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Abstract. We study a model of programmable matter systems consist-
ing of n devices lying on a 2-dimensional square grid which are able
to perform the minimal mechanical operation of rotating around each
other. The goal is to transform an initial shape A into a target shape
B. We investigate the class of shapes which can be constructed in such
a scenario under the additional constraint of maintaining global connec-
tivity at all times. We focus on the scenario of transforming nice shapes,
a class of shapes consisting of a central line L where for all nodes u in
S either u ∈ L or u is connected to L by a line of nodes perpendicular
to L. We prove that by introducing a minimal 3-node seed it is possible
for the canonical shape of a line of n nodes to be transformed into a nice
shape of n−1 nodes. We use this to show that a 4-node seed enables the
transformation of nice shapes of size n into any other nice shape of size
n in O(n2) time. We leave as an open problem the expansion of the class
of shapes which can be constructed using such a seed to include those
derived from nice shapes.

The full version of the paper with all omitted details is available
on arXiv at: https://arxiv.org/abs/2108.09250.
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1 Introduction

Programmable matter refers to matter which can change its physical properties
algorithmically. This means that the change is the result following the procedure
of an underlying program. The implementation of the program can either be a
system level external centralised algorithm or an internal decentralised algorithm
executed by the material itself. The model for such systems can be further refined
to specify properties that are relevant to real-world applications, for example
connectivity, colour [1] and other physical properties. The result of this is the
development of programmable materials such as self-assembling DNA molecules
[2, 3]. In addition, systems which rely on large collectives of identical robots
have been developed, for example the Kilobot system [4] and the Robot Pebbles
system [5]. Another interesting implementation is Millimotein [6], a system where
programmable matter folds itself into arbitrary 3D shapes. The CATOMS system
[7, 8] is a further implementation which constructs 3D shapes by first creating a
“scaffolding structure” as a basis for construction. It is expected that applications
in further domains such as molecular computers and self-repairing machines may
become apparent in the long-term.

As the development of these systems continues, it becomes increasingly neces-
sary to develop theoretical models which are capable of describing and explaining
the emergent properties, possibilities and limitations of such systems in an ab-
stract and fundamental manner. To this end, models have been developed for
programmable matter. For example, algorithmic self-assembly [2] focuses on pro-
gramming molecules like DNA to grow in a controllable way, and the Abstract
Tile Assembly Model [9, 10], as well as the nubot model [11], have both been
developed for this area. Network Constructors [12] uses the Population Protocol
model [13] based on a population of finite-automata interacting randomly as
the basis for a new model where the automata are able to create networks by
forming connections with each other. The latter model is formally equivalent to
a restricted version of chemical reaction networks, which ”are widely used to de-
scribe information processing occurring in natural cellular regulatory networks”
[14, 15]. Finally there is extensive research into the amoebot model [16–19], where
finite automata on a triangle lattice follows a distributed algorithm to achieve a
desired goal.

Recent progress in this direction has been made in a previous paper [20], cov-
ering questions related to a specific model of programmable matter where nodes
exist in the form of a shape on a 2D grid and are capable of performing two
specific movements: rotation around each other and sliding a node across two
other nodes. They presented 3 problems: transformations with only rotations
(Rot-Transformability), transformations with rotations with the restriction that
shapes must always remain connected (RotC-Transformability) and transfor-
mations with both rotation and sliding movements (RS-Transformability). For
Rot-Transformability they prove universal transformation between any pair of
colour-consistent shapes which are not blocked, however they leave universal
RotC-Transformability as an open problem. Such transformations are highly de-
sirable due to the large numbers of programmable matter systems which rely on
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the preservation of connectivity. Progress in a very similar direction was made
in another paper [21], which used a similar model but allowed for a greater
range of movement, for example “leapfrog” and “monkey” movements. They
accomplished universal transformation in O(n2) movements using a “bridging”
procedure which added up to 5 nodes during the procedure as necessary in a
manner similar to the seed idea from the previous paper.

2 Contribution

We investigate which families of connected shapes can be transformed into each
other via rotation movements without breaking connectivity.

We consider the case of programmable matter on a 2D grid which is only
capable of performing rotation movements, defined as the 90◦ rotation of a node
a around one of the two vertices of the edge it shares with a neighbouring edge-
adjacent node b, so long as the goal and intermediate cells are empty. All nodes
must be edge connected, meaning that at every time step there must be a path
from any arbitrary node to any other node crossing only spaces occupied by
nodes via edges. Our algorithms are centralised, using external procedures to
transform shapes, and therefore focusing on the questions of the feasibility and
complexity of the transformations.

We assume the existence of a seed, a group of nodes in a shape S which are
placed in empty cells neighbouring a shape A to create a new connected shape
which is the unification of S and A. Seeds allow shapes which are blocked or
incapable of meaningful movement to perform otherwise impossible transforma-
tions. The use of seeds was established in a previous work [22], and more recently
shown to enable universal reconfiguration in the context of connectivity preserv-
ing transformations [21], however to our knowledge there has been no attempt to
investigate this problem using a seed which is a connected shape fully introduced
before the transformation is initiated.

We first study blocked shapes, where our goal is to define the class of shapes
which are blocked, or incapable of moving any node without a seed. We show
that shapes of this class consist of nodes which are surrounded by diagonal lines
in the shape of a rhombus, or overlapping rhombuses which may be connected
by lines. We then investigate the transformation of nice shapes. A Nice Shape
(defined in [20]) is a shape S which has a central line L where for all nodes u in
S either u ∈ L or u is connected to L by a line of nodes perpendicular to L. We
provide a lower bound of Ω(n2) for transforming a line of n nodes into a nice
shape. We show that it is possible to transform such a line into a nice shape of
n− 1 nodes using a 3-node seed in O(n2) time. We then demonstrate that it is
possible to transform nice shapes of size n into other nice shapes of size n by
using the canonical shape of a line and a 4-node seed in O(n2) time. We provide
an algorithm to implement this transformation and give time bounds for it. We
then provide further directions for research.

In Section 3, we formally define the model of connectivity-preserving pro-
grammable matter used in this paper. In Section 4 we give our lower bounds. In
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Section 5 we provide our algorithm for the construction of nice shapes where the
colour of nodes added to each side of the line always alternates, then generalise
first to all nice shapes and second to the class of shapes made up of nice shapes.
In Section 6 we conclude and give directions for potential future research.

3 Model

The programmable matter systems considered in this paper operate on a 2D
square grid, with each cell being uniquely referred to by its y ≥ 0 and x ≥ 0 coor-
dinates. Such a system consists of a set S of n modules, called nodes throughout.
Each node may be viewed as a spherical module fitting inside a cell. At any given
time, each node u ∈ S occupies a cell in the grid o(u) = (oy(u), ox(u)) = (i, j)
(where i corresponds to a row and j to a column of the grid) and no two nodes
may occupy the same cell. At any given time t, the positioning of nodes on the
grid defines an undirected neighboring relation E(t) ⊂ S × S, where {u, v} ∈ E
iff oy(u) = oy(v) and |ox(u)−ox(v)| = 1 or ox(u) = ox(v) and |oy(u)−oy(v)| = 1,
that is, if u and v are either horizontal or vertical neighbors on the grid, respec-
tively. We say that two nodes are edge-adjacent if such a relation exists between
them. A more informative and convenient way to define the system at any time
t is the mapping Pt : N≥0 × N≥0 → {0, 1}, where Pt(i, j) = 1 iff cell (i, j) is
occupied by a node. At any given time t, P−1

t (1) defines a shape. Such a shape
is called connected if (S,E(t)) defines a connected graph.

In general, shapes can transform to other shapes via a sequence of one or
more movements of individual nodes. We consider only one type of movement:
rotation. In this movement, a single node moves relative to one or more neighbor-
ing nodes. A single rotation movement of a node u is a 90° rotation of u around
one of its neighbors. Let (i, j) be the current position of u and let its neighbor be
v occupying the cell (i− 1, j) (i.e., lying below u). Then u can rotate 90° clock-
wise (counterclockwise) around v iff the cells (i, j+1) and (i−1, j+1) ((i, j−1)
and (i − 1, j − 1), respectively) are both empty. By rotating the whole system
90°, 180°, and 270°, all possible rotation movements are defined analogously.

Let A and B be two connected shapes. We say that A transforms to B via
a rotation r, denoted A

r→ B, if there is a node u in A such that if u applies r,
then the shape resulting after the rotation is B. We say that A transforms in one
step to B (or that B is reachable in one step from A), denoted A→ B, if A

r→ B
for some rotation r. We say that A transforms to B (or that B is reachable from
A) and write A  B, if there is a sequence of shapes A = C0, C1, ..., Ct = B,
such that Ci → Ci+1 for all 0 ≤ i < t. Rotation is a reversible movement, a fact
that we use in our results.

A line is a connected shape where every node lies on the same column or
the same row. A nice shape N is defined as a shape which has a central line L
where for all nodes u either u ∈ L or u is connected to L by a line of nodes
perpendicular to L.

Consider a black and red checkered colouring of the 2D grid, like that of a
chessboard. Then any shape S consists of b(S) nodes which lie on black cells and
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r(S) nodes which lie on red cells. Two shapes A and B are colour consistent if
b(A) = b(B) and r(A) = r(B). Because rotations are the only permissible move,
it is impossible for a node to change colour. Therefore, any two shapes for which
a solution to Rot-Transformability (and by extension RotC-Transformability)
exists must be colour-consistent. If S is not a nice shape and S = A ∪ B where
A is a nice shape, we call B the waste of the shape S. A configuration of a shape
is an arrangement of the nodes of the shape on a 2D grid where each node is
uniquely identifiable.

4 Infeasible Transformations and the Time Lower Bound

In this section, we cover a series of transformations which are infeasible, meaning
that they rely on the ability to move O(n) nodes but exist in a scenario where
moving at most O(1) is possible. We first define the class of shapes which are
blocked, meaning there is no potential movement available for any node. We show
that it is necessary for a seed to have at least 3 nodes if it is to be connected
and to enable the movement of more than 5 nodes in a horizontal line. Finally,
we provide a lower bound of Ω(n2) movements for the problem of transforming
a line into a nice shape.

Two nodes are vertex-adjacent if their cells share a common vertex. A node
w is an interior node if for each of the cells x edge-adjacent to w either there
is a node occupying x or there are two nodes y and z such that y and z are
edge-adjacent to x and vertex-adjacent to w. A node is an exterior node if it is
not an interior node.

Theorem 1. An arbitrary shape A which does not have to preserve connectivity
is blocked if and only if there is only 1 node or every exterior node has no edge
connections to any other exterior node.

Proof. A shape with one node is trivially blocked because there is nothing for it
to rotate around.

Otherwise, a shape consists of interior nodes connected to each other with the
possibility of one-node gaps, surrounded by exterior nodes which form diagonal
lines due to the edge-adjacency restriction.

Interior nodes are blocked by the nodes that surround them, either because
the grid space is filled by an edge-adjacent node or the two vertex-adjacent nodes
block the rotation movement.

Exterior nodes can only rotate around nodes which are edge-connected, which
must be interior nodes. The nodes which surround an interior node, whether edge
or vertex connected, always block an exterior node from moving, regardless of
whether they are interior or exterior nodes themselves.

Conversely, if there is an exterior node which is edge-connected to an exterior
node, the exterior node can rotate into the empty space which it provides. ut

Theorem 2. An arbitrary shape B is blocked under the condition of connectivity
preservation if it is formed of lines connecting shapes blocked under the conditions
of Theorem 1.
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Proof. By Theorem 1, each of the blocked shapes is incapable of movement.
Lines are capable of movement, however if any node except the end nodes moves
the resulting shape will not be connected. In addition, the nodes within a line
do not enable the movement of nodes in a blocked shape as the only node which
is capable of new movement is responsible for maintaining connectivity between
the blocked shape and the line. Therefore, so long as the end nodes of a line
are blocked as they form part of the blocked shape, the nodes of such a shape
cannot be moved without breaking connectivity. ut

This creates a shape which is similar to one or more overlapping rhombuses.
In addition, with the additional condition of connectivity preservation, it is pos-
sible for these shapes to be connected by straight lines resembling a geometric
cactus form of a cactus graph with these shapes instead of cycles.

4.1 Time and Seed Lower Bounds for Line Transformations

We now give a lower bound on the running time of any strategy which transforms
a line into a nice shape.

Lemma 1. There exists a nice shape such that any strategy which transforms a
line of n nodes into the nice shape requires Ω(n2) time steps in the worst case.

Proof. Our goal is to transform the line of length n into a nice shape with
two lines of length n/2, one horizontal line and one vertical line above and
perpendicular to the node in the center of the horizontal line.

Let c be the node in the line which the vertical line will be constructed above.
To avoid breaking connectivity, it is necessary for M to transfer nodes from

the ends of the line the space above c. Each of these nodes must perform dn/2e
movements assisted by M . While the distance to the c grows shorter with each
node transferred, the line above c grows longer. Therefore, given that dn/2e nodes
must move towards and onto the vertical line, the total number of movements
m is given by dn/2e · dn/2e = Ω(n2).

ut

We define a connected seed to be a seed which is a connected shape by itself.
We next show that a connected seed of size s < 3 on a line of length n occupying
the grid spaces (0, 0) to (n−1, 0) can only move a constant number of nodes (5).
Note that if the seed is disconnected a 2-node seed is able to enable non-trivial
movement by taking positions such that they can work with both ends of the
line at the same time. The position of the seed can also be symmetrical so long
as the destination of the pairs is also mirrored.

Lemma 2. Any line of nodes S of length n can move at most five nodes from
the line with any k-seed of size k < 3 nodes.

Proof. A line without seeds, with the connectivity preserving condition and with
only rotation movements cannot do anything other than rotate the two nodes
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at each end point. With a one node seed, the only possible action is for the
node to be positioned in the cell (2, 1) (or any equivalent symmetrical position)
and rotate the end node at (0, 0) to (1, 1) to form a pair. This is equivalent to
having a two node seed on a line of length n− 1. With a two node seed, it can
only interact with an end node and with each node in the positions (0, 1), (1, 1)
or (1, 1), (2, 1) (or any symmetrical position). In the former case, the end node
can only rotate around the node in (0, 1) because it depends on it to maintain
connectivity. In the latter case, the end node can rotate to (0, 1). This allows
the node in (1, 0) and the node next to it (i.e. in (2, 0)) to rotate. However, they
cannot move much without breaking connectivity thanks to a reliance on the
nodes in (3, 0) and (3, 1) for connectivity which restricts movement.

Therefore, if we start with a one node seed, form a two node pair, rotate the
node in (0, 1) to (2, 1), move the two nodes in (1, 0) and (2, 0) and the node at
the other end of the line, we have exhausted all possibilities to maximise the
number of moving nodes without using a seed of size k ≥ 3. ut

5 Transformation for Nice Shapes

In this section, we investigate the possibilities related to the transformation of
shapes which are connectivity preserving. We focus on the problem of converting
a nice shape of O(n) nodes into any other nice shape of O(n) nodes using an
O(1) seed. We do this by showing we can transform the canonical shape of a
line with O(n) nodes into any nice shape. Due to reversibility, it follows that
any nice shape can be transformed into such a line, and then into another nice
shape. More specifically, we first provide a solution for the variant of this problem
(which we call M) where all the lines perpendicular to a central line L in the
nice shape are such that the node at the end of each line is the opposite colour
to the node at the end of its nearest neighbouring lines. We then prove that
slight modifications to the method of construction allow for the class of all nice
shapes to be constructed. Our methods construct a shape which is a union of a
nice shape with constant waste O(1).

We start with a shape S which is a line of length n occupying the cells
(0, 0) to (n − 1, 0). We add a connected 3-node seed to the line as this is the
minimum size which allows us to move more than 5 nodes without breaking
connectivity. It is possible for our results to apply to a disconnected 2-node seed
with a slightly modified procedure but with higher waste. We place the seed in
a specific position as the connected 3-node seed is incapable of movement. We
sketch the line to nice shape proof in the following subsection.

5.1 Line to Nice Shape

Our first result is the following theorem:

Theorem 3. A line of length n can be transformed to any given nice shape in
the class Mn1

using a 3-node seed in O(n2) time.
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To solve this problem, we follow a strategy of having nodes rotate onto the
horizontal line with the help of the 3 node seed and then constructing lines
perpendicular to the horizontal line using the nodes. Additionally, we move 4
nodes below the line and on the opposite side to the seed. These nodes can then
replicate the behaviour of the seed on the other side of the line, allowing for
construction to occur below as well as above the line. Because their behaviour
is the same, we refer to the seed and the group of nodes on the other side of the
line as builders. As a result, the horizontal line becomes the central line L of the
nice shape, and the vertical lines become the lines of nodes perpendicular to L.
Finally, the seed and a single node which aid construction cannot be incorporated
into the final shape and are discarded as waste.

To prove that this is possible, we define three algorithmic procedures. The
first procedure, RaiseNodes, allows a builder to move two nodes at a time from
the horizontal line. These nodes combine with the builder to form a 5 node
cluster. This cluster can be broken if necessary into a 3 node line and a 2 node
line, allowing the 2 node line to move by having each node rotate around the
other. The second procedure, MirrorSeed, is the procedure for creating the second
builder below the horizontal line. It accomplishes this by moving two of the 2
node lines to the end of the horizontal and then rotating nodes in such a way
that the four nodes are “pushed” through the horizontal and to the other side.
The final procedure, DepositNodes, collects nodes from the horizontal line and
deposits them in any reachable location. We will show that the set of reachable
locations enables the construction of any nice shape.

5.2 RaiseNodes

We use a 3 node seed in the cells (1, 1), (2, 1), (3, 1) for our operations as, by
Lemma 2, a two node seed is incapable of helping nodes to move.

We call the first operation RaiseNodes. For this operation we use the 3 node
seed to move nodes from the horizontal line such that they are on top of the
horizontal line as a pair. In the process, the 3 node seed moves along the horizon-
tal line such that each node moves from its original position (x, 1) to (x+ 1, 1).
The result can also be interpreted as a shape consisting of 5 nodes, which we
refer to as a 5-node seed. Moving the pair of nodes once they are on the line
is a trivial process. Each node rotates around the other node, alternating their
relative positions within the two node shape. As a result, the process can be
repeated so long as the pair of nodes on the line can be moved out of the way
by rotating around each other to create space.

The following lemma shows that these operations are possible.

Lemma 3. Using a 3 node seed in the cells (1, 1) to (3, 1), it is possible to move
2 nodes from the line such that the 3-node seed is converted into a 5-node seed.

Figure 1 below depicts the process.



Connectivity-Preserving Transformations for Programmable Matter 9

Fig. 1: Raising nodes from the line. Red nodes, used throughout the paper, ap-
pear grey in print.

5.3 MirrorSeed

We now use RaiseNodes for our next operation, MirrorSeed, to place four nodes
at the opposite side of the line (i.e. (n− 4, 1) to (n− 1, 1)) and then push them
through and below the line, creating a four node mirror of our original seed in
the cells (n−4,−1) to (n−1,−1). Having a mirror of the original seed allows us
to perform construction operations on the bottom of the horizontal line. We do
this in 3 steps: raise four nodes using RaiseNodes twice, position the four nodes
at the end of the line and rotate the nodes and those at the end of the line such
that the four nodes move through (not around) the line and to the other side.

Lemma 4. Using a 3 node seed in the cells (1, 1) to (3, 1), above a line L of
length n it is possible to create a 4-node line in the cells immediately below the
nodes (n− 4, 0) to (n− 1, 0).

Proof. We first move the 4 leftmost nodes in S, S0 to S3 to the top of the line.
We do this by raising S0 and S1, and then repeat the procedure a second time
with the next two nodes S2 and S3. We now have 4 nodes a square above the
end of the line. By rotating them around each other in pairs we can place them
in the cells (n − 4, 1) to (n − 1, 1). We can then “push” the nodes to the other
side of S by follow the procedure depicted in Figure 2. The result is four nodes
in the cells (n− 4,−1) to (n− 1,−1) ut
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Fig. 2: Pushing the nodes through the line.

5.4 DepositNode

Next, we present DepositNode, a sub-procedure using the 3 node seed to create
a 5 node shape and move a node from the horizontal line to any empty cell
which the shape can reach, provided the 5 node shape has the correct colouring,
defined as having 3 nodes of the colour which will fill the cell.

We raise two nodes from the line, use this shape to deposit a node and move
the other 4 nodes as a square back to the left. By leaving the cells above and
below the two leftmost nodes in the line empty we can rotate the leftmost node,
merging with the square to create a new 5 node shape. We can therefore repeat
the process of moving for each node one at a time. In addition, this sub-procedure
can be applied to the builder on the other side of the line.

Our strategy is to demonstrate that the moves each builder can make are
sufficient to be able to construct a nice shape. We do this by providing examples
of the situations which appear when constructing such shapes and proving that
the movement we intend to accomplish is possible. In this example, we show that
it is possible to deposit the node at the end of the horizontal line.

Lemma 5. A 3 node seed on any line S of length n, where n is an even number,
can transfer a node the other end of the line.

See Figure 3 for an example execution.

Fig. 3: Moving a node across the line.
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It is then possible to (see Figure 6 in [23]) transfer the builder to a vertical
line. By positioning the builder carefully we can ensure that the movement is
equivalent to crossing a line of even length. Therefore the process of adding
another node can be performed on vertical lines, such as the ones we will build
for our nice shapes.

To build any vertical line, we must first show that it is possible for DepositN-
ode to construct lines of length 4 above the horizontal line. After that, because
it is possible for the builders to shift onto a 4 node line, the situation becomes
that of depositing a node at the end of a line.

(a) Adding the third node (b) Adding the fourth node

Fig. 4: Adding the last two nodes.

Lemma 6. Using a 3 node seed in the cells (1, 1) to (3, 1), above a line L of
length n it is possible to create another line of length 4 above any ui ∈ L.

Proof. For this situation we have two scenarios: one where the colouring is correct
and another where it is incorrect. We first consider the correct colouring and then
show how to deal with the incorrect colouring.

For the first node, we simply deposit the node using DepositNode above ui.
The next node is deposited above ui−1 and rotated to be above the first. The
next two nodes are more difficult, so we have provided figure 4 to illustrate the
process.

In the case where the colouring is incorrect, we deposit the incorrect node
anywhere to the right directly above L and collect a second node from L. We
can then merge the 5 node shape with the node we deposited temporarily to
create 6 node shape. Then 5 nodes of the correct colouring can split from the
shape we created and deposit the node.
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The 4 node square can then return to the node that was left behind and use
it as the next node for depositing. In this way, the 5 node shape is capable of
“selecting” its colouring. ut

5.5 Construction of a subset of nice shapes

We now have all of the lemmas that are necessary to prove that it is possible
to construct a specific subset of the class of nice shapes. We first present an
upper bound on the time for constructing nice shapes using our algorithm. We
then prove that using our sub-procedures we can construct a nice shape using
a line and a 3-node seed, and finally we show that process is reversible using a
4-node seed. Let Mnw

be the class of nice shapes with n nodes and w waste for
which the following property holds: For all lines above and below L the node at
the end of each line is the opposite colour to the node at the end of its nearest
neighbouring lines. This restriction is necessary to guarantee that no node with
the “wrong” colour is ever in the position to block construction.

Lemma 7. The transformation of a line of n nodes into a nice shape requires
O(n2) time steps.

Theorem 3. A line of length n can be transformed to any given nice shape in
the class Mn1

using a 3-node seed in O(n2) time.

Proof. The seed is positioned above the second, third and fourth nodes in the
horizontal line, at (1, 1), (2, 1), and (3, 1). We first use RaiseNodes twice to raise
4 nodes from the line and then use MirrorSeed to create a 4 node builder below
the horizontal line. Then, we use DepositNode to construct the 5 node builder.

The 5 node builder can deposit a node in the construction area and move
back to the end of the line by having each node rotate around each other. It is
then able to take another node from the horizontal line by positioning itself two
node spaces away from the end of the line and rotating the last node such that
it is connected to the seed.

We are therefore able to follow a procedure for constructing vertical lines
one node at a time. The construction proceeds for each side of L in phases
0 ≤ i ≤ |L|, where phase i corresponds to the construction of the column above
the node Li.

The entire process is mirrored for the bottom of the shape using DepositNode
for the builder on the bottom. The builder on the bottom waits until the builder
on the top is finished and then starts lifting nodes from the same side of the line.
By moving the other builder slightly it is possible to avoid the situation where
it disconnects from the line.

Finally, one of the builders places the nodes of the other builder, and is
then discarded, leading to a waste of 1 node. By Lemma 7, the whole process is
completed in O(n2) time. ut

Theorem 4. A nice shape in the class Mn can be transformed to any given nice
shape from Mn using a 4-node seed in O(n2) time.
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Proof. The transformation can be made reversible by assuming that the 4 nodes
which are discarded at the end of the transformation constitute a 4 node seed for
transforming the nice shape into a line. We can then construct a line of length
n by following the process in reverse, and from there construct a nice shape of
size n. ut

5.6 Construction of any nice shape

We now show how to extend this to the class of all nice shapes. We follow a
broadly similar procedure to the one in Theorem 3. The key difference is that
we first create the foundation, a layer of nodes above and below the horizontal
line. We place a node at the start of every vertical line which starts with the same
node colour that the previous vertical line built would end with. We then proceed
as normal. First we prove that the foundation is sufficient for constructing any
colour-consistent nice shape. Then we prove that the 5 node builder is capable
of crossing the foundation to deposit nodes.

Lemma 8. For any nice shape constructed from a line, for all lines perpendic-
ular to L with an odd number of nodes there is at most one line which cannot be
paired with another line which ends in the other colour.

Proof. We have the initial line which is either odd or even. We can move nodes
out in pairs to build lines. It is possible to build lines which are odd by splitting
a pair and distributing its nodes between two odd lines. Such lines can therefore
be paired.

However, there are two ways that an extra odd line can be created. First,
when the horizontal line is odd, we can support one odd vertical line by extracting
the extra node. Second, when the horizontal line is even, we can also split a pair
with the horizontal, making it odd. If both are attempted at the same time the
resulting lines will end in different colours and therefore can be paired. As a
result, at most one line which is odd cannot be paired. ut

Lemma 9. Any 5 node builder which is constructing lines can cross the foun-
dation to do so.

Proof. When moving a builder carrying a node across the foundation, there are
3 scenarios the builder can encounter.

In the first scenario, there is a node in (x, y) which is the same colour as the
node being carried in (x− 2, y). In this case, the builder must deposit the node
in (x − 4, y) and collect the node it has encountered. Then, when the builder
is returning without carrying a node, it must shift the node it deposited from
(x− 4, y) to (x, y).

In the second scenario, the node at (x, y) is a different colour and the cell
(x + 1, y) is empty. For this scenario, the node which is being carried rotates
into (x + 1, y). Then the builder’s nodes rotate around each other to be above
(x − 1, y − 1) and (x − 2, y − 1). Then the top two nodes in (x − 1, y + 1) and
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(x − 2, y + 1) rotate around each other such that the node in (x + 1, y) is the
node being carried by the 5 node builder.

In the third scenario, there is a series of nodes beginning with the node (x, y),
with alternating colours blocking the builder. In this case, we first identify the
node n which is the node furthest right in the series with the same colour as the
node the builder is carrying. Then the top two nodes of the builder in (x−2, y+1)
and (x− 3, y + 1) rotate until they are positioned such that they form a 5 node
builder with n.

Any foundation must consist of any of these three scenarios arranged in a
sequence. Therefore, by following the correct process in the scenario the builder
crosses the foundation and places a node of the correct colour. Then while re-
turning any nodes deposited can be shifted, creating a new foundation which is
equivalent to the original. ut

We are now in the position to prove our main results, that it is possible to
construct any nice shape from any other nice shape using a seed of size 4. Let
Nn be the subclass of nice shapes which is colour consistent to a line of length
n.

Theorem 5. A line of length n can be transformed to any given nice shape
Nn−1 using a 3-node seed in O(n2) time.

Proof. The initial steps of the procedure are as in Theorem 3. When we have
created both builders, we then create the foundation by placing each node in the
foundation from right to left. We alternate between the builders as necessary.
By Lemma 8, we know that the scenario where the colours we need to place
do not match what is available will never occur. By Lemma 9, we know that
the existence of the foundation does not impede construction. We are then able
to follow a procedure for constructing vertical lines as before. Finally, the last
builder is discarded as before. ut

Theorem 6. A nice shape of n nodes can be transformed to any given nice shape
Nn using a 4-node seed in O(n2) time.

6 Conclusions

Some open problems follow from the findings of our work. The most obvious is
expanding the class of shapes which can be constructed using minimal seeds to
those which can be derived from nice shapes. This could possibly be expanded by
transferring nodes along the perimeter of a nice shape with the help of bridging
nodes or by compressing them. In the long run this could lead to characterisa-
tions of the classes of connectivity-preserving shapes which can be constructed
using only rotation for a given seed. Another important question is the impact
that switching to a decentralised model of transformations will have on the re-
sults, especially because most programmable matter systems which model real-
world applications implement programs in this way. This in turn could lead to
real-world applications for the efficient transformation of programmable matter
systems.
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