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This article uses triglobal stability analysis to address the question of shock-buffet un-
steadiness, and associated modal dominance, on infinite wings at high Reynolds number,
expanding upon recent biglobal work, aspiring to elucidate the flow phenomenon’s origin
and characteristics. Infinite wings are modelled by extruding an aerofoil to finite aspect ratios
and imposing a periodic boundary condition without assumptions on spanwise homogeneity.
Two distinct steady base flows, spanwise uniform and non-uniform, are analysed herein on
straight and swept wings. Stability analysis of straight-wing uniform flow identifies both
the oscillatory aerofoil mode, linked to the chordwise shock motion synchronised with a
pulsation of its downstream shear layer, and several monotone (non-oscillatory), spatially
periodic shock-distortion modes. Those monotone modes become outboard travelling on the
swept wing with their respective frequencies and phase speeds correlated with the sweep
angle. In the limiting case of very small wavenumbers approaching zero, the effect of sweep
creates branches of outboard and inboard travelling modes. Overall, triglobal results for such
quasi three-dimensional base flows agree with previous biglobal studies. On the contrary,
cellular patterns form in proper three-dimensional base flow on straight wings, and we
present the first triglobal study of such an equilibrium solution to the governing equations.
Spanwise-irregular modes are found to be sensitive to the chosen aspect ratio. Non-linear
time-marching simulations reveal the flow evolution and distinct events to confirm the insights
gained through dominant modes from routine triglobal stability analysis.

Key words: triglobal instability, high-speed flow

1. Introduction

Shock buffet brings a challenge to the wing design of modern large aircraft when flying in
the commercially interesting transonic regime. Essentially, shock buffet is a manifestation
of strong shock-wave/boundary-layer interaction, revealed through shock oscillations and
intermittent boundary layer separation. This sort of self-sustained unsteadiness will exert
additional low-frequency aerodynamic loads eventually limiting the flight envelope and
potentially causing damage to the wing structure through the inevitable structural response,
called buffeting, addressed through the certification requirements. Predicting shock-buffet
onset early during wing design, and devising possible alleviation strategies, requires a
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clear understanding of its physical mechanisms and effective numerical methods, which
is addressed herein. This work provides also a unique link between earlier biglobal stability
studies on canonical geometries, to demonstrate consistency in the findings, and triglobal
studies, using the same tools previously exercised by the authors (Timme & Thormann 2016;
Timme 2020) on practical finite wings with complex designs.

Early experiments identified a low-frequency shock motion linked to the flow dynamics on
buffeting aerofoils (McDevitt et al. 1976; Levy 1978). Lee (1990) investigated transonic
flow on a supercritical aerofoil for Mach numbers between 0.5 and 0.8 and discerned
unsteadiness at a Strouhal number of approximately 0.074, through measuring pressure
fluctuation and unsteady aerodynamic force, and devised a first explanation. The aerofoil
shock-buffet mechanism is now often explained by the shock interacting with upstream
travelling acoustic waves generated at the trailing edge through shock-induced disturbances
travelling downstream inside the separated boundary layer. This type of feedback loop
was extensively examined by Hartmann et al. (2013) and Feldhusen-Hoffmann et al.
(2018) using time-resolved tomographic particle image velocimetry technology. Three-
dimensional shock buffet in high Reynolds number flow presents distinct phenomena
from two-dimensional experiments. Besides the two-dimensional characteristics, three-
dimensional large-scale separation is observed with increasing angle of attack in experiments
for straight wing (Jacquin et al. 2009) and wind-tunnel-scale aircraft (Masini et al. 2020a)
models. It resembles the so-called stall cells documented in the flow of severe separation
from low to high Reynolds numbers (He et al. 2017; Winkelmann & Barlow 1980; Plante
et al. 2021). In addition to experiments, great flow details in the transonic regime can also
be provided by steady or unsteady simulations.

Numerical simulations on different aerofoils in high Reynolds number flow featuring
shock oscillations showed that the flow can be approximated through solving the unsteady
Reynolds-averaged Navier—Stokes (RANS) equations together with an appropriate turbulence
model (Barakos & Drikakis 2000; Garbaruk et al. 2003; Thiery & Coustols 2006), hence
relying on the assumption of a separation of scales between the large-scale low-frequency
coherent shock-buffet dynamics, accessible through the unsteady RANS method, and the
small spatial and temporal scales of turbulence. The one-equation Spalart—Allmaras model
1s widely used in the simulation of turbulent transonic flow (Crouch et al. 2007; Sartor et al.
2015; Paladini et al. 2019), while the suitability of various others such as linear and non-
linear eddy-viscosity two-equation models is also widely addressed (Barakos & Drikakis
(2000); Thiery & Coustols (2006); Giannelis et al. (2018); Szubert et al. (2015)). Besides
using a RANS approach to study shock buffet, variants of detached-eddy simulation (Deck
2005; Grossi et al. 2014) and large-eddy simulation (Garnier & Deck 2010; Dandois et al.
2018; Fukushima & Kawai 2018) are important alternatives due to increased insight into the
unsteady flow physics. In addition to the typical low-frequency shock-buffet mode observed at
high Reynolds numbers, several higher-frequency modes are reported in a moderate Reynolds
number transonic flow over a laminar aerofoil using direct numerical simulation (Zauner et al.
2019). Together with analysing the signal extracted from experiments and time-marching
simulations, modal analysis using either an operator-based global stability method (Crouch
et al. 2007; Sartor et al. 2015; Crouch et al. 2019; Paladini et al. 2019; Timme 2020; Plante
et al. 2021) or data-driven algorithms such as proper orthogonal decomposition and dynamic
mode decomposition (Masini et al. 2020a,b; Zhao et al. 2020) can be used to explore the
flow mechanism.

Stability analysis was first shown to be an effective method in predicting the onset of
two-dimensional aerofoil shock buffet by Crouch et al. (2007). Those transonic-flow stability
results on a NACAQOO12 aerofoil demonstrated good agreement with earlier experimental
data (McDevitt & Okuno 1985). More recently, the ideas were successfully applied in the
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Figure 1: Mesh details showing (a) overall perspective of two-dimensional baseline mesh
and (b) magnified view near wing surface including periodic plane.

analysis of other aerofoils (Sartor et al. 2015; Zauner et al. 2020) and three-dimensional
infinite (Crouch et al. 2019; Paladini et al. 2019; Plante et al. 2021; Paladini 2019) and
finite (Timme & Thormann 2016; Timme 2020) wings. In those infinite-wing shock-buffet
studies, the authors predicted both the quasi two-dimensional aerofoil mode and presented
spatial spanwise-periodic modes in the framework of biglobal stability analysis. When using
a symmetry (instead of periodic) boundary condition along the span, lorio et al. (2014)
only found the aerofoil mode in their triglobal investigation. Causes for not identifying
the spanwise-periodic modes could lie in using small aspect-ratio wings or imposing the
symmetry boundary condition.

Importantly, detailed triglobal stability analysis on the infinite wing, both straight and
swept, without assuming homogeneity in the span direction, is currently missing to link
shock-buffet characteristics on the infinite wing, derived from biglobal studies, with those
on the finite wing (Masini et al. 2020a; Timme 2020). Once the shock-buffet phenomenon
appears, three-dimensional separation cells are formed on the suction side of the wing. Hence,
bi- or triglobal analysis on a quasi three-dimensional base flow in the absence of a spanwise
flow field variation is not sufficient to describe the complete picture of perturbation modes.
Only triglobal analysis can deal with an arbitrary three-dimensional flow field on a complex
geometry, without an assumption on homogeneity in any spatial dimension, i.e. irrespective
of assuming a homogeneous flow field in the spanwise direction as done in biglobal studies.
Herein, we are interested in understanding the fully three-dimensional perturbation dynamics,
without simplifying assumptions, by describing the isolated impact of key geometric wing-
sizing parameters (such as aspect ratio and sweep) and flow conditions (specifically angle
of attack) in the formation and characteristics of the shock-buffet instability near onset.
Section 2 introduces the definition of both infinite straight and swept wing flow and the
chosen numerical methods. Details of the base flows, and dependence on iterative and mesh
convergence, are discussed in section 3. Triglobal stability results of infinite-wing shock
buffet are presented in section 4.

2. Numerical setup
2.1. Infinite wing definition

Herein we use the OAT15A aerofoil, which is the same profile used by Jacquin et al. (2009)
in the experiments and by Sartor ef al. (2015), Paladini et al. (2019) and Crouch et al.
Cambridge University Press
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Figure 2: Swept wing flow setup.

115 (2019) in their respective proper two-dimensional and biglobal three-dimensional stability
116 analyses. As shown in figure 1, the aerofoil’s two-dimensional baseline mesh is circular with
117 a far-field radius of 100 chord lengths. Overall the two-dimensional mesh is discretised by
118 approximately 35 000 points. The near-wall boundary-layer region is quasi-structured, with
119 75 points distributed in wall-normal direction ensuring y* < 1, and 152 and 138 points
120 discretise the suction and pressure side of the aerofoil, respectively. An O-type meshing
121 strategy was chosen for the region around the profile’s blunt trailing edge. Unstructured
122 triangular meshing is applied elsewhere towards the far-field boundary. While detailed mesh
123 convergence in the aerofoil’s xz-plane together with subtleties of the spatial discretisation
124 and the choice of turbulence model have been presented in the literature (Barakos & Drikakis
125 2000; Deck 2005; Thiery & Coustols 2006; Nitzsche et al. 2019), we focus exclusively on the
126 parameter choices in the spanwise direction, such as mesh resolution and finite aspect ratio.
127 Straight-wing cases are defined by extruding the two-dimensional aerofoil mesh in spanwise
128 direction to have different aspect ratios between 4 = 1 and 10. An infinite span is achieved
129 by using an appropriate spanwise periodic boundary condition. The baseline extruded mesh
130 for the infinite wing contains 20 points per unit length in span uniformly distributed, giving
131 a total of approximately 2.1 x 10° points for our focus case with aspect ratio & = 3. The
132 effect of spanwise resolution will be discussed in sections 3.1 and 4.1 and the finite aspect
133 ratio in section 3.3.

134 Swept wings are an integral part in designing modern large transport aircraft, on account
135 of a better high-speed aerodynamic performance. Infinite swept wings are modelled herein
136 by adjusting the direction and magnitude of the free-stream velocity vector, instead of
137 modifying the wing shape or orientation, while ensuring constant flow conditions in the
138 plane perpendicular to the wing’s leading edge when varying the sweep angle. Figure 2
139 illustrates the flow past a wing with a non-zero sweep angle A. Define reference Mach
140 number M ,, Reynolds number Re, , (based on chord length ¢) and angle of attack @ in
Cambridge University Press
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141 the perpendicular plane and use the transformations

Mo ; ;
142 M = 2 \/1 —sin? @ sin® A
cos A
Re, - -
143 Reo = 2 \/1 —sin @ sin% A (2.1)
cos
143 y = arctan(tan @ cos A)

146 As reference length, we use consistently the chord length ¢ of the aerofoil defined perpen-
147 dicular to the wing’s leading edge.

148 2.2. Governing equations and numerical methods

149 High Reynolds number turbulent transonic flow is described by the compressible RANS
150 equations, coupled with a suitable turbulence model, given in non-dimensional, semi-discrete

151 form as

du
152 i R(u), (2.2)
153 where the vector R describes the non-linear residual terms resulting from the spatial
154 discretisation of the governing equations (and also includes the discrete control volumes,
155 independent of time herein, when equation (2.2) is derived from a conservative integral form
156 of the governing equations) and the conservative variables u = [p, pu, pv, pw, pE, p7]"
157 are defined for density, three Cartesian momentum components, total energy and working
158 variable of turbulence model. Specifically, the Reynolds stresses are modelled through the
159 Boussinesq approximation using the negative version of the Spalart—Allmaras turbulence
160 model (Allmaras et al. 2012) to obtain the eddy viscosity.
161 The non-linear governing equations (2.2), both steady-state and time-accurate, are solved
162 using the DLR-TAU solver, which is an industrial second-order code using a cell-vertex
163 finite-volume formulation capable of dealing with complex geometries (Schwamborn et al.
164 2006). The inviscid fluxes of the RANS equations are discretised using a central scheme
165 with matrix artificial dissipation, whereas a first-order upwind scheme is used for those of
166 the turbulence model. Gradients of flow variables, required for viscous fluxes and the source
167 term of the turbulence model, are computed using the Green—Gauss approach. Besides the
168 spanwise periodic boundary condition introduced in the infinite-wing setup, the viscous
169 wall no-slip condition is strongly imposed on the solid walls of the wing and the far field
170 is described as free-stream flow realised by the method of characteristics, consistent with
171 interior-flux discretisation. As time-stepper to converge the system of equations to a steady
172 state, we chose an explicit Runge—Kutta scheme with local time-stepping and geometric
173 multigrid (normally on three grid levels) for convergence acceleration. We typically aim for
174 a twelve orders of magnitude reduction in the norm of the density residual for steady-state
175 iterations, while the reader should note the discussion in section 3. For unsteady time-
176 marching simulation, which requires convergence to a pseudo steady state in dual time, the
177 second-order backward difference formula is adopted. Cauchy convergence control on the
178 drag coefficient is specified with a minimum of 50 iterations in dual time per real time step,
179 and a time-step size is defined to have approximately 1000 to 2000 time steps per period of a
180 shock-buffet oscillation, resulting in a dimensional time-step size (with respect to free-stream
181 velocity and chord length) of Az = 107 s to 107 s.
182 The steady-state RANS solution (fully coupled with the turbulence model), denoted &# and
183 satisfying R(#) = 0, is used as base flow around which the linearised system is formed,
184 leading to the eigenvalue problem

185 A =Ja (2.3)
Cambridge University Press
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186 through the exponential solution ansatz, where J = R /du is the flux Jacobian matrix and
187 @ and A are eigenvector and eigenvalue, respectively. The eigenvalue A = o + iw describes
188 exponential growth or decay through o~ and angular frequency of an oscillation through w.
189 The eigenvector contains the complex-valued spatial amplitudes of the linear perturbation
190 around the base flow, gii = u — i, where @i = @e®. The phase function ® = iBy + At is
191 specified by the chosen stability methodology (Theofilis 2011)—in spanwise uniform base
192 flow, where pv # 0 is permitted but di/dy = 0, assuming spanwise spatial periodicity
193 in the perturbation dynamics, a biglobal approach can be chosen with g > 0 solving on a
194 two-dimensional mesh in the xz-plane only, whereas triglobal analysis, setting 8 = 0 and
195 solving on an arbitrary mesh in three-dimensional space, makes no simplifying assumptions
196 on the base flow, or indeed the modal response, whatsoever.

197 The latter triglobal stability approach, used throughout herein, has been implemented
198 into the linear harmonic incarnation of the flow solver previously and its ability was
199 demonstrated in Timme & Thormann (2016) and Timme (2020). The implicitly restarted
200 Arnoldi method (Sorensen 1992), as implemented in the ARPACK library (Maschhoft &
201 Sorensen 1996; Lehoucq ef al. 1998), is used to approximate a few but relevant eigenmodes
202 in the outer iterations, whereby the Krylov sequence is computed for the shift-invert spectral
203 transformation giving the matrix (J — 1)~ (instead of J) with £ as user-specified complex-
204 valued shift and 7 as the identity matrix. This leads to the requirement of solving an inner linear
205 system with the shifted coefficient matrix (J — 1) in each outer step using a preconditioned
206 sparse iterative Krylov subspace solver herein (Parks et al. 2006; Xu et al. 2016).

207 The numerical strategy follows a first-discretise-then-linearise matrix-forming philosophy
208 with a mostly hand-differentiated Jacobian matrix, corresponding to the chosen spatial
209 discretisation including all boundary conditions and the turbulence model (without simplifi-
210 cations in the linearisation such as frozen eddy viscosity, cf. Thormann & Widhalm (2013)).
211 We refer to mostly hand-differentiated matrix, because dealing with the linearised spanwise
212 periodic boundary condition in this work is a delicate matter. Since such an analytical
213 boundary conditions is currently not available in the code, we made use of the existing
214 analytical linearisation where possible (i.e. internal points not having periodic-plane points
215 in their stencil) and implemented a numerical central finite-difference approach using graph
216 colouring where necessary. Define as master periodic points those that are updated directly
217 through solving the governing equations (i.e. those on one end of the otherwise finite span)
218 and as shadow periodic points those updated indirectly through assigning the value of their
219 paired master points (i.e. those on the other end). Care has to be taken that shadow periodic
220 points are discarded in the Jacobian matrix altogether and any dependence on those points is
221 transferred to the matrix position of the corresponding master periodic points.

222 For big problems with millions of degrees of freedom, the solution approach makes full
223 use of the high performance parallel computing infrastructure of the underlying industrial
224 flow solver. The investigation herein typically uses O(10—100) cores depending on the mesh
225 size. The established numerical strategy combined with an industrial flow solver means that
226 even practical non-canonical test cases at flight condition can be investigated provided the
227 decoupling of scales in high Reynolds number flow between the small scales of turbulence
228 and the large scales dominating the dynamic system applies.

229 3. Base flow classification

230 Flow conditions defined normal to the wing’s leading edge (denoted by subscript n) with

231 reference free-stream Mach number M., ,, = 0.73, chord Reynolds number Re, , = 3.2x10°

232 and angles of attack near the onset of shock buffet (similar to previous studies using the same

233 OAT15A profile) are our concern. All data are in non-dimensional form, in particular using
Cambridge University Press
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Figure 3: Convergence history of (a) density residual norm ||R,, || and base-flow force

coeflicients of (b) lift Cy, and (c) drag Cp for different spanwise spacings at angle of
attack @ = 3.5°. Red bullets in (a) relate to the snapshots in figure 4.

(a) (b)

y
X
Figure 4: Evolution of surface pressure coefficient C p on upper wing surface with respect
to iteration number showing (a) 10000, (») 40000 and (c) 120 000 (marked by red bullets

in figure 3a) at angle of attack @ = 3.5° for a straight wing with baseline mesh spacing
Ay = 0.05 and aspect ratio 42 = 3. Contour levels of C}, are in range [—1.5,0]. The

solid/dashed lines in (a) highlight the spanwise skin-friction coefficient at C 5= +1077.
The dashed-dotted lines in (b, ¢) show zero skin friction to highlight the separation zone.

the reference velocity U , and chord length ¢, defined perpendicular to the wing’s leading
edge, unless explicitly stated otherwise.

3.1. Iterative and mesh convergence

A convergence study at a fixed angle of attack @ = 3.5° is performed to assess the impact of
mesh resolution in the spanwise direction. A family of four meshes for a straight wing with
aspectratio A2 = 3 is considered, featuring uniform spanwise spacings between Ay = 0.2 and
0.025 giving between ny, = 15 and 120 points along the span altogether. The density residual
norm over iterations is examined for the steady-state simulations and presented in figure 3(a).
Coefficients of lift and drag of the fully converged flow solutions, together with the relative
errors, are summarised in table 1 while the respective convergence histories are provided in
figure 3(b,c). Besides the evident stages in the convergence behaviour discussed in the next
paragraph, the fully converged results show clear differences in the terminal values of lift
and drag coefficient, linked to the attainable flow solution for a given mesh resolution. The
coarsest mesh with 15 points along the span does not result in three-dimensional structures
(as found for the other meshes) and consequently the lift coefficient is the highest. With the
formation of said three-dimensional shock-distortion cells (one for the mesh with 30 points
Cambridge University Press
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ny Ay Cr. Errorg, (%) Cp Errors (%)
15 0.2  0.978026 7.5 0.045550 3.5
30 0.1 0.943001 3.6 0.044595 1.3
60 0.05 0.910152 0.0 0.043981 0.1
120 0.025 0.910180 (0.0) 0.044011 (0.0)

Table 1: Coefficients of lift and drag and relative error (with respect to finest mesh) from
mesh convergence study at angle of attack @ = 3.5° for wing with aspect ratio /R = 3.

Y
X
Figure 5: Fully-converged surface pressure coefficient C p. plotted in range [—1.5,0], on
upper wing surface as a function of angle of attack for straight wing with baseline mesh
spacing and aspect ratio /R = 3. From left to right are angles of attack & = 3.2° to 3.5°.

The dashed-dotted lines highlight the separation zone by showing the zero skin-friction
lines.

250 along the span and two for all finer meshes), the lift coefficient drops by 7.5% (cf. table 1).
251 A similar trend can be observed for the drag coefficient—note the competing components of
252 drag when a local pocket of shock distortion is formed in combination with its downstream
253 flow separation, as visualised in figure 4(b, ¢). Using the baseline mesh with 20 points per
254 unit length of span, giving a resolution of Ay = 0.05, only introduces a vanishing error in the
255 integrated coeflicients compared with the finest mesh of double the size. Importantly, this
256 conclusion has to be amended when scrutinising the global mode results to follow.

257 Looking more closely at the convergence history for the chosen baseline mesh, in
258 combination with the corresponding surface pressure coefficient at three iteration numbers
259 in figure 4, marked stages can be distinguished. To the naked eye, the surface pressure
260 solution reveals no three-dimensional cellular pattern until approximately 10 000 iterations
261 (see figure 4a), which describes the first, almost monotonic convergence phase in figure 3(a).
262 This type of spanwise-uniform flow is found at a density residual level of approximately
263 ||R,ll = 0(107%), which is two orders of magnitude lower compared to typical convergence
264 levels often used in industrial RANS simulations. More interestingly, an almost imperceptible
265 cellular pattern with wavelength equal to the aerofoil chord length ¢ can be visualised
266 through the spanwise skin-friction coeflicient, C f,» at a very low amplitude of O( 10‘7). As
267 will become clear in the following discussion, this subtly describes the leading unstable
268 spanwise-periodic shock-distortion mode (with wavelength equal to the chord length),
269 initially disturbing the otherwise spanwise-uniform base-flow solution. Continuing the
270  steady-state iterations, the flow enters a stage where disturbances seem to grow. Here, the
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Figure 6: Base-flow results on straight wing with baseline mesh spacing and aspect ratio
AR =3 showing (a) spanwise-uniform pressure coeflicient compared with experiments
from Jacquin et al. (2009) and steady-state two-dimensional aerofoil results from Sartor
et al. (2015) and (b) lift and drag coefficient as function of angle of attack «. Additional
data points in (b) for the lift coefficient (e) were also extracted from Sartor et al. (2015).
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Figure 7: Convergence history of density residual norm [|R, || for wing with baseline mesh
spacing and aspect ratio A2 = 3 showing (a) different angles of attack for straight wing
and (b) different sweep angles at angle of attack @ = 3.5°.

large-scale three-dimensional flow field is formed, as seen starting from 40 000 iterations in
figure 4(b). This continues until non-linear amplitude saturation helps establishing the final
steady state. Together with the convergence history of force coefficients, we can discern the
impact of spanwise mesh resolution on the formation of the cellular pattern. Effectively, a
minimum mesh resolution, and a minimum convergence threshold, is required to capture the
cellular flow pattern along the span.

It should be noted that it was attempted during this study to obtain a spanwise-uniform
solution at terminal convergence, for instance, by switching the time-stepper to the code’s
usual implicit backward Euler method or by initialising the flow field using different aerofoil
solutions converged to machine-epsilon values extruded along the span. Specifically, aerofoil
solutions were obtained both on a proper two-dimensional grid and on a three-dimensional
grid with one cell in the span direction and appropriate periodic boundary condition
(sometimes called 2.5 dimensional), ensuring consistency in the spatial discretisation with
respect to the proper three-dimensional approach throughout. Eventually, the shock distortion
appears, which is consistent with the stability results to follow. To offer a possible explanation,
converging to an unstable base state in the vicinity of an oscillatory global instability seems
to be doable since the base flow is close to the time-averaged mean flow of the time-marched
solution. This is not the case for the monotone shock-distortion mode.

3.2. Spanwise uniform base flow on straight and swept wings

In an earlier experimental study (Jacquin ef al. 2009) on a wing with a small aspect ratio
(AR = 3.4), the flow is steady below an angle of attack @ £ 3.1° at the same nominal flow
Cambridge University Press
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Figure 8: Steady base-flow surface pressure coeflicient C'p, plotted in range [—1.5, 0], for
wings with baseline mesh spacing and different aspect ratios at angle of attack a = 3.5°.

292 conditions studied herein. Surface oil flow visualisation revealed that the surface lines on
293 the suction side of this wing are effectively two-dimensional before onset of shock buffet. In
294 contrast, a three-dimensional flow structure can be observed behind the shock with angle of
295 attack increased to @ = 3.5°. This behaviour can be roughly examined using an appropriate
296 RANS simulation, too. Figure 5 presents a surface flow visualisation of the fully-converged
297 RANS solution for the flow over the straight wing at a few angles of attack around the onset
298  of unsteadiness. The formation of the three-dimensional cellular pattern for angles of attack
299 beyond onset (based on the stability results to follow) is revealed. Figure 6(a) presents the
300 pressure coefficient (extracted at the mid-span station) compared with these experiments
301 at two selected angles of attack around the onset of shock buffet and the numerical two-
302 dimensional aerofoil results (using a very similar version of the turbulence model) reproduced
303 from Sartor et al. (2015). The simulations at @ = 3.5° are in good agreement with the wind-
304 tunnel data at @ = 3.0°. The discrepancy is well documented and arises from the choice
305 of turbulence model which is further detailed in section 4.2. The corresponding integrated
306 coefficients of lift and drag are shown in figure 6(b). Particularly for the lift coefficient, the
307 very clear jump at angle of attack of approximately @ = 3.4°, coinciding with the formation
308 of the shock distortion, is identified. For the drag coeflicient, on the other hand, the jump is
309 less pronounced due to the aforementioned competing drag contributions. The data points
310 from Sartor et al. (2015) are included for reference noting that their two-dimensional aerofoil
311 simulation cannot produce said shock distortion.

312 These flow features can also be related to the non-monotonic trend in the convergence
313 history in figure 7(a). Although steady-state RANS results are independent of time, useful
314 insight can be extracted by analysing the residual history carefully to reveal the expected flow
315 unsteadiness. The figure shows the complete convergence trend of the density residual norm
316 of the steady RANS equations from low to high angles of attack around shock-buftet onset on
317 the straight wing. Two types of nominally steady flow characteristics, specifically spanwise
318 uniform and non-uniform base flow, can be identified depending on the level of convergence,
319 as seen through the surface pressure coefficient in figures 4 and 5. For the straight-wing
320 cases at angles of attack @ = 3.2° and 3.3°, the simulations quickly converge to the defined
321 tolerance of ||R,[| = O( 10~'2). There is no three-dimensional cellular flow pattern visible on
322 the wing surface as shown in figure 5. Interestingly, the iteration count grows dramatically
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Figure 9: Aspect-ratio dependence at machine-epsilon convergence (corresponding to
figure 8) showing (a) coefficients of lift Cy and drag Cp and (b) cell size L.

when increasing the angle of attack to @ = 3.4°. This suggests that we are in the vicinity
of a critical condition and it takes (substantially) more iterations to amplify an unstable
(spanwise-periodic) mode with a positive growth rate close to zero. This statement will be
supported in section 4.2 by using stability theory to extract dominant eigenmodes for the
selected uniform base flow. As explained in section 3.1, for stability analysis at higher angles
of attack @ = 3.4° and 3.5°, we select the approximately uniform base flow observed at 10 000
iterations giving a minimum density residual norm of approximately ||R,|| = 0(107%) from
the initial, almost monotonic stage of convergence. Similar convergence level was reported
by Crouch et al. (2019).

When the free-stream direction is not perpendicular to the leading edge of the wing,
flow over a swept wing is described. Following equation (2.1), we ensure that the flow
conditions perpendicular to the leading edge remain identical, independent of the sweep
angle, for the different sweep angles discussed herein, specifically A = 5°, 10°, 20° and 30°.
Their convergence behaviour is compared to the straight wing in figure 7(b). The solution
converges well, almost monotonically, for A = 20° and 30° and, interestingly and in contrast
to the straight wing, spanwise-uniform flow is found at terminal convergence. At the lower
sweep angles of A = 5° and 10°, convergence stalls, failing to reach the specified tolerance,
and different methods, such as selective frequency damping (Akervik ef al. 2006) or a stronger
implicit Newton-Krylov solver (Yan et al. 2021), should be explored in the future to find fully
converged base flow in those cases. Close inspection of the corresponding non-converged
flow fields suggests indecisiveness in either forming spanwise cellular structures as for sweep
angle A = 0° or converging towards spanwise uniform flow as for the two largest sweep angles
investigated. However, similar to the discussion for the straight wing above, approximately
uniform flow along the span is identified at convergence levels close to [|R,|| = 0(107%).
This statement will be further scrutinised in section 4.2.

3.3. Spanwise non-uniform base flow on straight wing

Based on previous investigations (Jacquin et al. 2009; Plante et al. 2020), three-dimensional
shock-distortion patterns exist in post-onset shock-buftet conditions for the straight wing with
aspect ratio A& = 3. Taking angle of attack @ = 3.5° as an example, the simulation starts
showing such three-dimensional cells along the span after approximately 40 000 iterations
(see figure 4b). The pronouncedness of cells continues to grow while the residual goes down,
until the flow reaches the stage of non-linear saturation. For a full account on the base flow, a
more comprehensive study of the spanwise cells on wings with different aspect ratios between
AR =1 and 10 is shown in figure 8. Figure 9 illustrates the lift and drag coefficients, C; and
Cp, and the size of each cell, L, measuring the distance between its two foci (highlighted by
Cambridge University Press
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358 the exemplary red line in figure 8), varying with aspect ratio. There is one cell formed on
359 the wing with aspect ratio /R = 1, the size of which is smaller than the cells on wings with
360 AR =2to4. The cells are well developed on wings with A > 5, almost two times larger than
361 on AR = 1. The variation of lift and drag coefficient with respect to the finite aspect ratio
362 is less pronounced; the maximum difference between the wings with aspect ratio AR = 3
363 and the highest aspect ratio is 4.0% for the lift coefficient and 1.7% for the drag coeflicient,
364 respectively. Stability analysis will be discussed for aspect ratios /AR = 3, 5 and 10.

365 4. Triglobal shock-buffet stability results

366 Based on the spanwise uniform and non-uniform steady-state base flows established in
367 section 3, triglobal shock-buffet instability studies follow. First, we probe the numerical
368 setup to ensure it is robust and understood with respect to the various intricate parameter
369 choices. Then, two types of global modes, specifically uniform and periodic in the spanwise
370 direction, are investigated for the spanwise uniform base flow on straight and swept wings.
371 Accordingly, the modal characteristics of the non-uniform base flow, which describes the
372 saturated state following a first bifurcation with spanwise-periodic monotone modes, are
373 scrutinised. Finally, we interpret the findings from a time-domain perspective.

374 4.1. Sanity checks on numerical setup

375 The primary purpose of scrutinising the solution approach when solving the triglobal three-
376 dimensional linearised aerodynamic system with spanwise periodic boundary condition is to
377 ensure robustness with respect to the main parameters of the numerical problem, focussing
378 on the finite-difference step size when computing the periodic parts of the Jacobian matrix,
379 finite aspect ratio and spanwise mesh resolution. Note that, even though we initially present
380 our argumentation based on the eigenvalues A only without visualising the corresponding
381 eigenvectors #@, the eigenvalues are indeed examined through the Rayleigh quotient, 1 =
382 af! Ji (where eigenvector # is scaled to unit length, 2@ = 1, and superscript H denotes the
383 Hermitian transpose), implicitly verifying the eigenvector, too. These sanity checks focus on
384 the spanwise-uniform base flow on the straight wing at angle of attack @ = 3.5°.

385 The effect of finite-difference step size, €, on the computed eigenmodes is scrutinised first
386 for the case with baseline mesh spacing Ay = 0.05 and aspect ratio /R = 3. The step size
387 defines the increment with respect to a local flow variable, as discussed by Mettot et al.
388 (2014). Altogether four different values of the step size are presented in figure 10(a). Two
389 shift positions, specifically 1 = 0.45i and ¢ = 0.3, are used here to identify the discrete
390 aerofoil-type mode with higher frequency (w =~ 0.44) and four monotone (i.e. zero frequency)
391 shock-distortion modes of different wavelengths. Within the investigated range of step sizes,
392 the impact on the numerical accuracy of the eigenvalues is virtually non-existent, which
393 should be expected from such a graph-coloured approach. We will consistently use € = 107°
394 1in the following and throughout.

395 A wide range of (essentially continuous) wavenumbers can be scrutinised in the framework
396 of biglobal stability analysis. Hence, modes with (very) long, intermediate and short
397 wavelengths have been found by Crouch et al. (2019, 2020), while contemplating the physical
398 meaning of those short wavelength modes in the context of turbulence modelling, due to
399 the spanwise length scales becoming similar to the shear-layer thickness. Triglobal stability
400 analysis, on the other hand, identifies discrete modes from the continuous band found in
401 biglobal studies whereby the possible wavenumbers are dictated by the finite aspect ratio
402 and associated integer numbers of cells along the span, enforced by the periodic boundary
403 condition. At the same time, in a triglobal analysis, very long (albeit wavenumber S # 0)
404 and very short wavelength modes quickly become computationally prohibitive; very small
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Figure 10: Dependence of eigenmodes found in spanwise-uniform base flow on straight
wing at angle of attack @ = 3.5° showing effect of (a) finite-difference step size, (b)
aspect ratio and (c) spanwise mesh spacing. The remaining main parameters in each case
are kept at their reference values, specifically baseline mesh spacing Ay = 0.05, aspect
ratio A2 = 3 and finite-difference step size € = 1076, Stability results for an alternative
base flow constructed by extruding an aerofoil solution along the span (X), cf. figure 11 as
well, and numerical data from Paladini et al. (2019) (e) are included in (¢).

wavenumbers require a high finite aspect ratio (cf. the discussion surrounding figure 16),
whereas very large wavenumbers require smallest spanwise mesh spacings. Therefore, the
combined effect of finite aspect ratio and spanwise mesh resolution on the eigensolution is
examined together, as shown in figure 10(b) and (c), respectively. Note that the spanwise-
uniform oscillatory aerofoil-type mode is unaffected by both the chosen aspect ratio and the
spanwise mesh spacing, and it is hence not further discussed herein. First, for a sufficient
number of investigated aspect ratios, as presented in figure 10(b) for /R = 2 to 5, the
continuous band can be reconstructed nicely. Specifically, the figure shows the growth rate
of the monotone modes as a function of wavenumber 8 defined as 8 = 2/l where the
dimensionless wavelength along the span is /. As mentioned earlier for the base flow and
also discussed in the following, the mode with wavelength / equal to the chord length,
¢ = 1, giving a wavenumber 8 = 27 dominates the shock distortion. Second, in figure 10(c),
convergence with decreasing mesh spacing can be identified clearly for the three mesh
spacings presented. An additional refinement level using Ay = 0.02 shows identical results
compared with Ay = 0.025. In contrast to the refinement study for the base flow, we continue
working with a spacing of Ay = 0.025, unless indicated otherwise below to do spot checks.
The figure includes stability results for a base flow constructed by extrusion along the span
of an aerofoil steady state converged to machine-epsilon values, which will be discussed
in conjunction with figure 11. Finally, included biglobal data at @ = 3.2° reproduced from
Paladini et al. (2019) show good agreement overall, considering both the usual challenge in
comparing growth rates and the underlying differences in the simulation setups.

4.2. Triglobal instability of spanwise uniform base flow on straight wing

With the numerical setup established, we first carry out two-dimensional aerofoil stability
analysis computing global modes at angles of attack between @ = 3.2° and 3.5°. In
figure 11(a), our results are compared with those by Sartor et al. (2015) showing their solution
for angles of attack between @ = 3° and 4° in increments of 0.25°. To be unambiguous, two-
dimensional analysis refers to a two-dimensional aerofoil mesh in the xz-plane and using
both a two-dimensional base flow and perturbation ansatz, with no spanwise component
(ov = pv = 0) considered whatsoever. Specifically, the perturbation around the base flow
takes the form & = @ e!, where @i contains the complex-valued amplitudes of the five
conservative variables (excluding spanwise momentum). The perturbation decays for angles
Cambridge University Press
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Figure 11: Angle-of-attack dependence of eigenmodes showing (a) two-dimensional base
flow, (b) comparison between two-dimensional (2D), 2.5 dimensional (2.5D) and
three-dimensional (3D) straight-wing spanwise-uniform base flow and (c¢)
three-dimensional base flow. The results by Sartor et al. (2015) in (a) are in the range
between a = 3.0° and 4.0° with increments of 0.25°, and shock-buffet onset occurs at
approximately a = 3.4°,

436 of attack @ < 3.4°. Atapproximately @ = 3.4°, the decay rate (o < 0) turns into a growth rate
437 (o > 0) with the leading eigenvalue crossing the imaginary axis into the positive half plane,

438 which means the perturbation is marginally unstable growing exponentially in time. Note
439 that differences in onset angle of attack compared with previous work on the same aerofoil
440 can be explained by a seemingly minor change of the Spalart—Allmaras turbulence model.

441  Specifically, in Crouch et al. (2019) and Paladini et al. (2019) the compressibility correction
442 (Spalart 2000) is added as additional source term, which is not included herein (nor in Sartor
443 et al. (2015)). The effect of this correction is a lowering of eddy-viscosity levels promoting
444 an earlier onset of the instability. On the contrary, Sartor ef al. (2015) predict the onset
445 angle of attack at approximately @ = 3.4°, similar to our work, without using the correction
446 term. Interestingly, the wind-tunnel test data in Jacquin et al. (2009), using the same aerofoil
447 and flow conditions, agree more closely with the numerically predicted sightly lower onset
448 angle of attack. At angle of attack @ = 3.5°, strong shock unsteadiness dominates the flow
449 field. There is one single unstable buffet mode with an angular frequency of approximately
450 w = 0.44 (equivalent to a normalised Strouhal number St = w/(27 cos A) = 0.07), which is
451 close to the experimental value for the same aerofoil and agrees with the frequencies typically
452 reported for aerofoil shock buffet.

453 The stability results on the infinite wing with aspect ratio 42 = 3 using spanwise-uniform
454 base flow at angle of attack @ = 3.5° is selected to compare with the two-dimensional
455 eigenspectrum, as seen in figure 11(b). Note, albeit using the same two-dimensional baseline
456 mesh (which is extruded to create the infinite-wing geometry) and finding good agreement
457 overall, remaining differences in the leading aerofoil-type eigenmode can be explained by
458 the inevitable differences between proper two- and three-dimensional spatial discretisations.
459 In contrast, we found that the approximate spanwise-uniform base flow for the infinite wing
460 (see the discussion surrounding figure 4a) is not a cause of discrepancies. To substantiate the
461 latter two points, a triglobal stability analysis was performed using a 2.5-dimensional aerofoil
462 base flow extruded to the same spanwise grid resolution. Specifically, the aerofoil solution
463 is obtained on a mesh with a unit length in span to ensure consistent spatial discretisation
464 with respect to our default three-dimensional setup. The close-to-perfect agreement in the
465 stability results on both the extruded and proper three-dimensional base flow, as observed in
466 figure 11(b) (and also earlier in figure 10c¢), confirms our assertion of using the approximately
467 spanwise-uniform base flow observed at 10000 iterations. While similar affirmative results
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Figure 12: Real part of total energy amplitude ,EE of (a) the spanwise-uniform oscillatory
aerofoil mode and (b) the leading spanwise-periodic monotone stationary mode at angle
of attack a = 3.5° showing iso-surfaces at values +0.001.

Figure 13: Real part of surface pressure coefficient C p» plotted in range [-0.001,0.001],
of spanwise-periodic monotone stationary modes (ordered with decreasing growth rate as
seen in figure 11b) for straight wing with aspect ratio /R = 3 at angle of attack @ = 3.5°.

for the swept-wing cases, discussed below, have been obtained, too, these are not presented
to remain concise. We choose to continue with the monolithic triglobal framework.

Importantly, the migration of a dominant triglobal spanwise-uniform oscillatory mode can
be observed while incrementing the angle of attack, see figure 11(c). At angles of attack
a = 3.2° and 3.3°, the flow is globally stable, and no unstable spanwise-periodic mode can
be observed either. This agrees with the results of the fully converged steady-state RANS
simulations shown in figure 5. As the angle of attack is increased, the spanwise-uniform mode
becomes unstable just below @ = 3.4° with angular frequency of approximately w = 0.44 and
growth rate nearly identical to the aerofoil analysis. The spatial structure of this nominally
aerofoil mode at angle of attack @ = 3.5° is visualised in figure 12(a), showing the real part of
the spatial amplitude function of the total energy, highlighting the synchronisation between
the shock oscillation and the resulting pulsating shear layer. Besides the oscillatory aerofoil
mode, several spanwise-periodic monotone (i.e. with zero frequency) non-travelling modes
are identified. The leading unstable monotone mode at @ = 3.5°, shown in figure 12(b), has
three cells each with a non-dimensional spanwise wavelength [ = ¢, measured parallel to the
leading edge. Recall that the periodic boundary condition only permits an integer number of
cells for any given aspect ratio. For the case with aspect ratio /R = 3, this corresponds to the
wavenumber varying between 8 = 4/3 and 12/3 & for the five modes. All modes are visualised
in figure 13 showing the cellular pattern on the wing surface highlighted by the real part of
pressure coefficient C »- Note that at angle of attack & = 3.4°, both the spanwise-uniform and
spanwise-periodic modes are marginally unstable, explaining the very slow machine-epsilon
convergence to a steady base flow indicated in figure 7(a).
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Figure 14: Eigenspectra of spanwise-uniform base flow showing (a) sweep angles
between A = 0° and 30° at angle of attack @ = 3.5° and (b) several angles of attack for
sweep angle A = 20°. Coloured dashed lines indicate the continuous band of eigenmodes
that can be found with biglobal analysis (see e.g. Crouch et al. (2019)), while grey dotted
lines in (a) show the migration of discrete modes (with defined number of cells along the
span) with sweep angle.

4.3. Triglobal instability of spanwise uniform base flow on swept wing

In previous biglobal studies on infinite wings (Crouch et al. 2019; Paladini et al. 2019;
Plante et al. 2021), the frequency range of those dominant modes related to the shock-buffet
instability on swept wings was found to be up to an order of magnitude higher compared with
the aerofoil mode on a straight wing, depending on the particular configuration, specifically
sweep angle. Figure 14(a) presents the eigenspectra resulting from the stability analysis on
wings with sweep angles between A = 0° and 30° and aspect ratio /& = 3. First, the inset
plot in the figure zooms in around the spanwise-uniform oscillatory aerofoil mode and, while
its frequency stays more or less constant, a strong stabilising effect with increasing sweep
angle can be observed at fixed angle of attack @ = 3.5°. Second, the spanwise-periodic
monotone stationary modes observed on the straight wing become oscillatory travelling
modes for non-zero sweep angles, which is in agreement with previous biglobal studies. As
a general trend, their oscillation frequency increases with the sweep angle. Also, for a given
sweep angle, the oscillation frequency increases with the number of cells along the span.
Taking the wing with sweep angle A = 20° as an example, those dominant modes cover a
broadband frequency range between approximately w = 1 and 4 (corresponding to typical
swept-wing shock-buffet Strouhal numbers between approximately St = 0.16 and 0.65).
Furthermore, as shown in figure 14(b), when increasing the angle of attack for fixed sweep
angle A = 20°, both the broadband frequency range and growth rate of the spanwise-periodic
modes increase. At lower angle of attack @ = 3.4°, only three marginal spanwise-periodic
modes can be identified with wavenumbers ranging from g = 4/3 7 to 8/3 7. Considering the
marginally stable aerofoil mode at this angle of attack, too, a discussion of the corresponding
time-marching simulations would be of interest (cf. section 4.5).

To comprehend the isolated effect of sweep angle, results (consistently scaled by the
velocity in the plane perpendicular to the leading edge) are presented in figure 15, which
characterises the spanwise-periodic modes by showing growth rate, angular frequency and
speed of propagation as a function of wavenumber 8. In figure 15(a) it can be seen clearly that
the highest growth rate is found for the modes with wavenumber of approximately 5 = 2,
corresponding to a wavelength / = ¢ (i.e. three cells for the straight and swept wings with
aspect ratio 42 = 3). As for the aerofoil mode, biglobal literature has shown a stabilising
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Figure 15: Sweep-angle dependence of (a) growth rate, (b) angular frequency and (c)
phase speed of spanwise-periodic modes as function of wavenumber 8. The empirical
phase-speed relation, 0.7 tan A, comes from Paladini ef al. (2019). Additional data points
for sweep angle A = 20° using symbols (¢) and (X) describe spanwise mesh resolution of
Ay = 0.05 and 0.02, respectively, in addition to the default spacing of Ay = 0.025.

effect of the sweep angle. Similar behaviour is found here. The band of unstable modes
(visible through the discrete modes) dominates the range of wavenumbers between m and
4r, which agrees well with the latest revised results by Crouch er al. (2020). The frequency
of the unstable modes grows both with the wavenumber and sweep angle, as shown in
figure 15(b). Previously, the empirical relation, w/cos A = 0.7 8 tan A, has been presented
in Paladini et al. (2019) and overall good agreement with our triglobal results is observed.
As highlighted in experiments on finite swept wings, three-dimensional (so-called) buffet
cells propagate outboard along the span. The non-dimensional phase speed of those modes
can be given by the same empirical relation, w/(8 cos A) = 0.7 tan A, hence independent of
wavenumber but increasing with sweep angle. In the wavenumber range f < 16 examined
here, the phase speed is nearly constant for each sweep angle, see figure 15(c). In an effort to
scrutinise the remaining differences, particularly at higher sweep angles and wavenumbers,
a mesh refinement study was done for sweep angle A = 20°. The additional data points for
meshes with Ay = 0.05 and 0.02 in figure 15(b, c) suggest that differences with respect to the
empirical relation are not fully explained by mesh refinement alone. The spatial structures of
the spanwise-periodic travelling modes on the swept wings resemble those stationary modes
on the straight wing, as presented in figures 12 and 13, and are not repeated here. However,
one observation must be pointed out. The imaginary part of the travelling modes is spatially
90° out of phase to the real part, i.e. minima and maxima of the imaginary part can be found
at zero crossings of the corresponding real part, to allow the spanwise propagation of cells.
Time-domain reconstruction of the monotone stationary modes, on the other hand, leads to
an unsteady flow perturbation describing a monotonically growing shock distortion.

As stated earlier, the modes with smallest wavenumbers are absent due to the triglobal
limitation of describing the long wavelength on the wings with low aspect ratio. Hence,
two wings with very high aspect ratio /R = 16 and 32 were created using n, = 80 points
along the span. Figure 16 presents the growth rate and frequency of eigenmodes in the range
of very small wavenumbers at four sweep angles. Two distinct branches of modes can be
observed; one outboard branch which describes modes travelling outboard along the wing
in a sense of positive sweep angle and another inboard branch describing propagation in the
opposite direction instead. Overall, the trend resembles what was discussed by Crouch et
al. (2019, 2020) and Plante et al. (2021). The inboard branch (visualised by dashed lines
in the figure) has higher growth rates than the outboard branch, which would suggest that
the inboard behaviour is more dominant. At the same time, the inboard branch has lower
frequency than the outboard branch. Having said this, there are some important differences
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Figure 16: Discussion of very small (positive) wavenumbers § < 1 at angle of attack
a = 3.5° showing (a) growth rate and (») angular frequency. Outboard- and
inboard-running modes are denoted by solid and dashed lines, respectively.
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Figure 17: Eigenspectra of spanwise non-uniform base flow on straight wings with aspect
ratio AR = 3, 5 and 10 at angle of attack @ = 3.4° (open symbol) and 3.5° (solid symbol).

to that discussion. Crouch et al. (2019, 2020) presented two branches with positive and
negative frequency, respectively. Specifically, the negative-frequency branch was related
to an inboard-running behaviour based on the phase-speed relation. w/B. In our case, we
find pairs of inboard/outboard modes with positive frequencies and deduct the direction of
propagation from the eigenvector. Indeed, due to the mathematical character of the eigenvalue
problem with a real-valued matrix, we can also find the modes that are complex conjugate
to those presented in the figure (i.e. with negative frequency) for both the inboard- and
outboard-running modes. At a wavenumber S = 0, with the two branches merged, we find
the aerofoil mode only describing the spanwise-uniform chordwise shock oscillation.

4.4. Triglobal instability of spanwise non-uniform base flow on straight wing

Attention now turns to the spanwise non-uniform base flow obtained at terminal convergence
of the steady RANS iterations at a sweep angle of A = 0°. We focus on analysing the stability
of straight wings whose base flow contains three-dimensional cellular structures, as shown
in figure 8. Recall that the wings with higher sweep angle gave spanwise uniform base flow
also at terminal convergence. Low, medium and high aspect-ratio wings with /& = 3, 5
and 10 were chosen on account of the number of cells and cell size highlighted in figure 9.
Figure 17 shows the eigenspectra of these three wing flows at supercritical angles of attack
Cambridge University Press
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Figure 18: Real part of surface pressure coefficient C p, plotted in range [—0.001, 0.001],
showing (a, c, e) the leading mode and (b, d, f, g) the marginal/unstable modes of the
spanwise non-uniform base flow on straight wings with aspect ratio /2 = 3, 5 and 10.

a = 3.4° and 3.5°. On the wing with the lowest aspect ratio, one single unstable mode
is identified with an angular frequency of approximately w = 0.4, close to the spanwise-
uniform aerofoil mode’s frequency, but with a substantially higher growth rate. There is
also a marginally stable mode with a slightly decreased frequency. These two modes are
proper three-dimensional. Specifically, spatial amplitudes follow the shock structure of the
underlying base flow, resulting from the growth of the spanwise-periodic monotone modes
and non-linear amplitude saturation. Interestingly, and consequently, those monotone modes
do not feature in the perturbation dynamics of the spanwise non-uniform base flow. For the
leading unstable mode, the dynamics of the two cells are synchronised (see figure 18a),
whereas for the marginally stable mode the cells are spatially out of phase (see figure 18b).
In the case of the wing with the medium aspect ratio 42 = 5 at angle of attack o = 3.5°, two
unstable modes are observed. The growth rate of the leading mode is lower compared to that
at aspect ratio A2 = 3, while its frequency is slightly increased. The spatial structures of these
Cambridge University Press
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Figure 19: Time histories of perturbation in lift coefficient, Cy , calculated by unsteady
RANS (URANS) simulations and reconstructed from leading unstable global mode in
spanwise non-uniform base flow (as shown in figures 17 and 18) for two straight wings at
angle of attack @ = 3.5° with aspect ratio (a) A& = 3 and (b) /R = 5. The bullets (o)
correspond to the time instances visualised in figure 20.

584 modes are similar to those on the wing with aspect ratio 42 = 3, as shown in figure 18(c,d).
585 At the lower angle of attack @ = 3.4°, only one dominant mode is observed which agrees
586 with the single cell found in the base flow. Finally, in the case of the wing with the highest
587 aspect ratio which shows three cells in the base flow in figure 8, three unstable modes are
588 identified. Overall in spanwise non-uniform base flow, the number of discrete, physically
589 relevant modes seems to correspond with the number of shock-distortion cells.

590 4.5. Time-domain interpretation of global modes

591 To confirm accuracy of the eigensolution and interpret the interplay of multiple dominant
592 modes, a comparison with time-marching unsteady RANS results is shown in figures 19
593 through 22. We focus both on the straight wing while scrutinising the aspect-ratio and base-
594 flow dependence (following the previous subsections) and on the swept-wing flow with sweep
595 angle A = 20° addressing the angle-of-attack dependence (cf. figure 14b). Note in contrast
596 to the unsteady RANS simulations in Crouch et al. (2019) where the initial flow field was
597 perturbed by an instability mode, we integrate in time starting from non-perfectly converged
598 steady-state solutions exhibiting residual noise. Figures 19 and 21 present the time histories
599 of the perturbation in lift coefficient with respect to the base flow at terminal convergence,
600 Cp =Cr —Cyr, while figures 20 and 22 show the corresponding surface pressure coefficient
601 at suitably selected time instances. The reconstruction of the unsteady flow solution from
602 the global modes makes use of the relation 5L(t) = 5L e’ + c.c., where c.c. refers to the
603 complex conjugate and the complex-valued amplitude of the lift perturbation, Cy, follows
604 from integrating the eigenvector @ over the solid wing surface (just as obtaining integrated
605 aerodynamic forces from the base flow). Overall, from the figures it can be concluded that
606 the stability tool produces results on a par with time-marching unsteady RANS simulations
607 within the limit of small unsteady perturbation amplitudes, while, at the same time, the leading
608 global modes offer an explanation for the intricate nature of the time-marched signals.

609 For the straight wing with aspect ratio /R = 3 in figure 19(a), two unsteady RANS
610 simulations are shown starting either from spanwise uniform or non-uniform base flow. Note
611 that the perturbation is shown in both cases with respect to the lift coefficient of the non-linear
612 non-uniform base flow, as is the global mode reconstruction. Looking at the unsteady RANS
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Figure 20: Snapshots of surface pressure coefficient C,, plotted in range [-1.5, 0], for
(a—e) aspect ratio AR = 3 at dimensionless time instances t = 71, 95, 152, 162, 466
(cf. figure 19a) and (f—j) aspect ratio AR = 5 at dimensionless time instances
t =143, 262, 392, 440, 547 (cf. figure 19b), both initialised from non-uniform base flow.

simulation started from the non-uniform base flow, the corresponding global stability signal
reconstructed from the leading global mode can predict the linear growth of the perturbation
until approximately ¢ = 95 (in non-dimensional units), before a non-linear mechanism plays
the dominant role in saturating the growth. Obviously, in the exponential growth stage for time
t < 95 where linear perturbation amplitudes are observed, the angular frequency w ~ 0.4 is
in agreement with the stability results by construction. Subsequently, once within the stage
of established limit-cycle oscillation (LCO) for non-dimensional time 160 < ¢ < 435, the
frequency increases slightly to approximately w = 0.44 implying the aerofoil mode dominates
the flow. Indeed, the time-averaged mean lift coefficient agrees more or less with the value of
the spanwise-uniform base flow. Figure 20(c,d), showing the corresponding surface pressure
coefficient, aims to highlight the LCO of the spanwise-uniform shock front corresponding
Cambridge University Press



Journal of Fluid Mechanics Page 22 of 27

22 W. He and S. Timme

624 to the expansion and contraction of its downstream shear layer (essentially aerofoil shock
625 buffet). Concerning the unsteady RANS simulation started from the spanwise-uniform base
626 flow, initially the uniform shock front gets disturbed through the leading monotone shock-
627 distortion mode with wavelength equal to the chord length (which is expected and similar to
628 the machine-epsilon convergence of the non-linear flow using the steady-state time stepper).
629 Note that the corresponding signal reconstructed from the monotone shock-distortion mode
630 is not included in the plot. Non-linear saturation effects make the two unsteady RANS
631 simulations identical once the limit cycle is established. Nevertheless, an interesting event
632 can be observed at approximately ¢ = 466. A strong burst-like excursion of the lift coefficient
633 occurs due to the dramatic growth of pressure disturbances resembling once again the
634 leading unstable monotone mode (highlighted in figure 20e), following which the flow re-
635 enters the aerofoil-like limit cycle. Repeated reappearance of the flare-up of the unstable
636 monotone modes is expected. Required time scales of the time-marching simulations, as we
637 demonstrate, are very substantial near the onset to reveal the appearance and interplay of
638 different modes. Interestingly, the description of the time-marching simulations on the straight
639 wing in Crouch et al. (2019) would suggest that they observed a similar event of high activity
640 of the otherwise seemingly dormant, spanwise-periodic monotone (shock-distortion) mode.
641 The reader is also referred to Plante ef al. (2020, 2021), where non-linear time-marching
642 simulations are discussed. (The same argument applies to our swept-wing case discussed
643 below.) Therein, the growth of the leading shock-distortion mode is saturated leading to a
644 persistent appearance of the buffet cells. The reason for this contrast can be manifold, such as
645 proximity to the onset condition, different aerofoil profiles, chosen aspect ratio, turbulence
646 model version, and spatial discretisation.

647 Concerning the wing with aspect ratio /2 = 5, the initial unsteady flow development,
648 when started from the spanwise non-uniform base flow, is identical to the lower aspect-
649 ratio wing, eventually leading to an LCO describing spanwise-uniform aerofoil-like shock
650 oscillation. During this stage (0 < ¢ < 200), two slopes of o1 = 0.067 and 0, =~ 0.012
651 are identified corresponding to the growth rates of dominant and the marginally unstable
652 modes, respectively. Importantly (to assure a correct simulation setup with periodic boundary
653 condition along the span), during the established LCO stage, the two wings with aspect
654 ratio /R = 3 and 5 predict quasi-identical unsteady flow fields with the same dominant
655 frequency of approximately w = 0.44, time-averaged mean lift coefficient of 0.976 and
656 associated oscillation amplitude of 0.048. Since the wing with aspect ratio /2 = 5 has a
657 higher lift coefficient of C; = 0.933 for the spanwise non-uniform base flow, compared
658 with C; = 0.910 for the wing with aspect ratio A& = 3 (cf. figure 9), its shift towards the
659 mean-flow value in the spanwise-uniform LCO stage is somewhat lower, as visualised in
660 figure 19. Nonetheless, we observe an aspect-ratio dependence. After long time integration
661 until approximately ¢ = 390 (cf. figure 19b), the spanwise-uniform shock oscillation gets
662 disturbed, similar to the wing with aspect ratio 42 = 3 shown in figure 20(e). However,
663 looking at figure 20(h), the disturbance does not resemble the leading monotone shock-
664 distortion mode with wavelength equal to the chord length. Subsequently, the unsteady lift
665 coefficient becomes irregular resulting from the pulsation of the single cell visualised in
666 figure 20(7), in addition to the entire shock front oscillating in chordwise direction. The
667 appearance of a single cell could be linked to the interplay of the two unstable modes,
668 described in figure 17, possibly leading to an incomplete cancellation of the shock curvature
669 due to the out-of-phase spatial structures shown in figure 18(c,d).

670 Analysing both the time histories of global integrated coeflicients and pressure signals at
671 various discrete surface points, we find a dominant frequency of approximately w = 0.35.
672 On this note, the interested reader is once again referred to Plante et al. (2020, 2021) who
673 compared unsteady RANS simulations on 2.5-dimensional (spanwise invariant) and infinite
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Figure 21: Time histories of perturbation in lift coefficient, C, L, calculated by unsteady
RANS (URANS) and linear global mode for swept-wing base flow with sweep angle
A =20° and aspect ratio /R = 3 at angles of attack (a) @ = 3.4° and (b) @ = 3.5°.

three-dimensional cases for straight and swept wings, albeit using a different aerofoil profile.
The spanwise invariant scenario resulted in shock unsteadiness with a dominant frequency
of St = 0.075 (w = 0.47), as did their corresponding biglobal stability study, whereas
the power spectral density estimate of the three-dimensional wing gave a lower dominant
frequency peaking at approximately St = 0.06 (w = 0.38). The flow field itself showed
irregular amplification of a shock distortion and consequently buffet cells. While the reasons
for this frequency-related observation remained unexplained, we propose a possible link to
our global mode analysis using the spanwise-varying base flow.

Figure 21 summarises two unsteady RANS simulations for the flow over a wing with
sweep angle A = 20° and aspect ratio /R = 3 around the onset of shock buffet at
angles of attack @ = 3.4° and 3.5°. This discussion relates to the global modes and
stability characteristics described in figure 14(b). Both simulations are initialised from
their fully-converged spanwise-uniform base flows. The first long stretch of the signal until
approximately ¢ = 961, shown as a flat line in figure 21(a), contains two stages. First,
remaining noise in the flow field decays exponentially dominated by the dynamics of the
stable aerofoil mode until approximately ¢ = 633 (not shown for clarity). Second, the leading
spanwise-periodic travelling shock-distortion mode with wavelength equal to the chord length
grows exponentially between approximately # = 633 and 961. The growth, both when linear
assumptions apply and even more so in the non-linear stage, is substantial, as visualised
in figure 22. Recall the discussion on the straight-wing time-marching simulations earlier.
The figure shows both the outboard propagation of the three buffet cells with an estimated
phase speed of 0.22 in the non-linear amplitude stage (while the linear stage agrees with the
results presented in figure 15¢) and the significant shock distortion, which in its final stages
results in a complete breakdown of the flow field, as is evident from the almost 50% drop
in lift coefficient compared with the base-flow value C; = 0.976. (Note, both phase speed
and lift coefficient are with respect to the reference velocity perpendicular to wing’s leading
edge.) In the aftermath, the flow recovers describing a spanwise-uniform shock oscillation
with decaying amplitudes, according to the marginally stable aerofoil mode. Possibly, even
though the decaying aerofoil mode dominates the global flow field, the initially minute
growth of the shock-distortion mode is also present. The inset plot in figure 21(a) illustrates
an attempt to estimate the growth rates of these latter two stages. The decay/growth rates
extracted from the signal with linear amplitudes, denoted o (=~ —0.007) and o (= 0.028)
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Figure 22: Snapshots of surface pressure coefficient Cp, plotted in range [-1.5, 0], and
surface skin-friction lines for swept wing with aspect ratio /R = 3 and sweep angle
A = 20° between dimensionless times (a—d) t = 938.63 and 946.22 with increment

At =2.53 and (e) t = 986.64, initialised from spanwise-uniform base flow at angle of
attack @ = 3.4°,

706 in the figure, are in excellent agreement with those from the stability analysis in figure 14(b).
707 Indeed, the reconstruction of the lift coefficient using the stable aerofoil mode agrees very
708 well with the decaying oscillation of the unsteady RANS simulation. Overall, the description
709 of the flow characteristics for the higher angle of attack @ = 3.5° in figure 21(b) is very
710 similar with the exception that now the aerofoil mode is unstable leading to periods of
711 spanwise-uniform oscillations of limited amplitude.

712 5. Conclusions

713 Triglobal stability analysis using an iterative inner-outer solution approach is exercised
714 herein for the study of infinite wings featuring transonic shock buffet and two types of steady
715 base flows; spanwise uniform flow on straight and swept wings and non-uniform flow on
716 a straight wing. Infinite wings are modelled by enforcing a spanwise periodic boundary
717 condition, which was linearised in the chosen flow solver as part of the current work. Flow
718 gradients are permitted in all spatial directions when computing the steady base flow and no
719 limiting assumptions on the perturbation dynamics are imposed either, which generalises the
720 more restrictive spanwise homogeneity and periodicity conditions of corresponding biglobal
721  studies. Swept-wing flow is simulated by adjusting the free-stream velocity vector to ensure
722 that the reference conditions in the plane perpendicular to the leading edge of the wing are
723 constant and independent of sweep angle.

724 Quasi three-dimensional spanwise-uniform base flow on straight and swept wings, studied
725 atangles of attack around the onset of unsteadiness at high Reynolds number, is quantitatively
726 comparable to a proper two-dimensional aerofoil, albeit using a fully three-dimensional
727 solution approach. Besides the spanwise-uniform oscillatory aerofoil mode, a group of
728 spatially-periodic monotone shock-distortion modes characterised by different wavenumbers
729 are found on the straight wing. These stationary modes develop into travelling modes in
730 swept-wing flow covering the typical broadband frequency range of finite-wing shock buffet.
731  The leading shock-distortion mode has a wavelength equal to the aerofoil chord, independent
732 of sweep angle. Frequency and phase speed increase with sweep angle (and wavenumber
733 for the former) and agree with an empirical relation previously established in the literature.
734 For the limit of very small wavenumbers close to zero, mode branches of both outboard-
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running and more dominant inboard-running direction are identified. In non-uniform base
flow on the straight wing, spanwise-irregular modes, congruous with the underlying three-
dimensional non-linear shock pattern, are found. Depending on the aspect ratio, the interplay
of unstable modes can result in irregular unsteady responses, instead of well-organised
large-scale unsteadiness characterised either by spatial uniformity or periodicity in the span
direction. The competing dynamics of dominant global modes in the perturbation flow field
is interpreted and understood through time-marching simulations revealing, amongst others,
distinct events of high spanwise-periodic shock-distortion activity.
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