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Abstract13

Let V be a set of n vertices, M a set of m labels, and let R be an m × n matrix of independent14

Bernoulli random variables with probability of success p; columns of R are incidence vectors of label15

sets assigned to vertices. A random instance G(V, E, RT R) of the weighted random intersection16

graph model is constructed by drawing an edge with weight equal to the number of common labels17

(namely [RT R]v,u) between any two vertices u, v for which this weight is strictly larger than 0. In18

this paper we study the average case analysis of Weighted Max Cut, assuming the input is a19

weighted random intersection graph, i.e. given G(V, E, RT R) we wish to find a partition of V into20

two sets so that the total weight of the edges having exactly one endpoint in each set is maximized.21

In particular, we initially prove that the weight of a maximum cut of G(V, E, RT R) is concen-22

trated around its expected value, and then show that, when the number of labels is much smaller23

than the number of vertices (in particular, m = nα, α < 1), a random partition of the vertices24

achieves asymptotically optimal cut weight with high probability. Furthermore, in the case n = m25

and constant average degree (i.e. p = Θ(1)
n

), we show that with high probability, a majority type26

randomized algorithm outputs a cut with weight that is larger than the weight of a random cut by a27

multiplicative constant strictly larger than 1. Then, we formally prove a connection between the28

computational problem of finding a (weighted) maximum cut in G(V, E, RT R) and the problem of29

finding a 2-coloring that achieves minimum discrepancy for a set system Σ with incidence matrix30

R (i.e. minimum imbalance over all sets in Σ). We exploit this connection by proposing a (weak)31

bipartization algorithm for the case m = n, p = Θ(1)
n

that, when it terminates, its output can be used32

to find a 2-coloring with minimum discrepancy in a set system with incidence matrix R. In fact,33

with high probability, the latter 2-coloring corresponds to a bipartition with maximum cut-weight in34

G(V, E, RT R). Finally, we prove that our (weak) bipartization algorithm terminates in polynomial35

time, with high probability, at least when p = c
n

, c < 1.36
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1 Introduction40

Given an undirected graph G(V, E), the Max Cut problem asks for a partition of the vertices41

of G into two sets, such that the number of edges with exactly one endpoint in each set of the42
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XX:2 MAX CUT in Weighted Random Intersection Graphs

partition is maximized. This problem can be naturally generalized for weighted (undirected)43

graphs. A weighted graph is denoted by G(V, E, W), where V is the set of vertices, E is the44

set of edges and W is a weight matrix, which specifies a weight Wi,j = wi,j , for each pair of45

vertices i, j. In particular, we assume that Wi,j = 0, for each edge {i, j} /∈ E.46

I Definition 1 (Weighted Max Cut). Given a weighted graph G(V, E, W), find a partition47

of V into two (disjoint) subsets A, B, so as to maximize the cumulative weight of the edges48

of G having one endpoint in A and the other in B.49

Weighted Max Cut is fundamental in theoretical computer science and is relevant in50

various graph layout and embedding problems [10]. Furthermore, it also has many practical51

applications, including infrastructure cost and circuit layout optimization in network and52

VLSI design [19], minimizing the Hamiltonian of a spin glass model in statistical physics [3],53

and data clustering [18]. In the worst case Max Cut (and also Weighted Max Cut) is54

APX-hard, meaning that there is no polynomial-time approximation scheme that finds a55

solution that is arbitrarily close to the optimum, unless P = NP [17].56

The average case analysis of Max Cut, namely the case where the input graph is57

chosen at random from a probabilistic space of graphs, is also of considerable interest and is58

further motivated by the desire to justify and understand why various graph partitioning59

heuristics work well in practical applications. In most research works the input graphs are60

drawn from the Erdős-Rényi random graphs model Gn,m, i.e. random instances are drawn61

equiprobably from the set of simple undirected graphs on n vertices and m edges, where62

m is a linear function of n (see also [13, 7] for the average case analysis of Max Cut and63

its generalizations with respect to other random graph models). One of the earliest results64

in this area is that Max Cut undergoes a phase transition on Gn,γn at γ = 1
2 [8], in that65

the difference between the number of edges of the graph and the Max-Cut size is O(1), for66

γ < 1
2 , while it is Ω(n), when γ > 1

2 . For large values of γ, it was proved in [4] that the67

maximum cut size of Gn,γn normalized by the number of vertices n reaches an absolute limit68

in probability as n → ∞, but it was not until recently that the latter limit was established69

and expressed analytically in [9], using the interpolation method; in particular, it was shown70

to be asymptotically equal to ( γ
2 + P∗

√
γ
2 )n, where P∗ ≈ 0.7632. We note however that these71

results are existential, and thus do not lead to an efficient approximation scheme for finding72

a tight approximation of the maximum cut with large enough probability when the input73

graph is drawn from Gn,γn. An efficient approximation scheme in this case was designed in74

[8], and it was proved that, with high probability, this scheme constructs a cut with at least75 (
γ
2 + 0.37613√

γ
)

n = (1 + 0.75226 1√
γ ) γ

2 n edges, noting that γ
2 n is the size of a random cut76

(in which each vertex is placed independently and equiprobably in one of the two sets of the77

partition). Whether there exists an efficient approximation scheme that can close the gap78

between the approximation guarantee of [8] and the limit of [9] remains an open problem.79

In this paper, we study the average case analysis of Weighted Max Cut when input80

graphs are drawn from the generalization of another well-established model of random graphs,81

namely the weighted random intersection graphs model (the unweighted version of the model82

was initially defined in [15]). In this model, edges are formed through the intersection of83

label sets assigned to each vertex and edge weights are equal to the number of common labels84

between edgepoints.85

I Definition 2 (Weighted random intersection graph). Consider a universe M = {1, 2, . . . , m}86

of labels and a set of n vertices V . We define the m × n representation matrix R whose87

entries are independent Bernoulli random variables with probability of success p. For ℓ ∈ M88

and v ∈ V , we say that vertex v has chosen label ℓ iff Rℓ,v = 1. Furthermore, we draw89
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an edge with weight [RT R]v,u between any two vertices u, v for which this weight is strictly90

larger than 0.The weighted graph G = (V, E, RT R) is then a random instance of the weighted91

random intersection graphs model Gn,m,p.92

Random intersection graphs are relevant to and capture quite nicely social networking;93

vertices are the individual actors and labels correspond to specific types of interdependency.94

Other applications include oblivious resource sharing in a (general) distributed setting,95

efficient and secure communication in sensor networks [20], interactions of mobile agents96

traversing the web etc. (see e.g. the survey papers [6, 16] for further motivation and recent97

research related to random intersection graphs). In all these settings, weighted random98

intersection graphs, in particular, also capture the strength of connections between actors99

(e.g. in a social network, individuals having several characteristics in common have more100

intimate relationships than those that share only a few common characteristics). One of101

the most celebrated results in this area is equivalence (measured in terms of total variation102

distance) of random intersection graphs and Erdős-Rényi random graphs when the number103

of labels satisfies m = nα, α > 6 [12]. This bound on the number of labels was improved in104

[22], by showing equivalence of sharp threshold functions among the two models for α ≥ 3.105

Similarity of the two models has been proved even for smaller values of α (e.g. for any106

α > 1) in the form of various translation results (see e.g. Theorem 1 in [21]), suggesting107

that some algorithmic ideas developed for Erdős-Rényi random graphs also work for random108

intersection graphs (and also weighted random intersection graphs).109

In view of this, in the present paper we study the average case analysis of Weighted110

Max Cut under the weighted random intersection graphs model, for the range m = nα, α ≤ 1111

for two main reasons: First, the average case analysis of Max Cut has not been considered112

in the literature so far when the input is a drawn from the random intersection graphs model,113

and thus the asymptotic behaviour of the maximum cut remains unknown especially for the114

range of values where random intersection graphs and Erdős-Rényi random graphs differ115

the most. Furthermore, studying a model where we can implicitly control its intersection116

number (indeed m is an obvious upper bound on the number of cliques that can cover all117

edges of the graph) may help understand algorithmic bottlenecks for finding maximum cuts118

in Erdős-Rényi random graphs.119

Second, we note that the representation matrix R of a weighted random intersection120

graph can be used to define a random set system Σ consisting of m sets Σ = {L1, . . . , Lm},121

where Lℓ is the set of vertices that have chosen label ℓ; we say that R is the incidence122

matrix of Σ. Therefore, there is a natural connection between Weighted Max Cut123

and the discrepancy of such random set systems, which we formalize in this paper. In124

particular, given a set system Σ with incidence matrix R, its discrepancy is defined as125

disc(Σ) = minx∈{±1}n maxL∈Σ
∣∣∑

v∈L xv

∣∣ = ∥Rx∥∞, i.e. it is the minimum imbalance of126

all sets in Σ over all 2-colorings x. Recent work on the discrepancy of random rectangular127

matrices defined as above [1] has shown that, when the number of labels (sets) m satisfies128

n ≥ 0.73m log m, the discrepancy of Σ is at most 1 with high probability. The proof of the129

main result in [1] is based on a conditional second moment method combined with Stein’s130

method of exchangeable pairs, and improves upon a Fourier analytic result of [14], and also131

upon previous results in [11], [20]. The design of an efficient algorithm that can find a 2-132

coloring having discrepancy O(1) in this range still remains an open problem. Approximation133

algorithms for a similar model for random set systems were designed and analyzed in [2];134

however, the algorithmic ideas there do not apply in our case.135
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1.1 Our Contribution136

In this paper, we introduce the model of weighted random intersection graphs and we study137

the average case analysis of Weighted Max Cut through the prism of Discrepancy of138

random set systems. We formalize the connection between these two combinatorial problems139

for the case of arbitrary weighted intersection graphs in Corollary 4. We prove that, given140

a weighted intersection graph G = (V, E, RT R) with representation matrix R, and a set141

system with incidence matrix R, such that disc(Σ) ≤ 1, a 2-coloring has maximum cut weight142

in G if and only if it achieves minimum discrepancy in Σ. In particular, Corollary 4 applies143

in the range of values considered in [1] (i.e. n ≥ 0.73m log m), and thus any algorithm that144

finds a maximum cut in G(V, E, RT R) with large enough probability can also be used to145

find a 2-coloring with minimum discrepancy in a set system Σ with incidence matrix R, with146

the same probability of success.147

We then consider weighted random intersection graphs in the case m = nα, α ≤ 1,148

and we prove that the maximum cut weight of a random instance G(V, E, RT R) of Gn,m,p149

concentrates around its expected value (see Theorem 5). In particular, with high probability150

over the choices of R, Max-Cut(G) ∼ ER[Max-Cut(G)], where ER denotes expectation with151

respect to R. The proof is based on the Efron-Stein inequality for upper bounding the152

variance of the maximum cut. As a consequence of our concentration result, we prove in153

Theorem 6 that, in the case α < 1, a random 2-coloring (i.e. biparition) x(rand) in which154

each vertex chooses its color independently and equiprobably, has cut weight asymptotically155

equal to Max-Cut(G), with high probability over the choices of x(rand) and R.156

The latter result on random cuts allows us to focus the analysis of our randomized157

algorithms of Section 4 on the case m = n (i.e. α = 1), and p = c
n , for some constant c (see158

also the discussion at the end of subsection 3.1), where the assumptions of Theorem 6 do not159

hold. It is worth noting that, in this range of values, the expected weight of a fixed edge160

in a weighted random intersection graph is equal to mp2 = Θ(1/n), and thus we hope that161

our work here will serve as an intermediate step towards understanding when algorithmic162

bottlenecks for Max Cut appear in sparse random graphs (especially Erdős-Rényi random163

graphs) with respect to the intersection number. In particular, we analyze a Majority Cut164

Algorithm 1 that extends the algorithmic idea of [8] to weighted intersection graphs as165

follows: vertices are colored sequentially (each color +1 or −1 corresponding to a different166

set in the partition of the vertices), and the t-th vertex is colored opposite to the sign167

of
∑

i∈[t−1][RT R]i,txi, namely the total available weight of its incident edges, taking into168

account colors of adjacent vertices. Our average case analysis of the Majority Cut Algorithm169

shows that, when m = n and p = c
n , for large constant c, with high probability over the170

choices of R, the expected weight of the constructed cut is at least 1 + β times larger than171

the expected weight of a random cut, for some constant β = β(c) ≥
√

16
27πc3 − o(1). The fact172

that the lower bound on beta is inversely proportional to c3/2 was to be expected, because,173

as p increases, the approximation of the maximum cut that we get from the weight of a174

random cut improves (see also the discussion at the end of subsection 3.1).175

In subsection 4.2 we propose a framework for finding maximum cuts in weighted random176

intersection graphs for m = n and p = c
n , for constant c, by exploiting the connection177

between Weighted Max Cut and the problem of discrepancy minimization in random set178

systems. In particular, we design a Weak Bipartization Algorithm 2, that takes as input an179

intersection graph with representation matrix R and outputs a subgraph that is “almost”180

bipartite. In fact, the input intersection graph is treated as a multigraph composed by181

overlapping cliques formed by the label sets Lℓ = {v : Rℓ,v = 1}, ℓ ∈ M. The algorithm182
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attempts to destroy all odd cycles of the input (except from odd cycles that are formed183

by labels with only two vertices) by replacing each clique induced by some label set Lℓ by184

a random maximal matching. In Theorem 11 we prove that, with high probability over185

the choices of R, if the Weak Bipartization Algorithm terminates, then its output can be186

used to construct a 2-coloring that has minimum discrepancy in a set system with incidence187

matrix R, which also gives a maximum cut in G(V, E, RT R). It is worth noting that this188

does not follow from Corollary 4, because a random set system with incidence matrix R has189

discrepancy larger than 1 with (at least) constant probability when m = n and p = c
n . Our190

proof relies on a structural property of closed 0-strong vertex-label sequences (loosely defined191

as closed walks of edges formed by distinct labels) in the weighted random intersection graph192

G(V, E, RT R) (Lemma 8). Finally, in Theorem 12, we prove that our Weak Bipartization193

Algorithm terminates in polynomial time, with high probability, if the constant c is strictly194

less than 1. Therefore, there is a polynomial time algorithm for finding weighted maximum195

cuts, with high probability, when the input is drawn from Gn,n, c
n

, with c < 1. We believe196

that this part of our work may also be of interest regarding the design of efficient algorithms197

for finding minimum disrepancy colorings in random set systems.198

Due to lack of space, some of the proofs are given in a clearly marked Appendix, to be199

read at the discretion of the program committee.200

2 Notation and preliminary results201

We denote weighted undirected graphs by G(V, E, W); in particular, V = V (G) (resp.202

E = E(G)) is the set of vertices (resp. set of edges) and W = W(G) is the weight matrix,203

i.e. Wi,j = wi,j is the weight of (undirected) edge {i, j} ∈ E. We allow W to have non-zero204

diagonal entries, as these do not affect cut weights. We also denote the number of vertices205

by n, and we use the notation [n] = {1, 2, . . . , n}. We also use this notation to define parts206

of matrices, for example W[n],1 denotes the first column of the weight matrix.207

A bipartition of the sets of vertices is a partition of V into two sets A, B such that208

A ∩ B = ∅ and A ∪ B = V . Bipartitions correspond to 2-colorings, which we denote by209

vectors x such that xi = +1 if i ∈ A and xi = −1 if i ∈ B.210

Given a weighted graph G(V, E, W), we denote by Cut(G, x) the weight of a cut defined211

by a bipartition x, namely Cut(G, x) =
∑

{i,j}∈E:i∈A,j∈B wi,j = 1
4

∑
{i,j}∈E wi,j(xi − xj)2.212

The maximum cut of G is Max-Cut(G) = maxx∈{−1,+1}n Cut(G, x).213

For a weighted random intersection graph G(V, E, RT R) with representation matrix R, we214

denote by Sv the set of labels chosen by vertex v ∈ V , i.e. Sv = {ℓ : Rℓ,v = 1}. Furthermore,215

we denote by Lℓ the set of vertices having chosen label ℓ, i.e. Lℓ = {v : Rℓ,v = 1}. Using216

this notation, the weight of an edge {v, u} ∈ E is |Sv ∪ Su|; notice also that this is equal217

to 0 when {v, u} /∈ E. We also note here that we may also think of a weighted random218

intersection graph as a simple weighted graph where, for any pair of vertices v, u, there are219

|Sv ∩ Su| simple edges between them.220

A set system Σ defined on a set V is a family of sets Σ = {L1, L2, . . . , Lm}, where221

Lℓ ⊆ V, ℓ ∈ [m]. The incidence matrix of Σ is an m × n matrix R = R(Σ), where for any222

ℓ ∈ [m], v ∈ [n], Rℓ,v = 1 if v ∈ Sℓ and 0 otherwise. The discrerpancy of Σ with respect to223

a 2-coloring x of the vertices in V is disc(Σ, x) = maxℓ∈[m]
∣∣∑

v∈V Rℓ,vxv

∣∣ = ∥Rx∥∞. The224

discrepancy of Σ is disc(Σ) = minx∈{−1,+1}n disc(Σ, x).225

It is well-known that the cut size of a bipartition of the set of vertices of a graph G(V, E)226

into sets A and B is given by 1
4

∑
{i,j}∈E(xi − xj)2, where xi = +1 if i ∈ A and xi = −1 if227

i ∈ B. This can be naturally generalized for multigraphs and also for weighted graphs. In228
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particular, the Max-Cut size of a weighted graph G(V, E, W) is given by229

Max-Cut(G) = max
x∈{−1,+1}n

1
4

∑
{i,j}∈E

Wi,j(xi − xj)2. (1)230

In particular, we get the following Corollary (refer to Section A of the Appendix for the231

proof):232

I Corollary 3. Let G(V, E, RT R) be a weighted intersection graph with representation matrix233

R. Then, for any x ∈ {−1, +1}n,234

Cut(G, x) = 1
4

 ∑
i,j∈[n]2

[
RT R

]
i,j

− ∥Rx∥2

 (2)235

and so236

Max-Cut(G) = 1
4

 ∑
i,j∈[n]2

[
RT R

]
i,j

− min
x∈{−1,+1}n

∥Rx∥2

 , (3)237

where ∥ · ∥ denotes the 2-norm. In particular, the expectation of the size of a random238

cut, where each entry of x is independently and equiprobably either +1 or -1 is equal to239

Ex [Cut(G, x)] = 1
4

∑
i ̸=j,i,j∈[n]

[
RT R

]
i,j

, where Ex denotes expectation with respect to x.240

Since
∑

i,j∈[n]2

[
RT R

]
i,j

is fixed for any given representation matrix R, the above241

Corollary implies that, to find a bipartition of the vertex set V that corresponds to a242

maximum cut, we need to find an n-dimensional vector in arg minx∈{−1,+1}n ∥Rx∥2. We243

thus get the following (refer to Section B of the Appendix for the proof):244

I Corollary 4. Let G(V, E, RT R) be a weighted intersection graph with representation245

matrix R and Σ a set system with incidence matrix R. If disc(Σ) ≤ 1, then x∗ ∈246

arg minx∈{−1,+1}n ∥Rx∥2 if and only if x∗ ∈ arg minx∈{−1,+1}n disc(Σ, x). In particular,247

if the minimum discrepancy of Σ is at most 1, a bipartition corresponds to a maximum cut248

iff it achieves minimum discrepancy.249

Notice that above result is not necessarily true when disc(Σ) > 1, since the minimum of250

∥Rx∥ could be achieved by 2-colorings with larger discrepancy than the optimal.251

2.1 Range of values for p252

Concerning the success probability p, we note that, when p = o
(√

1
nm

)
, direct application of253

the results of [5] suggest that G(V, E, RT R) is chordal with high probability, but in fact the254

same proofs reveal that a stronger property holds, namely that there is no closed vertex-label255

sequence (refer to the precise definition in subsection 4.2) having distinct labels. Therefore, in256

this case, finding a bipartition with maximum cut weight is straightforward: indeed, one way257

to construct a maximum cut is to run our Weak Bipartization Algorithm 2 from subsection258

4.2, and then to apply Theorem 11 (noting that Weak Bipartization termination condition259

trivially holds, since the set Codd(G(b)) defined in subsection 4.2 is empty). Furthermore,260

even though we consider weighted graphs, we will also assume that mp2 = O(1), noting261

that, otherwise, G(V, E, RT R) will be almost complete with high probability (indeed, the262

unconditional edge existence probability is 1−(1−p2)m, which tends to 1 for mp2 = ω(1)). In263
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particular, we will assume that C1

√
1

nm ≤ p ≤ C2
1√
m

, for arbitrary positive constants C1, C2;264

C1 can be as small as possible, and C2 can be as large as possible, provided C2
1√
m

≤ 1. We265

note that, when p is asymptotically equal to the upper bound C2
1√
m

, there is no constant266

weight upper bound that holds with high probability, whereas, when p is asymptotically267

equal to the lower bound C1

√
1

nm , all weights in the graph are bounded by a small constant268

with high probability. Our results in Section 3 assume this range of values for p, and thus269

graph instances may contain edges with large (but constant) weights. On the other hand, in270

the analysis of our randomized algorithms in section 4, we assume n = m and p = Θ
( 1

n

)
;271

this range of values gives sparse graph instances (even though the distribution is different272

from sparse Erdős-Rényi random graphs).273

3 Concentration of Max-Cut274

In this section we prove that the size of the maximum cut in a weighted random intersection275

graph concentrates around its expected value. We note however, that the following Theorem276

does not provide an explicit formula for the expected value of the maximum cut.277

I Theorem 5. Let G(V, E, RT R) be a random instance of the Gn,m,p model with m =278

na, α ≤ 1, and C1

√
1

nm ≤ p ≤ C2
1√
m

, for arbitrary positive constants C1, C2, and let R be279

its representation matrix. Then Max-Cut(G) ∼ ER[Max-Cut(G)] with high probability, where280

ER denotes expectation with respect to R, i.e. Max-Cut(G) concentrates around its expected281

value.282

Proof. Let G = G(V, E, RT R) be a weighted random intersection graph, and let D denote283

the (random) diagonal matrix containing all diagonal elements of RT R. In particular,284

equation (3) of Corollary 3 can be written as285

Max-Cut(G) = 1
4

 ∑
i ̸=j,i,j∈[n]

[
RT R

]
i,j

− min
x∈{−1,+1}n

xT
(
RT R − D

)
x

 .286

Furthermore, for any given R, notice that, if we select each element of x independently and287

equiprobably from {−1, +1}, then Ex[xT
(
RT R − D

)
x] = 0, where Ex denotes expectation288

with respect to x. By the probabilistic method, we thus have minx∈{−1,+1}n xT
(
RT R − D

)
x ≤289

0, implying the following bound:290

1
4

∑
i ̸=j,i,j∈[n]

[
RT R

]
i,j

≤ Max-Cut(Gn,m,p) ≤ 1
2

∑
i ̸=j,i,j∈[n]

[
RT R

]
i,j

, (4)291

where the second inequality follows trivially by observing that 1
2

∑
i ̸=j,i,j∈[n]

[
RT R

]
i,j

equals292

the sum of the weights of all edges.293

By linearity of expectation, we have ER

[∑
i ̸=j,i,j∈[n]

[
RT R

]
i,j

]
= ER

[∑
i ̸=j,i,j∈[n]

∑
ℓ∈[m] Rℓ,iRℓ,j

]
=294

n(n − 1)mp2 = Θ(n2mp2), which goes to infinity as n → ∞, because np = Ω
(√

n
m

)
= Ω(1)295

in the range of parameters that we consider. In particular, by (4), we have296

ER[Max-Cut(G)] = Θ(n2mp2). (5)297

By Chebyshev’s inequality, for any ϵ > 0, we have298

Pr
(
|Max-Cut(G) − ER[Max-Cut(G)]| ≥ ϵn2mp2)

≤ VarR(Max-Cut(G))
ϵ2n4m2p4 , (6)299



XX:8 MAX CUT in Weighted Random Intersection Graphs

where VarR denotes variance with respect to R. To bound the variance on the right hand300

side of the above inequality, we use the Efron-Stein inequality. In particular, we write301

Max-Cut(G) := f(R), i.e. we view Max-Cut(G) as a function of the label choices. For302

ℓ ∈ [m], i ∈ [n], we also write R(ℓ,i) for the matrix R where entry (ℓ, i) has been replaced by303

an independent, identically distributed (i.i.d.) copy of Rℓ,i, which we denote by R′
ℓ,i. By the304

Efron-Stein inequality, we now have305

VarR(Max-Cut(G)) ≤ 1
2

∑
ℓ∈[m],i∈[n]

E
[(

f(R) − f
(

R(ℓ,i)
))2

]
. (7)306

Notice now that, given all entries of R except Rℓ,i, the probability that f(R) is different307

from f
(
R(ℓ,i)) with probability at most Pr(Rℓ,i ̸= R′

ℓ,i) = 2p(1 − p). Furthermore, if308

Lℓ\{i} is the set of vertices different from i which have selected ℓ, we then have that309 (
f(R) − f

(
R(ℓ,i)))2 ≤ |Lℓ\{i}|2, because the intersection graph with representation matrix310

R differs by at most |Lℓ\{i}| edges from the intersection graph with representation matrix311

R(ℓ,i). Notice now that, by definition, |Lℓ\{i}| follows the Binomial distribution B(n − 1, p).312

In particular, E
[
|Lℓ\{i}|2

]
= (n − 1)p(np − 2p + 1), implying E

[(
f(R) − f

(
R(ℓ,i)))2]

≤313

2p(1 − p)(n − 1)p(np − 2p + 1), for any fixed ℓ ∈ [m], i ∈ [n].314

Putting this all together, (7) becomes315

VarR(Max-Cut(G)) ≤ 1
2

∑
ℓ∈[m],i∈[n]

2p(1 − p)(n − 1)p(np − 2p + 1)316

= nmp(1 − p)(n − 1)p(np − 2p + 1) = O(n3mp3), (8)317

where the last equation comes from the fact that, in the range of values that we consider, we318

have p = o(1) and np = Ω(1). Therefore, by (6), we get319

Pr
(
|Max-Cut(G) − ER[Max-Cut(G)]| ≥ ϵn2mp2)

≤ O(n3mp3)
ϵ2n4m2p4 = O

(
1

ϵ2nmp

)
,320

which goes to 0 in the range of values that we consider. Together with (5), the above321

bound proves that Max-Cut(G) is concentrated around its expected value, and the proof is322

completed. J323

3.1 Max-Cut for small number of labels324

Using Theorem 5, we can now show that, in the case m = nα, α < 1, and p = O
(

1√
m

)
, a325

random cut has asymptotically the same weight as Max-Cut(G), where G = G(V, E, RT R)326

is a random instance of Gn,m,p. In particular, let x(rand) be constructed as follows: for each327

i ∈ [n], set x
(rand)
i = −1 independently with probability 1

2 , and x
(rand)
i = +1 otherwise.328

The proof details of the following Theorem can be found in Section C of the Appendix.329

In view of equation (3), the main idea is to prove that, with high probability over random x330

and R, ∥Rx∥2 is asymptotically smaller than the expectation of the weight of the cut defined331

by x(rand), in which case the theorem follows by concentration of Max-Cut(G) around its332

expected value (Theorem 5), and straightforward bounds on Max-Cut(G).333

I Theorem 6. Let G(V, E, RT R) be a random instance of the Gn,m,p model with m =334

na, α < 1, and C1

√
1

nm ≤ p ≤ C2
1√
m

, for arbitrary positive constants C1, C2, and let R be335

its representation matrix. Then the cut weight of the random 2-coloring x(rand) satisfies336

Cut(G, x(rand)) = (1 − o(1))Max-Cut(G) with high probability over the choices of x(rand), R.337
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We note that the same analysis also holds when n = m and p is sufficiently large (e.g.338

p = ω( ln n
n )); more details can be found at the end of Section C of the Appendix. In view of339

this, in the following sections we will only assume m = n (i.e. α = 1) and also p = c
n , for340

some positive constant c. Besides avoiding complicated formulae for p, the reason behind341

this assumption is that, in this range of values, the expected weight of a fixed edge in342

G(V, E, RT R) is equal to mp2 = Θ(1/n), and thus we hope that our work will serve as an343

intermediate step towards understanding algorithmic bottlenecks for finding maximum cuts344

in Erdős-Rényi random graphs Gn,c/n with respect to their intersection number.345

4 Algorithmic results (randomized algorithms)346

4.1 The Majority Cut Algorithm347

In the following algorithm, the 2-coloring representing the bipartition of a cut is constructed348

as follows: initially, a small constant fraction ϵ of vertices are randomly placed in the two349

partitions, and then in each subsequent step, one of the remaining vertices is placed in350

the partition that maximizes the weight of incident edges with endpoints in the opposite351

partition.352

Algorithm 1 Majority Cut

Input: G(V, E, RT R) and its representation matrix R ∈ {0, 1}m×n

Output: Large cut 2-coloring x ∈ {−1, +1}n

1 Let v1, . . . , vn an arbitrary ordering of vertices;
2 for t = 1 to ϵn do
3 Set xt to either −1 or +1 independently with equal probability;
4 for t = ϵn + 1 to n do
5 if

∑
i∈[t−1][RT R]i,txi ≥ 0 then

6 xt = −1;
7 else
8 xt = +1;

9 return x;

353

Clearly the Majority Algorithm runs in polynomial time in n, m. Furthermore, the354

following Theorem provides a lower bound on the expected weight of the cut constructed355

by the algorithm in the case m = n, p = c
n , for large constant c, and ϵ → 0. The full proof356

details can be found in Section D of the Appendix.357

I Theorem 7. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with m = n,358

and p = c
n , for large positive constant c, and let R be its representation matrix. Then, with359

high probability over the choices of R, the majority algorithm constructs a cut with expected360

weight at least (1 + β) 1
4E

[∑
i̸=j,i,j∈[n]

[
RT R

]
i,j

]
, where β = β(c) ≥

√
16

27πc3 − o(1) is a361

constant, i.e. at least 1 + β times larger than the expected weight of a random cut.362

Proof sketch. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with m = n,363

and p = c
n , for some large enough constant c. For t ∈ [n], let Mt denote the constructed364

cut size just after the consideration of a vertex vt, for some t ≥ ϵn + 1. By equation (3)365

for n = t, and since the values x1, . . . , xt−1 are already decided in previous steps, we have366

Mt = 1
4

(∑
i,j∈[t]2

[
RT R

]
i,j

− minxt∈{−1,+1}
∥∥R[m],[t]x[t]

∥∥2
)

, and after careful calculation367
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we get the recurrence368

Mt = Mt−1 + 1
2

∑
i∈[t−1]

[
RT R

]
i,t

+ 1
2 |Zt| ,369

where Zt = Zt(x, R) =
∑

i∈[t−1]
[
RT R

]
i,t

xi =
∑

ℓ∈[m] Rℓ,t

∑
i∈[t−1] Rℓ,ixi. Observe that,370

in the latter recursive equation, the term 1
2

∑
i∈[t−1]

[
RT R

]
i,t

corresponds to the expected371

increment of the constructed cut if the t-vertex chose its color uniformly at random. Therefore,372

lower bounding the expectation of 1
2 |Zt| will tell us how much better the Majority Algorithm373

does when considering the t-th vertex.374

Towards this end, we note that, given x[t−1] = {xi, i ∈ [t− 1]}, and R[m],[t−1] = {Rℓ,i, ℓ ∈375

[m], i ∈ [t − 1]}, Zt is the sum of m independent random variables, since the Bernoulli376

random variables Rℓ,t, ℓ ∈ [m], are independent, for any given t (note that the conditioning377

is essential for independence, otherwise the inner sums in the definition of Zt would also378

depend on the xi’s, which are not random when i is large). By using a domination argument,379

we can then prove that380

E[|Zt|
∣∣x[t−1], R[m],[t−1]] ≥ MD(ZB

t ),381

where ZB
t is a certain Binomial random variable (formally defined in the full proof), and382

MD(·) is the mean absolute difference of (two independent copies of) ZB
t , namely MD(ZB

t ) =383

E[
∣∣ZB

t − Z ′B
t

∣∣]. Even though we are aware of no simple closed formula for MD(ZB
t ), we resort384

to Gaussian approximation of ZB
t − Z ′B

t through the Berry-Esseen Theorem, ultimately385

showing that |ZB
t − Z ′B

t | follows approximately the folded normal distribution. In particular,386

we show that MD(ZB
t ) ≥

√
c(t−1)

3πn − o(1), and since the right hand side is independent of387

x[t−1], R[m],[t−1], we get the same lower bound on the expectation of |Zt|, namely, E[|Zt|] ≥388 √
c(t−1)

3πn − o(1). Summing over all t ≥ ϵn + 1, we get389

∑
t≥ϵn+1

E [|Zt|] ≥
√

c

3π

(
2
3 − ϵ3/2

)
n − o(n),390

and the result follows by noting that the expected weight of a random cut is equal to391

1
4 n(n − 1)mp2 = c2

4 n + o(n), and taking ϵ → 0.392

J393

4.2 Intersection graph (weak) bipartization394

Notice that we can view a weighted intersection graph G(V, E, RT R) as a multigraph,395

composed by m (possibly) overlapping cliques corresponding to the sets of vertices having396

chosen a certain label, namely Lℓ = {v : Rℓ,v}, ℓ ∈ [m]. In particular, let K(ℓ) denote the397

clique induced by label ℓ. Then G = ∪+
ℓ∈[m]K

(ℓ), where ∪+ denotes union that keeps multiple398

edges. In this section, we present an algorithm that takes as input an intersection graph G399

given as a union of overlapping cliques and outputs a subgraph that is “almost” bipartite.400

To facilitate the presentation of our algorithm, we first give some useful definitions. A401

closed vertex-label sequence is a sequence of alternating vertices and labels starting and ending402

at the same vertex, namely σ := v1, ℓ1, v2, ℓ2, · · · , vk, ℓk, vk+1 = v1, where the size of the403

sequence k = |σ| is the number of its labels, vi ∈ V , ℓi ∈ M, and {vi, vi+1} ⊆ Lℓi
, for all404

i ∈ [k] (i.e. vi is connected to vi+1 in the intersection graph). We will also say that label ℓ405

is strong if |Lℓ| ≥ 3, otherwise it is weak. For a given closed vertex-label sequence σ, and406

any integer λ ∈ [|σ|], we will say that σ is λ-strong if |Lℓi
| ≥ 3, for λ indices i ∈ [|σ|]. The407
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structural Lemma below is useful for our analysis (see Section E of the Appendix for the408

proof).2409

I Lemma 8. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with m = n, and410

p = c
n , for some constant c > 0. With high probability over the choices of R, 0-strong closed411

vertex-label sequences in G do not have labels in common.412

The following definition is essential for the presentation of our algorithm.413

I Definition 9. Given a weighted intersection graph G = G(V, E, RT R) and a subgraph414

G(b) ⊆ G, let Codd(G(b)) be the set of odd length closed vertex-label sequences σ := v1, ℓ1, v2,415

ℓ2, · · · , vk, ℓk, vk+1 = v1 that additionally satisfy the following:416

(a) σ has distinct vertices (except the first and the last) and distinct labels.417

(b) vi is connected to vi+1 in G(b), for all i ∈ [|σ|].418

(c) σ is λ-strong, for some λ > 0.419

Algorithm 2 initially replaces each clique K(ℓ) by a random maximal matching M (ℓ),420

and thus gets a subgraph G(b) ⊆ G. If Codd(G(b)) is not empty, then the algorithm selects421

σ ∈ Codd(G(b)) and a strong label ℓ ∈ σ, and then replaces M (ℓ) in G(b) by a new random422

matching of K(ℓ). The algorithm repeats until all odd cycles are destroyed (or runs forever423

trying to do so).424

Algorithm 2 Intersection Graph Weak Bipartization

Input: Weighted intersection graph G = ∪+
ℓ∈[m]K

(ℓ)

Output: A subgraph of G(b) that has only 0-strong odd cycles
1 for each ℓ ∈ [m] do
2 Let M (ℓ) be a random maximal matching of K(ℓ);
3 Set G(b) = ∪+

ℓ∈[m]M
(ℓ) ;

4 while Codd(G(b)) ̸= ∅ do
5 Let σ ∈ Codd(G(b)) and ℓ a label in σ with |Lℓ| ≥ 3;
6 Replace the part of G(b) corresponding to ℓ by a new random maximal matching

M (ℓ);
7 return G(b);

425

The following results are the main technical tools that justify the use of the Weak426

Bipartization Algorithm for Weighted Max Cut. The proof details for Lemma 10 and427

Theorem 11 can be found in Sections F and G of the Appendix respectively.428

I Lemma 10. If Codd(G(b)) is empty, then G(b) may only have 0-strong odd cycles.429

I Theorem 11. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with n = m430

and p = c
n , where c > 0 is a constant, and let R be its representation matrix. Let also Σ431

be a set system with incidence matrix R. With high probability over the choices of R, if432

Algorithm 2 for weak bipartization terminates on input G, its output can be used to construct433

a 2-coloring x(disc) ∈ arg minx∈{±1}n disc(Σ, x), which also gives a maximum cut in G, i.e.434

x(disc) ∈ arg maxx∈{±1}n Cut(G, x).435

2 We conjecture that the structural property of Lemma 8 also holds if we replace 0-strong with λ-strong,
for any constant λ, but this stronger version is not necessary for our analysis.
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The fact that Theorem 11 is not an immediate consequence of Corollary 4 follows from the436

observation that a random set system with incidence matrix R has discrepancy larger than 1437

with (at least) constant probability when m = n and p = c
n . Indeed, by a straightforward438

counting argument, we can see that the expected number of 0-strong odd cycles is at least439

constant. Furthermore, in any 2-coloring of the vertices at least one of the weak labels440

forming edges in a 0-strong odd cycle will be monochromatic. Therefore, with at least441

constant probability, for any x ∈ {−1, +1}n, there exists a weak label ℓ, such that xixj = 1,442

for both i, j ∈ Lℓ, implying that disc(Lℓ) = 2.443

We close this section by a result indicating that the conditional statement of Theorem 11444

is not void, namely there is a range of values for c where the Weak Bipartization Algorithm445

terminates in polynomial time. The proof details can be found in Section H of the Appendix.446

I Theorem 12. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with n = m447

and p = c
n , where 0 < c < 1 is a constant, and let R be its representation matrix. With high448

probability over the choices of R, Algorithm 2 for weak bipartization terminates on input G449

in O
(

(n +
∑

ℓ∈[m] |Lℓ|) · log n
)

polynomial time.450

5 Discussion and some open problems451

In this paper, we introduced the model of weighted random intersection graphs and we452

studied the average case analysis of Weighted Max Cut through the prism of discrepancy453

of random set systems. In particular, in the first part of the paper, we proved concentration454

of the weight of a maximum cut of G(V, E, RT R) around its expected value, and we used455

it to show that, with high probability, the weight of a random cut is asymptotically equal456

to the maximum cut weight of the input graph, when m = nα, α < 1. On the other hand,457

in the case where the number of labels is equal to the number of vertices (i.e. m = n), we458

proved that a majority algorithm gives a cut with weight that is larger than the weight of a459

random cut by at least a constant factor, when p = c
n and c is large.460

In the second part of the paper, we highlighted a connection between Weighted Max461

Cut of sparse weighted random intersection graphs and Discrepancy of sparse random462

set systems, formalized through our Weak Bipartization Algorithm and its analysis. We463

demonstrated how our proposed framework can be used to find optimal solutions for these464

problems, with high probability, in special cases of sparse inputs (m = n, p = c
n , c < 1).465

One of the main problems left open in our work concerns the termination of our Weak466

Bipartization Algorithm for large values of c. We conjecture the following:467

I Conjecture 13. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with m = n,468

and p = c
n , for some constant c ≥ 1. With high probability over the choices of R, on input469

G, Algorithm 2 for weak bipartization terminates in polynomial time.470

We also leave the problem of determining whether Algorithm 2 terminates in polynomial471

time, in the case m = n and p = ω(1/n), as an open question for future research.472

Towards strengthening the connection between Weighted Max Cut under the Gn,m,p473

model, and Discrepancy in random set systems, we conjecture the following:474

I Conjecture 14. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with m =475

nα, α ≤ 1 and mp2 = O(1), and let R be its representation matrix. Let also Σ be a set476

system with incidence matrix R. Then, with high probability over the choices of R, there477

exists xdisc ∈ arg minx∈{−1,+1}n disc(Σ, x), such that Cut(G, xdisc) is asymptotically equal to478

Max-Cut(G).479
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A Proof of Corollary 3534

We first prove the following Lemma, by straightforward calculation from equation (1):535

I Lemma 15. Let G(V, E, W) be a weighted graph such that W is symmetric and Wi,j = 0536

if {i, j} /∈ E. Then537

Max-Cut(G) = 1
4

 ∑
i,j∈[n]2

Wi,j − min
x∈{−1,+1}n

xT Wx

 . (9)538

Proof. For any x ∈ {−1, +1}n, we write539 ∑
i,j∈[n]2

Wi,j − xT Wx =
∑

i,j∈[n]2

Wi,j −
∑

i,j∈[n]2

Wi,jxixj540

= 1
2

∑
i,j∈[n]2

Wi,j

(
x2

i + x2
j − 2xixj

)
541

= 1
2

∑
i,j∈[n]2

Wi,j (xi − xj)2
542

=
∑

{i,j}∈E

Wi,j (xi − xj)2
.543

By (1), this completes the proof. J544

Proof of Corollary 3. Notice that diagonal entries of the weight matrix in (9) cancel out,545

and so, for any x ∈ {−1, +1}n, we have546 ∑
i,j∈[n]2

[
RT R

]
i,j

− ∥Rx∥2 =
∑

i ̸=j,i,j∈[n]2

[
RT R

]
i,j

−
∑

i ̸=j,i,j∈[n]2

[
RT R

]
i,j

xixj .547

Taking expectations with respect to x, the contribution of the second sum in the above548

expression equals 0, which completes the proof. J549

B Proof of Corollary 4550

Proof. Since disc(Σ, x∗) ≤ 1, then each component of Rx∗ is either 0 or 1, for any x∗ ∈551

{−1, +1}n. In particular, for any ℓ ∈ [m], [Rx∗]ℓ is 0 if the number of ones in the ℓ-th row552

is even and it is equal to 1 otherwise. This is the best one can hope for, since sets with an553

odd number of elements cannot have discrepancy less than 1. Therefore, ∥Rx∗∥ is also the554

minimum possible. In particular, this implies that, in the case disc(Σ, x∗) ≤ 1, any 2-coloring555

that achieves minimum discrepancy gives a bipartition that corresponds to a maximum cut556

and vice versa. J557

C Proof of Theorem 6558

Proof. Let G = G(V, E, RT R) be a weighted random intersection graph. By equation (2)559

of Corollary 3, for any x ∈ {−1, +1}n, we have:560

Cut(G, x) = 1
4

 ∑
i,j∈[n]

[
RT R

]
i,j

− ∥Rx∥2

 .561
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Taking expectations with respect to random x and R, we get562

Ex,R[Cut(G, x)] = 1
4 · ER

 ∑
i,j∈[n]

[
RT R

]
i,j

−
∑
i∈[n]

[
RT R

]
i,i

563

= 1
4 · ER

 ∑
i ̸=j,i,j∈[n]

[
RT R

]
i,j

 = 1
4n(n − 1)mp2. (10)564

To prove the Theorem, we will show that, with high probability over random x and R, we565

have ∥Rx∥2 = o
(
ER

[
1
4

∑
i ̸=j,i,j∈[n]

[
RT R

]
i,j

])
= o(n2mp2), in which case the theorem566

follows by concentration of Max-Cut(G) around its expected value (Theorem 5), and the fact567

that Max-Cut(G) ≥ 1
4

∑
i ̸=j,i,j∈[n]

[
RT R

]
i,j

.568

To this end, fix ℓ ∈ [m] and consider the random variable counting the number of ones in569

the ℓ-th row of R, namely Yℓ =
∑

i∈[n] Rℓ,i. By the multiplicative Chernoff bound, for any570

δ > 0,571

Pr(Yℓ > (1 + δ)np) ≤
(

eδ

(1 + δ)1+δ

)np

.572

Since np ≥ C1
√

n
m = C1n

1−α
2 , taking any δ ≥ 2, we get573

Pr(Yℓ > 3np) ≤
(

e2

27

)np

= o

(
1
m

)
. (11)574

Therefore, by the union bound,575

Pr(∃ℓ ∈ [m] : Yℓ > 3np) = o(1), (12)576

implying that, all rows of R have at most 3np non-zero elements with high probability.577

Fix now ℓ and consider the random variable corresponding to the ℓ-th entry of Rx,578

namely Zℓ =
∑

i∈[n] Rℓ,ixi. In particular, given Yℓ, notice that Zℓ is equal to the sum of579

Yℓ independent random variables xi ∈ {−1, +1}, for i such that Rℓ,i = 1. Therefore, since580

Ex[Zℓ] = Ex[Zℓ|Yℓ] = 0, by Hoeffding’s inequality, for any λ ≥ 0,581

Pr(|Zℓ| > λ|Yℓ) ≤ e
− λ2

2Yℓ .582

Therefore, by the union bound, and taking λ ≥
√

6np ln n,583

Pr(|Zℓ| > λ) ≤ Pr(∃ℓ ∈ [m] : Yℓ > 3np) + me− λ2
6np = o(1) + m

n
= o(1), (13)584

implying that all entries of Rx have absolute value at most
√

6np ln n with high probability585

over the choices of x and R. Consequently, with high probability over the choices of x586

and R, we have ∥Rx∥2 = 6mnp ln n, which is o(n2mp2), since np = ω(ln n) in the range of587

parameters considered in this theorem. This completes the proof. J588

We note that the same analysis also holds when n = m and p is sufficiently large (e.g. p =589

ω( ln n
n )). In particular, similar probability bounds hold in equations (11), (12) and (13), for590

the same choices of δ ≥ 2 and λ ≥
√

6np ln n, implying that ∥Rx∥2 = 6mnp ln n = o(n2mp2)591

with high probability.592
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D Proof of Theorem 7593

Proof. Let G(V, E, RT R) (i.e. the input to the Majority Cut Algorithm 1) be a random594

instance of the Gn,m,p model, with m = n, and p = c
n , for some large enough constant c. For595

t ∈ [n], let Mt denote the constructed cut size just after the consideration of a vertex vt, for596

some t ≥ ϵn + 1. In particular, by equation (3) for n = t, and since the values x1, . . . , xt−1597

are already decided in previous steps, we have598

Mt = 1
4

 ∑
i,j∈[t]2

[
RT R

]
i,j

− min
xt∈{−1,+1}

∥∥R[m],[t]x[t]
∥∥2

 (14)599

The first of the above terms is600

1
4

∑
i,j∈[t]2

[
RT R

]
i,j

= 1
4

 ∑
i,j∈[t−1]2

[
RT R

]
i,j

+ 2
∑

i∈[t−1]

[
RT R

]
i,t

+
[
RT R

]
t,t

 (15)601

and the second term is602

−1
4 min

xt∈{−1,+1}

∥∥R[m],[t]x[t]
∥∥2

603

= −1
4 min

xt∈{−1,+1}

∥∥∥∥∥∥R[m],txt +
∑

i∈[t−1]

R[m],ixi

∥∥∥∥∥∥
2

604

= −1
4 min

xt∈{−1,+1}

∑
i,j∈[t]2

[
RT R

]
i,j

xixj605

= −1
4

 ∑
i,j∈[t−1]2

[
RT R

]
i,j

xixj + 2 min
xt∈{−1,+1}

∑
i∈[t−1]

[
RT R

]
i,t

xixt +
[
RT R

]
t,t

(16)606

By (14), (15) and (16), we have607

Mt = Mt−1 + 1
2

∑
i∈[t−1]

[
RT R

]
i,t

− 1
2 min

xt∈{−1,+1}

∑
i∈[t−1]

[
RT R

]
i,t

xixt608

= Mt−1 + 1
2

∑
i∈[t−1]

[
RT R

]
i,t

+ 1
2

∣∣∣∣∣∣
∑

i∈[t−1]

[
RT R

]
i,t

xi

∣∣∣∣∣∣ (17)609

Define now the random variable610

Zt = Zt(x, R) =
∑

i∈[t−1]

[
RT R

]
i,t

xi =
∑

ℓ∈[m]

Rℓ,t

∑
i∈[t−1]

Rℓ,ixi,611

so that Mt = Mt−1 + 1
2

∑
i∈[t−1]

[
RT R

]
i,t

+ 1
2 |Zt|. Observe that, in the latter recursive612

equation, the term 1
2

∑
i∈[t−1]

[
RT R

]
i,t

corresponds to the expected increment of the con-613

structed cut if the t-vertex chose its color uniformly at random. Therefore, lower bounding614

the expectation of 1
2 |Zt| will tell us how much better the Majority Algorithm does when615

considering the t-th vertex.616

Towards this end, we first note that, given x[t−1] = {xi, i ∈ [t − 1]}, and R[m],[t−1] =617

{Rℓ,i, ℓ ∈ [m], i ∈ [t−1]}, Zt is the sum of m independent random variables, since the Bernoulli618

random variables Rℓ,t, ℓ ∈ [m], are independent, for any given t (note that the conditioning is619
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essential for independence, otherwise the inner sums in the definition of Zt would also depend620

on the xi’s, which are not random when i is large). Furthermore, E[Zt|x[t−1], R[m],[t−1]] =621

p
∑

ℓ∈[m]
∑

i∈[t−1] Rℓ,ixi and Var(Zt|x[t−1], R[m],[t−1]) = p(1 − p)
∑

ℓ∈[m]

(∑
i∈[t−1] Rℓ,ixi

)2
.622

Given x[t−1] = {xi, i ∈ [t − 1]}, and R[m],[t−1] = {Rℓ,i, ℓ ∈ [m], i ∈ [t − 1]}, define the623

sets A+
t = {ℓ ∈ [m] :

∑
i∈[t−1] Rℓ,ixi > 0} and A−

t = {ℓ ∈ [m] :
∑

i∈[t−1] Rℓ,ixi < 0}. In624

particular, given x[t−1] = {xi, i ∈ [t − 1]}, and R[m],[t−1] = {Rℓ,i, ℓ ∈ [m], i ∈ [t − 1]}, Zt can625

be written as626

Zt =
∑

ℓ∈A+
t

Rℓ,t

∑
i∈[t−1]

Rℓ,ixi −
∑

ℓ∈A−
t

Rℓ,t

∣∣∣∣∣∣
∑

i∈[t−1]

Rℓ,ixi

∣∣∣∣∣∣ , (18)627

where Rℓ,t, ℓ ∈ A+
t ∪ A−

t are independent Bernoulli random variables with success probability628

p.629

It is a matter of careful calculation to show that E
[
|Zt|

∣∣x[t−1], R[m],[t−1]
]

is smallest when630

the conditional expectation E
[
Zt

∣∣x[t−1], R[m],[t−1]
]

is 0, which happens when the sum of posit-631

ive factors for the Bernoulli random variables in the definition of Zt is equal to the sum of neg-632

ative ones, namely
∑

ℓ∈A+
t

∑
i∈[t−1] Rℓ,ixi =

∑
ℓ∈A−

t

∣∣∣∑i∈[t−1] Rℓ,ixi

∣∣∣. Furthermore, we note633

that E[|Zt|
∣∣x[t−1], R[m],[t−1]] does not increase if we replace

∑
ℓ∈A+

t
Rℓ,t

∑
i∈[t−1] Rℓ,ixi and634 ∑

ℓ∈A−
t

Rℓ,t

∣∣∣∑i∈[t−1] Rℓ,ixi

∣∣∣ in the expression (18) for Zt by independent binomial random635

variables Z+
t ∼ B

(∑
ℓ∈A+

t

∑
i∈[t−1] Rℓ,ixi, p

)
and Z−

t ∼ B
(∑

ℓ∈A−
t

∣∣∣∑i∈[t−1] Rℓ,ixi

∣∣∣ , p
)

,636

respectively.3637

In view of the above, if ZB
t is a random variable which, given x[t−1] = {xi, i ∈ [t − 1]},638

and R[m],[t−1] = {Rℓ,i, ℓ ∈ [m], i ∈ [t − 1]}, follows the Binomial distribution B (Nt, p), where639

640

Nt
def= max

 ∑
ℓ∈A+

t

∑
i∈[t−1]

Rℓ,ixi,
∑

ℓ∈A−
t

∣∣∣∣∣∣
∑

i∈[t−1]

Rℓ,ixi

∣∣∣∣∣∣
 , (19)641

then642

E[|Zt|
∣∣x[t−1], R[m],[t−1]] ≥ MD(ZB

t ), (20)643

where MD(·) is the mean absolute difference of (two independent copies of) ZB
t . In particular,644

MD(ZB
t ) = E[

∣∣ZB
t − Z ′B

t

∣∣], where ZB
t , Z ′B

t are independent random variables following645

B (Nt, p). Unfortunately, we are aware of no simple closed formula for MD(ZB
t ), and so we646

resort to Gaussian approximation through the Berry-Esseen Theorem:647

I Theorem (Berry-Esseen Theorem [23]). Let X1, X2, . . . , be independent, identically distrib-648

uted random variables, with E[Xi] = 0,E[X2
i ] = σ2 > 0, and E[|Xi|3] = ρ < ∞. For N > 0,649

let FN (·) be the cumulative distribution function of X1+···+XN

σ
√

N
, and let Φ(·) be the cumulative650

distribution function of the standard normal distribution. Then, supx∈R |FN (x) − Φ(x)| ≤651
0.4748ρ

σ3
√

N
.652

3 This property follows inductively, by noting that, if X =
∑k

i=1 aiXi −
∑N

i=k
aiXi, and X ′ =∑k−1

i=1 aiXi + (ak − 1)Xk + X ′
k −

∑N

i=k
aiXi, where k, N, ai ∈ N+, i ∈ [N ], and Xi, i ∈ [N ], X ′

k

are independent, identically distributed Bernoulli random variables, then E[|X|] ≥ E[|X ′|]. Indeed,
notice that, the independence of Xk, X ′

k implies that these random variables work against each other
(with respect to the absolute value) at least half of the time.
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In our case, we write ZB
t =

∑Nt

i=1 ZB
t,i, Z ′B

t =
∑Nt

i=1 Z ′B
t,i , and set Xi = ZB

t,i − Z ′B
t,i , where653

ZB
t,i, Z ′B

t,i are independent Bernoulli random variables with success probability p, for any654

i ∈ [Nt]. In particular, we have E[Xi] = 0, E[X2
i ] = E[|Xi|3] = 2p(1 − p). Therefore, by the655

Berry-Esseen Theorem, given x[t−1] = {xi, i ∈ [t − 1]}, and R[m],[t−1] = {Rℓ,i, ℓ ∈ [m], i ∈656

[t − 1]},the distribution of ZB
t − Z ′B

t is approximately Normal N (0, 2p(1 − p)Nt), with657

approximation error 0.4748√
2p(1−p)Nt

.658

Notice that the latter approximation error bound becomes o(1) if Nt = Θ(n), p = c
n659

and c → ∞. Therefore, we next show that, with high probability over the choices of R,660

Nt = Θ(n), for any t ≥ ϵn + 1, where ϵ is the constant used in the Majority Algorithm. In661

particular, even though we cannot control the variables xi ∈ {−1, +1}, i ∈ [t − 1], in the662

definition of Nt, we will find a lower bound that holds whp by using the random variable663

Yt = Yt(R, x) def=

∣∣∣∣∣∣ℓ ∈ [m] :
∑

i∈[t−1]

Rℓ,i is odd

∣∣∣∣∣∣ ,664

and employing the following inequality665

Nt ≥ Yt

2 . (21)666

Indeed, (21) holds because, for any i ∈ [t−1], if
∑

i∈[t−1] Rℓ,i is odd, then
∣∣∣∑i∈[t−1] Rℓ,ixi

∣∣∣ ≥667

1, no matter what value the xi’s have. Therefore,
∑

i∈[t−1] Rℓ,ixi will contribute at least 1668

to one of the two terms in the maximum from the right side of (19), and thus (21) follows.669

Notice now that, for any fixed i and t ≥ ϵn + 1, we have Pr(
∑

i∈[t−1] Rℓ,i is odd) =670 ∑
j odd

(
t−1

j

)
pj(1−p)t−1−j = 1

2
(
1 − (1 − 2p)t−1)

≥ 1
2

(
1 − e−2p(t−1)) ≥ 1

2
(
1 − e−2cϵ

)
, where671

in the last inequality we set p = c
n . Taking c → ∞, the latter bound becomes 1

2 − o(1).672

Therefore, by independence of the entries of R, Yt stochastically dominates a binomial673

random variable B(t − 1, 1
3 ). Furthermore, by the multiplicative Chernoff (upper) bound, for674

any δ > 0,675

Pr
(

Yt < (1 − δ) t − 1
3

)
<

(
e−δ

(1 − δ)1−δ

) t−1
3

.676

Taking δ = 1
2 and noting that t ≥ ϵn + 1, we have677

Pr
(

Yt <
t − 1

6

)
<

(e

2

)− ϵn
6

,678

which is o(1/n), for any constant ϵ > 0. By the union bound,679

Pr
(

∃t : t ≥ ϵn + 1, Yt <
t − 1

6

)
= o(1).680

By inequality (21), we thus have that, with high probability over the choices of R, Nt ≥681

t−1
12 ≥ ϵn

12 , for all t ≥ ϵn + 1, as needed.682

Combining the above, by the Berry-Esseen Theorem, given x[t−1], R[m],[t−1], the distribu-683

tion of ZB
t − Z ′B

t is approximately Normal N (0, 2p(1 − p)Nt) with approximation error o(1)684

as c → ∞, with high probability over the choices of R. In particular, given x[t−1], R[m],[t−1],685

|ZB
t − Z ′B

t | follows approximately (i.e. with the same approximation error o(1)) the folded686

normal distribution with mean value (at least)
√

2
π Var(ZB

t − Z ′B
t |x[t−1], R[m],[t−1]). Notice687

now that, by inequality (21), we have688

Var(ZB
t − Z ′B

t |x[t−1], R[m],[t−1]) ≥ p(1 − p)Yt.689
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Since Yt ≥ t−1
6 ≥ ϵn

6 with high probability, and also p = c
n , we get that Var(ZB

t −690

Z ′B
t |x[t−1], R[m],[t−1]) ≥ c(t−1)

6n − o(1), with high probability, where the o(1) comes from the691

approximation error given by the Berry-Esseen Theorem. Consequently, by inequality (20),692

with high probability over the choices of R (which is 1 − o(1)),693

E [|Zt|] = E

∣∣∣∣∣∣
∑

i∈[t−1]

[
RT R

]
i,t

xi

∣∣∣∣∣∣
 ≥

√
c(t − 1)

3πn
− o(1).694

Summing over all t ≥ ϵn + 1, we get695

∑
t≥ϵn+1

E [|Zt|] ≥
√

c

3πn

∑
t≥ϵn

√
t − o(n) =

√
c

3πn

∑
t≥1

√
t − ϵn

√
ϵn

 − o(n).696

Using the fact that
∑

t≥1
√

t = 2
3 n3/2 + o(n), we thus have that697 ∑

t≥ϵn+1
E [|Zt|] ≥

√
c

3π

(
2
3 − ϵ3/2

)
n − o(n).698

On the other hand, we have that the expected weight of a random cut is equal to699

1
4 n(n − 1)mp2 = c2

4 n + o(n) (see e.g. equation (10)). The proof is completed by taking700

ϵ → 0. J701

E Proof of Lemma 8702

Proof. We will use the first moment method and so we need to prove that the expectation703

of the number of pairs of distinct 0-strong closed vertex-label sequences in G that have704

at least one label in common goes to 0. To this end, for j ∈ [min(k, k′) − 1], let Aj(k, k′)705

denote the number of such sequences σ, σ′, with k = |σ|, k′ = |σ′|, that have j labels in706

common. In particular, for integers k, k′, let σ := v1, ℓ1, v2, ℓ2, · · · , vk, ℓk, vk+1 = v1, and let707

σ′ := v′
1, ℓ′

1, v′
2, ℓ′

2, · · · , v′
k′ , ℓ′

k′ , v′
k′+1 = v1. Notice that, any such fixed pair σ, σ′ has the same708

probability to appear, namely p2(k+k′−j)(1 − p)(n−2)(k+k′−j); indeed, p2k(1 − p)(n−2)k is the709

probability that σ appears (recall that σ has k labels and it is 0-strong, i.e. each label is710

only selected by two vertices) and p2(k′−j)(1 − p)(n−2)(k′−j) is the probability that σ′ appears711

given that σ has appeared. Furthermore, the number of such pairs of sequences is dominated712

by the number of sequences that overlap in j consecutive labels (e.g. the first j), which is at713

most nkmknk′−j−1mk′−j (notice that j common labels implies that there are at least j′ + 1714

common vertices). Overall, since n = m and p = c
n , we have715

E[Aj(k, k′)] ≤ (1 + o(1)) 1
n

(np)2(k+k′−j)(1 − p)(n−2)(k+k′−j)
716

= (1 + o(1)) 1
n

(
c2(1 − p)n−2)k+k′−j

.717

Since n → ∞ and p = c
n , by elementary calculus we have that c2(1 − p)n−2 bounded by a718

constant (which depends only on c) strictly less than 1. Therefore, the above expectation719

is at most e− ln n−Θ(1)(k+k′−j). Therefore, summing over all choices of k, k′ ∈ [n] and720

j ∈ [min(k, k′) − 1], we get that the expected number of pairs of distinct 0-strong closed721

vertex-label sequences that have at least one label in common is at most722

∑
k,k′∈[n]

∑
j∈[min(k,k′)−1]

e− ln n−Θ(1)(k+k′−j) = o(1),723
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and the proof is completed by Markov’s inequality. J724

F Proof of Lemma 10725

Proof. For the sake of contradiction, assume Codd(G(b)) = ∅, but G(b) = ∪+
ℓ∈[m]M

(ℓ) has an726

odd cycle Ck that is not 0-strong and has minimum length. Notice that Ck corresponds to a727

closed vertex-label sequence, say σ := v1, ℓ1, v2, ℓ2, · · · , vk, ℓk, vk+1 = v1, where {vi, vi+1} ∈728

M (ℓi), for all i ∈ [k]. Furthermore, by assumption, conditions (b) and (c) of Definition 9 are729

satisfied by σ (indeed {vi, vi+1} ∈ M (ℓi), for all i ∈ [k], and σ is λ-strong, for some λ > 0).730

Therefore, the only reason for which σ does not belong to Codd(G(b)) is that condition (a)731

of Definition 9 is not satisfied, i.e. there are distinct indices i > i′ ∈ [k] such that ℓi = ℓi′ .732

Clearly, such indices are not consecutive (i.e. i′ ̸= i + 1), because ℓi is strong and step733

6 of our algorithm implies that M (ℓi) is a matching of K(ℓi). But then either the vertex-734

label sequence v1, . . . , vi, ℓi, vi′+1, ℓi′+1, vi′+2, . . . , vk+1 = v1 or the vertex-label sequence735

vi+1, ℓi+1, vi+2, . . . , vi′ , ℓi, vi+1 corresponds to a shorter odd cycle, which is a contradiction736

on the minimality of Ck. J737

G Proof of Theorem 11738

Proof. By construction, the output of Algorithm 2, namely G(b), has only 0-strong odd739

cycles. Furthermore, by Lemma 8 these cycles correspond to vertex-label sequencies that are740

label-disjoint. Let H denote the subgraph of G(b) in which we have destroyed all 0-strong741

odd cycles by deleting a single (arbitrary) edge eC from each 0-strong odd cycle C (keeping742

all other edges intact), and notice that eC corresponds to a weak label. In particular, H is743

a bipartite multi-graph and thus its vertices can be partitioned into two independent sets744

A, B constructed as follows: In each connected component of H, start with an arbitrary745

vertex v and include in A (resp. in B) the set of vertices reachable from v that are at an746

even (resp. odd) distance from v. Since H is bipartite, it does not have odd cycles, and thus747

this construction is well-defined, i.e. no vertex can be placed in both A and B.748

We now define x(disc) by setting x
(disc)
i = +1 if i ∈ A and x

(disc)
i = +1 if i ∈ B. Let749

M0 denote the set of weak labels corresponding to the edges removed from G(b) in the750

construction of H. We first note that, for each ℓC ∈ M0 corresponding to the removal of751

an edge eC , we have
∣∣∣∑i∈LℓC

x
(disc)
i

∣∣∣ = 2. Indeed, since eC belongs to an odd cycle in G(b),752

its endpoints are at even distance in H, which means that either they both belong to A753

or they both belong to B. Therefore, their corresponding entries of x(disc) have the same754

sign, and so (taking into account that the endpoints of eC are the only vertices in LℓC
),755

we have
∣∣∣∑i∈LℓC

x
(disc)
i

∣∣∣ = 2. Second, we show that, for all the other labels ℓ ∈ [m]\M0,756 ∣∣∣∑i∈Lℓ
x

(disc)
i

∣∣∣ will be equal to 1 if |Lℓ| is odd and 0 otherwise. For any label ℓ ∈ [m]\M0,757

let M (ℓ) denote the part of G(b) corresponding to a maximal matching of K(ℓ), and note that758

all edges of M (ℓ) are contained in H. Since H is bipartite, no edge in M (ℓ) can have both its759

endpoints in either A or B. Therefore, by construction, the contribution of entries of x(disc)
760

corresponding to endpoints of edges in M (ℓ) to the sum
∑

i∈Lℓ
x

(disc)
i is 0. In particular, if761

|Lℓ| is even, then M (ℓ) is a perfect matching and
∣∣∣∑i∈Lℓ

x
(disc)
i

∣∣∣ = 0, otherwise (i.e. if |Lℓ|762

is odd) there is a single vertex not matched in M (ℓ) and
∣∣∣∑i∈Lℓ

x
(disc)
i

∣∣∣ = 1.763

To complete the proof of the theorem, we need to show that Cut(G, x(disc)) is maximum.764

By Corollary 3, this is equivalent to proving that ∥Rx(disc)∥ ≤ ∥Rx∥ for all x ∈ {−1, +1}n.765
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Suppose that there is some x(min) ∈ {−1, +1}n such that ∥Rx(disc)∥ > ∥Rx(min)∥. As766

mentioned above, for all ℓ ∈ [m]\M0, we have [Rx(disc)]ℓ ≤ 1, and so [Rx(disc)]ℓ ≤ [Rx(min)]ℓ.767

Therefore, the only labels where x(min) could do better are those corresponding to edges768

eC that are removed from G(b) in the construction of H, i.e. ℓC ∈ M0, for which we have769

[Rx(disc)]ℓC
= 2. However, any such edge eC belongs to an odd cycle C, and thus any770

2-coloring of the vertices of C will force at least one of the 0-strong labels corresponding771

to edges of C to be monochromatic. Taking into account the fact that, by Lemma 8, with772

high probability over the choices of R, all 0-strong odd cycles correspond to vertex-label773

sequences that are label-disjoint, we conclude that ∥Rx(disc)∥ ≤ ∥Rx(min)∥, which completes774

the proof. J775

H Proof of Theorem 12776

We first prove the following structural Lemma regarding the expected number of closed777

vertex label sequences.778

I Lemma 16. Let G(V, E, RT R) be a random instance of the Gn,m,p model. Let also Ck779

denote the number of distinct closed vertex-label sequences of size k in G. Then780

E[Ck] = 1
k

n!
(n − k)!

m!
(m − k)!p

2k. (22)781

In particular, when m = n → ∞, p = c
n , c > 0, and k ≥ 3, we have E[Ck] ≤ e

2π c2k.782

Proof. Notice that there are 1
k

n!
(n−k)! ways to arrange k out of n vertices in a cycle. Further-783

more, in each such arrangement, there are m!
(m−k)! ways to place k out of m labels so that784

there is exactly one label between each pair of vertices. Since labels in any given arrangement785

must be selected by both its adjacent vertices, (22) follows by linearity of expectation.786

Setting m = n and p = c
n , and using the inequalities

√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n,787

E[Ck] = 1
k

(
n!

(n − k)!

)2 ( c

n

)2k

788

≤ 1
k

e2n2n+1e−2n

2π(n − k)2n−2k+1e2k−2n

( c

n

)2k

= 1
k

e2

2π

(
n

n − k

)2n−2k+1 ( c

e

)2k

789

≤ e2

2π

n

k(n − k)e
k

n−k (2n−2k)
( c

e

)2k

= e2

2π

n

k(n − k)c2k.790

When n goes to ∞ and k ≥ 3, then the above is at most e
2π c2k as needed. J791

We are now ready for the proof of the Theorem.792

Proof of Theorem 12. We will prove that, when m = n → ∞, p = c
n , c < 1, and k ≥ 3,793

with high probability, there are no closed vertex-label sequences that have labels in common.794

To this end, recalling Definition 9 for Codd(G(b)), we provide upper bounds on the following795

events: A
def= {∃k ≥ log n : Ck ≥ 1}, B

def= {|Codd(G(b))| ≥ log n} and C
def= {∃σ ̸= σ′ ∈796

Codd(G(b)) : ∃ℓ ∈ σ, ℓ ∈ σ′}.797

By the union bound, Markov’s inequality and Lemma 16, we get that, whp all closed798

vertex-label sequences have less than log n labels:799

Pr (A) ≤
∑

k≥log n

E[Ck] ≤
∑

k≥log n

e

2π
c2k = e

2π

c2 log n

1 − c2 = O
(
c2 log n

)
= o(1), (23)800
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where the last equality follows since c < 1 is a constant. Furthermore, by Markov’s inequality801

and Lemma 16, and noting that any closed vertex-label sequence in Codd(G(b)) must have at802

least k ≥ 3 labels, we get that, whp there less than log n closed vertex-label sequences in803

Codd(G(b)):804

Pr (B) ≤ 1
log n

∑
k≥3

E[Ck] ≤ 1
log n

∑
k≥3

e

2π
c2k = 1

log n

e

2π

c6

1 − c2 = O

(
1

log n

)
. (24)805

To bound Pr(C), fix a closed vertex-label sequence σ, and let |σ| ≥ 3 be the number of806

its labels. Notice that, the probability that there is another closed vertex-label sequence that807

has labels in common with σ implies the existence of a vertex-label sequence σ̆ that starts808

with either a vertex or a label from σ, ends with either a vertex or a label from σ, and has at809

least one label or at least one vertex that does not belong to σ. Let |σ̆| denote the number810

of labels of σ̆ that do not belong to σ. Then the number of different vertex-label sequences σ̆811

that start and end in labels from σ is at most |σ|2n|σ̆|+1m|σ̆|; indeed σ̆ in this case has |σ̆|812

labels and |σ̆| + 1 vertices that do not belong to σ. Therefore, by independence, each such813

sequence σ̆ has probability p2|σ̆|+2 to appear. Similarly, the number of different vertex-label814

sequences σ̆ that start and end in vertices from σ is at most |σ|2n|σ̆|−1m|σ̆| and each one815

has probability p2|σ̆| to appear. Finally, the number of different vertex-label sequences σ̆816

that start in a vertex from σ and end in a label from σ (notice that this also covers the case817

where σ̆ starts in a label from σ and ends in a vertex from σ) is at most |σ|2n|σ̆|m|σ̆| and818

each one has probability p2|σ̆|+1 to appear. Overall, for a given sequence σ, the expected819

number of sequences σ̆ described above that additionally satisfies |σ̆| < log n, is at most820

log n−1∑
k=0

|σ|2nk+1mkp2k+2 +
log n−1∑

k=1
|σ|2nk−1mkp2k +

log n−1∑
k=1

|σ|2nkmkp2k+1 ≤ c|σ|2 log n

n
, (25)821

where in the last inequality we used the fact that m = n, p = c
n and c < 1. Since the existence822

of a sequence σ̆ for σ that additionally satisfies |σ̆| ≥ log n implies event A, and on other823

hand the existence of more than log n different sequences σ ∈ |Codd(G(b))| implies event B,824

by Markov’s inequality and (25), we get825

Pr(C) ≤ Pr(A)+Pr(B)+c
(log n)4

n
= O

(
c2 log n

)
+O

(
1

log n

)
+O

(
(log n)4

n

)
= O

(
1

log n

)
.826

We have thus proved that, with high probability over the choices of R, closed vertex-label827

sequences in Codd(G(b)) are label disjoint, as needed.828

In view of this, the proof of the Theorem follows by noting that, since closed vertex829

label sequences in Codd(G(b)) are label disjoint, steps 5 and 6 within the while loop of the830

Weak Bipartization Algorithm will be executed exactly once for each sequence in Codd(G(b)),831

where G(b) is defined in step 3 of the algorithm; indeed, once a closed vertex label sequence832

σ ∈ Codd(G(b)) is destroyed in step 6, no new closed vertex label sequence is created. In833

fact, once σ is destroyed we can remove the corresponding labels and edges from G(b), as834

these will no longer belong to other closed vertex label sequences. Furthermore, to find a835

closed vertex label sequences in Codd(G(b)), it suffices to find an odd cycle in G(b), which836

can be done by running DFS, requiring O(n +
∑

ℓ∈[m] |Lℓ|) time, because G(b) has at most837 ∑
ℓ∈[m] |Lℓ| edges. Finally, by (24), we have |Codd(G(b))| < log n with high probability, and838

so the running time of the Weak Bipartization Algorithm is O((n +
∑

ℓ∈[m] |Lℓ|) log n), which839

concludes the proof of Theorem 12. J840
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