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Abstract: Current research in automated disease detection focuses on making algorithms “slimmer”
reducing the need for large training datasets and accelerating recalibration for new data while
achieving high accuracy. The development of slimmer models has become a hot research topic in
medical imaging. In this work, we develop a two-phase model for glaucoma detection, identifying
and exploiting a redundancy in fundus image data relating particularly to the geometry. We propose
a novel algorithm for the cup and disc segmentation “EffUnet” with an efficient convolution block and
combine this with an extended spatial generative approach for geometry modelling and classification,
termed “SpaGen” We demonstrate the high accuracy achievable by EffUnet in detecting the optic
disc and cup boundaries and show how our algorithm can be quickly trained with new data by
recalibrating the EffUnet layer only. Our resulting glaucoma detection algorithm, “EffUnet-SpaGen”,
is optimized to significantly reduce the computational burden while at the same time surpassing the
current state-of-art in glaucoma detection algorithms with AUROC 0.997 and 0.969 in the benchmark
online datasets ORIGA and DRISHTI, respectively. Our algorithm also allows deformed areas of the
optic rim to be displayed and investigated, providing explainability, which is crucial to successful
adoption and implementation in clinical settings.

Keywords: glaucoma; diagnosis; generative model; machine learning; classification

1. Introduction

Glaucoma is a neurodegenerative disease resulting in progressive optic nerve damage
with a characteristic pattern of optic nerve damage and visual field loss. Late diagnosis is
a major risk factor for permanent visual loss [1], and early glaucoma detection is key to
preventing avoidable blindness. Detection of structural changes to the optic nerve using
imaging or clinical examination is central to diagnosis but challenging even for highly
skilled specialists. Patients can be misclassified, which is a significant challenge, especially
in low-resource settings where access to clinical expertise and specialist diagnostic equip-
ment is limited. A low-cost and accurate automated method of quantifying glaucomatous
structural changes would help meet this need [2].

A significant challenge of developing automated glaucoma detection algorithms is that
a vast number of labelled colour fundus images is required for training (Figure 1). Current
algorithms are very promising and show high accuracy; however, they are computationally
very complex, which requires strong computing infrastructure as well as large datasets
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for training, for example 30 thousand images to achieve an AUROC of 0.996 [3]. Such
computationally complex algorithms are challenging to implement on mobile devices
for community and particularly rural disease screening, necessitating the investigation
of further solutions. The access to a large amount of good quality annotated data for
training is a persistent challenge, due in part to the complexity of the diagnosis. Therefore,
an automated detection system that is computationally flexible to require less computing
power and also requires fewer training images is a fundamental requirement.
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In our paper, we present a new machine learning and generative model-based method
that is able to discriminate between glaucomatous and healthy patients from standard
fundus images of the optic nerve head. The proposed method revisits the convolution
layers [4] and improves the generative statistical model [5]. The contribution of our work is
as follows: (1) We propose a novel two-step algorithm for glaucoma detection, which traces
the boundaries of the optic cup and disc efficiently, facilitating the extraction of the whole
cup-to-disc profile and allowing presentation of this to the clinician for further inspection
if desired, and provides an accurate glaucoma diagnosis; (2) We propose EffUnet, which
is an efficient U-shaped convolutional neural network for efficient segmentation of the
cup and disc; (3) To detect glaucoma, we propose a refined and extended spatial statistical
generative model SpaGen, which takes into account the extracted profile and the cup to
disc area ratio to improve detection; (4) We demonstrate the performance of our algorithm
on two large publicly available datasets and show how it can be quickly recalibrated for
independent data, by recalibrating the EffUnet layer only.

1.1. Background

Glaucoma is still diagnosed manually in clinical practice. Research into automated
glaucoma diagnosis from fundus photographs is showing promising results. There are
two main approaches to automated glaucoma detection from fundus photographs [6].
One approach involves initially automatically detecting the boundaries of the cup and
disc using automated segmentation [7], which allows for the cup and disc boundaries to
be used for glaucoma classification. See [8–10] for reviews and a recent approach in [5].
The alternative artificial intelligence (AI) approach to automated glaucoma diagnosis uses
direct Deep Learning (DL) [3]. While this has clear benefits of achieving good results while
obviating the necessity for explicit automated cup and disc segmentation, such approaches
are trained to use all information in fundus images to differentiate glaucoma patients
from those without glaucoma (see review in [11]), much of which may be redundant.
These approaches require large numbers of expert-labelled images, can be more difficult
to translate to new devices and are typically not explainable. The large number of the
expert-labelled images is a still a problem in glaucoma due the complexity of the gold
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standard definition of glaucoma. To remedy the problem of large number of images, there
are other approaches such as transfer learning. To solve the lack of inherent explainability,
there is current research that investigates computational approaches to bring explainability
to the algorithms.

A current focus is to make AI glaucoma detection algorithms “slim” in order to allow
for wider use (including in low-resource settings) while also requiring fewer labelled
images for training. One approach to achieve this is in realizing the redundancy in retinal
fundus images for disease recognition and using this knowledge to develop lean algorithms.
For example, attention maps from simple eye-tracking experiments from glaucoma grading
were successfully used to improve automated glaucoma detection via an attention-based
convolutional network (AG-CNN) approach [4]. However, this method requires additional
data on attention maps.

Another approach to redundancy is in recognizing that the boundaries of the cup
and disc in healthy eyes are similar to ellipses, and hence, a deviation from the ellipse can
be utilized for discrimination [5]. Using this approach, the fundus image is reduced to
a cup-to-disc profile vector of 24 numbers, and a generative model is used for classification.
However, this approach uses a computationally complex DL algorithm for cup and disc
segmentation. One AI approach using slimmer algorithms is to create models that are
easy to calibrate on new datasets. One such approach was used in detecting diabetic
retinopathy [12]; the researchers used a two-step architecture. The first step was an
automated segmentation, and the second step was a disease discrimination algorithm.
Using this approach, the authors showed that, for new datasets, one needs to recalibrate the
segmentation algorithm while the discrimination algorithm does not change, making the
computation slimmer. This approach, however, still requires a computationally intensive
DL method for discrimination.

1.1.1. Existing Segmentation Methods

U-Net is a U-shaped convolutional network that was originally developed for biomed-
ical image segmentation [13]. It is composed of a down-sampling encoder layer and
an up-sampling decoder layer. The encoder consists of repeated groups of two convolution
layers followed by a ReLU activation function and max pooling to produce a set of encoder
feature maps. The decoder path also consists of convolution layers to output decoder
feature maps. Skip connections transfer the corresponding feature maps from the encoder
path and concatenate them to the upsampled decoder path.

Recently, there have been various adaptations of Unet. Mnet [14] is a convolution
neural network with a multi-scale input layer and a multi-scale output layer. Ternaus-
Net [15] uses a pretrained VGG model as an encoder section of Unet. LinkNet [16] exploits
ResNet-18 as an encoder and also used residual blocks instead of concatenation. In [7],
a pretrained ResNet-34 is used as an encoder. However, most of these models are heavy
and computationally expensive. There have also been several recent attempts to segment
the optic cup and disc using deep learning-based approaches, including Unet [17] and
a modified Mnet with bidirectional convolutional LSTM [18]. Some methods have also
aimed to deliver models with lower memory requirements. Other methods [19] proposed
a modified Unet with a novel augmentation based on contrast variations, and [20] pro-
posed CDED-Net, a computationally less expensive encoder-decoder approach with feature
re-use, allowing a shallower structure to be employed.

1.1.2. Generative Spatial Generative Model

Generative models are commonly used in statistics and are also known as predictive
models. The idea is to fit a model and to use the model for prediction or interpolation. This
is a common paradigm in statistics for longitudinal data [21,22].

In computer vision, statistical generative models are less frequently used, though their
value is now being studied. For example, one group introduced a probabilistic generative
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layer to their convolutional neural network, and on standard benchmarks, they required
300-fold less training data while achieving similar accuracy [23].

In glaucoma detection, one group published an algorithm that uses a generative model
layer for classification after a DL algorithm is used for the segmentation of the cup and
disc [5]. This approach required a dataset 100-times smaller for training and achieved
similar accuracy of 0.996 in internal validation. The algorithm is, however, computationally
expensive due to requiring a large DL network.

2. Materials and Methods

Our automated supervised classification of glaucoma from fundus images aims to be
computationally lean to allow wide-spread use, and to allow simple calibration on new
datasets. In this section, our methods are described.

2.1. Our Framework

We propose a generative AI algorithm in a two-stage architecture (Figure 2). Firstly,
automated segmentation of the optic cup and disc via EffUnet is performed to extract
the boundaries of the cup and disc (see Output 1, Figure 2). Then, SpaGen algorithm [5]
is updated by using two parameters for the variance of noise (rather than one) and by
introducing the cup-to-disc area ratio (CDAR). The two variance parameters reflect the
fact that variability in glaucoma images is larger than in normal images. The CDAR is
added to reflect the observations of clinicians. The boundaries of the cup and disc are then
used to calculate the cup-to-disc ratio (CDR) values in 24 directions at 15-degree intervals
(0, 15, 30 . . . 360 degrees; see Output 2 in Figure 2). These 24 CDR values, as well as
the CDAR, are then input to a spatial generative model, SpaGen. Finally, classification is
carried out for each eye and output as a probability of glaucoma (see Output 3, Figure 2).
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second stage of the whole architecture (see Figure 2).

2.2. Segmentation of Cup and Disc via EffUnet

We developed EffUnet as a U-shaped convolution network with a pre-trained efficient
net-B1 [24] as the encoder. This is a modification of U-Net as the main body in our deep
network (Figures 3 and 4).

In our modified U-Net architecture, we employ the EfficientNet-B1 as the down-
sampling encoder section of the U-Net architecture, while the decoder section is similar
to the original U-Net architecture. EfficientNet’s main building block is a mobile in-
verted bottleneck MBConv [24,25], to which squeeze-and-excitation optimization [26] is
also added.

To use EfficientNet-B1, the upsampling network has decoder blocks, and each decoder
block is composed of a 2 × 2 upsampling 2D convolution of the previous layer output
with a stride of 2, concatenated corresponding feature maps from the encoder section. The
concatenated tensor is then passed through two convolution layers with ReLU activation
and batch normalized before passing to the next decoder block. The final layer of the
architecture is convolution with softmax with a channel number the same as the target
classes and output image size the same as the input image.

Most existing segmentation models for cup and disc segmentation use a two-step
process; disc segmentation to crop the region of interest and then multi-label segmentation
to segment both cup and disk. Our model is applied to the entire image with just the black
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boundaries removed and resized to 512 × 512. Our EffUnet model is computationally less
expensive with 12.6 M parameters, hence 1.9× fewer parameters than ResNet34-Unet [7],
which has 24.4 M parameters. Our model converges a lot faster than the other models
compared in Table 1.

Table 1. Computational efficiency and accuracy of segmentation of cup and disc jointly via EffUnet
and ResNet-Unet. The training dataset is ORIGA-A, the test set is ORIGA-B. Ratio of parameters
is the ratio of the number of parameters in a method divided by the number of parameters in the
EffUnet method.

Methods JC DC Acc Number of
Parameters

Ratio of
Parameters

Training Time
(Minutes)

ResNet34-Unet [7] 0.845 0.910 0.9966 24,456,444 1.93 55
ResNet18-Unet 0.846 0.911 0.9967 14,340,860 1.134 49

EffUnet
(our method) 0.854 0.916 0.9968 12,641,459 1 42

2.3. Classification of Images via SpaGen

We present here an improved generative spatial algorithm (Figure 5) for disease
discrimination from the shape of the cup and disc of [5]. The key novelty is in allowing
for different noise modelling in disease groups and the incorporation of the cup-to-disc-
area ratio (CDAR; Figure 5), which is a significant factor in detecting glaucoma [27], not
previously used in an automated model. This is accomplished by including two additional
parameters: one for the noise component (σ2

G) and one for the fixed component (see βCDAR).
Then the final improved spatial model is a hierarchical model

Yi,d = β0 + βG,0 IG + βCDARCDAR
+βG,1 sin(2πd/24)IG,d + βG,1 cos(2πd/24)IG,d
+βG,3 sin(4πd/24)IG,d + βG,3 cos(4πd/24)IG,d
+βH,1 sin(2πd/24)IH,d + βH,1 cos(2πd/24)IH,d
+βH,3 sin(4πd/24)IH,d + βH,3 cos(4πd/24)IH,d

+zi + ei,d

(1)

where Yi,d is CDR value of ith eye in dth direction (d = 1, . . . , 24); IG and IH are the indicator
functions for glaucoma and healthy; IG,d and IH,d are interaction terms. The term zi is
a random effect for of ith eye allowing to account for differences between eyes, ei,d is
the random term accounting for random variations within the eye. The joint probability
distribution of random effect and random terms is[

zi
ei

]
∼ N

([
0
0

]
,
[

σ2
z 0

0 Ve

])
, (2)

where Ve is a 24× 24 variance–covariance matrix of error term. We allow this matrix to be
different for glaucomatous and healthy groups:

Ve = σ2
G I24×24 in glaucomatous eye

Ve = σ2
H I24×24 in healthy eye.

(3)

Then, assuming the prior probabilities of the diagnostic groups glaucomatous and
healthy, pG and pH , and applying Bayes theorem, the posterior probability that a new eye
with the observed profile vector Ynew of 24 values of CDR (pCDR) is glaucomatous:

pnew,G =
pG fG(Ynew | β, V)

pG fG(Ynew | β, V) + pH fH(Ynew | β, V)
, (4)
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The posterior probability in Equation (4) can be used to propose a glaucoma detection
rule. The simplest detection rule is to compare this posterior probability with a predefined
probability threshold, pth:

if pnew,G ≥ pth, conclude that the eye is glaucomatous
if pnew,G < pth, conclude that the eye is healthy.

(5)

The probabilities have the following property

log
(

pnew,G

1− pnew,G

1− pG
pG

)
=

1
2
[dM(Ynew, µH)− dM(Ynew, µG)] (6)

where dM(Yi, µH) and dM(Yi, µG) is the Mahalanobis distance [28] of the observed data of
patient i from the Healthy and Glaucomatous groups, respectively.

We then define the Rim Deformation Score (RDS) as

RDS =
1
2
[dM(Ynew, µH)− dM(Ynew, µG)] (7)

and this can be compared to a predefined threshold, RDSth to yield an equivalent
decision rule

if RDSnew,G ≥ RDSth, conclude that the eye is glaucomatous
if RDSnew,G < RDSth, conclude that the eye is healthy

(8)

2.4. Experiments

We carried out internal validation of the performance of our EffUnet-SpaGen method
in glaucoma detection on the ORIGA and DRISHTI datasets.

The ORIGA dataset is a subset of the data from the Singapore Malay Eye Study
(SiMES), collected from 2004 to 2007 by the Singapore Eye Research Institute and funded
by the National Medical Research Council. All images were anonymized before re-
lease. The ORIGA dataset comprises 482 healthy and 168 glaucoma images from Malay
adults aged 40–80. The 650 images with manually labelled optic masks are divided into
325 training images (including 72 glaucoma cases), called ORIGA-A, and 325 testing images
(including 95 glaucoma cases), called ORIGA-B [29]. The images were manually annotated
by an ophthalmologist clicking on several locations of the image to indicate the optic disc
and optic rim, then a best-fitting ellipse was calculated automatically. We refer to this
segmentation as the ground truth. Four graders also graded the image, and a fifth grader
was used for consensus.

The DRISHTI dataset [30], called DRISTHI-GS1 by the authors and referred to here as
DRISHTI, is a dataset collected and annotated by Aravind Eye Hospital, Madurai, India.
All 101 images are provided with segmentation ground truth. Altogether, the set contains
70 Asian glaucomatous eyes. Selected patients were 40–80 years old. DRISHTI is split into
50 training images, called DRISHTI-A, and 51 testing images, called DRISHTI-B.

For the glaucoma classification threshold, we choose a mathematically optimal thresh-
old, which is the one that gives the closest point in the receiver operating characteristic
curve (ROC) to the top left corner, where the ROC is derived from the training dataset. We
used the following criteria for accuracy: area under receiver operating characteristic curve
(AUROC), sensitivity, specificity, negative predictive value (NPV) and positive predictive
value (PPV). We used a division of the 650 images of ORIGA into two sets, A and B,
as recommended [29].

All experiments were run on a desktop computer with intel i7,16 GB RAM and
a Nvidia RTX 2080 GPU (Nvidia Corporation, Santa Clara, CA, USA), which was used to
train the CNN. We trained the segmentation model for 200 epochs, and the model with the
best accuracy on the test set was used for evaluation. Training time for segmentation is
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provided in Table 1. We trained the SpaGen model by maximizing the likelihood, which
has a global maximum due normal distribution of errors. The training time was 7 s.

3. Results
3.1. Segmentation Model: Computational Complexity and Accuracy

We used ORIGA’s training and testing datasets (325 images, see Experiments). For
each image, black boundaries were removed, and the images were resized to 512 × 512.
The performance of the proposed method EffUnet for segmenting the optic disc and optic
cup was compared to the ground truth and evaluated using several standard metrics: IOU
(Overlap), Dice coefficient (F-Measurement), Accuracy (Acc), Number of parameters and
Number of Epochs needed:

Dice : DC =
2× TP

2× TP + FP + FN
(9)

Jaccard : JC =
TP

TP + FP + FN
(10)

Accuracy : Acc =
TP + TN

TP + TN + FP + FN
(11)

where TP, TN, FP and FN are true positive, true negative, false positive and false
negative, respectively.

Our EffUnet method is computationally less complex than the ResNet algorithm
(see Number of Parameters and Training Time, Table 1). The ResNet algorithm requires
1.134 and 1.93 times more parameters to be tuned (see Ratio, Table 1). EffUnet is also more
accurate for detecting boundaries of cup and disc (see IOU, Dice and Accuracy in Table 1)
than ResNet.

The EffUnet algorithm achieves high accuracy in detecting the boundaries of the optic
disc when compared to 18 published algorithms (Table 2). It achieves the highest DC of
0.9991 and the highest JC of 0.9983. Its accuracy is very high at Acc = 0.9985, which is only
0.0004 smaller than that of the fully convolutional DenseNet, which used the same ORIGA
dataset and same train–test split. The rest of the 15 algorithms used other datasets.

The EffUnet algorithm achieved high accuracy in detecting the boundaries of the
optic cup when compared to five published algorithms (Table 3). It achieved DC 0.8706,
JC 0.7815 and Acc 0.9983. The values of DC and JC are higher than those of DenseNet and
the value of Acc was similar to that derived from DenseNet, which also used the ORIGA
dataset with the same split to train and test subsets.

The EffUnet algorithm, when trained on ORIGA and fine-tuned on DRISHTI-A,
achieves high accuracy in detecting the optic cup and optic disc in DRISHTI-B compared
to four published algorithms (Table 4). The model achieves a cup DC 0.9229, cup JC
0.8612, disc DC 0.9991 and disc JC 0.9983, which is the state-of-the-art performance on the
DRISHTI-B set.

3.2. Segmentation Model: Reliability of Vertical CDR

The segmentation model has very good reliability for determining the vertical CDR
(vCDR, Figure 6). After EffUnet segmented the cup and disc, the vertical heights of the
cup and disc were calculated (in pixels), and the vertical cup-to-disc ratio was calculated
(see vCDR_EffUnet in Figure 6). This was then compared to the values from the manual
annotation of the images where an ophthalmologist clicks several pixels of cup and disc
(see vCDR_Manual in Figure 6, which is the same as vCDR in Figure 1). For this reliability
analysis, we used a Bland–Altman analysis (Figure 6A).
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Table 2. Comparison of segmentation methods for optic disc. Note: [31–33] performed segmentations of both cup and disc.

Author Method
Optic Disc

Dataset
DC JC Acc

Wong et al. [34] Support vector machine-based
classification mechanism - 0.940 0.990 SiMES

Yu et al. [30] Directional matched filtering and
level sets - 0.844 - MESSIDOR

Mookiah et al. [35] Attanassov intuitionistic fuzzy histon
(A-IFSH) based method 0.920 - 0.934 Private

Giachetti et al. [36]
Iteratively refined model based on

contour search constrained by
vessel density

- 0.861 - MESSIDOR

Dashtbozorg et al. [37] Sliding band filter - 0.890 - MESSIDOR
- 0.850 - INSPIRE-AVR

Basit and Fraz [38]
Morphological operations, smoothing

filters, 3* and the marker controlled
watershed transform

- 0.710 - Shifa
- 0.456 - 3*CHASE-DB1
- 0.547 - 3*DIARETDB1
- 0.619 - DRIVE

Wang et al. [39] Level set method
- 0.882 - DRIVE
- 0.882 - DIARETDB1
- 0.891 - DIARETDB0

Hamednejad et al. [40] DBSCAN clustering algorithm - - 0.782 DRIVE

Roychowdhury et al. [41] Region-based features and
supervised classification

- 0.807 0.991 DRIVE
- 0.802 0.996 DIARETDB1
- 0.776 0.996 DIARETDB0
- 0.808 0.991 CHASE-DB1
- 0.837 0.996 MESSIDOR
- 0.729 0.985 STARE

Girard et al. [42] Local K-means clustering - 0.900 - MESSIDOR

Akyol et al. [43] Keypoint detection, texture analysis,
and visual dictionary

- - 0.944 DIARETDB1
- - 0.950 DRIVE
- - 0.900 ROC

Abdullah et al. [44]
Circular Hough transform and

grow-cut algorithm

- 0.786 - DRIVE
- 0.851 - DIARETDB1
- 0.832 - CHASE-DB1
- 0.879 - MESSIDOR
- 0.861 - Private

Tan et al. [45] 7-Layer CNN - - - DRIVE

Zahoor et al. [46] Polar transform
- 0.874 - DIARETDB1
- 0.844 - MESSIDOR
- 0.756 - DRIVE

Sigut et al. [47] Contrast based circular approximation - 0.890 - MESSIDOR

Noor et al. [31] Colour multi-thresholding
segmentation 0.590 - 0.709 DRIVE

Khalid et al. [32] Fuzzy c-Means (FCM) and
morphological operations - - 0.937 DRIVE

Yin et al. [48] Statistical model - 0.920 - ORIGA

Fu et al. [14] Multi-label deep learning and Polar
transformation (DL) - 0.929 - ORIGA

Al-Bander et al. [33] Fully convolutional DenseNet 0.965 0.933 0.999 ORIGA

Proposed method EffUnet 0.999 0.998 0.999 ORIGA
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Table 3. Comparison of segmentation methods for optic cup.

Author Method
Optic Cup

Dataset
DC JC Acc

Hatanaka et al. [49]
Detection of blood vessel bends and

features determined from the
density gradient

- - - Private

Almazroa et al. [50]
Thresholding using type-II

Fuzzy method

- - 0.761 BinRushed
- - 0.724 Magrabi
- - 0.815 MESSIDOR

Noor et al. [31] Colour multi-thresholding
segmentation 0.510 - 0.673 DRIVE

Khalid et al. [32] Fuzzy c-Means (FCM) and
morphological operations - - 0.903 DRIVE

Yin et al. [51] Sector-based and intensity with
shape constraints 0.830 - - ORIGA

Yin et al. [48] Statistical model 0.810 - - ORIGA

Xu et al. [52] Low-rank superpixel representation - 0.744 - ORIGA

Tan et al. [53] Multi-scale superpixel classification - 0.752 - ORIGA

Fu et al. [14] Multi-label deep learning and
Polar transformation - 0.770 - ORIGA

Al-Bander et al. [33] Fully convolutional DenseNet 0.866 0.769 0.999 ORIGA

Proposed method EffUnet 0.870 0.782 0.998 ORIGA

Table 4. Comparison of segmentation methods for optic cup and disc. The model was finetuned on
DRISHTI-A (n = 50 images) and evaluated on DRISHTI-B set (n = 51 images).

Author
Optic Disc Optic Cup

DC JC DC JC

Sevastopolsky [54] - - 0.850 0.750
Zilly et al. [55] 0.973 0.914 0.871 0.850

Al-Bander et al. [33] 0.949 0.904 0.828 0.711
Shuang et al. [7] 0.974 0.949 0.888 0.804

Proposed method 0.999 0.998 0.923 0.861
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3.3. EffUnet-SpaGen: Reliability of RDS

The segmentation model has very high reliability in terms of the Rim Deforma-
tion Score (RDS; Equation (7); Figure 6B). The RDS values calculated from EffUnet (see
RDS_EffUnet, Figure 6B) are in good agreement with those calculated using the manually
segmented cup and disc (see RDS_Manual in Figure 6B).

3.4. EffUnet-SpaGen: Internal Validation for Glaucoma Detection in ORIGA and
DRISHTI Datasets

The accuracy of EffUnet-SpaGen is high in internal validation. We trained both stages
of EffUnet-SpaGen on the ORIGA-A data and achieved 0.997 AUROC (Table 5). The
CDAR alone gives 0.844 and 0.856 accuracy for ORIGA and DRISHTI, respectively. CDAR
improves the accuracy from 0.939 to 0.994 for ORIGA, and 0.879 to 0.923 for DRISHTI,
if one variance parameter is used. CDAR improves the accuracy from 0.965 to 0.997 for
ORIGA, and 0.923 to 0.969 for DRISHTI, if two variance parameters are used. Therefore, in
summary, it improves the accuracy by 3.7 to 5.5%.

Table 5. Ablation study of accuracy of EffUnet-SpaGen in internal validation on ORIGA and on DRISHTI. For ORIGA: train
set for segmentation and glaucoma detection is ORIGA-A (n = 325) (253:72 of healthy: glaucomatous), test set is ORIGA-B
(n = 325) (229:96 of healthy: glaucomatous). For DRISHTI: train set for segmentation is whole ORIGA and DRISHTI-A, train
set for glaucoma detection is ORIGA and test is DRISTHI-B. CDAR is the Cup/Disc Area Ratio.

Segmentation Model Generative Model
(n of Parameters)

Results for ORIGA (Top),
DRISHTI (Bottom)

AUROC Sen Spe PPV NPV

EffUnet CDAR (2)
0.844 0.847 0.726 0.882 0.663

0.856 0.737 0.923 0.966 0.545

EffUnet
CDR profile of 24values and 1 variance

parameter (13)
0.939 0.842 0.921 0.816 0.934

0.879 0.789 0.923 0.968 0.600

EffUnet
CDR profile of 24 values and 2 variance

parameters (14)
0.965 0.863 0.961 0.901 0.944

0.933 0.895 0.923 0.971 0.750

EffUnet
CDR profile of 24 values and 1 variance

parameters and CDAR (14)
0.994 0.979 0.961 0.912 0.991

0.923 0.842 0.923 0.970 0.667

EffUnet
CDR profile of 24 values and 2 variance

parameters and CDAR (15)
0.997 0.989 0.974 0.940 0.996

0.969 0.947 0.923 0.973 0.857

3.5. Comparison Results of Our Method for ORIGA Dataset

Our approach, EffUnet-SpaGen, on the ORIGA dataset has the best performance pub-
lished to date (AUROC = 0.997) when compared to state-of-art architectures
(Table 6). The Gabor [56] and Wavelet [57] methods use manual features with Support
Vector Machine (SVM) classifiers to obtain the diagnostic results. GRI [58] is a probabilistic
two-stage classification method to extract the Glaucoma Risk Index. The Superpixel [59]
method segments the optic disc and optic cup using superpixel classification for glaucoma
screening. Chen et al. [60] and Zhao et al. [61] proposed two convolutional neural network
(CNN) methods, both of which achieved good accuracy. MacCormick et al. [5] used dense
fully convolutional deep learning (DL) models for segmentation, and a spatial model for
Disc Deformation Index (DDI) and classification had high accuracy (0.996 AUROC), but
this process was highly computationally intensive (Table 6).

The visual results of our segmentation demonstrate very good results on challenging
images compared to manual annotation (Figure 7), including images of poor quality, cases
where the blood vessels obscure large parts of the optic cup, images showing very low
contrast in the optic disc area and cases of a varying cup and rim size.
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Table 6. Detection of glaucoma in ORIGA. The training set is ORIGA-A and the test set is ORIGA-B.

Author Method of Glaucoma Detection AUROC

Dua et al. [57] Wavelet 0.660
Acharya et al. [56] Gabor 0.660
Cheng et al. [59] Superpixel 0.830
Bock et al. [58] GRI 0.810
Chen et al. [60] CNN 0.830
Zhao et al. [61] CNN 0.869
Liao et al. [62] EAMNet 0.880

MacCormick et al. [5] DL + DDI 0.996
Proposed method EffUnet-SpaGen 0.997
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4. Discussion

We present a new interpretable approach to glaucoma diagnosis, which combines
a computationally lean cup and disc segmentation algorithm (EffUnet) with an improved
generative spatial algorithm (SpaGen). This hybrid approach is an important improvement
over existing machine learning algorithms, allowing for an interpretable explanation of
the findings by providing visualization measurements of the cup and disc, on which the
diagnosis is based. Additionally, it allows us to present these areas and the key points of
interest, such as rim thinning. This approach provides us with a point at which errors can
be detected and mitigated, which direct deep learning approaches cannot currently do. Our
approach allows lean computation, excellent results with less data, and the incorporation
of additional information.

The EffUnet-SpaGen algorithm for the automated grading of optic nerve head images
from fundus photographs achieves excellent performance in identifying eyes with glau-
coma and distinguishing them from eyes without glaucoma. We have also demonstrated
the generalizability of our work to two distinct populations by updating our method for
and evaluating it on the DRISHTI dataset. As with all projects in medical imaging, it would
be beneficial to demonstrate that these improved results persist in additional datasets and
particularly on additional populations. It was demonstrated already that deep learning
models for glaucoma, as well as other diseases, experience a drop in performance when
evaluated on new populations, even though the imaging may appear to be similar [63].
While we have tested on multiple populations in this work, it is important to continue to
evaluate the widest possible demographic. This highlights the need for the development
of more publicly available datasets with glaucoma ground truth. To address this issue, we
are currently developing segmentation masks for the LAG [64] dataset with Aravind Eye
Hospital, Pondicherry, India, in an attempt to alleviate this problem.

In the task of accurately diagnosing glaucoma, we achieved an AUROC of 0.997 on
the ORIGA dataset and 0.969 on DRISHTI, performing similarly or better than competing
approaches, including [5] (0.996) and [62] (0.88). This represents an almost perfect result for
internal validation and is the best performance reported to date for AI algorithms targeted
at the diagnosis of glaucoma, compared with results that are publicly available and tested
on curated datasets. Furthermore, our AUROC improves on that of a recent deep learning
algorithm, which achieved 0.986 [3]. We have also demonstrated that our cup and disc
segmentation technique achieves excellent performance compared with previous work.

Both EffUnet and SpaGen are computationally lean, with EffUnet requiring almost
half the number of parameters of ResNet34. This allows it to estimate the glaucoma score
in less than a second, making our computational speed comparable with Deep Learning
approaches while achieving similar results. Furthermore, the interpretation of the results
is intuitive: the deformation of the rim is calculated along the whole cup and disc as a
deviation from the normal ellipsoid-like shape, meaning that the exact deformation can
be easily visualized by a clinician. Our approach also allows us to intuitively factor in
additional information such as the cup to disc size and area ratio, which, as we have
demonstrated, allows for more accurate results.

5. Conclusions

We have presented a supervised hybrid machine and statistical learning classification
framework for glaucoma detection from fundus images that are computationally flexible
for wide clinical use. We achieved this by introducing a two-step framework consisting of
computationally lean automated segmentation (EffUnet) and statistical learning spatial
generative algorithm (SpaGen).

The segmentation produced by our proposed AI acts as a device-independent repre-
sentation of the shape of the cup and disc, up to changes in the field of view and aspect
ratio, which our SpaGen algorithm can accommodate. This means that, while we may need
to update the segmentation training with new data, we do not need to retrain the glaucoma
classification rule.
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On the standard benchmark dataset, EffUnet-SpaGen outperformed state-of-art deep-
learning methods (0.997 AUROC) while requiring smaller datasets (n = 325) for training
the segmentation and classification approaches.

EffUnet is computationally less demanding (using 1.9× fewer parameters than other
machine learning approaches), and SpaGen is a generative model that efficiently models
the noise in data, requiring only 15 parameters. The 15-parameter model is a probabilistic
generative model that efficiently models the ellipsoid shape of the optic nerve head. It
shows that there is large data redundancy in the fundus image, with most of the necessary
information appearing to lie in the boundaries of the optic nerve head. Combined, this
allows EffUnet-SpaGen to be trained efficiently on an n = 325 dataset, which is consistent
with a 300-fold decrease in training data compared to [23].

Our work removes the barriers to wider clinical use without requiring a prohibitive
amount of training data in a real-world setting. Given it is tested in real clinical settings,
this AI will translate to improvements in the management of eye care and help with the
prevention of blindness from glaucoma.
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