

and energy contexts found across the EU, however, fuel poverty has recently gained attention in 

national political, practitional and academic agendas within France, Spain, Germany and Belgium 

amongst others, who have been engaging in this widely recognised societal challenge (Thomson and 

Snell, 2013; Bouzarovski and Petrova, 2015).  

 UK Fuel Poverty 

This section considers residential fuel poverty in a UK context and the ways in which it can be defined, 

understood, addressed and legislated for.  

Residential fuel poverty has been historically difficult to define, and as discussed, there is no 

internationally unified example. The broadly accepted definition is that of Brenda Boardman (1991). 

She defines fuel poverty as: 

“The inability to afford adequate heat because of energy efficiency in the home.” 

It exists as the product of three aggravating factors: low income, high energy prices and energy 

inefficient housing stock. It is the last of these which is critical in differentiating fuel poverty from 

other types of deprivation as certain types of dwellings will undeniably cost more to heat than others, 

as a function of their physical configuration and specification. Fuel poverty exists where low income 

houses pay high energy costs because they live in inefficient dwellings. This is a very real concern for 

many households in the UK due to the comparatively low quality of the national housing stock when 

compared to the rest of the EU (Royston and Guertler, 2013; Nicol et al., 2016). This inefficiency 

coupled with a temperate climate which regularly causes internal temperatures to dip below those 

required for healthy living (21C in the living room and 18C in all other rooms (Simcock et al., 2016) 

presents a very real risk of households suffering from associated physical and mental health concerns, 

ranging from asthma caused by damp and mould, to excess winter deaths (Liddell and Morris, 2010). 
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Isolation of fuel poverty as a distinct form of deprivation is usually traced back to the 1973 oil crisis, 

when soaring domestic fuel prices resulted in many households facing difficulties affording fuel 

(Bradshaw and Hutton, 1983). The issue began to garner wide public attention and in 1975 the 

National Right to Fuel Campaign was formed with the objective of ending fuel poverty in the UK and 

securing a warm, dry and well-lit home for all, regardless of income and location (National Right to 

Fuel Campaign, 2013). 

Despite this promise, major advancements in the fuel poverty vernacular were not made until the 

publishing of Brenda Boardman’s ‘Fuel Poverty’ in 1991, which offered the first quantitative definition 

and multi-disciplinary account of the problem. She introduced a 10% threshold definition, whereby 

fuel poverty was the situation where expenditure on energy services was equal to or greater than 10 

percent of income (Boardman, 1991, p.201). This figure was derived from then contemporary data as 

to the energy expenditure across the lowest three income deciles. 

Even still, fuel poverty did not become a formal concern of the UK government until 2000, when the 

Warm Homes and Energy Conservation Act 2000 required that the Government “specify a target date 

for achieving the objective of ensuring that as far as is reasonably practicable, persons in England and 

Wales do not live in fuel poverty” (UK Parliament, 2000). Subsequently, a target was established that 

fuel poverty should be eradicated in England by 2016, and in vulnerable households by 2010 (a 

vulnerable household is defined as one which contains infants, the elderly, or those who are disabled 

or suffering from a long term illness) (Department of Energy and Climate Change, 2014b). A 

complimentary strategy was born, and a version of Boardman’s fuel poverty definition written into 

policy for monitoring purposes. 

In the subsequent decade, a range of policies both economic and technical were implemented with 

the goal of tackling fuel poverty. However, on the face of it, these were a resounding failure. Fuel 

poverty steadily rose year on year and both the 2010 and 2016 poverty eradication targets were missed, 

which can be construed as evidence of an ineffective policy approach on the part of multiple 

incumbent Governments. In 2010, the UK coalition government commissioned a review of fuel 

poverty definitions, and the October Spending Review included a commitment to re-evaluate the use 

of the 10% definition as part of a drive to reduce state expenditure, and a subsequent report which 

later became widely known as the Hills Review reaffirmed fuel poverty as a serious problem distinct 

from income poverty (Hills, 2012). It marked a change in the UK fuel poverty vernacular, from a 
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condition that should and can be eradicated (as in the previous fuel poverty target by 2016), to a 

condition that can at best be alleviated (Middlemiss et al., 2019), replacing the 10% indicator with the 

Low Income High Cost (LIHC) indicator which considers a household to be fuel poor if: “They have 

required fuel costs that are above national median levels and were they to spend that amount they 

would be left with a residual income below the official poverty line” (Department of Energy and 

Climate Change, 2017).  

 The Hills Report 

In his review, Hills reconsidered the difference between abject poverty and fuel poverty; it is not a 

new distinction, but the Hills review represented a further entrenchment of this ‘dividing practise’ as 

discussed in the previous section. The separation has highly important policy implications, chiefly 

because it distances discussions of fuel poverty from those of overarching poverty and was identified 

with reference to the interaction between low incomes and high required spending. In doing so it 

foregrounds energy efficiency measures as an appropriate response to fuel poverty above measures 

that address low incomes or cost of living (Middlemiss, 2017). Whilst Hills praised the 10% definition 

for its ability to capture the interactions of the drivers of fuel poverty, he found fault with its ability to 

effectively represent the nature of that problem and identified a multitude of weaknesses, some of 

which are highlighted in Table 2-1 overleaf. 
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TABLE 2-1 ISSUES AND PROBLEMATISATIONS WITH THE 10% DEFINITION 

Issue Problematization 

The fixed threshold A fixed threshold means that the definition of 

fuel poverty is extremely sensitive to that 

choice. 

High Income High Cost Under the 10% definition, those with high 

incomes and high fuel costs can be 

considered fuel poor if their energy costs are 

sufficient. 

Treatment of housing cost For the purposes of measurement, incomes 

have been considered before housing costs 

are subtracted, i.e., inclusive of income that is 

not truly disposable as it is apportioned to a 

specific, unavoidable purpose. 

 

As an alternative, Hills proposed a conceptualisation of fuel poverty which reconfigures it in relative 

terms; the Low Income High Cost definition (LIHC). It differs from the 10% definition which is 

based on an absolute threshold for fuel costs and is instead relative; a household is fuel poor if its fuel 

expenditure is comparatively high, and its income is comparatively low. Figure 2-2 illustrates the LIHC 

fuel poverty definition. 
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FIGURE 2-2 THE LOW INCOME HIGH COST FUEL POVERTY INDICATOR (BEIS 2019) 

 

The thresholds used are as follows; the income threshold falls “where subtraction of required 

equivalised energy costs from income leaves the household at the Department for Work and Pensions’ 

official poverty line, after housing costs” (Hills, 2012, p.53). Effectively, this defines a low income 

household as one that, having paid required energy costs, is below the official poverty line. “The 

energy cost threshold lies at the point whereby equivalised household bills equal the national median” 

and whilst this does not entirely eliminate the failure of prior policy it does go some way to mitigating 

the distortionary impact of price rises upon official figures (Hills, 2012, p.59). Hills also defined 

another measure of fuel poverty known as the fuel poverty gap - the reduction in required spending 

which would take a household out of fuel poverty as can be seen in Figure 2-2 (Department for 

Business Energy and Industrial Strategy, 2019). 

Under the 10% definition, the Department for Energy and Climate Change measured fuel poverty 

under both before housing costs (BHC) and after housing costs (AHC) but used BHC for official 
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statistics. Considering AHC results in a reduction in considered income for those with higher housing 

costs, which manifests itself in a shift away from pensioners who are more likely to own their homes 

outright towards working age adults, including families with children. This was a popular move as it 

was argued that AHC more accurately reflects the composition of the fuel poor group, where housing 

costs are high. 

When the LIHC definition was written into official policy in 2013 (Department of Energy and Climate 

Change, 2013) the number of fuel poor households did decrease from 4 million to 2.7 million but the 

number of fuel poor individuals increased from 7.4 million to 7.8 million (Middlemiss and Gillard, 

2015; Robinson et al., 2018b). This came as a result of the elimination of some Low Income Low Cost 

(LILC) and High Income High Cost (HIHC) households, but equivalised energy usage meant more 

larger households with higher occupation were considered fuel poor. It was chosen partly for this very 

reason; it has a tendency to show a consistent population of fuel poor households over time due to 

its equivalisation of fuel costs, further entrenching the notion that fuel poverty is a condition that can 

at best be alleviated, whilst the introduction of the fuel poverty gap indicator also placed the emphasis 

on cost-effective spending to target and prioritise only the most vulnerable, as a result of the 

government’s austerity driven policies (Middlemiss, 2017) 

The official target was to ‘ensure that as many fuel poor homes as is reasonably practicable achieve a 

minimum energy efficiency rating of Band C by 2030’, with interim milestones of ‘Band E by 2020’ 

and ‘Band D by 2025’, therefore placing the entire focus of the strategy on energy efficiency 

improvements (Department of Energy and Climate Change, 2014c). The Committee on Fuel Poverty 

whose key role is to monitor and report on progress towards these milestones commented that despite 

the average fuel poverty gap closing by 14% over the last 4 years, progress towards achieving even the 

smallest improvements is “slow and flat-lining”, as can be seen in Figure 2-3 overleaf (Committee on 

Fuel Poverty, 2018). 
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FIGURE 2-3 BEIS PROJECTED PROGRESS ON ENERGY EFFICIENCY IMPROVEMENTS IN FUEL POOR 

HOMES (Committee on Fuel Poverty, 2018) 

 

This austerity led redefinition also meant a shifting of responsibility. Government schemes such as 

‘Warm Front’ were concluded, leaving only supplier-led improvement schemes, making them entirely 

accountable for the delivery of energy efficiency measures to fuel poor households. This reduced the 

role of the state in supporting the fuel poor in favour of a model based on supplier obligations, funded 

via energy bills. The fuel poor become the subjects of the energy market, and certainly from a lived 

perspective, any gains through energy efficiency have been easily overshadowed by changing welfare 

policies and energy prices (Middlemiss and Gillard, 2015). The Committee on Fuel Poverty reported 

that not all households in fuel poverty will take any cost reduction from energy efficiency 

improvements as monetary gain and will instead trade-off for increased thermal comfort. This is 

typically dependent on their annual net household income and the pattern of comfort taking is 

described as “thermostat settings increasing until either the thermostat reaches 21C or half of the 

financial gain is spent on additional heating cost, whichever occurs first” (Bridgeman et al., 2018). The 

fact that some in fuel poverty systematically underheat their homes is hidden in the current definition 
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of fuel poverty, as it uses a predefined required heating pattern to obtain an adequate level of warmth. 

Those vulnerable to welfare policy changes or in receipt of benefits are also likely to be reluctant to 

increase their consumption for fear of increased and unexpected costs which could lead to them 

returning to a state of fuel poverty, or faced with the “heat or eat” dilemma, where cold weather 

shocks are equivalent to income shocks and see low income households cut back on other necessities 

such as food in order to finance the additional cost of keeping warm (Beatty et al., 2014).  

As previously discussed, these austerity lead policies mean that only the most vulnerable or most 

impacted fuel poor subjects can have help meeting their needs, whether that means those with the 

largest fuel poverty gaps or those with physical vulnerabilities. This means that LILC households are 

not a priority, the income poor living in energy efficient housing are often overlooked by policy makers 

where there is no further benefit in pursuing energy efficiency measures despite the fact that Ofgem’s 

‘Energy Supply Probe’ identified that low income households were less likely to change tariffs, switch 

suppliers, compare offers, have the ability to access on-line offers and be more likely to be prevented 

from switching by existing debt, regardless of their energy costs (Middlemiss, 2017; Ofgem, 2009, 

pp.11, 59). This lack of engagement with fuel costs could lead to LILC houses being reclassified as 

LIHC and therefore fuel poor if energy prices rise significantly in the future. Low income homes are 

also more likely to have been given pre-payment meters or are unable to pay via direct debit; both of 

which incur higher costs, all of which amount to more undetected inequality in the LIHC indicator 

and need clarification. 

The positioning of energy efficiency improvements as a key technology under the LIHC definition 

has implications for what is possible in fuel poverty policy and beyond. A focus on energy efficiency 

reduces attention to other structural problems which exacerbate fuel poverty, particularly fuel costs 

and pricing, and income inequality and suggests that reforms of this nature are beyond the realm of 

possibility (Middlemiss, 2017). This redefinition lends itself to a technical reassessment of the need 

for help, one which is related to the efficiency of the housing stock, and is far removed from the lived 

experience, leading to some households who do not fit this prescriptive definition remaining hidden 

(Middlemiss, 2017). 
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 Socio-Economic Indicators of Consumption 

Although the definition of ‘energy’ is variable, there remains broad agreement over those demographic 

factors influencing overall consumption (Frederiks et al., 2015). These explanatory variables 

encompass three main fields: socio-demographic (e.g., income, education, household size, dwelling 

type and tenure), psychological factors (e.g., knowledge, values, attitudes) and external factors (e.g., 

economics, political and legal). The scope of this study means that whilst the external influences and 

drivers of domestic energy consumption have been acknowledged, only socio-demographic indicators 

are investigated. 

Household income is often highly correlated with energy consumption (Wyatt, 2013). It is intrinsically 

linked to factors such as employment status, education and household size, all of which may facilitate 

or constrain energy related behaviours (Abrahamse and Steg, 2011; Rhodes et al., 2014; Jones and 

Lomas, 2015). Those in full time employment and earning higher, more constant income being more 

likely to spend less time at home than those who are unemployed, and thus require lower levels of 

heat and light, but are also more likely to own and use more appliances than lower income households, 

as well as typically occupy larger properties with more rooms. Those who are unemployed or at home 

the day due to illness or caring responsibilities may be forced to reduce their consumption to a level 

of thermal discomfort in order to offset the extended hours of usage. Low income houses may find it 

harder to recover from unexpected energy expenses such as higher winter bills than those with a high 

income who typically have the disposable income to absorb an unexpected cost. Income also affects 

a consumer’s ability to manage their energy accounts. Low income households are more likely to have 

been placed on a pre-payment tariff to prevent their account accruing debt, or may be explicitly 

restricted to pre-payment tariffs due to debt problems whereas higher earners are more likely to pay a 

fixed, predictable amount each month via direct debit; under-consuming in the summer months and 

building up credit to offset higher winter costs (Middlemiss and Gillard, 2015). The link between 

deprivation and pre-payment tariffs is widely reported and plays a significant role in consigning some 

people to perpetual fuel poverty (Middlemiss and Gillard, 2015; Longhurst and Hargreaves, 2019). 

They are relatively overpriced per kWh and do not allow for a credit and debt balance; if a household 

on a pre-payment tariff do fall into debt, in the short term they may have to live without heat, light 

and appliances, and in the longer term are likely to find themselves unable to move away from their 
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provider to a cheaper, more affordable tariff due to their account balance (Middlemiss and Gillard, 

2015). 

Tenure has been shown to have an indirect effect on energy consumption. The landlord/tenant 

dichotomy, or the ‘split-incentive’ arises when the interests of both parties misalign (Bird and 

Hernández, 2012; Ástmarsson et al., 2013). When the landlord provides the housing and the tenant 

pays the energy bills neither sees a benefit in making improvements to the energy efficiency of the 

home due to realising little return on their investment, making it difficult for tenants to have any 

autonomy over their energy usage and Hope and Booth (2014) found that 40% of the landlords in 

their study were deterred from making efficiency improvements to their rental properties because they 

saw no personal benefit (Ástmarsson et al., 2013). Private rentals also represent the worst performing 

tenure type, with only 8% of homes obtaining an A-C energy efficiency rating (Hope and Booth, 

2014). These represent the main constraints to the reduction of fuel poverty in privately rented 

accommodation in the UK and private renters are the most likely to be in the deepest fuel poverty 

(Ástmarsson et al., 2013; Department of Energy and Climate Change, 2014c). Furthermore, due to the 

precarious nature of rental contracts, tenants find themselves disempowered and unable to request 

improvements to their living conditions for fear of reprisal or losing their accommodation – “Should 

a tenant be unhappy, a landlord can simply end the tenancy and install new tenants. There is a need 

for greater and clearer powers for tenants to request such improvements and mechanisms to ensure 

that landlords follow through without prejudice”  (Hope and Booth, 2014, p.377). It is also the case 

that often, tenants do not know their rights or what they can expect from their landlord (Petrova, 

2018). This is beginning to change, as with the “Minimum Energy Efficiency Standards” (MEES) 

which have been in place since April 2016, where a landlord can no longer refuse a reasonable request 

for improvement by a tenant, but progress appears on the face of it to be slow; properties need to be 

rated only a band E in order to be let to a tenant and the definition of ‘reasonable’ is highly subjective. 

Properties can also be exempt if a landlord refuses consent, and in reality MEES only apply to about 

20% of rental properties due to the legislation not applying to social and local authority owned housing 

(Hope and Booth, 2014; French et al., 2018). Conversely, home-owners are more likely to invest in 

energy improvements as they are less transient, more financially secure and more likely to benefit from 

long term savings; around 15% of owner-occupied homes have an A-C efficiency rating (Hope and 

Booth, 2014). They also possess the autonomy to make decisions about and make changes to their 

properties.  
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Characteristics of the physical dwelling have been linked to variations in occupant energy 

consumption. Dwelling type, age and size are influential, as well as the fixtures and fittings within the 

home (Wyatt, 2013). Depending on the number of features such as floors, rooms and windows as well 

as levels of insulation, central heating and ventilation, up to half of total household energy could be 

accounted for (Schipper et al., 1989). Accommodation type in particular has been used as a proxy for 

usage habits as it can be representative of a family’s life stage; a large family are more likely to occupy 

a home with greater floor area and more rooms and so will have a greater need for heating and lighting. 

They are also likely to require and use more appliances more frequently, for instance the washing 

machine and dishwasher, when compared to a single person living alone, but the cost of not having 

or not being able to afford efficient appliances should also be considered (Chapter 2) (Holloway and 

Bunker, 2006; Jones and Lomas, 2015). 

 The Effects of Fuel Poverty on Individuals  

As discussed throughout, these socio-spatial characteristics are inherently linked to fuel poverty, yet 

the lived experience of being in fuel poverty is wholly overlooked by the government’s strategies. The 

following section highlights the reported impacts of living in fuel poverty as a daily experience.  

House quality, poverty, physical health and mental wellbeing are all outcomes of the condition of fuel 

poverty, and there is a cyclical risk associated with living in fuel poverty. Worsened physical health 

such as respiratory illness linked to dampness and mould are associated with sub-optimal mental health 

and the increased likelihood of stressors associated with being unable to afford solutions, which then 

lead to an increase in coping behaviours such as smoking and overeating (Mould and Baker, 2017). 

Breaking such a cycle and separating the ill health caused by the living conditions from the health 

conditions that are instrumental in the individual finding themselves in fuel poverty is complex. 

However, it is clear that long term physical disability can severely restrict the earning power of an 

individual and result in them living in perpetual fuel poverty as well as being disengaged from society 

more generally. Increased rates of mortality during cold weather (known as excess winter deaths or 

EWD) were first noted many years ago, and occur mainly due to changes in blood pressure and 

chemistry during cold weather, which in turn increase the risk of fatal cardio or cerebra-vascular events 

such as strokes or pulmonary embolisms (Liddell and Morris, 2010). The immune system is also 

suppressed, increasing the incidence of infections. Furthermore, studies have recently begun to 
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examine the enduring and cumulative health impacts associated with living in sub-optimal conditions. 

These include increased risk of influenza, pneumonia and asthma (Liddell and Morris, 2010). As this 

broader spectrum of health impacts becomes more evident, preventable health impacts increasingly 

become the primary rationale for tackling fuel poverty in many parts of the world (Wilkinson et al., 

2007). 

In the UK in particular, human health is construed as the main beneficiary of the Governments fuel 

poverty strategies, but the question remains as to whether or not policies which invest in actions so 

indirectly related to human health be expected to deliver significant health impacts through what is in 

essence a housing regeneration policy (Liddell and Morris, 2010). 

 Changes in the Fuel Poverty Vernacular 

As discussed in the Literature Review, fuel poverty is currently defined by the Low Income High Cost 

(LIHC) indicator, introduced by John Hill in what is widely referred to as ‘The Hills Review’ (2012) 

(Section 2.2.4). This replaces the 10% indicator popularised by Brenda Boardman (1991) and makes 

several improvements on it; by measuring a household’s income after housing costs have been 

considered and by making the cost of fuel a relative measure rather than an absolute threshold (Section 

2.2.8). However, it still ignores the lived experience as a purely monetary based measure and is still 

too linear at a national policy level (Moore, 2012). The energy efficiency methods to reduce it also lend 

themselves to a technical problematisation, which foreclose alternative strategies and forms of 

intervention, entrenching the notion that fuel poverty is a linear problem affected only by low income, 

high energy prices and inefficient housing stock (Longhurst and Hargreaves, 2019).  

Intuitively, a focus on energy efficiency and reducing carbon emissions from homes makes a great 

deal of sense, especially given the need in the UK to upgrade the housing stock to make it fit for the 

21st century (Rosenow et al., 2013). Many fuel poor homes are poorly insulated and investment in 

energy efficiency is a cost effective approach in both the long and short term as the benefits of home 

improvements remain for many years (Boardman, 2013). But as previously mentioned, it can be driven 

by many factors other than the traditional fuel poverty triad (Middlemiss, 2017). Acknowledging this 

multifaceted issue will lead to an improvement in how fuel poverty is understood and thus can be 

legislated for. To reiterate, Bouzarovski and Petrova (2015) and Middlemiss and Gillard (2015) identify 

the key indicators as; access, affordability, flexibility, energy efficiency, needs and practises, quality of 
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building fabric, tenancy relations, energy cost and supply, stability of household income, social 

relations and ill health, given that in both cases “a change in any one of these elements or the 

relationship between them can materially affect a households access to affordable energy” (Longhurst 

and Hargreaves, 2019, p.2). Furthermore, the political landscape of austerity driven policy making 

increases peoples vulnerability to change; policies such as universal credit which on the surface are 

unrelated to fuel poverty compound the effects for those experiencing it by affecting a household’s 

available income. 

One area where the need for change, especially with regard to policy making, generates a highly 

charged discussion is the rental sector. When such fuel poverty characteristics are coupled with rental 

rather than owner occupied properties, there is a dichotomy between the obligation of the landlord 

and the tenant where neither will see any benefit to making substantial improvements to the home 

(Section 2.2.5); and is cited as one of the biggest barriers to improving energy efficiency in the rental 

sector (Hope and Booth, 2014). Landlords see little incentive to invest as it is their tenant who will 

benefit from the lower bills, and the tenant is neither inclined to invest in improvements as they won’t 

live in the property long enough to see real financial reward, or are prevented from doing minor 

improvements through lack of consent from the landlord. Privately rented properties are some of the 

most likely to find themselves in fuel poverty and suffer from the worst energy efficiency (Hope and 

Booth, 2014). 

 Why Further Change is Needed  

This change of definition and the implementation of its associated strategies, targets and indicators 

with a strong focus on energy efficiency creates a narrow interpretation, which is not reflective of the 

complex and multifaceted nature of the lived experience (Middlemiss, 2017; Middlemiss et al., 2018; 

Longhurst and Hargreaves, 2019). The annualised statistics that guide the current policy frame fuel 

poverty as a problem of aggregate rates and trends rather than as a daily lived experience (Department 

for Business Energy and Industrial Strategy, 2018). This technical problematisation of fuel poverty 

entrenches it as one that can be solved by energy efficiency measures alone. 

This exclusionary framework ignores other ways of ‘knowing’ fuel poverty, particularly those which 

relate to the household experience (Longhurst and Hargreaves, 2019). There is a growing body of 

work seeking to broaden the focus and draw attention to a wider set of socio-spatial factors than the 
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traditional fuel poverty triad. Bouzarovski and Petrova (2015) identify access, affordability, flexibility, 

energy efficiency, needs and practises as key, whilst Middlemiss and Gillard (2015, p.147) focus on 

“quality of building fabric, tenancy relations, energy cost and supply, stability of household income, 

social relations and ill health”, given that in both cases “a change in any one of these elements or the 

relationship between them can materially affect a households access to affordable energy” (Longhurst 

and Hargreaves, 2019). An improved understanding of the dynamic elements of fuel poverty serves 

to highlight the precarious nature associated with many experiences of fuel poverty, which are often 

obscured by the narrow, macro-level statistics. (Longhurst and Hargreaves, 2019). 

 Summary 

To summarise, overall deprivation and fuel poverty are two distinctly different forms of hardship, 

however, it is the political definitions which are entrenching this divide. Material deprivation is a 

multifaceted phenomenon referring to an individual’s inability to afford basic resources; a definition 

which moves away from an income based measure of poverty which permits a greater understanding 

of the causal mechanisms at work. Yet despite the fact that the populations living with deprivation 

and fuel poverty are very likely to be overlapping, the current definition of fuel poverty is very much 

income led, reducing the attention on non-monetary indicators.  

The current, austerity led definition of fuel poverty changes the vernacular from a problem which can 

be eradicated into a problem of targeting the priority households. Framing fuel poverty as a technical 

problem linked to energy efficiency which can only be addressed by investments excludes the 

multidimensional and interrelated behavioural factors. In order to ensure that households who exhibit 

vulnerabilities do not become hidden because of this definition, changes are required which, as has 

happened with material deprivation, move away from an income based measure to encompass the 

many facets of fuel poverty and begin to address them. 
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  Energy Data  

 Traditional Technology  

Gas and electricity meters have been an essential but modest element of the energy infrastructure in 

the UK since the early 20th century - this arose from the advent of gas and electricity becoming 

available to the masses on a large, saleable scale (Darby, 2010). The most common modern electro-

mechanical induction meters are, as previously discussed, mostly a variation of those and are still 

widely produced today. They are popular due to their low production price and excellent reliability; 

counting the revolutions of an electrically conductive metal disc (Ma et al., 2017). Yet their lack of 

flexibility and responsiveness means that they are falling out of favour with policy makers, energy 

providers and consumers as they all look for a more efficient and affordable way to monitor energy 

consumption. There is also an increasing awareness of the ‘creep phenomenon’; due to the mechanical 

nature of the conventional meters, physical wear and tear occurs which is difficult to avoid and leads 

to inaccuracies in consumption levels (Ma et al., 2017). 

Traditional meters require a large amount of manual calibration. To receive an accurate bill for usage, 

a householder must be available for a meter reader to come and take a meter reading periodically, 

which is costly for the supplier and time consuming for both (Darby, 2010). If this cannot be done, 

because for example the meter reader typically calls during the day when people are at work, or isn’t 

done frequently enough, the user will receive a bill for estimated usage based on an average for the 

house type and previous months (Logica, 2007; Darby, 2008). This kind of billing could lead to 

unexpected expense (higher bills than usual if usage is overestimated, or a requirement to clear debts 

if underestimated over a long period of time) and fluctuating demand due to seasonality may push 

people who are ordinarily not fuel poor into short term fuel poverty while their finances recover 

(Ofgem, 2009; Robinson et al., 2018b). Another billing method is to average out expected annual usage 

and bill the same amount monthly, allowing consumers to get into debt over the more expensive 

winter months, but holding credit that could be utilised elsewhere once the balance has been paid off 

in the cheaper summer months (Hazas et al., 2011). This is however generally still preferable to a pre-

payment tariff, as these can create genuine difficulty for people during the winter months when the 

ratio of fuel cost to income is generally much higher and there hasn’t been an option to overpay 

(Moore, 2012). 
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As already discussed under the energy efficiency sphere, these meters are often installed in difficult to 

reach locations displaying usage only in terms of Kilowatt Hours rather than cost. From a fuel poverty 

perspective these traditional meters make it very difficult for households to interpret their usage in 

terms of cost, making identifying and altering particularly expensive practises very difficult. It was the 

government’s intention that a full transition away from these first generation meters to smart metering 

would be complete for both gas and electricity by 2020 but this has since been extended several times 

to 2025 (Haben et al., 2016). The benefits of upgrading these meters to new smart meters are discussed 

more fully in the next section, but it is considered instrumental for improvements not only in high 

level emissions targets but also fuel poverty ones.  

 Traditional Classifications 

Traditionally households are simply classified by the energy suppliers as low, medium or high 

consumers, with only their average consumption levels to categorise them, no recommendations for 

improvements and no further guidance on their energy practices. This may be down to the suppliers, 

who wish to keep their marketing strategies private to retain a competitive advantage but is ultimately 

unhelpful in helping increase peoples understanding of their energy consumption as the ranges in the 

groups are so wide, as is shown in Table 2-2. 

 

TABLE 2-2 STANDARD CATEGORISATION OF ENERGY USERS AND THEIR AVERAGE ANNUAL 

CONSUMPTION 

Energy user group Electricity (kWh) Gas (kWh) 

High 4,600 17,000 

Medium 3,100 12,000 

Low 1,900 8,000 
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According to USwitch (2018), an average ‘low user’ typically has a small one or two-bedroom property, 

where a single person or couple spend little time. They use their washing machine around once a week 

but do not own many other large inefficient appliances such as a tumble dryer or dishwasher. A 

medium user will live in a typical three bedroom house with their small family or partner and one or 

two children. They are likely to spend time at home in the evenings and at weekends but are generally 

out during the day. They have more appliances than low users for convenience, which are used a 

couple of times a week (washer dryer, dishwasher etc.) and they also have slightly higher usage based 

on the number of electrical devices in the house. A high-energy user lives in a large property, probably 

with more than 4 bedrooms. This can either be a large family home or a shared house of multiple 

occupancy, and the house is likely to be occupied by at least some of the occupants most of the time. 

Multiple appliances are in daily use. Figure 2-4 provides this information as a digestible infographic, 

aiming to educate users to ensure they choose a tariff which is right for their level of usage. (USwitch, 

2018). 



 

 
37 

 

FIGURE 2-4 ENERGY CONSUMPTION CATEGORISATION INFOGRAPHIC (USwitch, 2018) 

 

 Improved Technologies 

Improved technologies go beyond the meter that is present within the residential property and 

encompass an entire cultural shift to an Internet connected smart grid. A smart grid can be defined as 

an electric system that uses two way, secure communication technologies to provide near real-time 

information on every aspect of energy generation, delivery and consumption to achieve a system that 

minimizes environmental impacts, enhances markets, improves reliability and service, whilst also 

reducing costs and improving efficiency (Gharavi and Ghafurian, 2011; El-Hawary, 2014). The 

previous section on energy efficiency cited some of the benefits of an interconnected smart grid to 
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the supplier in terms of energy security; better planning of resources; faster resolution to outages and 

improved reliability (Guerreiro et al., 2015; Haben et al., 2016). Table 2-3 describes in greater detail the 

benefits to suppliers, consumers and wider society.  

 

TABLE 2-3 BENEFITS OF AN INTEGRATED SMART GRID (HOUSE OF COMMONS SCIENCE AND 

TECHNOLOGY COMMITTEE, 2016) 

Stakeholder Benefit 

Consumer  

 Easier switching between suppliers 

 More accurate billing; the avoidance of billing 
issues and the need for meter readings 

 Avoidance of debt accumulation through 
access to accurate, near real time information 

Utilities and Energy Providers  

 Removes the need for site visit meter readings 

 Reduces call centre traffic through reduced 
queries 

 Improved theft detection and debt 
management 

Society  

 Benefits of optimised electricity generation 
and network management 

 Network reinforcement and electricity storage 

 Technical innovation and new economic 
opportunities 

 Reduced carbon generation and meeting 
climate change targets 
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Smart grids mark an enormous cultural shift in the UK energy sphere; the largest change to the UK 

energy market since the shift to North Sea gas (Darby, 2010). They are characterised by improved 

communications and two way feedback throughout the generation, distribution and consumption 

processes, all of which must take place in real time. Figure 2-5 illustrates the feedback loop that a fully 

operational smart grids could enable and gives an overview of the extensive technologies required. 

 

 

FIGURE 2-5 A FULLY OPERATIONAL SMART GRID SYSTEM (El-Pro-Cus, 2019) 

 

From a policy perspective tackling ‘energy poverty’, upgrading the UK infrastructure to a ‘smart grid’ 

gives the potential for solving many energy problems (Stern, 2011; Smart Energy GB, 2018b). This 

upgraded infrastructure leads to more efficiency in the short term (better matched supply and demand 

and less wastage) and planning for long term futures (increasing energy security, planning for 

unexpected power outages and informing the number of power stations the UK is likely to need in 

the future) (UK Committee on Climate Change, 2010; Guerreiro et al., 2015; Smart Energy GB, 

2018b). In the UK, smart meters have come to mean meters that can both measure and store data at 
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regular intervals and act as the point of communication between supplier and consumer in the 

domestic setting, using an inbuilt wi-fi signal (Guerreiro et al., 2015; Smart Energy GB, 2018b). Smart 

meters have been defined as “advanced meters that identify consumption in more detail than 

conventional meters and communicate via a network back to the utility for monitoring and billing 

purposes” and link to a wider scheme of upgrades throughout the UK allowing for energy to be more 

efficiently produced, stored and planned for to meet demand (Faiers et al., 2007; UK Committee on 

Climate Change, 2010; Smart Energy GB, 2018b, p.85). During the initial stages of the UK rollout 

programme meters were installed into homes but were not without technical difficulty. The SMET1 

meter was only ever supposed to be installed during a testing or foundation stage and would frequently 

“go dumb” in areas of poor mobile reception and failed to work in 30% of properties, typically those 

with thick walls or in high rise buildings. A smart meter is installed with an accompanying In Home 

Display (IHD) which refers to the device or monitor that connects to the smart meter and provides 

the consumer with visual information about their consumption levels and associated costs (Sovacool, 

2015).  

The roll out programme in the UK is viewed by policymakers as integral to encouraging greater 

efficiency inside homes and achieving the proposed emission reduction targets. For consumers this is 

because IHDs will enable education and awareness of consumption, which are considered some of 

the greatest barriers to sustained energy reduction, and on the supply side, as mentioned above, for 

the integrated feedback loop. However, despite the benefits; there are technical challenges associated 

with getting smart meters into every household in the UK, involving installing (at least) a combined 

104 million pieces of new equipment when counting gas and electricity meters, IHDs and wireless 

communication networks (Lewis and Kerr, 2014). It is expected to cost more than £200 per household 

and at least £11 billion in total, representing a complex and costly scheme, much of which will be paid 

for through customer’s bills.  

There are also societal barriers to uptake which must be considered if the programme is to succeed; 

the scheme is argued to be the biggest “behavioural change that this country has ever seen” (House 

of Commons Science and Technology Committee, 2016). It is widely regarded as “an incredibly tough 

job convincing every household in England, Wales and Scotland to install a smart energy meter” 

(Barnett, 2015, p.3). Buchanan et al (2016) provide a detailed overview of the perceptions of the British 

public and found that in general they appear to be “apathetic or ambivalent”, with 53% indicating that 
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they are undecided about whether they should be installed in every UK home (Department of Energy 

and Climate Change, 2014b). Some key themes surrounding both the perceived risks and opportunities 

were identified by consumers; risks and worries were overwhelmingly associated with mistrust of the 

energy suppliers and suspicions that the consumer was unlikely to be the main beneficiaries of the 

smart meter scheme. This is likely to act as a barrier to their willingness to adopt these new 

technologies as they struggle to understand the (profit making) suppliers rationale for reducing 

consumption (Fell et al., 2014; Lopes et al., 2014). Privacy was also a major concern; respondents to 

studies on smart meters frequently feel they are being watched over by an invasive presence (Fell et 

al., 2014; Sovacool, 2015). People are however convinced of the benefits offered by dynamic billing, 

the opportunity to save money and the possible improvements to personal comfort (Buchanan et al., 

2016; Darby and Pisica, 2013; Smart Energy GB, 2014). 

 Improved Classifications  

The advent of improved metering technologies means that many new tariffs are already on the market, 

which are based on personalised energy use to a lesser degree than what smart metering can offer. 

New generations of meters preceding smart metering include white meters, more commonly known 

as ‘Economy 7’ in the UK (USwitch, 2017). These are already breaking consumers down into more 

precise and therefore targetable groups than simply “high, medium or low” as far as energy suppliers 

are concerned. This is beneficial to supplier marketing - making it easier for them to aim their tariffs 

at specific types of users and provide tariffs that meet the needs of many more people.  

The ‘time of use’ tariffs available to those who have a white meter installed in their home offer a 

different way of consuming energy, with different tariffs tailored for usage, based on each supplier’s 

peak and off peak times. They encourage users to shift their consumption to times when energy is 

available more cheaply but charge a higher than average price for use at peak times (USwitch, 2017). 

These tariffs are positive from an environmental and energy security point of view, reducing peak load 

on the grid, and therefore power plant capacity (Energy Saving Trust, 2017). It is fair to say though 

that these tariffs would not be suitable for everybody and some may even find themselves worse off 

- it is important that both family life and the infrastructure of the house are right for the tariff; most 

of the energy usage should already take place at off peak times, i.e. those who are retired or home 

workers would find it easy to shift their usage away from the evening peak, but a young working family 
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may not. The house should also be equipped with a storage tank to store hot water that is heated 

cheaply, and appliances that can be set on a timer to come on at night to take the most advantage of 

the cheapest overnight rates. 

There are also now ‘green supply tariffs’ which ensure that at least some of the energy that you buy is 

‘matched’ by the purchase of renewable energy on your behalf (Energy Saving Trust, 2017). There are 

also ‘feed in tariffs’ available to anyone who has installed or is looking to install a variety of small-scale 

renewable and low carbon electricity generation technologies (such as solar panels) where a payment 

is made on a quarterly basis for any unused energy fed back into the grid to encourage their uptake 

(Ofgem, 2018). None of these innovative tariffs would be possible without a network that provides a 

two-way relationship, feeding information to both the consumer (to tell them when energy is cheaply 

available or what they stand to gain by providing energy) and to the supplier, to inform them when 

people are able to sell them their surplus energy. Once again, these offer a huge environmental and 

energy security benefit, reducing grid load and power plant capacity (Energy Saving Trust, 2017). 

It is anticipated that once the smart metering roll-out is complete, there will be an end to many of the 

traditional estimated tariffs, as everybody will be able to monitor their consumption in almost real 

time and revise their energy usage habits to not just a time when it is cheaper, but ultimately become 

more aware of their consumption and reduce their usage in the long term. However, it is important 

that there is enough education and access to information to ensure that people are still getting the best 

deal for them as every household is different. 

The advent of these new tariffs is also beneficial to the suppliers; incentivising customers to switch 

their energy usage times will minimise the peak usage increase and decrease power plant and grid load. 

This detailed feedback to the supplier will also enable the improved detection of fraudulent activity or 

tampering (Darby, 2010; Ma et al., 2017) 

 Improved Understanding 

It has been shown in studies such as Faruqui, Sergici, and Sharif (2010) and Ehrhardt-Martinez and 

John (2010) that providing visible feedback to smart meter users through an IHD gives tangible results 

with regard to reducing energy consumption with an average of 7% across studies. IHDs transform a 

once static and incomprehensible energy bill into a dynamic, transparent and most importantly 
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controllable process by translating kilowatt hours (kWh) into pounds and pence (Faruqui et al., 2010). 

This feedback in familiar monetary terms can be seen as an educational tool, allowing homeowners to 

experiment with appliance usage and alter their most expensive practices, for example, switching their 

washing machine from a 60 cycle to a 30 cycle or adjusting their thermostat by one or two degrees 

(Darby, 2010). The level of effect the feedback has on consumption is however linked to a number of 

pre-existing factors such as users’ values, beliefs, norms and capabilities; for example, there may be a 

level of comfort that those who can afford to will choose not to go below, and so in the long term 

there may be a levelling out of energy savings as people make the choice between consumption and 

comfort or convenience. This direct feedback has been shown to reduce demand by almost double 

the 7% saving when a pre-payment meter is installed, suggesting that monetary savings are the biggest 

motivation to those on the most expensive tariffs (Carroll et al., 2014). 

Conversely it has also been suggested, that this feedback can be overwhelming if the correct pre-

requisite understanding with regard to both the new technology and consumption practises is not 

there, and so there is a need for education alongside new technology, not just on how to reduce energy 

but also on the technology itself (Darby, 2010). Lack of understanding leads to mistrust, which in turn 

translates into disengagement with the scheme and no real savings in the long term as people feel 

discouraged from changing their habits (Oltra et al., 2013). 

This information also allows the supplier to deliver more accurate billing and a long term cost saving 

in terms of a reduction in staffing costs as the job of ‘meter reader’ becomes obsolete, although it is 

open to debate how much of the saving will be passed onto the consumer, especially given the 

increased burden of employing skilled tradespeople to undertake the installations for the foreseeable 

future (Roberts and Redgrove, 2011). 

From an academic perspective this new source of highly granular data has utility in dissecting the 

diurnal patterns of people and their lived environment and experience. Energy is closely linked to daily 

routine, most acts within the home impact on energy usage in some way, from making a morning 

coffee, to relaxing with a games console or taking a shower (Buchmann et al., 2013). Given that the 

stages of a family’s life cycle (a combination of criteria such as family members’ age, marital status, 

and size/type) appears to be one of the strongest predictors of household energy consumption, this 

passive logging of energy consumption could provide valuable insight into household demographics; 

this idea is discussed at greater length in Section 2.4.4 (Frederiks et al., 2015).  
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The dataset utilised in this thesis is the most comprehensive available; studies exist which utilise Smart 

Meter data, however they are often limited by one or more of the following; sample size, timeframe, 

meter type or cadence, usually as a factor of accessing commercial data sources. Sample sizes in 

existing literature range from 180 households in research by Buchmann et al., (2013) through to 

225,000 households examined by (Kwac et al., 2013), however even a study of this size was limited by 

only having access to data with a two week timeframe. Carrol, Lyons and Denny (2014) also conducted 

research using smart meter data with a sample of 5,000 home s over 18 months but were limited to 

electricity meters only.  Further research exist which attempt to estimate energy consumption without 

the use of smart meter data, which necessitates a reliance on annualised statistics. For example 

Druckman and Jackson (2008) have used ‘spend on fuel’ from the Expenditure and Food Survey as a 

proxy for consumption. Whilst Jones and Lomas (2015) do use primary consumption data, it is 

collected from traditional meters 3 times a year from 315 homes, which takes significant time and 

effort.  

 How Smart Meters May Benefit Those in Fuel Poverty 

The interconnected nature of the smart grid will benefit those households in fuel poverty in a 

multitude of ways. Firstly, the direct feedback to the energy provider will see the end of estimated 

billing and monthly aggregate usage; for the consumer this means no unexpected bills as a result of 

the provider incorrectly estimating a household’s usage, making it much easier to plan and budget for 

energy costs throughout the year. They also facilitate the introduction of time of use and demand-

response tariffs, both of which help smooth consumption throughout the day and reduce peak 

demand, promoting the use of off peak consumption by offering preferential rates (Carroll et al., 2014). 

This increased visibility over their consumption is compounded by the adoption of IHDs; the UK is 

the only EU country that has stipulated that a smart meter must also be fitted with an IHD (Sovacool, 

2015). The IHD translates consumption into monetary terms, highlighting particularly inefficient 

practises and acts as a reminder to pay more attention to consumption levels. As discussed prior, the 

addition of a smart meter, coupled with an IHD can result in an average reduction in electricity 

consumption of up to 11% depending on the time of day (Faruqui et al., 2010; Lynham et al., 2016), 

thereby helping to narrow the fuel poverty gap. However, studies find the reduction declines over 

time, suggesting that users see the IHD as a novelty at first and interact with it much more frequently, 



 

 
45 

leading to short term changes in behaviour, which do not necessarily translate into long lasting habits 

(Lynham et al., 2016). 

As discussed though, it is also important to note that those of lower socio-economic status, those with 

no formal qualifications and households of more vulnerable groups (who are also the most likely to 

find themselves in fuel poverty) are the least likely to engage with IHDs therefore realising the least 

benefit and so there must be a concerted effort in outreach and education within these marginalised 

groups. Due to their increased propensity to also be housed in rented households and be placed on 

pre-payment tariffs, the installation of a new physical meter is an additional barrier to their access.  

 

 Summary  

The commercially sensitive nature of smart meter data means that many existing energy studies are 

based on small samples, or utilise surveys focusing on the end user experience, apart from one notable 

exception of Brounen, Kok and Quigley’s (2012) study of 300,000 Dutch homes. Results from attitude 

surveys are limited in their ability to discern the complex correlations between dwelling characteristics, 

occupancy behaviours and consumption (Yohanis et al., 2008). The innovative nature of the 

technology and limited schemes in place also invariably dictate and limit the scope of existing studies.  

The technological changes within the energy sector are enabling improvements across the board. It is 

the belief of governments and policy makers as well as academics studying the behaviours linked to 

smart meters and IHDs that they can have an effect on reducing residential energy demand with 

benefits in the form of financial reductions and greater control to the household and reduced carbon 

emissions and increased environmental improvements to society. Studies such as Carroll et al (2014) 

suggest that smart metering is effective as it acts as a motivator and a reminder to the consumer by 

increasing the visibility of consumption within the household. It is clear however, that for short term 

changes to become habits, smart meters and IHDs must overcome those barriers the consumers have 

vocalised; lack of information, mistrust and challenges in accessing the technology to name a few.  
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 Big Data 

 ‘Big Data’ have received much attention commercially, in the media and in academia, yet formal 

definitions in literature differ wildly. The most common is Laney’s Three Vs - Volume, Velocity and 

Variety (Laney, 2001). Other ’Vs’ have been added into this definition over time with the most 

common (value and veracity) described below. 

- Volume - consisting of terabytes or petabytes, yet also references the often vast 

dimensionality of the data. 

- Velocity - data are often collected continuously and have a high, often second by second, 

temporal resolution. 

- Variety - can reference intra-data variety (the diversity of information in a single given 

dataset), or inter-data variety (the vast number of datasets that fall under the big data 

umbrella). 

- Value - refers to the value the collected data can bring to the intended process. 

- Veracity - reference to the uncertainties surrounding data quality, which can be 

influenced by several factors including data origin and collection or processing methods. 

It is well known that academia, government and industry have long been collecting large amounts of 

population data such as censuses, and so it is not necessarily the size of the datasets which primarily 

defines big data but the way they are generated. It is ‘velocity’ that sets big data apart from conventional 

data repositories and infrastructure as they are produced through automated continuous systems with 

a high refresh rate as against the tightly controlled, manual and sampled data we are used to (Miller, 

2010; Kitchin, 2014b). Because of the way in which these data are produced, large portions are 

georeferenced, giving insight into spatial trends (Goodchild, 2013). This is another way in which big 

data can be conceptualized and includes directed, automated and volunteered spatial data: 

- Directed - generated from digital forms of surveillance on a person or place by a human 

operator, such as passport control or CCTV. 

- Automated - generated as an automatic function of a device or system such as scanning 

travel passes, interaction with websites, retail transactions and weather sensor data. 
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- Volunteered - generated by volunteered interactions, such as from social media or crowd 

sourced data. Examples include Flickr, OpenStreetMap and Twitter. 

Currently, most georeferenced big data are being generated through location based services such as 

mobile devices but there are also spatial referencing systems such as residential postcodes and 

georeferenced sensors (Laurila et al., 2013) . As a by-product of this, the representation of daily 

interactions such as work, leisure, communication, consumption and travel are now unprecedented. 

All of this has coincided with computational and technological advancements, which have led to a 

vast transformation of the data landscape in recent years. Of interest to this thesis is the potential to 

develop a deeper understanding of the population, given that it is now a common attestation that 

information derived from big data is one of the foundational elements for understanding future 

societies, across a broad spectrum of social, political, economic and environmental processes (Einav 

and Levin, 2014; Graham and Shelton, 2013). 

The emergence of big data has facilitated a paradigm shift to what has been termed ‘data-driven 

science’. It is changing how knowledge is produced, business conducted, and governance enacted 

(Bollier and Firestone, 2010). Successful analysis of big data requires a realist approach, which allows 

for a greater degree of flexibility in the interpretation of results. These are more likely to be extracted 

through exploratory, rather than confirmatory techniques, generating insights which are ‘born from 

the data’ as against ‘born from the theory’ and has been coined the ‘fourth paradigm of science” 

(Kelling et al., 2009; Kitchin, 2014a). 

Graham and Shelton (2013, p.259) review in greater detail what big data means for geography, and 

apply the ideas of ‘data-driven science’ to ‘data driven geography’ and suggest that the fears about 

spatial inequity in representation and self-selection biases, as well as “barriers to research and their 

implications for governance, privacy and our way of knowing the world” will outweigh the hopes that 

geographers will be able to utilize big data to influence and address “long standing questions of social 

injustice, inequality, and our relationship with the environment”. Even though there is little theoretical 

groundwork (and many complexities to using big data), academics and commercial businesses are 

beginning to realise the value that big data holds for new ways of explaining the world, especially since 

the future of some traditionally used data sources cannot be guaranteed (Singleton and Spielman, 

2014). 
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 Bias, Practicalities and Governance 

Interpretation is at the centre of data analysis. Regardless of the size of a data set, it is subject to 

limitation and bias. Without those being understood and outlined prior to analysis, misinterpretation 

is the result. Predefining these caveats also provides an opportunity for those consuming the analysis 

to make an informed decision about the trustworthiness of the results. Big data is at its most effective 

when researchers take account of the complex methodological processes that underlie the analysis of 

social data (Boyd and Crawford, 2012). 

Because of the emerging nature of the big data field, there is a degree of theoretical uncertainty. 

Representativeness is one of the fundamental areas of this uncertainty, referring to how well the data 

capture the case they seek to represent and how well that represents the overall population (Kitchin, 

2014a). Despite their volume, these data are still a sample. If traditional data can be said to suffer from 

sampling error, then big data equally suffers from sampling bias. Big data are inherently biased due to 

the nature of their production; to be included in a dataset, regardless of its size, one must fall within 

the target population of whatever it is that is being tracked and collected. Particular effort must be 

made, sometimes through efforts of triangulating novel data with more conventional methods like the 

Census, to ascertain the representativeness of the big datasets to the behaviours of the general public 

to make findings trustworthy, and also to avoid the pitfalls of generalisation (Lansley, 2014; Longley 

et al., 2015). Despite these new biases to consider, it is worth noting that data collected by machine 

methods are generally automatically and passively collected, which can prevent survey biases like those 

generated from response and non-response effects (Lenormand and Ramasco, 2016, p.362). 

The detailed interactions across space and time captured at such a high granularity in big data pose a 

substantial ethical and legal consideration. Given the often sensitive nature of these datasets including 

information at an individual level, access must be tightly controlled. There are fundamental challenges 

to be faced when considering the integration of these data into social science research, in the forms 

of legal, ethical and data uncertainty. 

There are various definitions regarding data and information governance. For instance, the Data 

Governance Institute  defines data governance as a system of decision rights and accountabilities for 

information-related processes, executed according to agreed-upon models which describe who can 
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take what actions with what information, when, under what circumstances and using what methods 

(Data Governance Institute, 2014). Soares (2012) succinctly recasts this to accommodate for big data: 

 

“Big data governance is part of a broader data governance program that formulates 

policy relating to the optimization, privacy, and monetization of big data by aligning 

the objectives of multiple functions.”  

 

To unpack this definition, big data governance needs policy which finds the balance between 

competing objectives to determine whether the potential gains from new findings outweigh the 

associated risks to both regulation and reputation (Morabito, 2015). Correct data governance policies 

should provide a framework for setting data usage rules as well as implementing controls designed to 

ensure that information remains accurate and consistent (Morabito, 2015). By controlling the creation, 

sharing, cleaning, consolidation, protection, maintenance and integration of information, data which 

previously would have been uncertain and meaningless become valuable and insightful. This does, 

however, need to be backed up by its underlying metadata, giving context to content and building 

useful inventories of big data to ensure the contained variables are correctly interpreted (Morabito, 

2015). 

The recently imposed General Data Protection Legislation (GDPR) is likely to have a profound impact 

on the future of big data in the UK, EU and beyond and there are many ways in which it could be 

breached, with legal implications and sometimes severe monetary sanctions. It is considered the most 

comprehensive and forward looking piece of legislation addressing the challenges facing data 

protection during this data shift. It replaces the previous legislation - the 1995 Data Protection 

Directive - and could substantially alter the way big data is collected and analysed (Zarsky, 2017). It is 

well reported and reflected in central policy that big data analyses of population based datasets generate 

substantial societal benefits, and as a meaningful framework, it is here to stay, but affects and is 

affected by the extent of data protection policy. Privacy legislation in particular is increasingly debated; 

the new data era has shifted the goal posts with regard to exploitation. It is commonly reported that 

people, when signing a privacy policy on the ways in which their data will be generated, stored or 
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disclosed, very often do not understand or even read the policies before signing them and serve as 

little more than a liability disclaimer for the companies than as an assurance of privacy (Polonetsky, 

2012). 

Ethically, privacy is considered a basic human right and there is a need to recognise acceptable 

practices regarding the access and disclosure of personal information (Elwood and Leszczynski, 2011). 

Under the GDPR this includes anything related to an identified or identifiable individual and could be 

as simple as a name or number, but also include other identifiers such as IP or email address 

(Information Commisioners Office, 2018). Age, gender, political opinions and criminal activity also 

constitute personally sensitive data and should be treated as such. The way this is handled currently is 

through a series of anonymisation processes such as de-identification, aggregation and physical 

computational techniques such as encryption, secure storage and restricted access (Kitchin, 2014b). 

From a research perspective, it is important to consider that many commercial entities want to keep 

their data restricted to retain a competitive advantage, which has a significant impact on the ability of 

academic researchers to realise the data’s full potential. The appetite for research partnerships is slowly 

changing though, as both parties realise the benefit of combining analytical expertise for public gain. 

These are commonly done between a corporation with data they are willing to share and universities, 

sometimes directly through Application Programme Interfaces (APIs) or through a trusted 

intermediary such as the ESRC (Economic and Social Research Council) funded Consumer Data 

Research Centre (CDRC). 

 The Practicalities of Working with Big Data 

While big data can yield exceptionally useful and valuable information, they also present new 

challenges with regard to how much data to store, how much this will cost, whether the data will be 

secure, and how long it must be maintained (Soares, 2013). For example, inaccurate, incomplete or 

fraudulently manipulated data pose increasing risk as enterprises become more dependent on the data 

to drive decision-making and assess results. Considerations are thus: 

- Quality – This includes considerations such as accuracy, completeness, vagueness, 

ambiguity and precision as well as consistency, scale, coverage, sample size and bias. 

(Wang et al., 2005; Harris and Jarvis, 2014) 
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- Quality Control – Because of the novel production process of these new datasets, 

aspects of this are often unknown and data treatment must be undertaken before their 

dynamics are understood. A lack of data to reference against can impede this process and 

make it difficult to prove the accuracy of the data and therefore the results generated from 

it. 

- Errors – Some errors are easily identifiable; spelling or syntax mistakes for example, but 

others may be harder to detect, especially if the dataset is not corroborated with sufficient 

metadata, giving the expected content of each variable. Spatial and temporal errors may 

be hard to detect, as admissible but incorrect data is provided possibly through an entry, 

coding or assignment error, or in terms of temporal data when objects change between 

the time of data collection and data utilisation. These errors have the potential to obscure 

pattern and processes rather than reveal them (Graham and Shelton, 2013). 

- Analytical – Practical challenges are also faced in the age of big data. Traditional analysis 

techniques are no longer adequate as the volume of data leads to them being prohibitive 

in both time and expense (Levy and Lemeshow, 2013). Inferential statistics have become 

irrelevant tools in the ‘populations not samples’ debate and there is therefore a need for 

novel, exploratory methodologies to address these data challenges. Commonly used 

algorithms must also be scalable in order to operate on big data efficiently. 

From a geographical perspective, it is important to remain critical of the patterns shown in big data. 

For example, Miller and Goodchild (2015) discuss three major challenges for data-driven geography; 

‘populations not samples’; ‘messy not clean data’ and the issue of ‘correlation not causality’. 

• Populations are problematic from an analytical viewpoint as traditional techniques tend to be 

confirmatory rather than exploratory, used with a specific question in mind, where the samples 

were under the control of the researcher (Miller, 2010). However, data-driven methods call for 

exploratory techniques to gain descriptive insight into large populations. 

• As previously stated, big data are not usually collected for a specific purpose, rather are a by-

product of various processes and generally are used to examine topics not connected to their 

original purpose. Their inherently messy nature means that new methods must be used to 

clean and understand them before they are used for analysis. 
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• The new data-driven science advocates correlation over causality, looking to identify and 

observe relationships rather than look into the causes of the phenomenon. It is important to 

remember though that correlations can be random in nature, especially in wide datasets 

containing lots of variables (Kitchin, 2014a). 

Chen, Mao, and Liu (2014) and Gandomi and Haider (2015) list further practical challenges including 

the fact that data which refreshes so quickly typically has a very short ‘use by date’, making it irrelevant 

almost before it can be processed, the energy management relating to physical storage, processing and 

computational power required to cost-effectively gain insights; scalability of the algorithms and co-

operation across many different disciplinary fields. From an analytical perspective, Miller and 

Goodchild (2015) present concerns that by moving towards a data driven geography, the lack of 

appropriate confirmatory techniques limit the viability and confidence in the results gleaned from 

exploratory methods. It is fair to say that these exploratory methods are still emerging and lack a 

cohesive framework, meaning the researcher must be clearer in their rationale for employing these 

techniques in order to retain legitimacy in their findings.  

 Consumer Generated Big Data 

There is no doubt that the data generated by consumers fits the definition of ‘big data’. Consumer 

data is that which arises out of transactions between individuals and service organisations. However, 

there are tensions between the corporations which hold the data, and the non-commercial researchers 

who want to add value to it. As mentioned, data such as these have long held a competitive advantage 

for the organisations producing them, giving detailed insights into what, where and how often people 

consume or interact with their product or service. Examples of consumer data include, but aren’t 

limited to; online ordering, store transactions (usually collected through loyalty cards), public transport 

usage, and as is the case here, energy consumption in the home. This variety of data and the fact that 

they are continuously collected, capture entire consumer populations and include temporal, 

longitudinal and geographical dimensions make them particularly attractive propositions for looking 

at societal patterns, but can also be highly sensitive and be personally identifiable.  
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 Energy Data as a New Form of Big Data 

Smart meter data can mostly be considered as ‘big data’; characterised by providing detailed and 

disaggregate information without the need for routine survey collection, one meter reading every half 

hour generates in excess of 48 million readings a day, per million customers (Alahakoon and Yu, 2013; 

Longley et al., 2018). The ‘velocity’ aspect of big data is of particular interest to energy researchers, 

because of the need to respond quickly to real time events such as equipment reliability or security 

monitoring, outages and surges in demand. Of the analytical algorithms available to process this huge 

quantity of data, many are unable to complete the tasks in a time span to make them practicable to 

implement the results. But, insights can be used to predict future events big or small from power 

outages to surges in demand caused by the fluctuations of everyday usage; for instance a novel example 

known as ‘TV pickup’ where a break in a popular television program causes a huge power surge as 

people collectively move away from the television to do other things2 and whilst this is minor, it is 

important that events such as this can be predicted as the UK aims to move toward a responsive smart 

grid, generating only what is required.  

Ardakanian et al. (2014) argues that generating consumption profiles is one of the fundamental data 

mining operations achievable through smart meter data - using household features captured through 

the profiles to understand different categories of consumers. Despite all the obvious benefits to both 

suppliers and consumers of being able to monitor energy usage in real time, there are also some 

significant arguments to be made in the case of user privacy and the safety of their data. There are 

studies which look at the potential for re-identification of anonymized individuals, such as Buchmann 

et al. (2013), who finds that smart meter data is inherently identifying, and there are elements of 

external and internal invasions of privacy that need to be considered and handled with sensitivity as 

the technology becomes more widespread and improves in quality and granularity (McKenna et al., 

 

2 When Lisa admitted to shooting Phil in EastEnders 2001, an estimated 22 million viewers tuned in. When it 

was over, they caused a surge of 2,290MW (916,000 kettles worth), more than five times the normal pickup of 

400MW seen at the end of an average EastEnders episode. During the England vs Brazil World Cup Quarter 

Final in 2002, despite the early morning, half time saw a surge of 2,570 MW (1.1 million kettles) (Drax, 2016) 
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2012; Guerreiro et al., 2015). There have been media outcries regarding privacy concerns ranging from 

the illegal to the controlling, which in turn has affected the consumers trust of smart metering, 

hampering the roll out (Jawurek et al., 2011). In Holland the mandate to require every home to have a 

smart meter was retracted due to it violating citizens’ rights to privacy. It is now being done on a 

voluntary basis, with a much-decreased uptake (McKenna et al., 2012). With data from smart meters 

available at such high granularity, some users are rightly concerned about the ability of multiple actors 

to access and misuse their personal data, being able to find out in great detail about their daily habits. 

For example, a criminal may infer when they are likely to be sleeping, out at work or have gone on a 

holiday and left the house unoccupied (McKenna et al., 2012). There are concerns over suppliers 

profiting from the sale of customer information and consumption profiles to third party marketers, 

for insurance purposes; premiums could increase if the insurer feels you are underrepresenting the 

number of appliances in a household and so forth (Jawurek et al., 2011). 

From an internal perspective, increased visibility in the home and a clearer record of energy usage 

could lead to tensions between tenants and landlords for example. If a landlord investigates the 

tenant’s usage and deems them to be consuming energy excessively, then they may decide to 

investigate whether or not they are subletting, or over-occupation is occurring in the property. In 

recent news, a landlord in London covered a thermostat in their property with a locked cage to stop 

tenants adjusting it to what they deemed to be an excessive temperature, and currently no laws exist 

to prohibit this behaviour (BBC, 2019). It may also lead to less obvious but still very real levels of 

personal intrusion; for instance, a domineering family member “spying” on others activity in the home. 

Other examples include stalkers tracking movements of victims or the police using energy 

consumption during law enforcement; verifying claims that people were where they stated they were, 

or leaving a child at home alone (Hargreaves et al., 2010; Lisovich et al., 2010). 

However, it also affords the supplier greater control over their customers in a beneficial way; the smart 

meters become more resistant to fraudulent behaviour such as suspiciously high or low consumption, 

and evidence of tampering becomes more visible and these cost savings can be reinvested or passed 

on to the customer (Darby, 2010; Ma et al., 2017). It may also aid the detection of illegal activities such 

as drug production and sweatshops (Lisovich et al., 2010). 
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 Consumer Data as Indicators 

The desire not to reveal customer profiles in order to retain a competitive advantage is however at 

odds with the aspiration to access data for public good and make valuable contributions to the 

understanding of society. Many techniques already exist in the commercial world to gain insight on 

people’s lived experience, but the overarching focus of these analyses is to produce indicators which 

improve profitability rather than to provide an improved, generalisable insight into society. Consumer 

data also offers a means of generating bespoke indicators based on daytime consumption patterns, 

thus creating representations of society that are not solely based on residential characteristics (Longley 

et al., 2018). As discussed in Section 2.3.4 energy data offers commercial benefits for personalised 

tariffs but may also provide opportunity in regard to bespoke indicators.  

It is the volume of information which makes smart meter data an exciting prospect in data driven 

research. The usage data contains information that is both spatially and temporally referenced (through 

customer addresses and their time of use), and unlike other forms of consumer generated big data 

such as loyalty cards, they do not rely on the customer performing a transaction once a meter is 

installed. This frequency may prove particularly useful for developing individual trajectories, where 

households can be seen waking, leaving, returning to and interacting with their homes. The 

longitudinal nature of this data makes it particularly valuable in providing insight into general spatio-

temporal trends of individuals over various granularities, from by the hour, diurnally, weekly and 

seasonally. This also allows for the quantification of change between two static periods in time, 

capturing both short and long term dynamics. Furthermore, the georeferenced element of these data 

provide utility for inferring relationships with existing definitions of neighbourhood types and 

characteristics by linking to existing national statistics (Webber et al., 2015). This innovative research 

may enable the creation of bespoke geodemographic classifications, linking consumption 

characteristics with existing geodemographic classifications.  

 Geodemographics 

Area classification is the classifying of areas into groups on the basis of the similarity of characteristics 

of selected features within them (Vickers and Rees, 2007). One of the most commonly used is the 

geodemographic classification, which Sleight (2007, p.16) defines as;  
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“The analysis of people by where they live”  

 

They provide a unique way of bringing together spatial patterns from a range of variables and identify 

similarities and dissimilarities between areas and can be said to work because of a fundamental notion 

in social structures, homophily, or ‘birds of a feather flock together’ i.e. if similar people live in similar 

places then knowing information about one person enables information about others in that locality 

to be broadly inferred (Sleight, 2007; Weiss et al., 2012). This is consistent with Tobler’s first law of 

geography, that is, that “everything is related to everything else, but near things are more related than 

distant things” (Tobler, 1970, p.236) 

There is a long legacy of producing geodemographic classifications in both the UK and the US, 

beginning with Charles Booths poverty maps in the early 1900s and Burgess and Park’s concentric 

zone model slightly later in the 1920s (Park and Burgess, 1925). This work was developed further by 

Carpenter, Shevky and Bell (1955) to include ‘social area analysis’ and was later broadened to 

encapsulate a series of tools and techniques which became known as ‘factorial ecologies’ (Brunsdon 

and Singleton, 2015). Geodemographics emerged from this context in the 1970s, and the analysis of 

them was developed as a strategic way of identifying patterns from multidimensional census data, with 

demonstrable utility in both public and private sector applications (Webber, 1978).  

Advances in data availability and data processing techniques mean geodemographic classifications 

have gained wider popularity and contemporary classifications are typically of a high geographical 

granularity; at small area or address level, spanning cities, regions and countries. In the UK context 

cluster units are usually calculated at the Output Area or postcode level; the smallest census and 

postcode geographies available respectively. The methodological processes employed in the 

generation of a geodemographic classification are detailed in Section 3.6, but the resulting outputs are 

represented through the study of their relative attributes, to be used in a variety of fields to infer 

behavioural, health or other specific characteristics of a population group (Alexiou, 2016). They offer 

huge advantages towards the analysis and recognition of geographical patterns and can help identify 

triggering factors or important associations in nearly the whole spectrum of social phenomena 
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(Alexiou, 2016). There exists a cornucopia of literature on their application in retail planning and 

market analysis, unsurprising given their popularity in the private sector to gain competitive advantage. 

Some of the most well-known general purpose classifications are those which have been privately 

developed; the ACORN (by CACI), MOSAIC (Experian) and Claritas (PRiZM). There has been a 

recent upsurge in geodemographic applications for public sector usage, in particular, policy analysis 

and regional planning due to the advent of new application areas, which bring with them a set of 

benefits that set them apart from the commercially developed classifications. Open classifications can 

be accessed and scrutinised by the public without cost and have transparent and published 

methodologies. They are also comprised of freely available input data, making them reproducible and 

easy to operationalise, update and repurpose (Brunsdon and Singleton, 2015).  

Despite this, there are methodological shortcomings and procedural limitations that must be 

addressed; the difficulty in producing a geodemographic framework is that they are in fact, aspatial, 

and fail to integrate the nearness described by Tobler in a sophisticated way due to the way that the 

final classifications are assumed to have the same underlying characteristics within clusters (Brunsdon 

and Singleton, 2015). This aspatiality also lends itself to a disregard of the issues around scalability, 

which affects the ability to make comparisons between classifications built for varying extents 

(Openshaw et al., 1980; Webber, 1980). The subscription of large numbers of individuals to generalised 

profiles leads to the assumption that the social profile assigned to an area is representative of all 

households, engendering the well-recognised ecological fallacy (the confounding of the characteristics 

of areas with the populace within them), as in reality, socially homogeneous areas are rare (Dalton and 

Thatcher, 2015). A final procedural limitation is that as the unit inputs into geodemographic 

classifications are not naturally occurring (i.e. postcodes), the geographical scale and boundaries 

between areas can affect analytical results, also known as the modifiable areal unit problem or MAUP, 

which can result in two fundamental issues; scale effects and zonation effects, which mean that caution 

should be exercised when conducting spatial analysis on aggregated data (Openshaw, 1984, Openshaw 

and Taylor, 1979).  To expand on this, scale effects lead to statistical results appearing more 

pronounced the larger the scale and zonation effects may lead to results which could present 

differently had boundaries divided the areas up otherwise at the same scale (Flowerdew, 2011).   

Furthermore, an inherent commercial confidentiality within the private sector means that those 

methodologies remain a “black box”, impairing both the critiquing of those methodologies as well as 

their reproduction (Longley, 2007; Singleton and Longley, 2009). 
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 Summary  

The ability to produce, capture and store information has been transformative for the current data 

landscape and big data is affording opportunities for research never previously possible. It is important 

that the considerations of data bias, self-selected populations and the longevity of the data are 

addressed as a caveat of any research carried out, in order to alleviate concerns related to the 

uncertainty associated with their fitness for purpose. Triangulation is an important step in this area, 

providing proper contextualisation within geographic theory and confirmation (or not) of the novel 

datasets suitability. As far as the specifics of smart meter data, volume is another considerable concern 

and only advancements in machine learning algorithms will allow for the data to provide useful insights 

in near real time, but the predictive power of historic data should not be undermined. Incorporating 

consumer data into a geodemographic classification may offer a more comprehensive view of a 

population, by linking it to existing statistics and inferring relationships between it and the predefined 

characteristics and definitions of neighbourhood types.  
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3 Data and Methodologies 

 Introduction 

his chapter provides a high level overview of the various data sources utilised throughout 

this thesis, and discusses their spatiality, attributes and characteristics to provide a solid 

grounding before their implementation in analysis and evaluation in subsequent chapters. It 

also covers the high level methodologies implemented in later chapters, such as postcode reweighting 

and the methodological framework of geodemographic classifications. The volume, variety and 

veracity of both the Domestic Energy Provider (DEP) smart meter and Energy Performance 

Certificate (EPC) datasets are discussed, examining their utility and application within the research 

project. The smart meter dataset was provided by one of the leading DEPs, who provide energy and 

energy services to homes across the UK. Given the spatial extent, granularity and volume, these data 

are unparalleled in comparison to those used in previous research on the dynamics of smart meter 

usage, especially in a UK context. A further contribution of this thesis is therefore to illustrate the 

value of such commercially generated big data for research within an energy policy context as well as 

the utility of effective data linkage from this and other ancillary sources.  

 The Consumer Data Research Centre 

Access to these data were made possible through the ESRC funded Consumer Data Research Centre 

(CDRC): a government funded big data initiative that aims to facilitate the access of commercially 

generated consumer datasets to academic researchers. In order to secure the data, a number of strict 

procedures were necessary to minimise the risk of disclosing commercially or personally sensitive 

information about the provider or its customers, for both individual privacy and reasons of 

competitive advantage. These data are personal in nature, describing residential locations and 

consumption patterns at an individual customer level. These are classified as ‘controlled data’ under 

the CDRC regulations - meaning data that needs to be held under the most secure conditions with 

stringent access restrictions. This thesis represents one of few investigations into a consumer dataset 

T 
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in this context and issues of access, data handling and presentation of results were important associated 

challenges. An overview of the process required to conduct analyses and obtain results is provided in  

Figure 3-1. 

 

 

FIGURE 3-1 CDRC 'CONTROLLED DATA' PROCEDURES 

 

Access was granted to these data via the CDRC’s secure service held at the University of Liverpool’s 

Computer Services Department secure facility. In the first instance, this requires preliminary vetting 

and training procedures that ensure access is only granted to trusted researchers (see the CDRC user 

guide 2018 in Appendix 9.2). Following this, researchers must complete a secure researcher training 

course and receive approval for proposed uses of the data and all analyses must be performed within 

the secure laboratory setting. To output data from the laboratory the data must firstly conform to a 

number of statistical disclosure controls. This includes but is not limited to; aggregation to large 

geographical areas, suppression of disclosive cells, ensuring percentages do not allow deduction of 
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disclosive units and where counts are concerned, a threshold rule of no less than 10. These controls 

follow government specified rules and regulations on the handling of disclosive data (see the 

Government Statisical Services, 2014).  

The second stage of data output then involves the assignment of two CDRC data scientists to carry 

out checks that ensure they match the output request descriptions and adhere to statistical disclosure 

controls. Finally, two members of the CDRC Senior Management Team (SMT) review and advise the 

approval, amendment or rejection of these outputs. Once obtained, the presentation and publication 

of analyses must also be approved by the data provider for commercial disclosure purposes.  

As a result of these procedures, the presentation of analysis from these data have been necessarily 

constrained in order to adhere to both statistical and commercial disclosure controls. To achieve this 

adherence, the required data treatment is discussed in greater detail later in this chapter, pertaining to 

steps such as the spatial aggregation of the data. 

 The Energy Sector and Smart Meter Data 

The UK energy sector is regulated by the Department for Business, Energy and Industrial Strategy 

(BEIS) and the Office of Gas and Electricity Markets (Ofgem). On the supply side, there are currently 

62 active suppliers in the domestic gas and electricity retail market, consisting of 6 large suppliers and 

56 small suppliers, most of whom are active in the supply of both energy sources (Correct as of Dec 

2018, (Ofgem, 2018b)). The market share is monitored by Ofgem and assessed on the number of 

electricity meters on the distributional network attributed to each supplier. As of December 2018, 

British Gas was the largest provider with a 19% share, with Scottish and Southern Electric (SSE) and 

E.on the second and third largest providers with 13% each. At the time of the data collection, these 

providers held the same positions, but all have seen their market share drop as consumers move to 

smaller suppliers (Ofgem, 2019b). 

 What are Meter Readings? 

Smart meters are the next generation of energy metering technology. Each meter is ‘self-reading’ and 

therefore records highly granular temporal energy consumption profiles for each installed address. 

These readings are provided to the supplier in watts (w) every half hour. Because watts are such a 
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small unit, they are transformed into kilowatts (kW), equivalent to 1000w, and then into kilowatt hours 

(kWh). A watt indicates the power of an electrical appliance. A kilowatt hour is the amount of energy 

that an appliance consumes when it operates for one hour. Equation 1 shows the calculation applied 

to the DEP data to provide consumption levels in kWh.  

 

𝒌𝑾𝒉 =
𝒘𝒂𝒕𝒕 ×  𝟎. 𝟓

𝟏𝟎𝟎𝟎
 

EQUATION 1 CALCULATING KWH WHERE 0.5 EQUATES TO EACH HALF HOUR READING 

 

As discussed in the literature review, smart meters connect wirelessly to send readings back to the 

energy providers - if this is lost because of faults or poor reception there can be missing data. 

Furthermore, if a meter reading is zero, it is difficult to know whether that is a genuine zero or a fault. 

It is possible, especially for gas that there may be a window between readings where none is used. It 

is less likely for electricity because of the ‘standby rate’ - where appliances and devices consume a 

nominal amount of energy when placed in standby mode - but if a house was left unoccupied, with 

everything switched off, a true zero could be possible (Wyatt, 2013). Given these data quality issues, 

Chapter 4 considers in greater detail the cleaning process for these zero values as part of the data 

preparation and minimisation methods to make it suitable for use in analysis.  

 Customer Trends 

For each energy provider, a customer is defined by a unique account number attributed to the smart 

meters in their homes, but for national statistics on smart meter installations, the figures represent the 

number which are connected to the supply systems and the smart meter communications network. 

As such, the number of customers do not remain constant, due to the rollout programme increasing 

its membership from one month to the next and overall provider attrition. There is however a general 

trend of increasing participation. Throughout the national rollout scheme encompassing all suppliers, 

electricity meter installs remain consistently higher than gas. This variation could be explained by the 

fact that around 12% of households nationally are connected only to the electricity network. The most 
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recent installation figures are summarized below in Figure 3-2, but do not include small providers with 

250,000 customers or less. 

 

FIGURE 3-2 SMART METER INSTALLS FOR ALL MAJOR DOMESTIC ENERGY PROVIDERS (BEIS, 2019) 

 

 The DEP Data Overview  

The DEP smart meter dataset follows a trend of new customers that is consistent with the national 

trends; for the timeframe for which data is provided (spanning 12 months for the 2015-16 financial 

year) electricity meters account for around 60% of the records and 40% come from gas. This variation 

could be explained by the fact that around 17% of UK households have multiple suppliers, meaning 

that one of their meters may not be present in the dataset despite having both gas and electricity 

supply.  
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Furthermore, in line with the national trend, the number of unique accounts does not remain constant 

as new smart meters are installed throughout the data collection period. In the case of electricity, 75% 

of users were already present in the dataset and so will have a full year’s coverage. A breakdown of 

the rollout is shown in Figure 3-3 and from this we can surmise that during this period the rollout was 

gaining momentum (BEIS, 2017). 

 

 

FIGURE 3-3 CHANGING SMART METER USERS OVER THE LIFESPAN OF THE DATASET (USHAKOVA 

ET AL., 2018) 

 

IN ADDITION TO THE ROLLOUT GAINING MOMENTUM, IT WAS STILL IN ITS INFANCY AT THIS STAGE AND SEVERAL YEARS 

AWAY FROM COMPLETION, WITH NO FIXED ROLLOUT SCHEME IN PLAN BY THE DEP. AS THEY ARE INSTALLED AT THE 

ADDRESS LEVEL, INSTALLATION FREQUENCY CAN BE USED AS A PROXY FOR COVERAGE;  

Figure 3-4 displays the coverage represented by the dataset as a whole, regardless of at what stage of 

the collection the household entered the dataset. It was found that generally, the percentage of 

households is no more than 3% for both gas and electricity. The highest percentages can be found in 

the West Midlands, North West and the North of Wales, which finds itself unusually over-represented. 
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From this it can be observed that the speed of installations may be greater in urban regions than rural, 

but it is also pertinent to note that this DEP, like most major suppliers have a legacy of regional bias 

in their customer base (Ushakova et al., 2018). 

 

FIGURE 3-4 PROPORTION OF GAS AND ELECTRICITY METERS RELATIVE TO THE TOTAL NUMBER OF 

HOUSEHOLDS BY POSTCODE SECTOR (USHAKOVA ET AL., 2018) 

 

In the full dataset pre aggregation there were four descriptive variables and 48 consumption variables. 

It gives around 1,080,000 gas and electricity domestic smart meters, representing 43% of all 
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installations by the end of the given year. Table 3-1 details the broader national figures from the BEIS 

(2017) (rounded to the nearest 00). 

TABLE 3-1 TOTAL NUMBER OF METERS IN THE UK 

Type 
Number of 

Meters 

Number of Postcode Sectors with at 

least 10 meters installed 

Mean number of Meters 

per Postcode sector 

Electricity 600,000 8000 70 

Gas 480,000 7,500 60 

 

The location identifier gave account holder information at Postcode Sector level (PCS) and was used 

to aggregate the records which resolves issues of reidentification, where individual consumers could 

be personally identifiable in the raw data through their address or consumption profile. At this level 

the data adhered to the CDRC disclosure controls outlined in the introduction and could therefore be 

extracted from the secure data environment for further analysis. Any PCS with a count of fewer than 

10 households was removed from the dataset for their privacy. 

 Energy Performance Certificates 

 What is an Energy Performance Certificate? 

Energy performance certificates (EPCs) were introduced in stages from 2007 and stem from the EU 

directive on the energy performance of buildings. They were first introduced as part of the now 

redundant Home Information Pack or “HIP” scheme required to sell a home. When these were 

phased out, the EPC element was retained as part of the Government’s energy efficiency improvement 

strategy; it was intended that the energy efficiency of buildings was made transparent through these 

certificates, making comparing properties easier for buyers and making energy efficient homes a more 

attractive proposition. Research exists to suggest that an A rated home could sell for 14% more than 

an equivalent G rated property (Fuerst et al., 2016). It was also intended that this would stimulate the 

market into making energy efficiency improvements before selling. The Standard Assessment 
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Procedure (SAP) algorithm takes information such as wall type and levels of glazing and then makes 

assumptions about a building’s thermal properties. The procedure differs between new build and pre-

existing homes; the former receive a full SAP calculation, whereas the latter are assessed using a 

reduced Standard Assessment Procedure (Hardy and Glew, 2019). The algorithm then generates an 

energy efficiency rating out of 100, and a linear rating from A (the most efficient) to G (the most 

inefficient), which is recorded in the EPC (Hardy and Glew, 2019). They also predict how costly it 

will be to heat and light, by calculating the expected total kWh per year for the building based on its 

characteristics, as well as its likely carbon dioxide emissions and stating what the energy efficiency 

rating could be if improvements are made whilst highlighting cost-effective ways to achieve a better 

rating (Energy Saving Trust, 2020). The full report given to a householder provides a high level of 

information, summarising the top actions that could be taken, the indicative cost and the typical saving, 

(Energy Saving Trust, 2020). Figure 3-5 Typical Output of an Energy Performance Certificate shows 

the EPC summary detailing the energy efficiency rating many will be familiar with. 

 

 

FIGURE 3-5 TYPICAL OUTPUT OF AN ENERGY PERFORMANCE CERTIFICATE (Energy Saving Trust, 

2020) 
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Domestic certificates are valid for ten years but can be renewed sooner if, for example, the house has 

been put on the market for sale or rental and improvements have been made since the last certificate 

was issued thus making it a more attractive property. Other transactions which also require the 

generation of an EPC include certain types of government energy improvement funding schemes to 

prove eligibility such as an assessment for Green Deal energy efficiency improvements; following a 

Green Deal; Feed in Tariff application; Renewable Heat Incentive application or “ECO” (Energy 

Company Obligation) assessment. 

Commercial properties also require an energy performance certificate, which is referred to as a Display 

Energy Certificate (often referred to as a DEC) in England and Wales and differ slightly from an EPC 

in that the energy assessor producing the certificate will also take meter readings and look at the actual 

energy consumption of the building when it is in use. The length of their validity is dependent on the 

size of the building; buildings over 1,000 square meters which are occupied by a public authority and 

frequently visited by members of the public are valid for one year. DECs for buildings of between 250 

and 1,000 square meters are valid for 10 years (MHCLG, 2018). There is currently no regulation in 

place which states that commercial buildings under 250 square meters have to hold either EPCs or 

DECs. Places of Worship, warehouses and temporary structures are also exempt.  

Energy Performance Certificate data are available in an open access dataset published on-line by the 

UK government, and details all energy certificates within their records. It can be freely downloaded in 

full by providing an email address or searched via an API. It was first published online in 2017 and is 

updated every six months. The full dataset used in this analysis was downloaded in November 2018, 

containing 176 variables and around 18 million records in total. The full definitions and metadata 

pertaining to each variable can be viewed in the Ministry of Housing, Communities and Local 

Government Guidance Notes3 which accompany the data, an extract of which is included in Appendix 

9.3, covering the subset of variables included in the final Energy User Classification in Chapter 5. 

 

3 https://epc.opendatacommunities.org/docs/guidance 
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 Data Quality and Bias 

EPCs assessments are done on site in a person’s home – an accredited assessor attends the property 

to collect the data required for assessing energy features and generates an EPC once off-site using 

Government approved software. Whilst this software means that there is some level of standardisation 

across inputs, they are still error prone and rely on the conscientiousness and skill level of the assessor. 

Hardy and Glew (2016) estimate it is possible that the assessor is responsible for up to 62% of errors 

found within the EPC database. As it is only a visual assessment and non-invasive, if there is no 

evidence (physical or documentary) of fittings such as insulation for the assessor to observe then the 

level of fixtures and fittings are assumed based on the age of the relevant part of the dwelling. They 

also use assumptions in order to make properties directly comparable, such as standard occupancy 

when commenting on energy usage, both of which introduce uncertainty in the final outcome.  

From the EPC data cleaning process (see Section 5.3) it was clear that there was a high margin for 

error when inputting the data into the software. Whilst some inputs were clearly standardised, or check 

boxes, the free text elements were difficult to decipher and led to a large amount of data having to be 

discounted as it was not possible to understand. For example, some of the EPCs in the register were 

completed in Welsh with spelling mistakes in the free text making them complex to translate. Their 

utility has been subjected to criticism from industry experts such as the Royal Institute of Chartered 

Surveyors due to their perceived poor quality and lack of regulation over the qualifications required 

to become an accredited assessor. The English Housing Survey (MHCLG, 2018), undertaken by the 

Ministry of Housing, Communities and Local Government (MHCLG) reported that of the 10.6m 

homes that had moved since 2008 (the introduction of EPCs) 76% of respondents stated that they 

were not influenced by the results of the EPC on their move and owners of non-standard housing 

such as listed buildings realise little value in the recommendations and find it very difficult to rectify 

their low ratings because the recommended improvements, such as double glazing, are often barred 

by the control on changes to such structures (MHCLG, 2019). 

Chapter 5 reiterates this information and looks further into the literature regarding the usefulness of 

EPCs to owners and tenants as well as providing more detail into the full data cleaning process. 
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 Supporting Data 

Throughout the thesis a number of supporting datasets were utilised to contextualise the energy data 

and provide ancillary information, pertaining to both raw data and pre-compiled measures such as 

geodemographic classifications. 

 Census Data 

Every decade since 1801, England has had a designated ‘census day’, whereby information is obtained 

on every member of the population. It is the most complete source of information about the 

population that contains details of family composition, health, employment and other socio-economic 

characteristics. This allows for targeted resourcing and policy planning, as well as academic research.  

It is common across disciplines such as human geography and demography to use census data to study 

social trends. Census data are collected at an individual household level but are released for open use 

in aggregate form to avoid disclosure of personal information. This aggregation usually takes place on 

the basis of geographical location and in England and Wales, these small areas are referred to as 

‘Output Areas’ (OAs). They nest neatly inside the larger geographies of Local Super Output Areas, 

Middle Super Output Areas, and Super Output Areas (LSOAs, MSOAs and SOAs respectively). This 

means that the same sets of data can be analysed at different scales, allowing for meaningful 

comparisons between census and other variables (Flowerdew, 2011).  

The data is commonly provided in a series of pre-evaluated and highly requested tables, as well as 

commissioned tables for individual requests and for the first time in 2011 data was made available for 

download and is now available through multiple data services, such as the UK Data Service and Nomis 

web, where flexible user generated tables can be obtained to meet specific needs. The UK Data 

Service4 was employed to gather the requisite data for this thesis which were integral to the clustering 

methodology presented in Chapter 5. Despite the census data being almost a decade old at the time 

 

4 https://www.ukdataservice.ac.uk 
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of writing, the fact that the data is the most complete set of statistics available for the country as a 

whole still holds a lot of value, especially in regard to the triangulation of the characteristics examined 

in the smart meter (from 2015) and EPC datasets, which contain data from between 2008 and 

November 2018. The existing literature aided the variable selection; taking data on the factors most 

commonly associated with the status of fuel poverty and those which are reported as having an impact 

on the ability to consume energy such as accommodation type, building type, tenure, as well as family 

life stage indicators; marital status, age of household members, and their economic activity and 

employment statuses. Counts for these variables were downloaded at OA level; the smallest geography 

is the easiest to scale up and aggregate and in order for the thesis as a whole to be consistent and 

provide meaningful comparisons between datasets and across chapters. The census data was 

reweighted to Postcode Sector Level throughout; a detailed methodology describing how this was 

achieved appears in Section 3.6.  

TABLE 3-2 CENSUS TABLES CHOSEN FOR INCLUSION 

Census Table Name  Key Statistics  Scale Coverage 

KS103EW Marital and Civil Partnership 
status 

OA UK 

KS401EW Dwelling, Household Space 
and Accommodation Types 

OA UK 

KS402EW Tenure OA UK 

KS403EW Rooms, Bedrooms and 
Central Heating 

OA UK 

KS601EW Economic Activity OA UK 

KS611EW NS-SeC OA UK 
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 The Internet User Classification  

The 2018 Internet User Classification is a bespoke classification that describes how people living 

across Great Britain interact with the Internet (Alexiou and Singleton, 2018). Engagement with the 

Internet has an obvious impact in consumer behaviour; with regards to energy consumption it is the 

opportunity and willingness to engage with new Internet enabled devices within the home, including 

the smart meter technology and IHD, as well as associated household management tasks such as 

receiving, viewing and paying bills online, engaging with comparison and switching websites to get the 

cheapest tariffs, and accessing educational material with regard to smart meters and improved 

consumption practises. Using this dataset in the final chapter of this thesis gives considerable insight 

into the possible reasons for low smart meter engagement in our case study area, and the finding could 

be applied more widely.  

The updated IUC classification was published in 2018 by the CDRC and uses consumer, survey and 

open data to produce the classification. It is openly available to download from the CDRC5 and covers 

all of Great Britain.  

TABLE 3-3 INTERNET USER CLASSIFICATION VARIABLES 

Variables Scale Coverage  

IUC 
Group 

LSOA/Data 
Zone 

Great 
Britain 

IUC 
Group 
Label 

LSOA/Data 
Zone 

Great 
Britain 

 

 

5 https://data.cdrc.ac.uk/dataset/internet-user-classification 



 

 
73 

 Small Area Incomes  

Income data from the UK Government provided annual statistics on before and after housing costs 

at MSOA level across Great Britain in 2012, 2014 and 2016. This allowed for the visualisation of the 

population’s percentage change in disposable income, relative to their income quintile over time. This 

data is derived from the Family Resource Survey (FRS) which takes into account all sources of income 

(such as self-employment or benefits)(Office for National Statistics, 2018).  

Variables Scale Coverage Sample Size 

Net Annual Income 
Before Housing Cost 

MSOA England and Wales 19,200 households (FRS) 

Net Annual Income 
After Housing Cost 

MSOA England and Wales  19,200 households (FRS) 

 

 Building Age Data  

Building age data was used to aid the understanding of fixtures and fittings of homes in the EPC 

dataset and also to illustrate the relative age of the building stock in the UK; this goes some way to 

explaining the lack of energy efficient households in the UK, especially in northern areas, and reiterates 

the need for efficiency based policy interventions to consider existing housing stock as well as new 

build homes (Section 2.1.4). This data is made available for download through the CDRC, who have 

manipulated, cleaned and visualised the data but originates from the Valuation Office Agency in the 

‘dwelling age’ dataset.  

TABLE 3-4 BUILDING AGE DATA VARIABLES 

Variables Scale Coverage 

Dwelling Age band LSOA England and Wales  
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Dwelling count LSOA England and Wales 

 

 Indices of Multiple Deprivation 

The Indices of Multiple Deprivation (IMD) is the official measure of relative deprivation at the small 

area level in England and follows an established methodology in broadly defining deprivation to 

encompass a wide range of factors affecting an individual’s living condition and is used to facilitate 

the targeting of policies and resources within disadvantaged communities. It is based on 39 combined 

and weighted indicators across the following 7 domains; income; employment; health deprivation and 

disability; education, skills and training; crime; barriers to housing and services and living environment. 

It is calculated at LSOA level and covers the extent of England. In this thesis the 2015 iteration of the 

classification was utilised, and the Welsh Indices of Multiple Deprivation from the same year was 

appended to give improved coverage; it is constructed in the same way as the English IMD using the 

same domains and is produced by the Welsh Government.  

TABLE 3-5 ENGLISH AND WELSH INDICES OF MULTIPLE DEPRIVATION VARIABLES 

Dataset Variables Scale Coverage 

English Indices of Multiple Deprivation IMD Rank LSOA England 

English Indices of Multiple Deprivation IMD Decile LSOA England 

Welsh Indices of Multiple Deprivation IMD Rank LSOA Wales 

Welsh Indices of Multiple Deprivation IMD Decile  LSOA Wales 
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 Output Area Classification  

The Output Area Classification (OAC) summarises the social and physical structure of 

neighbourhoods using data from the 2011 UK Census, with its overarching aim being “to describe 

the salient and multidimensional characteristics of small areas across the UK” (Gale et al., 2016, p. 3). 

It re-evaluates the 2001 Output Area Classification and places a greater focus on key elements of data 

selection and testing new methods, addressing some issues of its predecessor. It also adopted only 

open source software and released all code and metadata once the classification was completed, 

addressing those commonly cited issues of ‘black box’ classifications, transparency and reproducibility, 

thus increasing its accessibility and trustworthiness by allowing scrutiny. It describes geodemographic 

population characteristics across 8 Supergroups, 26 Groups and 76 Subgroups and is available at the 

OA level (Gale et al., 2016). It is built using census variables from a number of domains that were said 

to best represent drivers of socio-spatial differentiation in the UK; demographic structure, household 

composition, housing, socio-economic and employment (Vickers and Rees, 2007). Table 3-6 below 

details an extract of the naming conventions used in the OAC cluster hierarchy. 

 

TABLE 3-6 EXAMPLE OF OAC CLUSTER NAMES AND HIERARCHY 

Supergroups  Groups  Subgroups  

2 - Cosmopolitans  2a - Students Around Campus  
2a1 - Student Communal Living                                          
2a2 - Student Digs 
2a3 - Students and Professionals  

 2b - Inner-City Students  
2b1 - Students and Commuters 
2b2 - Multicultural Student Neighbourhoods  

 
2c - Comfortable 
Cosmopolitans  

2c1 - Migrant Families 
2c2 - Migrant Commuters 
2c3 - Professional Service Cosmopolitans  

 2d - Aspiring and Affluent  
2d1 - Urban Cultural Mix 
2d2 - Highly-Qualified Quaternary Workers                           
2d3 - EU White-Collar Workers  
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 Urban Rural Classification 

The Urban Rural Classification is a dataset produced by the Office of National Statistics (ONS) to 

distinguish urban and rural areas at the OA level, and at its most detailed pertains to four urban and 

six rural settlement/context combinations; Urban major conurbation; Urban minor conurbation, 

Urban city and town; Urban city and town in a sparse setting; Rural town and fringe; Rural village; 

Rural hamlet and isolated dwellings; Rural town and fringe in a sparse setting; Rural village in a sparse 

setting and Rural Hamlet and isolated dwellings in a sparse setting (Office for National Statistics, 

2016a). Each OA is prescribed as urban or rural depending on its (population weighted) centre is 

within or outside a built up area of fewer or greater than 10,000 people. Its utility is based on the fact 

that socio-economic opportunities are likely to differ based on their make-up, and the barriers and 

challenges people face as well as the services people have access to will vary depending on their level 

of rurality (Office for National Statistics, 2016a). The utility of this data within this context aids 

understanding of access to services such as mains gas and standard fuel types, both of which are 

important factors in the affordability of fuel and the efficiency rating of the home.  

TABLE 3-7 URBAN RURAL CLASSIFICATION VARIABLES 

Variables Scale Coverage 

Urban Rural Classification OA UK 

 

 Current Fuel Poverty Statistics 

An estimate of fuel poverty is provided within data supplied by the ONS and is only available for the 

extent of England; it should however be noted that this dataset is caveated as being ‘experimental 

statistics’. It is calculated using data from the English Housing Survey which collects information 

about people’s housing circumstances, their condition and energy efficiency. Despite this, it is the best 

representation that exists and so was included in this thesis to provide spatial context to the current 

fuel poverty definition. By understanding the geographies of the current fuel poverty definition, it is 

possible to draw comparisons between it and the Energy User Classification, allows for identification 
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of areas which present as ‘not fuel poor’ under the current definition but which display demographic 

attributes which indicate that this may not be true and vice versa, thus revealing the limitations of the 

current definition.  

TABLE 3-8 FUEL POVERTY DATA VARIABLES 

Variables Scale Coverage Sample Size 

Proportion of Households 
estimated to be in fuel poverty 

LSOA England 13,000 households in the 
English Housing Survey 

 

 Postcode Geographies 

A challenge for this thesis was the spatial scale at which the DEP data were supplied. These were 

limited to postcode sectors (PCSs) as described earlier, however, as a geography is directly comparable 

to those units used to disseminate those other contextual data described in this chapter thus far. To 

avoid manipulation of the  DEP data, a method was required to produce estimates from source data 

within the PCS zones. A dasymetric mapping technique was implemented to reweight attributes to 

PCS level. Although there are numerous methods such as built environment overlaps and area 

overlaps between zones that might be implemented to achieve this aim, a postcode matching method 

was implemented here.  

A GIS ‘area overlap between zones’ methodology was trialled, using the Postcode and Census 

Geography shapefiles and a union algorithm, however, due to the granularity and large number of 

intersections it was extremely time consuming and when the outputs were inspected it was found to 

have led to slither polygons and inaccurate distribution of area, meaning results were less likely to be 

accurate than the reweighting methodology. It was also much more computationally expensive to 

repeat this process at all spatial granularities, and visually outputs were untidy due to the missing 

polygons. Because of these limitations, the GIS methodology was not progressed beyond preliminary 

trials.  
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At the most recent count (May 2019) there are 11,918 postcode sectors in the UK and Table 3-9 below 

gives a useful breakdown of postcode geographies and their comparative census geographies. A 

postcode sector averages around 3000 households but can be as low as 60 in deep rural areas and as 

high as 10,000 in densely populated areas. 

 

TABLE 3-9 POSTCODE AND CENSUS GEOGRAPHIES (NOMIS AND ONS, 2017) 

Geography Number of Areas Number of Households 

Postcode Unit (CV37 6QW) 1,759,751 17 

Postcode Sector (CV37 6) 11,199 3,040 

Postcode District (CV37) 2,269 10,766 

Postcode Area (CV) 127 232,663 

Output Area 181,408 134 

LSOA 34,753 702 

MSOA 7,201 3,392 

Unitary Authority 8,570 70,200 

 

The Royal Mail postcode database on which the ONSPD is based is regularly updated to include new 

postcodes generated through new housing estates and business addresses and the removal of 

postcodes which have become redundant and so the numbers in the above table may become out of 

date over time.  



 

 
79 

The postcode matching methodology was possible with the use of the Office of National Statistics 

Postcode Database6 (ONSPD) which provides a look-up between postcode boundaries and 

corresponding census boundaries for OA, LSOA, MSOA and SOA, as well as the Local Authority 

District (LAD) (Office for National Statistics, 2016b, 2019b, 2019a). Combining this with the 

Postcode Headcount and Household Estimates7 table produced from 2011 census statistics,  it is 

possible to re-calculate the proportion of postcode sectors within each of the output area levels. It is 

then possible to use this re-weighted population data to apportion data by using the output as a 

multiplying factor to reweight census data  not ordinarily available for these postcode geographies.  

Limits to this method include an assumption that the population spatial distribution is even across 

both the postcode and census geographies . It is also using 2011 census geographies; whereas Postcode 

names and boundaries are subject to continuous change (Office for National Statistics, 2016c). This 

may mean that the reweighted figures quickly become outdated and require recalculation on a regular 

basis. The methodology is reproducible to account for this, but it should be kept in mind; especially 

in urban areas where regeneration schemes and redevelopment mean that the housing, and therefore 

postcode landscape can change quickly. 

For categorical data the ONS have a standardized practice used when Postcode and Census 

geographies do not align. Only one postcode per OA is assigned; and it is the one in which the majority 

of residents is contained, as per the census count. It is important to recognise that this method may 

lead to the loss of some detail in neighbouring postcodes but is a recognised and recommended 

methodology (Office for National Statistics, 2016b). 

 

6 

https://geoportal.statistics.gov.uk/search?collection=Dataset&sort=name&tags=all(PRD_ONSPD%2CAU

G_2020) 

7 https://www.nomisweb.co.uk/census/2011/postcode_headcounts_and_household_estimates 
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 Geodemographic Classification 

Geodemographic classification can be described as ‘the analysis of people by where they live’ (Sleight, 

2007) and involve analysis of attributes relating to the socio-economic and built environment 

characteristics of small geographic areas. There are numerous approaches to their construction, 

balancing empirical analysis alongside classification builder experience (Alexiou, 2016). Such variation 

in the specification and creation of geodemographic classification should however be expected, given 

that particular configurations suitable for one classification may not be suitable for another. Harris, 

Sleight and Webber (2005) present a comprehensive overview of the various stages involved in 

constructing a geodemographic classification, and as such this section will utilise their framework to 

consider our approach, comprising of some of the following steps: 

- Selecting potential measures 

- Data evaluation 

- Transformation and normalisation 

- Weighting 

- Standardisation 

- Clustering 

- Cluster hierarchy 

- Textual and visual summaries 

The first stage in the building of a bespoke geodemographic classification is to perform an evaluation 

of potential input measures. Most cluster analysis techniques implemented to build a geodemographic 

classification require measures to be continuous as opposed to discrete or categorical. Other clustering 

algorithms exist for these instances, such as Expectation-Maximisation or Hierarchical Clustering, but 

are less commonly used in this context (Harris et al., 2005; Vickers and Rees, 2007; Singleton and 

Spielman, 2014). Data inputs are generally aggregated to a predefined geographic resolution, as 

dictated by the scales at which all data sources are available. Those resolutions in the UK on which a 

classification can be built vary, but common aggregated geographies include postcode (or aggregation 

of; postcode sector/postcode district) boundaries, OA, LSOA or ward, or in Scotland and Northern 

Ireland, Data Zones or Intermediate Zones.  
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Exploratory Data Analysis (EDA) is typically the next stage, evaluating input variables to examine 

issues such as missing values and correlation, assess distributions and skew, and more generally, gain 

an overview of relationships between variables. Available data can have skewed distributions, contain 

a high rate of missing values or originate from smaller sample sizes than is desirable, thus generating 

uncertainty (Alexiou, 2016). It is customary in geodemographic building to start with a larger pool of 

variables and progressively removing those that seem problematic or likely to skew results; for 

example, the aforementioned 2011 OAC classification considered 167 initial variables, of which only 

60 were used to build the final classification (Gale et al., 2016). At this stage a classification builder 

may choose which, if any, variables should be removed if they present duplicate information (typically 

those variables that show high correlations with others giving information which is already known) 

but there are no firm rules and choices can be largely subjective (Harris et al., 2005). It is suggested 

that attributes with very high cross-correlations should be avoided as they effectively measure similar 

dimensions, although conversely may also capture variation across areas, which could be interpreted 

as pairs of variables having significant descriptive power (Voas and Williamson, 2001). 

After gathering of input measures, it is then necessary to consider whether normalization should be 

applied, and if there is a need to transform the data onto a common scale. In an ideal scenario, all 

variables would exhibit normal distributions as some clustering algorithms (such as the commonly 

used K-means) are optimised to find spherical clusters, which can be problematic with skewed inputs. 

For many socio-economic data, there are very few situations where this holds true. There are a range 

of normalisation practises that can be implemented, including log10, Box-Cox and cube-root 

transformations (Gale et al., 2016). 

However, whether or not skewed data should be transformed is subject to debate (Singleton and 

Spielman, 2014). In some commercial classifications skew and other characteristics of measures 

deemed to be problematic are purported to be overcome by employing a weighting technique to 

reduce the impact of variables, but how the weights are derived is typically subjective and open to 

criticism (Harris et al., 2005). In many open classifications there is often an explicit decision to not 

weight inputs given argued inherent subjectivity, although, it might be noted that such processes could 

be defensible if a full rationale and specification for these decisions were accompanying a classification. 

The standardisation of data is applied in order to transform the data in order to equalise range and/or 

variance and has utility when input variables are from different sources and measurement scales. In 
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order to assess how large or small a particular geographic area’s variance is from the mean across a set 

of variables, and to draw comparisons between these measures, a common scale is required. Two of 

the most common functions applied are z-scores and range standardisation. Z-scores are commonly 

used, which are calculated by subtracting the population mean from an individual raw score and then 

dividing the difference by the population standard deviation. 

 

𝒁 =
𝒙 − 𝝁

𝝈
 

EQUATION 2 Z-SCORES - WHERE 𝝁 IS THE MEAN OF THE POPULATION AND 𝝈 IS THE STANDARD 

DEVIATION OF THE POPULATION. 

 

This results in a set of scores that are positive if they fall above the mean and negative if they fall 

below, i.e. all standardized variables will have an adjusted population mean of 0. However, using z-

scores can be problematic, for example if an input variable is highly skewed with many outliers, the 

resulting z-score can accentuate such effects and influence an area’s cluster membership regardless of 

the area’s other attributes. Range and inter-decile range transformations are also viable options; range 

standardisation compresses the values into the range of 0 – 1, but with different means and variances. 

It has been used successfully in geodemographic classifications such as the ONS 1991 classification 

and the 2001 Output Area Classification. Both range and inter-decile range standardisation reduce the 

impact of outliers by scaling the data into smaller intervals, resulting in a loss of information (Gale et 

al., 2016). Again, weighting and variable normalisation techniques can be utilised to alleviate this issue. 

Once a final set of cleaned and transformed variables are acquired, the next stage is to run a cluster 

analysis. Different combinations of algorithms are used, but typically involve the iterative allocation-

reallocation method (K-means), and optionally, a hierarchical method such as Wards clustering 

(Vickers et al., 2005).  

The hierarchical method essentially treats each area as a separate cluster in the first instance and merges 

these ‘clusters’ based on measures of similarity. After similar clusters are merged, average values for 

the new clusters are computed and the process repeats until convergence, where an appropriate 
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number of clusters (that exhibit minimum intra-cluster variance and maximum inter-cluster variance) 

are found. Although methodologically simplistic, this method can be expensive in terms of time and 

computational effort due to the assessment and reassignment of cluster pairs whilst holding the 

intermediary results in memory. This can be particularly problematic when datasets are extremely large 

. 

 

FIGURE 3-6 HIERARCHICAL CLUSTER DESIGN (Riddlesden, 2016). 

 

Top-down hierarchies involve clustering input data into predefined numbers of clusters that will form 

the most aggregate tier of the resulting classification, which are then used to split the input data and 

clustering is applied within the subsets to successively generate new tiers of the classification as shown 

in Figure 3-6. Although this method can be repeated as many times as it is desired, it is sensible to 

stop when sub-clusters begin to display no obvious differences from the parental clusters.  

A bottom-up hierarchy involves clustering the data into K clusters representing the finest level of a 

classification, which are then merged to form a higher tier within the hierarchy; typically with Wards 

clustering methods.  
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An iterative allocation-reallocation method uses a different technique to compute cluster assignments. 

A K-means algorithm works by setting seeds, which are a random allocation within the vector space. 

The number of initial seeds (k) is equal to the pre-determined optimal number of clusters to be output. 

Several methods exist to aid the user in defining this number, though the process is usually iterative 

and involves extensive testing / user consultation. One such method involves the use of 

‘Clustergrams’; visualisations of the assignment and re-assignment of observations to clusters across 

a range of values for k. In this regard, it is similar to dendrograms, but can also be implemented on 

non-hierarchical data. The clustergram is constructed as follows; “for each cluster within each cluster 

analysis, compute the mean over all cluster variables and over all observations in that cluster” 

(Schonlau, 2004, p.5). For each cluster, the cluster mean versus the number of clusters is plotted, and 

consecutive clusters are joined by parallelograms. This visual method can assist in the selection of an 

optimum k value as it is possible to identify which clusters split to form new clusters and assess 

similarity or ‘closeness’ of newly formed clusters, as well as assess the number of observations within 

each cluster based on the width of the parallelogram (Schonlau, 2004). 

Clustergrams are a relatively innovative method, but much improved in terms of ease of comparison 

when compared to existing methods such as elbow plots and the gap statistics; all of which are 

discussed in greater detail in Chapter 5 during the building of EPC K-means cluster typology.  

Once the initial number of seeds has been set, the algorithm then begins to assign observations to 

each of the seed locations based on proximity, typically measured by Euclidean distance. This initial 

allocation represents the first iteration of the algorithm. The centroids of the newly formed clusters 

are then calculated and become the centres for the next iteration of assignments. The algorithm aims 

to minimise the total within cluster sum of squares (WCSS), which is the cumulative sum of all the 

squared Euclidean distances from observations to cluster centroids. Smaller WCSS values represent 

more homogeneous (or similar) clusters. The algorithm repeats for many iterations until convergence, 

when assignments no longer change and WCSS values have been minimised. Figure 3-7 describes how 

the algorithm works on a 2 dimensional dataset. 
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FIGURE 3-7 ITERATIVE ALLOCATION CLUSTERING (Practical Computing Applications, 2017) 

 

  Summary 

The preliminary analysis of the smart meter dataset location attributes suggested that these data are 

biased towards certain areas of the country, and therefore segments of the population, primarily 

towards northern urban locations, with the West Midlands, North West and North of Wales over-

represented. This variation in representativeness informs further investigation undertaken in the 

following chapter and the legacy of regional bias is fundamental to take into account if attempting to 

extrapolate the dynamics of smart meter users to that of the general populace.  

Given the uniqueness and modernity of the smart meter consumption data and EPC data accessed 

for this study, it was considered essential to incorporate external data from ancillary sources that 

contextualise findings and provide the opportunity for developing richer profiles. These are 

introduced in section 3.4. Census data was considered the most relevant source of triangulation, given 

that it is the most complete source of population data available to researchers. The IUC, IMD, 
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Building Age data, OAC, Urban Rural Classification and current fuel poverty statistics were all 

employed to provide supporting or contextual information to the insights which were generated from 

the smart meter and EPC data with a view to realising the value in the linkage of multiple data sources 

in order that a much broader understanding of the populace than one that is possible by traditional 

data means be generated. Some data quality issues are also acknowledged in the EPC data, which are 

investigated in situ in Chapter 5, relating to the quality of the data pre-processing and to the non-

standardised elements which have introduced a level of uncertainty to the data.  

Furthermore, it is important to acknowledge the practical implications and limitations of some of the 

methodological framework detailed in this chapter. A population based dasymetric reweighting 

methodology was chosen above GIS methods for the robustness of the resulting output and 

computational expense of implementation, but could be criticised for the fact that it makes 

assumptions about the spatial distribution of the population across both the postcode and census 

geographies.  

In regards to the geodemographic framework described in this chapter, it is fair to say that elements 

of it are inherently subjective, such as the cost benefit of normalising skewed data, and by what 

method, but we can assert that variation in methods is acceptable and indeed common in the 

construction of a geodemographic classification based on the methods suitability to the data. It is 

important to balance the need to clean and transform data to optimise the resulting outputs with the 

fact that these methods will reduce the impact of any outliers and therefore potentially mask interesting 

differences and produce more homogenous clusters within the classification. In addition to this, whilst 

there are many, K-means is the most commonly used technique in geodemographics, and the 

approach adopted in the empirical chapters of this thesis therefore follows in the path of existing 

literature surrounding conventional geodemographics (Harris et al., 2005)  

Clustergrams are discussed here as an improved method of identifying the optimal number of initial 

seeds input into the K-means clustering algorithm. By removing some of the iterative testing and user 

consultation associated with other methods such as elbow plots, it is anticipated that utilising 

Clustergrams will increase the reliability of the pre-determined optimal number of clusters.   

It is also important to caveat that aggregating the DEP and EPC data from an individual consumer or 

household view to Postcode Sector level gives rise to issues of ecological fallacy and the modifiable 
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areal unit problem (MAUP) (Openshaw, 1984). For instance, analyses conducted on DEP data may 

be subject to zonation effects, given that census geographies and the DEP data are derived from 

different base populations and scale effects, arising from the fact that the DEP data is limited in its 

spatial granularity.  Any outcomes, which are the majority in this case, generated from analysis on the 

aggregated DEP data will be subject to these limitations; justifiable by the necessity for data to be 

available for analysis of the data outside of the secure facility, to ensure non-disclosive presentation 

of results and to facilitate linkage to census data in order to contextualise the novel data in terms of 

general population characteristics. 
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4 The Geodemographics of  Energy 

 Introduction 

he aims of this chapter are twofold; firstly to describe the characteristics of the smart meter 

data provided by the ESRC Consumer Data Research Centre; and to map aggregate patterns 

of domestic energy consumption: specifically exploring issues of representativeness, and 

spatio-temporal signatures of aggregate residential consumption. Secondly to evaluate the socio-

economic determinants of energy consumption and their relationship to deprivation and in particular, 

fuel poverty. To the author’s knowledge this is the first dataset of its kind to be analysed at the half 

hourly cadence for the national extent, and the first energy study in the UK to analyse both gas and 

electricity consumption in tandem with demographic characteristics to understand contextual aspects 

of fuel poverty.  

In existing energy literature, there is disparity across definitions of the term “energy”, depending on 

the focus of the study. In many cases it is taken to mean specifically electricity but may also refer to 

both gas and electricity (Druckman and Jackson, 2008; Jones and Lomas, 2015; McLoughlin et al., 

2015; Viegas et al., 2016). In this thesis, references to ‘energy’ are taken to mean both gas and electricity, 

and as such this chapter aims to provide a more comprehensive assessment of a household’s overall 

consumption. This chapter begins to unpack the myriad indicators of fuel consumption, the barriers 

to access and improvements and the relative benefits that Smart technologies could provide if their 

full utility is realised.  

 The Domestic Energy Provider Dataset 

The national dataset of smart meter readings were sourced through the ESRC Consumer Data 

Research Centre (CDRC) and relate to one of the UKs Big Six energy suppliers. The data contains 

details of around 1,080,000 gas and electricity domestic smart meters, providing meter readings at a 

half hourly cadence for the 2015/16 financial year, representing 43% of the 2.3 million smart meters 

installed at that stage. The spatial granularity is at Postcode Sector. Given the timing of the data 

T 
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collection, it is likely that all the meters from which readings were collected were the first generation 

SMET1 smart meters.  

  Representativeness in the Smart Meter Dataset 

The dataset represents the early stages of smart meter rollout. There are biases associated with this, 

primarily that those with the oldest meters were the first properties to receive an upgrade. The second 

most prevalent source of bias arise from the fact that the first households to receive an installation 

were more likely to be at home during the campaign; skewing the customer representativeness towards 

the elderly, families and the unemployed (Chapter 3). Indeed, the DECC (2014a) found that smart 

meter installations into domestic properties had been as a result of the majority of consumers being 

contacted by energy suppliers rather than consumers proactively requesting one (84% vs 5%).  

 Spatial and Temporal Trends Within the Smart Meter Dataset 

As discussed in Chapter 3, smart meters are installed at an  address level and so it is possible to utilise 

the installation figures as a proxy for coverage. Ushakova et al (2018) split the dataset by energy type, 

but to adhere to the definition of energy discussed at the beginning of this chapter, the penetration of 

all smart meters regardless of their energy type are shown in Figure 4-1 to explore the overall spatiality 

prior to the data aggregation. It displays the penetration of smart meters as a percentage of total homes 

in each PCS (Postcode Sector). This corroborates previous studies and does suggest that there are 

some urban/rural variations in the ease of physically accessing housing stock, ease of installation into 

homes, or availability of the prerequisite smart meter infrastructure such as access to fixed line 

broadband, all of which become more challenging in rural areas (Sovacool, 2015). During the 2015-

16 financial year when this data was collected, the DEP had no higher than 16% penetration anywhere 

in the UK. It is important to consider the size and spread of this particular DEPs customer base; it 

may be the case that there are smart meters provided by other DEPs in areas which look sparse and 

so this dataset should not be considered wholly representative of the entire population. 
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FIGURE 4-1 SMART METER PENETRATION RATES ACROSS GREAT BRITAIN 
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As previously mentioned, household smart meter installations can be used as a proxy for coverage and 

whilst Ushakova et al  (2018) investigates the percentage of homes with smart meters across the 

country, this research builds on this by attempting to understand the extent to which this spatial 

distribution has occurred randomly. The Local Indicators of Spatial Autocorrelation (LISA) 

methodology attempts to identify and quantify local patterns of spatial association and the results can 

be interpreted as indicators of local ‘hotspots’ (Anselin, 1995). A Morans I statistic quantifies the 

extent of the spatial autocorrelation, or to what degree similar features cluster over space. In this 

instance neighbours were defined as contiguous polygons. The results of the LISA analysis are 

displayed in Figure 4-2, where clear hotspots (and cold spots) have been identified.  
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FIGURE 4-2 LISA ANALYSIS OF SMART METER ADOPTION AT POSTCODE SECTOR LEVEL 
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There is a clear north south divide, and whilst any reasoning for this would be purely speculative 

because of the lack of information regarding the DEPs rollout programme, it is true to say that in the 

North of the UK clusters of high penetration areas tend to be more prevalent, whereas in the South 

of the UK the exact opposite is true with the pattern of low/low areas particularly prominent along 

the south coast. A Global Morans I statistics had a positive value of 0.51, with a p value less than 0.05 

suggesting that this spatial clustering has not occurred randomly. This clustering could be symptomatic 

of where the DEP has the strongest customer base or could suggest some level of targeting consumers 

in the North. 

 Data Cleaning and Description 

Before a temporal analysis of the DEP smart meter dataset was undertaken, data cleaning steps were 

considered in order to ensure that the data was fit for purpose and did not contain potentially sensitive 

individual data records. Initially, data cleaning was undertaken to remove individual records with null 

values or lack of spatial attribution. Exact duplicates and rows with missing categorical data such as 

postcode attributes or meter type were removed as these could not be accurately imputed. . 

 visualizes this data cleaning process, which also acted as a data minimization method; the final 

aggregated dataset represents a 97% reduction in size, making the processing time of the proceeding 

analysis less arduous and computationally expensive (Jiawei et al., 2012).  

TABLE 4-1 THE DATA CLEANING AND MINIMISATION PROCESS 

Step 
Number of 

records removed 

Percentage records 

removed 

Total number 

remaining records 

Prior to data cleaning   292,855,095 

Removing >50% ‘NA’ 

consumption data 
1,275 0.0004 292,853,820 

Remove ‘NA’ categorical 

data 
66 0.00002 292,853,754 

Aggregation to Postcode 

Sector 
  6,141,494 
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Because of the nature of this innovative dataset, it is difficult to know whether or not a zero value for 

a meter reading is a true zero where no energy has been consumed or is a false reading. We already 

know that SMET1 meters were prone to technical faults causing missed readings and it is unlikely that 

a true zero would appear in the dataset due to ‘standby energy consumption’ – the small units that are 

consumed by appliances always left on such as fridge freezers or security systems (Wyatt, 2013). In 

cases where over half of the days meter readings were zero, the entire row was removed as it would 

have been difficult to accurately impute and risked introducing error into the overall results. The 

frequency of the missing records would also suggest a fault with either the meter itself or the signal 

strength required to feedback to the DEP. Where under half of the meter readings were zero, the 

value was imputed using the mean value of the postcode sector in order to provide the most complete 

version of the dataset for analysis prior to aggregation (Lavin and Klabjan, 2015). Cleaning and 

preparation steps were taken to ensure usability and accuracy in the later analysis; an essential step in 

order to avoid influencing the results with atypical values (Ramos and Vale, 2008). 

Other instances of unrealistic energy consumption were also considered at this stage. For each 

household, unrealistic consumption was considered to be anything above 3 standard deviations and 

so were removed. A value over 3 from the mean should be considered an extreme outlier (Field et 

al., 2012). Other values that were considered outliers to a lesser extreme were kept as this variability 

could be accounted for by different devices being present; for example a household with an electric 

car will use significantly more energy during overnight hours, but should not be removed from the 

dataset. 

Finally, the data were manipulated to preserve the anonymity of the users and prevent re-identification 

as per the requirements imposed by the DEP and the CDRC. Having already understood the 

representativeness of the individualised dataset, it was aggregated to Postcode Sector Level and any 

sector containing less than 10 records was removed as per the secure data policy to avoid any individual 

being re-identified. By aggregating to Postcode Sector, the dataset was reduced to 6,141,494 records 

in total, which represents a single row per Postcode Sector for each day and meter type. 
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 Consumption Trends 

At a diurnal granularity, energy usage has two clear peaks as can be seen in Figure 4-3. There is a 

minor peak between 07:30 and 08:00 as people begin their daily tasks, before dropping as people 

leave their homes to go out to work and school. There is a slight increase as people who are at home 

during the day, such as those with caring responsibilities, shift workers or the unemployed undertake 

their lunchtime routines, before falling away again until around 17:00 when consumption increases 

steadily to the major peak at around 19:30, when typically most family members are at home and 

engaged in energy consuming activities such as cooking, cleaning and relaxing (television, tablets and 

games consoles) as well as homes requiring greater levels of lighting in the evening as darkness falls 

outside, which remain in constant use until people go to bed (Yohanis et al., 2008). 

 

FIGURE 4-3 HOURLY RATES OF TOTAL ENERGY CONSUMPTION 
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After 21:00 domestic activities slow and family members go to bed, making an effort to turn off almost 

all of their devices, as this is the time when most people recognise that leaving devices powered up 

unnecessarily is wasteful. Overnight consumption represents the minimum load, and as previously 

mentioned is sometimes called ‘standby usage’ or ‘base load’, which is made up of two components; 

usage by appliances that require constant power such as the fridge freezer or security systems, and 

reduced usage from devices (usually entertainment systems) which consume power whilst in an unused 

state. More frequently, overnight consumption also occurs when mobile devices are plugged in to 

recharge overnight for use the next day and for convenience – increasingly entertainment systems 

operate wirelessly, with one central control box being left on overnight to enable for example, family 

members to all watch television or access the wi-fi in their bedrooms (Wyatt, 2013). This pattern is an 

aggregate consumption profile across a 7 day week, and so the levels of daytime usage include weekend 

days where families are much more likely to be at home engaging in leisure activities. Daily usage is 

disaggregated by day of the week to examine this in greater detail in the following section. When the 

daily usage is disaggregated for individual days of the week, the consumption patterns confirm these 

notions, Figure 4-4 shows the split by day. 
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FIGURE 4-4 TOTAL DAILY CONSUMPTION 

 

 

Figure 4-4 displays the total energy usage for days of the week, reflecting a typical weekly routine – 

lower usage during the working week whilst residents are out at work and school; and higher 

consumption at weekends when people tend to be at home engaging in leisure activities and chores. 

Friday’s are the lowest day of the week, which could be the result of people both being at work all day 

and staying out of the home into the evening to socialise as the weekend begins and conversely 

Sunday’s are proportionally higher, perhaps reflecting British traditions of a Sunday Roast – having all 

the family present and spending lots of time cooking. It might also indicate preparations for the week 

ahead – laundry, ironing, bathing etc. 
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When examining the disaggregated half hourly data by day of the week, these patterns are confirmed 

and show a clear difference in usage between the working week and the weekend. Figure 4-5 shows 

that the minor AM peak starts later at weekends; families have less pressure to leave the house to start 

work and school, and usage is higher throughout the day as households engage in leisure activities in 

the home, but evening peaks on Fridays and Saturdays are the lowest, suggesting that evening 

entertainment at weekends takes place away from the home – despite Friday’s being relatively similar 

to the rest of the working week, it is this reduction in evening consumption that leads to it being the 

lowest day of usage overall. The timing of the major evening peaks are relatively similar as natural light 

fades consistently. 

 

FIGURE 4-5 HALF HOURLY DISAGGREGATE USAGE BY DAY 
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Figure 4-6 shows that there are also seasonal patterns reflecting the UKs temperate climate; very high 

usage in winter when heating and lighting requirements are much greater due to colder weather and 

longer hours of darkness than in the summer. The lowest usage between June and August is reflective 

of people not only needing less heating and lighting but also taking advantage of other energy saving 

measures such as the ability to dry clothes and occasionally cook outside in warmer weather. People 

are also more likely to undertake leisure activities outside the house in good weather, resulting in lower 

consumption levels by devices and electronic equipment. It might also be indicative of patterns of 

extended low use as people take a summer holiday and leave their property unoccupied for several 

weeks at a time.  

 

 

FIGURE 4-6 SEASONAL RATES OF TOTAL ENERGY CONSUMPTION 

 

D
ai

ly
 U

sa
ge

 (
kW

h
) 

Month 



 

 
100 

The half hourly disaggregate figures for each month reiterate these patterns and offer a more detailed 

insight; Figure 4-7 reflects the higher usage overall in winter months (December, January and 

February), which occurs due to sustained higher consumption throughout the day. The summer 

months of June July and August show the biggest variation from the overall trend with much less 

variation in maximum and minimum consumption – the evening peak is slightly earlier and greatly 

reduced, and the decline to the ‘stand-by rate’ is much more gradual as the requirement for heat and 

light remains lower throughout the day. 

 

FIGURE 4-7 HALF HOURLY DISAGGREGATE CONSUMPTION BY MONTH 
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 Characteristics of Smart Meter Users 

For the study of populations, geodemographics represent the analysis of people by where they live 

(See Chapter 3) (Longley, 2017). They have utility in both commercial and academic settings and have 

many applications to aid the understanding of the relationship between population characteristics and 

consumer behaviours and provide contextual validation to the smart meter data. The following section 

takes the Output Area Classification (OAC) to quantify the relationship between population 

characteristics and their energy consumption and smart meter adoption rates. The most recent 

iteration of the OAC is generated from the 2011 census by the ONS; it comprises 8 Supergroups, 26 

Groups and 76 Subgroups (See Chapter 3) (Gale et al., 2016). Because of the need to reweight the 

OAC classification to Postcode Sector Level (See Section 3.5) the rates of smart meter adoption in 

individual areas lead to sparse results when combined with the 76 Subgroups and so the 26 Groups 

were utilised. Figure 4-8 shows the smart meter adoption rate within each OAC Group.  
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FIGURE 4-8 SMART METER ADOPTION BY OAC GROUP 

 

The adoption of smart meters amongst these different groups reiterate bias within the data. There is 

an obvious urban rural split, with groups in Supergroup 1 (1a, 1b and 1c) who are all considered rural 

dwellers having some of the lowest proportions of smart meter users.  

Whilst rurality appears to contribute to the low propensity, possibly as a consequence of physical 

access to the properties (Section 2.3.3) , these groups characteristics indicate that they are also likely 

to be employed in “agriculture, forestry and fishing industries” and therefore away from their 

properties during the day, meaning they are less likely to be exposed to doorstep marketing. 
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Furthermore, “an above average number of people live in communal establishments (most likely to 

be retirement homes)” indicating that occupants are unlikely to have an individual meter for which 

they are responsible. These patterns both reiterate the assumed bias noted by Ushakova et al (2018). 

Group 7C (White Communities) have the highest proportion of homes with a smart meter installed, 

and their profile suggests that they are “more likely to own their semi-detached and terraced 

properties” confirming the notion that having the autonomy to make structural changes to a 

household leads to a higher rate of successful installations than those that are limited by contractual 

obligations to a landlord. 

Group 4C (Asian Traits) are particularly interesting, as their profile suggests they are likely to be 

“owner occupiers of detached and semi-detached homes” and work in “industries associated with 

information, communication and finance”. This technological and financial awareness might be 

indicative of increased knowledgeability of modern technology and its positive implications for energy 

and monetary savings, hence their higher smart meter propensity rate relative to other members of 

their Supergroup. 

Existing literature suggests that material deprivation and fuel poverty are closely linked and also that 

demographic characteristics have an influence over a household’s ability to consume energy. The link 

between smart meters and fuel poverty is important as the UK government utilise this scheme to 

improve energy efficiencies, particularly for the most vulnerable. To better understand the link 

between material deprivation and a household’s ability to consume energy, total energy consumption 

was also profiled by OAC Group, as described by Figure 4-9. 
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FIGURE 4-9 TOTAL ANNUAL CONSUMPTION BY OAC GROUP 

 

The most interesting patterns occur at the highest and lowest usages. Group 6B ‘Semi-detached 

Suburbia’ use the most energy overall. Their pen portrait indicates that a high proportion of this group 

live in rented accommodation, corroborating the findings in existing literature that rented homes are 

the least likely to be energy efficient, thus consuming higher amounts of energy overall to achieve 

comfortable living conditions (See section 2.2.3). Furthermore, despite the fact that these homes are 

the ones where smart meters are installed, they are of no cost to the landlord and structurally, these 
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homes are still some of the most inefficient housing stock in the UK and most likely to suffer from 

the spilt-incentive problem where landlords are unwilling to invest in further efficiency measures that 

require greater capital investment. (Section 2.2.5). By investigating the characteristics of the Subgroups 

within Group 6B, further high usage characteristics are revealed; Subgroup 6B1 (‘Multi-ethnic 

Suburbia’) are more likely to live in overcrowded conditions; more devices and appliances are going 

to be in use and more rooms will have a requirement for heat and light to meet the needs of more 

people. Subgroup 6B3 are also mostly aged 65-89, therefore retired and at home throughout the day, 

and may also have a greater requirement for heat in order to manage age related health complaints, 

which are often compounded or made worse by underheating (Section 2.2.6). 

Those in Group 1B; ‘Rural Tenants’ are also worthy of note. Despite their relatively low propensity 

of smart meter ownership, those that do own one display relatively high usage. This is most likely due 

to the age structure of the group who are mostly middle aged and retired, with the associated energy 

requirements as discussed above. They also have an increased likelihood of living in rented 

accommodation than others in their Supergroup (1A and 1C display much lower usage). It might also 

be indicative of the fact that rural properties overall are more likely to be built with solid walls rather 

than cavity wall, which makes retrofitting energy efficiency measures more difficult (Roberts et al., 

2015).  

Group 7B ‘Constrained flat dwellers’ have the lowest energy use. The pen portrait indicates several 

characteristics associated with material deprivation as a whole, such as living in socially rented 

accommodation and owning fewer cars. For this reason, it might be fair to assume that their very low 

consumption is a symptom of those households restricting their usage either to avoid, or because they 

already find themselves in fuel poverty. However, their usage is already low given their lower square 

footage, number of rooms and fewer people per household. Group 3C ‘Ethnic Dynamics’ use only 

slightly more energy, which can again be attributed to also living within accommodation where there 

is a lower square footage than average and having economic constraints through unemployment; but 

this may also explain the slight increase; some may use slightly more energy due to being more likely 

to occupy the home during the day. 
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 Discussion and Conclusion 

The aim of this analysis was firstly to address the issues of representativeness in the smart meter 

dataset and demonstrate the utility of smart meter energy consumption data for describing high -level 

aggregate consumption patterns. The results of the LISA analysis demonstrated that the bias towards 

locations in the north of England and Wales had not occurred randomly and is most likely present as 

an effect of the DEPs existing customer base and roll-out programme. It also indicated an urban/rural 

bias, perhaps indicative of the infancy of the roll-out programme at the time as well as physical access 

constraints at rural properties.  

The results of the aggregate consumption patterns show clear patterns at various temporal 

granularities and suggest that these smart meter users consume energy in a way that is a fair 

representation of everyday life; with clear, sensible waking times and evening peaks, weekday and 

weekend variations and seasonal consumption patterns that reflect the warmer and lighter summer 

months and colder, darker winter months. The daily ‘two peak’ pattern is also reflected in other 

research which utilises smart meter consumption data to estimate diurnal patterns (Haben, Singleton 

and Grinrod, 2016). Despite this, when the smart meter consumption data is transformed using the 

equation to convert watts into kWh (Section 3.2), both the temporal consumption profiles and the 

total annual consumption by OAC group display values that would be considered below the national 

average for even the lowest users. These estimate 9,900 kWh of combined gas and electricity 

consumption annually (Section 2.3). This raises questions of data quality, and the requirement for 

additional validation of the smart meter data. Again, it is not possible to know if the DEP roll out 

programme deliberately targeted consumers with a lower than average rate of consumption. It is also 

a possibility that the multiplying factor used in the equation to transform half hourly data into kWh 

has been misinterpreted, and so would benefit from an increased understanding of the applicability of 

this equation in respect of data that is presented in watts per half hour in it’s raw format.    

Secondly this chapter aims to understand the intersection between smart meter adoption and OAC 

groups, generating insight into the demographic characteristics associated with adoption and 

consumption. The results showed interesting patterns particularly in rural areas, highlighting potential 

constraints to installation. Ageing rural tenants are the least likely to have a smart meter install which 

could be linked to their properties not being attached to mains gas and therefore no meter is required, 
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or could be indicative of additional constraints in accessing smart metering technology in rural areas; 

more limited availability of engineers given the increased burden of travelling out to rural homes, 

technological constraints such as limited broadband speeds or older properties with thick walls making 

them unsuitable for the first generation of smart meter technology. In addition to this, the results also 

suggested that OAC groups with high prevalence of rented tenants were very unlikely to have smart 

meters installed, re-enforcing the idea that tenants have very little autonomy over their household’s 

energy efficiency and contractual constraints imposed by landlords mean that tenants are unable to 

have smart meters installed without their permission.  

This exploration into the geodemographic characteristics associated with varying levels of energy 

consumption provides utility in framing the link between energy consumption and contributing 

contextual factors which begin to build a narrative around the need for a multifaceted fuel poverty 

definition; and has also provided a level of external validation to the data. Those patterns exposed 

within the energy use are consistent with hypothesised usage that one might expect given the 

characteristics of those people and the places in which they live, as identified by the Output Area 

Classification. It has implications for proceeding analysis in informing the characteristics which are 

most prevalent in smart meter adoption and under consumption of energy. 
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5 Reconsidering Fuel Poverty Through 

The Energy User Classification 

 Introduction 

he previous chapter investigated patterns of access to upgraded energy efficiency 

technologies such as smart meters, revealing geographical disparities. Profiling by the 

Output Area Classification (OAC) revealed that propensity was not evenly distributed across 

all groups, suggesting that access is likely to be influenced by a number of factors as well as a broadly 

suggesting inequity in the prioritisation of infrastructure upgrades, forming a basis to support a 

conceptual framework for an energy based classification. Attributes pertaining to age, population 

density and occupation as well as some more physical attributes such as accommodation type, building 

type and ownership have all been discussed previously as having links to overall consumption and 

would likely show utility  in building a typology by introducing measures of demographic 

characteristics to supplement consumption data, and as such, create a broader view of energy 

efficiency and fuel poverty.  

Based on these findings, this chapter integrates Energy Performance Certificate data (EPC) alongside 

demographic measures to challenge the robustness of the current fuel poverty definition and the 

extent to which a household’s ability to consume energy is impacted by factors other than those purely 

monetary. Given that the Government targets for improving energy efficiency centre around 

improving their EPC rating (Band C by 2030’, with interim milestones of ‘Band E by 2020’ and ‘Band 

D by 2025’ (Department of Energy and Climate Change, 2015)), there is logic to the inclusion of these 

data in analysis with a view that they provide different insight beyond those social determinants of 

energy use.  

The proceeding chapter is structured as follows; the literature in Section 5.1 reiterates the current fuel 

poverty definition and addresses why this definition does not fully encompass the lived experience of 

fuel poverty and argues for a much broader, multifaceted definition. Section 5.2 introduces the data 

T 
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on which current fuel poverty statistics are based, as well as the EPC dataset and the energy efficiency 

of the OAC Groups in order to understand what high level demographic variation exists, before 

Section 5.3 introduces the methodological approach to building an Energy Consumption typology. 

The Chapter concludes with Section 5.4, which summarises the results of the Energy User 

Classification, with pen portraits for the four Supergroups.  

 Energy in Context 

 Current Fuel Poverty Statistics 

The Government produced an openly available fuel poverty statistic for the year 2016 which was 

disseminated at the LSOA level (Section 3.4.8). Because the overarching aim of this chapter is to prove 

the utility of external datasets in quantifying fuel poverty beyond the current definition, providing 

directly comparable results for the current statistics required the reweighting of the current fuel 

poverty data. Figure 5-1 shows the spread of fuel poverty across England and Wales for all areas where 

data was available, by proportion of houses per PCS. Some spatially based characteristics enhance the 

likelihood of a household experiencing fuel poverty; the material and infrastructural characterisation 

of an area as well as aggregated attributes such as demographics vary between different household 

types and therefore also geographically (Robinson et al., 2018b).  
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FIGURE 5-1 CURRENT DISTRIBUTION OF FUEL POVERTY IN ENGLAND 

 

Figure 5-1 shows there is a clear spatial disparity between the North and South of England, where the 

North has a much higher percentage of fuel poor households than the South. There is also some 

evidence of a disparity between urban and rural areas, both of which are likely due in part to the fact 

that the LIHC indicator equivalises fuel costs and income. Equivalisation adjusts household income 

% of homes in fuel 

poverty 
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based upon different demands for resources, considering household size and composition, thus 

reflecting how larger households require more energy to heat and tend to have less disposable income 

than smaller households. This results in an under-representation of larger under-occupied households 

in fuel poverty. Under-occupancy is most common in owner-occupied homes, most prevalent in rural 

areas (Robinson et al., 2018b). Also contributing to the relatively urban nature of fuel poverty is the 

fact that inner city areas are often disproportionately affected by inefficient housing in the private 

rented sector, where tenants lack housing rights and access to retrofitting schemes (Hope and Booth, 

2014; Robinson et al., 2018a). Data for Scotland and Wales is not available; these data represent 

experimental statistics collected from the ‘English Housing Survey’ when they were published and were 

the best available.  

 Before and After Housing Costs 

The Hills definition uses AHC measure to make fuel poverty a relative measure; the equivalisation of 

incomes is intended to make low and high income households more directly comparable. The AHC 

measure has benefits; it is much more representative; a household cannot spend their housing cost on 

fuel, but what the annualised statistics on which the reporting figures are based do not take into 

account is the fact that especially for those populations who are trapped in precarious tenancies, 

housing cost changes frequently and thus so does the disposable income available to spend on fuel. 

Under new Government policies such as Universal Credit, which disproportionately affects those on 

a low income, the amount of benefit a household is eligible for can vary month to month, making 

budgeting and forward planning difficult. Owner-occupied houses are less likely to suffer from this as 

mortgages provide some level of stability with regard to consistent payments. By investigating the 

change over time in BHC and AHC from the Small Area Income Statistics dataset (Section 0), it is 

possible to get an overview of the volatility in changing incomes between 2012 and 2016; the analysis 

below shows annual changes in the percentage of income accounted for by housing costs. Figure 5-2 

shows that for the lowest income quintile, the gap created by housing costs widens over time, whereas 

higher earning groups have seen their housing cost relative to their income remain steady.  
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FIGURE 5-2 POSTCODE SECTOR WEIGHTED INCOME QUINTILES SHOWING CHANGES IN INCOME 

BEFORE AND AFTER HOUSING COSTS 2012 - 2016 

 

The percentage change in AHC is shown in Figure 5-3 and reiterates that the lowest earners have seen 

the largest percentage housing cost increase; in 2012 14.25% of income was accounted for by housing 

cost which had risen to 15.75% by 2016 while salaries in this group only increased by 11% - hence the 

widening gap. This relative decrease in disposable income may lead to those households finding 

themselves in either short term fuel poverty while their finances recover, or perpetually unable to meet 

their energy costs once their housing costs have risen. They may choose to maintain inadequate 

heating and lighting in their homes, or forgo other necessities such as food or transport to provide 

thermal comfort and in order to minimise the shortfall (Middlemiss and Gillard, 2015). Meanwhile, 
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the higher earning groups have seen this gap close as their salaries increase above the increase in 

housing cost.  

 

FIGURE 5-3 POSTCODE SECTOR WEIGHTED INCOME QUINTILES SHOWING PERCENTAGE CHANGE IN 

INCOME AFTER HOUSING COST 2012 - 2016 

 

Other groups have seen their housing cost relative to their income reduce or remain steady, meaning 

they are less likely to find themselves at risk of fuel poverty. They are also more likely to have the 

ability to balance any increase as part of their usual outgoings given that they have seen a relative 

increase in disposable income, and they may have the ability to save some of their income to deal with 

unexpected expenses to avoid becoming fuel poor. Their rise in disposable income may also enable 

them to afford to make upgrades to their houses and appliances to decrease their energy costs further. 
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 Energy Performance Certificates 

The practicalities of Energy Performance Certificates were discussed in Chapter 3 (Section 3.3); EPCs 

are a mandatory certificate detailing a building’s energy efficiency, predicted running costs and scope 

for improvement. When they were first introduced, they were intended to make homes more 

comparable to prospective buyers and encourage sellers to make energy efficiency improvements to 

increase the attractiveness of a home (Energy Saving Trust, 2020). The utility of the certificates in this 

situation has been debated (Section 3.3.2), but because they are now compulsory, the coverage across 

England and Wales is very high and covers domestic purchases and rentals since 2008. The data details 

a multitude of structural characteristics which provide the basis for the Energy User Classification. 

Given the Government’s energy efficiency focussed targets which are based on EPC ratings, with 

regard to both fuel poverty and carbon emissions, dissecting the household characteristics which lead 

to properties being categorised as inefficient will lead to a broader view on energy efficiency and thus 

the facets of fuel poverty above and beyond a household’s income.  

Chapter 3 discussed the bias introduced into the dataset through collection techniques and 

discrepancies in the quality of assessors. The following section looks at the high level distributions 

within the data to understand if there are other factors which may bias the dataset. Table 5-1 overleaf 

provides descriptive statistics for the headline variables.  
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TABLE 5-1 EPC DESCRIPTIVE STATISTICS 

Variable Category Count Percentage 

Current Energy Rating A 19,838 0.13 

 B 1,393,618 8.91 

 C 4,155,004 26.59 

 D 6,136,780 39.28 

 E 2,874,748 18.4 

 F 803,690 5.14 

 G 239,614 1.53 

 Invalid 244 0.002 

Built Form Detached 3,607,949 23.09 

 Semi Detached 4,513,831 28.89 

 Terrace 6,680,032 42.76 

 Other 821,724 5.26 

 

When compared to the housing stock data from the English housing survey (Table 5-2), terraced 

houses are overrepresented in the EPC dataset (only 28.4% of the housing stock is terraced, compared 

to 42% of EPC certificates). This is likely to be because of the affordability of terraced houses and the 

increase in the share of the UK housing stock which is privately rented; they appeal to first time buyers 

and younger residents looking to get on the property ladder, as well as to private landlords for rental 

properties, as so are more likely than larger family homes to have been bought or rented since the 

introduction of EPCs – on average owner occupiers stay in their homes for 17.8 years and so many 

of these properties will never have required an EPC (MHCLG, 2019).  
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TABLE 5-2 EXTRACT FROM THE ENGLISH HOUSING SURVEY (MHCLG, 2019) 

 
Owner  
occupied 

Private  
rented 

Local  
authority 

Housing  
association 

All  
dwellings 

Dwelling Type           

small terraced house 6.8 16.9 10.4 12.1 9.7 

medium/large terraced house 19.2 19.3 14.2 17.3 18.7 

semi-detached house 30.8 15.9 16.9 15.9 25.3 

detached house 24.7 6.1 0.2 0.8 16.7 

bungalow 10.0 4.4 11.1 9.3 8.9 

converted flat 1.7 11.1 2.3 4.1 3.9 

purpose built flat, low rise 6.1 23.5 38.2 37.7 15.1 

purpose built flat, high rise 0.7 2.8 6.7 2.8 1.7 

 

The other discrepancy between the EPC dataset and the results of the English Housing Survey (EHS) 

is the increased propensity of very energy efficient buildings being included in the EPC data, especially 

when property types such as purpose built flats and apartment blocks are considered; Figure 5-4 details 

the cross tabulation between the building type and assigned energy rating, and is reasonably 

comparable to the EHS. 
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FIGURE 5-4 EPC RATING BY BUILDING TYPE 

 

However, the EHS suggests that half of all properties are rated Band D – the EPC dataset contains 

all new build properties since the introduction of zero-carbon legislation (Section 2.1.4), reflected in 

the higher percentages of energy efficient buildings rated B and C, especially in the “Other Flat” 

category, which includes all purpose built apartment blocks. Looking at Table 5-2 and Figure 5-4 in 

conjunction helps to validate the relatively high efficiency levels of the “Terrace Bungalow” in the 

EPC data, which in the English Housing Survey may be classified as a ‘bungalow’ or a ‘purpose built 

flat, low rise’; both of which are predominantly social rented properties, which is the highest 
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performing tenure type with between 20% and 29% of housing association and local authority tenants 

being rated A-C (Hope and Booth). The distribution of Park Home efficiencies is affected by their 

small sample size – (2974/15,623,536). 

 Output Area Classification 

To investigate the aggregated socio-spatial structure of energy efficiency, the Output Area 

Classification (see Section 3.4.6) was appended to the EPC data and the mean energy efficiency score 

per OAC group was calculated. The Energy Efficiency Score is a linear scale between 1-100 and is 

also referred to as the SAP (Standard Assessment Procedure) score, with the rating relating to EPC 

Bands – Table 5-3 details the splits.  

 

TABLE 5-3 EPC RATING BANDS AND SAP SCORE REFERENCE (EDF ENERGY, 2020) 

Band SAP Points 

A 92-100 (Most efficient) 

B 81-91  

C 69-80  

D 55-68  

E 39-54  

F 21-38  

G 1-20 (Least efficient) 

 

Despite the relatively small range in energy efficiency ratings between the highest (71.04) and lowest 

group (51.46), there are clear disparities between the groups. Figure 5-5 shows the average SAP score 

for each OAC group.  
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FIGURE 5-5 AVERAGE SAP SCORE BY OAC GROUP 

 

The three groups within Supergroup 1; 1a - Farming Communities, 1b - Rural Tenants and 1c - Ageing 

Rural Dwellers pertain to the lowest energy efficiency ratings between 51.46 and 56.58. We know from 

the EPC dataset that these groups have the highest propensity to use non-standard fuel types such as 

wood, coal or oil as their main fuel source due to being disconnected from the mains gas network; 

Supergroup 1 has an average of 49.3% not connected, compared to the average in the EHS at 14% 

(MHCLG, 2019). The highest rated group are 2b - Inner City Students with a score of 71.04, likely 

due to them living in very modern and efficient, newly built halls of residence style accommodation 

(94% of Inner City Students lived in flats in the EPC dataset). See Chapter 2 (Section 2.1.4) for an 

overview of the regulations introduced to improve the quality and efficiency of new buildings. The 



 

 
120 

groups characterised by living in terraced accommodation such as 4b - Challenged Asian Terraces and 

8b - Challenged Terrace Workers typically score lower than others after the rural dwellers, likely due 

to the poor quality housing stock symptomatic of the UK, but also because of, as previously 

mentioned their inability to seek out and afford energy improvements.  

 Building a Classification of Energy Consumption 

As introduced at the beginning of this chapter and in the literature (Chapter 2, Section 2.2.8), attributes 

pertaining to age; population density and occupation as well as physical attributes such as 

accommodation type, building type and tenure would likely assist in building a typology by introducing 

measures of demographic characteristics to supplement consumption data, and as such, create a 

broader view of energy efficiency and fuel poverty. The drivers of fuel poverty are highly 

multidimensional and often interlinked and can be summarised by three taxonomical elements : 

- Demographic and contextual attributes 

- Structural and physical fixtures and fittings of households  

- Access to technological upgrades 

The application of the fuel poverty definition to low income households only is not rational, as 

households above the general poverty line may be in fuel poverty. Energy poverty that is currently 

hidden under the current definition could be revealed through the inclusion of demographic and 

objective indicators such as those that fall into the categories above. It is important to include these 

supporting indicators and the exploratory descriptive work that has already been undertaken highlights 

the multidimensionality of them. The indicators are often interrelated and non-linear; in the previous 

chapter, patterns of access to upgraded energy efficiency technologies such as smart meters were 

investigated and a Morans I test revealed geographical disparities (Section 4.2.1). Profiling both smart 

meters and energy efficiency by the OAC (Sections 4.4 and 4.5 respectively) revealed that neither are 

evenly distributed across all groups. As an example, those in rural areas are particularly affected by 

both lack of access and poor energy efficiency, suggesting that both consumption and efficiency are 

influenced by multiple demographic, geographic and structural factors, as well as broadly suggesting 

inequity in the prioritisation of infrastructure upgrades, manifested in a high proportion both lacking 
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access to mains gas and smart metering technology, thus forming a basis to support a conceptual 

framework for an energy based classification.  

 Selecting Measures 

As a first step, consideration of previous findings and existing literature was required to identify those 

variables that would form useful inputs into the classification. Based on this 176 preliminary attributes 

were selected over the three taxonomical elements, derived from the EPC data and the 2011 Census. 

While both these datasets contain a wide variety of possible candidate variables, a large number are 

highly correlated or homogenous across space and so deemed less effective in classification building; 

for instance, any variation in sex is considered to be of lower importance since overall the ratio in 

small areas is the same. Furthermore, some variables in the EPC dataset were simply unsuitable and 

did not address the needs of the end-user such as those linked to potential efficiency and consumption. 

The proceeding subsections in Section 5.3 detail the steps taken to eliminate and transform variables 

in order that the input variables for the classification were suitable. 

Due to the sparse nature of some variables at the individual certificate level and to allow for consistent 

comparison with results throughout this thesis, all measures from the EPC dataset have been 

aggregated to PCS level. Before evaluating the candidate variables, the dataset was checked for missing 

variables and as a result, 17 variables were removed due to being over 80% missing8. These pertained 

to measures providing very high level descriptors affecting the overall energy rating of very few 

households, for example “9 or more rooms”. 

Contextual and demographic indicators were obtained from the census and broadly represent 

attributes that are known to correspond with levels of energy consumption and fuel poverty such as 

age, income and accommodation type. As before, the reweighting of census variables to the postcode 

 

8 Variable over 80% missing: current energy consumption, current lighting cost, current heating cost, 

current hot water cost, count of flat storeys, count of extensions, count of number of habitable 

rooms,  headcount, 1 room, 2 rooms, 3 rooms, 4 rooms, 5 rooms, 6 rooms, 7 rooms, 8 rooms and 9 

or more rooms. 
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sector level utilised the ONSPD and in the case of census variables, it was found that incompleteness 

was due to the chosen variables being associated only with Scottish census responses, meaning our 

study area was not covered. Table 5-4 details the standard census key statistic tables that were 

replicated using the download service from the UK Data Service. 

 

 TABLE 5-4 CENSUS KEY STATISTIC TABLES 

Census Table 
Name 

This table provides information on: 

KS103EW Marital and Civil Partnership Status 

KS401EW Dwelling, Household Space and Accommodation Types 

KS402EW Tenure 

KS403EW Rooms, Bedrooms and Central Heating 

KS601EW Economic Activity 

KS611EW NS-SeC 

 

The dataset as a whole totalled 159 variables for approximately 7500 postcode sectors. It was apparent 

that a number of these attributes displayed skewed distributions which required further data mining 

steps prior to clustering, discussed in the subsequent section of this chapter. 

 Assessing Skew 

Given the large number of input variables (159) a test of skewness was applied in favour of a visual 

inspection of a histogram for each variable to reduce the likelihood of interpretative error and to 

provide a quantitative measure for comparative purposes despite the large sample size. Skewness is a 

measure of the asymmetry of a frequency distribution. When the frequency scores are clustered at the 

lower end of the distribution and the tail leads towards higher or more positive scores, the data is 
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considered right skewed and the value of the skew is positive . Conversely when the frequent scores 

cluster at the higher end of the distribution and the tail points towards lower values, the data is left 

skewed and the value of the skew is negative. If the data is normally distributed, the left and right tails 

are balanced and the value of the skew is zero (Doane and Seward, 2011; Field et al., 2012). Ideally, all 

variables would display a normal distribution to ensure the optimal performance of some clustering 

algorithms such as K-Means, which is designed to find spherical clusters, however in practicality, this 

is very often not the case and as such, the skewness of the data should be understood to inform the 

extent of the data normalisation process.  

In determining the extremity of the skew, upper and lower limits are applied as rule of thumb, and the 

conservativeness of the boundaries is largely subjective. In this instance it was decided that absolute 

values within 2 are considered relatively normal. More stringent applications may lower this to 1, 

and more conservative may increase it to 3 (Lomax and Hahs-Vaughn, 2013). 

Table 5-5 summarises the results of the skewness test, giving the number of variables which fall into 

each of these categories. 

 

TABLE 5-5 SKEW DISTRIBUTION SUMMARY 

Skew Frequency Percentage 

Highly Negative 0 0 

Moderate Negative 4 2.5 

Approximately 
Symmetric 

63 39.8 

Moderate Positive 40 25.3 

Highly Positive 51 32.2 

 

The majority of measures that were assessed were approximately symmetrical in their distribution, but 

a large proportion of measures were also highly skewed in their distribution, and therefore likely to 
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impact on cluster assignments, but it is argued that measures exhibiting skew would either be 

normalised using power transformations to reduce skewness or used regardless of skew, as the outliers 

within these measures may assist in producing distinct clusters (Singleton and Spielman, 2014). For 

these reasons, no variables were eliminated based on their skewness - especially as some of the 

measures would be expected to display skewed distributions given the domain. For example, the 

distribution of access to mains supply gas; indicators of infrastructure performance and prevalence 

would be expected to be skewed away from rural areas, as these contain smaller populations and 

generally have the poorest access to networked infrastructure.  

 Data Evaluation 

As per the framework for designing a geodemographic classification introduced in Chapter 3 (Section 

3.6), a correlation matrix was also produced in addition to an assessment of skewness. It is generally 

discouraged to include highly correlated measures as it can result in duplicate information where 

multiple measures adequately capture the same relationship (Harris et al., 2005). This correlation can 

be addressed in one of two ways; by omitting multiple highly correlated measures to leave a single 

variable that is correlated with the largest number of other measures in order to ensure robustness, or 

alternatively, all measures can be included with or without applying weights. Weighting can be 

problematic as the process of selecting weights for individual measures can be argued to be subjective 

(Harris et al., 2005).  

It is possible to summarise the most notable correlations observed between sets of input measures. In 

general: 

- Measures relating to physical properties of and within homes were strongly correlated to 

one another. For example, Gas Central Heating ‘TRUE’ was significantly related to Mains 

Gas Flag ‘FALSE’, r = -.93, p < 0.05 

- Measures relating to current energy ratings were also highly correlated with physical 

properties of buildings. For example, there was a significant relationship between EPC 

Band F and Solid Fuel Central Heating, r = .69, p < 0.05 

Based on the examination of the correlation matrix, six variables related to two measures were 

removed. These pertained to information related to Top Storey Flat; TRUE, FALSE and NA and 
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Solar Water Heating; TRUE FALSE and NA. The Top Storey Flat variable applies to very few records 

overall, and the properties of a household it describes are already recorded by a more descriptive 

variable which classifies all flats based on their floor level. Table 5-6 shows the significantly positively 

correlated pairs, with values close to 1 (FL_* standing for Floor Level, FTS_* standing for Flat Top 

Story). 

 

TABLE 5-6 HIGHLY CORRELATED VARIABLES 

Variable 1 Variable 2 r p 

FL_ground FTS_N 0.53913201 < 0.05 

FL_middle_floor FTS_N 0.81021932 < 0.05 

FL_unknown FTS_NA 0.93519354 < 0.05 

FL_top_floor FTS_Y 0.95227015 < 0.05 

SWHF_NA PHOTO_NA 0.54893739 < 0.05 

SWHF_N PHOTO_FALSE 0.55329887 < 0.05 

SWHF_Y PHOTO_TRUE 0.58607444 < 0.05 

 

Likewise, Solar Water Heating Flags (SWHFs) are covered by a variable describing the presence of 

photovoltaic panels - you cannot have solar water heating if photovoltaic panels aren’t in place and 

again, SWHFs apply to so few individual level records it is fair to say that their removal is unlikely to 

make any significant difference to the final clusters. 

Broadly speaking, other correlated variables were not unexpected and have been observed in previous 

literature, such as the positive relationship between demographic characteristics and tenure type (e.g. 

Private rented tenure and Age 25 – 29, r = .76, p < 0.05). As such, no other measures were removed 

as a result of this step. This decision was made on the basis that removing correlated variables based 

on the analysis of global statistical relationships could potentially mask local variation and lead to the 

smoothing of important non-linear patterns at a more granular level (Singleton and Spielman, 2014). 
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Table 5-7 details the final measures which were included in the dataset used to build the classification; 

each measure is broken down into factorised variables, detailed in the full variable table in Appendix 

9.4. 

TABLE 5-7 FINAL MEASURES FOR CLASSIFICATION BUILDING 

Domain Geo-locator Energy 
Information 

Physical Attributes Fixtures and 
Fittings 

Demographic 

Sub-domain Postcode 
sector 

Current energy 
efficiency 

Property type Glazing Economic Activity 

 
 

Current 
environmental 
impact 

Built Form Hot Water NSSEC 

 
 

Current energy 
consumption 

Mains Gas Flag Secondary Heating Marital Status 

  Current costs Floor level (flats only) Central Heating Tenure 

 
 

Number of 
storeys 

Top Storey Flat (flats 
only) 

 Age group 

  Habitable rooms Extensions   

 
 

Energy 
Certificate rating 

Wind turbines   

  Transaction type Solar Water Heating   

  Energy tariff Photovoltaics   

  Mains fuel source Accommodation type   

   Number of Rooms   
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 Transformation and Normalisation 

The next stage was consideration of transformation and normalisation processes. Several variable 

normalisation methods are frequently referred to in geodemographic literature; including Box-Cox, 

log10 and cube-root (see Section 3.6). Given what is known about the skewness of the variables in 

this dataset, a thorough evaluation of the different transformation methods is imperative; highly 

skewed data can lead to poor cluster assignments, especially when used as inputs into clustering 

algorithms that are optimised to find spherical groupings such as K-means (Gale et al., 2016). Box-

Cox and log10 methods require values to be positive and greater than one; as some variables here had 

values that fell below one, a constant of 100 was applied to ensure that transformations could take 

effect. 

Log10 transformations, compresses the upper tail and stretches out the lower tail, making 

the transformed data appear more normal, but apply a globally standard method of normalisation 

across a dataset, leading to compressed differences between large values and increasing differences 

between small values to artificially reduce variance. The Box-Cox method computes an appropriate 

exponent (lambda, λ) to transform a variable (Y) and normalise its distribution (Equation 3 details the 

Box-Cox equation). Multiple λ values between -5 and 5 are tested and the one that results in the most 

normal distribution is used for the power transformation. This means that the extent to which a 

variable is transformed is dependent on its level of skew.  

 

𝒀𝒊(𝝀) = {𝒀𝒊𝝀 − 𝟏/𝝀 (𝝀 ≠ 𝟎) 𝒍𝒐𝒈(𝒚) (𝝀 = 𝟎)  

EQUATION 3 BOX COX TRANSFORMATION 

 

Finally the cube-root (x to x^(1/3)), has a strong effect on distribution shape and is most commonly 

applied to right tailed data. Whilst it does not have as substantial an effect on the distribution as the 

log transformation, it has utility in that it can be applied to zero and negative values without the need 

to include a constant. The three methods of skew reduction were compared, and Table 5-8 details the 

results for a subset of the ten most highly skewed variables. 
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TABLE 5-8 NORMALISATION METHOD RESULTS FOR TOP 10 MOST HIGHLY SKEWED VARIABLES 

Variable Skew (Raw) log10 Cube-root Box-Cox 

CER_A 79.12 77.95 1.21 0.07 

CER_INVALID! 94.34 94.34 30.53 7.01 

HWD_gas_other 91.15 90.84 0.77 -0.14 

HWD_heat_pump 66.95 66.90 9.59 7.31 

HWD_none 66.42 65.30 0.11 -0.91 

HWD_oil 65.40 64.00 2.96 1.55 

MF_Community_scheme 75.98 75.11 27.71 15.42 

SHD_hot_water_only 79.59 79.58 17.51 14.12 

SHD_NA 91.39 91.12 2.34 1.06 

WTC_TRUE 92.30 92.10 0.95 -0.10 

 

It is evident that the Box-Cox method significantly improves the overall symmetricity of the variables. 

Whilst some are still highly skewed variables they are much closer to zero than prior to transformation 

and others are now more moderately skewed. Given the level of improvement it has had on the 

skewness of the variables the Box-Cox standardisation was applied to the dataset for the subsequent 

analysis. 

 Standardisation  

Before clustering, the variables were standardised using z-scores to create a common scale. This was 

applied to both the transformed and the naturally distributed datasets. As discussed in Section 3.6 z-

scores are the most common method for data standardisation and scores are calculated by subtracting 

the population mean from an individual raw score then dividing the difference by the population 

standard deviation. This results in a set of scores that are positive if they fall above the means and 
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negative if they fall below, meaning that all standardised variables have an adjusted population mean 

of 0. 

The other well-known method for rescaling data is a range transformation, which rescales the values 

into a range of 0 – 1 and is most useful in cases where all parameters need to have the same positive 

scale. It’s major drawback, particularly in respect of clustering is that information about outliers is lost 

and could result in clusters without particularly distinct characteristics (Alexiou, 2016) (Section 3.6). 

In order to compare the utility of the two methods, the naturally distributed and transformed datasets 

were replicated and standardised using a range transformation; the results are discussed in the 

following section. 

5.3.5.1 Testing the Impact of Standardisation 

The first stage of the clustering process was to cluster both the transformed and naturally distributed 

inputs to observe the effects of the transformation, standardisation and normalisation processes on 

cluster assignments. At this validation stage a detailed classification is unnecessary, so the total Within 

Cluster Sum of Squares (WCSS) and between cluster sum of squares were calculated for k = 2:10 (k 

is equal to the number of unique seeds, see Section 3.6) in order to ascertain which combinations are 

likely to produce the most heterogeneous clusters.  
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FIGURE 5-6 TRANSFORMATION EFFECTS ON WCSS FOR K = 2:10 

 

It is clear to see from Figure 5-6 that the range transformed data for both the natural and Box-Cox 

datasets produce clusters with very low Total Within Cluster Sum of Squares (WCSS). Ordinarily it 

would be desirable to see a low WCSS score as a measure of ‘goodness’ of the clusters, however, if 

the WCSS is low for all values of k with no discernible “elbow” point where the increase in clusters 

no longer results in an improvement in WCSS this may suggest that cases within each cluster are too 

similar and would produce clusters with hard to distinguish heterogenous characteristics. This result 

is likely due to the nature of range transformations bounding the data and losing distinctive 

characteristics that appear as outliers in the data. 
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Figure 5-6 also shows how both the naturally distributed data and Box-Cox transformed data 

performed when z-scores are applied. Both show decreasing WCSS scores as the value of k increases, 

but the non-transformed data produced consistently lower scores, suggesting that it is the most likely 

to produce easily interpretable clusters with heterogenous characteristics. As a result of this evaluation, 

the range transformed data was discounted for further use.  

To investigate the heterogeneity of the two z-score standardised datasets, the cluster assignments from 

an arbitrary run of k = 5 clusters was outputted and investigated. The initial output summary tables as 

shown in Table 5-9, and Table 5-10 and Table 5-11 overleaf, revealed differences in terms of cluster 

sizes, aggregate characteristics, and ease of interpretability. These summaries are a subjective 

interpretation of the outputted cluster centroids and have been condensed such that they can be 

presented overleaf. The full table used for the evaluation is included in Appendix 9.5.  

 

TABLE 5-9 CLUSTER SIZES 

Cluster n (Natural) n (Box-Cox) 

1 880 1361 

2 1121 1208 

3 2201 2417 

4 2616 922 

5 843 1753 

 

The naturally distributed data produced the most interpretable assignments, with more homogenous 

clusters formed. Based on the representation it is apparent that in the naturally distributed cluster 

assignments display the following characteristics: 

- Cluster 1 is largely students and young professionals renting modern, efficient flats from 

private landlords. 



 

 
132 

- Cluster 2 represents mostly young, unemployed families in social rented properties of 

middling efficiency. 

- Cluster 3 are middle aged or pensioners, living in homes of middling efficiency.  

- Cluster 4 is a mix of ages representing both families with children and retirees, living in 

mortgaged homes with middling efficiency. 

- Cluster 5 is middle aged and retired households, who live in larger detached properties 

which they own and are inefficient to heat. 

In both cases, the tables highlight the variables where all the options were fairly equally represented 

in the clusters; Table 5-11 shows that this occurred much more frequently in the Box-Cox transformed 

dataset.
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TABLE 5-10 NATURAL DISTRIBUTION CLUSTER CHARACTERISTICS 
Clust
er 

Certificate  
A-G 

Property Type Built Form Energy 
Tariff 

Mains 
Gas 

Glazin
g 

Main Fuel 
Type 

Economic Activity  Marital Status Tenure Age 

1 B/C Flats 
Terrace/ 
Other 

Unknown Mixed Mixed Electric Students Single/Civil Private Rent 18 - 44 

2 C/D Houses Terrace  Single TRUE Double Gas Unemployed 
Single/ 
Separated 

Social Rent 0 - 44 

3 D/E 
Houses/ 
Bungalows 

Detached/ 
Semi 

Mixed TRUE Double Gas Part-time/ Retired Married 
Mortgage/ 
Owned 

45 - 90+ 

4 C/D Houses Semi Mixed TRUE Double Gas Full/Part-time Mixed Mortgage  Mixed 

5 E/F/G 
Houses/ 
Bungalows 

Detached  Dual Fuel FALSE Mixed 
Non-
Standard 

Self Employed/ 
Retired 

Married Owned 45 - 74 

 
 
TABLE 5-11 BOX COX DISTRIBUTION CLUSTER CHARACTERISTICS 

Clusters Certificate  
A-G 

Property 
Type 

Built Form Energy 
Tariff 

Mains 
Gas 

Glazing Main Fuel 
Type 

Economic 
Activity  

Marital Status Tenure Age 

1 Mixed Bungalows Detached 
Dual Fuel/ 
Off Peak 

FALSE 
Triple/ 
Secondary 

Non-
Standard 

Self Employed/ 
Retired 

Married Owned 45 - 74 

2 Mixed Mixed Terrace Single TRUE Double Gas 
Unemployed/ 
Carer 

Single/ 
Separated 

Social Rent 
0 - 9/  
20 - 29 

3 Mixed Mixed Mixed Mixed TRUE Mixed Gas Mixed Mixed Mixed Mixed 

4 C Flats Terrace Unknown Mixed 
Single/ 
Secondary 

Mixed Students Single/Civil Private Rent 20 - 29 

5 Mixed Bungalows 
Detached/
Semi 

Mixed TRUE Secondary  Mixed 
Self Employed/ 
Retired 

Married 
Mortgage/ 
Owned 

45 - 90 + 
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 Construction and Hierarchical Design 

Clustergrams were utilised to select the optimum number of clusters (Section 3.6) Plotting the 

distribution and redistribution of cluster centroids between outputs for a range of potential k values 

aids the interpretation of an optimum value of k, by being less subjective and error prone than other 

methods such as elbow plots and gap statistics. As seen in Figure 5-7, the Clustergram tested values 

of k from 2 through 10. For each iteration the method works by multiplying the cluster centres by the 

first loading of the principal components of the original data, thus offering a weighted mean of each 

cluster’s centre dimensions, as indicated by the red point. 

 

 

FIGURE 5-7 CLUSTERGRAM ITERATIONS FOR K = 2:10 
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Figure 5-7 visualises the resulting clustergram for a K-Means clustering algorithm. From this, it is 

apparent that when k = 2, the clusters are well spaced, as indicated by the red points, which visualise 

the cluster centre. The spacing suggests that the two clusters are sufficiently homogeneous in terms 

of their characteristics that they are easily distinguishable from one another. As the number of k is 

increased to 3, it is possible to track the reassignment of observations. In this case, a number of 

observations from each cluster are reassigned to form a central cluster or reassigned to each other. 

The same principle applies with k = 4 and 5, the clusters remain well spaced, but as the value of k 

increases, cluster centres become much closer together, and some overlap appears in the highest 

values, which may impact the interpretability of each cluster’s characteristics. This suggests the 

optimum value for k has been exceeded. 

Following this evaluation, a K-Means clustering algorithm was undertaken for k values of 4 and 5, as 

they presented the optimal values of k in the clustergram. Before a full examination of the clusters 

was undertaken, the principle components for each observation in the dataset were visualised to 

compare, as can be seen in Figure 5-8 and Figure 5-9.  
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FIGURE 5-8 PRINCIPLE COMPONENT ANALYSIS FOR K = 4 

 

FIGURE 5-9 PRINCIPAL COMPONENT ANALYSIS FOR K= 5 
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Figure 5-9 shows that at k = 5 the clusters have a significant amount of overlap, with cluster 3 being 

almost completely covered by clusters 1, 2 and 5, with very few observations displaying distinctive 

characteristics different to any other cluster. This is likely to make uncovering the heterogenous 

characteristics of each cluster difficult. Whilst there is still some overlap when k = 4 (Figure 5-8), there 

are also still plenty of observations for each cluster which do not overlap, suggesting that of the two, 

this cluster assignment appears the most likely to provide easily interpretable and homogeneous 

clusters. Each of the four initial clusters were then separated and re-clustered in an attempt to build a 

second tier within the classification to give a more granular final typology. However, on investigation 

it was apparent that most clusters were unable to support results significantly different from the parent 

cluster and so the second tier was not investigated further. Following this final categorisation, the 

resulting classification was a single tier typology containing four clusters. For consistency with similar 

literature on geodemographics and to futureproof this classification, these top level clusters are 

referred to as ‘Supergroups’ going forward. The next stage was to study the characteristics of each and 

translate this information into a set of descriptive summaries. 

 Results 

The process of summarising the Supergroup characteristics was achieved using a number of methods. 

A summary table of the cluster centroids was produced and visually inspected; interpretation of the 

results was aided by conditional formatting and can be reviewed in appendix 9.5. From this table, key 

characteristics of each Supergroup were extracted and recorded, providing the basis for the resulting 

textual summaries (‘Pen Portraits’). Secondly the clusters were mapped to reveal their geographic 

distributions and the areas categorised using the urban rural classification to quantify this visual 

inspection. Through this combination of information, names and pen portraits were created for each 

of the four Supergroups. 
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FIGURE 5-10 COLD AND COSTLY KEY CHARACTERISTICS AND GEOGRAPHY 

  Cold and Costly  

Age 0 - 44 
Marital Status Single or Separated 
Economic 
Activity  

Unemployed / Carer 

NS-SeC 5 and up 
Tenure Social Rent 
Property Type House 
Accommodation Terrace 
Certificate  C/D 
Energy Tariff Single 
Mains Gas True 
Glazing Double 
Hot Water Mains/Gas Boiler 
Main Fuel Type Gas 
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Figure 5-10 shows the national distribution and key characteristics of the first Supergroup in the 

classification. It is apparent that this Supergroup is concentrated around major urban and suburban 

areas and towns, which typically attract younger populations and families.  

This Supergroup is characterised by an increased likelihood of constituent homes being underheated 

or costly to heat; a high proportion use the more expensive single energy tariffs which are associated 

with pre-payment meters and despite the fact that there is some evidence of minor structural 

improvements being made, such as high levels of double glazing and EPCs generated from upgrade 

projects, the majority of homes are still more likely to be Band C or below. Members of this 

Supergroup are most likely to be housed in socially rented accommodation and therefore suffer from 

the tenant/landlord dichotomy, giving them little to no autonomy over the cost of their consumption. 

They are typically terraced or semi-detached houses, occupied by families with children, as indicated 

by the age range. The adults in this Supergroup are most likely to be long term unemployed, disabled 

or working in routine and semi-routine occupations. The above factors all combine to make this group 

the most likely to struggle to heat their homes consistently without becoming fuel poor, especially 

during colder months when they have been unable to build up any credit with their energy supplier to 

cover the increased usage. Comprising of 1921 postcode sectors (25%) and 25% of the population, it 

is the 2nd biggest cluster. On the basis of these features, the Supergroup name “Cold and Costly” was 

ascribed. 

FIGURE STYLEREF 1 \S 0 SEQ FIGURE \* ARABIC \S 1 10 COLD AND COSTLY 
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 Off Grid Owners 

Age 45 + 
Marital Status Married 
Economic Activity  Part Time / Self 

Employed/Retired 
NS-Sec 4 
Tenure Owned outright 
Property Type House/Bungalow 
Accommodation Detached 
Certificate  E:G 
Energy Tariff Dual 
Mains Gas False 
Glazing Secondary/Triple 
Hot Water Immersion 
Main Fuel Type Non-standard 
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Figure 5-11 shows the national distribution and key characteristics of the second Supergroup within 

the classification. Unlike the first, it is clear that this Supergroup is widespread nationally, covering 

most deep rural and rural fringe areas. This Supergroup does not cluster around urban areas and towns; 

those areas generally associated with younger populations.  

This Supergroup is characterised by aspects of demography and location, as well as some variations 

in energy efficiency characteristics. They are most likely to be aged over 45 or elderly, and married 

home-owners. They typically live in detached houses with a large floor area, and are the most likely to 

be self-employed, or semi/fully retired. There is evidence of them exercising autonomy over their 

energy consumption and its costs by making long term investments in their properties. The data shows 

that they have the highest propensity of undertaking energy upgrade assessments as well as 

undertaking general and efficiency based home improvements such as constructing extensions, 

installing solar panels and installing double or triple glazing. This leads to this Supergroup having the 

highest proportion of the four clusters with A rated properties. However, rurality clearly limits choice 

and opportunity to engage in more efficient energy consumption - those living in very remote areas 

rely on inefficient and expensive non-standard fuel sources such as oil or wood and are less likely to 

be connected to the mains gas network. These large, rural homes are likely to be inefficient and under 

occupied and as such, costly to heat to a comfortable level. It is these who may find themselves with 

increased costs during colder months; those on standard energy meters are more likely to have some 

credit with their fuel supplier as they have dual fuel tariffs. The “Off Grid Owners” Supergroup is 

made up of 1066 postcode sectors (14%) and accounts for 10% of the population. 



 

 
142 

FIGURE 5-12 EFFICIENT CITY LIVING KEY CHARACTERISTICS AND GEOGRAPHY 

 Efficient City Living 

 

Age 18-44 
Marital Status Single or Cohabiting 
Economic Activity  Student 
NS-Sec 1, 2 or 8 
Tenure Rented (Social and 

Private) 
Property Type Flats/Terrace 

Houses 
Accommodation High proportion 

shared 
accommodation 

Certificate  B/C 
Energy Tariff Unknown 
Mains Gas Mixed 
Glazing Mixed 
Hot Water Immersion 
Main Fuel Type Electric 
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Figure 5-12 shows the national distribution and key characteristics of the third Supergroup in the 

classification. This Supergroup has a tendency to cluster around major urban areas; predominantly 

London, but cities such as Manchester, Liverpool, Birmingham and Bristol are also highlighted. This 

Supergroup comprises populations who are young, students or working in higher managerial and 

professional occupations, and are living in major cities across the country. They typically live in 

privately rented flats or houses, which are newly built or purposely converted with updated, efficient 

fixtures and fittings such as triple glazing and modern boilers. This coupled with the fact that they 

typically have a lower square footage to heat and light means this Supergroup are the least likely to 

find themselves with high energy bills they are unable to alter. Their relatively high income allows 

them to absorb shocks to their bills and so even in the cases where expensive fittings such as 

immersion heaters are found, this group are the least likely to find themselves in fuel poverty. Some 

of this cluster are students living in purpose built halls of residence, whose all-inclusive living 

arrangement means that whilst they have no autonomy over their energy efficiency, they also do not 

need to consider energy bills as an extra cost and so, will not find themselves in fuel poverty. They are 

the smallest group, made up of 912 postcode sectors (12%), and are 10% of the population. This 

group was labelled as “Efficient City Living”. 
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FIGURE 5-13 TYPICAL TARIFF KEY CHARACTERISTICS AND GEOGRAPHY 

 Typical Tariff  

Age 45+ 
Marital Status Married 
Economic Activity  Employed 
NS-Sec 1,2 & 3 
Tenure Mortgaged/Owned 
Property Type House/Bungalow 
Accommodation Detached/Semi 
Certificate  D/E 
Energy Tariff Single 
Mains Gas True 
Glazing Double 
Hot Water Mains/Boiler 
Main Fuel Type Gas 
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Figure 5-13 shows the national distribution and key characteristics of the fourth Supergroup in the 

classification. This Supergroup is distributed between towns and urban areas, but rural areas are also 

present. This Supergroup displays characteristics that are closest to the overall average. Areas are 

characterised by mixed energy efficiency and average floor area, and display a variety of fixtures, 

fittings and physical property attributes. Homes are typically semi-detached and are mostly mortgaged. 

There is a higher proportion of elderly people but an overall mix of ages and family types. Members 

of this Supergroup who are of working age are typically in middle or lower supervisory jobs. There 

are fewer shared houses and private rentals than other clusters. It is the largest cluster, accounting for 

49% of postcode sectors (3762) and 52% of the population. This Supergroup was ascribed the name 

“Typical Tariff”.  

 Conclusions 

This chapter has shown that both the 10 percent and Low Income High Cost definitions of fuel 

poverty are lacking in terms of the lived experience of fuel poverty and it has re-evaluated the ways 

this multifaceted issue should be considered outside of its technical and structural policy framework. 

By integrating energy performance characteristics and demographic indicators, the EUC underpins 

the utility of consumer data as an asset to social science research endeavours and in this case in 

particular, the identification of at risk populations. 

The results of the longitudinal small area income analysis showed the greatest levels of instability for 

the lowest income earners regarding their housing costs, which has numerous repercussions; it is 

harder for them firstly to plan for these changes and increases, but also harder for them to recover 

from financial shocks as they are the least likely to be able to save any of their disposable income in 

order to absorb them. This has implications for these households and leads to debt and restricts energy 

payment options which are available to them, often leaving only the most expensive pre-payment 

methods. As a result of the pre-payment tariffs, they are more likely to find themselves in short term 

fuel poverty in the winter as their costs change and may find themselves in perpetual fuel poverty if 

the gap between before and after housing cost continues to grow. All other income quintiles have seen 

the gap between before and after housing cost begin to close, giving them greater stability and more 

disposable income relative to their housing cost. When the cluster income spread is considered, it is 

FIGURE STYLEREF 1 \S 0 SEQ FIGURE \* ARABIC \S 1 13 SUPERGROUP 4 
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clear that the lowest earners are again the most vulnerable to instability, although cluster 3 as the 

highest earners spend a significantly higher percentage of their income on housing costs. 

The variations in energy efficiency rating between the OAC groups suggested that energy efficiency 

cannot be solely linked to the structural and physical aspects of a household. There were clear 

differences in the energy ratings of varying demographics and whilst building type and structural 

properties affecting energy efficiency were present, other factors such as rurality, ethnicity, 

employment and age were also at play. 

By combining the EPC, census and income data, the resulting EUC validates the multidimensionality 

of fuel poverty by detailing the demographic characteristics present in areas which are overlooked by 

the current fuel poverty definition. It also shows that in each cluster of the EUC, there are areas which 

are currently considered fuel poor, again suggesting that the definition does not encompass all facets 

of fuel poverty. It clearly highlights one cluster which are the most at risk of fuel poverty under a 

multidimensional lense; the ‘Cold and Costly’ supergroup exhibit a large number of demographic, 

environmental and consumption characteristics that could be considered systemic factors of fuel 

poverty. Furthermore, it highlights the importance of both successful data linkage from multiple data 

sources in enabling a more detailed representation of the populace than has previously been possible 

from traditional data sources as well as highlighting the need for tools such as itself for enabling 

cohesive data partnerships between public and private entities for the effective enactment of fuel 

policy directives. 

Overall it is true to say that energy efficiency and income do both have an role in a household’s ability 

to consume energy, but they are not the only factors and under the current political framing of fuel 

poverty as a monetary problem within a disjointed policy framework which only aims to alleviate 

rather than eliminate fuel poverty, there are many other characteristics that are overlooked and left 

unresolved. The EUC provides utility in defining this multidimensionality and has implications for the 

policies and solutions of targeted fuel poverty alleviation. The chapter succeeding this endeavours to 

validate this classification through internal and external measures.  
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6 Evaluating the Energy User 

Classification’s utility: Suggesting areas 

of  improvement for the DEP to achieve 

the greatest social good. 

 Introduction 

revious chapters in this thesis have focused on the key characteristics and drivers of fuel 

poverty (See Chapter 2), their geography and how smart meter adoption rates of areas is 

differentiated by socio-spatial measures (Chapter 4). In addition, overall and temporal energy 

usage characteristics captured through smart meter technology were examined in Chapter 4. The result 

of the analyses in both Chapters 4 and 5 have suggested that there are geographic and socio-economic 

disparities that when collated, engender a complex geography of fuel poverty that far surpasses current 

definitions, whilst also indicating that the geographies of smart meters and access to and engagement 

with the technologies is worthy of further investigation. The Energy User Classification (EUC) in 

Chapter 5 utilises the EPC data and small area statistics to successfully generate a classification which 

shows that fuel poverty is associated to particular demographic characteristics which are not 

necessarily expenditure based, such as accommodation type, tenure and family life stage. It is clear 

from these results that the current definitions overlook the behavioural lived experience of fuel 

poverty.  

Whilst the research presented in each of the empirical studies has made use of relevant and innovative 

sources of data, the outcomes currently remain independent of one another. To provide depth to 

these insights, there is an opportunity to utilize the measures and insights generated thus far within a 

local case study. This both provides additional validation, but also useful insight on the case study 

P 
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area; and to make recommendations of greatest social impact for Domestic Energy Providers in 

fulfilling their smart meter installation obligations. Chapters 2 and 4 both touched upon the multitude 

of constraints faced by both suppliers and customers during the smart meter roll-out process and this 

chapter also aims to address these in a constructive way and offer practical recommendations for 

overcoming those which are linked to the demographic characteristics of users.  

The rest of the chapter is structured as follows; the Energy User Classification (EUC) is dissected; 

internal validation of the clusters interrogates the fit statistics, particularly in regard to those areas 

where the fit is poorest. External validation and correspondence to external indicators of deprivation 

and fuel poverty proves its utility in outlining the more nuanced definition of fuel poverty, which takes 

a much more multifaceted approach than the current definition, showing that demographic 

characteristics of fuel poverty are present at all income levels. Finally a practical validation of the 

cluster analysis in a targeted application of Wolverhampton is done to investigate smart meter 

adoption rates (SMAR) in the EUCs most “at risk” Supergroup with regards to fuel poverty, to discuss 

the environmental constraints faced by those households and provides recommendation to the 

Domestic Energy Provider with regards to overcoming them in order to have a positive social impact 

through their smart meter rollout schemes. 

 Cluster Fit and Outliers  

In order to validate the Supergroups (clusters) in the Energy User Classification, a fit statistic was 

calculated to reveal how well each Postcode Sector is represented by its assigned cluster. When 

referring to clustering algorithms, similarity and distance are analogous and fundamental concepts and 

many of the measures of similarity used in cluster validation are comparable with Euclidian distance - 

that is - the greater the distance the more dissimilar the observations are. However, it is important to 

consider that the similarity amongst observations is more complicated in highly dimensional datasets 

with many variables and observations might be similar in some characteristics, but dissimilar in others, 

invariably skewing the fit statistics (Brunsdon and Singleton, 2015). 

Within this context it was important to explore how well the cluster assignments fit the underlying 

distribution of calculated measures for each area; and where outliers were shown, what useful insights 

did these reveal and could they be explained through a more detailed investigation of the area 
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characteristics. As such, the distances from the cluster mean were calculated for each Postcode Sector 

(PCS) and interpreted. As discussed above, it was noted that some variables were having a 

disproportionate effect on the overall fit of some PCSs. Figure 6-1 displays the spread of the distances 

for each of the four clusters, and suggests that particularly in cluster 2, 3 and 4, some PCSs displayed 

very high distances from the cluster mean.  

 

 

FIGURE 6-1 EACH PCSS DISTANCE FROM THE CLUSTER MEAN BY CLUSTER ASSIGNMENT 

 

Several ways of ensuring this disproportionate effect did not affect the overall fit statistic were trialled, 

firstly by taking the median of the PCS variable scores before squaring them and also by removing 

extreme outliers that fell further than three standard deviations from the mean. By taking the median 

of squares instead of the sum of squares, the measure of central tendency was less affected by the 

extreme outliers. Whilst it did improve the scores overall, it was decided that the higher numbers 

caused by one or two variables still unrealistically skewed the data. By treating each PCS for outlying 
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variables which fell above 3 standard deviations a much more realistic view of the overall fit of the 

classification was achieved, so areas were not being affected by a few variables with especially poor 

fit. It is fair to say however, that some naturally occurring variation may have been lost when 

compensating for the highest values and it is possible that these outliers provide interesting insight 

into the reasoning. Figure 6-2 to Figure 6-4 visualise each iteration. 
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FIGURE 6-2 SUM OF SQUARES OUTLIER TREATMENT EFFECT ON OVERALL CLUSTER FIT 
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FIGURE 6-3 MEDIAN SUM OF SQUARES OUTLIER TREATMENT EFFECT ON OVERALL CLUSTER FIT 
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FIGURE 6-4 TREATED OUTLIER SUM OF SQUARE EFFECT ON OVERALL CLUSTER FIT 
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The final map shows that the cluster fit is good across the majority of England and Wales, however 

major cities such as London, Manchester, Liverpool and Birmingham are highlighted as a poorer fit 

of the classification. The Cardiff and Bristol areas around South Wales, as well as rural areas in the 

north of England around the Yorkshire Dales and Lake District are also highlighted. When 

investigated, the fit statistics showed that all but one of the highest cluster distances (>259) occur in 

the “Efficient City Living” Supergroup.  

Overall, the classification is a worse fit in those areas where there is likely greater heterogeneity at this 

spatial scale, as you would expect to find of those living in inner city areas. To reaffirm this, the Rural 

Urban indicator was appended to the clusters fit measures and investigated, the results are detailed in 

Figure 6-5 below. It found that the more urban the area, the wider the range of the cluster fit statistic, 

backing up the notion that there is greater variety in more urban areas. This is also likely to be an 

effect of the scale at which these results are presented; as a factor of the MAUP, there is likely to be a 

greater level of heterogeneity at the PCS scale within urban areas due to their denser populations and 

complex urban environments that is masked here (See Chapter 2) (Openshaw 1984).  

 

FIGURE STYLEREF 1 \S 62 CLUSTER DISTANCES – SUM OF 

SQUARES 

FIGURE STYLEREF 1 \S 63 CLUSTER DISTANCES - MEDIAN OF 

SQUARES 

FIGURE STYLEREF 1 \S 64 CLUSTER DISTANCES – TREATED 

OUTLIER SUM OF SQUARES 
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FIGURE 6-5 THE EFFECT OF RURALITY ON CLUSTER DISTANCE 

 

Even after controlling for the disproportionate effect of some variables, a group of areas in the North 

of England were of particular interest because of their poor cluster fit, and so were more closely 

inspected to discern if there were any particular characteristics causing this. There were some notable 

examples, such as ‘BD15’, in the Local Authority of Bradford. It has been classified into ‘Efficient 

City Living”, but an unusually high number of children of school age and their parents in this area has 

caused a poor fit. The unemployment figure is also notably higher, most likely given the care 

responsibilities associated with young children - something you would not typically expect to find in 

an inner-city area. 

Property types and their associated fixtures and fittings also account for some of the inaccuracy, 

especially in these Northern areas, where inner city accommodation can be a mixture of modernised 

flats and legacy housing. Miles Platting (M4 4) in Greater Manchester for example, is majoritively post 

war council owned accommodation, meaning that the area has a much larger number of houses with 

a gas supply than you would expect to see in an inner city area dominated by flats and apartments 
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which are typically not connected to the mains gas supply. Figure 6-6 illustrates the spread of domestic 

gas supply in Manchester city centre and surrounding areas – it is clear that the inner city areas are 

characterised by a very high number of properties without a connection. 

 

 

FIGURE 6-6 MANCHESTER CITY CENTRE MAIN GAS SUPPLY (Affordable Warmth Solutions, 2020) 

 

Miles Platting (the area between Oldham Road and Ashton Old Road in the image above) pertains to 

the 3rd worst cluster fit. The variation appears to be related to the housing types found within this 

particular area and their occupants; who are mostly families with children of school age, divorced or 

separated, unemployed or in part time work and living in social tenanted accommodation with 

traditional fixtures and fittings. Yet its proximity to Manchester City Centre (under 2 miles) and the 

inclusion of new apartment blocks and rented properties has led to its classification as a member of 
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Supergroup 3. The image below in Figure 6-7 shows the typical housing in Miles Platting, shadowed 

by the newly renovated efficient apartment blocks of nearby city centre Manchester. 

 

 

FIGURE 6-7 MILES PLATTING, MANCHESTER (MANCHESTER EVENING NEWS, 2019) 

 

For those postcode sectors which had a fit statistic in the top decile, the same few variables were 

consistently responsible for the disproportionately high values. In Supergroup 3 variables relating to 

family dynamics such as school age children, marriage and owning the accommodation were most 

likely to skew the result, even when treated for outliers. In the case of those in Supergroup 1, an 

interesting example is TS 37 with a cluster distance of 277 - upon investigation it was found that this 

postcode sector, in the centre of Middlesborough, is closely associated with Teesside University, which 

explains the unusually high level of students, shared accommodation and people aged 20 to 44.  
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 Mapping the Relationship between the Energy User Classification and 

Material Deprivation  

To give further context to the properties of the Energy User Classification (EUC), additional 

descriptive statistics were appended to the dataset. Whilst not included in the original clustering model, 

they do give a detailed view of the characteristics associated with each Supergroup. 

The EUC focuses specifically on fuel poverty and consumption characteristics, but as discussed in the 

literature (Chapter 2), fuel poverty and high level deprivation are intrinsically linked (Frederiks et al., 

2015). As such, this section considers the intersection between the Energy User Classification (EUC) 

and both English and Welsh Indices of Multiple Deprivation (IMD) deciles from 2015. 

Following guidance from the Office for National Statistics, where it occurs that postcode sector and 

LSOA boundaries do not align, only one postcode sector per LSOA is allocated. This is the one which 

contains the majority of residents as indicated in the 2011 census. This method differs from the 

previous reweighting which has been employed due to the categorical nature of the dataset. Whilst it 

may lead to some loss of detail, it is a standardised and recognised methodology (Office for National 

Statistics, 2016b). Figure 6-8 overleaf shows cluster distribution across the IMD deciles and provides 

a good overview of the relationship between overall deprivation and cluster assignment. 

Once in the IMD decile 4 or above, the proportion of the decile assigned to Supergroup 2 remains 

fairly constant, but it is Supergroup 3 that is the most notable here. Their pen portrait suggest that 

they are the highest earners and live in the most modern accommodation, however this figure implies 

that those in Supergroup 3 are actually likely to live in areas of relatively high deprivation. This could 

take into account the inner city areas where LSOA and PCS boundaries overlap, but it does help to 

reinforce the notion that the definition of fuel poverty is too narrow – it is known that deprivation 

and fuel poverty are intrinsically linked, yet we see here that all four clusters of the EUC are present 

at all levels of deprivation, albeit at varying degrees, with the exception of decile 1, where Supergroup 

2 does not appear. 
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FIGURE 6-8 SUPERGROUP AND IMD INCOME DECILE CROSS-TABULATION 

 

 The Energy User Classification, Income and Fuel Poverty 

Further to the exploration of the Energy User classification (EUC) and its links to material deprivation, 

it identifies that demographic indicators as well as the energy efficiency characteristics of homes could 

be utilised to provide a more nuanced understanding of the geographies of fuel poverty. Prospectively, 

such a classification might be used to improve targeting of those most vulnerable. Under the current 

definition low income is one of the prevailing factors in defining the fuel poor; although, as highlighted 

in previous sections, it is influenced by a range of wider factors. As such, this section considers the 

intersection between the Energy User Classification and differential levels of income taken from the 

Small Area Income Estimates, which provides data on before and after housing costs at an MSOA 

level for the years 2012, 2014 and 2016, giving a longitudinal view of changing household costs. The 

intersection is then compared to the current fuel poverty distribution to understand the similarities 
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and differences from that which already exist, and to articulate the utility in a multifaceted approach 

to redefining fuel poverty. 

As Figure 6-9 details, it is clear that the ‘Cold and Costly’ supergroup 1 are the lowest earners by some 

margin. They are also seeing the gap between BHC and AHC increase over time and whilst they are 

not the group with the largest financial burden of housing cost, relative to their overall income they 

are the only group to have seen an increase in the percentage of housing cost, as described by Figure 

6-10. Their demographic characteristics lend themselves to also having other significant costs such as 

those associated with disabilities and expensive energy tariffs, as well as fixtures and fittings such as 

immersion heaters that make maintaining a level of thermal comfort difficult. 

 

FIGURE 6-9 INCOME CHANGE BEFORE AND AFTER HOUSING COSTS BY SUPERGROUP 2012 - 2016 
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FIGURE 6-10 PERCENTAGE CHANGE IN INCOME AFTER HOUSING COSTS BY SUPERGROUP 2012 - 2016 

Supergroup 3 ‘Efficient City Living’ find themselves paying a substantially bigger proportion of their 

income towards housing cost due to their location in major towns and cities where rentals and sales 

command considerably higher prices. They have however seen the gap begin to close over time, 

meaning a larger proportion of their income is now disposable, but they are unlikely to consider using 

this money for improvements or energy bills as they already live in efficient housing, and do not 

generally struggle to cover their energy costs. Furthermore, they are more likely to rent their properties 

than the other Supergroups, and so would be unlikely to invest in any housing improvements as their 

returns on investment will be low. 

Both the ‘Off Grid Owners’ (Supergroup 2) and ‘Typical Tariff’ (Supergroup 4) consumers have seen 

a small decrease in terms of percentage of income accounted for by housing cost, and a steady, 

FIGURE 69 INCOME CHANGE BY SUPERGROUP FIGURE 6-10 PERCENTAGE CHANGE IN INCOME CONSIDERING HOUSING 

COSTS 

Supergroup 
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comparable rise in both income and housing cost overall leads them to be the most stable of the 

clusters, possibly able to react better to both housing and energy cost price changes. The slight 

percentage decrease in housing cost may allow those who previously would have been in short term 

fuel poverty to plan for seasonality and reduce their energy bills by making some investment in 

efficiency measures; for example, by considering replacing boilers or the prevalent single glazing, or 

by moving away from solid fuels. They may also be in a position to reduce or clear outstanding debt 

with their energy provider, leaving them able to shop around for better deals and switching suppliers 

to save even more money. 

While Figure 6-8 clearly details the relationship between each PCSs cluster assignment and its income 

decile, the jitter plot in Figure 6-11 below includes a third dimension to illustrate the varying degrees 

at which fuel poverty is present in these segments by the current definition. This allows for detailed 

insight into the relationship between the current fuel poverty definition and income, and also allows 

rationalizing of the demographic characteristics associated with each cluster and its relative level of 

fuel poverty as it stands. Each postcode sector is represented by a dot, the colour of which is dictated 

by its current level of fuel poverty. The more densely populated the grid square, the more Postcode 

Sectors are represented. 
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FIGURE 6-11 CURRENT FUEL POVERTY LEVELS BY INCOME AND SUPERGROUP ASSIGNMENT 

 

Within Supergroup 1 the majority of the PCSs assigned fall into the lowest income quintile, as can be 

seen by the density of the points in the lower left hand corner. However, it is important to notice that 

where areas do fall into the higher income quintiles, (even though they are fewer) there is still evidence 

of them suffering from a high percentage of homes considered to be in fuel poverty, as detailed by 

the darker coloured points. The Supergroup characteristics suggest that these areas are characterized 

by typically hard to heat, inefficient homes occupied by young renting families, so even if they are 

some of the highest earners their costs are still unaffordably high. Their tenancy arrangements are also 

more likely to be socially or privately rented, meaning they may struggle to access cheaper tariffs or 

make home improvements to reduce their costs because of restrictions imposed by their landlords. 
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As discussed above, the even spread of PCSs in Supergroup 2 across the income quintiles suggests 

that fuel poverty in this cluster in particular is more multidimensional than the current definition 

encompasses. Figure 6-11 clearly shows that levels of fuel poverty under the current definition are still 

prevalent in the middle income quintiles. The cluster characteristics suggest it is much more likely to 

be caused by old, inefficient and under occupied buildings. The occupants are middle aged or retired 

and are less likely to be connected to the mains gas, instead relying on coal, oil or wood as their main 

fuel source. Whilst these households may appear most prevalently in the higher income quintiles, they 

also accept higher energy costs and so are ignored under the current definition, but nonetheless may 

struggle to heat their homes to a comfortable temperature, even after they accept an increased cost. 

Supergroup 3 is particularly interesting in our argument for expanding the current fuel poverty 

definition as this cluster is generally considered to be the highest earning. Whilst those in the highest 

income quintile suffer less fuel poverty than others, the demographic characteristics associated with 

this cluster still appear at other income levels, which do show very high levels of fuel poverty. This 

could be representative of those who live in inner city areas but are low earners struggling to meet the 

additional cost of city centre living, despite living in relatively energy efficient accommodations. This 

corroborates our previous analysis of areas such as Miles Platting. Those in the highest income quintile 

are as previously discussed, most likely to live in new and refurbished efficient properties with a low 

floor area and access to the cheapest tariffs, so not only are they able to take advantage of low bills, 

but also have the most disposable income to meet unexpected costs without becoming temporarily 

fuel poor. 

Given the occurrence of areas classified as Supergroup 4 in current fuel poverty across the income 

quintiles in this, the most average category, it would suggest that they are on some level at risk of 

falling into fuel poverty at any time and only those with the highest wages and the lowest costs are 

unlikely to struggle, but one or the other does not guarantee thermal comfort, regardless of their 

housing, tenancy or family arrangements. 

 Demographic Constraints on Smart Meter Adoption Rates 

Understanding the relationship between the Energy User Classification (EUC) Supergroup to which 

an area is assigned and its smart meter adoption rate (SMAR) allows us to infer the demographic 
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constraints associated with smart meter adoption, as well as how this then impacts the household’s 

energy profile. It is well reported in existing literature (Chapter 2) that the value of a smart meter varies 

greatly depending on the rationale for having one but can in the right circumstances decrease 

consumption by 14%; smart meter users on a pre-payment tariff were especially motivated to make a 

saving through engagement with their smart meters. Other studies found an average 7% decrease in 

consumption where smart meters were adopted (Faruqui et al., 2010; Ehrhardt-Martinez and John, 

2010). It is unsurprising then that Supergroup 3 exhibits the lowest average adoption rates of the four 

clusters, as described in Table 6-1. As previously discussed, the residents of this cluster are likely to be 

higher earners and the least likely to need help in reducing either their bills or consumption - either 

because they are already low, or because they can afford the cost of high usage - the two main 

advantages to the consumer of having a smart meter installed.  

TABLE 6-1 SMART METER ADOPTION RATES BY CLUSTER 

Supergroup Mean Adoption Rate 

1 2.69 

2 1.63 

3 1.46 

4 2.58 

Supergroup 1 have the highest average adoption rates overall. This might be indicative of this group 

taking active steps to reduce their energy outgoings by having a smart meter installed; this Supergroup 

have been characterised as the most at risk of fuel poverty given their energy and demographic 

characteristics and so would benefit from reduced energy costs. It is worth noting that whilst 

Supergroup 1 presents the highest average adoption rate overall, relatively speaking, 2.7% is still 

extremely low in regard to the Government directive to place one inside every household. 

Supergroup 3s particularly low SMAR is likely to be as a result of their tenancy or the physical 

properties of their accommodation – first generation smart metering technology is more likely to fail 

in apartment blocks because of their centralised metering systems and restricted access (Section 2.2.5). 

Rental agreements reduce the autonomy of the tenant and restrict their ability to make changes to the 
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fixtures and fittings of their accommodation (Hope and Booth, 2014). Supergroup 2 also show a very 

low SMAR, likely as a result of their lower number of connections to the mains supply. Furthermore, 

there are characteristics not reflected in the EUC such as lack of engagement with innovative 

technologies - those with lower levels of computer literacy are less likely to shop around for energy 

tariffs, less able to access educational material regarding the benefits of smart meters and even go so 

far as to be unable to request or book a smart meter appointment, the vast majority of which is now 

done through online billing accounts. This relationship with technological engagement is explored in 

greater detail in the following section.  

 Case Study 

In order to demonstrate the practical viability of utilising the Energy User Classification (EUC) in 

redefining fuel poverty as a multifaceted phenomenon, the following section examines the socio-

demographic characteristics in tandem with the SMAR for each PCS in order to address the likely 

constraints to improving SMAR and allow policy stakeholders to understand the causal mechanisms 

of fuel poverty by providing an illustrative case study of how the DEP might utilise tools such as the 

EUC to optimise the targeting of their energy poverty intervention measures to have a greater social 

impact.  

This case study attempts to take an localised view of the ‘Cold and Costly’ supergroup, who present 

as the supergroup with the most socio-demographic indicators of fuel poverty risk. Despite having 

the highest SMAR of all the clusters, relatively it is still extremely low or zero in some areas. This case 

study selects an area where there is a cluster of PCSs with especially low SMAR as they present the 

greatest opportunity for improvement from the DEP. To narrow down suitable case study areas; based 

on the fallacy that ‘birds of a feather flock together’ and the notion that greater visibility and word of 

mouth are helpful tools in increasing the SMAR of an area; people see their friends and family start to 

achieve savings and learn to trust the technology (Buchanan et al., 2016), clusters of high SMAR which 

neighbour areas of very low SMAR were identified with the application of a LISA analysis. This first 

step is detailed in section 6.5.1 and a case study area is chosen based on the spatial proximity of high 

and low PCSs.  
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The second stage of the analysis closely examines the characteristics of the case study area; firstly the 

Supergroup assignments of areas neighbouring those which are Supergroup 1, the SMARs for each 

PCS within the area and finally, to investigate other socio-demographic constraints to accessing smart 

metering technology, each areas Internet User Classification. Finally, once all these conditions have 

been examined, the section concludes by offering suggestions to address and overcome some of the 

caveats that could be acknowledged by the DEP to increase SMARs, objectively increasing the 

likelihood of meeting government guidelines, whilst also acknowledging the importance of the lived 

experience of fuel poverty and utilising smart meters for social good.  

 Identifying a Suitable Case Study Area 

As discussed in the introduction to this section, the evidence thus far suggests that the ‘Cold and 

Costly’ Supergroup display the characteristics most closely associated with fuel poverty, and as such, 

a subset of the dataset was taken to include only them. To identify those areas which have low SMAR 

but are surrounded by areas with a high SMAR (and so may be more likely to adopt smart metering 

under the right conditions) a Morans I test was undertaken. The Local Morans I identifies clusters of 

high-low values as well as low-low and high-high and also indicates to what extent this clustering 

occurs. The result indicates that areas of high and low SMAR do cluster spatially within the Supergroup 

(score - 0.463, p-value <0.05). Within this it is also possible to extract a LISA score (Local Spatial 

Autocorrelation) which is indicative of the extent of the significant spatial clustering around each 

observation (in this case, for each PCS) (Anselin, 1995).  

Of the 1889 Postcode Sectors within the Supergroup, 277 had a significant LISA p value of <= 0.05, 

indicating that the spatial clustering has not occurred randomly. A subset was extracted of the 

intersection of those significant areas which also have a value indicative of being a high-low 

observation (an lI value of between 2.03 and 5.25, resulting in 83 areas - indicating that these areas 

contributed significantly to a negative global autocorrelation outcome). The areas where the high-low 

clusters also have a significant LISA value underwent a visual inspection and a several local areas 

where a cluster of PCSs firstly belonged to the Cold and Costly Supergroup as well as presenting the 

high-low SMAR LISA characteristic presented themselves. By far the most prevalent clustering 

occurred in the Wolverhampton area, as detailed in Table 6-2 overleaf. Other areas in England and 

Wales also met the criteria, but none were located near each other to this extent.  
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TABLE 6-2 WS AND WV NEIGHBOURING POSTCODE SECTORS 

Postcode Sector District lI pval SMAR 

WS20 Willenhall 3.500755 0.0000000 4.95 

WS27 Walsall 2.763879 0.0000000 4.59 

WS29 Walsall 5.247405 0.0000000 5.71 

WS31 Walsall 3.017759 0.0000001 4.86 

WS32 Walsall 3.471239 0.0000000 5.55 

WS86 Brownhills 2.899146 0.0000202 6.10 

WV108 Wolverhampton 2.356741 0.0000012 5.56 

WV131 Willenhall 3.737764 0.0000000 4.85 

WV132 Willenhall 2.470220 0.0000091 4.47 

WV133 Wolverhampton 4.171641 0.0000000 5.84 

WV146 Wolverhampton 4.276230 0.0000000 5.49 

WV23 Wolverhampton 2.749314 0.0000009 4.58 

To avoid having a case study area with missing polygons, and to understand the demographic 

characteristics of surrounding areas, the case study area consists of all the PCSs within the WV and 

WS Postcode Areas. Figure 6-12 contextualises the case study area. It is important to remember that 

the high values are relative to the EUC Supergroup and not the dataset as a whole. 
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FIGURE 6-12 WOLVERHAMPTON WS AND WV POSTCODE AREAS 

 

To understand the underlying characteristics within the case study area where postcode sectors are 

not assigned to the ‘Cold and Costly’ Supergroup, Table 6-3 and Figure 6-13 also detail distribution 

of the other 3. The majority (51%) of surrounding areas fall into Supergroup 4, suggesting that many 

areas show characteristics close to the national average. Only 3% are in Supergroup 3 and considered 

least likely to find themselves suffering from fuel poverty.  

Supergroup Count Percentage 

1 – Cold and Costly 41 38% 

2 – Off Grid Owners 5 4% 

3 – Efficient City Living 4 3% 



 

 
170 

TABLE 6-3 

WOLVERHAMPTON CASE STUDY AREA CLUSTER ASSIGNMENTS 

 

 

 

 

 

 

Figure 6-13 details the distribution of the Supergroups, showing clusters of Supergroups 1 and 4, with 

only a few disjoined areas of Supergroup 2 and even fewer of Supergroup 3. This could be indicative 

of an area that is considered fairly similar to the national average but contains pockets of deprivation. 

The areas of Supergroup 3 are very close to the city centre and are also home to the University of 

Wolverhampton student halls of residence.  

4 – Typical Tariff 55 51% 

Missing 1 <1% 
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FIGURE 6-13 GEOGRAPHIC DISTRIBUTION OF SUPERGROUP ASSIGNMENTS IN THE CASE STUDY 

AREA 

FIGURE STYLEREF 1 \S 61 STYLEREF 1 \S 0 SEQ FIGURE \* ARABIC \S 1 4 THE SPREAD OF THE WOLVERHAMPTON CASE STUDY 

AREA SUPERGROUP ASSIGNMENTS 
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FIGURE 6-14 SMART METER ADOPTION RATES IN WOLVERHAMPTON 

 

Figure 6-14 shows the distribution of SMARs in Wolverhampton, with dispersed areas of high 

adoption and more prevalent clusters of low to middling SMARs. 

 Wolverhampton and The IUC 

The links between SMARs and the education surrounding them was discussed in the literature at the 

beginning of this chapter and the relationship between the ability to access educational materials and 

the Internet access are implicit. The utility of the Internet User Classification (IUC) is discussed in 
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Section 3.4.2; it is rich in information relating to understanding how a community engages with the 

Internet and new technologies more generally, as well as how they access information and services. 

Here the intersection between the areas in the case study and the CDRCs IUC have been investigated; 

by understanding the levels of internet engagement within the PCSs included in the case study area, it 

may reveal other factors that act as constraints to improving SMARs beyond those already discussed. 

 

 

FIGURE 6-15 CASE STUDY AREA IUC SUPERGROUPS 
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TABLE 6-4 EUC AND IUC INTERSECTIONAL CHARACTERISTICS 

Supergroup IUC Group Count SMAR 
Mean % of homes in 

current fuel poverty 

1 Digital Seniors 1 3.40 12.75 

1 e-Mainstream 1 3.36 13.69 

1 e-Withdrawn 17 4.57 18.05 

1 Passive and 
Uncommitted Users 

21 4.68 15.15 

1 Youthful Urban Fringe 1 5.36 15.41 

2 e-Rational Utilitarian’s 5 2.40 13.65 

3 e-Withdrawn 1 NA 15.54 

3 Youthful Urban Fringe 2 1.39 15.57 

4 Digital Seniors 6 4.26 10.53 

4 e-Mainstream 8 4.61 11.60 

4 e-Professionals 1 3.09 9.57 

4 e-Rational Utilitarian’s 16 4.24 11.48 

4 e-Veterans 8 3.88 9.28 

4 Passive and 
Uncommitted Users 

10 4.81 13.02 

4 Settled Offline 
Communities 

4 5.36 11.34 

4 Youthful Urban Fringe 2 3.69 15.63 
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The distribution of IUC groups and their intersection with both the Energy User Classification (EUC) 

and smart meter adoption rates (SMAR) is detailed in Table 6-4 and Figure 6-15 

The most prominent IUC cluster within the case study area is the “Passive and Uncommitted Users” 

(31 areas). Residents within these areas will typically have “limited or no interaction” with the Internet 

suggesting an overall disconnect from technology in general. More interestingly, their very low score 

for using the Internet for information seeking and financial services suggests that these groups are the 

least likely to undertake household management online; this includes online banking but also managing 

utility accounts online or receive bills by email, and therefore are not exposed to the smart metering 

advertisements and opportunities to request installation online. They are also less likely to seek out 

educational material or conduct research into the smart meter benefits and their very low score for 

having broadband access within the home may indicate an overall reluctance or distrust in new 

technology. However, both their current fuel poverty score and their SMAR falls into the upper 

quartiles, which may suggest that they are prepared to take necessary actions to reduce their 

consumption or bills. 21 of the 31 areas are also in Supergroup 1, suggesting they are more likely to 

be at home during the day due to their employment characteristics, and may be responsive to smart 

meter installations through doorstep targeting, where information and demonstrations, as well as 

follow up appointments can be carried out and arranged face to face. 

The second most overrepresented group are the “e-Rationale Utilitarian’s”, who are characterized 

within the IUC as residents of areas with high demand for the Internet despite poor infrastructure 

with low broadband speeds, and fewer mobile devices. They use the Internet for utilities such as 

Internet banking and information seeking, perhaps meaning they are managing their energy bills via 

an online account and engaging in the educational material around the benefits of smart meters. In 

this case study areas, the majority are also categorized into Supergroup 4, who display the least 

distinctive socio-economic characteristics and are close to the national average, but the intersection 

with the IUC implies that these areas in particular are more likely to be retired homeowners who are 

again likely to be at home during the day to enable smart meter installations to take place. As 

homeowners they are also less likely than those in Supergroup 1 to be constrained by tenancy rules 

but may also feel that a smart meter isn’t currently required as they do not find their energy bills 

particularly difficult to manage. 
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The group displaying the highest SMARs overall are the members of Supergroup 1 and the “Youthful 

Urban Fringe”. They also have one of the highest rates of current fuel poverty. This group are likely 

tech savvy and highly engaged, utilizing mobile apps for household management tasks - they appear 

to be taking action to reduce their consumption by engaging with smart metering technology. Their 

SMAR is likely to be constrained by living in rented accommodation and they are unlikely to be able 

to afford to replace older appliances with energy efficient ones, especially if they have been provided 

for them by as part of a tenancy agreement. 

Of particular interest is the group within Supergroup 1, who are also classed as “e-Withdrawn”. They 

have a below average SMAR and the highest percentage of houses in current fuel poverty. This group 

are of particular relevance when attempting to understand the constraints to SMAR and understanding 

the limitations of the current definition of fuel poverty. They are disengaged, financially constrained 

and both currently in fuel poverty and considered at risk of fuel poverty under the EUC. They have 

the highest rates of social housing, suggesting that these households do not have the autonomy to 

make energy efficiency decisions. This group shows the lowest rates of engagement with information 

seeking and services in the IUC, and in the EUC they are the most likely to be pre-payment meter 

customers. This amalgamation of characteristics leads to this group being trapped in expensive energy 

tariffs, unable to search for and take a cheaper energy deal; they do not have the opportunity to engage 

with switching and comparison websites. This group are the most likely to benefit from interventions 

from the Housing Associations (HAs) - the DEP should consider working in tandem with HAs to 

provide a service which enables this group to alleviate their fuel poverty through smart meter 

installations which are pre-agreed with the Housing Association to combat the difficulties faced by 

tenants in getting changes to their properties approved and making efforts to move their tenants away 

from pre-payment tariffs. It is important however that educational efforts are also made in order to 

ensure the tenants adopt long term habitual changes to see the most benefit.  

Conversely, but unsurprisingly some of the lowest SMARs and levels of fuel poverty occur in the most 

digitally engaged - the e-Professionals and e-Veterans, especially those who intersect Supergroup 4. 

They are characterised by working age people, usually highly qualified and experienced Internet users. 

Their willingness to engage with new technologies, coupled with their higher earning power and 

relative disposable income (Figure 6-10 and Error! Reference source not found.) could suggest that 

they are the main group who are prepared to research and invest more heavily in home efficiency 
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improvements, such as triple glazing and modern appliances. They are likely to have the financial 

ability to purchase up to date, energy efficient appliances, hence their low fuel poverty propensity. 

They are also the most likely to utilise the Internet for information and services, suggesting they 

frequently use the Internet for household management tasks such as energy switching and seeking out 

the cheapest tariffs. This results in lower bills, and a smart meter may be surplus to their requirements 

as they do not struggle to meet their consumption costs, nor do they feel they need to reduce their 

consumption for other reasons, such as environmental concerns. 

From this case study of Wolverhampton, it is clear that there are constraints and facilitators acting on 

SMARs and fuel poverty levels. The young and digitally engaged who find themselves in fuel poverty 

are quick to act and uptake of smart metering technologies is relatively high, however, those with a 

similar level of fuel poverty but categorised as e-Withdrawn do not engage with smart meter 

technologies to the same degree. It is clear then that digital awareness and access to technology plays 

a part in SMARs. The lower SMARs could be as a result of less household management taking place 

online in this group, an inability to access educational materials or simply a distrust of the technology. 

This is something the DEP could seek to minimise by utilising a variety of marketing and educational 

channels, such as doorstep targeting, leaflets and in-home demonstrations. 

The least constrained, those who sit in the intersection of Supergroup 4 and the e-Mainstream and e-

Professionals also suffer from low SMARs, but not high fuel poverty levels, suggesting that there is a 

reason aside from technological awareness for their lack of engagement with smart metering 

technologies. It is possible that they simply do not need to monitor their consumption - they are likely 

to have efficient homes and appliances, as well as the disposable income to cover both their usual and 

unexpected costs. The DEP might consider an improved household management approach with this 

group to justify the installation of a smart meter, as they are likely to do much of it online - time of 

use tariffs, engaging in “If This Then That” technologies and the ability to have a fully integrated 

“Smart Home” might appeal to the very digitally aware. 

It is important to recognise the difficulties faced by those in social and privately rented 

accommodations when making these recommendations; the DEP could make a concerted effort to 

engage landlords and Housing Associations in order to educate them on the benefits of allowing and 

encouraging their tenants to install smart meters; this is likely to be the biggest challenge to overcome 

when considering how to increase SMARs as a whole. 
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 Conclusions 

Throughout this chapter, the overarching aim has been to show the utility of the Energy User 

Classification with regard to understanding the complex geographies and socio-economic indicators 

of fuel poverty above and beyond the current definition, as well as the geographies of smart meters 

and finally the intersection between the two. 

A validation of the EUC showed a reasonable level of cluster fit across England and Wales with major 

cities showing more variation; Supergroup 3 contained the highest outliers and when the Urban Rural 

indicator was appended to the dataset, urban conurbations showed the widest range in cluster fit. This 

is to be expected in major cities, where a greater density of people with a larger variety of characteristics 

live in much closer proximity to one and other. The classification is by no means perfect, and some 

of the areas where cluster fit was at its worst were investigated more thoroughly to understand their 

characteristics. This found that variables related to property type and family life stage were most likely 

to result in inaccuracy or poor cluster fit; young families living in semi-detached accommodation in 

typically inner city areas in particular. 

Additional characteristics were appended to the classification to provide additional context and the 

inclusion of the IMD decile and income data confirmed the notion that the current fuel poverty 

definition is far too narrow, by revealing that demographic characteristics of fuel poverty are present 

at all levels of income, albeit at varying degrees. This is exemplified in Figure 6.11, which clearly 

visualises the relationship between income and fuel poverty across the four Supergroups. 

To create a holistic view of the intersection between smart meter adoption rates and fuel poverty, the 

independent analyses from Chapters 4 and 5 were considered in tandem, revealing some clear 

demographic constraints to accessing smart metering technologies; in particular; accommodation 

types and tenancy agreements. Finally, to address the low SMARs as a whole and to prove the utility 

of the EUC in addressing fuel poverty levels, a case study area was used to offer some 

recommendation to the DEP as to where they would likely have the greatest social impact through 

undertaking targeted smart meter installations. 

This detailed practical validation found that for a successful potential increase in targeted installations, 

the key characteristics of an area should be that it has an already low SMAR and should also have 
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persistently high levels of fuel poverty under the current government definition, but importantly are 

also engaged with current technology to a good standard. This equips them with the autonomy to 

make an informed decision and seek out educational material around smart metering and consumption 

reduction techniques. It is not imperative that they have the most energy efficient devices, as there 

will be savings to be made based on the consumption behaviours. In order for successful installations 

to take place, the household should not be limited by constraints imposed by landlords, suggesting 

homeowners and those with mortgages are the ideal candidates. That is not to say that other areas 

would be unsuccessful, if consideration were given to the constraints and facilitators acting on people’s 

likelihood to engage. It is important to consider that those who are digitally disengaged may accept a 

smart meter if they are approached on the doorstep - they may simply not have been exposed to the 

digital marketing, as they are less likely to undertake their household management tasks online. 

Furthermore, constraints imposed by landlords should be given special consideration by the DEP in 

order for SMARs to increase. By working with housing associations and landlords rather than tenants, 

the benefits to both parties can be properly disseminated, and the issue of tenants making unwanted 

changes to a property outside of their agreement can be overcome. However, issues of privacy must 

be properly addressed in order that the tenant retains autonomy once the device is installed and the 

landlord does not interfere unnecessarily with the tenant’s usage. 

In conclusion, the current fuel poverty definition is too narrow in scope; it does not account for the 

demographic factors confirmed here; precarious tenancy agreements, digital disengagement, poor 

quality accommodation and fixtures and fittings, the inability to move away from expensive tariffs and 

suppliers. This leaves people increasingly vulnerable to perpetual fuel poverty, which is exacerbated 

by the lack of smart meter installations taking place in the most at risk locations, due to disempowered 

tenants, lack of education and limited technological understanding. In order to see SMARs rise, which 

will empower consumers to make more informed decisions around their energy consumption, the 

DEP must engage with these constraints and work to alleviate them. Increased communication and 

education will increase the trust in the devices, but for those who are disempowered and living in with 

precarious tenancy agreements, working with landlords and housing associations is likely to have the 

largest overall impact. By working in this way, it simultaneously addresses the fact that these groups 

are typically the ones that also suffer the highest levels of disengagement, disempowerment and fuel 

poverty and stand to see the greatest social impact from the DEPs interventions either thermally or 

financially. 
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7 Discussion, Recommendation and 

Research Prospects 

 Introduction 

his thesis has brought together multiple data sources to investigate fuel poverty, energy 

consumption and smart meter adoption rates across England and Wales. The aims were 

twofold and addressed policy challenges relating to the existing fuel poverty definitions and 

the disjointed framework of energy stakeholders in England and Wales, paying particular regard to the 

utility of big data in resolving these challenges.  

Studies of consumer energy consumption have previously been limited by a lack of data, or rather a 

lack of access to rich spatio-temporally granular data sources. The commercial sensitivity of such data 

necessitates that these are accessed only under the most rigorous circumstances to avoid commercial 

competitive advantages being lost and potentially sensitive customer data being misused. To fully 

capitalise on access to previously unseen commercial data and apply it within a social science research 

setting, the aim of this thesis has been to provide a thorough exploration of the geography of energy 

consumption and those factors that contextualise differentiated access to, and consumption of, both 

gas and electricity in England and Wales. By combining innovative big data and traditional open data 

sources, a holistic view of the current geographies of energy consumption can be presented, and our 

understanding of the lived experience of fuel poverty can be enriched beyond the current definition 

by including demographic characteristics. A literature review covering energy and energy policy at a 

variety of scales, material deprivation and the fuel poverty vernacular is followed by a chapter 

summarising the data and methodologies. The three empirical chapters firstly provide validation of 

the energy data utilised within the thesis, followed by their integration within a geodemographic 

framework to provide new insights into fuel poverty and barriers to smart meter adoption.  

This chapter concludes this thesis by drawing together the findings to  consolidate the contributions 

of this thesis by discussing the applications and implications of these work both in the context of 

T 



 

 
181 

geodemographics but also more broadly in terms of the various stakeholders in the energy landscape, 

such as those of researchers, policy makers and energy suppliers. A reflection on the data and 

methodologies employed and acknowledging the known and discovered limitations follows this. The 

discussion is concluded by delineating the key findings from the results of this research and identifying 

pathways for future work to build on what has been achieved here.  

 Implication and Application 

This thesis provided many valuable insights for the integration of energy data into social science 

research and for understanding the potential uses of different kinds of consumer data to address 

societal problems. It is widely known that the understanding of the causal mechanisms of material 

deprivation has been improved by the inclusion of non-monetary indicators and is now widely 

considered to be a multidimensional phenomenon, characterised by a range of domains encompassing 

finance, health, education and crime amongst others and importantly, is a consequence of a lack of 

income and other resources (Payne and Abel, 2012). Given that the populace living with deprivation and 

fuel poverty are likely overlapping, and given that many of the drivers of deprivation also relate to fuel 

poverty, it is hoped that this analysis may encourage stakeholders to take a broader view in regard to 

understanding fuel poverty.  

By proving the utility of demographic and energy data in the identification of at risk populations, this 

work begins to establish a new fuel poverty vernacular which diversifies the definition away from a 

purely income based metric and provides positive evidence of the contextual approach already applied 

to material deprivation having significant utility within the fuel poverty domain. As discussed in the 

literature review, current policy mandates for the defining and alleviation of fuel poverty are 

fragmented and feature an imprecise focus on low income households with an overarching obligation 

to tackle carbon mitigation, whilst also requiring that alleviation measures are both cost effective and 

targeted to the most vulnerable.  

Succeeding this, the contextual approach proves the value of achieving affective data linkage from 

multiple data sources. At a high level, this generates substantial opportunity to incorporate new forms 

of data in support of existing population datasets to enable a more detailed representation of 

populations that those it is possible to generate from traditional data sources. This thesis has 
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highlighted the multifaceted and multiscale nature of energy poverty; driving a necessity for new 

frameworks within which this societal issue can be examined and addressed. The representation of 

energy poverty requires insight from multiple different perspectives, which necessitate synthesis across 

different data to draw out a comprehensive understanding of this complex geography. This thesis 

argues strongly for the adoption of more comprehensive and multidimensional aggregate measures of 

energy poverty, and that addressing this issue through monotopical measures is limited. For example, 

whilst the Energy Performance Certificates are reasonably complete in terms of representing the 

general population, the data mostly relate to the fixtures and fittings of the household in which people 

live, and not of the people themselves. Whilst this allows us to understand the conditions in which 

certain demographics are more likely to live, it can only tell us so much about the lived experiences of 

the population and offer prospects for supplementing annualised fuel poverty statistics. 

Notable applications relate mainly to data quality and representation challenges within social science 

research, but also pertain to the value of releasing data for academic research and the value in cohesive 

collaborations between academia and commercial entities. Historically there has been a  fundamental 

lack of understanding in regard to consumer data more generally, due to the self-selection bias and 

the often commercially sensitive nature of the data. This work provides a framework for the analysis 

of nationally extensive smart meter data for future applications regarding the general population and 

provides ample evidence for the potential benefits of the incorporation of consumer big data into 

social science research. Novel elements of this work such as the cadence of the DEP smart meter data 

provide insight into the temporal usage patterns of consumers which were not possible with traditional 

data sources, as well as the treatment of gas and electricity consumption in tandem,  allowing for a 

more comprehensive overview of temporal consumption trends than previously possible. 

This work has made clear those inherent biases and necessary treatment required to extract insight 

from these commercial data. A related contribution was the development of effective data linkage 

across multiple energy data and other ancillary sources. Through the documentation of these, this 

thesis provides a point of reference for researchers, industry and policy makers, that ensures the 

aforementioned biases may be recognised and addressed in future work. It is clear that mechanisms 

which eliminate the risk of personal re-identification need to be in place as the prospect of increasingly 

reliable data linkage brings about further ethical and disclosure challenges.  
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It is hoped that this research underpins the utility of consumer data as an asset to social science as well 

as being a profitable commercial entity with this thesis acting as a catalyst for increased collaboration 

with organisations as they realise the benefits of allowing researchers with broader timescales and 

fewer commercial constraints controlled access to their datasets in order that insights aside from those 

which drive revenue be generated for public and social good. Under the condition of careful controls 

and recognised and respected collaborations such as the CDRC it is clear that such future endeavours 

could be hugely beneficial for both social science research and commercial data providers alike. 

Insights from the high level smart meter data exploration and the Energy User Classification 

demonstrate both the value in the validation of these big energy data and the importance of developing 

the frameworks which enable cohesive collaborative efforts between commercial entities and 

academic research by highlighting implications of optimised smart meter roll out targeting both from 

a commercial and social perspective. Given that energy policy is increasingly enacted through a public-

private partnership and the onus of fuel poverty alleviation is now largely the responsibility of the 

energy providers, tools such as the classification developed in this work which optimise decision 

making are invaluable in ensuring the effectiveness of fuel poverty policy mandates.  

Considering the practical applications of this work, it begins to identify areas where fuel poverty could 

potentially be alleviated to an extent through the installation of smart meters; it demonstrated how 

such analysis can identify areas where adoption rates are particularly low, despite being geographically 

close to areas where uptake is high (and so, roll-outs are in operation in those areas) as well as 

identifying low uptake areas with similar demographic characteristics to those of high uptake, where 

it is suggested that roll-out schemes would likely have the most success, thus aiding policy-makers 

understanding of the broader fuel poverty vernacular and driving tangible policy decision making.  

 Reflection on Methods 

The majority of data used within this thesis are derived from non-traditional sources which are not 

privy to the same scientific approaches to data collection that are employed in traditional datasets (e.g. 

a survey). Working with such “transactional” data therefore required additional consideration to 

ensure that they were robust and fit for purpose. The complexity of addressing such issues are 

exacerbated within the context of arguably “big data”: notably in this case, including those data derived 

from smart meter readings. 
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 A first challenge was the manipulation of available measures between overlapping geographical 

boundaries, as first presented in Chapter 3, and then applied in Chapter 4. This population based 

dasymetric mapping methodology was deemed to best resolve the issue of different geographies, given 

its computational efficacy, and provided a better reflection of underlying population structure relative 

to more simple area based apportionment. For the purposes of end user utility, the target geography 

was selected as postcode sectors; however, on reflection, it is likely that transforming the geography 

of the smart meter dataset to be in line with the supplementary datasets (predominantly census based 

geography) may have returned more optimal results. However, despite this limitation the implemented 

dasymetric mapping approach was robust and  effectively generated input for the Energy User 

Classification.  

The use of clustering within Chapter 5 to explore the multidimensional characteristics of energy 

consumption as a more nuanced indicator of fuel poverty policy was argued as a positive step in 

illustrating the utility of “big” commercial data for policy discourse. Although Clustergrams were 

innovatively used to extract an optimal value of k  in the k-means algorithm, classifications of this 

nature can be criticised for a lack of geographic sensitivity to local conditions. This might be argued 

as a valid critique given that no explicit spatial associations were encoded within this model, however, 

the approach taken is akin to many other standard geodemographic classification that have wide use 

and have been assured through successful application. Although there has been some work in this 

area (Alexiou, 2016), this is still far from conclusive as to whether such additions bring significant 

enhanced descriptive power to classifications. There is some evidence to suggest that in very different 

geographical settings this may prove more important (Longley and Singleton, 2014); which provides 

a direction that might be explored in future work. The validation of the classification created in 

Chapter 5 and presented and validated across Chapters 5 and 6 demonstrated both internal and 

external strength and through practical evaluation in Chapter 6  demonstrated utility for the energy 

sector within a policy driven decision making application.  

Finally, much of the analysis presented and interpreted has been descriptive in nature; albeit framed 

within robust theoretical and applied framework. Such methods were necessary as valuable means of 

summarising complex interactions within the new big consumer datasets. The descriptive insights 

identified and presented have provided great insight into the multi-dimensional characteristics of 

energy poverty, and developed a useful tool for applications with commercial of policy objectives. The 
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utility of such analysis in the communication of complex geographic patterns should not be 

understated, however this also provides a useful basis upon which future work might explore some of 

the causal relationships underlying these patterns. 

 Limitations  

This thesis presents a broad range of insights, not only in terms of aggregate energy consumption, but 

also with regard to the characteristics that constrain or compel population groups in their usage. 

However, as with any analysis, this work has its limitations. In this instance, limitations are primarily 

as a result of the recognised uniqueness of  the data, but which may also have been exacerbated by the 

relative infancy of the smart metering technology.  

There are various areas where uncertainty was a factor. Firstly, as was addressed in Chapter 3, there 

were issues of data quality, which it was not always possible to cross-validate. In the majority of cases, 

findings have been cross-validated through triangulation with ancillary data sources, but there were  

cases where it was not possible, given the uniqueness of the data. Examples include entry errors such 

as invalid PCSs and processing errors which generated “0” readings in the smart meter data. Due to 

the uniqueness of this data, it is impossible to know whether they appear as a result of failure of the 

physical technology (or the technology being switched off if the household switch suppliers), a true 

zero where no consumption has taken place, a rounding error or a data processing error. In addition 

to this uncertainty, the total kWh at various temporal granularities presented results which appear to 

be below the national average consumption of even the lowest levels. Without further validation it is 

not possible to know if this is as a result of poor data quality, deliberate targeting of DEP customers 

who systematically under-consume to be the first to receive the new physical meters or because the 

transformation applied to the raw data in watts has resulted in an underestimation. There is no 

literature that the author knows of which elucidates on the methodology of calculating a kilowatt-half 

hour. Furthermore, because of the anonymisation of the dataset, it is not possible to know which, if 

any meters changed ownership during the timeframe of the dataset, which should be considered if 

future applications intended to utilise the individual level meter readings. 

Speaking to the utility and limitations of the EPC data, chapter 3 recognised that the free text elements 

of the data capture process introduced uncertainty through entry and processing errors which cannot 
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be cross-validated because of language barriers. A secondary limitation of the EPC data pertains to 

the modernity of its availability at the time of undertaking this work. EPC data was first made openly 

available in 2016, making this thesis one of the first piece of work to utilise it. This meaning that there 

was no pre-existing benchmark as to its accuracy. The volume of the EPC data meant that even with 

the data cleaning measures applied in order to account for error and attempt to eliminate it, when 

aggregated to postcode sector level, the data still presented a complete picture. However, it is 

important to acknowledge that proceeding this preliminary investigation into the veracity of the EPC 

data, a thorough evaluation of the quality of the EPC data was undertaken by Hardy and Glew (2019) 

which ultimately suggests that up to 27% of EPC records have at least one error, largely caused by the 

EPC assessor, as was suspected in this work. They recognise that many of the variables where the 

highest incidence of error occurs are those where the answer is left open to interpretation. They also 

note a geographical disparity in error rates, with higher error rates in the Greater London Authority 

than the rest of the country, which can be attributed to the increased number of flats (the property 

type with the highest propensity to contain an error). Access to this evaluation may have aided the 

data cleaning methodology and lead to a more thorough and informed data cleaning process, and 

should be considered for future applications of the EPC dataset within fuel poverty investigations 

both when making individual assessments and producing bulk statistics from the dataset as a whole. 

As they rightly state, the policy implications to an individual of having their home incorrectly 

categorised could lead to them qualifying or not for fuel poverty assistance. However, they also 

consider the entirety of the EPC dataset, and many errors they highlight relate to variables which were 

not considered pertinent in this work and they conclude by stating that some errors such as those 

pertaining to variables of floor, wall and insulation type have little to no impact on the final SAP rating 

that a property was given.  

Leading on from this, another aspect of limitation is down to the relative infancy of both the 

technology and the dataset; the data provided by the DEP is only a fraction of the data which is 

collected and is from a period in time when smart metering technology was in its infancy. Whilst what 

they provided was a comprehensive and detailed source of data with temporal referencing, there are a 

number of areas where access to longitudinal comparison datasets may have provided valuable insights 

or opportunity for quantifying errors. For example, as previously noted, “0” consumption readings 

were difficult to corroborate – access to longitudinal data may have firstly made it possible to detect 

customers who were inactive for extended periods of time and could be deemed to have switched 
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suppliers, but with time the quality and reliability of the physical apparatus also improved, which may 

have led to more consistent meter readings, making true zeros easier to recognise amongst the noise. 

Furthermore, not only did the technology improve, but even during the period of this dataset it was 

noted that active customer numbers did not remain static; and so access to an updated data extract 

from the DEP would provide enriched data over an longer timeframe, with an increased sample size. 

Additionally, an updated extract could help to shed light on the longer term impacts that having a 

smart meter can have on a consumer’s ability or willingness to change their consumption habits and 

provide data driven insight into the utility of smart meters in decreasing consumption or cost for those 

in fuel poverty (see Chapter 4). Despite this, the dataset does provide a sample size much larger than 

previously available, and at a highly granular cadence.  

Further uncertainty is apparent when considering issues of representativeness, which is a prominent 

consideration for consumer data which suffers from “self-selection bias”. In chapter 3 efforts were 

made to understand the extent of this self-selection, through cross-validation with existing national 

statistics. The smart meter energy data were more heavily drawn from households in the north of 

England, where installations were much more prevalent. Issues such as this are unavoidable when 

working with data provided by one of the ‘big six’ domestic energy providers as historically, they tend 

to have a regional bias to their customer distribution. Such issues are exacerbated given that the roll-

out programme is of unknown design (Chapter 3); however, as discussed earlier, are not uncommon 

when utilising secondary ancillary data for social enquiry. Furthermore, even within the DEPs 

customer base, there is a second layer of self-selection into those who do and do not have smart 

metering technology installed. As outlined in Chapters 2 and 4, smart meter adoption rates are affected 

by concerns over privacy, accessibility and opportunity, but the particular behavioural reasons for 

abstaining or not are well reported in the literature (Chapter 2) and substantiating these behavioural 

differences between up-takers and abstainers is not possible within the scope of the dataset. It is likely 

that qualitative data sources would need to be incorporated to understand the full extent of the 

resistance to smart metering technologies, if the aim was to understand the exhaustive extent of this 

element of self-selection. Furthermore, the infancy of the installation programme inherently limits the 

opportunity to participate; as discussed above, greater access to more longitudinal data may also have 

addressed some of the geographical disparities that are noted here; by allowing the installation 

programme to mature and more households be given the opportunity to receive a smart meter, the 

representation is likely to improve, once again inevitably enriching insights.  
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To this point, it is important to remember the most fundamental aspect of this bias on the overall 

population when you consider that only one of around 60 UK energy providers data is examined. 

Their customer base may be inherently skewed toward a certain demographic, but without competitor 

datasets for comparison, and using only common knowledge, it is not possible to know to what extent. 

Thus, the outputs in this thesis cannot be considered fully representative of the population.  

A final, theoretical limitation of working with the smart meter dataset arises from the fact that much 

of the literature reviewed here is rightly disparaging of the use of technology as a suitable proposal for 

alleviating fuel poverty. It has not gone unnoticed that smart meters are an inherently technical 

solution, however, what they offer that other technical solutions such as increased insulation and the 

installation of solar panels do not is a bottom up approach which engages the user without the initial 

expense of the other methods. Smart meters offer immediate control over a household’s consumption 

and increase the visibility of the cost of consumption in a tangible and accessible way. The other, more 

expensive methods rely on having the capital or being accepted into an energy efficiency scheme to 

make the changes and accept that the benefit of them is long term; something which many households 

living in fuel poverty cannot afford in either a financial or emotional sense. Smart meters are available 

to all, free to the user and require a minimal amount of disruption during installation.  

With regard to geodemographics as a framework, there are methodological limitations imposed by 

subscribing large numbers of individuals to generalised profiles, potentially engendering ecological 

fallacy (see Chapter 2). This represents a commonly recognised issue when implementing 

classifications and could be criticised for its tendency to simplify trends as a factor of the modifiable 

areal unit problem and the effect of the scale at which the final classification was produced. But, as 

the aims of this work were to understand the patterns that we may be able to extract from energy data, 

an attempt had to be made to summarise the complexities in order to utilise the findings in a way that 

could be applied at a large geographical scale and was considered sufficient enough to quantify these 

representations.  

Physical and environmental limitations also presented themselves in the early stages of the work; given 

the necessary security restrictions placed on users of the smart meter dataset, physical access to the 

data was limited to the opening hours of the University facilities due to its being held in a secure 

laboratory. These restrictions also dictate what can be extracted for use outside of the secure 

laboratory, and the process for extraction can be time consuming – it is not possible to receive 
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feedback until the data is outside of the laboratory. Furthermore, it is a particularly difficult working 

environment with no Internet access, meaning that all code must be prepared without having seen the 

data, or has to be compiled from memory.  

From a wider perspective and considering everything that has been discussed in both this and the 

previous section, these limitations only serve to highlight the need to support insights with evidence 

from alternative data sources. In summary, though this thesis champions the utility of consumer data 

as an indicator for social and spatial phenomena, it is an important consideration that the outputs and 

insights that can be derived will be necessarily limited by the scope of the available data.  

 Future Prospects and Closing Remarks  

In developing a new framework that envelops a new and wider and contextual definition of energy 

poverty this provides great utility to explore patterns and define policy interventions to mitigate these 

issues. In doing so, the analysis of this thesis have necessitated consideration of “what is”, rather than 

“what if”. As such, it is argued that there is great potential to develop further insights from the 

presented work through more causal frameworks, that could further explore those drivers of the 

observed patterns.  

Given the recency of the national smart meter roll out programme, and those generated data utilised 

by this thesis, there is a related challenge that extends this work through exploration of the longitudinal 

implications of having a smart meter. Notably this could extend the application of this theoretical and 

methodological framework to enable new understanding of the longer term impact of smart metering 

technologies on efficiency practises. 

It is clear that those demographic groups with a propensity to being at home during the day due to 

unemployment or caring responsibilities are more likely to have been recipients of smart meters in the 

initial stages of the roll-out programme. Further work is now needed to understand the issue of smart 

meter inequity through policy which addresses the causal limitations which lead to low adoption rates 

as outlined in this thesis.   

The constraints imposed on this work necessitated that its focus was at an aggregate geographical 

scale. Future endeavours may find utility in a more granular approach in order to understand how 



 

 
190 

individual effects differ from area level findings to better understand the causal mechanisms of fuel 

poverty and implications of over and under consumption by accounting for unique and individual 

circumstances which are masked by the area level aggregations.  

In closing, this thesis provides positive evidence for considering fuel poverty as a multifaceted societal 

phenomenon, which thereby allows energy policy stakeholders to re-evaluate the current 

understanding of the causal mechanisms behind it. This thesis provides clear evidence that 

demographic and efficiency indicators play an important role in the uncovering of populations not 

currently recognised as fuel poor by a monotopical monetary definition. This thesis supports and 

proves the utility of consumer data as a valuable tool in the social science realm, as well as highlighting 

the benefits of a collaborative relationship between researchers and commercial stakeholders to 

optimise effective decision making.  
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9 Appendices 

 Ethics Approval  

 

 

From: Ethics ethics@liverpool.ac.uk

Subject: RE: Ethics Requirement query

Date: 27 February 2019 at 08:43

To: Talbot, Ellen sgetalbo@liverpool.ac.uk

Hello Ellen 

Apologise for the late reply. 

From what you have described you will not need ethical approval as the data will be fully anonymised 

Best wishes

Fran 

Frances Thomason 

Research Ethics & Integrity Officer 

Research Support Office

University of Liverpool 

2nd Floor Block C 

Waterhouse Building 

Tel: 0151 795 7666

Email: F.I.Thomason@liverpool.ac.uk

-----Original Message-----

From: Talbot, Ellen <sgetalbo@liverpool.ac.uk> 

Sent: 19 February 2019 16:14

To: Ethics <ethics@liverpool.ac.uk>

Subject: Ethics Requirement query

Good afternoon,

I am writing to confirm whether or not my research requires ethics approval. The data is in its full form individual records of

household energy consumption but is anonymised. It is stored on the secure data server held at CSD. To remove anything from

this server you must pass a safe researcher check and data must be aggregated. My thesis will contain only non-disclosive

visualisations (mainly maps) and will not identify any individual.

From what I can read online, it doesn’t sound as though I do require ethics approval, but if this is the case it would be helpful to

have confirmation in writing.

Many thanks.

Ellen Talbot

(201155605)
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 CDRC User Guide 

 

CONSUMER DATA RESEARCH CENTRE DATA 
SERVICE 
USER GUIDE  

Version: 6.0  

 

 

Introduction  

The Consumer Data Research Centre (CDRC or Centre) is an academic led, multi-institution  

laboratory which discovers, mines, analyses and synthesises consumer-related datasets 

from around  

the UK. The CDRC forms part of the ESRC-funded Big Data network and offers a data 

service aimed  
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at providing researchers with access to a wide range of consumer data to address many 
societal challenges. CDRC’s key areas of interest include retail, transport, health, crime, 

housing, energy,  

mobility and sustainable consumption. We support the acquisition and analysis of data in 

these areas and others to achieve benefits for the ‘public good’.  

The purpose of this guide is to describe the Centre’s data services and how researchers can 
access them. It identifies the different types of data the Centre holds and the service tiers 

through which  

these data sets are available. For data that are not publicly available, the guide details how 
researchers can register or apply for access and the kinds of support that is available to 

them.  

CDRC Data Services  

The CDRC provides data with three different levels of access. These correspond to the data 

levels described in the UK Data Service’s three tier access policy:  

• •  Open data: data which are freely available to all for any purpose. Data includes 

open datasets where CDRC have added value and non-sensitive and aggregated data 
and derivative products produced by the CDRC. Examples might include 

geodemographic data derived from the Census. Open data are accessed through the 
CDRC service via basic registration and download.  

• •  Safeguarded data: data to which access is restricted due to licence conditions, but 

where data are not considered ‘personally-identifiable’ or otherwise sensitive – an 

example might include data from retail companies on store turnover. Access to 
safeguarded CDRC data is via a remote service that requires users to submit a 

project proposal. This proposal must receive approval from the Centre’s Research 

Approvals Group (RAG) (see below) before access to the data will be authorised. 
Users are able to retrieve data after authentication and authorisation by the service.  

• •  Controlled data: data which need to be held under the most secure conditions with 

more stringent access restrictions, including data which are ‘personally-identifiable’ 

and therefore subject to Data Protection legislation or are considered commercially 
sensitive. Examples might include data on individual consumer purchases. Access to 

CDRC controlled data is provided through the CDRC-secure service. This service 
requires that individuals gain project approval through the RAG and visit one of our 

secure facilities at either the University College London, University of Leeds or 

University of Liverpool.  

Finding Data  

All data available through the CDRC are accompanied by metadata that enable both 

attributes and geography to be searched.  
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Research Approvals Process  

Access to both safeguarded and controlled data requires a process by which individuals 
submit project proposals for assessment and approval. The approval process is overseen by 

an independent Research Approvals Group (RAG) which comprises representation from the 
Data Partner(s) and the social science academic community. The Group may also draw upon 

the expertise from a social science ethics practitioner. The CDRC Senior Management Team 

provides comment on resource implications of a proposal. The composition ensures that the 
RAG has expertise in research design, analysis and impact, while also considering any 

commercial sensitivities a project may have. The RAG review process is overseen by the 

Chair of RAG.  

For full details of the Research Approvals Process please see the Research Approvals 

Guidelines at www.cdrc.ac.uk/data-services/using-our-data/.  

Criteria for Approval  

These criteria align with CDRC objectives and cover the following:  

• •  Scientific advancement – how the project has the potential to advance scientific 

knowledge, understanding and/or methods using consumer data;  
• •  Public good – how the project has the potential to provide insight and/or solutions 

that could benefit society;  
• •  Privacy and ethics – the potential privacy impacts or risks, and wider ethical 

considerations relating to the project  
• •  Project Design and Methods – how the project will be conducted and who will be 

involved with a focus on demonstrating project feasibility.  
• •  Cost and resources issues – what impact the project is likely to have on CDRC 

resources, including CDRC staff time and use of infrastructure, as well as any data 

acquisition costs. Resource requirements should be justified.  

The RAG typically considers applications remotely and is designed to be lightweight 

but robust, enabling timely decisions on user applications.  

Approval will not be granted without evidence that the user has acquired ethical 

approval for the research through their institution, or supplied evidence that it is not 
applicable. For non-academic projects, where there is no approval process in place 

the CDRC will assist the user with acquiring this.  
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Safe Researcher Training and Training and Development  

Safe Research Training  

Users, both academic and non-academic stakeholders, wishing to access controlled data and 

on occasion safeguarded data are required to have completed a safe researcher course, as 
offered by the Administrative Data Research Network (ADRN), HM Revenue and Customs 

(HMRC), Office for National Statistics (ONS) or the UK Data Service (UKDS). Evidence of 

valid accreditation for the duration of access to the data will be required. If the user has not 

previously completed such training the CDRC will offer access to training courses.  

Training and Development  

In addition to providing data services, the CDRC has a range of training courses and 

materials available. Many of these will be of benefit to those who wish to use our facilities, 

as they are aimed at enhancing capacity in data analytics and data visualisation methods. 
Full details of the training available can be found at cdrc.ac.uk/training-capacity-building/ 

and online training tutorials at data.cdrc.ac.uk/tutorial. Our programme includes training in 

the following areas:  

• •  Working on Big Data: introductory courses that explain the growing importance of 

Big Data; the importance of analytics and protocols; and standards for data 

management.  
• •  Introductory and advanced courses in data analysis and visualisation, including 

courses in R.  
• •  Introductory and advanced courses in Geographical Information Systems, including 

ArcGIS and Q-GIS.  
• •  Advanced courses in microsimulation and geo-temporal demographics.  
• •  Courses on how insights from Big Data analytics can enhance business.  
• •  Visualisation.  

Charges for CDRC Services  

While a service will be provided to the academic community and stakeholders free of 

charge, researchers may need to apply for funding to cover the costs of additional 

data acquisitions, or be charged for access to certain, licensed software.  
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CDRC Services Overview and User Journey  
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CDRC Website: A Single Point of Entry into the CDRC Data Services  

The CDRC website, www.cdrc.ac.uk, is designed to provide a single point of entry into our 

services and these are clearly linked from the homepage.  

CDRC Data  

Our data portal, CDRC Data, provides a complete listing of data available through the three 

tiers of the service and enables the dissemination of open data and application for access to 

safeguarded and controlled data.  

Accessing data from CDRC Data data.cdrc.ac.uk Open Service:  

Access to the Open Service requires:  

1) Registration  

Users will be required to provide contact details including a valid email address prior to 
download. This is to enable the CDRC to monitor the use of the resource. Data will then be 

available to the user to download for unrestricted use.  

Safeguarded Service:  

Access to the Safeguarded Service requires that users to obtain formal approval.  

1) Initial Proposal  

An approach is made to the CDRC by the user through completion of an online form, 
www.cdrc.ac.uk/data-services/using-our-data/. This initial proposal is processed and 

assessed by the Senior Management Team to see if it fits within the remit of the Centre. If 
not, the proposal may be referred to another Centre in the Big Data Network. Proposals that 

do not fit into either of these categories will be turned down at this stage.  

2) Proposal Development  

If the initial proposal fits within the Centre’s remit, the user is supplied with the 

‘Safeguarded Data Project Proposal Form’, and assigned to a CDRC data scientist who can 
advise on the technical aspects of the formal application. The aim is to co-produce an 

acceptable project proposal. Proposals will comprise:  

1. a)  Research motivation and purpose  
2. b)  Research impact  
3. c)  Plannedoutputs  
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4. d)  Research team  
5. e)  Data requested  
6. f)  Data linkage  
7. g)  Duration of access  

 

 

h) Ethical approval from user’s institution1  

3) RAG Assessment and Approval  

Once an application has been completed it is considered by the RAG against agreed criteria 

that are published on our website, www.cdrc.ac.uk/data-services/using-our-data/. The 

number of rejected approvals will be minimised through initial interaction with the data 
scientists. Where approval is withheld, applications are referred back to the user for 

revision, and clear guidance will be given regarding those areas requiring clarity. If such 
amendments are agreeable by RAG, approval will be given. If minor, the user may be asked 

to make further revisions, however, if issues are still considered to be major the RAG may 

decide to make a final decision to reject the proposal. Following approval, the user and their 
institution are required to agree to the CDRC User Agreement, including stipulations made 

by the Data Partner(s) and RAG.  

4) Data Access  

Access to a secure download of the agreed data is made available. This process requires 

that users telephone the CDRC to obtain a further password to unlock the encrypted 
download files. Once the user has downloaded the encrypted file, they are solely responsible 

for the data and its analysis.  

5) Outputs  

Users can use results of their analyses in publications, reports and presentations provided 

they abide by the terms and conditions with particular reference to the data partner 

publication terms. There is no screening of outputs by CDRC staff.  

6) Completion, Reporting and Acknowledgement  

Users are required to deposit copies of working papers, peer-reviewed journal articles, logs 
of impact and other publications for access with the CDRC site wherever copyright permits. 

Where this is not possible, full references to research outputs are required for CDRC audit 

purposes. Please email publications@cdrc.ac.uk when publications are ready for deposit or 
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logging. The commitment to produce specified outputs is normally a condition of the data 
approval process. The terms of service require that published outputs include an 

acknowledgement stating: “The data for this research have been provided by the Consumer 
Data Research Centre, an ESRC Data Investment, under project ID CDRC xxx, 

ES/L011840/1; ES/L011891/1”. The acknowledgement will make further reference to the 

use of specific datasets according to the wishes and needs of individual data partners. After 
the project end date is reached, the CDRC will contact the user to confirm the destruction of 

the data and to document any outputs to date. The CDRC will contact users normally at 6 

and 12 months after the project end date to request a log of any further publications or 

impact logs.  

1 If the user’s institution does not have a system for data protection and ethics approval then the 

CDRC will assist with gaining ethical review if required.  

 

 

7) Undergraduate and Postgraduate Student Applications  

Undergraduate and Masters Students requesting access to data will be required to submit a 

proposal in the normal way including their academic supervisor as a named applicant.  

CDRC Secure Service  

Access to CDRC controlled data is via our Secure Service at one of three secure facilities 
located at University College London, the University of Liverpool and the University of 

Leeds. Independent analysis of secure data can be undertaken at all of our secure facilities. 

If users require bespoke guidance and support with analytics, this service is provided at the 

University of Leeds only.  

Use of the CDRC-Secure service requires registration and project approval, with an 
additional step of booking into one of the secure facilities and meeting any site specific 

secure facility requirements. The user will be informed of these once the site to be visited 

has been selected.  

Accessing data from CDRC secure sites  

Access to this service requires that users obtain formal approval.  

1) Initial Proposal  

An approach is made to the CDRC by the user through completion of an online form, 

www.cdrc.ac.uk/data-services/using-our-data/. This initial proposal is processed and 
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assessed by the Senior Management Team to see if it fits within the remit of the Centre. If 
not, the proposal may be referred to another Centre in the Big Data Network. Proposals that 

do not fit into either of these categories will be turned down at this stage.  

2) Proposal Development  

If the initial proposal fits within the Centre’s remit, the user is supplied with the ‘Controlled 

Data Project Proposal Form’, and assigned to a CDRC data scientist who can advise on the 
technical aspects of the formal application. The aim is to co-produce an acceptable project 

proposal. Proposals will comprise:  

1. a)  Research motivation and purpose  
2. b)  Research impact  
3. c)  Plannedoutputs  
4. d)  Research team  
5. e)  Data requested  
6. f)  Data linkage  
7. g)  Access requirements  
8. h)  Ethical approval from user’s institution2  

3) RAG Assessment and Approval  

2 If the user’s institution does not have a system for data protection and ethics approval then the 

CDRC will assist with gaining ethical review if required.  

 

 

Once an application has been co-produced it is considered by the RAG against agreed 

criteria that are published on our website www.cdrc.ac.uk/data-services/using-our-data/. 

The number of rejected approvals will be minimised through initial interaction with the data 
scientists. Where approval is withheld, applications are referred back to the user for 

revision, and clear guidance will be given regarding those areas requiring clarity. If such 
amendments are agreeable by RAG, approval will be given. If minor the user may be asked 

to make further revisions, however if issues are still considered to be major the RAG may 

decide to make a final decision to reject the proposal. Following approval, the user and their 
institution are required to agree to the CDRC User Agreement, including stipulations made 

by the Data Partner(s) and RAG.  

4) Data Access  
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Following approval, the allocated CDRC data scientist arranges access for the registered 
user. Dates are booked to use the secure facility at either UCL, University of Liverpool or 

University of Leeds. Users will receive a document informing them of site specific secure 

facility requirements and instructions of use.  

5) Data Analysis  

The user works on the data only within the secure environment. If users wish to combine 
controlled data with other less sensitive data (open or safeguarded), then it will be 

necessary to have obtained consent for this from RAG as part of the project proposal. This 

supporting data will then be made available to the user in the secure facility. The same 
applies to software required for analysis. CDRC staff provide limited support through the 

advanced analytics service. At the University of Leeds, a supported analytics service is 
available which provides the user with bespoke guidance and support in both accessing and 

analysing data.  

6) Outputs  

All outputs that the user wants to take out of the secure environment must be vetted and 

cleared by the CDRC before they can be released. Source data do not leave the secure 
facility. Users can take results of their analyses for use in publications, reports and 

presentations provided they abide by the terms of the User Agreement and with particular 

reference to the data partner publication terms.  

After completion of analysis the user informs the data scientist that the analysis is complete 

and that their files are now ready for vetting. For full details of the output process please 

see the CDRC site specific ‘Secure Lab Data Import/Export Procedures’.  

a) Outputs will be checked by two CDRC data scientists to ensure that they conform to 

CDRC control criteria.  

i. Outputs requested should be ‘finished outputs’ i.e. the finished statistical analyses 

that you intend to present to the public, must be easy to read and interpret and how 

they are to be used explained and must be non-disclosive.  
ii. The CDRC team will ensure that the outputs are the same specification as those 

agreed in the approved project proposal.  

 

 

iii. The user is informed of the outputs vetting outcome within 5 working days and if 

successful with details about how the data extracts or analysis will be returned to 
them.  
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iv. Extracts that match approval are transferred by the CDRC team to a secure server 
from where outputs can be downloaded under the same arrangements as 

safeguarded data or transferred to the user on an encrypted USB/hard drive.  
v. Whereextractsaredeemednottomatchtherequiredcriteria,theuserisinformed.  

i. Where there are issues with a part of the output, if feasible the user will be  

allowed to revisit the secure facility to rectify the problem.  

ii. Major transgressions may be permanently deleted and the remaining output  

is returned to the CDRC approver pool.  

vi. Once the user has completed all their analysis or their agreed lab access time has  

been reached all passes or electronic fobs are returned and access to the secure 

facility is immediately revoked.  

7) Completion, Reporting and Acknowledgement  

Users are required to deposit copies of working papers, peer-reviewed journal articles, logs 

of impact and other publications for access with the CDRC site wherever copyright permits. 
Where this is not possible, full references to research outputs are required for CDRC audit 

purposes. Please email publications@cdrc.ac.uk when publications are ready for deposit or 
logging. The commitment to produce specified outputs is normally a condition of the data 

approval process. The terms of service require that published outputs include an 

acknowledgement stating “The data for this research have been provided by the Consumer 
Data Research Centre, an ESRC Data Investment, under project ID CDRC xxx, 

ES/L011840/1; ES/L011891/1”. The acknowledgement will make further reference to the 
use of specific datasets according to the wishes and needs of individual data partners. After 

the project end date is reached, the CDRC will contact the user to confirm the destruction of 

the data and to document any outputs to date. The CDRC will contact users normally at 6 
and 12 months after the project end date to request a log of any further publications or 

impact logs.  

8) Undergraduate and Postgraduate Student Applications  

Undergraduate and Masters Students requesting access to data will be required to submit a 

proposal in the normal way including their academic supervisor as a named applicant.  

9) Request for data not currently available through CDRC  

It is possible to request access to data variables or datasets not currently available through 

the CDRC. To submit a request please complete an initial proposal form cdrc.ac.uk/data- 

services/initial-proposal-form/ and we will contact you to discuss further.  
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 EPC Data Glossary Extract 

POSTCODE POSTCODE 

The postcode of the property  

CURRENT ENERGY RATING CURRENT_ENERGY_RATING 

Current energy rating converted into a linear 'A to G' rating (where A is the most energy efficient 

and G is the least energy efficient)  

CURRENT ENERGY EFFICIENCY CURRENT_ENERGY_EFFICIENCY 

Based on cost of energy, i.e. energy required for space heating, water heating and lighting [in 

kWh/year] multiplied by fuel costs. (£/m2/year where cost is derived from kWh).  

PROPERTY TYPE PROPERTY_TYPE  

Describes the type of property such as House, Flat, Mansion, Maisonette etc. This is actually the 

type differentiator for Property but only a limited number of property types, notably Apartment and 

Apartment Block, have any specific characteristics and warrant their own definition.  

BUILT FORM BUILT_FORM 

The building type of the Property e.g. Detached, Semi-Detached, Terrace etc. Together with the 

Property Type, the Build Form produces a structured description of the property  

TRANSACTION TYPE TRANSACTION_TYPE 

Type of transaction that triggered EPC. For example, one of: marketed sale; non- marketed sale; 

rental; not sale or rental; assessment for Green Deal; following Green Deal; FIT application; none of 

the above; RHI application; ECO assessment. Where the reason for the assessment is unknown by 

the energy assessor the transaction type will be recorded as 'none of the above'. Transaction types 

may be changed over time.  
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ENVIRONMENT IMPACT CURRENT 

ENVIRONMENT_IMPACT_CURRENT 

The Environmental Impact Rating. A measure of the property's current impact on the environment 

in terms of carbon dioxide (CO2) emissions. The higher the rating the lower the CO2 emissions. 

(CO2 emissions in tonnes / year)  

ENERGY CONSUMPTION CURRENT 

ENERGY_CONSUMPTION_CURRENT 

Estimated total energy consumption for the Property in a 12 month period. Value is Kilowatt Hours 

per Square Metre (kWh/m2)  

LIGHTING COST CURRENT LIGHTING_COST_CURRENT 

GBP. Current estimated annual energy costs for lighting the property.  

HEATING COST CURRENT HEATING_COST_CURRENT 

GBP. Current estimated annual energy costs for heating the property.  

HOT WATER COST CURRENT HOT_WATER_COST_CURRENT 

GBP. Current estimated annual energy costs for hot water  

TOTAL FLOOR AREA TOTAL_FLOOR_AREA 

The total useful floor area is the total of all enclosed spaces measured to the internal face of the 

external walls, i.e. the gross floor area as measured in accordance with the guidance issued from time 

to time by the Royal Institute of Chartered Surveyors or by a body replacing that institution. (m2)  

ENERGY TARIFF ENERGY_TARIFF 

Type of electricity tariff for the property, e.g. single.  

MAINS GAS FLAG MAINS_GAS_FLAG 

Whether mains gas is available. Yes means that there is a gas meter or a gas-burning appliance in the 

dwelling. A closed-off gas pipe does not count.  
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FLOOR LEVEL FLOOR_LEVEL 

Flats and maisonettes only. Floor level relative to the lowest level of the property (0 for ground 

floor). If there is a basement, the basement is level 0 and the other floors are from 1 upwards  

FLAT TOP STOREY FLAT_TOP_STOREY Whether the flat is on the top storey  

FLAT STOREY COUNT FLAT_STOREY_COUNT 

The number of Storeys in the Apartment Block.  

MAIN HEATING CONTROLS MAIN_HEATING_CONTROLS 

Type of main heating controls. Includes both main heating systems if there are two.  

GLAZED TYPE GLAZED_TYPE 

The type of glazing. From British Fenestration Rating Council or manufacturer declaration, give as 

one of; single; double; triple.  

EXTENSION COUNT EXTENSION_COUNT 

The number of extensions added to the property. Between 0 and 4.  

NUMBER HABITABLE ROOMS NUMBER_HABITABLE_ROOMS 

Habitable rooms include any living room, sitting room, dining room, bedroom, study and similar; 

and also a non-separated conservatory. A kitchen/diner having a discrete seating area (with space for 

a table and four chairs) also counts as a habitable room. A non-separated conservatory adds to the 

habitable room count if it has an internal quality door between it and the dwelling. Excluded from 

the room count are any room used solely as a kitchen, utility room, bathroom, cloakroom, en-suite 

accommodation and similar; any hallway, stairs or landing; and also any room not having a window.  

HOTWATER DESCRIPTION HOTWATER_DESCRIPTION Overall 

description of the property feature  

WINDOWS DESCRIPTION WINDOWS_DESCRIPTION Overall description of 

the property feature  
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SECONDHEAT DESCRIPTION SECONDHEAT_DESCRIPTION Overall 

description of the property feature  

MAINHEAT DESCRIPTION MAINHEAT_DESCRIPTION Overall description 

of the property feature  

MAIN FUEL MAIN_FUEL 

The type of fuel used to power the central heating e.g. Gas, Electricity  

WIND TURBINE COUNT WIND_TURBINE_COUNT Number of wind turbines; 

0 if none.  

PHOTO SUPPLY PHOTO_SUPPLY 

Percentage of photovoltaic area as a percentage of total roof area. 0% indicates that a Photovoltaic 

Supply is not present in the property.  

SOLAR WATER HEATING FLAG SOLAR_WATER_HEATING_FLAG 

Indicates whether the heating in the Property is solar powered
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 Variable Description Table 

Variable ID Variable 
Description 

Domain Distribution 

PCS Postcode 
sector 

Geolocator NA 

CURRENT_ENERGY_EFFICIENCY Based on cost 
of energy, in 
kWh/year 
multiplied by 
fuel costs. 

Energy Info Approximately 
Symmetrical 

ENVIRONMENT_IMPACT_CURREN
T 

The 
Environmenta
l Impact 
Rating. The 
higher the 
rating the 

lower the CO₂ 
emissions. 

(CO₂ 
emissions in 
tonnes / year) 

Energy Info Approximately 
Symmetrical 

ENERGY_CONSUMPTION_CURREN
T 

Estimated 
total energy 
consumption 
for the 
Property in a 
12 month 
period. Value 
is Kilowatt 
Hours per 
Square Metre 
(kWh/m²) 

Energy Info Deleted due to 
missingness 

LIGHTING_COST_CURRENT GBP per 
anum 

Energy Info Deleted due to 
missingness 

HEATING_COST_CURRENT GBP per 
anum 

Energy Info Deleted due to 
missingness 

HOT_WATER_COST_CURRENT GBP per 
anum 

Energy Info Deleted due to 
missingness 

TOTAL_FLOOR_AREA The total 
useful floor 
area is the 
total of all 
enclosed 

Energy Info Approximately 
Symmetrical 
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spaces 
measured to 
the internal 
face of the 
external walls  
(m²) 

FLAT_STOREY_COUNT The number 
of storeys in 
the Apartment 
Block. 

Energy Info Deleted due to 
missingness 

NUMBER_HABITABLE_ROOMS Habitable 
rooms include 
any living 
room, sitting 
room, dining 
room, 
bedroom, 
study and 
similar. 

Energy Info Deleted due to 
missingness 

CER_A Proportion of 
certificates 
with an A 
rating within 
the PCS 

Energy Info Approximately 
Symmetrical 

CER_B Proportion of 
certificates 
with an B 
rating within 
the PCS 

Energy Info Approximately 
Symmetrical 

CER_C Proportion of 
certificates 
with an C 
rating within 
the PCS 

Energy Info Approximately 
Symmetrical 

CER_D Proportion of 
certificates 
with an D 
rating within 
the PCS 

Energy Info Approximately 
Symmetrical 

CER_E Proportion of 
certificates 
with an E 
rating within 
the PCS 

Energy Info Approximately 
Symmetrical 

CER_F Proportion of 
certificates 
with an F 

Energy Info Approximately 
Symmetrical 
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rating within 
the PCS 

CER_G Proportion of 
certificates 
with an G 
rating within 
the PCS 

Energy Info Approximately 
Symmetrical 

CER_INVALID! Proportion of 
certificates 
with an 
Invalid rating 
within the 
PCS 

Energy Info Approximately 
Symmetrical 

PROP_TYPE_Bungalow proportion of 
properties of 
type : 
bungalow 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

PROP_TYPE_Flat proportion of 
properties of 
type : Flat 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

PROP_TYPE_House proportion of 
properties of 
type : House 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

PROP_TYPE_Park_home proportion of 
properties of 
type : Park 
Home within 
the PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

BUILT_FORM_Detached Proportion of 
properties of  
building type : 
Detached 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

BUILT_FORM_Other Proportion of 
properties of  
building type : 
other within 
the PCS 

Physical 
Attribute 

Approximately 
Symmetrical 
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BUILT_FORM_Semi-Detached Proportion of 
properties of  
building type : 
semi-detached 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

BUILT_FORM_Terrace Proportion of 
properties of  
building type : 
Terrace within 
the PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

TRANS_TYPE_new_build Proportion of 
properties 
given an EPC 
as a New 
Build within 
the PCS 

Energy Info Approximately 
Symmetrical 

TRANS_TYPE_rental_private Proportion of 
properties 
given an EPC 
when rented 
privately 
within the 
PCS 

Energy Info Approximately 
Symmetrical 

TRANS_TYPE_rental_social Proportion of 
properties 
given an EPC 
when rented 
socially within 
the PCS 

Energy Info Approximately 
Symmetrical 

TRANS_TYPE_sale Proportion of 
properties 
given an EPC 
when sold 
within the 
PCS 

Energy Info Approximately 
Symmetrical 

TRANS_TYPE_unknown Proportion of 
properties 
given an EPC 
for an 
unknown 
reason within 
the PCS 

Energy Info Approximately 
Symmetrical 

TRANS_TYPE_upgrade_assessment Proportion of 
properties 
given an EPC 
when assessed 

Energy Info Approximately 
Symmetrical 
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for an upgrade 
within the 
PCS 

ET_24_hour Proportion of 
properties on 
a 24 hour 
tariff within 
the PCS 

Energy Info Approximately 
Symmetrical 

ET_dual Proportion of 
properties on 
a dual fuel 
tariff within 
the PCS 

Energy Info Approximately 
Symmetrical 

ET_offpeak Proportion of 
properties on 
an off-peak 
tariff within 
the PCS 

Energy Info Approximately 
Symmetrical 

ET_single Proportion of 
properties on 
a single tariff 
within the 
PCS 

Energy Info Approximately 
Symmetrical 

ET_standard Proportion of 
properties on 
a standard 
tariff within 
the PCS 

Energy Info Approximately 
Symmetrical 

ET_unknown Proportion of 
properties on 
an unknown 
tariff within 
the PCS 

Energy Info Approximately 
Symmetrical 

MGF_FALSE Proportion of 
properties 
with a false 
mains gas flag 
within the 
PCS  

Physical 
Attribute 

Approximately 
Symmetrical 

MGF_NA Proportion of 
properties 
with an NA 
mains gas flag 
within the 
PCS  

Physical 
Attribute 

Approximately 
Symmetrical 
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MGF_TRUE Proportion of 
properties 
with a true 
mains gas flag 
within the 
PCS  

Physical 
Attribute 

Approximately 
Symmetrical 

FL_basement Proportion of 
properties on 
the basement 
level within 
the PCS (flats 
only) 

Physical 
Attribute 

Approximately 
Symmetrical 

FL_ground Proportion of 
properties on 
the ground 
floor within 
the PCS (flats 
only) 

Physical 
Attribute 

Approximately 
Symmetrical 

FL_middle_floor Proportion of 
properties on 
any middle 
floor within 
the PCS (flats 
only) 

Physical 
Attribute 

Approximately 
Symmetrical 

FL_top_floor Proportion of 
properties on 
the top floor 
within the 
PCS (flats 
only) 

Physical 
Attribute 

Approximately 
Symmetrical 

FL_unknown Proportion of 
properties on 
an unknown 
level within 
the PCS (flats 
only) 

Physical 
Attribute 

Approximately 
Symmetrical 

FTS_N Proportion of 
of flats which 
are not on the 
top storey 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

FTS_NA Proportion of 
flats without 
applicable 
data within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 
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FTS_Y Proportion of 
flats which are 
on the top 
storey within 
the PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

GLAZED_double Proportion of 
properties 
with double 
glazing within 
the PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

GLAZED_secondary Proportion of 
properties 
with 
secondary 
glazing within 
the PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

GLAZED_single Proportion of 
properties 
with single 
glazing within 
the PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

GLAZED_triple Proportion of 
properties 
with triple 
glazing within 
the PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

GLAZED_unknown Proportion of 
properties 
with unknown 
glazing within 
the PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

EXT_0 Proportion of 
properties 
with no 
extensions 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

EXT_1 Proportion of 
properties 
with 1 
extension 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

EXT_2 Proportion of 
properties 
with 2 
extensions 

Physical 
Attribute 

Approximately 
Symmetrical 
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within the 
PCS 

EXT_3 Proportion of 
properties 
with 3 
extensions 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

EXT_4 Proportion of 
properties 
with 4 
extensions 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

EXT_NA Proportion of 
properties 
where 
extensions are 
not applicable 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

HWD_NA Proportion of 
houses that 
have an 
invalid entry 
within the 
PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_community_scheme Proportion of 
houses that 
have hot water 
through a 
community 
scheme within 
the PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_elec_immersion_offpeak Proportion of 
houses that 
have hot water 
through an 
electric 
immersion 
heater on an 
off peak tariff 
within the 
PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_elec_immersion_standard" Proportion of 
houses that 
have hot water 

Fixtures and 
Fittings 

Approximately 
Symmetrical 
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through an 
electric 
immersion on 
a standard 
tariff within 
the PCS  

HWD_electric_instant Proportion of 
houses that 
havehot water 
through an 
instant electric 
system within 
the PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_gas_boiler Proportion of 
houses that 
have hot water 
through a gas 
boiler within 
the PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_gas_other Proportion of 
houses that 
have hot water 
through other 
gas means 
within the 
PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_heat_pump Proportion of 
houses that 
have hot water 
through a heat 
pump within 
the PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_hot_water Proportion of 
houses that 
have an 
independent 
hot water 
system within 
the PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_main_system Proportion of 
houses that 
have hot water 
through their 
mains system 
within the 
PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 
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HWD_none Proportion of 
houses that do 
not have an 
obvious hot 
water system 
within the 
PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_oil Proportion of 
houses that 
have hot water 
through an oil 
system within 
the PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_room_heaters Proportion of 
houses that 
have hotwater 
through 
individual 
room heaters 
within the 
PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_secondary_system Proportion of 
houses that 
have hot water 
through a 
secondary 
system within 
the PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_solid_fuel Proportion of 
houses that 
have hot water 
through solid 
fuel within the 
PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

HWD_unclear_origin Proportion of 
houses that 
have hot water 
through any 
other means 
within the 
PCS  

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SHD_NA Proportion of 
properties 
where 
secondary 
heating is not 
applicable 

Fixtures and 
Fittings 

Approximately 
Symmetrical 
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within the 
PCS 

SHD_community_scheme Proportion of 
properties 
where 
secondary 
heating is 
through a 
community 
scheme within 
the PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SHD_gas Proportion of 
properties 
where 
secondary 
heating is 
through a gas 
system within 
the PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SHD_hot_water_only Proportion of 
properties 
where 
secondary 
heating is hot 
water only 
within the 
PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SHD_none Proportion of 
properties 
where 
secondary 
heating is not 
installed 
within the 
PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SHD_other Proportion of 
properties 
where 
secondary 
heating is 
delivered by 
any other 
means within 
the PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SHD_room_heaters_electric Proportion of 
properties 
where 

Fixtures and 
Fittings 

Approximately 
Symmetrical 
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secondary 
heating is 
through 
individual 
electric room 
heaters  within 
the PCS 

SHD_room_heaters_gas Proportion of 
properties 
where 
secondary 
heating is 
through gas 
room heaters 
within the 
PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SHD_room_heaters_other Proportion of 
properties 
where 
secondary 
heating is 
through 
individual 
room heaters 
with other fuel 
sources within 
the PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SHD_room_heaters_wood Proportion of 
properties 
where 
secondary 
heating is 
through wood 
fueled room 
heaters within 
the PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SHD_secondary_heating Proportion of 
properties 
where 
secondary 
heating is 
installed but 
type is unclear 
within the 
PCS 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SHD_underfloor_heating Proportion of 
properties 

Fixtures and 
Fittings 

Approximately 
Symmetrical 
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where 
secondary 
heating is 
through 
underfloor 
heating within 
the PCS 

WTC_FALSE Proportion of 
properties that 
do not have 
wind turbines 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

WTC_NA Proportion of 
properties 
where wind 
turbine data is 
not applicable 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

WTC_TRUE Proportion of 
properties that 
do have wind 
turbines 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

SWHF_N Proportion of 
properties that 
do not have a 
solar water 
heating flag 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

SWHF_NA Proportion of 
properties 
where a solar 
water heating 
flag is not 
applicable 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

SWHF_Y Proportion of 
properties that 
do have a solar 
water heating 
flag within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 
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PHOTO_FALSE Proportion of 
properties that 
do not have 
any 
photovoltaics 
on their roof 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

PHOTO_NA Proportion of 
properties 
where 
photovoltaics 
are not 
applicable 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

PHOTO_TRUE Proportion of 
properties that 
do have a 
percentage of 
their roof 
covered by 
photovoltaics 
within the 
PCS 

Physical 
Attribute 

Approximately 
Symmetrical 

MF_Community_scheme Proportion of 
properties 
where the 
main fuel 
source is from 
a community 
scheme within 
the PCS 

Energy Info Approximately 
Symmetrical 

MF_No_Data Proportion of 
properties 
where there is 
no data for the 
main fuel 
source within 
the PCS 

Energy Info Approximately 
Symmetrical 

MF_biofuel Proportion of 
properties 
where the 
main fuel 
source is 
biofuels 

Energy Info Approximately 
Symmetrical 
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within the 
PCS 

MF_coal Proportion of 
properties 
where the 
main fuel 
source is coal 
within the 
PCS 

Energy Info Approximately 
Symmetrical 

MF_electric Proportion of 
properties 
where the 
main fuel 
source is 
electricity 
within the 
PCS 

Energy Info Approximately 
Symmetrical 

MF_gas Proportion of 
properties 
where the 
main fuel 
source is gas 
within the 
PCS 

Energy Info Approximately 
Symmetrical 

MF_oil Proportion of 
properties 
where the 
main fuel 
source is oil 
within the 
PCS 

Energy Info Approximately 
Symmetrical 

MF_wood Proportion of 
properties 
where the 
main fuel 
source is 
wood within 
the PCS 

Energy Info Approximately 
Symmetrical 

ACCOM_unshared_flat_converted_buildi
ng 

Proportion of 
properties 
which are flats 
in converted 
buildings 

Physical 
Attribute 

Approximately 
Symmetrical 

ACCOM_unshared_flat_commercial Proportion of 
properties 
which are flats 

Physical 
Attribute 

Approximately 
Symmetrical 
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in commercial 
buildings 

ACCOM_shared_dwelling Proportion of 
properties 
which are 
houses of 
multiple 
occupancy 

Physical 
Attribute 

Approximately 
Symmetrical 

ACCOM_unshared_house_detached Proportion of 
properties 
which are 
unshared 
detached 
houses 

Physical 
Attribute 

Approximately 
Symmetrical 

ACCOM_unshared_house_semi Proportion of 
properties 
which are 
unshared 
semi-detached 
houses 

Physical 
Attribute 

Approximately 
Symmetrical 

ACCOM_unshared_house_terrace Proportion of 
properties 
which are 
terrace houses 

Physical 
Attribute 

Approximately 
Symmetrical 

ACCOM_unshared_flat_purposebuiltbloc
k 

Proportion of 
properties 
which are flats 
in purpose 
built blocks 

Physical 
Attribute 

Approximately 
Symmetrical 

ECOACT_active_unemployed Proportion of 
people who 
are 
economically 
active but 
consider 
themselves 
unemployed. 

Demographic Approximately 
Symmetrical 

ECOACT_active_pt Proportion of 
people who 
are in part 
time 
employment 

Demographic Approximately 
Symmetrical 

ECOACT_active_ft Proportion of 
people who 
are in full time 
employment 

Demographic Approximately 
Symmetrical 
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ECOACT_active_student Proportion of 
people who 
are 
economically 
active 
students 

Demographic Approximately 
Symmetrical 

ECOACT_inactive_retired Proportion of 
people who 
are retired 

Demographic Approximately 
Symmetrical 

ECOACT_inactive_student Proportion of 
people who 
are 
economically 
inactive 
students 

Demographic Approximately 
Symmetrical 

ECOACT_inactive_carer Proportion of 
people who 
are 
economically 
inactive 
through being 
a carer 

Demographic Approximately 
Symmetrical 

ECOACT_inactive_LTS_disabled Proportion of 
people who 
are 
economically 
inactive 
through 
having a 
disability. 

Demographic Approximately 
Symmetrical 

ECOACT_inactive_other Proportion of 
people who 
are 
economically 
inactive for an 
undisclosed 
reason 

Demographic Approximately 
Symmetrical 

ECOACT_unemp_never Proportion of 
people who 
are have never 
been 
employed 

Demographic Approximately 
Symmetrical 

ECOACT_lt_unemp Proportion of 
people who 
are long term 
unemployed 

Demographic Approximately 
Symmetrical 
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ECOACT_active_selfemp_ft Proportion of 
people who 
are in full time 
self-
employment 

Demographic Approximately 
Symmetrical 

ECOACT_active_selfemp_pt Proportion of 
people who 
are in part 
time self-
employment 

Demographic Approximately 
Symmetrical 

NSSEC_1 Proportion of 
people who 
are in higher 
managerial 
and 
professional 
occupations 

Demographic Approximately 
Symmetrical 

NSSEC_2 Proportion of 
people who 
are in lower 
managerial 
and 
professional 
occupations 

Demographic Approximately 
Symmetrical 

NSSEC_3 Proportion of 
people who 
are in 
Intermediate 
occupations  

Demographic Approximately 
Symmetrical 

NSSEC_4 Proportion of 
people who 
are small 
employers and 
own account 
workers 

Demographic Approximately 
Symmetrical 

NSSEC_5 Proportion of 
people who 
are in lower 
supervisory 
and technical 
occupations 

Demographic Approximately 
Symmetrical 

NSSEC_6 Proportion of 
people who 
are in semi-
routine 
occupations 

Demographic Approximately 
Symmetrical 
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NSSEC_7 Proportion of 
people who 
are in routine 
occupations 

Demographic Approximately 
Symmetrical 

NSSEC_8 Proportion of 
people who 
have never 
worked or are 
long term 
unemployed 

Demographic Approximately 
Symmetrical 

CENTHEAT_NONE Proportion of 
homes with 
no central 
heating 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

CENTHEAT_GAS Proportion of 
homes with 
gas central 
heating 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

CENTHEAT_ELECTRIC Proportion of 
homes with 
electric central 
heating 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

CENTHEAT_OIL Proportion of 
homes with oil 
central heating 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

CENTHEAT_SOLID Proportion of 
homes with 
solid fuel 
central heating 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

CENTHEAT_OTHER Proportion of 
home with 
central heating 
that uses an 
'other' fuel 
type 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

CENTHEAT_TWOORMORE Proportion of 
homes with 
central heating 
powered by 
two or more 
fuel types 

Fixtures and 
Fittings 

Approximately 
Symmetrical 

SINGLE Proportion of 
households 
who consider 
themselves 
single 

Demographic Approximately 
Symmetrical 
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MARRIED Proportion of 
households 
who consider 
themselves 
married 

Demographic Approximately 
Symmetrical 

CIVIL Proportion of 
households 
who consider 
themselves in 
a civil 
relationship 

Demographic Approximately 
Symmetrical 

SEPARATED Proportion of 
households 
who consider 
themselves 
separated 

Demographic Approximately 
Symmetrical 

DIVORCED Proportion of 
households 
who consider 
themselves 
divorced 

Demographic Approximately 
Symmetrical 

WIDOWED Proportion of 
households 
who consider 
themselves 
widowed 

Demographic Approximately 
Symmetrical 

1_ROOM Proportion of 
homes with 
this number of 
rooms. 

Physical 
Attribute 

Deleted due to 
missingness 

2_ROOMS Proportion of 
homes with 
this number of 
rooms. 

Physical 
Attribute 

Deleted due to 
missingness 

3_ROOMS Proportion of 
homes with 
this number of 
rooms. 

Physical 
Attribute 

Deleted due to 
missingness 

4_ROOMS Proportion of 
homes with 
this number of 
rooms. 

Physical 
Attribute 

Deleted due to 
missingness 

5_ROOMS Proportion of 
homes with 
this number of 
rooms. 

Physical 
Attribute 

Deleted due to 
missingness 
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6_ROOMS Proportion of 
homes with 
this number of 
rooms. 

Physical 
Attribute 

Deleted due to 
missingness 

7_ROOMS Proportion of 
homes with 
this number of 
rooms. 

Physical 
Attribute 

Deleted due to 
missingness 

8_ROOMS Proportion of 
homes with 
this number of 
rooms. 

Physical 
Attribute 

Deleted due to 
missingness 

9_ORMORE_ROOMS Proportion of 
homes with 
this number of 
rooms. 

Physical 
Attribute 

Deleted due to 
missingness 

TENURE_owned_outright Proportion of 
homes that are 
owned 
outright 

Demographic Approximately 
Symmetrical 

TENURE_mortgaged Proportion of 
homes that are 
mortgaged 

Demographic Approximately 
Symmetrical 

TENURE_social_rented Proportion of 
homes that are 
social rented 

Demographic Approximately 
Symmetrical 

TENURE_private_rented Proportion of 
homes that are 
private rented 

Demographic Approximately 
Symmetrical 

AGE0_4 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE5_7 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE8_9 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE10_15 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE16_17 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 
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AGE18_19 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE20_24 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE25_29 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE30_44 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE45_59 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE60_64 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE65_74 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE75_84 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE85_89 Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 

AGE90_over Proportion of 
people of this 
age bracket.  

Demographic Approximately 
Symmetrical 
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 Initial Cluster Summary Tables 
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Measure 1 2 3 4 5 1 2 3 4 5

CURRENT_ENERGY_EFFICIENCY 0.447284793 0.154078838 -0.125075031 0.197058058 -1.223251772 -0.913453364 0.164468135 0.1254402 0.516372148 -0.11449795

ENVIRONMENT_IMPACT_CURRENT 0.513445447 0.151765103 -0.196091032 0.156388643 -1.263867549 -0.906413619 0.137011535 0.130468133 0.454946144 -0.088155277

TOTAL_FLOOR_AREA -0.497791458 -0.427991513 0.424650447 -0.25185092 0.967500878 0.741286126 -0.307101617 -0.131006271 -0.39203268 0.414844226

CER_A -0.046643889 -0.004371425 0.004503488 -0.007345991 0.06584343 0.422037973 -0.043730838 0.237247292 -0.307212043 0.090393339

CER_B 0.222593739 -0.116057679 -0.141146397 -0.052756162 -0.339782969 0.205816145 0.257044773 0.278356101 0.32274416 0.227488381

CER_C 0.471152756 0.150139505 -0.209775527 0.102478788 -0.729170171 -0.290941548 0.270723766 0.246271569 0.485164914 0.053977517

CER_D -0.258631689 0.221403749 0.240568828 0.253664535 -0.434821146 -0.207496447 0.247105044 0.278787112 -0.200100062 0.349236737

CER_E -0.282510096 -0.041992593 0.184857537 -0.08034463 0.591229525 0.484646332 0.132775412 0.160021676 -0.04152249 0.312185491

CER_F -0.251227919 -0.279197247 0.009996426 -0.265930546 1.180723403 0.60968663 0.140111116 0.17348368 0.118731475 0.275957584

CER_G -0.170332928 -0.135322495 -0.081667213 -0.189127663 0.781976459 0.553468731 0.23252569 0.215312096 0.159343662 0.247375442

CER_INVALID! -0.010985465 -0.010951114 -0.01065143 -0.010371971 -0.008676122 0.080507803 0.010408953 0.025825447 0.017688571 -0.035842255

PROP_TYPE_Bungalow -0.74670584 -0.525555401 0.457537524 -0.159938638 0.981704432 0.627455906 0.055679256 0.361648395 -0.689260564 0.478587128

PROP_TYPE_Flat 1.539654081 0.055448156 -0.429766972 -0.239431746 -0.799683063 -0.336366884 0.30747376 0.172044995 0.751071815 0.044787316

PROP_TYPE_House -1.365842549 0.200982382 0.256099975 0.350830723 0.412174412 0.295709876 0.134292261 0.253170423 -1.281502691 0.179910619

PROP_TYPE_Park_home -0.068312657 -0.064196932 0.063630102 -0.018490934 0.05469651 0.365141791 -0.177831914 -0.025684065 -0.22654896 0.151180719

BUILT_FORM_Detached -0.558952229 -0.829445111 0.537782735 -0.33233114 1.112340357 0.712196098 -0.465246631 0.046240866 -0.127191879 0.496366052

BUILT_FORM_Other 0.349658013 -0.085520233 -0.164499267 -0.095372049 -0.279015565 0.196309495 0.280917998 0.293796935 0.376638885 0.251998125

BUILT_FORM_Semi-Detached -0.777201627 -0.194846779 0.246049841 0.394037352 -0.057271235 0.196452938 -0.011399778 0.450153083 -0.579662365 0.395346542

BUILT_FORM_Terrace 0.897849778 0.930978024 -0.585079095 0.062848216 -0.83245837 -0.559011851 0.806825629 0.189778971 0.808442226 -0.400221829

TRANS_TYPE_new_build 0.096035251 -0.189521831 -0.131923683 -0.103170934 -0.150716053 0.299768441 0.122174965 0.259581529 0.27367173 0.233453351

TRANS_TYPE_rental_private 1.001012351 -0.153722835 -0.2806951 -0.223503994 -0.257844874 0.164222614 0.183967715 0.174569567 0.56112074 0.157413737

TRANS_TYPE_rental_social 0.098583378 1.01591356 -0.366920306 0.173423064 -0.380617131 0.089314395 0.678786689 0.38946288 0.282671692 -0.024510061

TRANS_TYPE_sale -0.542574301 -0.709802437 0.683759425 0.117925191 0.502059533 0.524350431 -0.657694968 0.134693851 -0.49729045 0.711535606

TRANS_TYPE_unknown -0.345983362 0.201807635 -0.077628145 0.042276991 -0.130057662 0.154956983 0.363380277 0.292760598 -0.07604462 0.223487009

TRANS_TYPE_upgrade_assessment -0.737057541 0.563149946 -0.024999152 0.105199819 0.528432232 0.501631083 0.519961905 0.358420921 -0.676183074 0.261062692

ET_24_hour 0.193150538 -0.031882101 -0.032960947 -0.015329813 -0.001182505 0.138818491 -0.100844938 0.012412544 0.157440305 -0.030848224

ET_dual 0.107021994 -0.304580015 0.050024821 -0.135412676 0.875266274 0.552336194 0.101013398 0.193158422 0.298233315 0.230663309

ET_offpeak 0.043303799 -0.084696142 -0.05454159 -0.057285674 -0.009807736 0.529613523 -0.318190017 0.104203866 0.200063825 0.142588713

ET_single -0.510574002 0.437853285 0.14127241 0.257973597 -0.23313454 -0.33056032 0.40981144 0.215312208 -0.638235223 0.153005669

ET_standard 0.080018005 -0.175148859 -0.125804255 -0.093886663 -0.159543192 0.303285788 0.108955733 0.264434432 0.267428693 0.235841164

ET_unknown 0.655550908 -0.20275661 -0.109200398 -0.171186652 -0.240133824 0.203520768 0.20670789 0.220256404 0.461723779 0.25759422

MGF_FALSE 0.051584034 -0.450878286 -0.177488677 -0.438208103 2.064279553 0.466129738 0.158955825 0.184932366 0.298589346 0.210202686

MGF_NA 0.094760235 -0.242587032 -0.159385224 -0.126353546 -0.167099633 0.236804807 0.23784423 0.255171645 0.250702543 0.252784738

MGF_TRUE -0.105542304 0.541206741 0.25464205 0.454763437 -1.645966623 -1.201403252 0.554125354 0.426890057 -0.224011001 0.384863242

FL_basement 0.175127268 -0.039041649 -0.062127381 -0.054919938 -0.070898598 -0.383039634 0.149708834 0.013408529 1.174850752 -0.169961004

FL_ground 0.711369113 0.167658576 -0.207161699 -0.032378825 -0.564138042 -0.153313721 0.389506786 0.308264681 0.593012434 0.200566745

FL_middle_floor 1.430838867 -0.06604178 -0.351205747 -0.270358974 -0.510883985 0.041540079 0.295375682 0.281606903 0.452823509 0.191025791

FL_top_floor 0.741740013 0.079950273 -0.265579371 -0.117891622 -0.576818227 -0.046253798 0.320292732 0.251935961 0.524365453 0.179727388

FL_unknown -1.514336945 -0.048976924 0.423422881 0.242732555 0.792762302 0.831320318 -0.215061303 0.153027929 -1.481783166 0.327461526

GLAZED_double -0.547252819 0.406597369 0.212511251 0.322861772 0.072387627 -0.079934891 0.441235552 0.330694089 -0.786220988 0.206348333

GLAZED_secondary 0.293251029 -0.212400421 -0.01870197 -0.184302863 0.110566843 0.470203478 -0.188784003 0.117774363 0.44184984 0.349866383

GLAZED_single 0.364090202 -0.048000921 -0.092992833 -0.117175029 -0.025218819 0.319111072 0.229865886 0.236414649 0.443020919 0.218953793

GLAZED_triple 0.211404869 -0.103106057 0.000102292 -0.09002634 0.140843051 0.367373324 -0.261113891 0.050445223 0.311503446 0.233081227

GLAZED_unknown 0.416290456 -0.363133807 -0.19904854 -0.266101493 -0.1027957 0.196938613 0.119115676 0.149223653 0.27956939 0.165705962

EXT_0 0.50016526 0.432953702 -0.264144005 0.15266082 -0.659761295 -0.686972984 0.436875084 0.061020842 0.465453769 -0.331104338

EXT_1 -0.634496712 -0.067539868 0.381523723 0.065171461 0.620893685 0.556310965 0.058514621 0.247764221 -0.428207911 0.447563947

EXT_2 -0.383137862 -0.342096927 0.346148853 -0.154584507 0.828465767 0.645008053 -0.009408408 0.228917433 -0.065152105 0.477547819

EXT_3 -0.364475072 -0.350999113 0.352924641 -0.210155452 1.097827705 0.767604738 -0.21532975 0.249503323 -0.297120617 0.550822104

EXT_4 -0.361508303 -0.41847176 0.35185033 -0.29182223 1.495431332 0.852123283 -0.590141229 0.144980088 -0.321849765 0.581932014

EXT_NA 0.081369412 -0.235014959 -0.150184616 -0.115374943 -0.182299577 0.241537568 0.242563831 0.259634199 0.250767544 0.254939435

HWD_NA -0.020537354 -0.016516543 -0.008123138 -0.015161769 0.059191884 0.06173431 -0.003296299 -0.01308518 -0.016784802 -0.001979038

HWD_community_scheme 0.746592914 0.022257547 -0.196126925 -0.13627626 -0.230453052 0.00386285 0.254344539 0.128039862 0.655331433 -0.06840323

HWD_elec_immersion_offpeak 0.544758458 -0.223056507 -0.133443642 -0.178158824 0.539213115 0.438378328 0.168141578 0.229933836 0.409480231 0.216786222

HWD_elec_immersion_standard 0.343475736 0.013212253 -0.205946344 -0.151953113 0.017320098 0.297170997 0.307776393 0.269215521 0.352139593 0.23673847

HWD_electric_instant 0.260278161 -0.020241691 -0.120585899 -0.096536691 -0.041718828 0.305123444 0.194689851 0.235049612 0.50080887 -0.019051563

HWD_gas_boiler 0.128396721 0.227683178 -0.090848222 0.041126712 -0.262687494 -0.413792591 0.480979496 0.37742872 0.358261776 0.266603394

HWD_gas_other 0.038972035 0.024597037 -0.009903399 -0.009555123 -0.032768411 -0.246858402 0.339932186 0.246022013 0.298760595 0.062084725

HWD_heat_pump 0.092248998 0.006327199 -0.000530006 -0.01668257 0.013109657 0.077248917 0.003674706 -0.012059146 0.030045927 0.021288648

HWD_hot_water -0.017095768 -0.110703492 -0.042429238 -0.053162475 -0.053371877 0.301647349 0.208882993 0.324598063 0.257181445 0.330099387

HWD_main_system -0.812494871 0.159383355 0.302071935 0.276282087 -0.2224828 -0.217215004 0.092658774 0.252757094 -0.92274868 0.371856952

HWD_none 0.114552744 -0.059886183 0.021097276 0.006989598 -0.076835444 -0.183927872 0.099783566 0.311439415 0.447585764 0.246984326

HWD_oil -0.076524885 -0.076162578 -0.030185575 -0.072448653 0.370605839 1.660054171 -0.475969189 -0.292946917 -0.467566715 -0.015189346

HWD_room_heaters -0.118380313 -0.110088837 0.094390859 0.005710669 0.113382457 0.305034338 0.017944705 0.357314757 -0.108681982 0.397169193

HWD_secondary_system -0.186291901 -0.157377281 -0.038251843 -0.136309198 0.990271445 0.998406868 -0.196631499 0.080633605 -0.464763561 -0.002902548

HWD_solid_fuel -0.153062014 -0.14591501 -0.024272831 -0.112646308 0.761723072 1.227463086 -0.398886583 -0.065169712 -0.444361635 -0.048264762

HWD_unclear_origin -0.040974674 -0.018120766 -0.034308354 -0.032089889 0.333728608 0.137388112 -0.035762158 0.010115527 -0.006638334 -0.046565716

SHD_NA 0.002724259 -0.006023576 -0.010938939 -0.000497199 -0.020532225 -0.175833187 0.082617177 0.184173146 0.282344335 -0.000926168

SHD_community_scheme 0.136542802 -0.026872447 -0.025325422 -0.024879435 0.007387945 -0.034924264 -0.033059877 -0.033063778 0.299916034 -0.038240683

SHD_gas 0.051612038 -0.030151094 0.03312031 0.018096405 -0.023314756 -0.07032218 0.007006635 0.048258233 0.067065999 0.016483723

SHD_hot_water_only -0.011363121 0.017844647 0.027434538 -0.006635969 -0.022167736 -0.018015848 0.094915369 0.029915988 -0.008535317 -0.046014129

SHD_none 0.975402565 0.26709416 -0.380705054 -0.062765422 -0.9566321 -0.772208759 0.295330238 -0.071126428 0.965632042 -0.26433064

SHD_other 0.034605762 0.022929376 -0.024950942 -0.025909478 0.138432621 0.053907593 -0.016376192 -0.024728357 0.103252328 -0.015254237

SHD_room_heaters_electric -0.155810466 0.107180181 -0.065122008 0.166594516 0.142332428 0.271334206 0.245617837 0.35704462 -0.038128375 0.119028295

SHD_room_heaters_gas -0.773891565 0.233183613 0.339674183 0.402986967 -0.728532972 -0.107056548 0.339479766 0.489505488 -0.484910713 0.522820198

SHD_room_heaters_other -0.421456232 -0.538663594 0.212308863 -0.315277076 1.739808737 0.682956551 -0.085801195 0.266415514 -0.039110356 0.413458663

SHD_room_heaters_wood -0.426230086 -0.484536942 0.250587084 -0.331138857 1.525067655 0.639605467 -0.142542175 0.306992863 -0.19048137 0.4616097

SHD_secondary_heating -0.017091296 -0.110699016 -0.042434241 -0.053158002 -0.053389937 0.301634726 0.208877341 0.324599622 0.25718437 0.33010342

SHD_underfloor_heating 0.074024864 -0.04366925 0.004279062 -0.035905035 -0.005747249 0.005259644 -0.09881055 -0.055254765 0.303910073 0.047430062

WTC_FALSE -0.026547563 0.285981064 0.051390798 0.094563157 0.130283535 0.005293787 0.330755676 0.05548693 -0.148301226 -0.027450539

WTC_NA 0.026136661 -0.285463099 -0.050630005 -0.093700624 -0.133522888 0.253313577 0.148694872 0.248591705 0.276539493 0.270569005

WTC_TRUE 0.006324973 -0.012775757 -0.011753371 -0.014015543 0.043404505 0.083637648 0.153610556 0.199789206 0.30383421 -0.023376472

PHOTO_FALSE 0.198857185 0.081931565 0.0903334 0.078940823 -0.102792042 -0.245173487 -0.013853248 -0.007329333 0.1673597 0.024372764

PHOTO_NA -0.180718368 -0.087772881 -0.09223233 -0.082306708 0.088489264 0.243648531 0.114851832 0.117528853 0.021284002 0.105056672

PHOTO_TRUE -0.250116014 0.080197911 0.02591938 0.046136022 0.19709215 0.480527328 0.123288838 0.408252072 -0.668074333 0.348511157

MF_Community_scheme 0.056505767 -0.012405654 -0.01699624 -0.019084815 -0.010384193 0.061130338 -0.025938862 -0.045257431 0.222199258 -0.04681683

MF_No_Data 0.228966518 -0.132460604 -0.115035345 -0.098500036 -0.089506114 0.287426792 0.266296779 0.294309242 0.333493535 0.280668691

MF_biofuel -0.120610458 -0.152796029 -0.062199436 -0.181002103 1.173037004 1.009179226 -0.401495437 0.196991979 -0.453955144 0.09904465

MF_coal -0.152066589 -0.143886941 -0.004333424 -0.036791105 0.483104244 0.540891569 0.084613395 0.347342231 -0.089451009 0.304454739

MF_electric 0.640058006 -0.243577917 -0.237220209 -0.277526778 0.517848206 0.362070716 0.211287994 0.211792162 0.376207165 0.208392519

MF_gas -0.228533705 0.483690052 0.237630159 0.456286702 -1.752412866 -1.295942695 0.495515502 0.438435624 -0.331915017 0.382711463

MF_oil -0.405695499 -0.413017357 -0.057561505 -0.368179671 2.212732549 0.855131272 -0.775881426 0.185552381 -0.397805661 0.467161385

MF_wood -0.113440472 -0.109936025 -0.031052282 -0.094486132 0.436505052 1.191448728 -0.516242827 0.063018778 -0.634979643 0.180403738

ACCOM_unshared_flat_converted_building 1.720305325 -0.000634374 -0.272851761 -0.230960915 -0.368408092 0.053041691 -0.12162273 0.018956398 0.298765781 -0.140990779

ACCOM_unshared_flat_commercial 1.256058628 -0.002431009 -0.206319968 -0.142641397 -0.331530383 0.073609813 -0.170771904 0.039632703 0.189775568 -0.094336327

ACCO_shared_dwelling 1.364335854 0.054355187 -0.247122779 -0.175990802 -0.30674074 -0.365220404 0.23694409 -0.052534197 1.030790749 -0.349779651

ACCOM_unshared_house_detached -1.104208807 -0.98213848 0.766104203 -0.286356313 1.347899891 0.880107045 -0.83762421 0.031607671 -1.527921557 0.6545125

ACCOM_unshared_house_semi -1.364885469 -0.185193884 0.150662227 0.449008334 -0.112294705 0.083823794 -0.095088909 0.435042148 -1.64348043 0.266787096

ACCOM_unshared_house_terrace -0.276184581 1.161355202 -0.560742711 0.278729907 -0.655391556 -0.473079001 0.9550157 0.359533916 -0.377380336 -0.587491107

ACCOM_unshared_flat_purposebuiltblock 1.821019268 0.349834648 -0.429757152 -0.148224746 -0.78735751 -0.82953289 0.387852156 0.09552452 0.906840397 -0.232894462

ECOACT_active_unemployed -0.013085885 1.731255412 -0.676942723 0.079219042 -0.770243075 -0.79000064 1.41283128 0.285324438 -0.040978084 -0.732973544

ECOACT_active_pt -1.986297816 -0.300030611 0.42517672 0.326984122 0.347942907 0.413421338 -0.387183306 0.337925214 -1.744647051 0.397768701

ECOACT_active_ft -0.000294023 -0.890939514 0.068493063 0.490269979 -0.512813304 -0.425893057 -0.786342321 0.407953375 0.149014854 0.232831768

ECOACT_active_student 1.285940665 0.042702408 -0.218329672 -0.125062109 -0.440619698 -0.029864736 0.016312583 0.016030207 -0.04992816 0.016084891

ECOACT_inactive_retired -1.463253579 -0.774682251 0.75526375 -0.106147473 0.913389025 0.893303672 -0.760726804 0.026322349 -1.552890454 0.610431264

ECOACT_inactive_student 1.530595514 0.14789478 -0.26209492 -0.248713854 -0.337365001 -0.543580672 0.514315544 -0.279161153 1.218665455 -0.187924245

ECOACT_inactive_carer -0.563827706 1.286108246 -0.227574782 -0.113667631 -0.174962247 -0.119706972 1.08076617 -0.054327461 -0.728509632 -0.193997003

ECOACT_inactive_LTS_disabled -0.309737863 1.400075186 -0.57845801 0.136718032 -0.454480258 -0.390124832 1.120183201 0.332332473 -0.417626677 -0.708511725

ECOACT_inactive_other 0.178598071 1.010285133 -0.330355795 -0.13609014 -0.245833297 -0.018156507 0.022201662 0.019680335 -0.034477028 -0.010228199

ECOACT_unemp_never 0.05171093 1.735234457 -0.585434876 -0.068474014 -0.621095786 -0.603223039 1.080026863 0.175806748 0.028065615 -0.53329074

ECOACT_lt_unemp -0.028939979 1.677176989 -0.649959631 0.068571968 -0.72018394 -0.688357801 1.294649211 0.254032477 -0.043048974 -0.686598346

ECOACT_active_selfemp_ft -0.279476453 -1.042871629 0.459163314 -0.377359924 1.651597397 1.204595414 -1.149762109 -0.281798747 -0.324127634 0.416377965

ECOACT_active_selfemp_pt -0.284075293 -0.837888917 0.571493268 -0.474883258 1.393019654 1.100352852 -0.925276033 -0.410135023 -0.30807515 0.5111162

NSSEC_1 1.078841117 -1.08863995 0.494460059 -0.330005921 0.05642181 0.22279003 -1.339673441 -0.314321839 0.92771839 0.696696145

NSSEC_2 0.755719787 -1.466924764 0.605710575 -0.193575696 0.18196687 0.191254744 -1.342993738 -0.303998466 0.834441199 0.757696224

NSSEC_3 -0.75187301 -0.601803075 0.322177221 0.449313867 -0.649228789 -0.499097441 -0.473850899 0.373291693 -0.746071104 0.592318525

NSSEC_4 -0.611035401 -0.755816473 0.381543836 -0.389169162 1.854216499 1.350346714 -0.868003943 -0.276705814 -0.67534156 0.286200996

NSSEC_5 -0.884567391 0.402793884 -0.408655811 0.53490039 -0.206713332 -0.145899605 0.401736155 0.622259946 -0.910705561 -0.543275095

NSSEC_6 -0.86958507 1.092076695 -0.541213932 0.394974539 -0.358518385 -0.277809899 1.028939051 0.497403586 -0.952043738 -0.679137995

NSSEC_7 -0.603408231 1.32640083 -0.631022063 0.311155188 -0.452925102 -0.314983431 1.123091353 0.46690137 -0.744539377 -0.7820383

NSSEC_8 0.387400955 1.726717428 -0.600244099 -0.165977799 -0.619507111 -0.813487663 1.396163247 0.140766763 0.553668262 -0.816424825

CENTHEAT_NONE 0.679621837 0.354242762 -0.465449839 -0.185275872 0.606602579 0.37286145 0.273854752 -0.120385395 0.575339123 -0.615588652

CENTHEAT_GAS -0.332551184 0.302128425 0.228989297 0.504441231 -2.217708076 -1.562442965 0.276691062 0.508807139 -0.40932534 0.536406185

CENTHEAT_ELECTRIC 1.367791752 -0.096699739 -0.311006432 -0.241453348 0.259594712 0.028441967 0.02791826 0.027732781 0.029263086 -0.094982539

CENTHEAT_OIL -0.469815975 -0.495282732 0.007704922 -0.415243379 2.418720348 0.578196171 -0.851512196 0.043178616 -0.244803085 0.208390421

CENTHEAT_SOLID -0.51467399 -0.42317294 -0.046512319 -0.22885204 1.932777738 0.853051181 -0.591519269 0.150055156 -1.025806713 0.077805599

CENTHEAT_OTHER 0.827621263 0.683955566 -0.35472168 -0.267054951 -0.017994634 0.072180864 0.080011625 0.041680876 0.003241855 -0.170451246

CENTHEAT_TWOORMORE -0.330156367 0.078665839 -0.132185007 -0.490214643 2.108367401 0.017817366 0.016342457 0.015607516 -0.118524849 0.015707643

SINGLE 1.964307368 0.663677235 -0.730276225 -0.069388803 -0.811151918 -1.013717631 0.869140281 0.15701398 1.491192621 -0.812404879

MARRIED -1.682540675 -0.868029087 0.776347523 -0.003775187 0.897212986 0.915857881 -0.915747948 -0.132289332 -1.446092697 0.863689056

CIVIL 1.228589261 -0.091356633 -0.1949318 -0.17771863 -0.100674132 0.00708441 -0.167222712 -0.035791303 0.664685132 -0.189469231

SEPARATED 0.118372826 1.314476031 -0.603215542 0.126709024 -0.69297218 -0.619841971 1.163362796 0.206325471 0.070119208 -0.64275286

DIVORCED -0.826291166 0.500917694 -0.278119148 0.349991243 -0.16754229 -0.068955059 0.448851291 0.448194784 -0.841553614 -0.433002195

WIDOWED -1.340537009 -0.127202288 0.476366289 0.028557291 0.232887085 0.348779117 -0.140128237 0.173438798 -1.42332159 0.333851676

TENURE_owned_outright -1.266439574 -1.084793533 0.866220193 -0.170779816 1.032647635 0.974755607 -1.079191763 -0.128921094 -1.231485454 0.812213911

TENURE_mortgaged -1.34147006 -0.766181444 0.346329477 0.551592555 -0.193047116 -0.14429485 -0.667823972 0.453529362 -1.213695356 0.586988036

TENURE_social_rented 0.400721869 1.394203921 -0.607041843 -0.048610108 -0.535866761 -0.306847814 0.930195309 0.145648808 0.304064273 -0.763371552

TENURE_private_rented 1.964360782 0.249468244 -0.531182507 -0.208370231 -0.352200346 -0.220128909 0.307350049 -0.053251624 1.443832594 -0.727920658

AGE0_4 -0.33120816 1.200357864 -0.533325206 0.289559679 -0.756200269 -0.704635178 1.11309412 0.254545847 -0.322919469 -0.400885879

AGE5_7 -1.036144405 0.923569286 -0.162008813 0.196699925 -0.331714535 -0.313167572 0.90028233 0.113479614 -0.953079833 -0.031373195

AGE8_9 -1.246775351 0.745520375 -0.000649344 0.122889474 -0.06710895 -0.082664369 0.734970491 0.040022825 -1.130221409 0.098139613

AGE10_15 -1.606742498 0.537719968 0.150986014 0.122489776 0.18941648 0.14442052 0.540653208 0.042075371 -1.464223335 0.228177881

AGE16_17 -1.205836896 0.333220941 0.157322464 0.089078264 0.129321446 0.135539066 0.355821303 0.128599839 -1.484801123 0.253478636

AGE18_19 0.894320991 0.107265422 -0.218224522 -0.092258484 -0.220106743 -0.357898035 0.590095507 0.083223689 0.160374098 -0.327905955

AGE20_24 1.65003959 0.238413237 -0.45187321 -0.111835269 -0.512455621 -0.959763016 0.742122576 0.177939791 1.305935699 -0.698173016

AGE25_29 1.842575216 0.494901725 -0.677148197 0.001645191 -0.818373075 -1.079158787 0.741269058 0.242541077 1.424993656 -0.756725905

AGE30_44 1.118210266 0.320323581 -0.559786055 0.249347542 -0.904507337 -0.861000205 0.356713728 0.190400126 1.066944935 -0.400480616

AGE45_59 -1.585213427 -0.66589588 0.578460421 0.026633278 0.949144574 0.916619923 -0.723334806 -0.037269971 -1.413755502 0.58276203

AGE60_64 -1.342436082 -0.853616877 0.685404843 -0.152573274 1.220470677 1.129340513 -0.85919049 -0.085629169 -1.311580601 0.52320255

AGE65_74 -1.304790239 -0.78842093 0.729544198 -0.189275459 1.091932889 1.023017416 -0.789486464 -0.068242616 -1.355083649 0.556100155

AGE75_84 -1.140515126 -0.649237928 0.731860335 -0.145590793 0.591331598 0.658082619 -0.634234374 0.00355378 -1.259134886 0.582152367

AGE85_89 -0.801435446 -0.589945038 0.630735512 -0.100643473 0.279731363 0.445878403 -0.569908882 0.093133626 -1.042479356 0.464733002

AGE90_over -0.553174725 -0.514307356 0.530331779 -0.106750459 0.203413034 0.366052553 -0.462946286 0.091254259 -0.834213986 0.346887194

Normal Distribution Box Cox Distribution
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