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ABSTRACT16

Imprecise probabilities have gained increasing popularity for quantitatively modelling uncer-17

tainty under incomplete information, which is usually encountered in engineering analysis. In18

this contribution, a non-intrusive method, termed as ‘Active Learning Augmented Probabilistic19

Integration’ (ALAPI), is developed to efficiently estimate the failure probability function (FPF) in20

the presence of imprecise probabilities. Specially, the parameterized probability-box models are21

of specific concern. By interpreting the failure probability integral from a Bayesian probabilistic22

integration perspective, the discretization error can be regarded as a kind of epistemic uncertainty,23
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allowing it to be properly quantified and propagated through computational pipelines. Accordingly,24

an active learning probabilistic integration (ALPI) method is developed for failure probability es-25

timation, in which a new learning function and a new stopping criterion associated with the upper26

bound of the posterior variance are proposed. Based on the idea of constructing an augmented27

uncertainty space, an imprecise augmented stochastic simulation (IASS) method is devised by28

using the RS-HDMR (random sampling high-dimensional representation model) for estimating29

the failure probability function in a pointwise stochastic simulation manner. To further improve30

the efficiency of IASS, the ALAPI is formed by an elegant combination of the ALPI and IASS,31

allowing the RS-HDMR component functions of the FPF to be properly inferred. Three benchmark32

examples are investigated to demonstrate the accuracy and efficiency of the proposed method.33

Keywords: Failure probability function; Imprecise probability; Probability box; Gaussian process34

regression; Active learning; Bayesian probabilistic integration35

INTRODUCTION36

Uncertainty quantification and propagation have been essentially important, but still face critical37

challenges in many fields of science and engineering. This is because that in the real world, uncer-38

tainty is almost inevitable, and generally arises from a variety of distinct sources, e.g., statistical39

variability, measurement errors, instrumental uncertainty, imperfect information, limited data, ab-40

straction and assumptions among others. Typically, these uncertainties can be categorized as either41

aleatory or epistemic according to their intrinsic features and effects on analysis (Der Kiureghian42

and Ditlevsen 2009; Beer et al. 2013). Aleatory uncertainty is related to the inherent randomness43

of an event or a parameter, and hence cannot be reduced even when sufficient information of high44

quality is available. On the contrary, epistemic uncertainty is due to a lack of knowledge, which45

therefore can be reduced by gaining more knowledge. In real-world applications, both kinds of46

uncertainties tend to be jointly present and are often easily confused with each other. As has47

been concluded by Der Kiureghian and Ditlevsen (Der Kiureghian and Ditlevsen 2009), without48

properly distinguishing different types of uncertainties, the results on risk and reliability analysis49

can be misleading.50
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As for the uncertainty representation, a large number of mathematical models have long been51

developed for quantitative characterization of uncertain phenomena in engineering practices. Gen-52

erally, the existing uncertainty characterization models can be classified under three major frame-53

works: precise probability framework, non-probabilistic framework, and imprecise probability54

framework. The precise probability framework is deeply rooted in the well-established probability55

theory, and hence it is an essential tool in the quantitative mathematical treatment of uncertainty,56

especially for modelling aleatory uncertainty. A common criticism, however, is that large amounts57

of high-quality data are often required for inferring the potential precise probability model with58

sufficient credibility, which, unfortunately, may be rarely available for most engineering applica-59

tions (Der Kiureghian and Ditlevsen 2009; Beer et al. 2013). Alternatively, some representative60

models within the non-probabilistic framework, such as interval model (Faes and Moens 2019),61

convex model (Jiang et al. 2013), fuzzy set theory (Möller and Beer 2004) among others, have been62

extensively investigated to describe the non-probabilistic uncertainty, especially those resulted from63

limited data with poor quality. In spite of their popularity, it has been argued that non-probabilistic64

models commonly fail to distinguish between the aleatory and epistemic uncertainties (Wei et al.65

2019a). To fill this gap, the imprecise probability framework, mathematically as a combination of66

the non-probabilistic and probability frameworks, and physically making a clear separation of the67

two types of uncertainties, has gained increasingly attraction. Typical imprecise probability models68

include the evidence theory (Sentz et al. 2002), interval probabilities (Yager and Kreinovich 1999),69

probability-box (p-box) (Sun et al. 2012), fuzzy probabilities (Buckley 2005), etc. A novel char-70

acter of imprecise probability framework is that it enables the aleatory uncertainty and epistemic71

uncertainty to be treated separately within a unified framework, thanks to the hierarchical model72

structure. Based on the aforementioned considerations, we are mainly focusing on propagating73

uncertainty in the form of imprecise probabilities in the present paper.74

In the imprecise probability framework, uncertainty propagation through computer simulators is75

a computationally challenging task primarily due to the double-layer structure inherent in imprecise76

probability models. To address this challenge, there has been an increasing attention on developing77
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efficient numerical methods in recent years, which can be divided into two categories according78

to whether the method is decoupled or not. Typical coupled method includes the interval (quasi-)79

Monte Carlo simulation (Zhang et al. 2010; Zhang et al. 2013), interval importance sampling80

(Zhang 2012), subset simulation based method (Alvarez et al. 2018), method of moments (Liu81

et al. 2018; Liu et al. 2019), ect. Very often these coupled methods involve interval finite element82

analysis or numerical optimization within a nested loop, which still leads to high computational cost83

and limited applicability. For this reason, decoupled methods have drawn increasingly attention84

for propagating imprecise probabilities, such as the augmented subset simulation (ASS) (Au 2005),85

extended Monte Carlo simulation (Wei et al. 2014), non-intrusive imprecise stochastic simulation86

(NISS) (Wei et al. 2019a; Wei et al. 2019b; Song et al. 2020a; Song et al. 2020c), augmented line87

sampling (Yuan et al. 2020), operator norm theory (Faes et al. 2020; Faes et al. 2021b), augmented88

space integral (Yuan et al. 2021; Faes et al. 2021a). The most attractive feature of these methods is89

that only one simulation run is usually required, and hence very computationally efficient. Despite90

this, there still exist some respective drawbacks for those methods. For example, the NISS may not91

work well for problems with relatively large epistemic uncertainty due to the increasing variations92

of the NISS estimators; the application of operator norm theory is still limited to linear models93

with imprecision presented only in excitations; the augmented space integral is suffered from94

dimensionality of the epistemic parameters. To tackle the former issue, Wei and his co-workers95

(Wei et al. 2021) recently proposed a novel imprecise probability propagation framework, termed96

as non-intrusive imprecise probabilistic integration (NIPI). In this framework, the estimation of97

response moment function (RMF) is treated as a Bayesian inference problem in the augmented98

space, and estimators for the component functions of RMF are analytically derived in closed form.99

Remarkably, it has been shown that the NIPI can be applied to the problems with large epistemic100

uncertainty resulted from extreme lack of information. However, the current NIPI method is only101

capable of evaluating RMF, and for FPF estimation, further developments need to be presented as102

will be shown in this work.103

The main objective of this paper is to develop a new non-intrusive method, called ‘Active Learn-104
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ing Augmented Probabilistic Integration’, for estimation of FPF under imprecise probabilities. The105

core of the methodology is to interpret the failure probability integral from the perspective of106

Bayesian probabilistic integration, and hence the discretization error can be regarded as a kind of107

epistemic uncertainty. Through this treatment, the discretization error is propagated via the compu-108

tational pipelines simultaneously together with the aleatory uncertainty and epistemic uncertainty109

present in the imprecise probability models, which is useful and important for developing an active110

learning strategy, and also for facilitating error assessment of the computational results. Besides,111

the approach also relies on an augmented idea that artificially constructs an augmented uncertainty112

space, enabling the propagation of two kinds of uncertainties to be fully decoupled. At last, the113

RS-HDMR (random sampling high-dimensional model representation) is employed to study the114

functional form of the FPF by decomposing it as a summation of component functions of increased115

orders, through which, the failure probability bounds and sensitivity analysis can also be obtained116

as byproducts.117

The rest of this paper is arranged as follows. The problem to be solved in this work is118

briefly stated in the “Problem Statement” section. The “Active Learning Augmented Probabilistic119

Integration” section provides the detailed theoretical background and numerical implementation120

procedure of the proposed method. In the “Numerical Examples” section, three numerical examples121

are studied to verify the proposed method. The “Conclusions” section gives the findings of the122

present study.123

PROBLEM STATEMENT124

Let the limit state function (also termed as performance function) of a physical system under125

consideration be denoted by a deterministic mapping y = g(x), which is referred to as g-function126

hereinafter. Under this setting, the uncertainty in y only results from the uncertainty in x, where127

x = [x1, x2, . . . , xn] is the n-dimensional row vector of input random variables that reflects the128

aleatory uncertainty of model inputs. In this paper, we only consider the case that each input129

random variable is characterized by a parameterized probability-box (p-box). Let f(x|θ) denote130

the joint probability density function (PDF) of x, which is conditional on its distribution parameters131
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θ = [θ1, θ2, . . . , θm]. Due to the epistemic uncertainty, the distribution parameters cannot be132

precisely known, but also uncertain. For simplicity, the interval model is employed to characterize133

the uncertainty of θ, i.e., θ ∈
[
θ, θ̄

]
, where θ = [θ1, θ2, . . . , θm] and θ̄ = [θ̄1, θ̄2, . . . , θ̄m] are the134

lower bound and upper bound, respectively. Besides, it is assumed that all the random variables135

and the distribution parameters are mutually independent. The output y is a state variable with136

y ≤ 0 indicating that the system is failed, and safe otherwise. The FPF is expressed as:137

Pf (θ) =
∫

X
IF (x)f(x|θ)dx, (1)138

where F in the subscript denotes the failure domain defined as F = {x : g(x) ≤ 0}; IF (x) is an139

indicator function of failure: if x ∈ F , IF (x) = 1, and IF (x) = 0 otherwise.140

The main objective of this work is to evaluate the FPF defined by a integral with θ being141

its argument. This is a more general task than calculating the failure probability bounds, since,142

with it, the failure probability bounds can be easily obtained without extra g-function evaluations.143

Besides, FPF also provides a basis for sensitivity analysis (Wei et al. 2018) and reliability-based144

design optimization (Liu and Cheung 2017; Ling et al. 2020). In most practical cases, however, the145

closed-form solution of the integral is not available because of the underlying complexity of the146

problem at hand. Alternatively, numerical techniques are thus especially desirable for more general147

applications.148

ACTIVE LEARNING AUGMENTED PROBABILISTIC INTEGRATION (ALAPI)149

In this section, we propose a method, termed as "active learning augmented probabilistic150

integration" (ALAPI), for efficiently propagating the p-box models and evaluating the failure151

probability function. The method starts by interpreting the estimation of failure probability integral152

with Bayesian inference, instead of a purely frequentist view. This will enable to incorporate our153

prior knowledge about the g-function and the possibility of an adaptive experimental design so154

as to develop an active learning probabilistic integration (ALPI) framework. Based on the idea155

of augmented uncertainty space, an imprecise augmented stochastic simulation (IASS) method is156
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proposed to estimate the FPF in a pointwise stochastic simulation manner by utilizing the RS-157

HDMR. At last, the ALAPI is developed by an elegant combination of the ALPI and IASS.158

Bayesian failure probability estimation: Active learning probabilistic integration (ALPI)159

For brevity and convenience, let us first consider the case that θ is precisely known and takes160

a fixed value θ?. That is, f(x|θ?) is now reduced to be a precise probability model. Under161

this setting, the failure probability should be a constant value from a theoretical standpoint, and162

expressed as:163

P ?
f =

∫
X

IF (x)f(x|θ?)dx. (2)164

As mentioned earlier, in most cases analytical derivation of the exact value of P ?
f is computationally165

intractable and even impossible, and usually we have to resort to numerical integration techniques166

for a crude estimate. Therefore, the introduction of error is unavoidable because the discretisation167

of the integrand is numerically necessary. Different from the frequentist theory of inference,168

we seek to reinterpret the problem of evaluating the failure probability integral in Eq. (2) via169

Bayesian inference, which is commonly known as Bayesian Quadrature (or Bayesian Probabilistic170

Integration) (O’Hagan 1991; Rasmussen and Ghahramani 2003; Briol et al. 2019; Wei et al. 2020).171

A novel feature of this treatment is that the discretisation error can be characterized as a kind172

of epistemic uncertainty, and then propagated through computational pipelines. One should not173

be confused with two kinds of epistemic uncertainties mentioned so far. One is the epistemic174

uncertainty here in the probabilistic integration, which arises from the computation due to the175

discretisation error. This is in contrast to the epistemic uncertainty revealed in the distribution176

parameters of input random variables, which comes from the computation setup, rather than the177

computation itself. In the framework of probabilistic integration, the integrand IF (x) at any fixed178

x is seen as a random variable simply because it is numerically unknown until we actually evaluate179

it. This is usually the case since IF (x) is computationally expensive, and we cannot afford to180

compute IF (x) (or equivalently g(x)) at every site. Following a standard Bayesian approach,181

one needs to first assign a prior probability measure over the integrand IF (x), which expresses the182
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investigator’s prior beliefs about the actual function value. Conditioning on the limited observations183 {
x(i), I

(i)
F (x(i))

}d

i=1
, we can obtain a posterior over IF (x) via Bayes rule. This in turn will imply a184

posterior distribution over P ?
f , which reflects the epistemic uncertainty resulted from the fact that185

we can only evaluate the integrand at a finite number of inputs.186

The Gaussian process (GP) could be the most popular choice for the prior model, due to its187

broad applicability and sound theoretical background. However, we argue that it is inappropriate188

to directly specify a GP prior over the failure indicator function IF (x), since we know that it is189

discontinuous and actually follows a Bernoulli distribution. Alternatively, we put a GP prior over190

the performance function g(x), denoted by191

ĝ(x) ∼ GP(µ(x), c(x, x′)), (3)192

where µ(x) is the prior expectation function and c(x, x′) is the prior covariance function (also193

called kernel function). Various kinds of explicit functions with several hyper-parameters to be194

determined are available for the expectation function and covariance function in the literature. For195

more details, one can refer to (Rasmussen 2003; Murphy 2012).196

Given the experimental design matrix X = {x(i)}d
i=1 of size d × n and the corresponding197

response vector Y = {y(i) = g(x(i))}d
i=1 of size d × 1, the hyper-parameters involved in the198

prior mean function and covariance function can be specified, e.g., by using maximum likelihood199

estimation (Rasmussen 2003).200

Conditional on the observed data set D = {X, Y }, the posterior prediction of ĝ(x) at a new201

site x follows a Gaussian random variable with expectation and variance being202

ED[ĝ(x)] = µ(x) + c(x, X)TC−1(Y − µ(X)), (4)203

204

VD[ĝ(x)] = c(x, x) − c(x, X)TC−1c(x, X), (5)205

where ED[·] and VD[·] denote the posterior expectation and variance operators (a subscript “D” is206
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used to indicate the posterior), receptively; µ(X) = [µ(x(1)), µ(x(2)), . . . , µ(x(d))]T is the mean207

vector; c(x, X) = [c(x, x(1)), c(x, x(2)), . . . , c(x, x(d))]T is the covariance vector between x and208

X; C is the covariance matrix of X with entry [C]ij = c(x(i), x(j)).209

Based on the Gaussian posterior of ĝ(x), it is easy to know that the posterior stochastic process210

ÎF (x) at site x is a Bernoulli random variable with211

PD[ÎF (x) = 1] = PD[ĝ(x) ≤ 0] = Φ

 −ED[ĝ(x)]√
VD[ĝ(x)]

 , (6)212

213

PD[ÎF (x) = 0] = PD[ĝ(x) > 0] = 1 − Φ

0 − ED[ĝ(x)]√
VD[ĝ(x)]

 = Φ

 ED[ĝ(x)]√
VD[ĝ(x)]

 , (7)214

where PD[·] denotes the posterior probability operator; Φ is the cumulative distribution function215

(CDF) of the standard normal variable.216

Accordingly, the posterior expectation and variance of ÎF (x) at site x are formulated as:217

ED[ÎF (x)] = Φ

 −ED[ĝ(x)]√
VD[ĝ(x)]

 , (8)218

and219

VD[ÎF (x)] = Φ

 −ED[ĝ(x)]√
VD[ĝ(x)]

 Φ

 ED[ĝ(x)]√
VD[ĝ(x)]

 . (9)220

Rewrite the failure probability integral in Eq.(2) as:221

P̂ ?
f =

∫
X

ÎF (x)f(x|θ?)dx. (10)222

Since the integral above is just a linear projection of ÎF (x), the posterior of P̂ ?
f is also random with223
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expectation and variance being:224

ED[P̂ ?
f ] = ED

[∫
X

ÎF (x)f(x|θ?)dx
]

=
∫

X
ED[ÎF (x)]f(x|θ?)dx

=
∫

X
Φ

 −ED[ĝ(x)]√
VD[ĝ(x)]

 f(x|θ?)dx

= EX

Φ

 −ED[ĝ(x)]√
VD[ĝ(x)]

 ,

(11)225

and226

VD[P̂ ?
f ] =ED

[(
P̂ ?

f − ED[P̂ ?
f ]

)2
]

=ED

[(∫
X

ÎF (x)f(x|θ?)dx −
∫

X
ED[ÎF (x)]f(x|θ?)dx

)2
]

=ED

[(∫
X

(
ÎF (x) − ED[ÎF (x)]

)
f(x|θ?)dx

)2
]

=ED

[(∫
X

(
ÎF (x) − ED[ÎF (x)]

)
f(x|θ?)dx

) (∫
X

(
ÎF (x′) − ED[ÎF (x′)]

)
f(x′|θ?)dx

′
)]

=
∫

X

∫
X
ED

[(
ÎF (x) − ED[ÎF (x)]

) (
ÎF (x′) − ED[ÎF (x′)]

)]
f (x|θ?) f

(
x

′ |θ?
)

dxdx
′

=
∫

X

∫
X
COVD[ÎF (x) , ÎF

(
x

′)]f (x|θ?) f
(
x

′ |θ?
)

dxdx
′
,

(12)227

where EX [·] is the expectation operator with respect to x; the term COVD[ÎF (x) , ÎF

(
x

′
)
] is the228

posterior covariance between ÎF (x) and ÎF (x′), whose closed-form solution is not available.229

It is reasonable to assume that ÎF (x) and ÎF

(
x

′
)

have finite variances, and then the following230

inequality holds via the Cauchy-Schwarz inequality:231

COVD

[
ÎF (x) , ÎF

(
x

′)]
≤

√
VD[ÎF (x)]

√
VD[ÎF (x′)]. (13)232
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Substituting Eq. (13) into Eq. (12), gives the upper bound of the posterior variance of P̂ ?
f :233

VD[P̂ ?
f ] =

∫
X

∫
X
COVD[ÎF (x) , ÎF

(
x

′)]f (x|θ?) f
(
x

′ |θ?
)

dxdx
′

≤
∫

X

∫
X

√
VD[ÎF (x)]

√
VD[ÎF (x′)]f (x|θ?) f

(
x

′ |θ?
)

dxdx
′

=
(∫

X

√
VD[ÎF (x)]f (x|θ?) dx

)2

=

EX


√√√√√Φ

 −ED[ĝ(x)]√
VD[ĝ(x)]

 Φ

 ED[ĝ(x)]√
VD[ĝ(x)]





2

.

(14)234

Note that similar equations with Eq. (11) and (14) have been available in the literature (e.g.,235

(Dubourg et al. 2013; Bae et al. 2020)), but they are derived from other perspectives, rather than236

Bayesian probabilistic integration. The posterior expectation in Eq. (11) can be used as the237

estimator of the failure probability, and the upper bound of the posterior variance in Eq. (14) can238

measure the epistemic uncertainty of this estimator induced by the limited number of observations,239

but roughly since it might be magnified to a certain extent.240

Adaptive experimental design241

In order to accelerate the convergence of GP training process and increase the accuracy of242

failure probability predictor, a careful experimental design is required. It has been shown in the243

previous studies, e.g., AK-MCS (Echard et al. 2011), AK-IS (Echard et al. 2013), AK-MCMC244

(Wei et al. 2019c) and AGPR-LS (Song et al. 2020b), an adaptive experimental design strategy is245

very useful for building a accurate GP model at less computational expense. The key is to develop246

a suitable learning function (or called acquisition function) that can decide the next evaluation247

point based on the current GP model. Since the upper bound of the posterior variance of the248

failure probability integral has been derived in the previous subsection, it is hence possible for us249

to develop an adaptive experimental design so as to reduce the epistemic uncertainty of the failure250

probability predictor as much as possible.251

For the above purposes, we will define a new learning function, called upper bound posterior252
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variance contribution (UPVC), which is given as follows:253

UPVC(x) = Φ

 −ED[ĝ(x)]√
VD[ĝ(x)]

 Φ

 ED[ĝ(x)]√
VD[ĝ(x)]

 , (15)254

which actually reflects the contribution of epistemic uncertainty at any site x to the upper bound255

of posterior variance of the failure probability predictor. If the point processing the largest UPVC256

value (i.e., x? = arg maxx UPVC(x)) is sequentially added to the training data set D, the upper257

bound of posterior variance of failure probability integral is expected to decrease most fastest, and258

hence we will obtain a more accurate prediction of failure probability at lower computational cost.259

Therefore, the active learning criterion proposed in this work is to find the maximum point of260

UPVC function, which is used as the best next point to evaluate on the real g-function.261

In addition to the active learning criterion, a stopping criterion for indicating the convergence of262

the algorithm should also be presented. In this study, we propose a new stopping criterion, which is263

based on the judgment of the posterior coefficient of variation (COV) of failure probability predictor.264

In terms of Eqs. (11) and (14), the upper bound of the posterior COV of failure probability can be265

expressed as:266

κ? = COVD[P̂ ?
f ] =

EX

[√
Φ

(
−ED[ĝ(x)]√

VD[ĝ(x)]

)
Φ

(
ED[ĝ(x)]√
VD[ĝ(x)]

)]

EX

[
Φ

(
−ED[ĝ(x)]√

VD[ĝ(x)]

)] . (16)267

Once the GP model becomes enough accurate, κ? should be very small. Herein, the stopping268

criterion is defined by κ? < ε, where ε is a user-specified threshold.269

Failure probability function estimation by Imprecise Augmented Stochastic Simulation (IASS)270

In this subsection, we will consider the case that θ is no longer a fixed value, but a vector of271

intervals. Accordingly, P (θ), as defined in Eq. (1), is not a deterministic value any more, but a272

function of interval variables. For instrumental purposes, all the distribution parameters are treated273

as random variables in the following. That is, we assume an auxiliary probability distribution for274

each interval variable of θ. Note that this assumption does not imply that θ must be a random275

vector in nature, but just serves as an instrumental tool for performing the proposed method. Let276

12 Dang, March 19, 2021



the auxiliary joint PDF and CDF of θ be denoted as ϕ(θ) = ∏d
j=1 ϕj(θj) and Φ(θ) = ∏d

j=1 Φj(θj)277

respectively, where ϕj(θj) and Φj(θj) are the marginal PDF and CDF of θj respectively.278

The random vector x is called aleatory uncertainty vector as the aleatory uncertainty of model279

inputs is represented by means of its probability characterization, and the corresponding random-280

variate space X is termed as aleatory uncertainty space. Under the previous assumption, we281

shall refer to the random vector θ as epistemic uncertainty vector and the associated support Θ282

as epistemic uncertainty space, respectively, since θ characterizes the epistemic uncertainty of283

distribution parameters of x due to the lack of information. Consider an augmented uncertainty284

vector v = [x, θ], i.e., a composition of aleatory uncertainty vector and epistemic uncertainty285

vector, whose joint PDF and augmented uncertainty space are denoted as w(v) = f(x|θ)ϕ(θ)286

and V = X ⊕ Θ respectively. Therefore, the failure probability function defined in Eq. (1) can be287

rewritten as:288

Pf (θ) =
∫

V
IF (v)w(v′)dv′

=
∫

Θ

∫
X

IF (v)f(x|θ)ϕ(θ′)dxdθ′

=
∫

X
IF (v)f(x|θ)dx,

(17)289

where v′ = [x, θ′]; θ′ is i.i.d. with θ; IF (v) is the augmented failure indicator function correspond-290

ing to the augmented g-function g(v). With Eq. (17), the failure indicator function is extended291

to the augmented uncertainty space, while it is noted that the integral is only with respect to x.292

This treatment can bring several benefits, which will be discussed later. However, it is still tricky293

to evaluate the functional form of Pf (θ) with respect to the full vector θ due to the underling294

complexity.295

Alternatively, the random-sampling high-dimensional model representation (RS-HDMR) (Li296

et al. 2002) is adopted to decompose the original FPF into a summation of component functions of297

increasing orders such that:298

Pf,RS(θ) = Pf,RS,0 +
m∑

j=1
Pf,RS,j (θj) +

m∑
j<k

Pf,RS,jk (θj, θk) + · · · + Pf,RS,1,...,m(θ), (18)299
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in which Pf,RS,0 is a zeroth-order (constant) component, Pf,RS,j (θj) is a first-order component300

function of the distribution parameter θj , Pf,RS,jk (θj, θk) is a second-order component function of301

the distribution parameters θj and θk, etc. According to Eq. (17), these RS-HDMR component302

functions can be further derived as:303

Pf,RS,0 =
∫

Θ
Pf (θ)ϕ(θ)dθ

=
∫

Θ

∫
X

IF (v)f(x|θ)ϕ(θ)dxdθ

=
∫

V
IF (v)ω(v)dv

= EV [IF (v)],

(19)304

305

Pf,RS,j (θj) =
∫

Θ−j

Pf (θ)ϕ(θj, θ−j)dθ−j − Pf,RS,0

=
∫

Θ−j

∫
X

IF (v)f(x|θ)ϕ(θj, θ−j)dxdθ−j − Pf,RS,0

=
∫

V−Θj

IF (v)ω(θj, v−θj
)dv−θj

− Pf,RS,0

= EV−Θj
[IF (v|θj, v−θj

)] − Pf,RS,0,

(20)306

307

Pf,RS,jk (θj, θk) =
∫

Θ−jk

Pf (θ)ϕ(θj, θk, θ−jk)dθ−jk − Pf,RS,j (θj) − Pf,RS,k (θk) − Pf,RS,0

=
∫

Θ−jk

∫
X

IF (v)f(x|θ)ϕ(θj, θk, θ−jk)dxdθ−jk − Pf,RS,j (θj) − Pf,RS,k (θk) − Pf,RS,0

=
∫

V−Θjk

IF (v)ω(θj, θk, v−(θj ,θk))dv−(θj ,θk) − Pf,RS,j (θj) − Pf,RS,k (θk) − Pf,RS,0

= EV−Θjk

[
IF (v|θj, θk, v−(θj ,θk))

]
− Pf,RS,j (θj) − Pf,RS,k (θk) − Pf,RS,0,

(21)308

where θ−j denotes the epistemic uncertainty vector excluding θj , v−θj
denotes the augmented309

uncertainty vector excluding θj , θ−jk denotes the epistemic uncertainty vector excluding θj and θk,310

v−(θj ,θk) denotes the augmented uncertainty vector excluding θj and θk. Previous studies indicate311

that the high-order terms in the expansion often are negligible for many realistic problems (Wei312

et al. 2019a; Wei et al. 2019b), and only the truncation up to the second order is considered in this313

work, but any higher-order RS-HDMR component function can be similarly derived if necessary.314
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Within the RS-HDMR framework, one can notice that the main task now is to evaluate the low-order315

component functions for approximating the FPF. By using Eq. (17), the RS-HDMR component316

functions are further converted to the integrals with respect to the augmented uncertainty vector317

of decreasing dimensions. This conversation is useful since the two-fold integrals are equivalently318

transformed to be one-fold ones, which will reduce the computational complexity substantially.319

Besides, the computational efficiency for inferring these component functions is also improved if320

we apply the proposed ALPI by making full use of the correlation information revealed in both321

aleatory and epistemic uncertainty spaces.322

For convenience, we can reformulate the second-order truncated RS-HDMR decomposition as:323

Pf,RS(θ) ≈ (m − 1)(m − 2)
2 Pf,RS,0 − (m − 2)

m∑
j=1

Pf,RS,j(θj) +
m∑

j<k

Pf,RS,jk(θj, θk), (22)324

where Pf,RS,0 = Pf,RS,0 = EV [IF (v)], Pf,RS,j(θj) = EV−Θj
[IF (v|θj, v−θj

)] and Pf,RS,jk(θj, θk) =325

EV−Θjk

[
IF (v|θj, θk, v−(θj ,θk))

]
. The constant component Pf,RS,0 or Pf,RS,0 is also referred to as326

augmented failure probability since it integrates over the augmented uncertainty vector (see Eq.327

(19)). This reformulation is useful since one can easily derive the upper bound variance of the328

first-order and second-order component functions when implementing the ALAPI method (see Eqs.329

(36)-(37)). In this setting, the main focus is to evaluate the component functions in Eq. (22), and330

one should not be confused with the component functions defined in Eq. (18). Obviously, the crude331

Monte Carlo simulation (MCS) can be directly used to estimate those RS-HDMR components both332

in Eqs. (18) and (22). For example, the estimators for those components in Eq. (22) can be given333

by:334

P̂f,RS,0 = 1
N

N∑
s=1

IF (v(s)), (23)335

336

P̂f,RS,j (θj) = 1
N

N∑
s=1

IF ((v|θj, θ−j)(s)), (24)337

338

P̂f,RS,jk (θj, θk) = 1
N

N∑
s=1

IF ((v|θj, θk, θ−jk)(s)), (25)339
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where {v(s)}N
s=1, {(v|θj, θ−j)(s)}N

s=1 and {(v|θj, θk, θ−jk)(s)}N
s=1 given fixed θj and θk are three sets340

of N simple random samples generated from w(v), w(v|θj, θ−j) and w(v|θj, θk, θ−jk), respectively.341

It is easy to prove that the above estimators are all unbiased, so we simply omit the proofs. Their342

variances can also be derived as:343

VV
[
P̂f,RS,0

]
= 1

(N − 1)N

N∑
s=1

[
IF (v(s)) − P̂f,RS,0

]2
, (26)344

345

VV−Θj

[
P̂f,RS,j (θj)

]
= 1

(N − 1)N

N∑
s=1

[
IF ((v|θj, θ−j)(s)) − P̂f,RS,j (θj)

]2
, (27)346

347

VV−Θjk

[
P̂f,RS,jk (θj, θk)

]
= 1

(N − 1)N

N∑
s=1

[
IF ((v|θj, θk, θ−jk)(s)) − P̂f,RS,jk (θj, θk)

]2
. (28)348

When the sample size is large, the central limit theorem indicates that the sampling distributions349

of P̂f,RS,0, P̂f,RS,j (θj) and P̂f,RS,jk (θj, θk) approximately follow normal distributions. Therefore,350

their confidence intervals (CIs) can be derived by using the t interval. For example, the (1−α)100%351

CI of P̂f,RS,0 can be given by:352

[
P̂f,RS,0 − tN−1(α/2)

√
VV

[
P̂f,RS,0

]
, P̂f,RS,0 + tN−1(α/2)

√
VV

[
P̂f,RS,0

]]
, (29)353

where tN−1(α/2) denotes the (1−α/2)-th percentile of a Student’s t-distribution with N −1 degrees354

of freedom. It should be noted that the proposed RS-HDMR based technique for estimating the355

FPF is actually a double-loop procedure, which is termed as Imprecise Augmented Stochastic356

Simulation (IASS) in this work. The computational efficiency of the IASS still depends on the357

sample size N and the grid size of θ, and hence it can be merely used as a reference method358

for verifying other newly-developed methods. For further reducing the computational burden, the359

proposed ALPI method will be incorporated into the IASS framework in next subsection.360

Numerical implementation procedure of ALAPI361

By combining the ALPI with IASS, a novel method, namely ALAPI, is proposed to efficiently362

estimate the FPF. The basic procedure for numerical implementation of the proposed method in-363
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cludes the following steps, which is also illustrated in Fig. 1.364

365

Step 1: Generate a set of N simple random samples V = {v}N
s=1 according to the augmented366

PDF w(v), which serves as a sample pool for training a GP model for the augmented g-function367

g(v). For this purpose, the auxiliary PDF ϕ(θ) for θ should be specified in advance. In order to368

enable those points within the intervals to have the same chance of being sampled, we assume a369

uniform auxiliary PDF over its support for each θj in this work;370

Step 2: Randomly select N0 (e.g., N0 = 12) samples among V and compute the corresponding371

augmented g-function values. An initial training sample set is then constructed by the N0 input-372

output pairs, which is denoted as T ;373

Step 3: Train or update a GP model, denoted as ĝ(v), for the augmented g-function g(v) based374

on T . The Gaussian Process Regression toolbox in Matlab is used, and the mean function and375

covariance function are specified as the linear function and squared exponential kernel function376

respectively in this study;377

Step 4: Compute the upper bound of posterior COV of augmented failure probability based on378

the trained GP model such that:379

κ =

∑N
s=1

√
Φ

(
−ET [ĝ(v(s))]√

VT [ĝ(v(s))]

)
Φ

(
ET [ĝ(v(s))]√
VT [ĝ(v(s))]

)
∑N

s=1 Φ
(

−ET [ĝ(v(s))]√
VT [ĝ(v(s))]

) . (30)380

If the stopping condition κ < ε is satisfied, go to Step 5; otherwise, identify the point possessing381

maximum UPVC value among the sample pool V by382

v? = arg max
v∈V

UPVC(v) = arg max
v∈V

Φ

 −ET [ĝ(v(s))]√
VT [ĝ(v(s))]

 Φ

 ET [ĝ(v(s))]√
VT [ĝ(v(s))]

 , (31)383

evaluate the corresponding g-function value y? = g(v?), add {v?, y?} to the training sample set T ,384

and go to Step 3;385

Step 5: Based on the well-trained GP model ĝ(v), perform the IASS method to obtain a386
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estimate P̂f (θ) for the FPF. As defined in Eq. (22), each component function of RS-HDMR can387

also be inferred from the GP predictor. According to the ALPI method, the unbiased estimators for388

RS-HDMR component functions can be given by:389

P̂f,RS,0 = 1
N

N∑
s=1

Φ

 −ET [ĝ(v(s))]√
VT [ĝ(v(s))]

 , (32)390

391

P̂f,RS,j (θj) = 1
N

N∑
s=1

Φ

 −ET [ĝ((v|θj)(s))]√
VT [ĝ((v|θj)(s))]

 , (33)392

393

P̂f,RS,jk (θj, θk) = 1
N

N∑
s=1

Φ

 −ET [ĝ((v|θj, θk)(s))]√
VT [ĝ((v|θj, θk)(s))]

 . (34)394

The upper bound of posterior variances of the component functions, which reflects the upper395

bound of the epistemic uncertainty due to the discretization error by using the ALAPI, can also be396

estimated by:397

VT
[
P̂f,RS,0

]
=

 1
N

N∑
s=1

√√√√√Φ

 −ET [ĝ(v(s))]√
VT [ĝ(v(s))]

 Φ

 ET [ĝ(v(s))]√
VT [ĝ(v(s))]




2

, (35)398

399

VT
[
P̂f,RS,j (θj)

]
=

 1
N

N∑
s=1

√√√√√Φ

 −ET [ĝ((v|θj)(s))]√
VT [ĝ((v|θj)(s))]

 Φ

 ET [ĝ((v|θj)(s))]√
VT [ĝ((v|θj)(s))]




2

, (36)400

401

VT
[
P̂f,RS,jk (θj, θk)

]
=

 1
N

N∑
s=1

√√√√√Φ

 −ET [ĝ((v|θj, θk)(s))]√
VT [ĝ((v|θj, θk)(s))]

 Φ

 ET [ĝ((v|θj, θk)(s))]√
VT [ĝ((v|θj, θk)(s))]




2

.

(37)402

Note that this step does not require to evaluate on the original g-function, and then the computational403

burden can be alleviated significantly, especially for an expensive-to-evaluate computer simulator404

involved.405

406

In the above steps, it should be emphasized that the user-specified threshold ε can affect the407

accuracy of resultant GP model, as well as the efficiency of the active learning process. Besides,408
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there is a possibility that the stopping condition is satisfied even though the GP model is indeed409

not accurate enough, e.g., at the early stage of training. To avoid this situation, one can simply use410

a delay judgment strategy, which means that the active learning process is stopped only when the411

stopping condition is satisfied for several times in succession (e.g., three). Besides, the estimators412

in Eqs. (32)-(34) are only unbiased for the GP model, but biased for the real g-function.413

The proposed ALAPI method has three main attractive features, making it very efficient for414

estimating the FPF. First, by assuming an auxiliary PDF for the distribution parameter θ, the GP415

model is built in the joint aleatory and epistemic uncertainty space (i.e., the augmented uncertainty416

space). The spatial correlation information in the augmented uncertainty space is shown to be417

quite useful for the active learning process. Second, the discretization error is regarded as a kind418

of epistemic uncertainty via interpreting the failure probability integral from Bayesian inference,419

which enables to derive the upper bounds of posterior variances of the ALAPI estimators. Third,420

the proposed method is essentially a decoupled procedure through an elegant combination of the421

ALPI and IASS, yielding a major improvement in computational efficiency.422

NUMERICAL EXAMPLES423

In this section, three numerical examples are studied to verify the proposed method. Among424

the available state-of-the-art techniques for estimating the FPF, the active learning NISS developed425

in (Wei et al. 2019b) could be a potential competitor to the proposed method. Therefore, we426

mainly compare our method with this method by using the first numerical example. For notational427

clarity, we will denote this method simply as "NISS" below. One can refer to Appendix I for more428

detailed description of the NISS method used. In the third example, the ASS (Au 2005) is also429

implemented to evaluate the augmented failure probability (or constant RS-HDMR component).430

Besides, the developed IASS method is mainly adopted to provide reference results in all three431

numerical examples.432

Example 1: a series system with four branches433

The first example considers a series system with four branches, which has been extensively434

investigated in the context of precise probabilities (Echard et al. 2011; Cui and Ghosn 2019). The435
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performance function is given by:436

y = g (x1, x2) = min



3 + (x1−x2)2

10 − (x1+x2)√
2

3 + (x1−x2)2

10 + (x1+x2)√
2

(x1 − x2) + b√
2

(x2 − x1) + b√
2

, (38)437

where b is a constant, specified as 4; The random variables x1 and x2 are normally distributed,438

denoted as N (µ1, σ2
1) and N (µ2, σ2

2) respectively. Due to the epistemic uncertainty, the distribution439

parameters (i.e., θ = [µ1, σ1, µ2, σ2]) are not deterministic, but uncertain. In this example, two440

cases by varying bounds of the distribution parameters are considered, as given in Tab. 1.441

In the following, three methods, i.e., the proposed ALAPI, NISS and IASS, are employed to442

estimate the FPF. For both cases, the sample pool is constructed by 105 simple random samples for443

ALAPI and NISS, while the sample size for IASS is set to be 106. Besides, the threshold regarding444

the stopping condition is specified as ε = 0.02 for ALAPI.445

Case I446

For illustrating the active learning process of ALAPI, the upper bound of posterior COV of447

the augmented failure probability P̂f,RS,0 (denoted as κ) against the number of adaptively added448

samples is plotted in Fig. 2a. It can be seen that as more samples are sequentially added into the449

initial training data set, the general trend of κ tends to decrease. Until the initial training sample set450

is enriched by a total number of 81 samples, the stopping condition of the active learning procedure451

is satisfied. Thus, this implies that only 93 performance function evaluations are required by the452

proposed ALAPI method, which are much less than the NISS method, say 164. The constant453

RS-HDMR calculated by the three methods are listed in the second to fourth rows of Tab. 2. As454

seen, the estimate given by IASS has a relatively small COV, and hence we are highly confident455

that this reference result should be very close to the true value. Compared to the reference result,456

both ALAPI and NISS are capable of yielding very desirable estimates for the constant-HDMR457

component in this case. Note that the accuracy of the proposed method can also be revealed by the458
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upper bound of posterior COV of P̂f,RS,0 itself, given that the sampling variability for estimating459

COVT [P̂f,RS,0] is negligible. On the contrary, the COV (i.e., COV[P̂f,RS,0]) provided by the NISS460

method only accounts for the sampling variability. From Fig. 3a, one can also conclude that all461

the three methods are able to produce very accurate estimates for the four first-order RS-HDMR462

component functions. For limited space, only one second-order RS-HDMR component function463

computed by ALAPI and IASS is depicted in Fig. 4a. Remarkably, it is shown that the estimate by464

the proposed method accords well with that by the IASS, with the upper bound of posterior COV465

and COV being small.466

In short, the proposed ALAPI method can offer comparable results against the NISS method,467

but requires less g-function evaluations in such a case with smaller epistemic uncertainty presented468

in the distribution parameters compared with case II.469

Case II470

In this case, the intervals for those distribution parameters are enlarged a little bit compared to471

case I, as shown in Tab. 1. The active learning process of the proposed ALAPI method is illustrated472

by the upper bound of posterior COV of the augmented failure probability against the number of473

adaptively added samples, as depicted in Fig. 2b. It is shown that the active learning process is474

convergent after the initial training sample set is enriched with 123 samples. That is, the proposed475

ALAPI only requires 135 g-function evaluations. As a comparison, 352 g-function calls are needed476

by the NISS method, which is about 2.6 times more than the proposed method. The constant477

RS-HDMR component computed by the three methods is listed in the fifth to seventh rows of Tab.478

2. The estimate from IASS method can be taken as the "exact" value because its COV is extremely479

small. Clearly, the proposed method can produce a more close estimate to the "exact" value than the480

NISS method in this case. For the first-order RS-HDMR component functions shown in Fig. 3b, it481

can also be observed that the estimates P̂RS,2(σ1) and P̂RS,4(σ2) from the NISS method have larger482

errors than those by the proposed ALAPI method, by taking the results by IASS as reference. As483

shown in Fig. 4b, the proposed method can still offer a very accurate estimate of P̂f,RS,13 (µ1, µ2)484

with a small upper bound of posterior COV.485
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To sum up, the proposed method still requires far less g-function calls than the NISS method,486

but the accuracy of the NISS method becomes worse as the intervals of the distribution parameters487

are enlarged in this case. Such phenomenon is consistent with what is reported in Ref. (Wei et al.488

2021).489

Example 2: a nonlinear oscillator490

An undamped single-degree-of-freedom oscillator with nonlinear restoring force subject to491

rectangular pulse load (Bucher and Bourgund 1990) is adapted for the case of imprecise probability,492

which is shown in Fig. 5. The corresponding limit state function reads:493

y = g (m, c1, c2, r, F1, t1) = 3r −

∣∣∣∣∣∣ 2F1

m(c1 + c2)
sin

t1

2

√
c1 + c2

m

∣∣∣∣∣∣ , (39)494

As listed in Tab. 3, six random variables are included in this example. Due to different levels495

of knowledge, the mean values are assumed to be deterministic, but the standard deviations are496

characterized by interval models.497

For the ALAPI method, the sample pool is constructed with a set of 106 samples, and the498

threshold ε for the stopping condition is set to be 0.01. A number of 106 samples are used for IASS499

method. As shown in Fig. 6, the stopping condition indicates that the GP model is well-trained500

after a total number of 29 samples are adaptively added into the initial training data set. Therefore,501

the ALAPI method only requires 41 performance function evaluations in this example, even though502

the stopping criteria is somehow strict. Tab. 4 lists the constant RS-HDMR component estimated503

by ALAPI and IASS, where it is found that the results of both methods are in good agreement with504

each other, and process a quite small upper bound of posterior COV or COV. Thus, we can conclude505

that both methods offer fairly good estimates for P̂f,RS,0. As shown in Figs. 7 and 8, the first- and506

second-order RS-HDMR components are also computed with high accuracy by ALAPI and IASS.507

Note that the higher-order component functions can also be computed on the basis of the trained508

GP model if necessary.509
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Example 3: a 120-bar space truss structure510

As shown in Fig. 9, the third example consists of a 120-bar space truss structure, which has511

been extensively used as a benchmark in the context of design optimization of structures. In512

this case study, we would like to estimate the failure probability function when the structure is513

subjected to some uncertainties characterized by probability boxes, i.e., the Young’s modulus of the514

material E, cross-sectional area A and applied load P . The detailed description of these variables515

is summarized in Tab. 5. The limit state function is defined as:516

y = g(E, A, P ) = ∆ − V (E, A, P ), (40)517

where ∆ is a threshold, specified as 55 mm; V (E, A, P ) is the vertical displacement of the top518

node, which is solved by a finite-element software, OpenSees.519

The proposed ALAPI method is implemented to obtain the failure probability function P̂f (θ).520

The number of samples used to construct the sample pool and the threshold of the stopping criterion521

are set as 105 and 0.01, respectively. From Fig. 10, it can be found that the stopping criterion is522

reached after a total of 21 samples are added in the initial training data set. Therefore, the proposed523

method only needs 33 limit state function evaluations to train a GP model. From the GP model,524

the RS-HDMR component functions of the FPF can be inferred. For the constant RS-HDMR525

component, the proposed method is compared to the ASS and IASS. As summarized in Tab. 6,526

the proposed method is computationally much more saving compared to the other two methods527

in terms of the number of calls to the limit state function, but can still yield fairly good estimate.528

Fig. 11 shows the six first-order RS-HDMR component functions and their corresponding upper529

bound COVs. For limiting the length of our paper, only one second-order RS-HDMR component530

functions is given, as depicted in Fig. 12. From these RS-HDMR component functions, one can531

perform sensitivity analysis to determine the contribution of each single variable or variable pairs.532

These information is extremely useful for directing the future information collection so as to further533

reduce the epistemic uncertainty of the failure probability.534
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CONCLUSIONS535

The main contribution of this work is to present a novel non-intrusive method, termed as536

Active Learning Augmented Probabilistic Integration (ALAPI), for efficiently estimating the failure537

probability function in the presence of imprecise probability models. Specifically, the probability-538

box models are taken as an example for characterizing aleatory uncertainty and epistemic uncertainty539

by a hierarchical structure. However, all the developments can be conveniently extended to the540

case with other imprecise probability models. For our purposes, an active learning probabilistic541

integration (ALPI) method is firstly presented by interpreting the failure probability integral with542

Bayesian inference, rather than a frequentist view. Further, a imprecise augmented stochastic543

simulation (IASS) method is proposed based on the ideas of RS-HDMR and augmented uncertainty544

space. Finally, the ALAPI is formed by a elegant combination of ALPI and IASS. The main feature545

of ALAPI is that the epistemic uncertainty resulted from discretization error is properly quantified546

and propagated from the computational pipelines, allowing properly qualifying the accuracy of547

RS-HDMR component functions of the FPF.548

Three numerical examples are investigated to exemplify and validate the proposed method. It is549

shown that the proposed method can produce very accurate estimates of the RS-HDMR components550

up to a second order with a small number of g-function calls when the failure probability is relatively551

larger (typically, with P̂f,RS,0 > 10−3). Besides, as revealed by Example 1 the proposed method552

could be not very sensitive to the level of epistemic uncertainty, which is in contrast to the NISS553

method. To make the paper concise, only the component functions are presented in the examples,554

but one can also easily compute the failure probability bounds or sensitivity indices based on the555

proposed method if interested (Wei et al. 2019a; Wei et al. 2019b).556

While the findings are encouraging, the proposed method is still suffered from some limitations,557

e.g., small failure probabilities and high dimensions (in terms of the augmented uncertainty vector).558

These problems will be addressed in the future work.559
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APPENDIX I. ACTIVE LEARNING NON-INTRUSIVE IMPRECISE STOCHASTIC SIMULATION571

According to (Wei et al. 2019b), the active learning procedure can be injected into the general572

NISS framework so as to further reduce the computational burden. Depending on the HDMR used,573

two kinds of active learning NISS methods, i.e., AK-LEMCS-cut-HDMR and AK-GEMCS-RS-574

HDMR, have been developed. In the present study, we only compare AK-GEMCS-RS-HDMR with575

the proposed method, and hence only this method is revisited. Since the RS-HDMR component576

functions that need to be estimated in the proposed method are somewhat different from those577

in (Wei et al. 2019b), the original AK-GEMCS-RS-HDMR should be slightly modified for our578

purposes, and the revised procedures are briefly given as follows.579

580

Step I.1: Generate a set of N simple random samples V = {X, S} = {x(s), θ(i)}N
i=1 from the581

augmented PDF w(v), which serves as a sample pool for training a GP model for the g-function582

g(x).583

Step I.2: Randomly select N0 (e.g., N0 = 12) samples from X , and compute the corresponding584

g-function values. Attribute these N0 samples to the training sample set Q.585

Step I.3: Train or update the GP model, denoted as ĝ(x), for the g-function g(x) based on Q.586

Step I.4: Compute the GP predictions EQ[ĝ(x)] and VQ[ĝ(x)] based on the trained GP model587

ĝ(x) for all the samples in X , and judge whether the stopping condition is satisfied with the588

principle that minN
i=1 U(x(i)) ≥ 2, where U(x) = |EQ[ĝ(x)]|√

VQ[ĝ(x)]
. If the inequality is satisfied, go589

to Step I.4; otherwise, find the sample x? with the smallest U value among X , compute the590

corresponding g-function value y? = g(x?), add {x?, y?} to the training sample set Q, and go to591

Step I.3;592

Step I.4: Based on the well-trained GP model ĝ(x), obtain a estimate P̂f (θ) for the FPF. The593

estimators for the RS-HDMR component functions defined in Eq. (22) are given by:594

P̂f,RS,0 = 1
N

N∑
i=1

ÎF (x(i)), (A.1)595
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596

P̂f,RS,j (θj) = 1
N

N∑
i=1

ÎF (x(i))
f(x(i)|θj, θ

(i)
−j)

f(x(i)|θ(i))
, (A.2)597

598

P̂f,RS,jk (θj, θk) = 1
N

N∑
i=1

ÎF (x(i))
f(x(i)|θj, θk, θ

(i)
−jk)

f(x(i)|θ(i))
. (A.3)599

The sampling variability contained in the above estimators can be measured by the following600

variances:601

V
[
P̂f,RS,0

]
= 1

(N − 1)N

N∑
i=1

[
IF (x(i)) − P̂f,RS,0

]2
, (A.4)602

603

V
[
P̂f,RS,j (θj)

]
= 1

(N − 1)N

N∑
i=1

ÎF (x(i))
f(x(i)|θj, θ

(i)
−j)

f(x(i)|θ(i))
− P̂f,RS,j (θj)

2

, (A.5)604

605

V
[
P̂f,RS,jk (θj, θk)

]
= 1

(N − 1)N

N∑
i=1

ÎF (x(i))
f(x(i)|θj, θk, θ

(i)
−jk)

f(x(i)|θ(i))
− P̂f,RS,jk (θj, θk)

2

. (A.6)606
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Abbreviations

ALAPI active learning augmented probabilis-
tic integration

ALPI active learning probabilistic integration
ASS augmented subset simulation
CDF cumulative distribution function
COV coefficient of variation
FPF failure probability function
GP Gaussian process
IASS imprecise augmented stochastic simu-

lation
MCS Monte Carlo simulation

NIPI non-intrusive imprecise probabilistic
integration

NISS non-intrusive imprecise stochastic sim-
ulation

p-box probability box
PDF probability density function
RMF response moment function
RS-HDMR random sampling high-

dimensional representation model
UPVC upper bound posterior variance contri-

bution
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TABLE 1. Distribution parameters for Example 1.

Case µ1 σ1 µ2 σ2
I [−0.5, 0.5] [0.8, 1.2] [−0.5, 0.5] [0.8, 1.2]
II [−0.8, 0.8] [0.5, 1.5] [−0.8, 0.8] [0.5, 1.5]
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TABLE 2. Constant RS-HDMR component by different methods for Example 1.

Case Method P̂f,RS,0 COVT [P̂f,RS,0] or COV[P̂f,RS,0]

I
ALAPI 0.0594 0.0172
NISS 0.0589 0.0126
IASS 0.0593 0.0040

II
ALAPI 0.0860 0.0186
NISS 0.0855 0.0103
IASS 0.0861 0.0033
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TABLE 3. Statistical information of the random variables for Example 2.

Variable Description Distribution Mean Standard deviation
m Mass Normal 1.0 σ1 ∈ [0.02, 0.08]
c1 Stiffness of the first spring Normal 1.0 σ2 ∈ [0.05, 0.15]
c2 Stiffness of the second spring Normal 0.1 σ3 ∈ [0.005, 0.015]
r Yield displacement Normal 0.5 σ4 ∈ [0.02, 0.08]

F1 Load amplitude Lognormal 1.0 σ5 ∈ [0.10, 0.30]
t1 Load duration Normal 1.0 σ6 ∈ [0.15, 0.25]
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TABLE 4. Constant RS-HDMR component by ALAPI and IASS for Example 2.

Method P̂f,RS,0 COVT [P̂f,RS,0] or COV[P̂f,RS,0]
ALAPI 0.0356 0.0100
IASS 0.0359 0.0052
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TABLE 5. Statistical information of the random variables for Example 3.

Variable Distribution Mean Standard deviation
E/Mpa Normal µE ∈ [2.10 × 105, 2.20 × 105] σE ∈ [2.10 × 104, 2.20 × 104]
A/mm Normal µA ∈ [1000, 1100] σA ∈ [100, 110]
P/kN Lognormal µP ∈ [500, 600] σP ∈ [50, 60]
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TABLE 6. Constant RS-HDMR component by ALAPI, ASS and IASS for Example 3.

Method P̂f,RS,0 COVT [P̂f,RS,0] or COV[P̂f,RS,0] N
ALAPI 0.0782 0.0004 33
ASS 0.0803 0.0938 3800
IASS 0.0754 0.0111 105
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Start

Define a sample pool V = {v}N
s=1 by:

generating a set of N simple random samples from the augmented PDF w(v)

Define an initial training sample set T by:
(1) randomly selecting N0 samples from V ;

and (2) computing the corresponding augmented g-function values

Train or update the GP model ĝ(v) for the augmented g-function based on T

Calculate the upper bound of posterior COV of augmented failure probability κ (by Eq. (30))

κ < ε ?
Identify the next best point v? by Eq. (31),

compute the corresponding g-function value y? = g(v?),
and add {v?, y?} to the training sample set T

Based on the well-trained GP model ĝ(v),
estimate the RS-HDMR component functions by Eqs. (32)-(34)

Synthesize P̂f,RS(θ) by Eq. (22)
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Yes

Fig. 1. Flowchart of the proposed ALAPI method.
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Fig. 2. Upper bound of the posterior COV of P̂f,RS,0 against the number of adaptively added
samples for Example 1.
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Fig. 3. Four first-order RS-HDMR component functions for Example 1.
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Fig. 4. A second-order RS-HDMR component function for Example 1.
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Fig. 5. An undamped SDOF oscillator with nonlinear restoring force subject to pulse load for
Example 2.
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Fig. 9. A 120-bar space truss structure.
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Fig. 10. Upper bound of the posterior COV of P̂f,RS,0 against the number of adaptively added
samples for Example 3.
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Fig. 11. Six first-order RS-HDMR component functions for Example 3.
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Fig. 12. One second-order RS-HDMR component function for Example 3.
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