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Abstract 11 

Scour depth prediction and its prevention is one of the most important issues in channel and 12 

waterway design. However the potential for machine learning algorithms to provide models 13 

of scour depth has yet to be explored. This study provides the first quantification of the 14 

predictive power of a range of standalone and hybrid machine learning models. Using 15 

previously collected scour depth data from laboratory flume experiments, the performance of 16 

five types of recently developed standalone machine learning techniques - the Isotonic 17 

Regression (ISOR), Sequential Minimal Optimization (SMO), Iterative Classifier Optimizer 18 

(ICO), Locally Weighted learning (LWL) and Least Median of Squares Regression (LMS) - 19 

are assessed, along with their hybrid versions with Dagging (DA) and Random Subspace 20 

(RS) algorithms. The main findings are five-fold. First, the DA-ICO model had the highest 21 

prediction power. Second, the hybrid models had a higher prediction power than standalone 22 

models. Third, all algorithms underestimated the maximum scour depth, except DA-ICO 23 

which predicted scour depth almost perfectly. Fourth, scour depth was most sensitive to 24 

densimetric particle Froude number followed by the non-dimensionalized contraction width, 25 

flow depth within the contraction, sediment geometric standard deviation, approach flow 26 

velocity and median grain size. Fifth, most of the algorithms performed best when all the 27 

input parameters were involved in the building of the model. An important exception was the 28 

best performing model that required only four input parameters: densimetric particle Froude 29 
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number, non-dimensionalized contraction width, flow depth within the contraction and 30 

sediment geometric standard deviation. Overall the results revealed that hybrid machine 31 

learning algorithms provide more accurate predictions of scour depth than empirical 32 

equations and traditional AI-algorithms. In particular, the DA-ICO model not only created the 33 

most accurate predictions but also used the fewest easily and readily measured input 34 

parameters. Thus this type of model could be of real benefit to practicing engineers required 35 

to estimate maximum scour depth when designing in-channel structures. 36 

 37 

Keywords: Scour depth prediction; data mining; iterative classifier optimizer algorithms; 38 

model calibration  39 

 40 

1. Introduction  41 

Channel contractions in rivers exist when there is a reduction in the width of the cross-42 

section. The length of the contraction is defined based on the ratio between the length of the 43 

contacted area (L) and the width of the channel upstream of the contracted area (b1, approach 44 

width), although the criterion for defining whether a contraction is ‘long’ varies between 45 

researchers. For example Komura (1966) defined contractions as being long if the ratio was 46 

above unity, Webby (1984) if it was greater than two, and Raikar (2004) stated the 47 

contraction could only be considered long if the flow velocity and turbulence remained 48 

constant in the length of the contraction when L/b1 1 . Natural contractions in alluvial rivers, 49 

such as debris accumulations, longitudinal bars and confluences, tend to be long contractions, 50 

since the flow is nearly uniform in both the undisturbed channel and the contracted reach. 51 

Human made examples include gradual contractions created on both sides of the channel to 52 

accommodate dams, bridges, weirs and barrages, and partial constrictions on one side of the 53 

channel such as spur dikes or cofferdams (Lim, 1993).  54 
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Local scour at the contraction occurs because of a local increase in flow velocity and bed 55 

shear stress. The severity of this scour varies according to upstream sediment supply 56 

conditions, and thus the scour is categorized into two main groups, clear-water and live-bed 57 

scour (Dey and Raikar, 2005). Clear-water scour takes place when sediment transport occurs 58 

from the scour hole throughout the contraction length and when there is no upstream 59 

sediment supply. Live-bed scour takes place when there is upstream sediment supply (Dey, 60 

1997).  61 

To successfully design in-channel structures, the maximum scour depth, which is mainly 62 

caused by constriction (Lim, 1993), must be predicted because the depth dictates 63 

morphological change around the structure, especially in long contractions, and thus the 64 

structure’s stability. This prediction is commonly made under the assumption of an 65 

equilibrium condition (Lim and Cheng, 1998). The first analytical study of scour depth 66 

prediction in this condition in a long contraction was carried out by Straub (1934), and 67 

subsequent studies have either proposed different empirical equations or modified Straub’s 68 

equation (Laursen, 1960; Ashida, 1963; Komura, 1966; Gill, 1981; Webby, 1984; Lim, 1993; 69 

Lim and Cheng, 1998). For example, Lim (1993) revealed that previously incorporated 70 

effective variables in clear-water scour depth equations were inadequate and therefore 71 

proposed a new empirical formula for long contraction based on the approach flow velocity 72 

and depth, median grain size of the bed material and the geometry of the constriction. In a 73 

following study, Lim and Cheng (1998) revealed Straub’s equation underestimates scour 74 

depth in both clear-water and live-bed conditions, and proposed a new empirical formula 75 

based on only the approach water depth and the ratio between the approach and constricted 76 

channel width. Dey and Raikar (2005) used an experimental approach to investigate the 77 

controlling variables on scour depth for uniform and graded sediments. They found that 78 

Lim’s (1993) equation over predicted scour depth and developed their own empirical 79 



4 
 

equation based on the limiting stability of bed sediments in the approaching channel under 80 

clear-water scour. These examples illustrate that a range of equations exist, all based on 81 

differing controlling variables, and each performing differently according to the channel and 82 

flow conditions being studied. No universal equation exists to predict scour depth well in all 83 

conditions. One possible reason is the proposed scour depth relationships were developed 84 

using conventional regression analysis.  85 

Recently artificial intelligence (AI) algorithms have gained much interest because of their 86 

non-linear structure (Maier et al. 2014), superior prediction power - particularly for complex 87 

phenomena - shorter computational times, low sensitivity to missing values, and their ability 88 

to handle large datasets with different temporal and spatial scales (Melesse et al, 2011; 89 

Yaseen et al. 2016). These AI based algorithms have been widely used in the fields of water 90 

science and hydraulic engineering. Artificial neural network (ANN) algorithms are one of the 91 

most widely used (Abrahart et al. 2012). ANN was found initially to successfully predict 92 

scour depth around hydraulic structures (Muzzammil, 2008; Mousa, 2013; Onen, 2014), but 93 

recent studies have shown low prediction capability if the training datasets are not carefully 94 

selected (Melesse et al, 2011; Kisi et al, 2012; Choubin et al, 2018), especially when the 95 

range of testing data is out of range of the training dataset (low generalization power). 96 

To predict scour depth around hydraulic structures, Adaptive neuro-fuzzy inference system 97 

(ANFIS) algorithms have been developed by integrating ANN with fuzzy logic(Firat, 2009; 98 

Rady, 2020).  One of the key challenges in developing an accurate ANFIS models is 99 

determining accurately the weights in the membership function of the ANFIS algorithm 100 

(Chen et al. 2017; Bui et al. 2016).. 101 

Alternative types of AI-based algorithms have been successfully applied and proposed for 102 

scour depth prediction. For example, Guven and Gunal (2008) and Azamathulla et al. (2010) 103 
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reported that genetic programming (GP) outperforms conventional regression and ANN 104 

approaches. Ayoubloo et al. (2010) showed the classification and regression trees (CART) 105 

algorthim is more accuratefor scour modeling than the ANN method. Furthermore, Etemad-106 

Shahidi and Ghaemi (2011) examined the potential of two other AI-based algorithms, 107 

Support vector machine (SVM) and M5 model tree. Their work found the M5 model tree 108 

algorithm outperformed ANN and SVM approaches. Ghaleh Nou et al. (2019) also found the 109 

same results for self-adaptive extreme learning machine in comparison to SVM and ANN 110 

approaches One possible reason is SVM algorithms have many hyperparameters that require 111 

tuning and thus finding the best combination is a challenge. Whereas Parsaie et al. (2019) 112 

showed that SVM provided more accurate predictions than ANN and ANFIS approaches. 113 

However, Najafzadet et al. (2016) reported the superiority of the ANFIS to SVM, reaavling 114 

further that the performance of AI-based algorithms are sensitive to the dataset, and thus 115 

fluvial conditions, used to build them Najafzadeh et al. (2013, 2014) explored the influence 116 

of hybridization by applying Neuro-fuzzy group method of data handling (GMDH) systems 117 

based evolutionary algorithms to predict scour pile groups in clear water conditions. Their 118 

work revealed the integration of these models with evolutionary algorithms enhanced model 119 

performance. In a subsequent study, Najafzadeh et al. (2018) applied three algorithms of gene 120 

expression programming (GEP), model tree (MT) and evolutionary polynomial regression 121 

(EPR) to reveal that the MT algorithm had a higher prediction power than GEP and EPR in 122 

long channel contractions. This work was developed further by revealing the performance of 123 

a hybrid model - GMDH hybridized with GEP - was greater than the standalone ANN, GEP 124 

and GMDH algorithms (Najafzadeh and Saberi-Movahed, 2019).  .In these studies, almost all 125 

of the AI-based algorithms provided more accurate predictions of scour depth than empirical 126 

equations. 127 
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Recently a new branch of AI algorithms, called machine learning, have been developed, 128 

providing strong performance in other environmental and engineering fields. For example, in 129 

the field of landslide prediction, stochastic gradient descent (SGD), AdaBoost (AB), logistic 130 

model tree (LMT), functional tree (FT), Naïve Bayes Tree (NBT), Bayes network (BN), and 131 

Naïve Bayes (NB) algorithms have been successfully applied (Bui et al. 2019a; Pham et al. 132 

2019). LMT, REPT and Alternating Decision Trees (ADT) algorithms have provided strong 133 

prediction of flood maps (Khosravi et al. 2018a; Chapi et al. 2017), and ADT and AB 134 

algorithms have proved successful in the prediction of groundwater potential (Bui et al. 135 

2019b). Further, Khosravi et al. (2018b) and Salih et al. (2019) have applied BA-M5P, 136 

attribute selected classifier (AS), M5Rule (M5R), KStar, instance-based learning (IBK), 137 

random committee-REPT (RC-REPT) and random subspace-REPT (RS-REPT) to predict 138 

suspended sediment loads. Decision trees algorithms have been used to predict reference 139 

evaporation (Khosravi et al., 2019), apparent shear stress in compound channels (Khozani et 140 

al., 2019) and solar radiation (Sharafati et al., 2019). Khosravi et al. (2020a) predicted 141 

fluoride concentration in groundwater through IBK and locally weighted learning (LWL) 142 

algorithms. Khosravi et al. (2020b) developed hybrid algorithms of bagging (BA) with 143 

decision trees algorithm (BA-M5P), random forest (BA-RF), random tree (BA-RT) and 144 

reduced error pruning tree (BA-REPT) for bed load transport rate prediction. Nitrate and 145 

strontium concentration has been predicted using Gaussian Process (GP) algorithms (Bui et 146 

al, 2020a), and water quality indices have been simulated using a hybrid of BA, CV 147 

parameter selection (CVPS) and randomizable filtered classification (RFC) with decision 148 

trees algorithms (Bui et al. 2020b). All of these previous studies have shown that hybrid 149 

algorithms have a higher prediction power then their standalone counterparts, but they have 150 

yet to be applied to the prediction of scour depth.  151 
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Thus the aim of this study was to evaluate the ability of hybrid machine learning algorithms 152 

to provide accurate predictions of maximum scour depth. The focus was on scour within long 153 

contractions within clear-water conditions. Five standalone machine learning algorithms - 154 

Isotonic Regression (ISOR), Sequential Minimal Optimization (SMO), Iterative Classifier 155 

Optimizer (ICO), Locally Weighted learning (LWL) and Least Median of Squares Regression 156 

(LMS) - were hybridized with Dagging (DA) and Random Subspace (RS) algorithms to 157 

develop 10 novel hybrid algorithms DA-ISOR, DA-SMOR, DA-LWL, DA-ICO, DA-LMS, -158 

ISOR, RS-SMOR, RS-LWL, RS-ICO, RS-LMS). This study is the first to apply a diverse 159 

range of newly developed machine learning models to the prediction of scour depth. The 160 

research offers new insight into which machine learning algorithms offer the potential to 161 

provide accurate and efficient predictions of scour depth based on readily and easily 162 

measured flow and channel variables.  163 

2. Methodology 164 

2.1. Identifying effective parameters 165 

According to the literature, the parameters which have a significant effect on scour depth in a 166 

long contraction can be classified into four different types (Straub, 1934; Laursen, 1960; 167 

Ashida, 1963; Komura, 1966; Gill, 1981; Webby, 1984; Lim, 1993; Lim and Cheng, 1998; 168 

Raikar, 2004): (1) approaching flow conditions (flow velocity U1, critical flow velocity Uc, 169 

flow depth h1, water density w , densimetric particle Froude number Fr0); (2) characteristics 170 

of the bed material characteristics (median grain size d50, sediment density s , sediment 171 

geometric standard deviation g ); (3) geometry of the un-contracted section (width b1, h1); 172 

and (4) geometry of the contracted (width b2, flow depth h2) section. The functional 173 

relationship of scour depth (ds) with these effective input parameters can be described as 174 

follows: 175 
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                                                                                                          (1) 176 

To enhance the modeling performance of the AI-based algorithms (Azamathulla et al. 2009; 177 

Pal et al. 2014) and allow direct comparisons between datasets and the results of previous 178 

studies, all parameters were non-dimensionalized. Such an approach is recommended in the 179 

application of AI algorithms because it improves model performance (Azamathulla et al. 180 

2009; Pal et al. 2014). Since there are a large number of variables, a non-dimensional 181 

approach was also required in the use of the Buckingham   theorem to determine groupings 182 

between parameters. Also more generally, finding a functional relationship among non-183 

dimensional parameters can allow a practical model to be developed to mitigate the adverse 184 

consequences of the experimental data scale effects.  185 

 186 

Applying the Buckingham   theorem and using Δ  =  s -  w instead of  s, and taking U1, b1 187 

and   as repeating variables, allows the following dimensionless parameters to be obtained. 188 

                                        
                                              (2) 189 

Combining the three   parameters of   
     ,        and      as     

       190 

                      gives 191 

     
  

                

                                                                                                        (3)                                                       192 

where     is the densimetric particle Froude number. Using the Buckingham theorem, six 193 

dimensionless parameters were extracted as having the most effect on scour depth. Thus the 194 

scour depth was normalized using b1 and the effective variables were extracted as follows: 195 

                                                                                                        (4) 196 

 Eq. (4) shows all effective variables given in Eq. (1) are appropriately incorporated as 197 

dimensionless model parameters. In order to compute scour depth as a dependent variable, 198 
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ds/b1 is considered as a model output and dimensionless parameters given in the right hand 199 

side of Eq. (4) are used as model inputs. The form of Eq. (4) is in agreement with that used 200 

for scour depth determination by Dey and Raikar (2005) and Najafzadeh et al. (2018). 201 

 202 

2.2. Dataset collection and preparation 203 

In the current study 204 datasets from four laboratory flume studies, collected and compiled 204 

by Najafzadeh et al. (2016, 2018) for the testing of standalone learning algorithms, were used  205 

(Kamura, 1966; Gill, 1981; Webby, 1984; Lim, 1993; and Dey and Raikar, 2005). All of the 206 

data were measured in a long contraction rectangular channel in a clear-water condition. The 207 

datasets were divided into three sections randomly. Among the 204 datasets, 70% (140 row-208 

data) was used as a training dataset for model building, 10% for calibration (22 row-data) and 209 

the remaining 20% (42 row-data) for model validation. A statistical summary of the datasets 210 

is presented in Table 1.   211 

Table 1. Descriptive statistics of utilized data 212 

Parameters Training  Calibration  Testing 

h1/b1 Max Min Mean STD Skew  Max Min Mean STD Skew  Max Min Mean STD Skew 

b2/b1 0.23 0.04 0.14 0.05 -0.21  0.22 0.07 0.14 0.06 -0.21  0.23 0.06 0.15 0.06 -0.22 

Fr0 0.70 0.25 0.53 0.13 -0.36  0.70 0.25 0.53 0.13 -0.51  0.70 0.25 0.54 0.13 -0.51 

U1/Uc 5.05 0.11 0.60 0.57 4.77  2.34 0.12 0.57 0.34 1.17  1.52 0.12 0.55 0.34 1.07 

g  

1.00 0.39 0.89 0.12 -2.40 

 

1.00 0.55 0.90 0.10 -2.44 

 

1.00 0.55 0.90 0.10 -2.44 

ds/b1 23.75 0.88 7.54 7.06 1.01  23.75 0.88 7.52 7.01 1.01  23.75 0.88 7.52 7.01 1.01 

 213 

2.3. Best input combination and sensitivity analysis 214 

Apart from dataset quality, the correct selection of the input parameters has the largest impact 215 

on model performance. As explained in the application of the Buckingham   theorem, six 216 
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different dimensionless parameters were obtained from the effective variables involved. In 217 

order to understand the influence of individual dimensionless parameters on model 218 

performance, different input combinations were evaluated. This influence was determined by 219 

examining the correlation coefficient (r) between the input parameters and output (ds/b1) 220 

(Table 2) for different input combinations (Table 3). The input combinations were 221 

constructed by first using the input parameter with the highest correlation coefficient (Fr0; 222 

combination No. 1), and then creating subsequent combinations by adding each time the 223 

parameter with the next highest r until the parameter with the lowest r was finally added  224 

(combination No. 6). This approach is the common way of determining the most effective 225 

input parameters (Yaseen et al, 2016; Khozani et al, 2019; Salih et al, 2019). At first, each 226 

developed algorithm was tested using all the input combinations and with default model 227 

parameter values to determine the best input combination. Once complete, a sensitivity 228 

analysis, examining the effect of each parameter on scour depth, was performed ) using the 229 

testing dataset.  230 

Table 2. Correlation coefficients between input variables and scour depth 231 

 Input Variables h1/b1 b2/b1 Fr0 U1/Uc d50/b1 g 

r 0.563 -0.578 -0.624 0.330 0.292 0.331 

 232 

Table 3. Different input combinations used to model scour depth 233 

No. Different input combination Output 

1 Fr0 ds/b1 

2 Fr0, b2/b1 ds/b1 

3 Fr0, b2/b1, h1/b1 ds/b1 

4 Fr0, b2/b1, h1/b1, g  ds/b1 

5 Fr0, b2/b11, h1/b1, g , U1/Uc ds/b1 

6 Fr0, b2/b1, h1/b1, g , U1/Uc, d50/b1 ds/b1 

  234 
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2.4. Models parameter optimization 235 

The determination of the optimum values for each model parameter has a great effect on the 236 

models predictive power. Optimal parameter values differ from study to study and there is 237 

not a global optimum value; hence, in any study, identifying optimal model parameters is an 238 

important step in the model building process. In the current study optimal values were 239 

determined using the widely accepted trial-and-error approach, and the calibration dataset 240 

(Choubin et al, 2018; Sherafati et al, 2019). The root mean square error (RMSE) metric was 241 

used for determination of the optimum value, as the lower the RMSE for the testing phase, the 242 

more effective the model performance. Optimum values for each machine learning algorithm, 243 

along with some key definitions, are presented in Table A and B in the supplementary 244 

materials.  245 

2.5. Model theory background 246 

2.5.1. Isotonic Regression (ISOR) 247 

Isotonic Regression (ISOR), which is also called monotonic regression, is an approach, like 248 

any form of regression, of fitting a line through the measured data but a number of rules and 249 

restrictions apply. For example, the fitting line (isotonic curve) must be non-decreasing/non-250 

increasing and has to be the closest distance from the measured data. The key advantages of 251 

this algorithm are that it minimizes the mean square error in the training dataset and is not 252 

restricted in a functional linearity form, such as a linear regression model, as long as the 253 

function is monotonic increasing (Barlow et al., 1972). Figure 5 illustrates the difference 254 

between a linear regression and isotonic regression model. More information about this 255 

algorithm was given in Kruskal (1964) and de Leeuw et al. (2009). 256 
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 257 

Fig.1. A comparison between an Isotonic Regression and a linear regression 258 

 2.5.2. Sequential Minimal Optimization Regression (SMOR) 259 

Sequential Minimal Optimization Regression (SMOR) was first introduced by Platt (1999) 260 

and later improved by Smola and Schölkopf (1998) and Shevade et al. (2000) for solving 261 

very large quadratic programming issues which can occur during the training of a SVM 262 

algorithm. These programming issues are divided into a smaller series of optimization 263 

quadratic programming sub-issues based on Osuna’s theorem (Osuna et al., 1997). Next, an 264 

objective function is decreased at each step until a feasible point that satisfies all of the 265 

constraints is retained (Yang et al., 2007). The SMOR computes the maximum error 266 

deviation (MED) between measured and predicted values; if predicted values are higher than 267 

MED, performance of the system components was fully satisfactory, and if predicted values 268 

are lesser than MED the model is often-overlooked (Gao et al. 2019). More information about 269 

this algorithm structure can be found in Platt (1999), Yang et al. (2007), Cheng and Qu 270 

(2013) and Yang et al. (2014).  271 

2.5.3. Locally Weighted Learning (LWL) 272 

Locally weighted learning (LWL) is a class of function approximation techniques, in which a 273 

prediction is made by using an approximated local model around a point of interest. This 274 

approximation is achieved by using an instance-based algorithm to assign instance weights 275 
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which are then used by a specified Weighted Instances Handler. LWL can perform 276 

classification (e.g. using naive Bayes) or regression (e.g. using linear regression), and is one 277 

of the most widely used lazy leaner algorithms. LWL is a simple but appealing tool, both 278 

instinctively and statistically, for learning process dynamics of non-linear problems, due to its 279 

high flexibility. The main drawback of this algorithm is the longer time required in the 280 

modeling process, from model building to making predictions.  281 

The algorithm is based on the following equation: if       ,y r z x r u r  is considered as a 282 

non-linear event, the optimum output  du r  can be calculated using the inverse approach of 283 

the event as follows (Arif et al., 2001): 284 

      1 ,d d du r z x r y r
                                                                                                    (5)                                                                                 285 

where  .z  is considered as a non-linear function,  dx r  are the states, and  dy r  is the 286 

optimum output. More information about this algorithm can be found in Atkeson et al. 287 

(1997). 288 

2.5.4. Iterative Classifier Optimizer (ICO) 289 

The Iterative Classifier Optimizer (ICO) algorithm uses a cross-validation or percentage split 290 

approach to optimize the number of iterations of the given iterative classifier. The algorithm 291 

has the ability to handle missing, nominal, binary classes and attributes like numeric, 292 

nominal, binary and empty nominal (Saad, 2018). A two iteration process is used: models are 293 

run and the results compared with measured values and then feedback is submitted to the 294 

model to further learn and fine tune the results. 295 

2.5.5. Least Median of Squares Regression (LMS) 296 

The Least Median of Squares Regression (LMS) algorithm implements a least median 297 

squared linear regression using the existing (weka) linear regression class to form predictions. 298 
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These LMS functions are generated from random subsamples of the data. The LMS with the 299 

lowest median squared error is chosen as the final model. More information about this 300 

algorithm is presented in Rousseeuw and Leroy (1987) and Giloni (2002).  301 

2.5.6. Disjoint Aggregating (Dagging) 302 

The Disjoint Aggregating (DA) algorithm is a type of meta-classifier that creates a number of 303 

disjoint, stratified folds out of the data and feeds each chunk of data to a copy of the supplied 304 

base classifier. Predictions are made via averaging, since all the generated base classifiers are 305 

put into the Vote Meta classifier. The algorithm is useful for base classifiers that are quadratic 306 

or worse in time behavior, in regard to the number of instances in the training data. The 307 

strong capabilities of this algorithm include handling missing class values, binary class, 308 

nominal class, nominal attributes, empty nominal attributes and unary attributes. More 309 

information about this algorithm can be found in Ting and Witten (1997). 310 

2.5.7. Random Subspace 311 

Random Subspace (RS) constructs a decision tree based classifier that maintains the highest 312 

accuracy on the training data and improves generalization accuracy as it grows in complexity 313 

(Ho, 1998). This algorithm enhances the prediction power of the weak classifier algorithms. 314 

The classifier in this algorithm consists of multiple trees constructed systematically by 315 

pseudo randomly selecting subsets of components of the feature vector, that is, trees 316 

constructed in randomly chosen subspaces. More information about this algorithm can be 317 

found in Ho (1998). 318 

2.6. Model evaluation 319 

After the determination of the most effective input variable combination and the optimum 320 

operator values, each algorithm was trained by a training dataset and evaluated by a testing 321 

dataset. Since the models were built by a training dataset, this evaluation can only show how 322 

https://www.sciencedirect.com/science/article/pii/S0895717702000699#!
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well the constructed model fits the testing dataset, and cannot be used for model validation 323 

(Chen et al., 2019). For a visual analysis and assessment of the applied models, scatter plots, 324 

Taylor diagrams and box-plots were used. One distinct advantage of the Taylor diagram is 325 

that it benefits from the use of the two most common correlation statistics: correlation and 326 

standard deviation (SD) (Taylor, 2001). Points are depicted on the diagram to compare the 327 

performance of different developed models. The measured data point in the Taylor diagram is 328 

considered as the reference point. The closer the predicted value to this reference value, in 329 

terms of r and SD, the higher the prediction capability. The advantage of a box-plot is that it 330 

can show how well a model predicts extreme, median and quartile values.   331 

 332 

In addition, RMSE, Mean Absolute Error (MAE), the Nash-Sutcliffe efficiency (NSE) were 333 

used to quantify model performance. These criteria were calculated as follows: 334 
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 340 

where ds/b1 is the scour depth, N is the number of datasets, 1/bd s is the mean scour depth, and 341 

m and p subscripts denote the measured and predicted values, respectively.  342 

The lower the RMSE and MAE, the better the model performance. Model performance can be 343 

classified using the NSE values (between   and 1; Moriasi et al., 2007): (i) unsatisfactory: 344 
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NSE≤0.4; (ii) acceptable: 0.40<NSE≤0.50; (iii) satisfactory: 0.50<NSE≤0.65; (iv) good: 345 

0.65< NSE≤0.75; (v) very good: 0.75< NSE ≤1.00.  346 

A reliability analysis was also applied to reveal the consistency of applied models or 347 

permissible level of model performance, as follows: 348 





N

i

ikN
1

100*]*)/1[(yReliabilit                                                                                 (9) 349 

The variable ki was estimated based on the relative average error (RAE). If RAE is 2.0 , then 350 

ki =1, else ki = 0. This threshold of 0.2 was determined based on the Chinese Standard value 351 

(Saberi-Movahed et al. 2020). RAE was calculated as follows: 352 

  (10)                                                                                                           
)/(

)/()/(

1

11

bd

bdbd
RAE

m

pm

s

ss 
353 

 354 

3. Results and analysis 355 

3.1. Most/least effective variables 356 

Table 2 reveals which input parameters had the most effect on local scour depth. According 357 

to the correlation coefficients, Fr0 had the most impact (r = -0.62) followed by b2/b1 (r = -358 

0.58), h1/b1(r = -0.56), 
g  (r = 0.34), U1/Uc (r = 0.33), and d50/b1 (r = 0.29).  359 

3.2. Best input combination 360 

Most of the algorithms performed best when all the input parameters were involved in the 361 

building of the model (input No. 6). In six scenarios, this was not the case, and input 362 

combinations 3, 4 and 5 gave the lowest RMSE values correlation coefficients between 363 

observed and predicted scour depth. This contrast reflects the different structures of the 364 

algorithms. 365 
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A comparison in r values between combinations 1 and 2 shows that adding the b2/b1 366 

parameter caused the prediction accuracy to significantly decrease for the majority of 367 

algorithms. In contrast, adding the h1/b1 parameter enhanced the prediction performance of all 368 

algorithms significantly (comparison between input No. 2 and 3). The effect of adding g369 

was more mixed, causing an increase in some cases, and little change in others (see the 370 

comparison between No. 3 and No. 4). Adding U1/Uc and d50/b1 caused the model 371 

performance to improve in the majority of cases. 372 

 373 

The models with just one or two input parameters failed to provide accurate predictions of 374 

scour depth. This poor performance occurred because some parameters had a poor linear 375 

correlation with ds/b1, since the correlation was non-linear. However incorporating these 376 

parameters into the models that can handle non-linear relationships enhanced the model 377 

accuracy significantly. 378 

 379 

3.3. Models performance evaluation 380 

A visual comparison of the prediction power of the machine learning models is shown in 381 

Figure 2. These plots reveal that all developed algorithms could predict scour depth 382 

reasonably well, but all algorithms underestimated the maximum scour depth, except DA-383 

ICO which predicted scour depth almost perfectly. The LWL algorithm by contrast had the 384 

weakest performance. Among the standalone algorithms, the ICO model provided slightly 385 

better performance than others. 386 

  387 
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Table 4. Correlation coefficient values of model performance for different input combinations 388 

Models 
Input number. 

1 2 3 4 5 6 

 Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing 

ISO 0.92 0.928 0.92 0.929 0.92 0.929 0.902 0.93 0.92 0.933 0.902 0.935 

SMO 0.6 0.8 0.68 0.74 0.85 0.905 0.83 0.88 0.912 0.944 0.913 0.945 

LWL 0.82 0.81 0.83 0.82 0.86 0.849 0.856 0.843 0.858 0.844 0.862 0.84 

ICO 0.9 0.9 0.92 0.91 0.934 0.93 0.943 0.946 0.938 0.927 0.936 0.92 

LMS 0.6 0.8 0.684 0.742 0.81 0.865 0.81 0.865 0.815 0.865 0.836 0.881 

DA-ISO 0.92 0.931 0.916 0.93 0.916 0.93 0.916 0.934 0.916 0.939 0.916 0.942 

DA-SMO 0.61 0.81 0.68 0.75 0.84 0.898 0.834 0.889 0.913 0.948 0.914 0.951 

DA-LWL 0.86 0.87 0.87 0.87 0.88 0.87 0.887 0.875 0.891 0.886 0.892 0.896 

DA-ICO 0.91 0.928 0.93 0.94 0.942 0.946 0.95 0.95 0.949 0.948 0.949 0.943 

DA-LMS 0.6 0.81 0.672 0.777 0.81 0.863 0.81 0.879 0.861 0.918 0.879 0.917 

RS-ISO 0.92 0.93 0.844 0.843 0.91 0.93 0.919 0.93 0.866 0.866 0.934 0.94 

RS-SMO 0.6 0.8 0.68 0.707 0.76 0.88 0.752 0.89 0.838 0.935 0.736 0.867 

RS-LWL 0.82 0.81 0.83 0.826 0.87 0.87 0.884 0.88 0.876 0.862 0.877 0.874 

RS-ICO 0.902 0.904 0.927 0.913 0.941 0.935 0.939 0.931 0.946 0.945 0.949 0.951 

RS-LMS 0.600 0.800 0.684 0.746 0.810 0.865 0.810 0.865 0.815 0.865 0.836 0.881 

* Shadow cells show optimum input number 389 
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Fig 2. Comparison between predicted and measured ds/b1 values during the testing phase.  392 
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To further compare the performance of the standalone and hybridized machine learning 393 

models, box-plots are shown in Figure 3. Only the DA-ICO model predicted maximum scour 394 

depth well (but not perfectly) and all other algorithms underestimated maximum values. The 395 

SMOR and ICO models estimated minimum scour depth very well. The first quartile value 396 

was very well replicated by the DA-LWL model, and ICO, DA-ICO and RS-ICO models 397 

predicted the third quartile most accurately. The RS-ICO model estimated the median scour 398 

depth almost perfectly.  399 

 400 

Fig. 3. Box plots of observed and predicted ds/b1. 401 

 402 

The DA-ICO model was closest to the observed reference point in the Taylor plot (Figure 4). 403 

This plot showed that the DA-ICO model had the highest performance because the predicted 404 

standard deviation of scour depth was closest to the standard deviation of the observed data, 405 

and the correlation was also the highest. The DA-LWL, RS-LWL and RS-ICO points almost 406 

overlapped on each other on the Taylor plot, indicating similar model performance.  407 
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 408 

Fig.4. Taylor plot of model performance 409 

 410 

A quantitative assessment of the predictive capability of the developed models is shown in 411 

Figure 5. Looking across all the evaluation metrics, the DA-ICO model provided the 412 

strongest performance with RMSE, MAE and NSE values of 0.010 m, 0.008 m and 0.972, 413 

respectively. The next strongest performing model was DA-LWL, followed by RS-LWL, RS-414 

ICO, RS-LMS, DA-LMS=ICO, DA-SMOR=RS-SMOR, RS-ISOR=LMS, DA-ISOR=ISOR, 415 

SMOR and LWL. According to the NSE metric, all the developed algorithms had a ‘very 416 

good’ prediction power except the LWL model, which had ‘good’ performance.  417 

The standalone LWL and SMO models gave the lowest performance with higher RMSE and 418 

MAE, and low NSE values. Among the standalone models, ICO produced the most accurate 419 
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predictions. All the metrics reveal the hybridized version of the machine learning algorithm 420 

outperformed the standalone counterpart. For example, the standalone LWL model had a 421 

RMSE value of 0.033 m, while the DA-LWL and RS-LWL models produced a RMSE value 422 

of 0.014 m. This hybridization represented a 58% improvement in standalone LWL 423 

performance. In terms of RMSE values, hybridization with DA and RS algorithms enhanced 424 

the performance of SMOR models by 23%, ICO by 41% (DA) and 21% (RS), LMS models 425 

by 10% (DA) and 19% (RS), and ISOR by 9% (RA). The RMSE values were the same for 426 

ISOR and DA-ISOR models. 427 

 428 

 429 
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 431 

Fig. 5. Model evaluation using quantitative criteria 432 

A Reliability analysis showed that the DA-ICO hybrid model had the highest level of 433 

reliability (83.3%), while the standalone model of LWL had the lowest degree of reliability 434 

(45.2%). In all but one case (DA-ISOR) hybridization enhanced reliability (Table 5). 435 

Table 5. Model reliability.  436 

Model Reliability (%) 

ICO 71.4 

ISOR 73.8 

LMS 64.3 

LWL 45.2 

SMOR 59.5 

DA-ICO 83.3 

DA-ISOR 69.0 

DA-LMS 69.0 

DA-LWL 78.6 

DA-SMOR 64.3 

RS-ICO 81.0 

RS-ISOR 76.2 

RS-LMS 71.4 

RS-LWL 81.0 

RS-SMOR 69.0 
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4. Discussion 437 

Scouring takes place in clear water flow due to a contraction resulting from a change in 438 

channel cross-section shape. For a given discharge, reducing the channel width causes an 439 

increase in flow velocity, bed shear stress and thus scour. In order to compute the scour depth 440 

in such a hydraulic condition, several empirical equations have been proposed in the 441 

literature, developed using conventional regression analysis. These equations are based on the 442 

most important variables considered to affect scour depth, such as channel width, flow depth 443 

and velocity in the un-contracted and contracted sections of the channel. These empirical 444 

equations do not perform as accurately as machine learning algorithms (Najafzadeh et al. 445 

2018). However no study has examined the performance of hybrid machine learning 446 

algorithms in predicting scour depth. To this end, this study sought to provide the first 447 

comparison of the accuracy of these novel algorithms with standalone machine learning 448 

algorithms and empirical equations. 449 

The determination of the best input variable combination is one of the most critical steps in 450 

producing an accurate machine learning model. Some researchers have determined the best 451 

input combination according to the highest correlation coefficient in a multiple regression 452 

(Barzegar et al. 2016). However the current paper shows this approach for scour prediction is 453 

not the best to take because the best input combination was not the same for all algorithms 454 

and, due to nonlinearity between variables, the variables with low correlation coefficients 455 

with scour depth enhanced the prediction power of the some of the models. Thus a range of 456 

different input variable combinations must be considered in the optimization of machine 457 

learning models. 458 

In order to find the best input combination, a sensitivity analysis was carried out to 459 

investigate the importance of each dimensionless parameter in scour depth computation. The 460 

results revealed that upstream, unconstructed densimetric particle Froude number had the 461 
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greatest impact on scour depth prediction, in accordance to previous laboratory experiments 462 

(Li et al., 2002). This result is also consistent with Dey and Raikar (2005) who illustrated that 463 

the upstream densimetric particle Froude number had the greatest effect on scour depth, in 464 

which an increase in this number decreased the scour depth. This parameter represents the 465 

impact of the mobility of submerged sediment particles on scour depth (Dey and Raikar, 466 

2005) and has been proposed as suitable for defining the initiation of sediment motion 467 

(Aguirre-Pe et al., 2003). Thus it is reasonable to expect the particle Froude number to have 468 

this important impact on scour depth. In our study we estimated the densimetric particle 469 

Froude number based on the ratio between the approach flow velocity and submerged weight 470 

of the sediment. The particle Froude number can also be obtained, when data is available, 471 

through analyzing the hydrodynamic forces - lift, drag resistance and submerged weight - 472 

acting on the sediment particle in equilibrium conditions (Safari et al., 2017). The drag and 473 

lift forces have a positive effect on sediment motion, and the buoyed weight of the sediment 474 

and resistance force have the opposite effect. Therefore, to initiate scour, the flow must have 475 

adequate force to overcome this buoyed weight and resistance force. An alternative method to 476 

estimate the particle Froude number is to combine the Shields sediment threshold equation 477 

(1936) with the Manning (1891) flow resistance formula. In this formulation the particle 478 

Froude number is an alternative type of Shields (1936) threshold parameter, expressed in 479 

terms of velocity rather than shear stress (Safari et al., 2015).  480 

The DA-ICO was found to provide the most accurate predictions of scour depth using four 481 

input parameters: Fr0, b2/b1, h1/b1 and g . For most of the other models, six input parameters 482 

were required to provide the optimum prediction performance. Thus a further advantage of 483 

the DA-ICO is in its relative simplicity, using parameters that are more readily and easily 484 

measured, removing the requirement to measure the approach and critical flow velocity. The 485 
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ISOR, DA-ISOR and RS-ISOR algorithms gave reasonable prediction accuracy with only Fr0 486 

as an input, demonstrating their efficiency.  487 

The hybrid models had a higher prediction power than standalone models because hybrid 488 

models are more flexible than standalone models and have a nonlinear structure (De’ath and 489 

Fabricius, 2000). These two model properties are particularly important in the prediction of 490 

scour depth because of the nonlinearity between variables. The LWL algorithm was the worst 491 

performing because in the LWL algorithm, fitting the noise data causes a higher prediction 492 

error if noise in the dataset is not filtered out well, and the algorithm does not have the ability 493 

to interpolate smoothly between datasets (Schneiderm and Moore, 1997).  494 

The difference in performance between algorithms is attributable to their different 495 

computational structures. The DA-ICO model provided the most accurate predictions for two 496 

reasons. First, the ICO algorithm uses a cross-validation or percentage split approach to 497 

optimize the number of iterations. Secondly, the Dagging algorithm benefits from ensemble 498 

learning in its structure (multiple weak learners) which outperforms a single strong learner 499 

(Dietterichm 1997). This learning helps to reduce variance and avoid the over-fitting problem 500 

caused by the use of a bootstrap procedure.  501 

Najafzadeh et al. (2016, 2018), using the same datasets as the current paper, compared the 502 

performance of traditional AI-based algorithms (SVM, ANFIS, GEP, EPR and MT) with the 503 

empirical equations of Laursen (1963), Komura (1966), Gill (1981) and Lim (1993). Table 6 504 

shows this comparison, along with the current paper’s RMSE value for the best performing 505 

hybrid machine learning algorithm. The table shows that the GEP model (RMSE = 0.027 m) 506 

outperformed all empirical equations, and the newly developed DA-ICO model (RMSE = 507 

0.010 m) performed significantly better than the GEP model (a 62% improvement in RMSE). 508 

When compared to the empirical equations in terms of RMSE values, the DA-ICO model had 509 
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82% (Laursen, 1963), 93% (Lim, 1993), 95% (Komura, 1966) and 99% (Gill, 1981) better 510 

accuracy.  511 

Table 6. A comparison of model performance between traditional AI-based algorithms, GEP, 512 

MT and EPR  Najafizadeh et al. (2016, 2017), empirical equations (Laursem, 1963; Komura, 513 

1966; Gill, 1981; Lim, 1993) and DA-ICO, the best performing hybrid machine learning 514 

algorithm in the current study. 515 

Model RMSE (m) Model RMSE (m) Model RMSE (m) 

GEP 0.0260 SVM 0.028 Komura (1966) 0.0833 

MT 0.0296 ANFIS 0.0281 Gill (1981) 0.200 

EPR 0.0263 Laursen (1963) 0.0543 Lim (1993) 0.134 

 516 

Overall, the results show that DA-ICO models have great potential to produce robust 517 

predictions of scour depth in long contractions in clear-water conditions. As well as offering 518 

far superior prediction accuracy than existing empirical and traditional AI-models, a distinct 519 

strength of this model is the need for just four readily measured dimensionless variables: 520 

densimetric particle Froude number, width of the un-contracted section, approach flow depth 521 

and sediment geometric standard deviation. Thus this type of data-driven model could be of 522 

real practical benefit to engineers required to estimate maximum scour depth when designing 523 

bridges, weirs, spur dike and cofferdams. Future studies should consider the performance of 524 

these algorithms in the prediction of scour depth in more complex conditions, such as within 525 

natural rivers, than those featured in the studied datasets, such as, live-bed scour, non-526 

rectangular channels, unsteady flows, non-equilibrium transport conditions, and water-527 

worked beds that mimic better the surface topographies of natural coarse-grained rivers 528 

(Cooper and Tait, 2009). 529 

  530 
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 5. Conclusion 531 

The accurate prediction of scour depth is vital for preventing the collapse of in-channel 532 

structures. Due to the non-linear behavior of sediment transport in a river, hybrid machine 533 

learning algorithms have great potential to produce accurate predictions of scour depth in 534 

long contractions. Using previously collected scour depth data from laboratory flume 535 

experiments, this study tested this potential for the first time by comparing the prediction 536 

power of five standalone algorithms, Isotonic Regression (ISOR), Sequential Minimal 537 

Optimization (SMO), Iterative Classifier Optimizer (ICO), Locally Weighted learning (LWL) 538 

and Least Median of Squares Regression (LMS) and their hybrid versions with Dagging 539 

(DA) and Random Subspace (RS) algorithms (i.e., DA-ISOR, DA-SMOR, DA-LWL, DA-540 

ICO, DA-LMS, RS-ISOR, RS-SMOR, RS-LWL, RS-ICO, RS-LMS). The main findings 541 

were as follows: 542 

(1) A test of model performance showed that the DA-ICO model had the highest 543 

prediction power followed by DA-LWL, RS-LWL, RS-ICO, RS-LMS, DA-LMS, 544 

ICO, DA-SMOR=RS-SMOR, RS-ISOR=LMS, DA-ISOR=ISOR, SMOR and LWL. 545 

All models displayed ‘very good’ performance except the LWL model, which had 546 

‘good’ performance. 547 

(2) The hybrid models had a higher prediction power than standalone models because the 548 

hybrid models are more flexible and have a nonlinear structure that better represents 549 

the nonlinear behavior of sediment transport. 550 

(3) All algorithms underestimated the maximum scour depth, except DA-ICO which 551 

predicted scour depth almost perfectly. 552 

(4) A sensitivity analysis revealed that scour depth was most sensitive to the densimetric 553 

particle Froude number followed by the non-dimensionalized contraction width, flow 554 



31 
 

depth within the contraction, sediment geometric standard deviation, approach flow 555 

velocity and median grain size. 556 

(5) Most of the algorithms performed best when all the input parameters were involved in 557 

the building of the model. An important exception was the best performing model, 558 

which required only four input parameters: densimetric particle Froude number and 559 

non-dimensionalized contraction width, flow depth within the contraction and 560 

sediment geometric standard deviation. 561 

(6) Variables with low correlation coefficients with scour depth enhanced the prediction 562 

power of the some of the models. Thus a range of different input variable 563 

combinations must be considered in the optimization of machine learning models. 564 

Overall the results revealed that hybrid machine learning algorithms provide more accurate 565 

predictions of scour depth than empirical equations and traditional AI-algorithms. The DA-566 

ICO model not only created the most accurate predictions but also used the fewest easily and 567 

readily measured input parameters. Thus this type of model could be of real benefit to 568 

practicing engineers required to estimate maximum scour depth when designing in-channel 569 

structures. In this case, understanding more about the potential for hybrid machine learning 570 

algorithms to provide relatively cheap and fast predictions of scour depth in more complex 571 

hydro-sedimentary conditions represents a vital research avenue. 572 

 573 
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Supplementary information material 787 

Table A.  Optimum values of each model’s parameter  788 

Models 

parameters 

Developed algorithms 

ISOR SMOR LWL ICO LMS Dagging RS 

Debug No - NO NO No No NO 

C - 1 - - - - - 

Filter type - 
Normalize 

training data 
- - - - - 

Kernel - Poly-kernel - - - - - 

Reg-optimized - 
Reg-SMO 

Improved 
-  - - - 

KNN - - -1  - - - 

Nearest 

Neighbor 

search 

algorithm 

- - 
Linear NN 

Search 
 - - - 

Weighting 

Kernel 
- - 0   - - 

Random seed - - -  0 - - 

Sample size - - -  4 - - 

Classifier - - - - - 

ISOR, SMOR, 

LWL, ICO, 

LMS 

ISOR, SMOR, 

LWL, ICO, LMS 

Number of 

folds 
- - - 10 - 10 - 

Verbose - - -  - No - 

SubSpace size - - - - - - 0.5 

Batch size - - - 100 - - - 

Class value 

index 
- - - -1 - - - 

Do not check 

capability 
- - - No - - - 

Evaluation 

metric 
- - - RMSE - - - 

Iterative 

classifier 
- - - 

Additive 

regression 
- - - 

Look ahead 

iterations 
- - - 50 - - - 
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Table B. definition of each models parameter  791 

Parameters definition 

Debug Is set to yes, classifier may  output addition information  to the console  

C The complexity parameter C 

Filter type Determines how/if the data will be transformed 

KNN How many neighbors are used to determine the width of the weighting function 

Weighting Kernel Determines weighting function  

Random seed Set the seed for selecting random subsamples of the training data 

Sample size Set the size of random samples used to generate the least squared regression functions 

Number of folds Number of fold for cross-validation 

Verbose Whether to output some additional information during building 

SubSpace size 
Set of each subspace: if less than 1 as a percentage of the number of attributes, otherwise the 

absolute number of attributes  

Batch size The preferred number of instances to process if batch prediction is being  performed 

Class value index The class value index to use  with information retrieval  type metrics 

Do not check 

capability 
If set to yes, classifier capabilities are  not checked before classifier is built 

Evaluation metric Evaluation metric to use 

Iterative classifier The Iterative classifier to be optimized 

Look ahead iterations The number of iteration to look ahead  for to find a better optimum  

 792 


