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Abstract
Let V be a set of n vertices,M a set ofm labels, and letR be anm×n matrix ofs inde-
pendent Bernoulli random variables with probability of success p; columns of R are
incidence vectors of label sets assigned to vertices. A random instanceG(V , E,RTR)

of the weighted random intersection graph model is constructed by drawing an edge
with weight equal to the number of common labels (namely [RTR]v,u) between any
two vertices u, v for which this weight is strictly larger than 0. In this paper we study
the average case analysis of Weighted Max Cut, assuming the input is a weighted
random intersection graph, i.e. given G(V , E,RTR) we wish to find a partition of
V into two sets so that the total weight of the edges having exactly one endpoint in
each set is maximized. In particular, we initially prove that the weight of a maximum
cut of G(V , E,RTR) is concentrated around its expected value, and then show that,
when the number of labels is much smaller than the number of vertices (in particular,
m = nα, α < 1), a random partition of the vertices achieves asymptotically opti-
mal cut weight with high probability. Furthermore, in the case n = m and constant
average degree (i.e. p = �(1)

n ), we show that with high probability, a majority type
randomized algorithm outputs a cut with weight that is larger than the weight of a
random cut by a multiplicative constant strictly larger than 1. Then, we formally prove
a connection between the computational problem of finding a (weighted) maximum
cut in G(V , E,RTR) and the problem of finding a 2-coloring that achieves minimum
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discrepancy for a set system � with incidence matrix R (i.e. minimum imbalance
over all sets in �). We exploit this connection by proposing a (weak) bipartization
algorithm for the case m = n, p = �(1)

n that, when it terminates, its output can be
used to find a 2-coloring with minimum discrepancy in a set system with incidence
matrix R. In fact, with high probability, the latter 2-coloring corresponds to a biparti-
tion with maximum cut-weight in G(V , E,RTR). Finally, we prove that our (weak)
bipartization algorithm terminates in polynomial time, with high probability, at least
when p = c

n , c < 1.

Keywords Random intersection graphs · Maximum cut · Discrepancy

1 Introduction

Given an undirected graph G(V , E), theMax Cut problem asks for a partition of the
vertices of G into two sets, such that the number of edges with exactly one endpoint in
each set of the partition is maximized. This problem can be naturally generalized for
weighted (undirected) graphs. A weighted graph is denoted by G(V , E,W), where V
is the set of vertices, E is the set of edges and W is a weight matrix, which specifies
a weight Wi, j , for each pair of vertices i, j . In particular, we assume that Wi, j = 0,
for each edge {i, j} /∈ E .

Definition 1 (Weighted Max Cut) Given a weighted graph G(V , E,W), find a
partition of V into two (disjoint) subsets A, B, so as to maximize the cumulative
weight of the edges of G having one endpoint in A and the other in B.

Weighted Max Cut is fundamental in theoretical computer science and is rel-
evant in various graph layout and embedding problems [1]. Furthermore, it also has
many practical applications, including infrastructure cost and circuit layout optimiza-
tion in network andVLSI design [2],minimizing theHamiltonian of a spin glassmodel
in statistical physics [3], and data clustering [4]. In the worst case Max Cut (and
also Weighted Max Cut) is APX-hard, meaning that there is no polynomial-time
approximation scheme that finds a solution that is arbitrarily close to the optimum,
unless P = NP [5].

The average case analysis of Max Cut, namely the case where the input graph is
chosen at random from a probabilistic space of graphs, is also of considerable interest
and is further motivated by the desire to justify and understand why various graph
partitioning heuristics work well in practical applications. In most research works
the input graphs are drawn from the Erdős-Rényi random graphs model Gn,m , i.e.
random instances are drawn equiprobably from the set of simple undirected graphs on
n vertices andm edges, wherem is a linear function of n (see also [6, 7] for the average
case analysis of Max Cut and its generalizations with respect to other random graph
models). One of the earliest results in this area is that Max Cut undergoes a phase
transition on Gn,γ n at γ = 1

2 [8], in that the difference between the number of edges of
the graph and the Max-Cut size is O(1), for γ < 1

2 , while it is�(n), when γ > 1
2 . For

large values of γ , it was proved in [9] that the maximum cut size of Gn,γ n normalized
by the number of vertices n reaches an absolute limit in probability as n → ∞, but it
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was not until recently that the latter limit was established and expressed analytically in
[10], using the interpolation method; in particular, it was shown to be asymptotically

equal to (
γ
2 + P∗

√
γ
2 )n, where P∗ ≈ 0.7632. We note however that these results

are existential, and thus do not lead to an efficient approximation scheme for finding
a tight approximation of the maximum cut with large enough probability when the
input graph is drawn from Gn,γ n . An efficient approximation scheme in this case was
designed in [8], and it was proved that, with high probability, this scheme constructs
a cut with at least

( γ
2 + 0.37613

√
γ
)
n = (1 + 0.75226 1√

γ
)
γ
2 n edges, noting that

γ
2 n is the size of a random cut (in which each vertex is placed independently and
equiprobably in one of the two sets of the partition). Whether there exists an efficient
approximation scheme that can close the gap between the approximation guarantee of
[8] and the limit of [10] remains an open problem.

In this paper, we study the average case analysis of Weighted Max Cut when
input graphs are drawn from the weighted random intersection graphs model (the
unweighted version of the model was initially defined in [11]), which is defined below.
In this model, edges are formed through the intersection of label sets assigned to each
vertex and edgeweights are equal to the number of common labels between edgepoints.

Definition 2 (Weighted random intersection graph) Consider a universe M =
{1, 2, . . . ,m} of labels and a set of n vertices V . We define the m × n representation
matrixRwhose entries are independent Bernoulli randomvariableswith probability of
success p. For � ∈ M and v ∈ V , we say that vertex v has chosen label � iffR�,v = 1.
Furthermore, we draw an edge with weight [RTR]v,u between any two vertices u, v

for which this weight is strictly larger than 0. The weighted graph G = (V , E,RTR)

is then a random instance of the weighted random intersection graphs model Gn,m,p.

Random intersection graphs are relevant to and capture quite nicely social net-
working; vertices are the individual actors and labels correspond to specific types of
interdependency. Other applications include oblivious resource sharing in a (general)
distributed setting, efficient and secure communication in sensor networks [12], inter-
actions of mobile agents traversing the web etc. (see e.g. the survey papers [13, 14]
for further motivation and recent research related to random intersection graphs). In
all these settings, weighted random intersection graphs, in particular, also capture the
strength of connections between actors (e.g. in a social network, individuals having
several characteristics in common have more intimate relationships than those that
share only a few common characteristics). One of the most celebrated results in this
area is the equivalence (measured in terms of total variation distance) of random inter-
section graphs and Erdős-Rényi random graphs when the number of labels satisfies
m = nα, α > 6 [15]. This bound on the number of labels was improved in [16], where
it was proved that the total variation distance between the two models tends to 0 when
m = nα, α > 4. Furthermore, [17] proved the equivalence of sharp threshold func-
tions among the two models for α ≥ 3. Similarity of the two models has been proved
even for smaller values of α (e.g. for any α > 1) in the form of various translation
results (see e.g. Theorem 1 in [18]), suggesting that some algorithmic ideas developed
for Erdős-Rényi random graphs also work for random intersection graphs (and also
weighted random intersection graphs).
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In view of this, in the present paperwe study the average case analysis of Weighted
Max Cut under the weighted random intersection graphs model, for the range m =
nα, α ≤ 1 for two main reasons: First, the average case analysis of Max Cut has
not been considered in the literature so far when the input is drawn from the random
intersection graphs model, and thus the asymptotic behaviour of the maximum cut
remains unknown especially for the range of values where random intersection graphs
and Erdős-Rényi random graphs differ themost. Furthermore, studying amodel where
we can implicitly control its intersection number (indeedm is an obvious upper bound
on the number of cliques that can cover all edges of the graph) may help understand
algorithmic bottlenecks for finding maximum cuts in Erdős-Rényi random graphs.

Second, we note that the representation matrix R of a weighted random intersec-
tion graph can be used to define a random set system � consisting of m sets � =
{L1, . . . , Lm}, where L� is the set of vertices that have chosen label �; we say thatR is
the incidencematrix of�. Therefore, there is a natural connection betweenWeighted
Max Cut and the discrepancy of such random set systems, which we formalize in
this paper. In particular, given a set system� with incidence matrixR, its discrepancy
is defined as disc(�) = minx∈{±1}n maxL∈�

∣∣∑
v∈L xv

∣∣ = minx∈{±1}n ‖Rx‖∞, i.e. it
is the minimum imbalance of all sets in � over all 2-colorings x. Recent work on
the discrepancy of random rectangular matrices defined as above [19] has shown that,
when the number of labels (sets) m satisfies n ≥ 0.73m logm, the discrepancy of �

is at most 1 with high probability. The proof of the main result in [19] is based on a
conditional second moment method combined with Stein’s method of exchangeable
pairs, and improves upon a Fourier analytic result of [20], and also upon previous
results in [21, 22]. The design of an efficient algorithm that can find a 2-coloring
having discrepancy O(1) in this range still remains an open problem. Approximation
algorithms for a similar model for random set systems were designed and analyzed in
[23]; however, the algorithmic ideas there do not apply in our case.

1.1 Our Contribution

In this paper, we introduce the model of weighted random intersection graphs and
we study the average case analysis of Weighted Max Cut through the prism of
Discrepancy of random set systems. We formalize the connection between these
two combinatorial problems for the case of arbitrary weighted intersection graphs in
Corollary 1. We prove that, given a weighted intersection graph G = (V , E,RTR)

with representation matrix R, and a set system with incidence matrix R, such that
disc(�) ≤ 1, a 2-coloring has maximum cut weight in G if and only if it achieves
minimum discrepancy in �. In particular, Corollary 1 applies in the range of values
considered in [19] (i.e. n ≥ 0.73m logm), and thus any algorithm that finds a max-
imum cut in G(V , E,RTR) with large enough probability can also be used to find
a 2-coloring with minimum discrepancy in a set system � with incidence matrix R,
with the same probability of success.

We then consider weighted random intersection graphs in the case m = nα, α ≤ 1,
and we prove that the maximum cut weight of a random instance G(V , E,RTR) of
Gn,m,p concentrates around its expected value (see Theorem 2). In particular, with
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high probability over the choices of R, Max-Cut(G) ∼ ER[Max-Cut(G)], where
ER denotes expectation with respect to R. The proof is based on the Efron-Stein
inequality for upper bounding the variance of the maximum cut. As a consequence of
our concentration result, we prove in Theorem 3 that, in the case α < 1, a random 2-
coloring (i.e. biparition) x(rand) in which each vertex chooses its color independently
and equiprobably, has cut weight asymptotically equal to Max-Cut(G), with high
probability over the choices of x(rand) and R.

The latter result on random cuts allows us to focus the analysis of our randomized
algorithms of Sect. 4 on the case m = n (i.e. α = 1), and p = c

n , for some constant c
(see also the discussion at the end of Sect. 3.1), where the assumptions of Theorem 3 do
not hold. It is worth noting that, in this range of values, the expected weight of a fixed
edge in a weighted random intersection graph is equal tomp2 = �(1/n), and thus we
hope that our work here will serve as an intermediate step towards understanding when
algorithmic bottlenecks for Max Cut appear in sparse random graphs (especially
Erdős-Rényi random graphs) with respect to the intersection number. In particular, in
Sect. 4.1, we analyze the Majority Cut Algorithm that extends the algorithmic idea of
[8] to weighted intersection graphs as follows: vertices are colored sequentially (each
color +1 or −1 corresponding to a different set in the partition of the vertices), and
the t-th vertex is colored opposite to the sign of

∑
i∈[t−1][RTR]i,t xi , namely the total

available weight of its incident edges, taking into account colors of adjacent vertices.
Our average case analysis of the Majority Cut Algorithm shows that, when m = n
and p = c

n , for large constant c, with high probability over the choices of R, the
expected weight of the constructed cut is at least 1+ β times larger than the expected

weight of a random cut, for any constant β = β(c) ≤
√

8
27πc3

− o(1). The fact that

the lower bound on beta is inversely proportional to c3/2 was to be expected, because,
as p increases, the approximation of the maximum cut that we get from the weight of
a random cut improves (see also the discussion at the end of Sect. 3.1).

In Sect. 4.2 we propose a framework for findingmaximum cuts in weighted random
intersection graphs form = n and p = c

n , for constant c, by exploiting the connection
betweenWeighted Max Cut and the problem of discrepancy minimization in ran-
dom set systems. In particular, we design theWeak Bipartization Algorithm, that takes
as input an intersection graphwith representationmatrixR and outputs a subgraph that
is “almost” bipartite. In fact, the input intersection graph is treated as amultigraph com-
posed by overlapping cliques formed by the label sets L� = {v : R�,v = 1}, � ∈ M.
The algorithm attempts to destroy all odd cycles of the input (except from odd cycles
that are formed by labels with only two vertices) by replacing each clique induced
by some label set L� by a random maximal matching. In Theorem 5 we prove that,
with high probability over the choices of R, if the Weak Bipartization Algorithm
terminates, then its output can be used to construct a 2-coloring that has minimum
discrepancy in a set system with incidence matrix R, which also gives a maximum
cut in G(V , E,RTR). It is worth noting that this does not follow from Corollary 1,
because a random set system with incidence matrix R has discrepancy larger than 1
with (at least) constant probability when m = n and p = c

n . Our proof relies on a
structural property of closed 0-strong vertex-label sequences (loosely defined as closed
walks of edges formed by distinct labels) in the weighted random intersection graph
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G(V , E,RTR) (Lemma 1). Finally, in Theorem 6, we prove that our Weak Biparti-
zation Algorithm terminates in polynomial time, with high probability, if the constant
c is strictly less than 1. Therefore, there is a polynomial time algorithm for finding
weighted maximum cuts, with high probability, when the input is drawn from Gn,n, cn

,
with c < 1. We believe that this part of our work may also be of interest regarding the
design of efficient algorithms for finding minimum disrepancy colorings in random
set systems.

A preliminary version of this paper appeared in the Proceedings of the 32nd Inter-
national Symposium on Algorithms and Computation (ISAAC) [24].

2 Notation and Preliminary Results

We denote weighted undirected graphs by G(V , E,W); in particular, V = V (G)

(resp. E = E(G)) is the set of vertices (resp. set of edges) and W = W(G) is the
weight matrix, i.e. Wi, j is the weight of (undirected) edge {i, j} ∈ E . We allow W
to have non-zero diagonal entries, as these do not affect cut weights. We also denote
the number of vertices by n, and we use the notation [n] = {1, 2, . . . , n}. We also use
this notation to define parts of matrices, for example W[n],1 denotes the first column
of the weight matrix.

A bipartition of the set of vertices is a partition of V into two nonempty sets A, B,
such that A ∩ B = ∅ and A ∪ B = V . Bipartitions correspond to 2-colorings, which
we denote by vectors x such that xi = +1 if i ∈ A and xi = −1 if i ∈ B.

Given a weighted graph G(V , E,W), we denote by Cut(G, x) the weight of
a cut defined by a bipartition x, namely Cut(G, x) = ∑

{i, j}∈E :i∈A, j∈B Wi, j =
1
4

∑
{i, j}∈E Wi, j (xi − x j )2. The maximum cut of G is Max-Cut(G)

= maxx∈{−1,+1}n Cut(G, x).
For a weighted random intersection graph G(V , E,RTR) with representation

matrix R, we denote by Sv the set of labels chosen by vertex v ∈ V , i.e. Sv =
{� : R�,v = 1}. Furthermore, we denote by L� the set of vertices having chosen label
�, i.e. L� = {v : R�,v = 1}. Using this notation, the weight of an edge {v, u} ∈ E is
|Sv ∩ Su |; notice also that this is equal to 0 when {v, u} /∈ E . We also note here that we
may also think of a weighted random intersection graph as a simple weighted graph
where, for any pair of vertices v, u, there are |Sv ∩ Su | simple edges between them.

A set system � defined on a set V is a family of sets � = {L1, L2, . . . , Lm},
where L� ⊆ V , � ∈ [m]. The incidence matrix of � is an m × n matrix
R = R(�), where for any � ∈ [m], v ∈ [n], R�,v = 1 if v ∈ S� and 0 oth-
erwise. The discrerpancy of � with respect to a 2-coloring x of the vertices in
V is disc(�, x) = max�∈[m]

∣∣∑
v∈V R�,vxv

∣∣ = ‖Rx‖∞. The discrepancy of � is
disc(�) = minx∈{−1,+1}n disc(�, x).

It is well-known that the cut size of a bipartition of the set of vertices of a graph
G(V , E) into sets A and B is given by 1

4

∑
{i, j}∈E (xi − x j )2, where xi = +1 if i ∈ A

and xi = −1 if i ∈ B. This can be naturally generalized for multigraphs and also for
weighted graphs. In particular, the Max-Cut size of a weighted graph G(V , E,W)
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is given by

Max-Cut(G) = max
x∈{−1,+1}n

1

4

∑
{i, j}∈E

Wi, j (xi − x j )
2. (1)

In particular, we get the following Proposition:

Proposition 1 Let G(V , E,RTR) be a weighted intersection graph with representa-
tion matrix R. Then, for any x ∈ {−1,+1}n,

Cut(G, x) = 1

4

⎛
⎝ ∑

i, j∈[n]2

[
RTR

]
i, j

− ‖Rx‖2
⎞
⎠ (2)

and so

Max-Cut(G) = 1

4

⎛
⎝ ∑

i, j∈[n]2

[
RTR

]
i, j

− min
x∈{−1,+1}n ‖Rx‖2

⎞
⎠ , (3)

where ‖ · ‖ denotes the 2-norm. In particular, the expectation of the size of a random
cut, where each entry of x is independently and equiprobably either +1 or -1 is equal
to Ex [Cut(G, x)] = 1

4

∑
i �= j,i, j∈[n]

[
RTR

]
i, j , where Ex denotes expectation with

respect to x.

Proof We first note that, by straightforward calculation, for any weighted graph
G(V , E,W), where W is symmetric and Wi, j = 0 if {i, j} /∈ E , and any
x ∈ {−1,+1}n , we have

∑

i, j∈[n]2
Wi, j − xTWx =

∑

i, j∈[n]2
Wi, j −

∑

i, j∈[n]2
Wi, j xi x j

= 1

2

∑

i, j∈[n]2
Wi, j

(
x2i + x2j − 2xi x j

)

= 1

2

∑

i, j∈[n]2
Wi, j

(
xi − x j

)2

=
∑

{i, j}∈E
Wi, j

(
xi − x j

)2
.

Noting that Cut(G) = 1
4

∑
{i, j}∈E Wi, j (xi − x j )2, the above settle equation (2),

by taking W = RTR. Similarly, by Eq. (1), and since the term
∑

i, j∈[n]2 Wi, j is
independent of x, we have

Max-Cut(G) = 1

4

⎛
⎝ ∑

i, j∈[n]2
Wi, j − min

x∈{−1,+1}n x
TWx

⎞
⎠ , (4)
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which settles equation (3), by taking W = RTR.
For the last part of the Proposition, notice that diagonal entries of the weight matrix

in (4) cancel out, and so, for any x ∈ {−1,+1}n , settingW = RTR, we have

∑

i, j∈[n]2

[
RTR

]
i, j

− ‖Rx‖2 =
∑

i �= j,i, j∈[n]2

[
RTR

]
i, j

−
∑

i �= j,i, j∈[n]2

[
RTR

]
i, j

xi x j .

Taking expectations with respect to x, the contribution of the second sum in the above
expression equals 0, which completes the proof. ��

Since
∑

i, j∈[n]2
[
RTR

]
i, j is fixed for any given representation matrix R, the above

Proposition implies that, to find a bipartition of the vertex set V that corresponds to a
maximum cut, we need to find an n-dimensional vector in argminx∈{−1,+1}n ‖Rx‖2.
We thus get the following:

Corollary 1 Let G(V , E,RTR) be a weighted intersection graph with representa-
tion matrix R and � a set system with incidence matrix R. If disc(�) ≤ 1, then
x∗ ∈ argminx∈{−1,+1}n ‖Rx‖2 if and only if x∗ ∈ argminx∈{−1,+1}n disc(�, x). In
particular, if the minimum discrepancy of � is at most 1, a bipartition corresponds to
a maximum cut iff it achieves minimum discrepancy.

Proof Since disc(�, x∗) ≤ 1, then each component of Rx∗ is either 0 or 1, for any
x∗ ∈ {−1,+1}n . In particular, since every element ofR is either 0 or 1, for any � ∈ [m],[
Rx∗]

�
will be equal to 0, if and only if the number of ones in the �-th row is even, and

it will be equal to 1 otherwise. This is the best one can hope for, since sets with an odd
number of elements can never have discrepancy less than 1. Therefore, ‖Rx∗‖ is also
the minimum possible. In particular, this implies that, in the case disc(�, x∗) ≤ 1, any
2-coloring that achieves minimum discrepancy gives a bipartition that corresponds to
a maximum cut and vice versa. ��

Notice that the above result is not necessarily true when disc(�) > 1, since the
minimum of ‖Rx‖ could be achieved by 2-colorings with larger discrepancy than the
optimal.

2.1 Range of Values for Selection Probability

Concerning the success probability p, we note that, when n,m → ∞, and p =
o

(√
1
nm

)
, direct application of the results of [25] suggest that G(V , E,RTR) is

chordal with high probability, but in fact the same proofs reveal that a stronger prop-
erty holds, namely that there is no closed vertex-label sequence (refer to the precise
definition in Sect. 4.2) having distinct labels. Therefore, in this case, finding a bipar-
tition with maximum cut weight is straightforward: indeed, one way to construct a
maximum cut is to run our Weak Bipartization Algorithm from Sect. 4.2, and then
to apply Theorem 5 (noting that the algorithm’s termination condition trivially holds,
since the set Codd(G(b)) defined in Sect. 4.2 is empty). In view of this, in Sect. 3, we

123



Algorithmica (2023) 85:2817–2842 2825

will assume that p ≥ C1

√
1
nm , for arbitrary positive constant C1 that can be as small

as possible; this implies that edge weights are �
(√

m
n

)
on expectation. On the other

hand, in view of our results in Sect. 3.1 regarding the near optimality of the weight
of a random cut, in the analysis of our randomized algorithms in Sect. 4, we assume
n = m and p = �

( 1
n

)
; this range of values gives sparse graph instances, but the

corresponding distribution of weighted random intersection graphs is different from
the distribution of sparse Erdős-Rényi random graphs, even without taking weights
into account (please refer to the end of Sect. 3.1 for a more technical justification for
the latter assumption).

3 Concentration of Max-Cut

In this section, we prove that the size of the maximum cut in a weighted random
intersection graph concentrates around its expected value. We note however, that the
following Theorem does not provide an explicit formula for the expected value of the
maximum cut.

Theorem 2 Let G(V , E,RTR) be a random instance of the Gn,m,p model with

m = na, α ≤ 1, and p ≥ C1

√
1
nm , for arbitrary positive constant C1, and let R

be its representation matrix. Then Max-Cut(G) = (1 ± o(1))ER[Max-Cut(G)]
with high probability, as n → ∞, where ER denotes expectation with respect to R,
i.e. Max-Cut(G) concentrates around its expected value.

Proof Let G = G(V , E,RTR) be a weighted random intersection graph, and let D
denote the (random) diagonal matrix containing all diagonal elements of RTR. In
particular, Eq. (3) of Proposition 1 can be written as

Max-Cut(G) = 1

4

⎛
⎝ ∑

i �= j,i, j∈[n]

[
RTR

]
i, j

− min
x∈{−1,+1}n x

T
(
RTR − D

)
x

⎞
⎠ .

Furthermore, for any given R, notice that, if we select each element of x indepen-
dently and equiprobably from {−1,+1}, then Ex[xT

(
RTR − D

)
x] = 0, where Ex

denotes expectation with respect to x. By the probabilistic method, we thus have
minx∈{−1,+1}n xT

(
RTR − D

)
x ≤ 0, implying the following bound:

1

4

∑
i �= j,i, j∈[n]

[
RTR

]
i, j

≤ Max-Cut(G) ≤ 1

2

∑
i �= j,i, j∈[n]

[
RTR

]
i, j

, (5)

where the second inequality follows trivially byobserving that 12
∑

i �= j,i, j∈[n]
[
RTR

]
i, j

equals the sum of the weights of all edges.

By linearity of expectation, we have ER

[∑
i �= j,i, j∈[n]

[
RTR

]
i, j

]

= ER

[∑
i �= j,i, j∈[n]

∑
�∈[m] R�,iR�, j

]
= n(n − 1)mp2 = �(n2mp2), which is �(n)
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in the range of parameters that we consider. In particular, by (5), we have

ER[Max-Cut(G)] = �(n2mp2). (6)

By Chebyshev’s inequality, for any ε > 0, we have

Pr
(
|Max-Cut(G) − ER[Max-Cut(G)]| ≥ εn2mp2

)
≤ VarR(Max-Cut(G))

ε2n4m2 p4
,(7)

where VarR denotes variance with respect to R. To bound the variance on the right
hand side of the above inequality, we use the Efron-Stein inequality. In particular, we
write Max-Cut(G) := f (R), i.e. we view Max-Cut(G) as a function of the label
choices. For � ∈ [m], i ∈ [n], we also write R(�,i) for the matrix R where entry (�, i)
has been replaced by an independent, identically distributed (i.i.d.) copy ofR�,i , which
we denote by R′

�,i . By the Efron-Stein inequality, we now have

VarR(Max-Cut(G)) ≤ 1

2

∑
�∈[m],i∈[n]

E

[(
f (R) − f

(
R(�,i)

))2]
. (8)

Notice now that, given all entries of R except R�,i , the probability that f (R) is dif-
ferent from f

(
R(�,i)

)
is at most Pr(R�,i �= R′

�,i ) = 2p(1 − p). Furthermore, if
L�\{i} is the set of vertices different from i which have selected �, we then have that(
f (R) − f

(
R(�,i)

))2 ≤ |L�\{i}|2, because the intersection graph with representation
matrix R differs by at most |L�\{i}| edges from the intersection graph with repre-
sentation matrix R(�,i). Notice now that, by definition, |L�\{i}| follows the Binomial
distributionB(n−1, p). In particular,E

[|L�\{i}|2
] = (n−1)p(np−2p+1), imply-

ing E

[(
f (R) − f

(
R(�,i)

))2] ≤ 2p(1 − p)(n − 1)p(np − 2p + 1), for any fixed

� ∈ [m], i ∈ [n].
Putting this all together, (8) becomes

VarR(Max-Cut(G)) ≤ 1

2

∑
�∈[m],i∈[n]

2p(1 − p)(n − 1)p(np − 2p + 1)

= nmp(1 − p)(n − 1)p(np − 2p + 1) = O(n3mp3), (9)

where the last equation comes from the fact that, in the range of values thatwe consider,
we have np = �(1). Therefore, by (7), we get

Pr
(
|Max-Cut(G) − ER[Max-Cut(G)]| ≥ εn2mp2

)

≤ O(n3mp3)

ε2n4m2 p4
= O

(
1

ε2nmp

)
,

which goes to 0 in the range of values that we consider. Together with (6), the above
bound proves that Max-Cut(G) is concentrated around its expected value, and the
proof is completed. ��
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3.1 Max-Cut for Small Number of Labels

Using Theorem 2, we can now show that, in the case m = nα, α < 1, and

p = �

(√
1
nm

)
, a random cut has asymptotically the same weight as Max-Cut(G),

where G = G(V , E,RTR) is a random instance of Gn,m,p. In particular, let x(rand)

be constructed as follows: for each i ∈ [n], set x (rand)
i = −1 independently with

probability 1
2 , and x (rand)

i = +1 otherwise. In view of Eq. (3), the main idea for the
proof of the following Theorem is to show that, with high probability over random x
and R, ‖Rx‖2 is asymptotically smaller than the expectation of the weight of the cut
defined by x(rand). The result then follows by concentration of Max-Cut(G) around
its expected value, and straightforward bounds on Max-Cut(G).

Theorem 3 Let G(V , E,RTR) be a random instance of the Gn,m,p model with m =
na, α < 1, and p ≥ C1

√
1
nm , for arbitrary positive constant C1, and let R be its

representation matrix. Then the cut weight of the random 2-coloring x(rand) satisfies
Cut(G, x(rand)) = (1 − o(1))Max-Cut(G) with high probability over the choices
of x(rand), R.

Proof Let G = G(V , E,RTR) be a weighted random intersection graph. By Eq. (2)
of Proposition 1, for any x ∈ {−1,+1}n , we have:

Cut(G, x) = 1

4

⎛
⎝ ∑

i, j∈[n]

[
RTR

]
i, j

− ‖Rx‖2
⎞
⎠ . (10)

Taking expectations with respect to random x and R, we get

Ex,R[Cut(G, x)] = 1

4
· ER

⎡
⎣ ∑
i, j∈[n]

[
RTR

]
i, j

−
∑
i∈[n]

[
RTR

]
i,i

⎤
⎦

= 1

4
· ER

⎡
⎣ ∑
i �= j,i, j∈[n]

[
RTR

]
i, j

⎤
⎦ = 1

4
n(n − 1)mp2. (11)

To prove Theorem 3, we will show that, with high probability over random x and

R, we have ‖Rx‖2 = o
(
ER

[
1
4

∑
i �= j,i, j∈[n]

[
RTR

]
i, j

])
= o(n2mp2), in which

case the theorem follows by concentration of Max-Cut(G) around its expected
value (Theorem 2), and the fact that Max-Cut(G) ≥ 1

4

∑
i �= j,i, j∈[n]

[
RTR

]
i, j (see

Eq. (5)). Indeed, by Eq. (10) and the lower bound on Max-Cut(G), we get that
Max-Cut(G) − ‖Rx‖2 ≤ Cut(G, x) ≤ Max-Cut(G). Furthermore, by concentra-
tion ofMax-Cut(G) around its expected value and the fact thatER[Max-Cut(G)] =
�(n2mp2) (Eq. (6)), we get that Max-Cut(G) = �(n2mp2), with high probability.
Therefore, having ‖Rx‖2 = o(n2mp2) implies Max-Cut(G) − o(Max-Cut(G)) ≤
Cut(G, x) ≤ Max-Cut(G), as needed.
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To this end, fix � ∈ [m] and consider the random variable counting the number of
ones in the �-th row of R, namely Y� = ∑

i∈[n] R�,i . By the multiplicative Chernoff
bound, for any δ > 0,

Pr(Y� > (1 + δ)np) ≤
(

eδ

(1 + δ)1+δ

)np

.

Since np ≥ C1

√
n
m = C1n

1−α
2 , taking any δ ≥ 2, we get

Pr(Y� > 3np) ≤
(
e2

27

)np

= o

(
1

m

)
. (12)

Therefore, by the union bound,

Pr(∃� ∈ [m] : Y� > 3np) = o(1), (13)

implying that, all rows ofR have at most 3np non-zero elements with high probability.
Fix now � and consider the random variable corresponding to the �-th entry of Rx,

namely Z� = ∑
i∈[n] R�,i xi . In particular, given Y�, notice that Z� is equal to the

sum of Y� independent random variables xi ∈ {−1,+1}, for i such that R�,i = 1.
Therefore, since Ex[Z�] = Ex[Z�|Y�] = 0, by Hoeffding’s inequality, for any λ ≥ 0,

Pr(|Z�| > λ|Y�) ≤ 2e
− λ2

2Y� .

Therefore, by the union bound, and taking λ ≥ √
6np ln n,

Pr(∃� ∈ [m] : |Z�| > λ) ≤ Pr(∃� ∈ [m] : Y� > 3np) + 2me− λ2
6np

= o(1) + 2m

n
= o(1), (14)

implying that all entries ofRx have absolute value at most
√
6np ln n with high proba-

bility over the choices of x andR. Consequently, with high probability over the choices
of x and R, we have ‖Rx‖2 ≤ 6mnp ln n, which is o(n2mp2), since ln n = o(np) in
the range of parameters considered in this theorem. This completes the proof. ��

We note that the same analysis also holds when n = m and p is sufficiently large
(e.g. ln n = o(np)). In particular, similar probability bounds hold in Eqs. (12), (13)
and (14), for the same choices of δ ≥ 2 and λ ≥ √

7np ln n, implying that ‖Rx‖2 ≤
7mnp ln n = o(n2mp2)with high probability. In view of this, in the following sections
we will only assume m = n (i.e. α = 1) and also p = c

n , for some positive constant
c (note that, we no longer have ln n = o(np), as p is much smaller, and so the above
proof idea does not apply in this case).
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4 Algorithmic Results (Randomized Algorithms)

4.1 TheMajority Cut Algorithm

In the following algorithm, the 2-coloring representing the bipartition of a cut is
constructed as follows: initially, a small constant fraction ε of vertices are randomly
placed in the two partitions, and then in each subsequent step, one of the remaining
vertices is placed in the partition that maximizes the weight of incident edges with
endpoints in the opposite partition.

Algorithm 1Majority Cut

Require: G(V , E,RTR) and its representation matrix R ∈ {0, 1}m×n

Ensure: Large cut 2-coloring x ∈ {−1,+1}n
1: Let v1, . . . , vn an arbitrary ordering of vertices
2: for t = 1 to εn do
3: Set xt to either −1 or +1 independently with equal probability
4: end for
5: for t = εn + 1 to n do
6: if

∑
i∈[t−1][RTR]i,t xi ≥ 0 then

7: xt = −1
8: else
9: xt = +1
10: end if
11: end for
12: return x

Clearly the Majority Cut Algorithm runs in polynomial time in n,m. Furthermore,
the following Theorem provides a lower bound on the expected weight of the cut
constructed by the algorithm in the case m = n, p = c

n , for large constant c, and
ε → 0. For the proof, we first express the weight increase of the constructed cut due
to the coloring of the t-th vertex, in the subgraph induced by the colored vertices, as
the absolute value of a random variable Zt . Then, given the colors and label choices
of all previously colored vertices (namely vertices v1, . . . , vt−1) we lower bound the
conditional expectation of |Zt | by the mean absolute difference MD(Z B

t ) of a certain
binomial random variable Z B

t . Finally, we lower bound MD(Z B
t ) by using the Berry-

Esseen Theorem for Gaussian approximation, which is stated below.

Theorem (Berry-Esseen Theorem [26]) Let X1, X2, . . . , be independent, identically
distributed random variables, withE[Xi ] = 0,E[X2

i ] = σ 2 > 0, andE[|Xi |3] = ρ <

∞. For N > 0, let FN (·) be the cumulative distribution function of X1+···+XN

σ
√
N

, and

let �(·) be the cumulative distribution function of the standard normal distribution.
Then, supx∈R|FN (x) − �(x)| ≤ 0.4748ρ

σ 3
√
N
.

We now state and prove the main theorem in this section.

Theorem 4 Let G(V , E,RTR) be a random instance of theGn,m,p model, withm = n,
and p = c

n , for large positive constant c, and let R be its representation matrix. Then,
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with high probability over the choices of R, the majority algorithm constructs a cut

with expected weight at least (1+β) 14E
[∑

i �= j,i, j∈[n]
[
RTR

]
i, j

]
, where β = β(c) ≤√

8
27πc3

− o(1) is a constant, i.e. at least 1+ β times larger than the expected weight

of a random cut.

Proof Let G(V , E,RTR) (i.e. the input to the Majority Cut Algorithm) be a random
instance of the Gn,m,p model, withm = n, and p = c

n , for some large enough constant
c. For t ∈ [n], let Mt denote the constructed cut size just after the consideration of a
vertex vt , for some t ≥ εn + 1. In particular, by Eq. (2) for n = t , reasoning similarly
as to get Eq. (3), and since the values x1, . . . , xt−1 are already decided in previous
steps, we have

Mt = 1

4

⎛
⎝ ∑

i, j∈[t]2

[
RTR

]
i, j

− min
xt∈{−1,+1}

∥∥R[m],[t]x[t]
∥∥2
⎞
⎠ (15)

The first of the above terms is

1

4

∑

i, j∈[t]2

[
RTR

]
i, j

= 1

4

⎛
⎝ ∑

i, j∈[t−1]2

[
RTR

]
i, j

+ 2
∑

i∈[t−1]

[
RTR

]
i,t

+
[
RTR

]
t,t

⎞
⎠

(16)

and the second term is

−1

4
min

xt∈{−1,+1}
∥∥R[m],[t]x[t]

∥∥2

= −1

4
min

xt∈{−1,+1}

∥∥∥∥∥∥
R[m],t xt +

∑
i∈[t−1]

R[m],i xi

∥∥∥∥∥∥

2

= −1

4
min

xt∈{−1,+1}
∑

i, j∈[t]2

[
RTR

]
i, j

xi x j

= −1

4

⎛
⎝ ∑

i, j∈[t−1]2

[
RTR

]
i, j

xi x j+2 min
xt∈{−1,+1}

∑
i∈[t−1]

[
RTR

]
i,t

xi xt+
[
RTR

]
t,t

⎞
⎠

(17)

By (15), (16) and (17), we have

Mt = Mt−1 + 1

2

∑
i∈[t−1]

[
RTR

]
i,t

− 1

2
min

xt∈{−1,+1}
∑

i∈[t−1]

[
RTR

]
i,t

xi xt

= Mt−1 + 1

2

∑
i∈[t−1]

[
RTR

]
i,t

+ 1

2

∣∣∣∣∣∣
∑

i∈[t−1]

[
RTR

]
i,t

xi

∣∣∣∣∣∣
(18)
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Define now the random variable

Zt = Zt (x,R) =
∑

i∈[t−1]

[
RTR

]
i,t

xi =
∑

�∈[m]
R�,t

∑
i∈[t−1]

R�,i xi ,

where x = (x1, . . . , xn) ∈ {−1,+1}n is the 2-coloring constructed by the Majority
Cut Algorithm (in fact only the first t − 1 entries of x are needed for Zt ), so that
Mt = Mt−1 + 1

2

∑
i∈[t−1]

[
RTR

]
i,t + 1

2 |Zt |. Observe that, in the latter recursive

equation, the term 1
2

∑
i∈[t−1]

[
RTR

]
i,t corresponds to the expected increment of the

constructed cut if the t-vertex chose its color uniformly at random. Therefore, lower
bounding the expectation of 1

2 |Zt |will tell us howmuch better theMajority Algorithm
does when considering the t-th vertex.

Towards this end, we first note that, given x[t−1] = {xi , i ∈ [t − 1]}, and
R[m],[t−1] = {R�,i , � ∈ [m], i ∈ [t − 1]}, Zt is the sum of m independent ran-
dom variables, since the Bernoulli random variables R�,t , � ∈ [m], are independent,
for any given t (note that the conditioning is essential for independence, otherwise
the inner sums in the definition of Zt would also depend on the xi ’s, which, for
i ≥ εn + 1, are functions of x1, . . . , xi−1, and of the entries of R). Furthermore,
E[Zt |x[t−1],R[m],[t−1]] = p

∑
�∈[m]

∑
i∈[t−1] R�,i xi andVar(Zt |x[t−1],R[m],[t−1]) =

p(1− p)
∑

�∈[m]
(∑

i∈[t−1] R�,i xi
)2. Given x[t−1] andR[m],[t−1], define the sets A+

t =
{� ∈ [m] : ∑i∈[t−1] R�,i xi > 0} and A−

t = {� ∈ [m] : ∑i∈[t−1] R�,i xi < 0}. In par-
ticular, given x[t−1] = {xi , i ∈ [t − 1]}, and R[m],[t−1] = {R�,i , � ∈ [m], i ∈ [t − 1]},
Zt can be written as

Zt =
∑

�∈A+
t

R�,t

∑
i∈[t−1]

R�,i xi −
∑

�∈A−
t

R�,t

∣∣∣∣∣∣
∑

i∈[t−1]
R�,i xi

∣∣∣∣∣∣
, (19)

where R�,t , � ∈ A+
t ∪ A−

t are independent Bernoulli random variables with success
probability p.

Note that E[|Zt |
∣∣x[t−1],R[m],[t−1]] does not increase if we replace

∑
�∈A+

t

R�,t
∑

i∈[t−1] R�,i xi and
∑

�∈A−
t
R�,t

∣∣∑
i∈[t−1] R�,i xi

∣∣ in the expression (19) for Zt

by independent binomial random variables Z+
t ∼ B

(∑
�∈A+

t

∑
i∈[t−1] R�,i xi , p

)
and

Z−
t ∼ B

(∑
�∈A−

t

∣∣∑
i∈[t−1] R�,i xi

∣∣ , p
)
, respectively.1 In particular, if Z

′+
t and Z

′−
t

follow the same distribution as Z+
t and Z−

t , respectively, and Z+
t , Z

′+
t , Z−

t , Z
′−
t are

1 This property follows inductively, by noting that, if X = ∑k
i=1 ai Xi − ∑N

i=k+1 ai Xi , and X ′ =∑k−1
i=1 ai Xi + (ak − 1)Xk + X ′

k −∑N
i=k+1 ai Xi , where k, N , ai ∈ N

+, i ∈ [N ], and Xi , i ∈ [N ], X ′
k

are independent, identically distributed Bernoulli random variables, then E[|X |] ≥ E[|X ′|]. Indeed, notice
that, the independence of Xk , X

′
k implies that these random variables work against each other (with respect

to the absolute value) at least half of the time.
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stochastically independent, then

2 · E [|Zt |
∣∣x[t−1],R[m],[t−1]

] ≥ E

[∣∣Z+
t − Z−

t

∣∣+
∣∣∣Z ′−

t − Z
′+
t

∣∣∣
∣∣x[t−1],R[m],[t−1]

]

≥ E

[∣∣∣
(
Z+
t + Z

′−
t

)
−
(
Z−
t − Z

′+
t

)∣∣∣
∣∣x[t−1],R[m],[t−1]

]

In view of the above, if Z B
t is a random variable which, given x[t−1] = {xi , i ∈

[t−1]}, andR[m],[t−1] = {R�,i , � ∈ [m], i ∈ [t−1]}, follows theBinomial distribution
B (Nt , p), where

Nt
def=
∑

�∈A+
t

∑
i∈[t−1]

R�,i xi +
∑

�∈A−
t

∣∣∣∣∣∣
∑

i∈[t−1]
R�,i xi

∣∣∣∣∣∣
, (20)

then

E[|Zt |
∣∣x[t−1],R[m],[t−1]] ≥ 1

2
· MD(Z B

t ), (21)

where MD(·) is the mean absolute difference of (two independent copies of) Z B
t .

In particular, MD(Z B
t ) = E[∣∣Z B

t − Z ′B
t

∣∣], where Z B
t , Z ′B

t are independent random
variables followingB (Nt , p).Unfortunately,we are aware of no simple closed formula
for MD(Z B

t ), and so we resort to Gaussian approximation through the Berry-Esseen
Theorem: we write Z B

t = ∑Nt
i=1 Z

B
t,i , Z

′B
t = ∑Nt

i=1 Z
′B
t,i , and set Xi = Z B

t,i − Z ′B
t,i ,

where Z B
t,i , Z

′B
t,i are independent Bernoulli random variables with success probability

p, for any i ∈ [Nt ]. In particular, we have E[Xi ] = 0, E[X2
i ] = E[|Xi |3] = 2p(1 −

p). Therefore, by the Berry-Esseen Theorem, given x[t−1] = {xi , i ∈ [t − 1]}, and
R[m],[t−1] = {R�,i , � ∈ [m], i ∈ [t−1]},the distribution of Z B

t −Z ′B
t is approximately

Normal N (0, 2p(1 − p)Nt ), with approximation error 0.4748√
2p(1−p)Nt

.

Notice that the latter approximation error boundbecomeso(1) if Nt = �(n), p = c
n

and c is large enough. Therefore, we next show that, with high probability over the
choices of R, Nt = �(n), for any t ≥ εn + 1, where ε is the constant used in
the Majority Algorithm. In particular, even though we cannot control the variables
xi ∈ {−1,+1}, i ∈ [t − 1], in the definition of Nt , we will find a lower bound that
holds with high probability, by using the random variable

Yt = Yt (R, x) def=
∣∣∣∣∣∣

⎧
⎨
⎩� ∈ [m] :

∑
i∈[t−1]

R�,i is odd

⎫
⎬
⎭

∣∣∣∣∣∣
,

and employing the following inequality

Nt ≥ Yt . (22)
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Indeed, (22) holds because, for any i ∈ [t − 1], if ∑i∈[t−1] R�,i is odd, then∣∣∑
i∈[t−1] R�,i xi

∣∣ ≥ 1, no matter what value the xi ’s have. Therefore,
∑

i∈[t−1] R�,i xi
will contribute at least 1 to the right side of (20), and thus (22) follows.

Notice now that, for any fixed i and t ≥ εn+1, we have Pr(
∑

i∈[t−1] R�,i is odd) =∑
j odd

(t−1
j

)
p j (1 − p)t−1− j = 1

2

(
1 − (1 − 2p)t−1

) ≥ 1
2

(
1 − e−2p(t−1)

) ≥
1
2

(
1 − e−2cε

)
, where in the last inequality we set p = c

n . Taking c → ∞, the lat-
ter bound becomes 1

2 − o(1). Therefore, by independence of the entries of R, Yt
stochastically dominates a binomial random variable B(t −1, 1

3 ). Furthermore, by the
multiplicative Chernoff (upper) bound, for any δ > 0,

Pr

(
Yt < (1 − δ)

t − 1

3

)
<

(
e−δ

(1 − δ)1−δ

) t−1
3

.

Taking δ = 1
2 and noting that t ≥ εn + 1, we have

Pr

(
Yt <

t − 1

6

)
<
( e
2

)− εn
6

,

which is o(1/n), for any constant ε > 0. By the union bound,

Pr

(
∃t : t ≥ εn + 1,Yt <

t − 1

6

)
= o(1).

By inequality (22), we thus have that, with high probability over the choices of R,
Nt ≥ t−1

6 ≥ εn
6 , for all t ≥ εn + 1, as needed.

Combining the above, by the Berry-Esseen Theorem, given x[t−1],R[m],[t−1], the
distribution of Z B

t − Z ′B
t is approximately NormalN (0, 2p(1− p)Nt ) with approx-

imation error o(1) as c → ∞, with high probability over the choices of R. In
particular, given x[t−1],R[m],[t−1], |Z B

t − Z ′B
t | follows approximately (i.e. with the

same approximation error o(1)) the folded normal distribution with mean value (at

least)
√

2
π
Var(Z B

t − Z ′B
t |x[t−1],R[m],[t−1]) =

√
4
π
p(1 − p)Nt . Since Nt ≥ t−1

6 ≥
εn
6 with high probability, and also p = c

n , we get that p(1 − p)Nt ≥ c(t−1)
6n − o(1),

with high probability, where the o(1) includes the approximation error given by the
Berry-Esseen Theorem. Consequently, by inequality (21), with high probability over
the choices of R (which is 1 − o(1)),

E [|Zt |] = E

⎡
⎣
∣∣∣∣∣∣
∑

i∈[t−1]

[
RTR

]
i,t

xi

∣∣∣∣∣∣

⎤
⎦ ≥

√
c(t − 1)

6πn
− o(1).
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Summing over all t ≥ εn + 1, we get

∑
t≥εn+1

E [|Zt |] ≥
√

c

6πn

∑
t≥εn

√
t − o(n) =

√
c

6πn

⎛
⎝∑

t≥1

√
t − εn

√
εn

⎞
⎠− o(n).

Using the fact that
∑

t≥1

√
t = 2

3n
3/2 + o(n), we thus have that

∑
t≥εn+1

E [|Zt |] ≥
√

c

6π

(
2

3
− ε3/2

)
n − o(n).

On the other hand, we have that the expected weight of a random cut is equal to
1
4n(n − 1)mp2 = c2

4 n + o(n) (see e.g. Eq. (11)). The proof is completed by taking
ε → 0. ��

It is worth noting that the dependency of the lower bound for β on the constant c
is to be expected; indeed our results in Sect. 3.1 suggest that, when the label selec-
tion probability p becomes large enough, the weight of random cut is asymptotically
optimal.

4.2 Intersection Graph (Weak) Bipartization

Notice that we can view aweighted intersection graphG(V , E,RTR) as amultigraph,
composed by m (possibly) overlapping cliques corresponding to the sets of vertices
having chosen a certain label, namely L� = {v : R�,v}, � ∈ [m]. In particular, let K (�)

denote the clique induced by label �. Then G = ∪+
�∈[m]K (�), where ∪+ denotes union

that keeps multiple edges and also retains label information for each edge (e.g., edges
within clique K (�) are formed by label �). In this section, we present an algorithm that
takes as input an intersection graph G given as a union of overlapping cliques and
outputs a subgraph that is “almost” bipartite.

To facilitate the presentation of our algorithm, we first give some useful definitions.
A closed vertex-label sequence is a sequence of alternating vertices and labels starting
and ending at the same vertex, namely σ := v1, �1, v2, �2, · · · , vk, �k, vk+1 = v1,
where vi ∈ V , �i ∈ M, and {vi , vi+1} ⊆ L�i , for all i ∈ [k] (i.e. vi is connected to
vi+1 in the intersection graph; see Fig. 1). The size of the closed vertex-label sequence,
denoted by |σ |, is the number of its labels, i.e., |σ | = k. We will also say that label �
is strong if |L�| ≥ 3, otherwise it is weak. For a given closed vertex-label sequence
σ , and any integer λ ∈ [|σ |], we will say that σ is λ-strong if |L�i | ≥ 3, for λ indices
i ∈ [|σ |]. The structural Lemma below is useful for our analysis.2

Lemma 1 Let G(V , E,RTR) be a random instance of the Gn,m,p model, with m = n,
and p = c

n , for some constant c > 0. With high probability over the choices of R,
0-strong closed vertex-label sequences in G do not have labels in common.

2 We conjecture that the structural property of Lemma 1 also holds if we replace 0-strong with λ-strong,
for any positive constant λ, but this stronger version is not necessary for our analysis.
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Fig. 1 Weighted intersection graph as a multigraph composed by 3 overlapping cliques K (l1) ∪+ K (l1) ∪+
K (l3) (left) and graph G(b) constructed by theWeak Bipartization Algorithm, consisting of a closed vertex-
label sequence σ (odd) = x, l2, v, l1, u, l3, x (right)

Proof Wewill use the firstmomentmethod and soweneed to prove that the expectation
of the number of pairs of distinct 0-strong closed vertex-label sequences inG that have
at least one label in commongoes to 0. To this end, for j ∈ [min(k, k′)−1], let A j (k, k′)
denote the number of such sequences σ, σ ′, with k = |σ |, k′ = |σ ′|, that have j labels
in common. In particular, for integers k, k′, let σ := v1, �1, v2, �2, · · · , vk, �k, vk+1 =
v1, and let σ ′ := v′

1, �
′
1, v

′
2, �

′
2, · · · , v′

k′ , �′
k′ , v′

k′+1 = v1. Notice that, any such fixed

pair σ, σ ′ has the same probability to appear, namely p2(k+k′− j)(1− p)(n−2)(k+k′− j);
indeed, p2k(1 − p)(n−2)k is the probability that σ appears (recall that σ has k labels
and it is 0-strong, i.e. each label is only selected by two vertices) and p2(k

′− j)(1 −
p)(n−2)(k′− j) is the probability that σ ′ appears given that σ has appeared. Furthermore,
the number of such pairs of sequences is dominated by the number of sequences that
overlap in j consecutive labels (e.g. the first j), which is at most nkmknk

′− j−1mk′− j

(notice that j common labels implies that there are at least j ′ + 1 common vertices).
Overall, since n = m and p = c

n , we have

E[A j (k, k
′)] ≤ (1 + o(1))

1

n
(np)2(k+k′− j)(1 − p)(n−2)(k+k′− j)

= (1 + o(1))
1

n

(
c2(1 − p)n−2

)k+k′− j
.

Since n → ∞ and p = c
n , by elementary calculus we have that c2(1− p)n−2 bounded

by a constant (which depends only on c) strictly less than 1. Therefore, the above
expectation is at most e− ln n−�(1)(k+k′− j). Therefore, summing over all choices of
k, k′ ∈ [n] and j ∈ [min(k, k′) − 1], we get that the expected number of pairs of
distinct 0-strong closed vertex-label sequences that have at least one label in common
is at most

∑
k,k′∈[n]

∑
j∈[min(k,k′)−1]

e− ln n−�(1)(k+k′− j) = o(1),

and the proof is completed by Markov’s inequality. ��
The following definition is essential for the presentation of our algorithm.
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Definition 3 Given aweighted intersection graphG = G(V , E,RTR) and a subgraph
G(b) ⊆ G, let Codd(G(b)) be the set of odd length closed vertex-label sequences
σ := v1, �1, v2, �2, · · · , vk, �k, vk+1 = v1 that additionally satisfy the following:

(a) σ has distinct vertices (except the first and the last) and distinct labels.
(b) vi is connected to vi+1 in G(b), for all i ∈ [|σ |].
(c) σ is λ-strong, for some λ > 0.

Our Weak Bipartization Algorithm initially replaces each clique K (�) by a random
maximal matchingM (�), and thus gets a subgraphG(b) ⊆ G (see Fig. 1). If Codd(G(b))

is not empty, then the algorithm selects σ ∈ Codd(G(b)) and a strong label � ∈ σ , and
then replaces M (�) in G(b) by a new random matching of K (�). The algorithm repeats
until all odd cycles are destroyed (or runs forever trying to do so).

Algorithm 2 Intersection Graph Weak Bipartization

Require: Weighted intersection graph G = ∪+
�∈[m]K (�)

Ensure: A subgraph of G(b) that has only 0-strong odd cycles
1: for each � ∈ [m] do
2: Let M(�) be a random maximal matching of K (�)

3: end for
4: Set G(b) = ∪+

�∈[m]M(�)

5: while Codd (G(b)) �= ∅ do
6: Let σ ∈ Codd (G(b)) and � a label in σ with |L�| ≥ 3
7: Replace the part of G(b) corresponding to � by a new random maximal matching M(�)

8: end while
9: return G(b)

The following results are the main technical tools that justify the use of the Weak
Bipartization Algorithm for Weighted Max Cut.

Lemma 2 If Codd(G(b)) is empty, then G(b) may only have 0-strong odd cycles.

Proof For the sake of contradiction, assume Codd(G(b)) = ∅, but G(b) = ∪+
�∈[m]M (�)

has an odd cycleCk that is not 0-strong and has minimum length. Notice thatCk corre-
sponds to a closed vertex-label sequence, say σ := v1, �1, v2, �2, · · · , vk, �k, vk+1 =
v1, where {vi , vi+1} ∈ M (�i ), for all i ∈ [k]. Furthermore, by assumption, condi-
tions (b) and (c) of Definition 3 are satisfied by σ (indeed {vi , vi+1} ∈ M (�i ), for
all i ∈ [k], and σ is λ-strong, for some λ > 0). Therefore, the only reason for
which σ does not belong to Codd(G(b)) is that condition (a) of Definition 3 is not
satisfied, i.e. there are distinct indices i > i ′ ∈ [k] such that �i = �i ′ . Clearly,
such indices are not consecutive (i.e. i ′ �= i + 1), because �i is strong and step 6 of
our algorithm implies that M (�i ) is a matching of K (�i ). But then either the vertex-
label sequence v1, . . . , vi , �i , vi ′+1, �i ′+1, vi ′+2, . . . , vk+1 = v1 or the vertex-label
sequence vi+1, �i+1, vi+2, . . . , vi ′ , �i , vi+1 corresponds to a shorter odd cycle, which
is a contradiction on the minimality of Ck . ��
Theorem 5 Let G(V , E,RTR) be a random instance of theGn,m,p model, with n = m
and p = c

n , where c > 0 is a constant, and let R be its representation matrix. Let
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also� be a set system with incidence matrixR. With high probability over the choices
of R, if the Weak Bipartization Algorithm terminates on input G, its output can be
used to construct a 2-coloring x(disc) ∈ argminx∈{±1}n disc(�, x), which also gives a
maximum cut in G, i.e. x(disc) ∈ argmaxx∈{±1}n Cut(G, x).

Proof By construction, the output of the Weak Bipartization Algorithm, namely G(b),
has only 0-strong odd cycles. Furthermore, by Lemma 1 these cycles correspond to
vertex-label sequencies that are label-disjoint. Let H denote the subgraph of G(b) in
which we have destroyed all 0-strong odd cycles by deleting a single (arbitrary) edge
eC from each 0-strong odd cycle C (keeping all other edges intact), and notice that
eC corresponds to a weak label. In particular, H is a bipartite multi-graph and thus
its vertices can be partitioned into two independent sets A, B constructed as follows:
In each connected component of H , start with an arbitrary vertex v and include in A
(resp. in B) the set of vertices reachable from v that are at an even (resp. odd) distance
from v. Since H is bipartite, it does not have odd cycles, and thus this construction is
well-defined, i.e. no vertex can be placed in both A and B.

We now define x(disc) by setting x (disc)
i = +1 if i ∈ A and x (disc)

i = +1 if i ∈ B.
LetM0 denote the set of weak labels corresponding to the edges removed from G(b)

in the construction of H . We first note that, for each �C ∈ M0 corresponding to the

removal of an edge eC , we have
∣∣∣∑i∈L�C

x (disc)
i

∣∣∣ = 2. Indeed, since eC belongs to

an odd cycle in G(b), its endpoints are at even distance in H , which means that either
they both belong to A or they both belong to B. Therefore, their corresponding entries
of x(disc) have the same sign, and so (taking into account that the endpoints of eC are

the only vertices in L�C ), we have
∣∣∣∑i∈L�C

x (disc)
i

∣∣∣ = 2. Second, we show that, for all

the other labels � ∈ [m]\M0,
∣∣∣∑i∈L�

x (disc)
i

∣∣∣ will be equal to 1 if |L�| is odd and 0

otherwise. For any label � ∈ [m]\M0, let M (�) denote the part of G(b) corresponding
to a maximal matching of K (�), and note that all edges of M (�) are contained in
H . Since H is bipartite, no edge in M (�) can have both its endpoints in either A or
B. Therefore, by construction, the contribution of entries of x(disc) corresponding to
endpoints of edges in M (�) to the sum

∑
i∈L�

x (disc)
i is 0. In particular, if |L�| is even,

then M (�) is a perfect matching and
∣∣∣∑i∈L�

x (disc)
i

∣∣∣ = 0, otherwise (i.e. if |L�| is odd)
there is a single vertex not matched in M (�) and

∣∣∣∑i∈L�
x (disc)
i

∣∣∣ = 1.

To complete the proof of the theorem, we need to show that Cut(G, x(disc)) is
maximum. By Proposition 1, this is equivalent to proving that ‖Rx(disc)‖ ≤ ‖Rx‖
for all x ∈ {−1,+1}n . Suppose that there is some x(min) ∈ {−1,+1}n such that
‖Rx(disc)‖ > ‖Rx(min)‖. As mentioned above, for all � ∈ [m]\M0, we have
[Rx(disc)]� ≤ 1, and so [Rx(disc)]� ≤ [Rx(min)]�. Therefore, the only labels where
x(min) could do better are those corresponding to edges eC that are removed from G(b)

in the construction of H , i.e. �C ∈ M0, for which we have [Rx(disc)]�C = 2. However,
any such edge eC belongs to an odd cycle C , and thus any 2-coloring of the vertices
of C will force at least one of the 0-strong labels corresponding to edges of C to be
monochromatic. Taking into account the fact that, by Lemma 1, with high probability
over the choices of R, all 0-strong odd cycles correspond to vertex-label sequences
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that are label-disjoint, we conclude that ‖Rx(disc)‖ ≤ ‖Rx(min)‖, which completes
the proof. ��

The fact that Theorem 5 is not an immediate consequence of Corollary 1 follows
from the observation that a random set systemwith incidencematrixR has discrepancy
larger than 1 with (at least) constant probability whenm = n and p = c

n . Indeed, by a
straightforward counting argument, we can see that the expected number of 0-strong
odd cycles is at least constant. Furthermore, in any 2-coloring of the vertices at least
one of the weak labels forming edges in a 0-strong odd cycle will be monochromatic.
Therefore, with at least constant probability, for any x ∈ {−1,+1}n , there exists a
weak label �, such that xi x j = 1, for both i, j ∈ L�, implying that disc(L�) = 2.

Weclose this section by a result indicating that the conditional statement ofTheorem
5 is not void, namely there is a range of values for c where the Weak Bipartization
Algorithm terminates in polynomial time.

Theorem 6 Let G(V , E,RTR) be a random instance of theGn,m,p model, with n = m
and p = c

n , where 0 < c < 1 is a constant, and letR be its representation matrix. With
high probability over the choices of R, the Weak Bipartization Algorithm terminates
on input G in O

(
(n +∑�∈[m]|L�|) · log n) polynomial time.

Before presenting the proof of the Theorem, we first prove the following structural
Lemma regarding the expected number of closed vertex label sequences.

Lemma 3 Let G(V , E,RTR) be a random instance of the Gn,m,p model. Let also Ck

denote the number of distinct closed vertex-label sequences of size k in G. Then

E[Ck] = 1

k

n!
(n − k)!

m!
(m − k)! p

2k . (23)

In particular, when m = n → ∞, p = c
n , c > 0, and k ≥ 3, we have E[Ck] ≤ e

2π c
2k .

Proof Notice that there are 1
k

n!
(n−k)! ways to arrange k out of n vertices in a cycle.

Furthermore, in each such arrangement, there are m!
(m−k)! ways to place k out of m

labels so that there is exactly one label between each pair of vertices. Since labels in
any given arrangement must be selected by both its adjacent vertices, (23) follows by
linearity of expectation.

Setting m = n and p = c
n , and using the inequalities

√
2πnn+ 1

2 e−n ≤ n! ≤
enn+ 1

2 e−n ,

E[Ck] = 1

k

(
n!

(n − k)!
)2 ( c

n

)2k

≤ 1

k

e2n2n+1e−2n

2π(n − k)2n−2k+1e2k−2n

( c
n

)2k = 1

k

e2

2π

(
n

n − k

)2n−2k+1 (c
e

)2k

≤ e2

2π

n

k(n − k)
e

k
n−k (2n−2k)

(c
e

)2k = e2

2π

n

k(n − k)
c2k .

When n goes to ∞ and k ≥ 3, then the above is at most e
2π c

2k as needed. ��
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We are now ready for the proof of the Theorem.

Proof of Theorem 6 We will prove that, whenm = n → ∞, p = c
n , c < 1, and k ≥ 3,

with high probability, there are no closed vertex-label sequences that have labels in
common. To this end, recalling Definition 3 for Codd(G(b)), we provide upper bounds

on the following events: A
def= {∃k ≥ log n : Ck ≥ 1}, B def= {|Codd(G(b))| ≥ log n}

and C
def= {∃σ �= σ ′ ∈ Codd(G(b)) : ∃� ∈ σ, � ∈ σ ′}.

By the union bound, Markov’s inequality and Lemma 3, we get that, with high
probability, all closed vertex-label sequences have less than log n labels:

Pr (A) ≤
∑

k≥log n

E[Ck] ≤
∑

k≥log n

e

2π
c2k = e

2π

c2 log n

1 − c2
= O

(
c2 log n

)
= o(1),

where the last equality follows since c < 1 is a constant. Furthermore, by Markov’s
inequality and Lemma 3, and noting that any closed vertex-label sequence in
Codd(G(b)) must have at least k ≥ 3 labels, we get that, with high probability, there
are less than log n closed vertex-label sequences in Codd(G(b)):

Pr (B) ≤ 1

log n

∑
k≥3

E[Ck] ≤ 1

log n

∑
k≥3

e

2π
c2k

= 1

log n

e

2π

c6

1 − c2
= O

(
1

log n

)
. (24)

To bound Pr(C), fix a closed vertex-label sequence σ , and let |σ | ≥ 3 be the
number of its labels. Notice that, the probability that there is another closed vertex-
label sequence that has labels in commonwith σ implies the existence of a vertex-label
sequence σ̆ that starts with either a vertex or a label from σ , ends with either a vertex
or a label from σ , and has at least one label or at least one vertex that does not belong
to σ . Let |σ̆ | denote the number of labels of σ̆ that do not belong to σ . Then the
number of different vertex-label sequences σ̆ that start and end in labels from σ is at
most |σ |2n|σ̆ |+1m|σ̆ |; indeed σ̆ in this case has |σ̆ | labels and |σ̆ | + 1 vertices that do
not belong to σ . Therefore, by independence, each such sequence σ̆ has probability
p2|σ̆ |+2 to appear. Similarly, the number of different vertex-label sequences σ̆ that
start and end in vertices from σ is at most |σ |2n|σ̆ |−1m|σ̆ | and each one has probability
p2|σ̆ | to appear. Finally, the number of different vertex-label sequences σ̆ that start in
a vertex from σ and end in a label from σ (notice that this also covers the case where
σ̆ starts in a label from σ and ends in a vertex from σ ) is at most |σ |2n|σ̆ |m|σ̆ | and each
one has probability p2|σ̆ |+1 to appear. Overall, for a given sequence σ , the expected
number of sequences σ̆ described above that additionally satisfies |σ̆ | < log n, is at
most

log n−1∑
k=0

|σ |2nk+1mk p2k+2 +
log n−1∑
k=1

|σ |2nk−1mk p2k +
log n−1∑
k=1

|σ |2nkmk p2k+1

≤ c|σ |2 log n
n

, (25)
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where in the last inequality we used the fact that m = n, p = c
n and c < 1. Since

the existence of a sequence σ̆ for σ that additionally satisfies |σ̆ | ≥ log n implies
event A, and on other hand the existence of more than log n different sequences
σ ∈ |Codd(G(b))| implies event B, by Markov’s inequality and (25), we get

Pr(C) ≤ Pr(A) + Pr(B) + c
(log n)4

n

= O
(
c2 log n

)
+ O

(
1

log n

)
+ O

(
(log n)4

n

)
= O

(
1

log n

)
. (26)

We have thus proved that, with high probability over the choices of R, closed vertex-
label sequences in Codd(G(b)) are label disjoint, as needed.

In view of this, the proof of the Theorem follows by noting that, since closed vertex
label sequences in Codd(G(b)) are label disjoint, steps 5 and 6 within the while loop
of the Weak Bipartization Algorithm will be executed exactly once for each sequence
in Codd(G(b)), where G(b) is defined in step 3 of the algorithm; indeed, once a closed
vertex label sequence σ ∈ Codd(G(b)) is destroyed in step 6, no new closed vertex label
sequence is created. In fact, once σ is destroyed we can remove the corresponding
labels and edges from G(b), as these will no longer belong to other closed vertex
label sequences. Furthermore, to find a closed vertex label sequences in Codd(G(b)),
it suffices to find an odd cycle in G(b), which can be done by running DFS, requiring
O(n + ∑�∈[m]|L�|) time, because G(b) has at most

∑
�∈[m]|L�| edges. Finally, by

(24), we have |Codd(G(b))| < log n with high probability, and so the running time of
theWeak Bipartization Algorithm is O((n+∑�∈[m]|L�|) log n), which concludes the
proof of Theorem 6.

5 Discussion and Some Open Problems

In this paper, we introduced the model of weighted random intersection graphs and
we studied the average case analysis of Weighted Max Cut through the prism
of discrepancy of random set systems. In particular, in the first part of the paper, we
proved concentration of the weight of a maximum cut of G(V , E,RTR) around its
expected value, and we used it to show that, with high probability, the weight of a
random cut is asymptotically equal to the maximum cut weight of the input graph,
when m = nα, α < 1. On the other hand, in the case where the number of labels is
equal to the number of vertices (i.e.m = n), we proved that a majority algorithm gives
a cut with weight that is larger than the weight of a random cut by at least a constant
factor, when p = c

n and c is large.
In the second part of the paper, we highlighted a connection between Weighted

Max Cut of sparse weighted random intersection graphs andDiscrepancy of sparse
random set systems, formalized through our Weak Bipartization Algorithm and its
analysis. We demonstrated how our proposed framework can be used to find optimal
solutions for these problems, with high probability, in special cases of sparse inputs
(m = n, p = c

n , c < 1).
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One of the main problems left open in our work concerns the termination of our
Weak Bipartization Algorithm for large values of c. We conjecture the following:

Conjecture 1 Let G(V , E,RTR) be a random instance of the Gn,m,p model, with
m = n, and p = c

n , for some constant c ≥ 1. With high probability over the choices
of R, on input G, the Weak Bipartization Algorithm terminates in polynomial time.

We also leave the problem of determining whether the Weak Bipartization Algo-
rithm terminates in polynomial time, in the case m = n and p = ω(1/n), as an open
question for future research.

Towards strengthening the connection between Weighted Max Cut under the
Gn,m,p model, and Discrepancy in random set systems, we conjecture the following:

Conjecture 2 Let G(V , E,RTR) be a random instance of the Gn,m,p model, with
m = n, p = c

n , for some positive constant c, and let R be its representation matrix.
Let also� be a set systemwith incidencematrixR. Then, with high probability over the
choices ofR, there exists xdisc ∈ argminx∈{−1,+1}n disc(�, x), such thatCut(G, xdisc)
is asymptotically equal to Max-Cut(G).
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