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ABSTRACT 1In recent works, the statistical information of the channel traffic has been increasingly
exploited to make effective decisions in spectrum sharing systems. However, these statistics can not be
obtained perfectly under (realistic) Imperfect Spectrum Sensing (ISS). Therefore, in this work we study
comprehensively the approaches in the literature that correct the estimation of the channel traffic statistics
under ISS, namely the closed-form expression approach and the algorithmic reconstruction approach. Then,
we introduce a novel approach named Traffic Learning as a Deep Learning (DL) approach for providing
accurate estimation of the channel traffic statistics under ISS. For this novel approach, deep neural networks
using Multilayer Perceptron (MLP) models are found for the estimation of several statistical metrics.
In addition, we show that utilising effective features from spectrum sensing observations can lead to a
considerable improvement in statistics estimation for each, mean, variance, minimum and distribution of
the channel traffic under ISS, outperforming the existing approaches in the literature, which are based on
either closed-form expressions or reconstruction algorithms.

INDEX TERMS Spectrum sharing, dynamic spectrum access, cognitive radio, channel traffic statistics,

spectrum sensing, machine learning, deep learning.

l. INTRODUCTION

HE advancement of Deep Learning (DL) in computer

vision, speech recognition and natural language pro-
cessing domains has inspired a large community of experts
in the communications field to exploit the potential of this
technology for solving a wide range of problems in com-
munication systems. Such problems are either difficult to
represent with tractable mathematical models or impracti-
cal to be solved by following the classical methods and
algorithms. In this context, there has been an increasing
interest in exploiting DL in wireless communications, in
particular, Spectrum Sharing (SS) systems. This is due to the
demonstrated improvements that DL has brought to several
applications of SS such as spectrum management, spectrum
sensing, spectrum prediction, network security and so on.
These applications are crucial for the ongoing deployment of
5G technology, including but not limited to, 5G New Radio
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Unlicensed (NR-U) [1], unlicensed LTE [2] and License
Assisted Access (LAA) [3].

In recent works, the statistical information of the channel
traffic has increasingly been exploited as input features to the
neural network of DL models. These statistical features can
make significant improvement in the performance of DL for
solving particular problems in SS systems. For instance, in
[4] traffic statistics (mean, variance and kurtosis) have been
exploited as features for a neural network to recognise user-
level applications such as YouTube™ and WhatsApp™. On
the other hand, in [5] the accuracy of spectrum sensing in
cognitive radio has remarkably been enhanced by exploiting
traffic statistics as input features to a DL model used to sense
the spectrum. Moreover, [6] has employed the historical sam-
ples of the channel traffic statistics to train a DL to predict the
future channel occupancy ratio. Obtaining accurate statistical
information of the channel traffic can also find a wide range
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of applications in enhancing the performance of cooperative
spectrum sensing systems operating under realistic environ-
mental conditions [7]-[10] as well as in cognitive radio for
Vehicular Ad Hoc Network (VANET) [11].

From the above discussion, it is evident that traffic statis-
tics play an effective role in the performance of various
applications in SS systems which apply DL technique. The
majority of these works, however, assume perfect estimation
of these statistics, such that they can smoothly be exploited
in DL models. In practice, however, these statistics can be
corrupted due to signal detection errors as discussed in [12].
Inaccurate traffic statistics, consequently, can worsen the
training process of a DL model and thus provide inaccurate
results. Therefore, in order to exploit channel traffic statistics
in SS systems it is essential to estimate these statistics accu-
rately especially under a realistic, imperfect spectrum sensing
(ISS), scenario.

In the literature, the estimated traffic statistics under ISS
have been corrected through two approaches: 1) reconstruc-
tion algorithms [13]-[15], where the observed idle/busy pe-
riods under ISS of the channel traffic are reconstructed to
provide accurate statistics. 2) closed-form expressions [12],
[16]-[18], where mathematical expressions are derived for
the original statistics as a function of their corresponding
statistics observed under ISS, probability of sensing error and
sensing period. Reconstruction methods can provide some
accuracy improvements but are typically based on heuristic
algorithms and therefore sub-optimal. Although closed-form
expressions would be the most attractive solution to correct
the estimation of traffic statistics under ISS, it is challenging
sometimes to find these expressions for higher statistical
moments such as variance, skewness and kurtosis under
ISS (whereas the mean, duty cycle and distribution have
been found in [12]). In addition, although these expressions
provide accurate estimations, they may still show some con-
siderable estimation errors when a short sensing period T’
is employed [12, Section VIII]. In some cases, closed-form
expressions are known or can be obtained but they are unable
to lead to accurate estimations of the true traffic statistics
under ISS, like for example the minimum period as analysed
in [13]. In this work, therefore, we consider a DL approach to
provide an accurate estimation of the channel traffic statistics
under ISS and evaluate the performance of such approach
with respect to the previous approaches, showing that the
DL approach proposed in this work can provide significant
performance improvements.

The contribution of this work can be highlighted as fol-
lows:

o We propose Traffic Learning (TL) as a DL approach to
learn from the channel traffic under realistic ISS sce-
nario in order to provide accurate statistical information
about channel traffic activity in SS systems.

o Deep Neural Networks (NNs), namely Multilayer per-
ceptron (MLP) models, are found to provide accurate
estimation for the moments of the channel traffic statis-
tics (mean, variance and minimum period) based on the

TABLE 1. List of acronyms and abbreviations

Acronym | Description
5G Fifth Generation
CDF Cumulative distribution function
DL Deep Learning
E Exponential
ED Energy Detection
G Gamma
GP Generalised Pareto
1SS Imperfect Spectrum Sensing
KS Kolmogorov-Smirnov
LAA License Assisted Access
LTE Long Term Evolution
MAE Mean Absolute Error
MLP Multilayer Perceptron
MoM Method of Moments
MSE Mean Squared Error
NN Neural Network
NR-U New Radio Unlicensed
PSS Perfect Spectrum Sensing
SNR Signal-to-Noise Ratio
SS Spectrum Sharing
TL Traffic Learning
VANET Vehicular Ad Hoc Network
W Weibull

observations of ISS.

o The estimation of channel traffic distribution can then
be achieved in two stages, first by classifying the dis-
tribution type of the actual channel traffic into one of a
possible set of candidate distributions using a deep NN
model, second finding the parameters of the classified
distribution using the Method of Moments (MoM) tech-
nique [19] based on the previously obtained statistical
parameters (mean, variance and minimum period).

« Finally, the performance of the proposed DL approach
to estimate channel traffic statistics under ISS is val-
idated numerically and compared with the previous
approaches in the literature namely, algorithmic and
closed-form expression methods. The obtained results
show that the proposed approach outperforms the previ-
ous approaches with remarkable accuracy improvement,
providing accurate channel traffic statistics under ISS.

The remainder of this work is organised as follows. First,
Section II formulates the problem of channel traffic statistics
estimation and introduces the system model considered in
this work. Then Sections III and IV respectively discuss the
algorithmic and closed-form expression approaches consid-
ered in the literature to correct the estimation of the channel
traffic statistics. Section V proposes the novel DL approach
for channel traffic statistics estimation under ISS. The NN
models for the estimation of the traffic mean, variance and
minimum period are discussed in Section VI, while the NN
model for the classification and estimation of the traffic
distribution is given in Section VII. The performance im-
provements of the proposed approach are demonstrated in
Section VIII. Finally, Section IX concludes the paper. A list
of acronyms and abbreviations used throughout the paper is
given in Table 1.
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FIGURE 1. Channel traffic statistics estimation in spectrum sharing system.

Notation: Subscript ¢ denotes the state of the channel to
which a symbol belongs (¢ = 0 for idle and 7 = 1 for busy
state). For periods of type ¢, T; represents the period length;
Wi, m;, and v; represent their sample minimum, sample mean
and sample variance, respectively; F'(T;; p;, A;, ;) denotes
their cumulative distribution function with location parame-
ter u;, scale parameter \; and shape parameter «;. The true
value of parameter is denoted as x; and its accented versions
Z;, X3, T; represent the corresponding PSS observation, ISS
observation and final estimation, respectively. E(-) and V(+)
denote expected value and variance, respectively. The non-
linear activation function of a NN is denoted by o(-) and the
loss function by L(-, ). R represents the set of real numbers
and || - ||? denotes the 2-norm.

Il. PROBLEM FORMULATION AND SYSTEM MODEL

We consider the channel traffic in a particular frequency
channel as shown in Fig. 1. This traffic is generated by the
activity of the licensed users within their allocated frequency
channel. Channel traffic can be represented as a sequence
of idle/busy periods in the time-domain, hence, the duration
of these periods can be modelled to follow a particular
distribution. In the literature, and based on the practical mea-
surements and observations, these periods are best described
as Generalised Pareto (GP) distribution [20]. In this work,
however, the distribution of channel traffic will be considered
unknown to the SS system. In such system we assume to
have a single unlicensed user, which monitors the activity of
the channel traffic to find and exploit any opportunistic un-
occupied duration in the frequency channel without causing
harmful interference to the licensed users. This monitoring
mechanism is achieved by performing periodic spectrum
sensing at the unlicensed user. There have been significant
research efforts in the last few years to develop high accuracy
methods/algorithms for spectrum sensing, where the simplest
and widely known method is Energy Detection (ED) [21].
Despite its variant forms and accuracy, spectrum sensing
objective and output is the same, which is to provide binary
decisions on the state of the channel, H for idle and #; for
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busy state. These sensing decisions can then be exploited to
compute the durations of the idle 7j and busy 7} periods of
the channel traffic which in turn are used to calculate channel
traffic statistics.

Under high SNR conditions Perfect Spectrum Sensing
(PSS) can be achieved. In practice, however, spectrum sens-
ing is imperfect due to the presence of sensing errors caused
by the wireless channel impairments and low SNR con-
ditions, thus Imperfect Spectrum Sensing (ISS) is a more
realistic scenario. Sensing errors occur as false alarms, when
an idle state of the channel is sensed as busy, and missed-
detections, when a busy state is sensed as an idle. These
sensing errors can be represented as independent and iden-
tically distributed (i.i.d.) random variables with P, and
P,.q probabilities, respectively, which is a common mod-
elling approach in the literature. Unfortunately under ISS,
the presence of sensing errors corrupts the calculation of the
idle/busy periods of the channel traffic such that they are
observed as shorter fragments (To/Tl) of the original periods
(To/Ty). These fragments, as a result, provide significantly
corrupted channel traffic statistics.

As it was highlighted in the previous section, there are
two approaches in the literature to correct the estimation of
the channel traffic statistics under ISS, namely reconstruction
algorithms [13]-[15] and closed-form expressions [12], [16]-
[18]. The target of the first approach is to infer the position of
potential sensing errors in the sequence of idle/busy periods
observed under ISS and correct them in order to reconstruct
the likely original sequence of idle/busy periods to provide
accurate statistics. The second approach, on the other hand,
derives mathematical expressions that can provide accurate
estimation for the original traffic statistics from the ones
observed under ISS. In this paper we propose a new approach
based on Deep Learning (DL) to provide accurate statistical
information of channel traffic under ISS, which will be
compared with respect to the previous approaches. Therefore,
we can illustrate these three approaches as shown in Fig. 1,
which will be discussed in the next sections.
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lll. CLOSED-FORM EXPRESSION APPROACH

This approach formulates the problem of estimating a statis-
tical parameter of the channel traffic under ISS in a closed-
form expression, based on which a method can be derived to
improve the accuracy of estimation. Consider the idle/busy
periods T; (where : = O foridle stateand ¢ = 1 f(lr busy state)
shown in Fig. 2. These periods are observed as 7; under PSS
and ﬁ under ISS. As it can noticed, the observations under
PSS (i.e., without sensing errors) provide a reasonable degree
of accuracy for the original periods T; (where the accuracy is
only affected by the time resolution of the sensing period T’
[16]). On the other hand, the observed periods under ISS are
significantly corrupted since sensing errors divide the obser-
vations of the original periods into shorter fragments T;. As
a result, the estimation of the channel traffic statistics based
on the observed periods T; under ISS is highly inaccurate
with respect to the original statistics of T; periods. The work
in [12] formulated and provided closed-form expressions for
some of the statistical parameters (e.g., mean, duty cycle and
distribution) observed under ISS as a function of the original
ones. For example, the mean ]E(TZ) of the observed periods
under ISS is found in closed-form expression as a function of
the original mean [E(T;), probabilities of sensing error Py,
and P,,4, and sensing period T as [12]:

E(T;) = (—1)' E(Tb) Pra + (—1)' E(T1) Prna
14 (B2 - 2) Pro + (B2 - 2) P

E(T;) =
S (1
where Py, and Py, are defined in equations (13) and (14)
of [12]. The original mean can then be estimated by solving
(1) for E(T;) as shown in (2). This method, in general, pro-
vides accurate estimation, however, some considerable error
might still exist when short sensing period T is employed
as explained in [12, Section VIII-B]. Therefore, we will
use this method for comparison with other approaches in
Section VIII. Note that the estimation of higher moments
statistics (e.g., variance) under ISS is challenging to find in
closed form expressions. Therefore, other approaches might
be considered for such statistics.

IV. ALGORITHMIC RECONSTRUCTION APPROACH

In this approach reconstruction algorithm is used to correct
the estimation of channel traffic statistics under ISS. Simple
reconstruction algorithms were first proposed in [13] and
then developed in [14], [15]. Therefore, we consider the latest
reconstruction algorithm in the literature given by [15] and
illustrated here in Algorithm 1. This algorithm reconstructs
the periods in an iteration process and in each iteration
the shortest periods will be reconstructed as (Tm,l =
Ti,n—l + T”L + Ti,n—&-l): where n denotes the sequence of the
periods, then the mean of the reconstructed periods will be
calculated. This iteration will continue until the mean of the
reconstructed periods reaches the value of the mean estimated
using (2), i.e., this algorithm exploits the mean expression
obtained from the previous approach as an indicator to deter-
mine when the periods are correctly reconstructed, however
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FIGURE 2. The observed idle/busy periods (a) under Perfect Spectrum
Sensing (PSS), (b) under Imperfect Spectrum Sensing (ISS) [13].

Algorithm 1 Reconstruction algorithm [15]

9

Input: (7;) The observed periods under ISS

Output: (7;) The reconstructed periods

Calculate the mean (712;) of the periods under ISS
Estimate the mean (m;) of the periods using (2)
k=0
T, =1,
while m; < m; do

k=k+1

for each Tmu: kT, d(z 5

Ti,nfl = Ti,nfl + Ti,n + Ti,nJrl
end for

R A o e

Calculate the mean of the
reconstructed periods

—
e

: end while
: return (7;)

—_
N =

once the process is finished, other statistics (not only the
mean) can also be estimated. Therefore, this algorithm will be
used to compare the performance of the estimation of channel
traffic statistics under ISS with respect to other approaches in
Section VIII.

V. DEEP LEARNING APPROACH

In this section we propose a novel approach for the estima-
tion of the channel traffic statistics under ISS based on DL
technique. The DL model in this work aims to provide an
accurate estimation for the original statistical parameters of
the channel traffic based on their corresponding (inaccurate)
statistics observed under ISS. It is widely known that DL can
solve various problems through formulating them as either
classification or regression problems. The estimation of the
statistical parameters mean, variance and minimum period is
considered as a regression problem, while the estimation of
the channel traffic distribution is solved by first classifying
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the type of the distribution, then finding its parameters. The
estimation of these statistics can be solved using Multilayer
Perceptron (MLP) fully-connected feedforward Neural Net-
work (NN) [22].

An MLP with L (dense) layers maps the input layer z to
the output layer y through one or more hidden layers in be-
tween. This mapping function can be written as y = f(z;6),
where 6 denotes the NN parameters given by the weights W
and basis b. Each layer of the NN consists of one or more
neurons n, hence the output of the ¢-th layer can be written
as [23]:

fe(wo—1;00) = o (Wixg—1 + by), t=1,---,L (3)

where W, € R™>™-1 g the weight matrix, by € R™ is
the bias vector (note that n, denotes the number of neurons
at the ¢-th layer), and o4(-) represents the non-linear activa-
tion function which can be given by, e.g., ReLU, sigmoid,
softmax, etc. The output of the ¢-th layer f,(x¢—1;6;) is
based on the input x,_; from the previous layer and the
parameter 6y = {W,, by} at the ¢-th layer. In general, a NN
is trained based on a labelled training dataset, which is an
input-output (x, y) vector pairs of data. In our scenario, the
input vector is the observations of a statistical parameter $
under ISS (e.g., mean, variance, etc.) and the output vector is
the corresponding original statistical parameter s. Therefore,
this input-output (8, s) dataset is used to train a NN to find 6*
that minimises the loss function £(3, s):

0* = argmin £(5, s) “4)
0

For example, Mean Squared Error (MSE) loss function can
be used as ||s — £(5;6)]|? to find # that minimises the error.
By selecting the appropriate hyper-parameters of the NN
(e.g., number of layers, neurons, loss function) along with
the useful input features, a DL model can be achieved to
provide an accurate estimation for the statistical parameters
of the channel traffic under ISS as it will be discussed next.

VI. MEAN, VARIANCE AND MINIMUM ESTIMATION
BASED ON DL

Let us first consider the estimation of the original mean m;
of the idle/busy periods (where ¢ can be O referring to idle
periods, or 1 referring to busy periods). A DL model using
MLP NN is built to find the accurate estimation of the mean
of the channel traffic from the corresponding mean observed
under ISS. Therefore, the inaccurate means g and m; of
the idle/busy periods observed under ISS are used as inputs
to the DL model to provide the accurate estimation of the
mean period m; (where m; = m;). Since under ISS the
presence of sensing errors corrupts the observation of the
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FIGURE 3. Deep Learning model for mean of periods estimation under ISS.

a0

;e OFO

1 A 4 : . .

Prq ‘(J : : "

3%
Inputlayer  Hidden layers  Output layer

FIGURE 4. Deep Learning model for variance of periods estimation under
ISS.

idle/busy periods as discussed in Section II, the mean of
these periods would be significantly inaccurate depending
on the probabilities of sensing error (i.e., Prq and Pp,q).
These probabilities can be pre-defined based on the employed
sensing algorithm at the end terminal [12]. Therefore, Py,
and P,,4 can also be exploited as input features to the DL
model along with 7y and 7/, observed under ISS. Py, and
P,,,.q can assist a NN to learn from how these features affect
the observation of g and 'y under ISS, which in turn
will help predicting the actual mean value at the output as
shown in Fig 3. Note that when Py, = P,q = 0, the
observed mean will be equal to the original one [16]. A
similar concept can also be applied to find a DL model for
estimating higher statistical moments under ISS. In this work,
we consider the second moment (variance v;) of the idle/busy
periods, which can similarly be found as shown in Fig 4. As
it can be noticed, the observed statistics of both idle and busy
periods are always considered as input features because they
both are affected by false alarms and missed detections as
it can be observed from (2) and therefore considering only
the observed statistics for the same type of periods being
estimated (idle or busy) would not provide complete input
information.
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FIGURE 5. Deep Learning model for minimum of periods estimation under
ISS.

On the other hand, the accurate estimation of the minimum
period p; of the channel traffic under ISS is more challenging
to find compared to the previous statistical parameters. This
is because for any non-zero probability of sensing error
(Pfa > 0 and P,q > 0) the observed minimum period fi;
under ISS is always equal to the duration of a single sensing
error, which is same as the duration of the sensing period
T, Ge., fi; # p; and @; = Ty, VPrq, Pna > 0) [13].
Therefore, a NN can not learn anything from the observed
minimum idle/busy periods o/ under ISS (unlike the
previous statistical parameters) since they are always equal
to the sensing period T, no matter how high or low the
probability of sensing error is. In order to utilise a feature
that can help a NN to predict the actual minimum period
w; from the observations of the ISS, it is useful to look
at the distribution of the observed periods under ISS. The
observed periods under ISS have a discrete distribution with
a bin size of T and starting at Ts as well. This distribution
is distorted by the presence of sensing errors, however, it
forms a distinguished pattern corresponding to a particular
combination of probabilities of sensing error (Py, and Pp,q).
A NN can be trained to learn from these patterns of the
observed distributions under ISS in order to locate the actual
minimum period. As a result, it is found that by using the
first h-th histogram bins of the observed periods under ISS
along with the probabilities of sensing error (Py, and P,,q)
it is possible to train a NN to provide an accurate estimation
for the actual minimum period under ISS. The MLP NN in
Fig. 5 shows an example of using 100 histogram bins of the
observed periods under ISS as input features along with Py,
and P,,q, where hy refers to the number of the observed
periods under ISS within the first bin, while ho refers to the
number of the observed periods under ISS within the second
bin and so on. The number of bins was selected here after
conducting several evaluations on the estimation accuracy
of the minimum period under ISS while considering several
scenarios of probabilities of sensing errors (Py, and Pp,q),
for which 100 bins were found to be sufficient to provide
accurate results under any scenario of sensing errors. The
output of this NN provides the accurate estimation i; for the
actual minimum period p; (Where fi; /= ;).

6

A. RAW DATASET CONSTRUCTION AND
PREPROCESSING

In this work, data are obtained and prepared in two stages,
in the first stage raw datasets are generated using MAT-
LAB, then in the second stage the generated datasets are
preprocessed using Python to train, validate and test the
proposed DL model. Dataset generation using MATLAB can
be achieved as follows:

1) First, a channel traffic is modelled by generating a large
sequence of idle/busy periods (1p/1}) in a frequency
channel drawn from a particular distribution such as
GP distribution (which is one of the best representa-
tions of the channel traffic [20]).

2) Then spectrum sensing can be applied with periodic
sensing period T, where Ts should be smaller than
the minimum period of the channel idle/busy periods
(i.e., Ts < p;). In this work we consider to use a
short T = 1 t.u. (time unit) when the minimum period
i = 10 tu. (i.e., 10% of the minimum period). This is
to show how the estimation methods perform under the
worse scenario of using such short sensing period since
higher sensing periods (e.g., 90%) can provide more
accurate estimations for traffic statistics under ISS [13].

3) Spectrum sensing is configured based on the selected
probabilities of sensing error (i.e., Py, and P, 4), based
on which a sensing threshold is adjusted to decide
whether the channel is idle #( or busy 7{;. Sensing
decisions are then used to calculate the duration of the
idle/busy periods (To/T) observed under ISS.

4) The statistical parameters such as mean mg/my, vari-
ance Uo/ty or histogram {hq,...,h100} can then be
calculated from (T O/Tl) periods observed under ISS in
step 3. These statistics are saved into a .mat file along
with the configured Py, and P4 to represent the input
vector (features). On the other hand, the corresponding
original statistics mg/m4 for mean, vo/v, for variance
or yip/p41 for minimum of the idle/busy periods (7p/17)
generated in step 1 are also saved into the same .mat
file to represent the output vector (labels).

The obtained features and labels in . mat file are then used
to construct the required dataset for DL, 60% of which is for
training, 20% is for validation and the remaining 20% is for
testing as shown in Figs. 6 and 7. These raw datasets require
some preprocessing before using them for DL training or
testing. Python is used here, which offers numerous tools
and advanced DL libraries (e.g., TensorFlow [24], Keras [25]
and PyTorch [26]) that facilitate not only the preprocessing
of the datasets, but also building, training and testing of the
DL model. Therefore, the obtained dataset in .mat file is
imported to Python for preprocessing, where the features and
labels are extracted and stored into separate arrays. Since
these data can hold any real values, it is a common practice
to scale and normalise these values before learning from
them. The preprocessing.Normalization () func-
tion from Keras library is used, which normalises its inputs
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FIGURE 7. Datasets construction of DL for channel traffic minimum estimation.

into a distribution centred around zero with unit standard
deviation. This is accomplished by applying the following
normalisation relationship (input — mean)/v/variance to
the input dataset.

B. TRAINING, VALIDATING AND TESTING THE DL
MODEL

After preprocessing the datasets, they are ready to train, val-
idate and test a DL. model. An MLP NN has been examined
using several hyper-parameter settings to build the required
DL model for channel traffic statistics estimation under ISS.
As shown in Fig. 8, different number of hidden layers {1,
2, 3 and 4} and neurons {16, 32, 64 and 128} are used to
examine the accuracy of training based on Mean Absolute
Error (MAE) loss function. It is found that a NN with 3
hidden layers can reach the same accuracy as a higher number
of layers after 100 epochs of training. In the same way, 64
neurons per hidden layer can provide the same accuracy as a
higher number of neurons after 100 epochs of training. As
a result, the MLP NN shown in Table 2 is considered in
this work to provide the accurate estimation of the channel
traffic statistics under ISS. The output of this model would
be either the accurate estimation of the mean m;, variance v;
or minimum period jz; when the input is the corresponding
ISS mean 77, variance ¥;, or histogram bins {h1, ..., higo},
respectively. This MLP NN model is trained based on the
60% of the preprocessed features and labels, while 20% of
which is used to validate the training process. This validation
is important to make sure that the NN can generalise to
new data and avoid the overfitting problem. ReLU activation
function is selected at each hidden layer, and Adam optimiser
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of the mean, variance and minimum period.

TABLE 2. MLP NN model used for mean, variance and minimum period
estimation under ISS.

Hyper-parameter Settings
Number of hidden layers 3
Neurons per hidden layer 64

Activation function ReLU

Optimiser Adam
Learning rate 0.001
Loss function MAE

Metric Accuracy
Batch size 10
Epochs 100
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is used with learning rate 0.001. After training and validating
the DL model, it can now be tested based on the remaining
20% of the dataset to evaluate its estimation performance.
Although the testing dataset has both features and labels, only
features are fed to the NN to predict the accurate channel
traffic statistics, while labels are used to quantify the accuracy
of the estimation provided by the NN, which will be shown
in the simulation results.

VII. DISTRIBUTION CLASSIFICATION AND ESTIMATION
BASED ON DL
Having an accurate estimation for the distribution of the
idle/busy period durations completes the whole picture of
learning about the channel traffic activity (i.e., traffic learn-
ing). In the literature, different distribution models have been
considered for the channel traffic. Exponential (E) distribu-
tion, for example, is one of the widely assumed models for
channel traffic as in [27]-[29], which can simplify the mathe-
matical analysis of the studies. However, field measurements
in [20] have shown that the Generalised Pareto (GP) distribu-
tion is more realistic for channel traffic representation. In this
work, however, we investigate the estimation of the channel
traffic distribution under ISS using a DL approach without
making any prior assumption about the original distribution
type of the channel traffic. In addition, we compare this
approach with previous methods for estimating the distri-
bution under ISS. First, a DL model is used to classify the
distribution type of the channel traffic based on the ISS
observations. After classifying the distribution type, Method
of Moments (MoM) inference technique [19] can then be
used to estimate the distribution parameters (location y , scale
A and shape «, if they all exist) from the sample moments
obtained previously (i.e., mean, variance and minimum).

The classification problem can be solved using an MLP
NN that selects a distribution class at the output based on
the observations of the ISS for the channel traffic. Table 3 is
considered for the list of the possible traffic distribution types
that provides accurate representations for the empirical data
[20], from which a NN can select the best match type for
the channel traffic distribution. This list includes Exponential
(E), Generalised Pareto (GP), Gamma (G) and Weibull (W)
distributions (note that other distribution types can also be
added to the list). Therefore, there is no particular type
assumption for the channel traffic distribution (as often is
assumed in the literature) since the list here can easily be
extended to other distribution models. The input of the NN,
as shown in Fig. 9, uses the first h-th histogram bins of the
observed periods under ISS along with the probabilities of
sensing error (P, and F;,4) to predict the best classification
for their distribution (the highest probability at the output).
Note that the input of this NN is similar to the input of the
NN used to find the minimum parameter p in the previous
section, however, the input here is used to solve a classifica-
tion problem rather than a regression problem and as a result
the NN has multiple outputs.

After classifying the distribution type of the channel traf-

Exponential

800
- VOO

Generalized Pareto

thO C} O O Gamma

Prq ( ) O O Weibull
Y

P 4

Input layer Hidden layers Output layer

FIGURE 9. Deep Learning model for distribution type classification under ISS.

fic, MoM inference technique [19] is considered to estimate
the distribution parameters (location ; , scale \; and shape
oy, if they all exist) from the sample moments obtained
previously (i.e., mean, variance and minimum). The location
parameter p; is the same as the minimum period estimated
previously as i; using DL approach, while the scale \;
and shape «; parameters can be found from the mean and
variance of the selected distribution model. Since the mo-
ments (mean and variance) can also be estimated accurately
using the DL approach as discussed before, the scale \; and
shape «; parameters of the selected distribution can therefore
be solved using MoM technique. For example, if the DL
model shown in Fig. 9 classifies (with highest probability)
the channel traffic observations as GP-distributed, their pu;,
A; and «; parameters can then be found as [19, ch. 20]:

~ 1 mi — )2\ -
Aimi<1+(m~“)>(mim> (5b)
2 (O
ai%&i=1<1—w) (5¢)
2 (%

where fi;, m; and v; are the estimated minimum, mean and

variance of the channel traffic using DL approach, respec-

tively. Once the distribution parameters are found, the Cu-

mulative Distribution Function (CDF) of the GP distribution
Fa p can then be obtained from:

~ o~ o T — 77

Fap = Fap(Ti; i, Mi, a;) = 1 — [1 + w]

i

(6)

In the same way we can find the expressions for other channel

traffic distributions.

A. RAW DATASET CONSTRUCTION AND
PREPROCESSING

As discussed before, distribution estimation is achieved by
first classifying the distribution type using DL model, then
estimating the distribution function using MoM technique.
To solve the classification problem, datasets are required to
be obtained. These datasets are constructed in the same way
as step 1 to 4 in Section VI-A with some slight differences.
In step 1, channel traffic is modelled 4 times using (E, GP, G
and W) distributions. Then spectrum sensing and probability
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TABLE 3. Considered probability distribution models for idle/busy period durations. Distribution names: E (Exponential), GP (Generalised Pareto), G (Gamma), and
W (Weibull). Distribution parameters: p; (location), A; (scale), and «; (shape). T; represents the period length. E{ -} and V{-} represent the mean and the
variance of the distribution, respectively. v (-, -) is the lower incomplete Gamma function [30, 6.5.2] and I'(-) is the (complete) Gamma function [30, 6.1.1].

(reproduced from [20]).
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o > v
. Ty > pi >0 E{T;} = ps + \T (1+ L
s\ Qi v g i i i -
Fw (Ti; iy Ny i) = 1 — exp [— (Taif”) ] Ai >0 Y ( 2 o”_) ) e
a; >0 V{T;} =X |T 1+ai r 1+ai

of sensing error (Py, and P,,q) are configured in the same
way as in step 2 and 3. In step 4, channel traffic statistics
(histogram bins {h1, ..., higo}) are computed from the ISS
observations. These observations along with the configured
Py, and P, represent the input vector (features) of the DL
model, whereas the output vector (labels) is given by the
classes of the original distribution used to model the channel
traffic in step 1. Since we have 4 distribution classes (E, GP,
G and W), they can be encoded as a one-hot vector 14 € R4
(i.e., 4-dimensional vector, the s-th element of which is equal
to one and zero otherwise [23]). These features and labels can
then be saved into .mat file to be used later for training and
testing.

However, preprocessing is required to be performed first
on the produced dataset. Therefore, the obtained dataset in
.mat file is imported to Python for preprocessing. Similar
to section VI-A, preprocessing.Normalization ()
function from Keras library is used to normalise these
datasets in order to be used for training and testing.

B. TRAINING, VALIDATING AND TESTING THE DL
MODEL

After preprocessing the dataset, it can now be used to train,
validate and test a DL model. An MLP NN with several
settings has been examined to build the required DL model
for classifying channel traffic distribution under ISS. As
shown in Fig. 10, different number of hidden layers {1, 2,
and 3} and neurons {16, 32, 64 and 128} are used to examine
the accuracy of training based on Categorical Cross-Entropy
loss function. It is found that a NN with 2 hidden layers
can reach the same accuracy as a higher number of layers
when 100 Epochs is used. In the same way, 64 neurons
per hidden layer can provide the same accuracy as a higher
number of neurons when 100 Epochs are used. As a result, an
MLP NN shown in Table 4 is considered to provide accurate
classification for the type of the channel traffic distribution
under ISS. The output layer of this model has 4 neurons
referring to the corresponding classes (E, GP, G and W).
Therefore, by using Softmax activation function at this layer,
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FIGURE 10. Training and vlaidation accuracy of the MLP NN for distribution
classification.

TABLE 4. MLP NN model used for distribution classification under ISS

Hyper-parameter Settings
Number of hidden layers 2
Neurons per hidden layer 64
Activation function ReLU, Softmax (output)
Optimiser Adam
Learning rate 0.001
Loss function Categorical Cross-Entropy
Metric Accuracy
Batch size 10
Epochs 100

the output of these 4 neurons will represent a probability
of the corresponding distribution class. Hence, the output
with the highest probability will indicate the best distribution
class match for the observed channel traffic under ISS. After
preprocessing the features and labels in the .mat file, 60%
of these data is used to train this MLP NN model, while
20% is used to validate the training process. After training
and validating the DL model, it can now be tested based on
the remaining 20% of the dataset to evaluate its classification
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performance. Although testing dataset has both features and
labels, only features are fed to the NN to classify channel
traffic distribution, while labels are used to quantify the
accuracy of the classification provided by the NN, which will
be shown in the simulation results.

VIIl. RESULTS

A. MEAN, VARIANCE AND MINIMUM PERIOD
ESTIMATION OF THE CHANNEL TRAFFIC UNDER ISS

In order to evaluate the estimation performance of the DL
model proposed in Section VI to estimate the mean, variance
and minimum period of the channel traffic under ISS, a large
dataset is produced to train the DL model such that it can
generalise a problem, i.e., to provide accurate estimation for
the channel traffic statistics even when new data are observed
under ISS. This can be achieved by repeating steps 1 to
4 in Section VI-A several times to remodel the original
channel traffic to cover a wide variety of traffic statistics,
and for each traffic model spectrum sensing is applied and
configured in step 3 using different combinations of Py, and
P,,q ranging from low (0.01) to high (0.1) probability of
error. In the estimation of mean, for example, channel traffic
in step 1 can be modelled repeatedly to have random mean
values as m; ~ U(10, 200) t.u., and for each traffic mean
spectrum sensing is applied using several combinations of
P, ~ U(0.01, 0.1) and P,,,q ~ U(0.01, 0.1) to observe
the original mean under different scenarios of ISS. Similar
procedures can also be followed to obtain the datasets for
variance and minimum period statistics.

Then 60% and 20% of such datasets are used to train and
validate the DL model, respectively, as discussed in Section
VI-B, while the remaining 20% of the dataset is used to test
the accuracy of the DL model. Fig. 11 shows the accuracy
of estimating the mean of the channel traffic under ISS using
different approaches (closed-form expression, reconstruction
algorithm and DL). Each point in the figure represents the
corrected estimation of the traffic mean observed under ISS
for a particular Py, and P,,q ~ U(0.01, 0.1). As it can be
noticed, DL approach outperforms the previous approaches
for providing accurate estimation, in which all the points are
distributed closely around the straight line that corresponds
to the original mean value. It is worth mentioning that,
the selected reconstruction algorithm in this work performs
better than the closed-from expression because the algorithm
itself exploits the closed-from expression to improve the
estimation of the mean. It can also be noticed that, as the
mean value increases the estimation performance degrades
for all approaches. This is due to the fact that the longer
the periods the higher the number of sensing errors occur
within those periods, thus less accurate estimation can be
achieved. In Fig. 12 and 13, on the other hand, the DL
approach also provides higher accuracy for the estimation
of the variance and minimum period, respectively. Variance
estimation in Fig. 12 is only provided for DL and reconstruc-
tion approaches since, to the best of the authors’ knowledge,
no closed-form expression for such moment under ISS is
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TABLE 5. Average error for statistics estimation using different approaches.

Approach Mean | Variance | Minimum
(t.u.) (tu.)? (tu.)
Closed-form expression 10.83 - 106.75
Reconstruction algorithm 7.95 60.56 86.41
Deep Learning 5.22 10.33 242

available in the literature. In Fig. 13, on the other hand, even
when a closed-form expression is provided for the estimation
of the minimum period under ISS (which is simply given by
= T, [13]), it does not lead to accurate estimation of the
true minimum period. Similarly, the reconstruction method
also fails to provide accurate estimation for the minimum
period under ISS, this is because even after reconstructing the
corrupted idle/busy periods under ISS there will be still some
short periods which have not been reconstructed properly,
thus providing incorrect minimum period estimation. The
distribution of estimation error for all approaches is also
provided (in the middle plots), where it shows better per-
formance for DL estimator as it is centred around zero with
narrow standard deviation with respect to other approaches.
This performance improvement can also be observed in the
right hand side plots in terms of the Maximum Absolute
Error (MAE) obtained within a 90% confidence interval. The
performance shown in Figs. 11(a), 12(a) and 13(a) can also
be presented in numerical form as shown in Table 5 by taking
the average of the differences between the original values of
these statistics and their estimations under ISS, for which it
can be noticed that our proposed approach also, in average,
provides less error in the estimation of the original statistics
with respect to the previous approaches.

B. DISTRIBUTION CLASSIFICATION AND ESTIMATION
OF THE CHANNEL TRAFFIC UNDER ISS

As discussed in Section VII, channel traffic distribution is
estimated in two stages, first classifying the distribution type,
second estimating the distribution parameters. To evaluate the
performance of the DL. model used to classify the distribution
of the channel traffic, a large dataset of 4 x 10° histograms
using 100 bins is produced by remodelling the channel traffic
several times using (E, GP, G and W) distribution models.
The corresponding observations of the channel traffic under
ISS using random Py, and P,,,q ~ 14/(0.01, 0.1) are obtained.
Similar to the previous section, 60% and 20% of such dataset
are used to train and validate the DL model, respectively,
while the remaining 20% of the dataset is used to test the
accuracy of classification. Fig. 14 shows the accuracy of
classifying the distribution of the observed channel traffic
under low (0.01) and high (0.1) probability of sensing error.
Sensing errors can distort the shape of the observed traffic
distribution. However, as it can be seen from the confusion
matrix, even under high probability of sensing error the
proposed DL model can still provide accurate classification
for the observed channel traffic under ISS. To estimate the
distribution parameters (u;, A; and «;), MoM method can
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FIGURE 11. Simulation results for traffic mean estimation under ISS using different approaches, when Py, and P,,q4 ~ 14(0.01, 0.1), Ts = 1 t.u..
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be applied according to the selected distribution type. Since
the mean, variance and minimum period can be estimated
accurately using DL approach as seen from the previous
section results, accurate estimation can also be obtained for
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(7iis A and @), based on which the CDF of the channel
traffic F'(T;) can then be found as explained in Section VIIL.
The accuracy of this estimation can be presented in terms of
Kolmogorov-Smirnov (KS) distance [31], which is defined
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as the maximum absolute difference between the estimated
CDF F(T;) and the original CDF F'(T;) of the channel traffic
as:

Dis = sup|F(T3) — F(Ty)] 7
where Dy is the KS distance between the estimated dis-
tribution and the original one. Therefore, based on (7), the
accuracy of estimating the distribution of the channel traffic
under ISS is shown in Fig. 15 using DL, reconstruction algo-
rithm and closed-form expression [12, eq. (45)] approaches
when the original traffic distribution is drawn from GP with
w; = 10 tu, A; = 3 tu. and o; = 0.25 parameters. As
it can be appreciated, the proposed DL approach achieves
lower KS distance (i.e., higher accuracy of estimation) than
the previous approaches for different values of Py, and
Pp,q. Since the estimation of the traffic distribution using
DL approach is dependent on the estimations of the mean,
variance and minimum period, its accuracy changes accord-
ing to the accuracy of estimating those moments, which are
also obtained using DL approach for the given Pr, and
P,,q. Similar observations can be obtained as well for the
estimation of other types of distributions, showing significant
improvement in the distribution estimation through using the
proposed DL approach.
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C. COMPUTATIONAL COMPLEXITY

The computational complexity of the different approaches
used to estimate channel traffic statistics under ISS is an
important aspect to investigate. Generally, closed-form ex-
pressions approach tends to be more attractive in terms of the
complexity as it provides accurate estimations for the channel
traffic statistics under ISS through using explicit mathemati-
cal equations. However, the accuracy of these equations tends
to degrade as the sensing period T decreases, this is because
decreasing the latter causes an increase in the number of
the sensing events within an observed period, which in turn
increases the occurrence of sensing errors as a result. In
addition, regardless of being more attractive, closed-form
expressions can be challenging sometimes to find for higher
statistical parameters under ISS such as variance, skewness
and kurtosis (where this can be noticed from the results of
Fig. 12, the absence of the closed-from expression approach
for variance estimation). The reconstruction algorithms ap-
proach, on the other hand, is less attractive in terms of the
complexity as it performs heavily computational operations
with several iterations in their algorithms in order to recon-
struct the idle/busy periods corrupted by the sensing errors.
In the reconstruction Algorithm 1, for example, each sensing
error needs to be identified and then corrected using two
arithmetic (addition) operations. These operations, therefore,
increase significantly as the number of the sensing errors
increases and they, even more, double for every iteration
performed. In contrast, the complexity of the deep learning
approach depends on the NN models used to perform estima-
tion (i.e., number of layers, neurons, etc.). The computation
requirements of this approach weighs more on the training
process than on the prediction process of the DL models.
However, this training operation does not take place often, in
fact once a DL model is trained it can then be used to perform
estimations for the channel traffic statistics.

Table 6 shows a comparison for the computational com-
plexity of the considered approaches in this work in terms
of the computation time taken to perform 100 samples of
estimations for the channel traffic statistics under ISS. As it
can be appreciated, the computational cost associated with
the closed-form expressions approach is the most efficient
one, while it is significantly higher for the reconstruction
algorithms approach. On the other hand, the deep learning
approach is considerably less complex than the algorithmic
approach and reasonably more complex than the closed-form
expression approach. It can also be noticed that the already
trained DL models require significantly less computations
than the resulting computations from the training process,
however, as explained earlier, this training is not required to
take place often to preform estimations for the channel traf-
fic statistics. Therefore, considering the significant accuracy
improvement with a reasonable increase in the complexity,
the proposed DL approach can be considered an efficient
solution for providing accurate estimation for the channel
traffic statistics under ISS.
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TABLE 6. Computation time (in seconds) required by each approach to
provide 100 estimations for different statistical metrics.

Approach Mean | Variance | Minimum | Distribution
Closed-form -, 37 - 0.001 052
expressions

Reconstruction |-, 7 243 266.8 280
algorithms

Deep Learning 0.4 0.42 0.47 1.7
+ training 50.8 51.4 50.74 162.1

IX. CONCLUSION

The harmonious coexistence of several wireless communi-
cation systems in a shared frequency spectrum is highly
dependent on making effective decisions for the utilisation
of such spectrum. These decisions are usually based on the
users’ activity within the channel and their traffic statistical
information. Therefore, it is crucial for a spectrum sharing
system to obtain accurate estimation of the traffic statistics
even under low SNR conditions (i.e., ISS). In this context,
this work has studied the existing approaches in the literature
that correct the estimation of the statistical parameters of
the channel traffic under ISS, including both closed-form
expression approach and the algorithmic reconstruction ap-
proach. In addition, a novel deep learning approach has been
proposed, which can learn from the imperfect observations
of the traffic statistics in order to predict their accurate
estimations. Therefore, several estimation methods based on
deep learning have been modelled and validated for the mean,
variance, minimum and distribution of the channel traffic. It
was demonstrated that the proposed approach outperforms
the previous approaches widely used in the literature, which
are based on closed-form expressions and reconstruction
algorithms, under different scenarios of sensing error prob-
abilities.

Finally, the investigation of using other types, more pow-
erful, neural networks, e.g., Convolutional Neural Network
(CNN) and/or Recurrent Neural Network (RNN), to solve the
problem of estimation of channel traffic statistics under ISS,
and the potential of using multitask learning with a shared
NN model to provide multi statistical parameters is suggested
as a part of the future work. In addition, the complexity of
these neural networks with respect to the ones considered in
this work would be also important to investigate. A useful ex-
tension of this work, furthermore, would be the exploitation
of the proposed estimation methods in various applications
of spectrum sharing systems.
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