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Abstract 

Photocatalytic carbon dioxide (CO2) reduction into chemical fuels using efficient and 

economically viable photocatalysts is a promising method to utilize solar energy and help 

mitigate the greenhouse effect. Carbon monoxide (CO) is of significant interest because CO is 

used in many large-scale industrial processes. Organic semiconductors have diverse chemical 

functionalities and pore structures, allowing controllable tuning of their physicochemical 

properties such as band gaps and surface areas. In this thesis, linear polymers and covalent 

organic frameworks (COFs) were explored for photocatalytic CO2 reduction to understand the 

relationships between material properties and photocatalytic activity. 

A range of linear conjugated polymers with different structures of backbone was synthesized 

and measured by using high-throughput methods. Optical properties, electronic properties, and 

dispersibility were investigated for their effects on differences in performance. A 

dibenzo[b,d]thiophene sulfone co-polymer with phenylene (P7) had the highest rate of CO 

production, but also of H2 co-evolution. The co-evolution of hydrogen is facilitated by residual 

palladium from polymer synthesis. By varying the amount of palladium in P7, syngas could be 

obtained with varying ratios of H2 to CO. 

To overcome the long-term instability of the reversible bond-formation chemistry used in 

making most COFs and reduce the influence of residual metals on product selectivity, a new 

olefin COF was synthesized via Knoevenagel condensation. The obtained Bpy-sp2c-COF with 

bipyridine sites inside could incorporate with rhenium complexes to afford a heterogeneous 

photocatalyst with an improved catalytic performance over its homogeneous Re counterpart. 

The COF is porous and can be further dye-sensitized to enhance the activity. The addition of 

platinum resulted in the production of syngas, i.e., the co-formation of H2 and CO, the chemical 

composition of which could be adjusted by varying the ratio of COF to platinum. An 

amorphous analogue of the COF showed significantly lower CO production rates, suggesting 

that crystallinity of the COF is vital to its photocatalytic performance in CO2 reduction. 

A series of fluorinated COFs and their isostructural COFs were rationally designed and 

synthesized, exhibiting excellent CO2 reduction with cobalt (II) bipyridine complexes as 

cocatalyst under visible light irradiation. Fluorinated COFs showed excellent stability and a 

CO2-to-CO performance comparable with the homogeneous ruthenium bipyridine complex 

system under similar conditions.  
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1.1 Utilization of solar energy 

 

Figure 1.1 Daily averaged CO2 from four Global Monitoring Laboratory Baseline observatories. Barrow, Alaska 

(in blue), Mauna Loa, Hawaii (in red), American Samoa (in green), and South Pole, Antarctica (in yellow). Figure 

reprinted from National Oceanic & Atmospheric Administration.1 

With the progress of human civilization, carbon dioxide is produced in all aspects of daily life, 

such as thermal power generation and automobile exhaust. The consumption of fossil energy 

and its resulting greenhouse effect have endangered human life and the environment.2 

According to research, from 1959 to 2012, approximately 350 billion tonnes of carbon have 

been emitted by humans to the atmosphere.3 From the daily data monitored by Global 

Monitoring Laboratory from four observatories around the world (Figure 1.1), the global CO2 

concentration indicates a significant increasing trend in the past decade. 

Solar energy is the energy produced by the continuous nuclear fusion reaction process inside 

the sun. Although the energy radiated by the sun into the earth’s atmosphere is only 1 in 2.2 

billionths of its total radiant energy,4 it is still a huge amount of energy that human can be used 

for industrial production and daily living. In order to eliminate the harm caused by greenhouse 

gases, it is a potential approach for a bright future to mimic natural photosynthesis. Developing 

an artificial photosynthetic system (APS) can convert the abundant solar energy into 

commercial products.5 Theoretically, photosynthesis contains water oxidation reactions in 

Photosystem II and CO2 reduction in Photosystem I.6 Unfortunately, at present, it is challenging 

to establish an APS by using just a single catalytic system. To achieve this goal, scientists 
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divided the subject into two parts. One is water oxidation to O2 and proton reduction to H2.
7,8 

The other is photocatalytic CO2 reduction to fuels such as CO, methane or methanol.9–12 

 

Figure 1.2 (a) Energy contents and market prices of CO2 reduction products;13 (b) Syngas conversion processes.14 

Figures were reproduced from references.13,14 

Given a price of CO2 captured from power plants and electricity prices for electrochemical CO2 

reduction, the dashed and dotted lines in Figure 1.2a are the minimum cost of production. 

Among all the CO2 reduction products (Figure 1.2a), small scale specialty chemicals like 

formic acid and propanol are desirable due to their high market prices.13 Ethylene and ethanol 

as C2 fuels are applied mainly in the industrial areas of plastics and ethylene glycol production. 

This thesis focuses on CO and syngas (CO and H2 mixtures with a certain ratio) because 

generating pure CO or syngas is very promising considering their market price and scale. 

Different ratios of syngas can be used for various industrial processes (Figure 1.2b). For 

instance, methanation needs the CO and H2 mixture with a ratio of 3:1 H2 / CO, and the 

generation of aldehydes via hydroformylation of alkene needs a ratio of 1:1 H2 / CO as well as 

the methanol synthesis. The following equation describes the methanation and 

Fischer−Tropsch reaction: 

CO + 3H2 → CH4 + H2O      Methanation 

nCO + (2n + 1)H2 → CnH2n+2 + nH2O    Fischer−Tropsch 
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1.1.1 Basic principles of photocatalytic CO2 reduction 

 

Figure 1.3 (a) Scheme of processes for photocatalytic CO2 reduction;15 (b) Schematic representation of conduction 

band (orange), valence band (blue) and relative redox potentials of the products involved in water splitting and 

CO2 reduction at pH 7. Figure was reproduced from the reference.16 

Photocatalytic CO2 reduction over a semiconductor is believed as one of the best ways to use 

solar energy and overcome environmental problems. Many factors can influence the overall 

efficiency of photocatalytic CO2 reduction, such as photocatalytic processes and CO2 reduction 

kinetics. There are several processes for photocatalytic CO2 reduction including excitation, 



 5 

transport, separation, reduction and oxidation. As shown in Figure 1.3a, the photocatalytic 

processes of CO2 reduction on the surface of a semiconductor can be divided into eight steps. 

The steps are (1) excitation of photo-generated electron-hole pairs; (2) charge separation and 

charge migration to the surface; (3) the bulk charge recombination; (4) reduction of CO2 with 

certain cocatalyst; (5) oxidation of H2O with cocatalyst or oxidation of sacrificial electron 

donors; (6) surface charge recombination; (7) H2 evolution as the competitive step and (8) 

oxidation of reduction products.  

In the first step, electron-hole pairs in the bulk of semiconductor materials are generated by 

absorbing photons with an energy equal to or greater than the band gap (Eg) separating the 

valence band (VB) from the conduction band (CB) of a material. Electrons from the VB are 

excited to the CB, leaving an equal number of holes in the VB. The second step is spatial 

separation and migration of photogenerated electrons and holes. Simultaneously, bulk charge 

recombination (3) is a competing process and a main deactivation step of the overall catalysis. 

The fourth and fifth steps are the surface redox reactions. The CB bottom level must be more 

negative than the redox potential of CO2 reduction (Figure 1.3b), and the VB edge should be 

more positive than the redox potential of water oxidation (0.817 V vs SHE in pH 7.0 aqueous 

solution). Besides, a certain amount of excess energy (overpotential, Eoverpot) is necessary to 

drive reactions at high rates. As too large a band gap will limit the solar spectrum utilization, a 

narrow band gap is ideal (Eg > 3.0 eV or λ > 415 nm). Surface photogenerated electrons and 

holes can separately drive different half reactions: electrons for reducing CO2 in the CO2 

reduction co-catalysts (CRC) or the surface-active sites to simple C1 or C2 fuels such as CO, 

CH4, HCOOH, CH3OH, C2H5OH or other hydrocarbons (4), and holes for oxidizing water in 

the water oxidation co-catalysts (WOC) or the surface-active sites to molecular O2 (5). When 

there are not enough active sites or a lack of co-catalysts, the surface electrons and holes may 

recombine (6), analogous to step 3 in bulk. Finally, steps 7 and 8 are unfavourable H2 evolution 

and oxidation of reduction products by water oxidation co-catalysts. Steps 3, 6, 7 and 8 should 

be avoided due to the loss of photogenerated electrons and holes to side reactions and 

generation of unfavourable products.  
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Table 1.1 Reduction potentials of CO2 

Reaction E0 (V) vs. NHE at pH 7 

Reduction potentials of CO2  

2H+ + e- → H2 -0.41 

CO2 + e- → CO2
•- -1.9 

CO2 + 2H+ + e- → HCO2H -0.61 

CO2 + 2H+ + 2e- → CO + H2O -0.53 

CO2 + 4H+ + 4e- → C + 2H2O -0.2 

CO2 + 4H+ + 4e- → HCHO + 2H2O -0.48 

CO2 + 6H+ + 6e- → CH3OH + H2O -0.38 

CO2 + 8H+ + 8e- → CH4 + 2H2O -0.24 

2CO2 + 8H2O + 12e- → C2H4 + 12OH- -0.34 

2CO2 + 9H2O + 12e- → C2H5OH+ 12OH- -0.33 

3CO2 + 13H2O + 18e- → C3H7OH+ 18OH- -0.32 

In 1978, Halmannn first observed that CO2 was reduced to CH3OH and CO on a p-type GaP 

electrode under light illumination.17 However, the reduction of CO2 proves to be highly 

challenging as it needs a higher reduction potential of 1.9 eV vs. normal hydrogen electrode 

(NHE) for CO2 reduction towards the CO2
•- radical.15 To overcome such high one-electron 

reduction potentials, multi-electron reduction pathways coupled with the proton-transfer 

reaction towards desirable alternative products such as methane and methanol are more 

favourable.6 Table 1.1 shows an overview of different potentials in multi-electronic processes 

(at pH 7 in aqueous solution vs. NHE).15 
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1.1.2 Mechanism of photocatalytic CO2 reduction 

 

Figure 1.4 Possible surface structures of adsorbed partially charged species CO2
δ·- on catalysts. Figure was 

reproduced from the reference.18 

For photocatalytic CO2 reduction, the initial step is forming partially charged CO2
δ·- species on 

a catalyst. There are three kinds of adsorption modes on the surface of catalysts. Different 

binding modes lead to different products.18 If the CO2
·- species binds to the surface of catalysts 

through the oxygen atoms as shown in Figure 1.4a, formic acid may be the final product after 

combining one hydrogen atom for forming a formate anion and then a proton for producing the 

final product. If the CO2
·- species binds through the carbon atom (Figure 1.4b and c), a carboxyl 

radical is formed, and then it disintegrates into adsorbed carbon monoxide. The adsorbed CO 

can be further hydrogenated to generate other products. 

1.1.2.1 Mechanisms of cobalt and rhenium complexes for CO2 reduction 

 

Figure 1.5 Possible mechanisms of photocatalytic CO2 reduction by cobalt complexes bearing neutral ligands. 

Figure was reproduced from the reference.19 
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Many systems applied metal complexes, such as cobalt or rhenium bipyridine complexes, as 

cocatalysts for CO2 reduction.20–23 In 1982, Lehn and Ziessel first reported cobalt bipyridine 

complexes ([Co(bpy)3]
2+) as the electron-transfer mediator for photocatalytic CO2 reduction 

with ruthenium complexes as the photosensitizer.24 Since then, many studies have been 

conducted on photocatalytic CO2 reduction using [Co(bpy)3]
2+ as the cocatalyst and other 

semiconductors as the photosensitizer.20,25–28 The proposed mechanisms for CO2 to CO 

conversion by Co complexes based on nitrogen donor ligands are shown in Figure 1.5. There 

are different hypotheses for CoII complexes containing highly basic ligand frameworks and less 

basic ligands. Initially, one-electron reduction leads to formation of CoI complexes, which are 

nucleophilic for coordinating CO2. In the first system, CO2 coordinates with CoI species 

through electrophilic attack and CoIIICO2 species are formed, which react with a second 

molecule of the substrate to give free CO3
2+ (route i.a) or react with protons (route i.b). Finally, 

CO is released from the CoII-CO intermediate. In the second system containing less basic 

ligands, a Co0 intermediate is generated and then reacts with CO2 and protons to produce a 

CoII-CO intermediate. In 2018, Lin et al. reported a system with CdS as a photocatalyst and 

[Co(bpy)3]Cl2 as an electron mediator for CO2 reduction.26 The possible mechanism was 

proposed as route i.b in the binary phase system. 
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Figure 1.6 Overview of the proposed CO2 reduction cycles using Re(bpy)(CO)3Cl (1) as the catalyst. Figure was 

reproduced from the reference.29 

Rhenium (I) bipyridine complexes are the most efficient catalysts for CO2 reduction with high 

yield and selectivity. Lehn et al. first reported a system with rhenium (I) complexes in 1983.30 

In photocatalytic processes, the triplet metal-to-ligand charge transfer (3MLCT) state of the 

rhenium complex is generated and then the excited state is quenched by the sacrificial donors. 

The one-electron reduced species 2Cl eliminates the chloride ion and then forms the doubly 

reduced species 3, which is the catalytically active species. CO2 is bound at the empty 

coordination site to produce the carboxylic intermediate 4. After one proton addition, the 

hydroxycarbonyl species 5 is formed, which reacts with the second proton to yield the cationic 

tetracarbonyl intermediate 6. Finally, one molecule of carbon monoxide is released, and the 

species 3 is reformed. In the absence of protons, another mechanism was proposed by Sullivan 

et al. in 1985 for producing CO and carbonate.31 This process suggests that after reacting one 

CO2 molecule with two species 2, the intermediate species 10 is formed, which reacts with 

another one CO2 molecule to yield intermediate species 11. Following releasing CO and losing 

the CO3
2- upon protonation, the species 2 is reformed. 
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1.1.3 Differences between photocatalytic HER and CO2 reduction 

 

Figure 1.7 Scheme of photocatalytic hydrogen evolution reaction. 

Hydrogen evolution from water is another way of utilizing solar energy to generate clean 

energy. At the same time, hydrogen evolution competes with CO2 reduction. Compared with 

that of photocatalytic CO2 reduction, the mechanism of H2 evolution is relatively simple 

(Figure 1.7). All the basic steps for the hydrogen evolution reaction (HER) are similar to CO2 

reduction. HER happens in the reduction cocatalyst without any other competitive reaction. 

Scientists worked on water splitting earlier than photocatalytic CO2 reduction. In 1972, Honda 

and Fujishima were the first to discover photocatalytic water splitting on TiO2 electrodes.32  

Table 1.2 Differences between HER and CO2 reduction.33 

Photocatalytic HER Photocatalytic CO2 reduction 
How to achieve photocatalytic 

CO2 reduction 

Water as the source of H2 Low CO2 solubility in water 
Apply organic solvent or gas 

phase reaction 

Single product Many possible products Presence of co-catalysts 

Simple mechanism 
Mechanism involving several e- and H+ 

transfers 
Presence of acid sites 

H2 diffusing out of the liquid 

phase 

Products in contact with the 

photocatalyst with decomposition 
Continuous flow 

Thermodynamically uphill 
Thermodynamically much less 

favourable than H2 production 

e- with appropriate reduction 

potential 

The differences between CO2 reduction and H2 evolution are shown in Table 1.2.33 Normally, 
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for HER, the reaction is conducted in water which is the source of the single product H2. On 

the contrary, due to the low solubility of CO2 in water, it is preferable to perform CO2 reduction 

in the organic solvent or gas phase to improve the interaction between CO2 and photocatalysts. 

Besides, as shown in Table 1.1, many products such as CO, formic acid, CH4, as well as 

hydrogen production as a competitive reaction can be generated. Some features are necessary 

for an efficient CO2 reduction system. For instance, applying an alternative co-catalyst instead 

of metallic platinum which favours the competing H2 evolution reaction. Thermodynamically, 

in Table 1.2, achieving photocatalytic CO2 reduction needs more electrons and more negative 

reduction potential than H2 evolution. Besides, it is much more complicated for CO2 reduction 

in mechanism than H2 evolution. Because of these, in the process of exploring inorganic or 

organic photocatalysis, hydrogen production is relatively easy to be achieved. 

1.1.4 The half-reaction of CO2 reduction in the presence of sacrificial donors 

 
Figure 1.8 The degradation pathway of TEOA. Figure was reprinted from reference.34 

Achieving overall CO2 reduction is very difficult due to the sluggish kinetics of the four-

electron reaction of water oxidation. Besides, the charge carriers can recombine quickly in the 

bulk or on the surface of most photocatalysts, which restricts their reactivity. Sacrificial 
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electron donor reagents such as triethylamine (TEA) and triethanolamine (TEOA), which have 

low oxidation potentials and high relative permittivities, are used in most studies to scavenge 

the photogenerated holes and suppress the recombination of charge carriers. TEOA will be used 

in this thesis to focus on the half reaction of CO2 reduction. The degradation pathway of TEOA 

is shown in Figure 1.8. When under irradiation, photocatalysts are promoted to their excited 

state, and TEOA scavenges holes from it, extending the lifetime of photo-generated electrons 

and facilitating the reduction reaction. In recent years, applying other sustainable oxidation 

reactions instead of using sacrificial electron donor reagents with proton reduction reaction is 

of great interest. For instance, the oxidation of plastic waste can promote not only 

photocatalytic H2 production but also solve environmental pollution problems.35 

1.1.5 Performance evaluation of photocatalytic CO2 reduction 

Five technical parameters are generally used to quantify the efficiency of photocatalytic CO2 

reduction, including generation rate, selectivity, long-term stability, turnover number (TON) 

and apparent quantum yield (AQY) or external quantum efficiency (EQE).  

The generation rate is the amount of CO2 reduction products that occur per gram photocatalyst 

over a certain time. The unit for generation rate is mol h-1 g-1, μmol h-1 g-1 or ppm h-1 g-1. 

Selectivity is defined as the molar ratio of the CO2 reduction products to that of hydrogen. 

Long-term stability is an important parameter in the performance of a photocatalytic system. 

TON is the number of moles of reduction products arising from a mole of catalyst over a certain 

time. Since experimental conditions such as the quantity of photocatalyst, light source, light 

intensity and light area vary, the efficiency of a photocatalysts can be compared by their AQY 

or EQE. The formula of AQE or EQE is shown as below: 

AQY or EQE (%)=
number of reacted electrons

number of incident photons
×100% 
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1.1.6 Properties of CO2 reduction photocatalysts 

Table 1.3 The desired properties of an excellent photocatalyst and its effects on CO2 reduction and ways to achieve 

these properties.33 

Properties Effects 
How to accomplish the 

properties 

High surface area High adsorption 
Small particle size or porous 

structure 

Single site structure Homogeneity Crystalline material 

Light absorption Higher efficiency Engineering band gap 

Efficient charge separation Low recombination 
Preferential migration along 

a certain direction 

Long lifetime of charge 

separation 

Possibility of chemical 

reaction 
Presence of co-catalysts 

High mobility of charge 

carriers 

More efficient charge 

separation 
High crystallinity 

Selectivity towards a single 

product 
Efficient chemical process Adequate co-catalysts 

To design an effective photocatalyst for CO2 reduction, some features of semiconductors need 

to be considered (Table 1.3).33 For the purpose of using solar energy over the visible light range, 

an optimal band gap is desirable. However, most inorganic semiconductors have large band 

gaps and only can absorb photons of light in the ultraviolet domain. For instance, TiO2 has a 

band gap of 3.2 eV and it can only achieve photocatalysis under UV light (λ < 400 nm). Organic 

semiconductors with different band gaps, by contrast, can be designed and synthesized via 

various monomers. To enhance the interaction between CO2 and photocatalysts, materials with 

porosity and high surface area are essential. Crystallinity has also been proven as a crucial 

factor for CO2 reduction or HER.36–38 Most important, to generate certain products, suitable 

cocatalysts are needed for CO2 reduction, which could provide the active site and extend the 

lifetime of photo-generated charges. For CO2 reduction, high selectivity for certain products is 

also desirable. 
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Figure 1.9 Scheme of charge separation mechanisms for photocatalytic CO2 reduction.39 

Based on the differences in light absorption and charge separation mechanisms, photocatalytic 

CO2 reduction systems can be divided into four types.39 As shown in Figure 1.9a, most reported 

systems in literature are one-step excitation systems. These systems can generate electrons and 

holes in the bulk of semiconductors and achieve CO2 reduction with suitable reduction 

cocatalysts and oxidation cocatalysts. The second type (Figure 1.9b) is the photosensitized 

system which contains dyes, semiconductors and reduction cocatalysts. The dye can generate 

electrons and holes by absorbing light and then transmit them from the lowest unoccupied 

molecular orbital (LUMO) of dye to the CB of the semiconductor. Then the electrons transfer 

to the cocatalyst for converting CO2 into fuels. The third and fourth types are the systems 

combining two semiconductors to form heterojunctions or Z-scheme systems. In a 

heterojunction system (Figure 1.9c), photogenerated electrons transfer from semiconductor II 

to semiconductor I with more positive CB or LUMO. The photogenerated holes move from 

semiconductor I to semiconductor II with more negative VB or highest occupied molecular 

orbital (HOMO). Figure 1.9d shows the direct Z-scheme system. The photogenerated electrons 

inject from CB or LUMO of semiconductor I to VB or HOMO of semiconductor II. Another 

Z-scheme system is two semiconductors combined with reversible redox shuttles (electron 

donor/acceptor pairs) or conductive medium (Figure 1.9e). 
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1.2 Inorganic semiconductors 

 

Figure 1.10 Band positions of some inorganic semiconductors and the redox potentials of CO2 reduction at pH 7. 

Figure was reproduced from the reference.40 

Since 1978, many inorganic semiconductors were investigated for photocatalytic CO2 

reduction such as metal oxide (TiO2, CuO, ZnO, WO3, ZnGeO4, NaNbO3), metal sulfides (CdS, 

ZnS), metal nitrides and phosphides (GaN, GaP), layered double hydroxide (LDH, such as Zn-

Al LDH) and metal-organic frameworks (MOFs, such as MOF-253 with Ru(bpy)(CO)3Br).15 

TiO2 is one of the best-investigated inorganic semiconductors due to its high photoactivity, low 

price and low toxicity.41 However, TiO2 (Figure 1.10) has a band gap of 3.2 eV and it can only 

absorb photons of light in the ultraviolet domain (λ< 400 nm).15 This domain is less than 5% 

of the entire solar spectrum. Impurity doping42, metal deposition43, alkali modification44, 

heterojunction construction45 and carbon-based material loading46 are the common approaches 

for improving the photocatalytic performance of TiO2. For instance, in 2014, Farcia and 

coworkers modified commercial TiO2 (P25) by using Au-Cu alloy nanoparticles as 

cocatalyst.47 The rate of CH4 was more than 2000 μmol g-1 h-1. The high rate was attributed to 

the surface plasmon band of Au. However, the constant activity was achieved under sun 

simulated light only.  

Many inorganic photocatalysts either have unsuitably aligned conduction/valence band 
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positions or relatively large band gaps (Figure 1.10), limiting their visible light 

absorption. Moreover, the long-term stability of most inorganic photocatalysts is not 

ideal. Furthermore, most systems still need additional noble metal complexes (e.g., 

bipyridine Ru complexes) as a photosensitizer. Hence, exploring photocatalysts that can be 

utilized in visible light without noble metal photosensitizers with excellent CO2 reduction 

performance and long-term stability is very attractive.  
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1.3 Organic semiconductors 

 

Figure 1.11 Comparison of CO2 reduction performances for representative g-C3N4 (black),20,48–51 CMPs 

(blue)22,28,52–56 and COFs (red),57–62 inorganic photocatalysts (green),21,27,63–67 and MOFs (purple)68–75. 

The band gap in organic semiconductors can be tuned readily through the incorporation 

of a diverse range of monomers.76–78In recent years, porous organic materials such as 

carbon nitrides,20,79,80 conjugated microporous polymers (CMPs),54,81 covalent triazine-

based frameworks (CTFs)28 and hyper-crosslinked polymers (HCPs)55 have been 

studied for photocatalytic CO2 reduction. Figure 1.11 shows the product generation rates 

and selectivities of some representative materials including inorganic and organic 

photocatalysts. From the results in Figure 1.11, the product generation rates of organic 

photocatalysts are typically lower than inorganic systems. This is due to organic 

photocatalysts being new materials for CO2 reduction. Some organic materials have 
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disordered structures resulting in lower charge carrier mobilities.82 However, the 

tunability and diverse formation reaction of organic photocatalysts can solve these 

limitations. 

1.3.1 Graphitic carbon nitrides 

 

Figure 1.12 Idealised chemical structures of g-C3N4 with triazine (a) and heptazine as units. 

Graphitic carbon nitride (g-C3N4) is a class of polymeric materials with a two-dimensional 

lamellar structure based on triazine rings and tri-s-triazine (heptazine) rings as its basic unit 

(Figure 1.12). g-C3N4 can be prepared by polymerization of cyanamide, dicyandiamide or 

melamine. Since 2009, g-C3N4 reported by X. Wang et al. as a polymeric photocatalyst for H2 

evolution sparked the surge of interest in organic photocatalysts around the world because it is 

sufficiently efficient, stable, inexpensive and has a band gap of approximately 2.7 eV which 

results in absorption of visible light.79  

1.3.1.1 g-C3N4 for photocatalytic CO2 reduction 

Integrating molecular catalysts as active sites on g-C3N4 is promising because such a hybrid 

system combines the excellent selectivity of the molecular cocatalyst and the durability of g-

C3N4.
10,25 Co (II) bipyridine complexes as cocatalysts were investigated for photocatalytic CO2 

reduction to CO in this strategy. Boron carbon nitride (BCN) with cadmium sulfide (CdS) 

nanoparticles or g-C3N4 with Co(bpy)3Cl2 as a reductive catalyst could achieve CO production 
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under visible light irradiation.20,50 A similar strategy was also reported and used for iron 

quaterpyridine and cobalt quaterpyridine complexes.83,84 However, the hybrid systems also 

suffer from the worse long-term stabilities of molecular complex cocatalysts. 

 

Figure 1.13 (a) Stucture of g-C3N4 loaded with single cobalt sites; (b) Stucture of molecular catalyst 

[Co(cyclam)Cl2]Cl (cyclam = 1,4,8,11-tetraazacyclotetradecane). 

The molecular catalyst [Co(cyclam)Cl2]Cl (cyclam = 1,4,8,11-tetraazacyclotetradecane) is a 

well-known cocatalyst for CO2 reduction (Figure 1.13b). The g-C3N4 based on heptazine units 

has a similar coordination to that of cyclam for single atoms. In 2018, Huang et al. worked on 

single Co2+ sites on g-C3N4 through Co-N coordination for CO2 reduction without additional 

ligands (Figure 1.13a).85 This work makes use of the structural characteristics of heptazine 

units in carbon nitride. However, this method has its limitations and is not suitable for g-C3N4 

with triazine rings unit. 

Until now, plenty of strategies were applied for better photocatalytic CO2 reduction 

performance such as defect engineering86, surface functioning87, cocatalyst loading88 and Z-

scheme system constructing89. The inadequate band gap tunability, in contrast, still limits g-

C3N4 as an excellent photocatalyst to adapt to a wider range of redox potentials. Besides, the 

synthesis of g-C3N4 is limited by low yield, high temperature and a small number of precursors. 

Other shortcomings such as small surface area, fast recombination of charge, poor crystallinity 

and many surface defects also restrict the application of g-C3N4.
90 Hence, the research into new 

materials with a tunable band gap, large surface area and high stability is still worthy of further 

investigation. 
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1.3.2 Conjugated microporous polymers 

 

Figure 1.14 Various reactions for synthesizing CMPs. Figure was reproduced from reference.91 

Conjugated microporous polymers (CMPs) have received much attention as a new type of 

photocatalyst due to their low cost, high chemical stability, and molecularly tunable 

optoelectronic properties.92 CMPs have strong covalent, π-conjugated network, high porosity 

and versatile gas adsorption and were first reported in 2007.93 CMPs are easily accessible via 

different cross-coupling reactions in mild experimental conditions as shown in Figure 1.14. 

According to the application requirements, CMPs can be designed through abundant 

commercial monomers and various synthetic chemistry. Hence, the band gaps of CMPs can be 

adjusted by the combination of different electron donors and acceptors.94 

As heterogeneous photocatalysts, CMPs were firstly investigated for photocatalytic activity in 

2015 for water splitting.76 This study proved over a broad range tunable optical gap by the 

combination of various monomers. The optimal combination enables the resultant polymers to 

be effective for photocatalytic hydrogen evolution with diethylamine as sacrificial agent and 

Pt as cocatalyst under visible light. Subsequently, by incorporating extended planarized units 

into the backbones, linear polymers (P1-P7) were demonstrated as good photocatalysts for 

HER.95 After that, porosity,96 hydrophilicity,97 heteroatoms98 and residual Pd99 have been 
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proven as factors for photocatalytic H2 evolution. 

Moreover, the use of high-throughput workflows in material discovery can accelerate the 

identification of the best photocatalysts. In 2019, 39 structurally diverse CMPs were reported 

by C. Meier et al. and tested for H2 evolution using a high-throughput workflow.100 Y. Bai et 

al. enlarged the library of co-polymers and found that P64 achieved an HER rate of 6 mmol g-

1 h-1, outstanding among 170 synthesized photocatalysts.101  

1.3.2.1 CMPs for photocatalytic CO2 reduction 

 

Figure 1.15 Chemical structures of CP5, CPs-BT, N-CP-D and PEsoinY-1. 

The success of photocatalytic hydrogen production by CMPs stimulated the development of 

their application for carbon dioxide reduction. Incorporating extended planarized units into the 

backbones is also used for designing and synthesizing CMPs for CO2 reduction. In 2017, Chen 

et al. reported a series of pyrene-based conjugated polymers containing different planarized 

units such as carbazole, dibenzo[b,d]furan and dibenzo[b,d]thiophene, resulting in band gaps 

between 2.17 eV and 2.86 eV. The ionic liquid was used to capture CO2 and H2O from the air, 

and the CP5 containing dibenzo[b,d]thiophene units (Figure 1.15) converted CO2 to CO under 

visible light with a rate of 47.37 μmol g-1 and a selectivity of 98.3%.53 This work demonstrated 
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that rationally designed CMPs could well achieve photocatalytic CO2 reduction. However, the 

CO generation rate was very low compared with those of inorganic materials and g-C3N4. 

Besides, the low surface area of CP5, residual nickel and the limited CO2 adsorption ability of 

ionic liquid restricted the performance. 

The integration of an electron mediator, which exhibits high quantum efficiencies, with 

semiconductor photocatalysts is a promising method to build efficient and stable artificial 

photosynthetic systems. Compared with pristine semiconductors, hybrid systems can 

remarkably enhance photocatalytic activity due to the acceleration of charge transfer and 

separation.81 For instance, CMPs containing benzothiadiazole units (CPs-BT in Figure 1.15) 

and CMPs without alkynyl groups (N-CP-D in Figure 1.15) can convert CO2 into CO under 

visible light with cobalt bipyridine complexes as the cocatalyst.22,28 N-CP-D reported in 2020 

had the best CO generation rate (2274 μmol g-1 h-1) among CMPs so far with a CO selectivity 

of 82% and an AQY of 3.39%.22 The strong interaction between CMPs and [Co(bpy)3]
2+ made 

it easy for photogenerated electrons to be transferred from the semiconductor to the cocatalyst. 

However, these CMPs were tested under 0.8 atm of pure CO2 gas instead of 1 atm and N-CP-

D had 0.66 wt% palladium residue inside, which could be a cocatalyst for H2 evolution and 

influence CO selectivity. 

To overcome the limited interaction between dissolved CO2 in the solvent with photocatalysts, 

conducting CO2 reduction in the gas phase is involved. Eosin Y-functionalized CMPs 

(PEosinY-1 in Figure 1.15) was designed to introduce dye into the backbone to increase the 

visible light absorption ability.56 PEosinY-1 (Figure 1.15) could do gas-phase CO2 reduction 

with gaseous H2O as a sacrificial agent and produced CO at a rate of 33 μmol g-1 h-1 and a 

selectivity of 92% over H2 under visible light (λ > 420 nm) irradiation. Photocatalysts could 

achieve high CO selectivity in gas phase condition. However, water oxidation is hard to be 

achieved by most CMPs due to insufficient driving force.16 The reported product generation 

rates in the gas phase are very low compared with those in the liquid phase with sacrificial 

donors. At present, most systems still use a liquid phase system to do half CO2 reduction 

reaction with high products generation rates. 
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In conclusion, the photocatalytic reduction of CO2 in an aqueous solution towards valuable 

products is a great challenge in the area of green chemistry. Further research on CMPs for the 

photocatalytic reduction of CO2 into organic products is highly significant. Hence, exploring 

and designing novel CMPs with excellent photocatalytic performance for CO2 reduction in 

aqueous solution will be a promising research area. Through the reported modification methods 

and design in the structure of CMPs, photocatalytic CO2 reduction in aqueous solutions will be 

systematically investigated and provide renewable energy for human beings. Besides, some 

factors such as residual metal and lack of crystallinity will affect the photocatalytic CO2 

reduction activities in generation rate and selectivity towards certain products. The Pd residue 

has been proven to be a cocatalyst for HER and plays a significant role in photocatalytic 

hydrogen production, which is a competing reaction and influences the selectivity of CO2 

reduction.102,103 It will be interesting to develop other crystalline organic semiconductors 

without any metal residues or to rational use of the metal residual to convert solar energy and 

CO2 reduction. 
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1.3.3 Covalent organic frameworks 

 

Figure 1.16 Synthesis of COF-1 and COF-6. Figure was reproduced from the reference.104 

Covalent organic frameworks (COFs) are a class of porous materials with extended crystalline 

structures. Two two-dimensional (2D) COFs (COF-1 and COF-5 in Figure 1.16) were firstly 

reported by Omar M. Yaghi and coworkers in 2005.104 Since, many literatures were reported 

for forming new types of linkage (Figure 1.17), such as triazine linked COFs in 2008,105 imine 

linked COFs in 2009,106 hydrazone linked COFs in 2011,107 β-ketoenamine linked COFs in 

2012,108 and polyimide linked COFs in 2014.109 Post-synthetic methods like linkage exchange 

or conversion are also explored to obtain functional COFs. For instance, imine-linked COFs 

can be oxidized to form amide linked COFs110 or reduced to generate amine linked COFs.111 

Three dimensional (3D) topological structures were achieved as a new interesting domain. By 

combining various knots and linkers, 2D or 3D COFs with diverse topologies could be 

generated. It is promising for COFs serving as candidates for photocatalysts like g-C3N4. On 

the one hand, the combination of various knots and linkers enables COFs with designable 

HOMO-LUMO levels and band gaps. On the other hand, the discovery of new chemistry 

(Figure 1.17) makes the obtained COFs stable in water and other harsh experimental conditions. 
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Figure 1.17 Reported synthetic reactions for differential linkages. Figure was reproduced from the reference.112  
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1.3.3.1 Olefin COFs 

 

Figure 1.18 Synthesis of 2DPPV and sp2c-COF via Knoevenagel condensation reaction. 

Before 2016, dynamic error correction from the full reversibility of the bond formation is 

necessary for yielding crystalline COFs. In such a case, the relationship between the feasibility 

of forming crystalline structures and the chemical stability of the resultant COFs is inverse. In 

2016, X. Zhuang et al. developed an olefin-linked 2D conjugated COFs (Figure 1.18a) by using 

an irreversible Knoevenagel condensation reaction of 1,3,5-tris(4-formylphenyl)benzene and 

p-phenylenediacetonitrile with Cs2CO3 as a base.113 A fully conjugated pyrene-based sp2c-

COFs (Figure 1.18b) was also designed and constructed by D. Jiang and coworkers via 

Knoevenagel condensation reaction of tetrakis(4-formylphenyl)pyrene and p-

phenylenediacetonitrile with NaOH (4 M) as a base.114 The obtained sp2c-COFs involving 

substituted acrylonitrile [-CH=C(CN)-] show π conjugation along both the x and y directions. 

After that, several unsubstituted olefin-linked COFs (Figure 1.19) were successfully 

synthesized via Knoevenagel or Aldol condensation between 2,4,6-trimethyl-1,3,5-triazine and 
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aldehyde monomers.115,116 These olefin COFs, which have good light absorbance ability and 

stability, have shown excellent photocatalytic performance. In 2019, Jiang et al. showed that 

the sp2c-COFERDN exhibited an HER rate of 2120 μmol g-1 h-1 under visible light.117 The 3-

ethylrho-danine (ERDN) electron deficient unit as an end-capping group was introduced to the 

sp2c-COF lattice, leading to a push-and-pull effect to the skeleton. The sp2c-COFERDN showed 

excellent stability and could retain their crystalline structures after photocatalysis or exposure 

to air for one year. 

 

Figure 1.19 (a) Synthesis of olefin COF (COF-701) via Aldol condensation reaction; (b) Synthesis of g-C18N3-

COF and g-C33N3-COF via Knoevenagel condensation reaction. 
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1.3.3.2 COFs for photocatalytic CO2 reduction 

  

Figure 1.20 Schematic representation of the structures of Nx-COF and FS-COF. 

COFs have the potential as photocatalysts due to their crystallinity, porosity, and extended 

conjugation with molecular tunability. The first photocatalytic application of COFs was 

reported by Lotsch and coworkers in 2014.118 This work picks a new way for COFs as 

photocatalysts. Subsequently, Lotsch et al. reported a series of azine-COFs named Nx-COF (x 

= 0-3) for HER by adjusting the number of nitrogen atoms in the central aryl ring.119 Linear 

polymers P7 and P10, containing dibenzo[b,d]thiophene sulfone in backbones, have been 

reported as excellent photocatalysts for water splitting.95,97 Inspired by P7 and P10, a sulfone-

containing COFs, FS-COFs (Figure 1.20), exhibited an HER rate of 10.1 mmol g-1 h-1, which 

was the highest photocatalytic activity for HER for COFs.36 Besides, the porous FS-COFs 

could be further sensitized by different dyes. All of these reported results demonstrated the 

molecular-level design space of tunable catalytic properties of COFs as photocatalysts. It also 

makes us believe that COFs can be excellent candidate semiconductors for photocatalytic CO2 

reduction. 

With the successful development of COFs for HER, photocatalytic carbon dioxide reduction 

by using COFs is also studied step by step. N3-COF has been proven as an excellent 

photocatalyst for HER. In 2018, N3-COF (Figure 1.22) was first applied as photocatalysts for 
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CO2 reduction. N3-COF can do gas-phase CO2 reduction with H2O as the electron donor under 

visible irradiation (800 nm ≥ λ ≥ 420 nm), producing methanol at rates of 13.7 μmol g-1 in 24 

hours.120 This work demonstrated that COFs could be promising photocatalysts for CO2 

reduction. However, the final product yield is very low by using COFs for CO2 reduction in 

gas phase conditions, which is the same issue as CMPs and g-C3N4. 

 

Figure 1.21 Synthesis of 2D triazine COF and Re-COF. 

Previous studies have shown that rhenium (I) bipyridine complexes fac-[ReI(bpy)(CO)3Cl] can 

act as a promising photocatalyst for generating CO with a high rate and selectivity.30 

Unfortunately, homogeneous photocatalysts are suffered from recovery and reuse. COFs 

incorporated with active molecular sites as heterogeneous catalysts can combine the good 

photocatalytic properties of molecular catalysts and the durability of COFs. A 2D triazine-

based imine COF containing bipyridine as linker and coordination sites was rational designed 

and synthesized via Schiff-base condensation of 2,2-bipyridyl-5,5-dialdehydeby and tris(4-

aminophenyl)triazine (Figure 1.21). The resultant 2D-COF was then anchored with rhenium 

complexes (Re(CO)5Cl) to form Re-COF.57 Under visible light irradiation, Re-COF could 

produce 750 μmol g-1 h-1 of CO with 98% selectivity in acetonitrile and TEOA mixture (15/1). 

It was proven that electrons transfer from the COF to the Re moiety. However, the 2D structure 

of Re-COF formed by imine bonds is partially π-conjugated, which still influences the charge 

separation and is not stable in base experimental conditions. The CO generation rate decreased 

after 10 hours of irradiation, which might be due to the loss of crystallinity in the presence of 

TEOA. 
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Figure 1.22 Synthetic method of COF-367-Co nanosheets. 

2D COFs have been demonstrated as porous scaffolds for molecular metal catalysts. Moreover, 

COFs could be exfoliated to increase the surface area and expose more catalytic metal sites to 

enhance their activity. Jiang and coworkers applied the bottom-up method to yield < 2 nm 

ultrathin imine-based porphyrin COF (COF-367-Co, Figure 1.22). COF-367-Co nanosheets 

could act as the photocatalyst for CO2 reduction and produced CO at a rate of 10162 μmol g-1 

h-1 with 78% selectivity of CO under visible light in aqueous media with additional 

[Ru(bpy)3]Cl2 as the photosensitizer.58 The formed nanosheets can expose more cobalt active 

sites, which increase the interaction between CO2 and reaction sites for CO2 reduction. By 

comparison, the obtained bulk COF-367-Co exhibited a low CO generation rate of 124 μmol 

g-1 h-1 with 13% selectivity of CO under the same conditions. This is the highest reported CO 

generation rate from CO2 reduction by COFs. However, the COF-367-Co has no activity 

without additional dye, and the stability of COF nanosheets is another issue for this imine type 

COF. Moreover, the selectivity is 78% which is lower than those of other COFs and CMPs. 

Also, the bottom-up approach via imine-exchange synthesis strategy can only be used for COFs 

synthesized by reversible reactions. 

In conclusion, compared with CMPs, COFs with well-defined crystalline structures are 

promising for CO2 reduction due to the controllable properties. Without any metal residue 
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inside, COFs can achieve high selectivity for certain products. However, the long-term 

stabilities of reported COFs are one problem. All the reported COFs for CO2 reduction are 

imine or β-ketoenamine linked COFs, which are partially π-conjugated and not stable in base 

experimental conditions. These reported COFs only achieved CO2 reduction for less than 10 

hours. Also, some COFs need additional dye for sensitization due to their limited light-

harvesting and/or the subsequent energy transfer abilities. It is very attractive to build fully π-

conjugated or stable COFs for CO2 reduction with high product generation rate, high selectivity 

for the final product and long-term stability. Applying irreversible chemistry to build olefin 

COFs or rationally modifying COFs is a new way for synthesizing photocatalysts for CO2 

reduction. 
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Table 1.4 Summary of the representative photocatalysts for photocatalytic CO2 reduction in Figure 1.11. 

Photocatalyst Photosensitizer 

Product 

evolution rate 

(μmol·g-1·h-1) 

TOF 
Selectivity 

(%) 
Reaction solvent  Reference 

mpg-CNx - 17.9 (CO) - 84.4 MeCN/TEOA  48 

BCN - 94 (CO) - - MeCN/H2O/TEOA 50 

CdS/BCN - 250 (CO) - 81.1% MeCN/H2O/TEOA 50 

HR-CN - 297 (CO) - 96.7% MeCN/TEOA 51 

MCN/CoOx - 204 (CO) - 78.5% MeCN/H2O/TEOA 20 

DA-CTF - 155 (CO) - 69% MeCN/H2O/TEOA 52 

CPs-BT - 1213 (CO) - 81.6% MeCN/H2O/TEOA 28 

N-CP-D - 2247 (CO) - 82% MeCN/H2O/TEOA 22 

L-CP-D - 806 (CO) - 86% MeCN/H2O/TEOA 22 

CP5 - 47.37 (CO) - 98.3 Ionic liquid/TEOA 53 

NOP-COP - 22.5 (CH4) - 90.2 MeCN/H2O/TEOA 54 

HCP-TiO2-FG - 27.63 (CH4) - 83.7% CO2/H2O vapor 55 

PEson-Y - 33 (CO) - 92% CO2/H2O vapor 56 

Re-COF  - 750 (CO) - 98% MeCN/TEOA 57 

Re-TpBpy COF - 275 (CO) - - MeCN/H2O/TEOA 121 

TTCOF-Zn - 2.06 (CO) - 100% H2O 61 

COF-318-TiO2 - 69.67 (CO) - - CO2/H2O vapor 122 

PI-COF-TT - 483 (CO) - 93% MeCN/TEOA 62 

Ni-TpBpy-COF [Ru(bpy)3]Cl2 966 (CO) - 96% MeCN/H2O/TEOA 59 

COF-367-CoNSs [Ru(bpy)3]Cl2 10162 (CO) - 78% 
Aqueous KHCO3 

solution/AA 
58 

DQTP COF-Co [Ru(bpy)3]Cl2 1020 (CO) - 69.4% MeCN/TEOA  60 

DQTP COF-Zn [Ru(bpy)3]Cl2 152.5 (HCOOH) - 90% MeCN/TEOA 60 

Co-ZIF-9 [Ru(bpy)3]Cl2 2600 (CO) 89.6 58% MeCN/H2O/TEOA 69 

Mn-MOF-74 [Ru(bpy)3]Cl2 1170 (CO) 5.5 52% MeCN/H2O/TEOA 69 

Co-ZIF-67 [Ru(bpy)3]Cl2 3890 (CO) - 63% MeCN/H2O/TEOA 70 

Ni MOLs [Ru(bpy)3]Cl2 12500 (CO) - 96.8% MeCN/H2O/TEOA 71 

2D-MOF Ni3(HITP)2 [Ru(bpy)3]Cl2 34500 (CO) 83.16 97% MeCN/H2O/TEOA 72 

ZIF-67 [Ru(bpy)3]Cl2 29600 (CO) 112 66.7% MeCN/H2O/TEOA 73 

Ni(TPA/TEG) [Ru(bpy)3]Cl2 16000 (CO) 11.5 100% MeCN/H2O/TEOA 74 

Ni3@Ru-UiO-67 - 426.05 (CO) 581 99% 
DMF/H2O/TEOA/

BIH 
75 

ZnIn2S4-In2O3 - 3075 (CO)  79.4% MeCN/H2O/TEOA 21 

In2S3-CdIn2S4 - 825 (CO)  73.3% MeCN/H2O/TEOA 27 

PCN-250-Fe2Mn [Ru(bpy)3]Cl2 21510 (CO) - 82.17% MeCN/H2O/TIPA 63 

Co3O4 [Ru(bpy)3]Cl2 2003 (CO) 1.45 77.1% MeCN/H2O/TEOA 64 

PMMCoCC-1200 [Ru(bpy)3]Cl2 1380 (CO) - 64.21% MeCN/TEOA 65 

NC@NiCo2O4 [Ru(bpy)3]Cl2 26200 (CO) - 88.6% MeCN/H2O 66 

MnCo2O4 [Ru(bpy)3]Cl2 30200 (CO) 9.3 71% MeCN/H2O/TEOA 123 

ZnCo2O4 [Ru(bpy)3]Cl2 17600 (CO) 10.8 74.3% MeCN/H2O/TEOA 67 
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1.4 Aims and objectives 

The core aim of this thesis is to achieve the conversion of carbon dioxide into value-added 

products, CO or syngas, by using organic semiconductors in the presence of sacrificial agents. 

The use of conjugated polymers as photocatalysts is of growing interest due to their earth-

abundance (mainly composed of C, H, O, N and S) and wide molecular-level design space 

giving remarkable structural and functional diversity.  

The main objectives of this thesis were: 

⚫ To establish a workflow for high throughput screening linear polymers to find promising 

photocatalysts for syngas generation. 

⚫ To synthesize sp2c covalent organic frameworks (COFs) for producing CO with high 

activity. 

⚫ To study fluorinated COFs as a stable imine-COF-based photocatalyst with non-noble 

metal complexes as cocatalysts for generating CO with high yield and selectivity. 

In Chapter 2, we tested linear polymers for syngas generation with the help of a high 

throughput system. Linear polymers and commercial semiconductors were first measured 

because they have been proved as good photocatalysts for HER and can be largely used for 

CO2 reduction screenings to get a basic understanding. The optical properties, electronic 

properties, dispersibility, and residual metal amounts of linear polymers were studied for the 

activity and selectivity for CO2 reduction. 

In Chapter 3, we focused on fully conjugated olefin COFs for producing CO with high 

selectivity. Chemical robustness, photosensitization and crystallinity were investigated for 

designing highly active COFs photocatalysts for CO2 reduction. COFs were chosen because 

they can combine porosity with crystallinity and have shown strong potentials as solar fuels 

photocatalysts. The properties of COFs are easily tuned through the modular incorporation of 

different building blocks. Meanwhile, most COFs have no residual metals inside, which can 

reduce the effect of residual palladium on CO selectivity and obtain highly active 

photocatalysts. One challenge here is the reversible bond-formation chemistry used in making 



 34 

most COFs, which leads to varying degrees of long-term instability under photocatalytic 

conditions. Instability is perhaps the central challenge for such materials, even more than 

catalytic rate and selectivity. Olefin COFs can keep their crystallinity in base and acid 

experimental conditions. The chemical robustness of the olefin COF stems from its fully π-

conjugated backbone, which is also beneficial for efficient light-harvesting and charge 

transport, and hence photocatalytic activity.  

In Chapter 4, we measured the fluorinated COFs as stable imine-COF-based photocatalysts 

combined with non-noble-metal-based molecular complexes as the cocatalyst to achieve both 

a high CO2 reduction efficiency and a high CO selectivity. The introduction of fluorine atoms 

in the COFs’ backbone is a strategy to improve the interaction between COF layers and the 

affinity of the materials to CO2 molecules. We explored their structure−property−activity 

relationships by screening CO2 reduction photoactivity for isostructural COFs under the same 

conditions. CO2 affinity, pore size, and light absorption of photosensitizer significantly 

influenced photocatalytic CO2 reduction activity. 
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2.2 Introduction 

Organic materials such as conjugated microporous polymers (CMPs)1,2, covalent triazine-

based frameworks (CTFs)3,4, covalent organic frameworks (COFs)5–8 and unbranched 

conjugated polymers9 are regarded as candidates for CO2 reduction. When using photocatalysts 

for syngas generation and application for further industrial processing, different syngas 

compositions containing either CO-rich or H2-rich mixtures are required.10–13 Because 

controlling the H2/CO generation in certain ratios is very difficult, much research is focused on 

obtaining photocatalysts with high selectivity for CO over H2. It is worthwhile to generate 

syngas of different ratios by certain organic photocatalysts. 

In this chapter, initially, to establish a workflow for high throughput screening materials for 

CO2 reduction and accelerate our understanding of material design, conjugated polymers such 

as P1 or P7 and commercial photocatalysts such as g-C3N4 or TiO2 were used to meet the need 

for a large amount of material required for screenings. First, we measured different 

experimental conditions for commercial materials and conjugated polymers for CO2 reduction 

and chose the liquid phase for further investigation. Second, variations of metal doped 

polymers were tested as cocatalysts to improve the rates and selectivity of CO production. 

Third, cobalt chloride (CoCl2) and 2,2’-bipyridine (bpy) as a cheap, easy-prepared and efficient 

molecular cocatalysts for high throughput screening were introduced into experiment condition. 

Results showed that CO generation rate could be enhanced by the system with molecular 

cocatalyst. Hence, we chose system containing cobalt complexes for further screening. Next, 

the influence of residual palladium was tested. We tried to remove the palladium and reduce its 

influence. Then, we screened a series of linear polymers with different chemical structures in 

the backbone, such as sulfone units, carbazole units, benzothiadiazole units or linear polymers 

containing different nitrogen atoms which could change the properties of polymers, for CO2 

reduction by using molecular cocatalysts to find the principles of design for promising CO2 

reduction photocatalysts to generate different ratios of CO and H2. P7 was found that has the 

best CO generation rate and CO selectivity. However, Pd residual was also demonstrated could 

be cocatalysts for hydrogen evolution which influences the selectivity of CO. Finally, P7 with 

different amounts of Pd residue was synthesized for controllable syngas generation. 
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2.3 Experimental section 

2.3.1 General methods 

All reagents were obtained from Sigma-Aldrich, TCI, ABCR, Fisher Scientific or 

Fluorochem and used as received. Cobalt (II) chloride hexahydrate (BioReagent), 2,2’-

bipyridyl (bpy, Reagent Plus, ≥99%) and triethanolamine (≥99.0%) were purchased 

from Sigma-Aldrich. Acetonitrile (HPLC gradient grade), N,N-dimethylformamide (GC 

Headspace Grade) were obtained from Fisher Scientific. Water for the CO2 reduction 

experiments was purified using an ELGA LabWater system with a Purelab Option S 

filtration and ion exchange column (ρ = 15 MΩ cm−1) without pH level adjustment. 

Reactions were carried out under nitrogen atmosphere using standard Schlenk 

techniques. Photocatalysts P1K,14 P1S,14 P4,14 P7,14 P10,15 P29,16 P30,16 and P3116 were 

prepared according to literature procedures. 

2.3.2 Synthesis of P1K (Kumada-type polycondensation)  

 

Figure 2.1 Synthesis of P1K via Kumada-type polycondensation.14 

1,4-Dibromobenzene (2.95 g, 12.61 mmol), magnesium (0.305g, 12.55 mmol) and THF 

(20 mL, anhydrous) were first heated to reflux for 45 min. Then, [1,3-

Bis(diphenylphosphino)propane]dichloro-nickel(II) (50 mg, 0.1 mmol) were added and 

the reaction was kept at reflux for 22 hours. After cooling, the crude polymer was poured 

into acetone. Next, the mixture was filtered and washed with hydrochloric acid (1 M), 

water, methanol and THF. Next, the material was purified by Soxhlet extraction with 

methanol and THF for three days. After drying under reduced pressure, the product was 

obtained as a light green powder. 
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2.3.3 Synthesis of P1S (Suzuki-Miyaura-type polycondensation)  

 

Figure 2.2 Synthesis of P1S via Suzuki-Miyaura-type polycondensation.14 

1,4-Dibromobenzene (1.18 g, 5.0 mmol), 1,4-benzene diboronic acid (0.829 g, 5.0 

mmol), [Pd(PPh3)4] (38 mg, 0.7 mol%), N,N-dimethylformamide (75 mL) and aqueous 

K2CO3 (2.0 M, 15 mL) were added into a flask and degassed by bubbling with N2 for 

30 min. Then the mixture was heated to reflux for three days. After cooling, the crude 

polymer was poured into water. Next, the mixture was filtered and washed with water, 

THF and methanol. Next, the material was purified by Soxhlet extraction with 

chloroform for three days. After that, the product was obtained as a grey powder. 

2.3.4 Synthesis of P4 

 

Figure 2.3 Synthesis of P4 via Suzuki-Miyaura-type polycondensation.14 

2,7-Dibromo-9H-carbazole (0.325 g, 1.0 mmol), 1,4-benzene diboronic acid (0.165 g, 

1.0 mmol), [Pd(PPh3)4] (15 mg, 1.3 mol%), N,N-dimethylformamide (15 mL) and 

aqueous K2CO3 (2.0 M, 3 mL) were added into a flask and degassed by bubbling with 

N2 for 30 min. Then the mixture was heated to reflux for three days. After cooling, the 

crude polymer was poured into water. Next, the mixture was filtered and washed with 

water, THF and methanol. Next, the material was purified by Soxhlet extraction with 

chloroform for three days. After that, the product was obtained as a green-grey powder. 
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2.3.5 Synthesis of P7 

 

Figure 2.4 Synthesis of P7 via Suzuki-Miyaura-type polycondensation.14 

3,7-dibromodibenzo[b,d]thiophene 5,5-dioxide (0.748 g, 2.0 mmol), 1,4-benzene 

diboronic acid (0.331 g, 2.0 mmol), [Pd(PPh3)4] (20 mg, 0.9 mol%), N,N-

dimethylformamide (40 mL) and aqueous K2CO3 (2.0 M, 8 mL) were added into a flask 

and degassed by bubbling with N2 for 30 min. Then the mixture was heated to reflux for 

three days. After cooling, the crude polymer was poured into water. Next, the mixture 

was filtered and washed with water, THF and methanol. Next, the material was purified 

by Soxhlet extraction with chloroform for three days. After that, the product was 

obtained as a green powder. 

2.3.6 Synthesis of P10S (Suzuki-Miyaura-type polycondensation)  

 

Figure 2.5 Synthesis of P10S via Suzuki-Miyaura-type polycondensation.15 

3,7-dibromodibenzo[b,d]thiophene-5,5-dioxide (281 mg, 0.75 mmol), 3,7-bis(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzo[b,d]thio-phene-5,5-dioxide (351 mg, 0.75 

mmol), N,N-dimethylformamide (20 mL), an aqueous solution of K2CO3 (4 mL, 2.0M), 

and [Pd(PPh3)4] (15 mg) were added into a flask and degassed by bubbling with N2 for 

30 min. Then the mixture was heated to reflux for three days. After cooling, the crude 

polymer was poured into water. Next, the mixture was filtered and washed with water, 

THF and methanol. Next, the material was purified by Soxhlet extraction with 

chloroform for three days. After that, the product was obtained as a yellow-green 

powder.  



 48 

2.3.7 Synthesis of P10Y (Yamamoto coupling) 

 

Figure 2.6 Synthesis of P10Y via Yamamoto coupling polycondensation.15 

3,7-dibromodibenzo[b,d]thiophene 5,5-dioxide (374 mg, 1.00 mmol), 2,2’-bipyridine 

(344 mg, 2.20 mmol) were charged in a flame-dried Schlenk flask and transferred into 

a glove-box. The bis(cyclooctadiene)nickel(0) (660 mg, 2.40 mmol) was added in the 

glove-box. Outside the glove-box, 1,5-cyclooctadiene (338 mg, 2.20 mmol) and N,N-

dimethylformamide (anhydrous, 20 mL) were added, and the resulting suspension was 

heated to 80 °C under nitrogen for three days. After cooling to room temperature, 

hydrochloric acid was added (conc., 20 mL), and the polymer was filtered off. The 

polymer was washed with water until neutral, and then methanol and tetrahydrofuran. 

Next, the material was purified by Soxhlet extraction with chloroform for three days. 

The product was obtained as a yellow powder.  

2.3.8 Synthesis of P29 

 

Figure 2.7 Synthesis of P29 via Suzuki-Miyaura-type polycondensation.16  

2,5-Dibromopyrrimidine (476 mg, 2.0 mmol), benzene-1,4-diboronic acid (332 mg, 2.0 

mmol), an aqueous solution of K2CO3 (8 mL, 2.0 M), N,N-dimethylformamide (40 mL), 

and [Pd(PPh3)4] (40 mg) were added into a flask and degassed by bubbling with N2 for 

30 min. Then the mixture was heated to reflux for three days. After cooling, the crude 

polymer was poured into water. Next, the mixture was filtered and washed with water, 

THF and methanol. Next, the material was purified by Soxhlet extraction with 

chloroform for three days. The product was obtained as a dark gray powder. 
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2.3.9 Synthesis of P30 

 

Figure 2.8 Synthesis of P30 via Suzuki-Miyaura-type polycondensation.16  

5,5′-Dibromo-2,2′-bipyridine (1.26 g, 4.0 mmol), benzene-1,4-diboronic acid (0.663 g, 

4.0 mmol), an aqueous solution of K2CO3 (12 mL, 2.0 M), N,N-dimethylformamide (80 

mL), and [Pd(PPh3)4] (60 mg) were added into a flask and degassed by bubbling with 

N2 for 30 min. Then the mixture was heated to reflux for three days. After cooling, the 

crude polymer was poured into water. Next, the mixture was filtered and washed with 

water, THF and methanol. Next, the material was purified by Soxhlet extraction with 

chloroform for three days. The product was obtained as a green powder.  

2.3.10 Synthesis of P31 

 

Figure 2.9 Synthesis of P31 via Suzuki-Miyaura-type polycondensation.16  

2-Bromopyridine-5-boronic acid pinacol ester (1.13 g, 4.0 mmol), an aqueous solution 

of K2CO3 (8 mL, 2.0 M), N,N-dimethylformamide (40 mL), and [Pd(PPh3)4] (20 mg) 

were added into a flask and degassed by bubbling with N2 for 30 min. Then the mixture 

was heated to reflux for three days. After cooling, the crude polymer was poured into 

water. Next, the mixture was filtered and washed with water, THF and methanol. Next, 

the material was purified by Soxhlet extraction with chloroform for three days. The 

product was obtained as a dark green powder. 
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2.3.11 Synthesis of P74 

 

Figure 2.10 Synthesis of P74 via Suzuki-Miyaura-type polycondensation.  

4,7-Dibromo-2,1,3-benzothiadiazole (412 mg, 1.4 mmol), 2,1,3-benzothiadiazole-4,7-

bis(boronic acid pinacol ester) (543 mg, 1.4 mL), N,N-dimethylformamide (40 mL) and 

K2CO3 (aqueous, 2 M, 8 mL) were combined and degassed with nitrogen for 30 minutes. 

Then [Pd(PPh3)4] (40 mg) was added and the mixture was heated to 150 °C for two days. 

After cooling to room temperature, the reaction mixture was poured into water. The 

solids were filtered off and washed with methanol. The polymer was purified using 

Soxhlet extraction with chloroform to give P74 as a dark powder (387 mg, quant.). Anal. 

calcd for (C6H2N2S)n: C, 53.72; H, 1.50; N, 20.88%; found C, 49.13; H, 0.95; N, 18.26% 

2.3.12 High-throughput CO2 reduction experiments  

Photocatalysts (5 mg), CoCl2 (0.5-10 μmol) and 2,2’-bipyridine (1.0-20 mg) were added 

into sample vials (V = 12.5 mL) and purged with carbon dioxide in a Sweigher 

Chemspeed Technologies robotic platform for 3 hours. A liquid handling system 

transferred water/solvent/hole-scavenger mixture (water/acetonitrile/triethanolamine, 

3:1:1, 5 mL) from stock jars inside the system into the sample vials. A capper/crimper 

tool was then used to seal the vials under the CO2 atmosphere automatically. All sample 

vials were ultrasonicated in an ultrasonic bath for 5 minutes before illumination using a 

solar simulator (AM1.5G, Class AAA, IEC/JIS/ASTM, 1440 W xenon, 12 × 12 in., 

MODEL:94123A) for the time specified while constantly being redispersed with a 

rocker/roller device. Samples of gaseous products were analysed using a Shimadzu 2014 

HS-GC gas chromatograph equipped with a ShinCarbon ST micropacked column 

(Restek 80-100 mesh, 2 m length, 0.53 mm inner diameter) and a thermal conductivity 

detector. All samples were duplicated to ensure reproducibility within a run. 
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2.3.13 CO2 reduction experiments 

A quartz flask was charged with polymer powder (5 mg), 2,2’-bipyridine (10 mg), 

cobalt (II) chloride (5 µmol), a mixture of acetonitrile, water and triethanolamine (3:1:1 

vol., 25 mL), and sealed with a septum. The resulting suspension was ultrasonicated for 

20 minutes and then purged with CO2 for 30 minutes. The mixture was illuminated by 

an Oriel Instruments LSH-7320 Solar Simulator (IEC ABA certified) with 1 Sun output. 

Laser adjustment of the instrument was used to adjust the distance of the reaction flask 

to the light source. Samples of gaseous products were taken with a gas-tight syringe and 

run on a Shimadzu GC-2014 gas chromatograph equipped with a ShinCarbon ST 

micropacked column (Restek 80-100 mesh, 2 m length, 0.53 mm inner diameter) and a 

thermal conductivity detector. Gases dissolved in the reaction mixture, and the pressure 

increase generated by the evolved gases were neglected in the calculations.  

2.3.14 Determination of external quantum efficiency for CO production  

The external quantum efficiencies of CO production were determined using 

monochromatic LED light (λ = 395, 405, 420, 490 and 515 nm). The reactions were 

conducted on the same photochemical experimental setup under the optimized reaction 

conditions. For the experiments, P7-0.1% (1 mg) 2,2’-bipyridine (2 mg) and cobalt (II) 

chloride (1 µmol) were suspended in acetonitrile, water and triethanolamine (3:1:1 vol. 

mixture, 5 mL). The illuminated area was 8 cm2 and the light intensity was measured 

by a ThorLabs PM100D Power and Energy Meter Console with a ThorLabs S120VC 

photodiode power sensor. The EQE was calculated using the following equation:  

EQE% = 2 × [(n CO) × NA × h × c)] × 100% / (I × S × t × λ) 

Where, NA is Avogadro constant (6.022 × 1023 mol-1), h is the Planck constant 

(6.626 × 10-34 J s), c is the speed of light (3 × 108 m s-1), S is the irradiation area (cm2), 

I is the intensity of irradiation light (W cm-2), t is the photoreaction time (s), λ is the 

wavelength of the monochromatic light (m). 
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2.3.15 Isotopic labelling experiments 

13CO2 Labelling experiments were carried on a Bruker Vertex 70V Fourier-transform 

infrared spectrometer with an argon-purged custom-made gas IR cell. A vial containing 

the photocatalyst, 2,2’-bipyridine and cobalt (II) chloride in a mixture of 

acetonitrile/water/triethanolamine (3:1:1) was purged with 13CO2 (Sigma-Aldrich, 99 

atom % 13C, <3 atom % 18O) for 3 minutes. Then the resulting suspension was 

illuminated for 1 hour using an Oriel Instruments LSH-7320 Solar Simulator (IEC ABA 

certified) with 1 Sun output. A sample of the gas headspace (1000 µL) was injected into 

the gas IR cell, and the IR spectrum was measured (32 scans with a resolution of 0.5 cm-

1). The background was measured using Ar purged cell and subtracted from the 

measurement. 
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2.4 Methodology for CO2 reduction by high throughput screening 

2.4.1 Test of different experimental conditions 

 

Figure 2.11 Evolution rates of H2 (left y-axis) and CO (right y-axis) from pure water using different catalysts. 

Reaction conditions: photocatalyst (5 mg), solution (5.0 mL H2O). Reaction time: 5 h. 

Figure 2.11-2.14 showed the results of commercial photocatalysts and polymers for CO2 

reduction under different experimental conditions with the help of a high throughput system. 

Every sample was measured twice to minimize the error.  

In the pure water experimental condition (Figure 2.11), the production of H2, CO or CH4 were 

very low. Among them, 5% Pt loaded TiO2 had a relatively good performance. Graphene carbon 

nitride or g-C3N4 with Pt as co-catalyst did not show the presence of gaseous products above 

the detection limit. The H2 evolution rate of Pt loaded P7 only achieved 7 μmol g-1 h-1. In 

aqueous systems without additional electrons donors inside, the lifetimes of photo-generated 

electrons are too short due to the surface or bulk charge recombination of photo-generated 

electrons. Besides, the solubility of CO2 in water is quite low. And CO2 reduction is a more 

complex and challenging process to realize than hydrogen generation from water. Hence, CO 

was not detected. 
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Figure 2.12 Evolution rates of H2 (left y-axis) and CO (right y-axis) from water with TEOA scavenger. Reaction 

conditions: photocatalyst (5 mg), solution: 5.0 mL of 4/1 (v/v) H2O/TEOA. Reaction time: 5 h. 

After using TEOA as scavengers in water (Figure 2.12), the rates of H2 and CO generation 

increased hugely. The rate of H2 generation for TiO2 improved from 2 μmol g-1 h-1 to 100 μmol 

g-1 h-1. Among the tested photocatalysts, the H2 evolution rates of TiO2/Pt and P7 achieved over 

3000 μmol g-1 h-1. However, the CO2 conversion results were still not ideal. P25 or anatase 

TiO2 could not generate any detectable CO. P1, P7 or g-C3N4 produced 0.3, 0.7 and 3.3 μmol 

g-1 h-1 of CO, respectively. Interestingly, TiO2/Pt could produce CO and CH4 with rates of 1.7 

and 2.1 μmol g-1 h-1 simultaneously. However, the CO generation rate and selectivity were low.  

 

Figure 2.13 (a) Evolution rates of H2 (left y-axis) and CO (right y-axis) from acetonitrile/water solution with 
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TEOA scavenger; (b) Results of different photocatalysts in tetrahydrofuran/water mixed solution with TEOA as 

scavengers. Reaction conditions: photocatalyst (5 mg), 5.0 mL of 3:1:1 (v/v/v) MeCN/H2O/TEOA or 5.0 mL of 

3:1:1 (v/v/v) THF/H2O/TEOA. Reaction time: 5 h. 

Considering the limited solubility of CO2 in water, organic solvents were tried to increase the 

amount of dissolved CO2. Moreover, an appropriate amount of H2O was added into the 

reduction system as the resource of protons. Results in Figure 2.13 indicate applying organic 

solvents (acetonitrile and tetrahydrofuran) could enhance the CO2 reduction performance. For 

P7 in acetonitrile, the CO evolution rate was over 13 μmol g-1 h-1 which was three times than 

that in THF and water. Even though H2 evolution rates in MeCN/H2O system were higher than 

those in the THF/H2O system, we chose the MeCN/H2O system to gain excellent CO evolution 

rates. 

 

Figure 2.14 Evolution rates of H2 (left y-axis) and CO (right y-axis) from CO2 and 0.05 mL water (a) or 0.1 mL 

water (b). Reaction conditions: photocatalyst (5 mg), 0.05 mL or 0.1 mL H2O, heat at 90 ℃. Reaction time: 5 h. 

n.d.: not detectable.  

Gas-phase photoreaction was also measured by adding different amounts of water into vials 

(Figure 2.14). To do CO2 reduction in the gas-phase, 0.05 mL or 0.1 mL H2O were added into 

vials and then heated to 90 ℃ to generate water vapour. With 0.05 mL H2O, P7 produced 3.23 

μmol g-1 h-1 of H2 and 0.22 μmol g-1 h-1 of CO and P1 produced 0.22 μmol g-1 h-1 of CO but no 

detected H2. However, with 0.1 mL H2O, both P1 and P7 could not produce detectable H2 or 

CO. This means that the volume of H2O has a significant influence on CO2 reduction. Too 
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much H2O would change the reaction system into an aqueous system. TiO2 showed a similar 

tendency. TiO2 produced 20.59 μmol g-1 h-1 of H2 and 0.35 μmol g-1 h-1 of CO with 0.05 mL 

H2O but generated 12.64 μmol g-1 h-1 of H2
 only with 0.1 mL H2O. 

In conclusion, gas-phase photoreactions give better results of selectivity for polymers. 

However, in such a system, strict requirements are needed for materials because the 

photocatalysts need to achieve CO2 reduction reaction and water oxidation reaction 

simultaneously. To study the CO2 reduction step by step, we selected liquid-phase with 

sacrificial electrons donors for investigation first. 

2.4.2 Variations of metal doping as cocatalyst 

 

Figure 2.15 Schematic illustration of the synthesis of different metal-nanoparticle-loaded P7 

 

Figure 2.16 UV-vis spectra of P7 as synthesized and loaded with different metal nanoparticles.  

As discussed above, the performance of P7 and P7/Pt is not ideal due to the low CO generation 
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rate and CO selectivity. Finding the right co-catalysts could improve the rate and selectivity of 

product evolution. In this section, by doping different metals in P7, we tested the influence of 

variations of metal nanoparticles. Figure 2.15 shows a flow chart of doping different metal 

nanoparticles in P7 by adjusting the methods in the literature.17 UV-Visible spectroscopy (UV-

Vis) measures the extinction (scatter + absorption) of light passing through a sample. 

Nanoparticles have unique optical properties that are sensitive to the size, shape, concentration, 

agglomeration state, and refractive index near the nanoparticle surface, which makes UV-Vis a 

valuable tool for identifying, characterizing, and studying nanomaterials. UV-vis spectra 

(Figure 2.16) suggested 5-10 nm red-shifts when loading Ag, Au, Rh, Pt and Ir, but 12 nm blue 

shifts for Ru which meant the band gap changes. P7 with Ag, Au, Rh, Pt and Ir had a lower 

band gap than pure P7, but P7/Ru had a bigger band gap. Besides, gold nanoparticles exhibit a 

distinct feature commonly referred to as localized surface plasmon resonance (LSPR). The 

collective oscillation of electrons in the conduction band of gold nanoparticles in resonance 

with a specific wavelength of incident light. LSPPR of Au/P7 results in a strong absorbance 

band in the 500-600 nm.18
 

 

Figure 2.17 Gas evolution rates of H2 (left y-axis) and CO (right y-axis) of P7 as synthesized and loaded with 

various metal nanoparticles. Reaction conditions: photocatalyst (5 mg), 5.0 mL of 3:1:1 (v/v/v) 

MeCN/H2O/TEOA. Reaction time: 5 h. 

From the results shown in Figure 2.17, all the samples had almost the same H2 generation rates 

(about 3000 μmol g-1 h-1). P7/Au achieved more than 27 μmol g-1 h-1 and 0.9 % selectivity for 
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CO evolution rate which suggested gold nanoparticles were the best co-catalyst compared with 

other metal nanoparticles. However, both the rate and selectivity were relatively low. The 

different metal-nanoparticle-loaded P7 needs to be prepared in advance and the yield is limited 

which cannot meet the need for high-throughput experiments. Moreover, noble metal-based 

cocatalysts are not suitable for future industrial-scale applications for CO2 reduction due to 

their scarcity and high price.19 It is still needed to find other efficient and selective co-catalysts 

such as molecular co-catalyst with different conjugated polymers for high throughput screening 

CO2 reduction experiments. 

2.4.3 Molecular co-catalyst 

 

Figure 2.18 (a) Gas evolution rates of H2 (left y-axis) and CO or CH4 (right y-axis) of different photocatalysts 

with Co(bpy)3
2+; (b) CO selectivity of different photocatalysts with Co(bpy)3

2+. Reaction conditions: photocatalyst 

(5 mg), bpy (2 mg), CoCl2 (0.001 μmol), 5.0 mL of 3:1:1 (v/v/v) MeCN/H2O/TEOA. Reaction time: 5 h. 

In 2013, Xinchen Wang and his colleagues introduced [Co(bpy)n]
2+ acting as a solution-based 

molecular co-catalyst, the g-C3N4 hybrid system achieved good CO2 conversion performance.20 

Besides, in 2016, Walsh et al. investigated g-C3N4 with [Co(bpy)n]
2+ as a cocatalyst for 

photocatalytic CO2 reduction.21 Many other semiconductors such as CdS, conjugated polymers 

or ZnIn2S4−In2O3 were reported for CO2 reduction by using [Co(bpy)3]
2+ as a cocatalyst.3,22,23 

These works provided an easy and efficient strategy to enhance CO2 reduction ability.  

Initially, 0.001 μmol cobalt (II) chloride (CoCl2) and 2 mg bpy were added into the 
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photoreduction experimental system. Following this strategy, various photocatalysts including 

several excellent hydrogen evolution photocatalysts were tested (Figure 2.18). It is noted that 

both the CO production and selectivity of g-C3N4, TiO2, P1 and P7 increased significantly when 

CoCl2 and bpy were added. 100 μmol g-1 h-1 CO was produced by P10 which was almost two 

times than that of P7. For selectivity of CO, g-C3N4 reached more than 70% while P7 and P10 

could afford 2% and 5%. In the absence of [Co(bpy)3]
2+, the CO2 reduction performance was 

not satisfactory. All the results revealed that [Co(bpy)3]
2+ could be an effective and efficient 

CO2 reduction co-catalyst for polymer photocatalysts. Moreover, the system containing cobalt 

complexes can be easy prepared for high throughput screening. Hence, we use [Co(bpy)3]
2+ as 

a cocatalyst for further high throughput experiments. 

2.4.4 Extraction of palladium in P7  

 

Figure 2.19 (a) UV-vis spectra of P7 and P7 after extraction; (b) CO selectivity and yield of H2 and CO of g-C3N4, 

P7 and P7 after extraction. Reaction conditions: photocatalyst (5 mg), bpy (2 mg), CoCl2 (1 μmol), 5.0 mL of 

3:1:1 (v/v/v) MeCN/H2O/TEOA. Reaction time: 5 h. 

The results from P7 with different noble metal doping indicated the influence of different metal 

cocatalysts for CO generation. Besides, it is known that palladium residue in the final polymer 

cannot be avoided when carrying out Pd(0)-catalyzed Suzuki-Miyaura polycondensation. Pd 

also acts as a co-catalyst for photocatalytic CO2 conversion. The effect of noble metal co-

catalysts was examined and it was found that the rate of CH4 formation from TiO2 increased in 

the sequence of Ag < Rh < Au < Pd < Pt, corresponding well to the increase in the efficiency 
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of electron-hole separation.24 However, the reduction of H2O to H2 was accelerated more than 

the reduction of CO2 with Pd as a cocatalyst for TiO2, leading to a lower selectivity for CO2 

reduction.24 In this case, it is necessary to investigate the effect of residual Pd in polymers. To 

do this, 100 mg P7 was put in 50 mL sodium diethyldithiocarbamate solution (0.05M), and the 

suspension was stirred at 65 ℃ overnight. After that, P7 was washed with DI water and 

methanol several times. Finally, the obtained P7 was dried in a vacuum at 80 ℃ overnight. A 

slight difference was noticed in the UV-vis spectra (Figure 2.19a). The CO2 reduction 

performance of P7, P7 after extraction and g-C3N4 were tested under the optimized 

experimental conditions. P7 before and after the extraction showed no significant changes in 

their photocatalytic performance (Figure 2.19b). More than 1400 μmol g-1 h-1 of H2 and 650 

μmol g-1 h-1 of CO were generated in both P7 before and after the extraction. Considering the 

yield of CO and selectivity for CO over H2, P7 achieved better results than commercial g-C3N4 

(200 μmol g-1 h-1 of H2, 47 μmol g-1 h-1 of CO, 18% CO selectivity). However, the performance 

of P7 was not good due to the low selectivity of CO, demonstrating the Pd residuals were hard 

to be removed. 
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2.5 High-throughput screening of conjugated polymers 

 

Figure 2.20 Structures of the photocatalysts. 

The aim of this section is to explore whether a single photocatalyst could generate both 

H2 and CO and the H2:CO ratio could be controlled. To do this, a series of conjugated 

polymers was synthesized via Suzuki-Miyaura polycondensation using Pd(0), which 

leads to the presence of residual palladium particles within the material (Figure 2.20). 

The residual palladium has been demonstrated to act as a co-catalyst for hydrogen 

production from water in previous literature.25–27 Here, a range of photocatalysts was 

investigated: p-sexiphenylene,28 poly(p-phenylene) (P1),14 a carbazole-phenylene co-

polymer (P4),14 a dibenzo[b,d]thiophene sulfone co-polymer (P7),14,15 the homopolymer 

of dibenzo[b,d]thiophene sulfone (P10),15 a pyrimidine-phenylene co-polymer (P29),16 

a bipyridine-phenylene co-polymer (P30),16 poly(pyridine) (P31),16 and 

poly(benzothiadiazole) (P74). 

 

Figure 2.21 Workflow for high-throughput property screening of conjugated polymers.29 
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The high-throughput workflow used here for screening HER photocatalysts has been 

reported (Figure 2.21).29,30. All the polymers were measured as photocatalysts for CO2 

reduction under solar irradiation with such a workflow. To do high-throughput 

screening of photocatalytic CO2 reduction, vials (V = 12.5 mL) were firstly charged with 

photocatalysts (5 mg), CoCl2 (1 μmol), which acts as the co-catalyst, and 2,2’-bipyridine 

(bpy, 2 mg), which is required to form catalytically active Co centres.9,20–22,31  

After transferring vials into a liquid handling robot, the system was closed and purged 

for three hours with CO2. The liquid handler then added water (1 mL), acetonitrile 

(MeCN, 3 mL), acting as an inert co-solvent, and triethanolamine (TEOA, 1 mL), which 

acts as the hole scavenger, before capping the vials. After capping, the samples were 

sonicated to disperse the photocatalysts and transferred to a solar simulator (AM1.5G, 

1600 W xenon light source, air mass 1.5G filter, 350−1000 nm). The samples were 

irradiated with constant agitation for a specific time. The gaseous products were 

measured using an automated gas chromatograph.  

2.6 CO2 reduction results of linear polymers by high-throughput screening 

 

Figure 2.22 Evolution rates and selectivity of gaseous products produced by all photocatalysts in a high-

throughput screening. Conditions: polymers (5 mg), CoCl2 (1 μmol), 2,2’-bipyridine (2 mg), solvent (4 

mL, MeCN/H2O=3:1), TEOA (1 mL), solar simulator (5 hours), CO2 atmosphere. 
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Table 2.1 Evolution rates of gaseous products for high-throughput screening polymer photocatalysts. 

Photocatalyst 
H2 Evolution rate 

(μmol g-1 h-1)a 

CO Evolution rate 

(μmol g-1 h-1)a 

CO selectivity  

(%)b 

Blank -c 0.8 ± 0.6 -c 

p-Sexiphenylene 1.0 ± 0.9 1.0 ± 0.6 50.0 

P1S 129.8 ± 0.6 77.7 ± 3.5 37.4 

P1K 30.3 ± 0.8 189.7 ± 6.3 86.2 

P4 207.4 ± 6.7 291.9 ± 8.0 58.5 

P7 1523.7 ± 104.0 959.1 ± 26.3 38.6 

P10S 2575.6 ± 64.2 156.5 ± 6.4 5.7 

P10Y 321.6 ± 28.0 172.4 ± 2.2 34.9 

P29 351.0 ± 150.9 276.9 ± 100.4 44.1 

P30 115.9 ± 51.0 68.8 ± 15.0 37.2 

P31 12.3 ± 0.4 6.1 ± 1.7 33.0 

P74 -c 0.3 ± 0.1 -c 

[a] Average of two runs. Conditions: polymers (5 mg), CoCl2 (1 μmol), 2,2’-biyridine (2 mg) solvent (4 mL, 

MeCN / H2O=3:1), TEOA (1 mL), solar simulator (5 h), GC-TCD Headspace; [b] Selectivity =

 
𝑛CO

(𝑛CO+𝑛H2)
 × 100%; [c] Not detected. 

Under the experimental conditions, it was found that p-sexiphenylene, P31 and P74 

showed little or no activity for either CO or H2 generation (Figure 2.22 and Table 2.1). 

Photocatalysts P1, P4, P29, and P30 all generated CO with rates between 68.8 µmol g-1 

h-1 for P30 and 291.9 µmol g-1 h-1 for P4 and selectivities between 37% for P30 and 59% 

for P4 due to large amounts of H2 were produced by P1, P4, P29, and P30. Significantly, 

both P7 and P10 indicated much higher CO production with a rate of 959.1 µmol g-1 h-

1 and 839.7 µmol g-1 h-1. However, the high CO generation rates of P7 and P10 are 

accompanied by a high H2 evolution rate of 1523.7 µmol g-1 h-1 for P7 and an even 
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higher H2 evolution rate of 2676.3 µmol g-1 h-1 for P10, which is in line with the 

observation that P10 is a better hydrogen evolution photocatalyst than P7.15  

It seems that the high hydrogen evolution rates do not originate from oxidative 

dehydrogenation of TEOA as a side reaction.20 This may be explained by the presence 

of residual palladium, which acts as an efficient co-catalyst for proton reduction26,27 

competing with cobalt sites for electrons. Moreover, the kinetics of CO2 reduction is 

sluggish, resulting in poor CO production selectivity compared with other materials. No 

other products, such as methane, methanol, acetaldehyde or formate, were detected by 

gas chromatography and ion chromatography. To further demonstrate the role of 

palladium in the proton reduction reaction, poly(p-phenylene) (P1K) that contains 

residual nickel (a poorer hydrogen evolution co-catalyst) was made via nickel-catalyzed 

Kumada polycondensation. Results showed that P1K has a higher CO evolution rate 

compared to P1 made via Suzuki−Miyaura polycondensation (189.7 vs 77.7 µmol g-1 h-

1), and a higher selectivity for CO production (86% vs 37%). Similarly, P10 synthesized 

via Yamamoto coupling (P10Y) has a higher selectivity for CO over H2 compared to 

the Suzuki-Miyaura polycondensation product (35% vs 24%).  

These observations indicate that residual palladium plays a negative role on CO/H2 

selectivity. In line with this, literature reports of photocatalysts with good selectivities 

are generally synthesized by using metal-free experimental conditions thus leading to 

photocatalysts that have no residual metal present that facilitate hydrogen production.7 

However, several systems with photocatalysts that were made using Pd-catalysed cross-

coupling reactions have been proven by other researchers to generate CO with good 

selectivity over H2 despite their Pd-content.3 
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2.7 Analysis of linear polymers for CO2 reduction 

From the previous work on HER photocatalysts, it is known that the performance of 

photocatalysts will be affected by the polymers’ optical properties (optical gap, the onset 

of light absorption), electronic properties, and the dispersibility of the catalyst in the 

reaction medium.32 These factors might also drive the difference of CO/H2 selectivity. 

It is noted that one or more of these properties result in oligomers and polymers with 

low activity. 

2.7.1 Redox potentials and band gaps 

 

Figure 2.23 (a) Predicted redox potentials of the polymer photocatalysts taken from the literature (P1-

P31)14–16,33 or calculated in this study (P74) and solution potentials (CO2 and proton reduction, TEOA 

oxidation) at pH 8.3 (the pH of the reaction mixture saturated with CO2); (b) UV-Vis Spectra of all 

photocatalysts in this study measured in the solid-state. 

Table 2.2 IP, EA, IP* and EA* values of polymer P74. 

 IP / V EA / V IP* / V EA* / V 

P74a 0.89 -1.12 -1.17 0.94 

[a] Calculated for an oligomer of 12 monomer units long with B3LYP/DZP/COSMO (εr 80.1). 
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Table 2.3 Predicted redox solution potentials for the oxidation of TEOA at pH 0 and pH 8.3 relative to the Standard 

Hydrogen Electrode.  

 

 

E / V 

pH 0 pH 8.3 

DEOA (aq) + ET (aq) + 2 H+ (aq) + 2 e- -> TEOA (aq) + 2 H2O (l) 0.03 -0.46 

TEOA. (aq) + H+ (aq) + e- -> TEOA (aq) 1.20 0.71 

TEOA+ (aq) + e- -> TEOA (aq) 0.67 0.67 

DEOA diethanolamine, ET 1,1,2-ethanetriol, TEOA. triethanolamine radical (N(CH2CH2OH)2(CH.CH2OH)). 

Calculations were performed to predict redox potentials of the polymers. The driving 

forces for CO2 reduction and oxidation of TEOA were estimated by comparing the 

potentials for CO2 reduction and oxidation of TEOA with the electron affinities (EA) 

and the ionisation potentials (IP) of the polymers. Among the polymers, p-

Sexiphenylene, P1 and P4 have the least positive IP values, which controls the driving 

force for the oxidation of TEOA. Thus, they have the smallest driving force for the one-

hole oxidation of TEOA (Figure 2.23a). P74 is a new reported polymers and the redox 

potential was calculated in Table 2.2. However, P74 has the least negative EA value 

(electron affinity; that is, the LUMO) of -1.12 V and hence the smallest driving force 

for proton or CO2 reduction. P10 which has a similar structure with P7 has particularly 

poor CO selectivity. The reason is that the EA of P10 is less negative than for P715 

(Figure 2.23a). Therefore, P10 has a reduced thermodynamic driving force for reduction 

potential relative to P7. It is known that CO2 reduction is thermodynamically slightly 

less favoured than the reduction of protons. Potentials of oxidation of TEOA (Table 2.3) 

were calculated under the assumption that oxidation takes place on or near the nitrogen 

atom rather than one of the OH groups, and that the 2-electron overall oxidation products 

of TEOA are diethanolamine and 1,1,2-ethanetriol, i.e. that the glycolaldehyde formed 

instantaneously hydrolyses to 1,1,2-ethanetriol. The experimentally measured pH of the 

reaction mixture saturated with CO2 is 8.3. In such conditions, E(CO2,H
+/CO) and 

E(H+/H2) vs. the standard hydrogen electrode are -0.63 V34 and -0.52 V, respectively. 

Hence, we believed that the reduction in driving force has a more significant impact on 

CO2 reduction.  
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Figure 2.24 Tauc plots for all photocatalysts in this section. 

Table 2.4 Optical properties of photocatalysts. 

Photocatalysts Sexiphenylene P1K P1S P4 P7 P10S P10Y P29 P30 P31 P74 

Optical gap / 

eV 
3.45 2.74 2.74 2.67 2.66 2.52 2.46 2.72 2.61 2.52 2.01 

Light absorption ability is believed to be one factor that influences CO2 reduction 

performance. Band gaps (Eg) of organic semiconductors materials are the difference 

between the highest occupied molecular orbital (HOMO) and the lowest unoccupied 
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molecular orbital (LUMO) energy levels in the polymers. As we discussed in Chapter 

1, electron-hole pairs in the bulk of semiconductor materials are generated by absorbing 

photons with an energy equal to or greater than the band gap. 

The Tauc method (Figure 2.24) can be used as an easy and straightforward method to 

accurately estimate band gap energies from UV-vis spectra. The equation of Tauc plot 

is shown below: 

(𝛼ℎ𝜈)1 𝑛⁄ = 𝐴(ℎ𝜈 − 𝐸𝑔) 

Where α is the absorption coefficient of the material, h is the Planck constant, ν is the 

photon’s frequency, Eg is the band gap energy, and A is a constant. The n factor is equal 

to 1/2 or 2 for the direct and indirect transition band gaps, respectively.35 

From the UV spectra (Figure 2.23b) and band gap (Table 2.4), p-Sexiphenylene and P1 

have the most blue-shifted optical gaps, limiting visible light absorption ability. Other 

linear polymers have suitable optical gaps for the absorption of visible light; however, 

some of them still have limited CO2 reduction performance. The influences of EA and 

IP values for driving CO2 reduction have been discussed above. The materials should 

have suitable bandgap for visible light absorption and enough driving force for CO2 

reduction and oxidation of TEOA.  
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2.7.2 Dispersibility 

 

Figure 2.25 (a) Transmission experiments of photocatalysts suspended in MeCN/H2O/TEOA mixture 

(3/1/1). The transmission of suspensions was measured at 180° relative to the light source; (b) 

Backscattering experiments of photocatalysts suspended in MeCN/H2O/TEOA mixture (3/1/1). The 

backscattering of the suspensions was measured at 45° relative to the light source. 

Here, we supposed that the dispersibilities of polymers as another factor that impacts 

CO2 reduction performance. Transmission and backscattering experiments were 

involved for further investigation. Transmission and backscattering experiments in 

Figure 2.25a and 2.25b are measurements of how well a polymer disperses in the 

reaction medium for CO2 reduction. The transmittance and backscattering of the 

suspensions were measured with a laser for scanning the height of the measurement 

reactor at 180° and 45° relative to the light source. Before the measurements, samples 

were dispersed in 20 mL MeCN/H2O/TEOA mixture and sonicated for 15 minutes. Then, 

the transmission and backscattering of the suspensions were measured in cylindrical 

glass cells from 5000 to 35,000 μm every 40 μm. The suspensions appear to be stable 

for the duration of the measurement as the transmission and backscattering values are 

similar for the entire height of the measurement reactor, with low transmission values 

in both cases showing that a material disperses well in a MeCN/H2O/TEOA mixture. 

From the results (Figure 2.25), P29, P31 and especially P74 disperse very poorly in the 

reaction mixture. The poor dispersibility of these polymers may result from their 

wettability and physical density,36 which will influence interaction between polymers 
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and cocatalysts and their activity for CO2 product generation. P7 and P10, which 

disperse well in the reaction mixture and have the most positive IP values and the largest 

driving force for TEOA oxidation, are the most active materials. Also, especially for 

P10, these two polymers absorb a significant part of the visible spectrum. Considering 

its CO generation rate and selectivity, P7 was chosen as a good photocatalyst for CO2 

reduction for the remaining experiments.  

2.7.3 Time-correlated single photon counting (TCSPC) measurements 

 

Figure 2.26 (a) Fluorescence emission and excitation spectra of P1 in acetonitrile, water and triethanolamine (3/1/1) 

solution; (b) Fluorescence emission and excitation spectra of P7 in acetonitrile; (c) Fluorescence emission and 

excitation spectra of P7 in acetonitrile, water and triethanolamine (3/1/1) solution. 

The lifetime of excited states is believed to be crucial in letting charges to be separated 

before recombination. To investigate the kinetics of the excited states of P1 and P7, 

time-correlated single photon counting (TCSPC) was involved. The optoelectronic 

properties of P1 and P7 were first measured by photoluminescence (PL) spectroscopy 

in Figure 2.26 with an excitation wavelength of 370 nm. λmax at 453 nm was observed 

for P1 in acetonitrile, water and triethanolamine (3/1/1) solvent. λmax at 475 nm was 

detected for P7 in pure acetonitrile or acetonitrile/water/triethanolamine (3/1/1) solvent 

mixture. The lifetimes of the excited states of P1 and P7 were studied by TCSPC 

experiments upon excitation at λexc = 370 nm with a laser and observed at λem = 453 and 

475 nm.  
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Table 2.5 Fluorescence life-time measurements. 

Materials 
λem 

/ nm 

τ1 

/ ns 

B1 

/ % 

τ2 

/ ns 

B2 

/ % 

τ3 

/ ns 

B3 

/ % 
χ2 τAVG 

P7[a] 475 0.23 31.95 0.91 43.57 2.67 24.48 1.05 1.13 

P7[b] 475 0.22 32.06 0.90 43.33 2.57 24.61 1.09 1.05 

P7[c] 475 0.14 35.72 0.66 40.89 2.05 23.39 1.10 0.80 

P7[d] 475 0.24 30.70 0.89 46.57 2.93 22.73 1.04 1.15 

P1[c] 453 0.20 64.04 0.64 27.85 2.35 8.11 1.18 0.50 

P1[d] 453 0.16 71.17 0.54 22.05 2.10 6.78 1.28 0.37 

[a] Acetonitrile purged with N2; [b] Acetonitrile purged with CO2; [c] Acetonitrile water and triethanolamine 

(3/1/1) purged with N2; [d] Acetonitrile water and triethanolamine (3/1/1) purged with CO2; [d] Fluorescence 

lifetimes obtained upon excitation at λexc = 370 nm with a laser and observed at λem = 453, 475 nm. 

 

Figure 2.27 Fluorescence lifetime decays of P7 in MeCN purged with N2 (a) or CO2 (b) and MeCN/H2O/TEOA 

(3/1/1) mixture purged with N2 (c) or CO2 (d) (λexc = 370 nm, λem = 475 nm) and P1 in MeCN/H2O/TEOA (3/1/1) 

mixture purged with N2 (e) or CO2 (f) (λexc = 370 nm, λem = 450 nm). 
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Figure 2.27 is the fluorescence life-time decay of P1 and P7 measured in different testing 

conditions. The red and pink dots are the experimental data. Blue lines represent the fit 

and the black lines under the figures are weighted residuals of the fit. The instrument 

responses are shown as black dots. Fluorescence life-times (Table 2.5) in solvent 

suspension were obtained from fitting time-correlated single photon counting decays 

(Figure 2.27) to a sum of three exponentials, which yield τ1, τ2, and τ3 according to  

∑ (𝐴 + 𝐵𝑖
𝑛
𝑖=1 exp(−

𝑡

𝜏𝑖
)). τavg is the weighted average lifetime calculated as ∑ 𝐵𝑖𝜏𝑖

𝑛
𝑖=1 . 

The goodness-of-fit parameter by using chi-squared (χ2) value is at a minimum by 

varying Bi and τi. Note that the poor χ2 values are due to ultrafast decays for these 

materials which were very similar to the instrument response.37 The average weighted 

photoluminescence emission lifetime (Table 2.5) of P7 (τavg = 1.13 ns, λem = 475 nm) in 

MeCN purged with N2 was similar with that (τavg = 1.05 ns, λem = 475 nm) in MeCN 

purged with CO2. When measured in MeCN / H2O / TEOA suspension, the average 

emission lifetime of P7 (τavg = 0.80 ns, λem = 475 nm) was longer than that of P1 (τavg = 

0.5 ns, λem = 453 nm). The different lifetimes for P1 and P7 indicated the various 

capability for charge stabilization. The longer lifetime of P7 in solvent mixture was also 

in line with the observed higher activity. However, the exciton lifetime is just one of the 

influencing factors, and it does not always correlate with the activity.38 The final 

performance is affected by different factors. Here, it was demonstrated that extending 

the excited state lifetime could increase the efficiency of CO2 reduction by P7. P7 was 

further explored due to its suitable optical properties, electronic properties, dispersibility, 

and CO generation performance. 
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2.8 Optimization of cocatalyst and conditions 

 

Figure 2.28 CO selectivity and yield of H2 and CO over P7 with the same ratio of CoCl2 and bpy. Conditions: P7 

(5 mg, 0.155 wt. % Pd), solvent (4 mL, MeCN / H2O=3:1), TEOA (1 mL), solar simulator (5 hours). 

Table 2.6 Gas evolution rates of gaseous products of P7 with CoCl2 and bpy at a constant relative ratio. 

Entry 
CoCl2 

(µmol) 

bpy 

(mg) 

H2 Production 

rate 

(μmol g−1 h−1) 

CO Production 

rate 

(μmol g−1 h−1) 

Selectivity for 

CO 

production 

(%) 

n(H2) : n(CO) 

1a 0.5 1 1403.6 ± 284.3 738.3 ± 117.3 34.5 1.9 : 1 

2a 1 2 1307.3 ± 457.4 642.7 ± 150.1 33.0 2.0 :1 

3a 2 4 928.9 ± 270.7 381.7 ± 123.4 29.1 2.4 : 1 

4a 5 10 604.6 ± 16.8 114.7 ± 20.4 15.9 5.3 : 1 

5a 10 20 528.0 ± 10.9 104.1 ± 15.9 16.5 5.1 : 1 

Conditions: P7 (5 mg, 0.155 wt. % Pd), solvent (4 mL, MeCN / H2O=3:1), TEOA (1 mL), CO2 atmosphere, solar 

simulator (5 hours). 

Next, P7 (5 mg) with different amounts of CoCl2 and bpy were explored in a high-

throughput screening experiment to find the optimized conditions for CO2 reduction. 

Various ratios of CoCl2 and Bpy were added into vials. The liquid handling system 
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transferred degassed jars with acetonitrile/triethanolamine/water mixture into sample 

vials. After being purged with CO2 for 3 hours and then capped with a capper tool, vials 

were taken out and sonicated for several minutes. Finally, vials were irradiated under a 

1600 W xenon light source (air mass 1.5 G filter, 350−1000 nm) on a Stuart roller bar 

SRT9. A Shimadzu 2014 HS-GC was applied to analyze the results. It was observed 

that an increased amount of CoCl2, while keeping its ratio with bpy constant (Figure 

2.28 and Table 2.6), decreases the amounts of both H2 and CO generated, particularly 

when 5 µmol or 10 µmol CoCl2 were used. The selectivity for CO was highest with 1 

μmol CoCl2 and 2 mg bpy.  

 

Figure 2.29 CO selectivity and yield of H2 and CO over P7 with different ratio of CoCl2 and bpy. 

Table 2.7 Gas evolution rates of gaseous products of P7 with CoCl2 and bpy at a varied relative ratio. 

Entry 
CoCl2 

(µmol) 

bpy 

(mg) 

H2 Production 

rate 

(μmol g−1 h−1) 

CO Production 

rate 

(μmol g−1 h−1) 

Selectivity for 

CO 

production 

(%) 

n(H2) : n(CO) 

1a 0.5 2 1686.6 ± 238.9 805.5 ± 45.9 32.3 2.1 : 1 

2a 1 2 1558.4 ± 102.3 900.3 ± 27.4 36.6 1.7 : 1 

3a 2 2 1338.7 ± 139.8 543.8 ± 36.3 28.9 2.5 : 1 
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4a 5 2 607.9 ± 4.4 85.1 ± 8.7 12.3 7.1 : 1 

5a 10 2 739.8 ± 34.8 37.8 ± 6.3 4.9 19.6 : 1 

Conditions: P7 (5 mg, 0.155 wt. % Pd), solvent (4 mL, MeCN / H2O=3:1), TEOA (1 mL), CO2 atmosphere, solar 

simulator (5 hours). 

Table 2.8 Gas evolution rates of gaseous products of blank experiments with of CoCl2 and bpy. 

Entry 
CoCl2 

(μmol) 

bpy  

(mg) 
 

H2 Production rate 

(μmol g−1 h−1) 

CO Production 

rate (μmol g−1 h−1) 

1a 0.5 1 

constant ratio of 

CoCl2/bpy 

-b 0.4 ± 0.01 

2a 1 2 -b 0.3 ± 0.01 

3a 2 4 -b 0.25 ± 0.05 

4a 5 10 -b 0.2 ± 0.01 

5a 10 20 -b 0.3 ± 0.01 

6a 0.5 2 

varied ratio 

CoCl2/bpy 

-b 0.25 ± 0.05 

7a 1 2 -b 0.3 ± 0.01 

8a 2 2 -b 0.3 ± 0.01 

9a 5 2 -b 0.25 ± 0.05 

10a 10 2 -b 0.3 ± 0.01 

[a] Conditions: solvent (4 mL, MeCN / H2O=3:1), TEOA (1 mL), CO2 atmosphere, solar simulator (5 hours); [b] 

Not detected. 

Similar results were observed when increasing the amount of CoCl2 while keeping the amount 

of bpy constant (Figure 2.29 and Table 2.7). The selectivity for CO was also highest with 1 

μmol CoCl2 and 2 mg bpy. Control experiments suggested that CoCl2 and bpy without adding 

photocatalyst generate only negligible amounts of H2 and CO, demonstrating that the process 

is indeed photocatalytic and driven by the polymer photocatalyst (Table 2.8). 
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Figure 2.30 (a) CO/H2 production without 2,2’-bipyridine or CoCl2 using P7-0.5% as catalyst in 

MeCN/H2O/TEOA mixture (5 mL, 3/1/1) under solar simulator for 5h (AM1.5G, 1600 W xenon light 

source, air mass 1.5G filter, 350−1000 nm); (b) CO/H2 production generated using various co-solvents of 

P7-0.5% as the catalyst and 1 mL TEOA as the sacrificial agent under solar simulator irradiation for 5 

hours (AM1.5G, 1600 W xenon light source, air mass 1.5G filter, 350−1000 nm); 3 mL Organic solvent 

and 1 mL water or 4 mL water only (MeCN: acetonitrile; THF: tetrahydrofuran; DMF: N,N-

dimethylformamide; NMP: N-methyl-2-pyrrolidone; MeOH: methanol). 

Without bpy or CoCl2, we find that CO production rates are very low (Figure 2.30a), 

which is consistent with previous reports that prove that both are indispensable to form 

catalytically active Co centres.9,20–22,31 When P7 was tested with 1 μmol CoCl2 and 2 

mg bpy in different organic solvents such as THF, DMF, NMP and MeOH as alternative 

co-solvents (Figure 2.30b), P7 had the highest CO production rate in MeCN as the co-

solvent. When P7 was tested in pure water with TEOA, P7 had the lowest CO and H2 

generation rates. Hence, we used 1 μmol CoCl2 and 2 mg bpy hereafter as the optimised 

conditions and 3 mL MeCN, 1 mL H2O and 1 mL TEOA as the optimised solvent 

conditions for photocatalytic CO2 reduction with P7. 
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2.9 P7 synthesized with different amounts of Pd 

Table 2.9 P7 synthesized with various palladium loadings. 

Materials 

Amount of  

[Pd(PPh3)4] 

used in polymerisation[a] 

Yield  

/ % 

Residual Pd[b] 

/ wt % 

P7-0.1% 0.1 mol% (2.3 mg) 75 0.043 

P7-0.5% 0.5 mol% (11.6 mg) 99 0.073 

P7-1% 1 mol% (23 mg) Quant. 0.237 

P7-2% 2 mol% (46.2 mg) Quant. 0.504 

P7-3% 3 mol% (69.3 mg ) Quant. 0.769 

P7-5% 5 mol% (115.6 mg) Quant. 1.444 

[a] 3,7-Dibromodibenzo[b,d]thiophene sulfone (0.748 g, 2.0 mmol), 1,4-benzene diboronic acid (0.331 g, 

2.0 mmol), N,N’-dimethylformamide (40 mL) and K2CO3 (aqueous, 2.0 M, 8 mL) were used in this reaction; [b] 

The amount of residual palladium in the material as measured via ICP-OES.  

Residual palladium from the synthesis appears to form active sites for protons and 

facilitate competing hydrogen evolution. Therefore, controlling the concentration of 

residual palladium in polymers offers a pathway to producing syngas with different 

ratios of H2 and CO. 

To do this, the amount of [Pd(PPh3)4] used in the synthesis of P7 was varied from 

0.1 mol% to 5 mol% (Table 2.9). Inductively coupled plasma optical emission 

spectrometry (ICP-OES) measurements suggested that residual palladium in polymers 

ranged from 0.043 wt. % up to 1.444 wt. %. The detected amounts of residual palladium 

were not same with the amounts used in the polycondensation reaction. It was found 

that materials that were synthesized by using more palladium also contained more 

residual palladium, showing an almost linear increase of residual palladium content of 

the polymer with increased amount of palladium catalyst used in the polymerisation 

(Figure 2.31a). The obtained samples were named as P7-0.1% to P7-5%, indicating the 

amount of [Pd(PPh3)4] used in the synthesis of each P7 sample. 
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Figure 2.31 (a) Expected and measured palladium content of P7 synthesised with different amounts of 

[Pd(PPh3)4]; (b) UV-vis spectra of P7 synthesised with different amounts of [Pd(PPh3)4]; (c) 

Photoluminescence spectra (λexc = 370 nm) of P7 synthesized with different amounts of [Pd(PPh3)4]; (d) 

FT-IR spectra of P7 synthesized with different amounts of [Pd(PPh3)4]. 

 

Figure 2.32 TEM images of P7-0.1% (a) (d), P7-1% (b) (e), P7-5% (c) (f) using epifluorescent STEM mode and 

using HADF STEM mode.  
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These samples were then characterised to rule out that any other differences in properties 

beyond the palladium content that could affect the performance of these materials. UV-

vis absorption spectra (Figure 2.31b) tested in solid-state showed very little difference 

in their absorption on-sets, indicating that the optical properties were not affected by the 

palladium content used in the polycondensation reaction. Similarly, photoluminescence 

spectra suggested no difference in the maximum emission wavelength position (Figure 

2.31c). The photoluminescence intensity reduced with increased palladium content, 

possibly due to enhanced trapping and quenching of excitons.39 And FT-IR spectra 

indicated no noticeable differences between P7 with different amounts of Pd 

residuals(Figure 2.31d). Transmission electron microscopy (TEM) showed the 

existence of large Pd clusters in P7-1% and P7-5% with the latter clearly suggesting a 

larger number of Pd clusters (Figure 2.32). In the previous study, X-ray absorption 

spectroscopy has proven that only the largest Pd clusters could be resolved and most Pd 

resides as tiny clusters within the photocatalyst, which might also be the case here.39 

Taken together, all characterisation for P7-0.1% to P7-5% indicates little difference in 

their physical properties, except for their residual palladium content. 

2.10 Controllable syngas generation 

 

Figure 2.33 (a) Photocatalytic CO and H2 production of P7-0.1% to P7-5% (5 mg) from 

MeCN/water/TEOA mixtures (25mL, 3/1/1) under simulated solar irradiation (1 sun, AM 1.5G); (b) 
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Correlation between the amount of palladium and the CO and hydrogen evolution rates of P7-0.1% to P7-

5%. 

P7-0.1% to P7-5% were tested as photocatalysts for CO2 reduction in the optimized 

condition under solar irradiation (Figure 2.33a). The influence of the amount of residual 

Pd on the CO production rates for P7-0.1% and P7-0.5% was showed to be insignificant 

with rates of 680.1 µmol g-1 h-1 and 660.4 µmol g-1 h-1. P7-1% and P7-2% show a slight 

decrease in CO evolution rates (567.4 µmol g-1 h-1 and 539.8 µmol g-1 h-1), and P7-3% 

and P7-5% show a significant reduction in their CO evolution rates (465.8 µmol g-1 h-1 

and 340.1 µmol g-1 h-1). By contrast, the residual palladium content affects the hydrogen 

evolution rates significantly. The H2 evolution rate increases from 275.0 µmol g-1 h-1 for 

P7-0.1% to 711.9 µmol g-1 h-1 for P7-1% and 845.9 µmol g-1 h-1 for P7-2%. For P7-3% 

and P7-5%, a significant increase in the rate was again observed (1130.2 µmol g-1 h-1 

and 1677.3 µmol g-1 h-1). This strongly demonstrates that hydrogen evolution rates are 

greatly affected by the residual palladium concentration. The residual Pd also affects the 

ability to reduce carbon dioxide, especially at higher palladium concentrations. 

The observation that the hydrogen evolution rate in the limit of low Pd concentrations 

(<0.2 wt%, Figure 2.33b) significantly increases with the amount of Pd is a common 

observation26,27 and shows that excitons or polarons after dissociation of excitons do not 

reach Pd to facilitate proton reduction,39 while abundant Co is present allowing for 

efficient carbon dioxide reduction. The initial steep increase in activity is followed by a 

region that is less affected by the increase in Pd, which has also been found for other 

conjugated materials26,27 before significantly increased H2 evolution rate, due to more 

Pd relative to the amount of cobalt loaded on the materials is available for proton 

reduction. The ratios of H2 / CO for P7-0.1% to P7-1% range from 0.4:1 to 1.25:1. H2 

rich syngas ranging from 1.6:1 to 4.9:1 (H2 / CO) was produced by P7-2% to P7-5%. 

This makes it possible to produce syngas for the generation of aldehydes via 

hydroformylation of alkene with a ratio of 1:1 H2 / CO as well as the methanol synthesis 

and F-T synthesis of alkanes requiring a ratio of 2:1 H2 / CO.13  
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Figure 2.34 (a) Cycling experiments of P7-0.1% (5 mg) under simulated solar irradiation (1 sun, AM 

1.5G) over 25 hours irradiation with intermitted degassing every 5 hours; (b) FT-IR spectra of the gaseous 

products after 1 hour of P7 in MeCN/H2O/TEOA solution using either 12CO2 and 13CO2 under solar 

irradiation (1 sun, AM 1.5G); (c) UV-vis spectrum of P7-0.1% overlaid with the measured external quantum 

efficiencies (EQE) measured at various wavelengths using LEDs at light sources. 

Longer-term stability is a very important factor for photocatalysts. The system used for 

long-term experiments was the same as that for CO2 reduction. The flask was re-

degassed with fresh CO2 every 5 hours to reduce the influence of pressure reduction. 

Longer-term experiments with intermittent degassing every 5 hours demonstrated 

excellent stability of the sample (P7-0.1%) over 25 hours producing CO rich syngas 

(Figure 2.34a). Finally, isotopically labelled 13CO2 experiments were carried out to 

prove that the detected CO originated from the reduction of CO2 rather than 
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decomposition of the photocatalysts or other components of the photocatalytic system. 

However, GC-MS was not available at that time. Hence, FTIR spectroscopy was used 

for 13CO2 labelling experiments with an argon-purged custom-made gas IR cell. To do 

this, a vial containing P7, 2,2’-bipyridine and cobalt (II) chloride in a mixture of 

acetonitrile/water/triethanolamine (3:1:1) was purged with 13CO2 for 3 minutes. Then 

the resulting suspension was illuminated for 1 hour under a solar simulator with 1 sun 

output. A sample of the gas headspace (1000 µL) was injected into the gas IR cell, and 

the IR spectrum was measured. The IR spectrum (Figure 2.34b) shows a series of 

regularly spaced peaks which corresponds to the vibrational and rotational energy levels 

of the molecule. The P branch transitions indicated a series of peaks at lower 

wavenumbers and the R branch series appeared at higher wavenumbers. Using 

isotopically labelled 13CO2 as the carbon source resulted in the formation of 13CO 

strongly suggesting that CO was produced from CO2 (Figure 2.34b).21 As discussed in 

Chapter 1, the external quantum efficiency (EQE) represents the number ratio of 

electrons transferred toward CO relative to incident photons at a given wavelength. The 

EQEs of P1-0.1% tested at 395, 405 and 420 nm were 0.29%, 0.43% and 0.37%, 

respectively (Figure 2.34c). Furthermore, the action spectrum of P7-0.1% follows 

broadly speaking the light absorption profile also supporting the hypothesis that the CO 

production is indeed photocatalytic. 

2.11 Conclusions 

In conclusion, linear conjugated polymers were tested as photocatalysts for CO2 

reduction to CO with a sacrificial hole scavenger. P7 was demonstrated to be the most 

active photocatalyst for CO2 reduction, while structurally related P10 performs far 

worse in terms of CO selectivity, producing a similar amount of CO but much more 

hydrogen. This difference in selectivity can be rationalized by differences in the 

predicted thermodynamic driving force for CO2 and proton reduction between P7 and 

P10. Residual palladium was proven to result in significant hydrogen production, which 

was found to compete with CO production at high loadings. Within a certain 
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concentration range, Pd acts as a co-catalyst for H2 production without reducing the CO 

evolution rates significantly, potentially allowing for syngas production, if the 

production efficiencies can be increased, within a range of H2/CO ratios that are 

adjustable by varying the Pd concentration. 

2.12 Experimental methods 

2.12.1 Fourier-transform infrared spectroscopy 

Transmission FT-IR spectra were recorded on a Bruker Tensor 27 at room temperature; samples 

were prepared as pressed KBr pellets and analysed for 16 scans with a resolution of 4 cm-1. 

2.12.2 UV-Vis measurements 

UV-Visible absorption spectra of all polymers were collected on an Agilent Cary 5000 UV-Vis-

NIR Spectrometer by measuring the reflectance of powders in the solid-state. 

2.12.3 Scanning transmission electron microscope  

STEM images were obtained on a Tescan S8000G with a TEM detector. Images were recorded 

at 20 KeV with a current of 125 pA. All images were recorded in both epifluorescent (EF) 

mode and High Angle Dark Field (HADF) mode.  

2.12.4 Inductively coupled plasma - optical emission spectrometry (ICP-OES) analysis  

Before measuring, all samples were digested in nitric acid (67–69%, trace metal analysis grade) 

with a microwave using an in-house procedure. The solutions were diluted with water before 

the measurement by Spectro Ciros ICP-OES and the instrument was calibrated with standards 

in an aqueous solution.  

2.12.5 TCSPC measurements 

TCSPC experiments were obtained on an Edinburgh Instruments LS980-D2S2-STM 
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spectrometer equipped with picosecond pulsed LED excitation sources and a R928 detector. 

Suspensions were treated by ultrasonicating the materials in acetonitrile or acetonitrile, water 

and triethanolamine (3/1/1) solution purged with N2 or CO2. The instrument response was 

collected with colloidal silica (LUDOX® HS-40, Sigma-Aldrich) at the excitation wavelength 

without any filter. Decay times were fitted in the FAST software employing suggested lifetime 

estimates.  
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carbon dioxide reduction 
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3.2 Introduction 

From Chapter 1, it was found that the residual palladium in conjugated polymers 

influenced CO2 and H2 production. Moreover, the residual Pd is very hard to remove 

via classical purification methods.1 Therefore, it is worth trying organic materials 

without any metal catalysts for CO2 reduction with high CO selectivity. Covalent 

organic frameworks (COFs)2–6 which combine porosity with crystallinity have been 

investigated as photocatalysts for water splitting,7,8 and for electrocatalytic CO2 

reduction.9,10 These materials also have the potential for direct photocatalytic CO2 

reduction: For example, an azine-based COF, N3-COF, was shown to exhibit gas phase 

photocatalytic CO2 reduction.11 Likewise, a 2D imine triazine-COF loaded with 

rhenium12 and a β-ketoenamine-linked COF decorated with both nickel and a light-

absorbing dye13 were studied for the same reaction. However, these COFs have limited 

effective conjugation lengths in the 2D plane of the framework because they are based 

on imine, azine, or β-ketoenamine-linkers. This results in blue-shifted absorption on-

sets, which limit the ability of the materials to absorb visible light.14,15 Moreover, the 

imine COFs can be decomposed in base experimental conditions. In this chapter, we 

explored the fully conjugated olefin COFs, which are stable in base and acid conditions, 

for photocatalytic CO2 reduction. 

3.3 Experimental section 

3.3.1 Synthesis of monomers 

 

Figure 3.1 Synthesis of 5,5’-bis(cyanomethyl)-2,2’-bipyridine. 
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Figure 3.2 1H NMR spectrum of 5,5’-bis(cyanomethyl)-2,2’-bipyridine in DMSO-d6. 

 
Figure 3.3 13C{1H} NMR spectrum of 5,5’-bis(cyanomethyl)-2,2’-bipyridine in DMSO-d6. 

Synthesis of 5,5’-bis(cyanomethyl)-2,2’-bipyridine: 5,5’-Bis(cyanomethyl)-2,2’-

bipyridine was synthesized based on previous literature procedures.16 A 100 mL round-

bottom flask was charged with NiCl2·6H2O (0.12 g, 0.5 mmol) and N,N-

dimethylformamide (20 mL). The resulting solution was stirred and heated to 40 °C, 
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and then 2-chloropyridine-5-acetonitrile (1.53g, 10 mmol), anhydrous LiCl (0.43 g, 10 

mmol), and zinc dust (0.78 g, 12 mmol) were added. When the temperature rose to 50 °C, 

a grain of iodine crystal and two drops of acetic acid were added to the mixture. An 

immediate rise in temperature and color change to black was caused, indicating the 

reaction was triggered. The mixture was stirred at 55-60 °C for 2-3 h until the complete 

conversion of 2-chloropyridine-5-acetonitrile to 5,5’-bis(cyanomethyl)-2,2’-bipyridine 

(monitored by TLC). To The cooled reaction mixture was added 1 N HCl aqueous 

solution (15 mL) to consume the remaining zinc dust. The resulting mixture was made 

alkaline with aqueous ammonia (25%) and extracted with CH2Cl2. The organic layers 

were collected, dried over anhydrous Na2CO3, and concentrated. The crude material was 

purified by flash chromatography to give the desired product. The NMR results were 

same as those in the literature.16 1H NMR (400 MHz, DMSO-d6) δ 8.67 (d, J = 2.0 Hz, 

2H), 8.42 (d, J = 8.2 Hz, 2H), 7.96 (dd, J = 8.2, 2.3 Hz, 2H), 4.19 (s, 4H). 13C NMR (101 

MHz, DMSO-d6) δ 154.62, 149.27, 137.57, 128.53, 121.05, 119.08, 20.35. 
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Figure 3.4 Synthesis of 1,3,6,8-tetrakis(4-formylphenyl)pyrene. 

 

Figure 3.5 1H NMR spectrum of 1,3,6,8-tetrakis(4-formylphenyl)pyrene CDCl3. 

Synthesis of 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy): TFPPy was 

synthesized based on previous literature procedures.17 A mixture of 1,3,6,8-

tetrabromopyrene (1.00 g, 1.93 mmol), 4-formylphenylboronic acid (1.74 g, 11.6 mmol), 

palladium tetrakis(triphenylphosphine) (0.12 g, 0.10 mmol, 5.2 mol %), and potassium 

carbonate (2.1 g, 15 mmol) in dry dioxane (30 mL) was stirred under nitrogen for 3 days 

at 85 °C. The yellow suspension reaction mixture was poured into ice-containing 

concentrated hydrochloric acid. The yellow solid was filtered and washed with 2 M HCl 
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(20 mL) three times. The product was extracted with CHCl3 (100 mL) three times and 

dried over MgSO4. After filtration, the solvent was removed under reduced pressure, 

and the resultant solid residue was recrystallized from hot CHCl3 to afford TFPPy as a 

bright yellow powder (0.85 g, 72%). 1H NMR (400 MHz, Chloroform-d) δ 10.16 (s, 

4H), 8.18 (s, 4H), 8.09 (d, J = 8.0 Hz, 8H), 8.04 (s, 2H), 7.86 (d, J = 8.0 Hz, 8H). Note 

that a 13C NMR spectrum could not be measured due to the low solubility of TFPPy.17
 

3.3.2 Synthesis of materials 

 

Figure 3.6 Scheme of the synthesis of Bpy-sp2c-COF. 

Synthesis of Bpy-sp2c-COF: A Pyrex tube (10 mL) was charged with TFPPy (14.8 mg, 0.024 

mmol) and 5,5’-bis(cyanomethyl)-2,2’-bipyridine (11.5 mg, 0.048 mmol), 1,2-dichlorobenze 

(0.5 mL), 1-butanol (0.5 mL) and aqueous KOH solution (0.1 mL, 4 M). The mixture was 

ultrasonicated for two minutes and then flash frozen at 77 K (liquid N2 bath) and degassed 

through three freeze-pump-thaw cycles and sealed under vacuum using a Schlenk line and oil 

pump. The tube was heated at 120 °C for 3 days. After cooling to room temperature, the 

precipitated was washed with HCl (aq. 1 M), water, THF and methanol three times, respectively. 

The resulting powder was subjected to Soxhlet extraction with THF for two days. The powder 

was collected and dried at 120 °C under vacuum overnight to afford yellow crystallites in 82% 

yield. Anal. Calcd for (C72H42N8)n: C, 84.85; H, 4.15; N, 10.99. Found: C, 70.09; H, 4.09; N, 

6.99. Note: The yields and microanalysis data were calculated for an infinite structure and also 

ignoring the presence of end-groups whose nature is unclear. The predicted theoretical surface 

areas of Bpy-sp2c-COF is 2041.21 m2 g-1. 
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Synthesis of the amorphous analogue Bpy-sp2c-P: A flask (250 mL) was charged with 

TFPPy (148 mg, 0.24 mmol) and 5,5’-bis(cyanomethyl)-2,2’-bipyridine (115 mg, 0.48 mmol), 

1,4-dioxane (100 mL) and aqueous KOH solution (8 mL, 4 M). The mixture was ultrasonicated 

for two minutes and then heated at 120 °C for 3 days. After cooling to room temperature, the 

precipitated was washed with HCl (aq. 1 M), water, THF and methanol for three times, 

respectively. The resulting powder was subjected to Soxhlet extraction with THF for two days. 

The powder was collected and dried at 120 °C under vacuum overnight to afford yellow 

crystallites in 81.50% isolated yield. Anal. Calcd for (C72H42N8)n : C,84.85; H, 4.15; N, 10.99. 

Found: C, 70.05; H, 3.52; N, 6.34. Note: The yields and microanalysis data were calculated for 

an infinite structure and also ignoring the presence of end-groups whose nature is unclear. 

Synthesis of Re-Bpy-sp2c-COF and Re-Bpy-sp2c-P: Re-Bpy-sp2c-COF and Re-Bpy-sp2c-P 

were prepared according to a modified literature method.5 COF or amorphous materials (10 

mg) and [Re(CO)5Cl] (10 mg, 0.028 mmol) were dispersed and refluxed in 10 mL toluene for 

40 min. The dark red product was filtered and washed with methanol for three times. The 

resulting powders were dried under vacuum overnight. ICP-OES analysis shows a Re content 

in Re-Bpy-sp2c-COF of 18.1 wt. % (0.97 mmol g-1) and Re-Bpy-sp2c-P of 9.4 wt. %. The 

predicted theoretical surface areas of Re-Bpy-sp2c-COF is 1835.57 m2 g-1. 

Synthesis of Re(bpy)(CO)3Cl: Re(bpy)(CO)3Cl was prepared according to a modified 

literature method.6 In a 50 mL round-bottom flask, Re(CO)5Cl (0.251g, 0.68 mmol), 2,2′-

bipyridine (0.106g, 0.68 mmol), and toluene (20 mL) were added together, and the resultant 

reaction mixture was refluxed under N2 for 1 h. Upon cooling, the product was vacuum filtered 

and rinsed with cold toluene. 1H NMR (δ, 400 MHz, DMSO-d6): 9.02 (d, 1H), 8.77 (d, 1H), 

8.34(t, 1H), 7.76(t, 1H). 
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3.4 The sp2c-COF 

 

Figure 3.7 (a) Schematic representation of the synthesis of sp2c-COF; (b) PXRD pattern of sp2c-COF. Inset: the 

image of sp2c-COF).  

Table 3.1 Evolution rates of gaseous products of sp2c-COF. 

Catalysts H2 (μmol g-1 h-1) CO (μmol g-1 h-1) CO selectivity (%) 

sp2c-COF 1609.2 459.1 22.2 

COF (1 mg), CoCl2 (1 μmol), 2,2’-biyridine (2 mg, 12.8 μmol), solvent (4 mL, MeCN/H2O=3:1), TEOA 

(1 mL), solar simulator (5 h), GC-BID Headspace. 

Olefin COFs, which have good light absorbance ability and stability, have shown 

excellent photocatalytic performance for HER.18–20 Hence, we try to repeat the sp2c-

COF in the literature and test it for photocatalytic CO2 reduction. The sp2c-COF (Figure 

3.7a) was synthesized through Knoevenagel condensation of TFPPy and 

phenylenediacetonitrile (PDAN) in the presence of NaOH.31 The powder X-ray 

diffraction (PXRD) pattern (Figure 3.7b) was the same as that in literature, proving the 

successful synthesis of sp2c-COF. Next, the orange sp2c-COF was tested for CO2 

reduction under the same system mentioned in Chapter 1 with [Co(bpy)3]
2+ as the 

cocatalyst and TEOA as the hole scavengers under UV (λ > 295 nm) light. After 5 hours 

of irradiation, sp2c-COF generated H2 with a rate of 1609.2 µmol g-1 h-1 and CO with a 

rate of 459.1 µmol g-1 h-1, showing 22.2% selectivity over H2. This demonstrated that 

such fully π-conjugated COFs had great potential as photocatalysts for CO2 reduction. 

This olefin COF inspired us to design and synthesize a new type of sp2c-COF for CO2 

reduction under visible light.  
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3.5 Bpy-sp2c-COF 

 

Figure 3.8 (a) Synthesis of Bpy-sp2c-COF. Conditions for Bpy-sp2c-COF: KOH (4 M) 1,2-

dichlorobenzene and 1-butanol (1:1 mixture), 120 °C, 72 hours; (b) PXRD patterns of Bpy-sp2c-COF 

obtained experimentally (red circles), simulated from the eclipsed AA-stacking mode (green), profiles 

calculated from Le Bail fitting (black) and residual (blue). Reflection positions are shown by tick marks. 

Inside: Structural models for Bpy-sp2c-COF with eclipsed AA stacking patterns, shown parallel to the 

pore channel along the crystallographic c axis (top) and parallel to the layers (bottom); (c) Experimentally 

observed powder X-ray diffraction pattern of Bpy-sp2c-COF (blue) and simulated profiles for AA and 

AB stacking modes (red and black). 

Here, Knoevenagel condensation (Figure 3.8a) was used such that olefins become the 

COF linkers.14,18,21 The aim was to increase the conjugation length in the framework and 

hence, to improve the performance of these materials for CO2 reduction. The residual 

cyanovinyl-groups of the Knoevenagel condensation have been shown to be beneficial 

for CO2 uptake,22 which might also enhance the efficiency of CO2 reduction. The COF 

was then loaded with [Re(CO)5Cl], giving a heterogeneous analogue of the well-studied 
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homogeneous catalyst [Re(bpy)(CO)3Cl] with enhanced stability.23 The obtained 

photocatalyst (Re-Bpy-sp2c-COF) will be discussed in the next section. A two-

dimensional (2D) sp2c-COF (Bpy-sp2c-COF) was synthesized via the Knoevenagel 

condensation of TFPPy and 5,5’-bis(cyanomethyl)-2,2’-bipyridine in 1,2-

dichlorobenzene and 1-butanol at 120 °C for three days (Figure 3.8a).  

The crystallinity of COFs is normally determined by PXRD. By comparing 

experimental PXRD results with calculated PXRD patterns from predicted COF models, 

the crystal structure of COFs can be determined. The PXRD pattern of Bpy-sp2c-COF 

and simulated data are shown in Figure 3.8b. Structural models for Bpy-sp2c-COF with 

eclipsed AA stacking patterns are show inset in Figure 3.8b. Red circles are the obtained 

experimentally PXRD pattern. The simulated pattern from the eclipsed AA-stacking 

mode is represented as a green line. The profiles calculated from Le Bail fitting are the 

black line and the residual is the blue line. Reflection positions are shown by tick marks. 

Le Bail refinements confirmed that the diffraction pattern was consistent with a triclinic 

lattice with unit cell parameters (a = 39.45(2), b = 40.97(2), c = 3.684(2) Å, α = 

91.42(4)°, β = 89.5(2)°, γ = 90.5(2)°, V = 5953(5) Å3). Goodness of fit (GoF) or χ relates 

the weighted profile R factor (Rwp = 2.55%) to the statistically expected value (Rp = 1.98%). 

This suggests that Bpy-sp2c-COF has an eclipsed (AA) stacked structure rather than 

staggered (AB) stacking (Figure 3.8c), as the experimental PXRD data cannot match the 

simulated profiles for AB stacking modes. Diffraction peaks are observed at 3.1°, 4.5°, 

6.2°, and 9.5°, corresponding to the (110), (200), (220), and (330) reflections, indicating 

that Bpy-sp2c-COF has uniform 1D diamond-shaped pores. 
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Figure 3.9 (d) N2 Adsorption (filled dots) and desorption (open dots) isotherm profiles of Bpy-sp2c-COF 

measured at 77 K. Inset: profile of the calculated pore size distribution of Bpy-sp2c-COF; (e) FT-IR Spectra of 

Bpy-sp2c-COF, TPFFy and 5,5’-bis(cyanomethyl)-2,2’-bipyridine. 

To characterize the porosity of materials, N2 adsorption experiments were measured at 77K. 

Bpy-sp2c-COF showed reversible type-IV adsorption isotherms since a hysteresis loop was 

observed, which is associated with capillary condensation taking place in mesopores. 

Brunauer–Emmett–Teller surface area (SABET) for Bpy-sp2c-COF is 432 m2 g-1 which 

is measured by nitrogen sorption experiments at 77 K (Figure 3.9). The obtained SABET 

is lower than the theoretical SABET (2041 m2 g-1) for Bpy-sp2c-COF of a perfectly 

crystalline structure. However, the same phenomenon can be observed for sp2c-COFs 

which typically have surface areas ranging from 322 m2 g-1 for sp2c-COF-224 up to 

692 m2 g-1 for sp2c-COF.14 The pore size distribution profile based on nonlocal density 

functional theory (NLDFT) gives a narrow pore size distribution with a predominant pore 

width of 2.4 nm (Figure 3.9, inset curve), further indicating an AA stacking sequence 

that is predicted to have a pore size of 2.4 nm. Since Bpy-sp2c-COF was synthesized 

via Knoevenagel condensation, fourier-transform infrared (FT-IR) spectroscopy was 

used to detect the formation of C=C bonds and the presence of the cyano side group. 

FT-IR spectroscopy reveals the characteristic -C≡N vibration band as a distinct peak at 

2217 cm-1, indicating the successful synthesis of Bpy-sp2c-COF (Figure 3.9).24,25 The 

PXRD, gas sorption and FTIR data demonstrated that the olefin COF (Bpy-sp2c-COF) 
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was successful synthesized, and that this COF has a 2D crystalline and porous structure 

with a pore size of 2.4 nm. 

3.6 Re-Bpy-sp2c-COF 

 

Figure 3.10 (a) Synthesis of Re-Bpy-sp2c-COF. Conditions for Re-Bpy-sp2c-COF: COF (10 mg), [Re(CO)5Cl] 

(10 mg, 0.028 mmol), toluene (10 mL), reflux, 40 mins; (b) PXRD patterns of Re-Bpy-sp2c-COF obtained 

experimentally (red circles), simulated from the eclipsed AA-stacking mode (green), profiles calculated from Le 

Bail fitting (black) and residual (blue). Reflection positions are shown by tick marks; (c) Structural models for 
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Re-Bpy-sp2c-COF with eclipsed AA stacking patterns, shown parallel to the pore channel along the 

crystallographic c axis (top) and parallel to the layers (bottom); (d) N2 Adsorption (filled dots) and desorption 

(open dots) isotherm profiles of Re-Bpy-sp2c-COF measured at 77 K. Inset: profile of the calculated pore size 

distribution of Re-Bpy-sp2c-COF; (e) FT-IR Spectra of Bpy-sp2c-COF and Re-Bpy-sp2c-COF. 

Since it was first reported in 1983 for photocatalytic CO2 reduction,26 Re complexes 

have been well studied owing to their high efficiency and selectivity for CO 

formation.27,28 Hence, the bipyridine sites in Bpy-sp2c-COF were used to ligate 

[Re(CO)5Cl] to form Re-Bpy-sp2c-COF (Figure 3.10a). To do this, 10 mg Bpy-sp2c-

COF and [Re(CO)5Cl] (10 mg, 0.028 mmol) were dispersed and refluxed in 10 mL 

toluene for 40 min. The dark red product was filtered and washed with methanol three 

times.  

The PXRD pattern of Re-Bpy-sp2c-COF (Figure 3.10b) exhibits peaks at 3.1°, 4.5°, 6.2°, 

12.9°, corresponding to (110), (200), (220), (-221) reflections predicted for the Re-

loaded, AA-stacked model (Figure 3.10c). Le Bail refinements confirmed that the 

diffraction pattern was consistent with a triclinic lattice with unit cell parameters (a = 

38.52(2), b = 40.91(2), c = 7.37(1) Å, α= 91.3(8)°, β = 91.6(5)°, γ = 89.18(5)°, V = 

11608(23) Å3). The porosity of Re-Bpy-sp2c-COF was measured by N2 sorption 

experiments. Re-Bpy-sp2c-COF also showed reversible type-IV adsorption isotherms. The 

BET surface area (SABET) for Re-Bpy-sp2c-COF was calculated to be 323 m2 g-1 (Figure 

3.8d). The pore size distribution profile exhibits two overlapping pore size features 

(Figure 3.8d, inset curve) due to the ligation of Re complex. FT-IR spectrum was used 

to detect the Re moiety in the COFs. The FT-IR spectrum for the Re-modified COF 

(Figure 3.10e) is consistent with the CO-stretching bands of the incorporated 

[Re(CO)3Cl)] complex as new peaks at 1900 cm-1, 1917 cm-1, 2024 cm-1.12,23 These data 

demonstrated the successful introduction of Re complexes into a COF backbone and the 

obtained Re-Bpy-sp2c-COF was still crystalline and porous. 
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Figure 3.11 (a) STEM images and EDX mapping of Re-Bpy-sp2c-COF; (b) EDX spectrum of Re-Bpy-

sp2c-COF; (c) Solid-state reflectance UV-vis spectra of Bpy-sp2c-COF and Re-Bpy-sp2c-COF. 

A uniform distribution of C, N, O, and Re in Re-Bpy-sp2c-COF is demonstrated by 

scanning transmission electron microscopy (STEM) and energy-dispersive X-ray 

spectroscopy (EDX) mapping images (Figure 3.11a and b), further suggesting that the 

Re moiety has been incorporated uniformly throughout the COFs. Inductively coupled 

plasma - optical emission spectrometry (ICP-OES) measurements suggest that 18 wt. % 

of Re has been incorporated into Bpy-sp2c-COF. It is calculated that half of the 

bipyridine sites in the COF backbone are coordinated by the Re complex. The ratio is 

also the same with the calculation in the atomistic model built to represent Re-Bpy-

sp2c-COF (Figure 3.10c). Compared to Bpy-sp2c-COF, a red-shift of the absorption 
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edge from 589 nm to 694 nm is observed for Re-Bpy-sp2c-COF by UV-Visible diffuse 

reflectance spectra (Figure 3.11c). This means the Re-Bpy-sp2c-COF has better visible 

light absorption ability than the pristine COF. A similar phenomenon was also observed 

in literature, which was supposed due to the vibronic broadening of materials or the 

increased delocalization by the chelation of Re complexes.12  

 

Figure 3.12 HR XPS analysis of Re 4f (a), Cl 2p (b) and N 2s (c) signals of Re-Bpy-sp2c-COF and Re 4f (d), Cl 

2p (e) and N 2s (f) signals of Re(bpy)(CO)3Cl. 

Finally, X-ray photoelectron spectra (Figure 3.12) was performed for Re-Bpy-sp2c-COF 

and Re(Bpy)(CO)3Cl to explore the local environment of Re. XPS showed similar 

features and binding energies for Re 4f 5/2 at 38.9 eV and 4f 7/2 at 41.3 eV, indicating 

that the Re species in both materials had similar coordination environments. The signal 

for Cl 2p and N 2s was also very similar in both cases. This showed that Re 

complexation in the COF is very likely to be the same as in the molecular catalyst. Taken 

together, by refluxing Bpy-sp2c-COF with Re complexes in toluene, Re-Bpy-sp2c-

COF was obtained. Characterizations demonstrated the crystalline and porous structure 

of Re-Bpy-sp2c-COF and the uniform distribution of Re moiety coordinated to the 

bipyridine moieties. This COF has fully π-conjugated structure and good light 

absorption ability, which has great potential for photocatalytic CO2 reduction. 
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3.7 Re-Bpy-sp2c-P 

 

Figure 3.13 (a) PXRD patterns of Bpy-sp2c-P and Re-Bpy-sp2c-P obtained experimentally; (b) N2 Adsorption 

(filled dots) and desorption (open dots) isotherm profiles of Bpy-sp2c-P measured at 77 K. Inset: profile of the 

calculated pore size distribution of Bpy-sp2c-P; (c) FT-IR Spectra of Bpy-sp2c-P and Re-Bpy-sp2c-P; (d) Solid-

state reflectance UV-vis spectra of Bpy-sp2c-P and Re-Bpy-sp2c-P. 

In previous literature, crystallinity8 and accessible surface area29 have been shown to be 

crucial factors for the photocatalytic activity of organic photocatalysts. To investigate 

whether these factors also influence the performance of Re-Bpy-sp2c-COF in 

photocatalytic CO2 reduction, an amorphous analogue Bpy-sp2c-P was synthesized by 

using 1,4-dioxane instead of a 1,2-dichlorobenze/1-butanol mixture under otherwise 

exactly the same experimental conditions. Re-Bpy-sp2c-P was prepared by using the 

same method for Re-Bpy-sp2c-COF. Bpy-sp2c-P (10 mg) and [Re(CO)5Cl] (10 mg, 

0.028 mmol) were dispersed and refluxed in 10 mL toluene for 40 min. ICP-OES 
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measurements suggested that 9.4 wt. % of Re has been incorporated into Bpy-sp2c-P. 

The BET surface area (SABET) for Bpy-sp2c-P was calculated to be 73 m2 g-1 (Figure 

3.13b) which was much lower than those of COFs and caused the lower Re loading 

amount. The pore size distribution profile exhibits a narrow pore size distribution (Figure 

3.13b, inset curve). FT-IR and UV-visible spectra (Figure 3.13c and Figure 3.13d) are 

comparable to those of Bpy-sp2c-COF and Re-Bpy-sp2c-COF. The peak at 2217 cm-1 

belonged to -C≡N vibration band, and peaks at 1900 cm-1, 1917 cm-1, 2024 cm-1 was 

proven as the CO-stretching bands of the incorporated [Re(CO)3Cl)] complex. A red-

shift of the absorption edge was also found in the UV-visible spectrum. All of these 

measurements demonstrated that the successful synthesis of Bpy-sp2c-P and Re-Bpy-

sp2c-P with properties similar to those of Bpy-sp2c-COF and Re-Bpy-sp2c-COF except 

smaller surface areas and lower Re loading amounts. 
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3.8 CO2 uptake  

 

Figure 3.14 CO2 sorption isotherms and CO2 isosteric heat of adsorption calculated from 273 K and 298 K of Re-

Bpy-sp2c-COF (a, b), Bpy-sp2c-COF (c, d) and Bpy-sp2c-P (e, f). 

The efficient interaction between photocatalysts and CO2 molecules is believed as a 

factor for CO2 reduction.30 Hence, CO2 uptake was tested for Bpy-sp2c-COF, Re-Bpy-

sp2c-COF and Bpy-sp2c-P up to 1200 mbar at both 273 and 298 K. The CO2 adsorption 
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of Re-Bpy-sp2c-COF was 1.7 mmol g-1 at 273 K and 1.1 mmol g-1 at 298 K (Figure 

3.14a). The CO2 adsorption of Bpy-sp2c-COF was 1.5 mmol g-1 at 273 K and 0.9 mmol 

g-1 at 298 K (Figure 3.14c), which were lower than those of Re-Bpy-sp2c-COF. Bpy-

sp2c-P had low CO2 uptake ability (Figure 3.14e) with 1.1 mmol g-1 at 273 K and 0.7 

mmol g-1 at 298 K. The isosteric heats of adsorption (Qst) were calculated to investigate 

the CO2 affinity of these materials. The isosteric heat of adsorption of Re-Bpy-sp2c-

COF, Bpy-sp2c-COF and Bpy-sp2c-P (Figure 3.14c, d, and f) were 31 kJ mol-1, 

28 kJ mol-1 and 32 kJ mol-1, respectively. All the materials with residual cyanovinyl-

groups of the Knoevenagel condensation demonstrated a good affinity toward CO2, 

which might also enhance the efficiency of CO2 reduction.22
 

3.9 CO2 reduction characterization 

 

Figure 3.15 CO2 reduction experiments of Re-Bpy-sp2c-COF (1 mg) (a) and Re(bpy)(CO)3Cl (0.45 mg, 0.97 

μmol) (b) from MeCN and TEOA (5 mL, 30/1) under visible light irradiation (λ > 420 nm, 300 W Xe light source); 
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(c) Wavelength dependent CO evolution experiments of Re-Bpy-sp2c-COF (1 mg) from 5 mL MeCN/TEOA 

(30/1) solution under monochromatic light (± 10 nm, fwhm) in a photoreactor with path length of 5 cm at 420 nm 

(blue), 435 nm (deep green), 490 nm (green), and 515 nm (orange). 

Photocatalytic CO2 reduction experiments were performed in a customed quartz cuvette 

(V = 27 mL) under 1 atmosphere CO2 and visible light illumination (λ > 420 nm, 300 

W light source). A mixture of acetonitrile and triethanolamine in a 30:1 ratio was used. 

MeCN acts as a solvent to disperse the catalyst, while TEOA is the sacrificial electron 

donor and proton source. Gaseous products were taken with a gas-tight syringe and run 

on a Shimadzu GC-2014 gas chromatograph equipped with a ShinCarbon ST 

micropacked column (Restek 80-100 mesh, 2 m length, 0.53 mm inner diameter) and a 

thermal conductivity detector. 

As shown in Figure 3.15a, after 17.5 hours of irradiation under visible light (λ > 420 nm), 

Re-Bpy-sp2c-COF generated CO with a rate of 1040 µmol g-1 h-1 (TON = 18.7) and 81% 

selectivity over H2. Wavelength dependent CO evolution experiments for measuring 

apparent quantum yield (AQY) were carried out at 420, 435, 490 and 515 nm, 

respectively. An AQY of 0.5% was measured at 420 nm for CO production (Figure 

3.15c). In contrast, the homogeneous counterpart deactivated after 3 hours with a TON 

of 10.3 under the same conditions (Figure 3.15b). In such an experimental condition, 

competing proton reduction of water traces in the TEOA or oxidative dehydrogenation 

of TEOA might cause a small amount of H2 to be produced by Re-Bpy-sp2c-COF.31 

The critical role of the Re-complex was proved by Bpy-sp2c-COF (Table 3.2) which 

only generated trace amounts of CO and a non-detectable amount of H2 in the absence 

of the Re complex. Integrating the Re complex into the COF backbone can significantly 

improve its performance.  

Table 3.2 Photocatalytic CO2 reduction using different experimental conditions. 

Entry Photocatalyst CO (μmol) H2 (μmol) 

Re 

content  

(μmol) 

TON 

(CO) 

CO selectivity 

(%) 
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1[a] Re-Bpy-sp2c-COF 12.48 2.99 0.97 12.9 80.7 

2[a] Bpy-sp2c-COF 0.21 n.d. 0 / / 

3[b] Re-Bpy-sp2c-COF 0.18 3.42 0.97 0.2 5.0 

4[c] Re-Bpy-sp2c-COF n.d. n.d. 0.97 / / 

5[d] Re-Bpy-sp2c-COF n.d. n.d. 0.97 / / 

6[e] Re-Bpy-sp2c-COF 2.32 0.76 0.97 2.4 75.2 

7[a] Re-Bpy-sp2c-P 1.15 0.07 0.50 2.3 94.5 

8[a] Bpy-sp2c-P - 0.18 0 / - 

9[e] Re(bpy)(CO)3Cl 10.03 0.67 0.97 10.3 93.8 

[a] Reaction conditions: Photocatalyst (1 mg), solvent (5 mL, acetonitrile/TEOA = 30 : 1), CO2 (1 atm.), 300 W Xe 

light source equipped with λ > 420 nm cut-off filter, 12 hours; [b]Ar atmosphere instead of CO2; [c]In the dark; 

[d]Without TEOA; [e] Acetonitrile was replaced with dimethylformamide; [f]Photocatalyst (0.45 mg, 0.97 μmol), 

Solvent (5 mL, acetonitrile/TEOA = 30 : 1), CO2 (1 atm.), 300 W Xe light source equipped with λ > 420 nm cutoff 

filter, 12 hours; n.d.: none detected. 

The crucial factors of crystallinity and porosity are demonstrated by the amorphous 

polymer Re-Bpy-sp2c-P, showing significantly lower activity for CO2 reduction (Table 

3.2) with a TON of 2.3 after 12 hours compared to 12.9 for Re-Bpy-sp2c-COF. This is 

the first study that compares crystalline COFs directly with amorphous analogs for 

photocatalytic CO2 reduction. The crystalline COFs are much more active for the CO 

production from CO2. 

A series of control experiments were conducted as easy, cheap, and fast ways to confirm 

that the source of the CO generated is indeed a photocatalytic process (Table 3.2). Under 

an argon atmosphere in the absence of CO2, Re-Bpy-sp2c-COF produced H2 and CO at 

a rate of 285.3 µmol g-1 h-1 and 14.9 µmol g-1 h-1, respectively. Decomposition of organic 

residues during photocatalysis32 or ineffective side-reaction of decomposition of TEOA 

might be the source of the small amount of CO generated.31 Without light or scavengers, 
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no gas production was determined. Liquid phase products, i.e., HCOOH and methanol, 

were tested for by NMR and could not be observed for Re-Bpy-sp2c-COF, indicating 

the CO is the only product from CO2. Results from control experiments show the CO 

was the product from photocatalytic CO2 reduction in the system, and the process is 

indeed photocatalytic and driven by the COFs. 

 

Figure 3.16 FT-IR Spectra of 13CO produced in the photoreduction of 13CO2. 

Finally, an experiment by using 13CO2 was carried out to further prove CO2 was the 

carbon source for the CO. To do this, a 12 mL vial was used to ensure the concentration 

of generated CO was sufficient for measurement. The vial was charged with 1 mg Re-

Bpy-sp2c-COF and 5 mL solvent (acetonitrile/TEOA = 30 : 1). The mixture was purged with 

13CO2 for 3 minutes, then the vial was illuminated for 4 hours using a 300 W Xe light source 

equipped with a λ > 420 nm filter. FT-IR spectra showed a series of regularly spaced peaks 

centered at 2140 cm-1 and 2098 cm-1, respectively, belonging to the P and R branch 

transitions of 12CO and 13CO.33 FT-IR spectra with isotope labelling under 12CO2 and 

13CO2 atmospheres confirmed the formation of 13CO, strongly supporting that CO2 was 

the source of the produced CO (Figure 3.16).33  

Table 3.3 Previously reported photocatalytic CO2 reduction using COFs. 

Photocatalyst 

Main products 

and highest yield  

TON Selectivity Reaction solvent 

Irradiation 

condition 

Reference 



 110 

(μmol h-1 g-1) 

Re-bpy-sp2c-COF 1040 (CO) 
18.7 

(17.5 h) 
80.7% (CO) 

MeCN / TEOA 

(30/1) 

λ > 420 nm (300 W 

Xe light source) 
This work 

Re-COF 750 (CO) 48 
98% 

(CO) 

MeCN / TEOA 

(3:0.2) 

λ > 420 nm (225 W 

Xe light source) 
12 

Ni-TpBpy-COF 

[Ru(bpy)3]Cl2 
966 (CO) 13.6 

96% 

(CO) 

MeCN / H2O / 

TEOA 

(3/1/1) 

λ ≥ 420 nm (300 W 

Xe light source) 
13 

Re-TpBpy-COF 270 (CO) - - 

MeCN / H2O 

(10/1.8 mL), 0.1 M 

TEOA 

λ > 390 nm (200 W 

Xe light source) 
34 

DQTP-COF-Co 

[Ru(bpy)3]Cl2 
1020 (CO) 2.18 

59.4% 

(CO) 

MeCN / TEOA 

(4/1) 

λ ≥ 420 nm (300 W 

Xe light source) 
35 

ACOF-1 0.36 (CH3OH) - - 
CO2 and H2O (0.4 

MPa, 80 °C) 

800 nm ≥ λ ≥ 420 nm 

(500 W Xe light 

source) 

11 

N3-COF 0.57 (CH3OH) - - 
CO2 and H2O (0.4 

MPa, 80 °C) 

800 nm ≥ λ ≥ 420 nm 

(500 W Xe light 

source) 

11 

The photocatalytic performance of Re-Bpy-sp2c-COF is comparable with other 

reported COFs in terms of CO generation rate and CO/H2 selectivity (Table 3.3). For 

instance, a rhenium modified 2D imine-triazine COF produced around 750 µmol g-1 h-1 

CO with 98% selectivity,12 and a β-ketoenamine-linked COF modified with nickel gave 

a CO production rate of 811 µmol g-1 h-1 CO with 96% selectivity with an additional 

dye.13 However, these COFs cannot maintain their crystalline structures after 

photocatalysis. Some of them need additional photosensitizers due to their limited light 

harvesting and/or subsequent energy transfer abilities. Considering different 

experimental set-up affect photocatalytic rates, comparisons between materials in 

literature should make with caution.36 
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Figure 3.17 (a) Experimentally observed powder X-ray diffraction pattern of Re-Bpy-sp2c-COF before and after 

17.5 hours irradiation; (b) FT-IR spectra of Re-Bpy-sp2c-COF before and after 17.5 hours of visible light 

irradiation (300 W Xe light source, λ > 420 nm). 

Stability is a very important factor for photocatalysts. PXRD and FTIR were tested for 

Re-Bpy-sp2c-COF before and after photocatalysis to determine the crystalline structure 

and Re complexes inside the COFs. Re-Bpy-sp2c-COF can also keep its crystallinity, 

evident from the post-illumination PXRD patterns (Figure 3.17a) of the sample after 

photolysis of 17.5 hours. This shows that the material has very good stability compared 

to other previous reports of Re-COF and Ni-TpBpy-COF.12,13 From the post-

illumination FT-IR spectra (Figure 3.17b), Re-Bpy-sp2c-COF appears to be stable under 

the photocatalysis conditions after 17.5 hours of continuous visible light illumination 

(λ > 420 nm, 300 W Xe light source). The peaks at 1900 cm-1, 1917 cm-1, 2024 cm-1 

corresponding to the CO-stretching bands of the incorporated [Re(CO)3Cl)] complex 

were same for Re-Bpy-sp2c-COF before and after photocatalysis, further proving the 

excellent stability of Re-Bpy-sp2c-COF. 
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Figure 3.18 (a) Stability and reusability test using Re-Bpy-sp2c-COF (1mg) (a) and Re(Bpy)(CO)3Cl (0.97 μmol) 

(b) as a photocatalyst under visible light irradiation (λ > 420 nm) in 5 mL MeCN/TEOA (30/1) solvent for 50 h 

and 10 h.; (c) Experimentally observed powder X-ray diffraction pattern of Re-Bpy-sp2c-COF before and after 

50 hours irradiation. 

To further study the stability of Re-Bpy-sp2c-COF, a 50 hour experiment was 

performed. The quartz flask was degassed with CO2 every 10 hours. Results in Figure 

3.18a indicated Re-Bpy-sp2c-COF could produce CO constantly while the molecular 

catalyst stopped after 5 hours. However, the molecular catalyst lost its activity after 4 

hours irradiation (Figure 3.18b). After adding 1 mL fresh MeCN/TEOA mixture and re-

degassing with CO2, the molecular catalyst still has no activity. PXRD patterns of Re-

Bpy-sp2c-COF after photocatalysis (Figure 3.18c) showed a loss of crystallinity. This 

along with a loss of activity highlighted that structural stability is still one of the 

important challenges in the field. Nevertheless, it seems that in making a heterogeneous 
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analogue of [Re(bpy)(CO)3Cl] an increase in stability is observed (Figure 3.18a and b), 

possibly by preventing the formation of the dimer of the Re-complex23 which occurs in 

Re(bpy)CO3Cl followed by catalyst degradation, and shielding of the Re-centre in the 

photocatalyst from light.37 

3.10 Photoelectrochemical characterization 

 

Figure 3.19 (a) Transient photocurrent response at 0.5 V vs RHE in 0.1 M Na2SO4 solution under intermittent 

light irradiation for Bpy-sp2c-COF and Re-Bpy-sp2c-COF; (b) Transient photocurrent response at different 

potentials in aqueous solution vs RHE under intermittent light irradiation for Re-Bpy-sp2c-COF; (c) Transient 

photocurrent response at different potentials in acetonitrile vs RHE under intermittent light irradiation for Bpy-

sp2c-COF and Re-Bpy-sp2c-COF; (d) Nyquist plots of Bpy-sp2c-COF (blue) and Re-Bpy-sp2c-COF (red) at a 

voltage of 0.5 V vs. RHE in 0.1 M Na2SO4 solution under dark (open dots) and light irradiation (closed dots). 
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The origins of excellent photocatalytic CO2 reduction performance of Re-Bpy-sp2c-

COF were further studied. To investigate its charge separation and transformation 

properties, photoelectrochemical experiments were employed using FTO glass as a 

photocathode in 0.1 M Na2SO4 solution (Figure 3.19a). All samples were tested at a 

constant voltage of 0.5 V vs reversible hydrogen electrode (RHE). The photocurrent of 

Re-Bpy-sp2c-COF photocathode was about 2 µA cm-1, which was more than four times 

higher than a Re-free Bpy-sp2c-COF photoanode. A potential of +0.5 V vs. RHE was 

selected because at this potential the observed photocurrents were highest (Figure 3.19b). 

The photocurrents could be further optimized, but these are just supporting experiments 

to show that the Re complex COF generates higher photocurrents than the metal-free 

COF. The experiments were also performed by using acetonitrile with Bpy-sp2c-COF 

and Re-Bpy-sp2c-COF as the support electrolyte at a range of different potentials. The 

results are similar to those obtained in aqueous solutions (Figure 3.19c), with the COF 

bearing the Re complex generating higher photocurrents. However, the observed 

photocurrents are all lower than when using aqueous solutions. 

Moreover, when under irradiation, the arc radii for Bpy-sp2c-COF and Re-Bpy-sp2c-

COF in Nyquist plots (Figure 3.19d) were smaller than those in the dark. This indicated 

that charge carriers were generated in Bpy-sp2c-COF and Re-Bpy-sp2c-COF under 

irradiation. The Nyquist plots of Re-Bpy-sp2c-COF under irradiation have smaller 

semicircles than those of Bpy-sp2c-COF. Taken together, these measurements 

demonstrated that Re-Bpy-sp2c-COF acts as a better photo-electrocatalyst suggesting 

that this COF is better at separating and transferring charges, which is also in line with 

computational predictions (vide infra). 
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3.11 TCSPC measurements 

 

Figure 3.20 (a) Fluorescence emission and excitation spectra of Bpy-sp2c-COF in acetonitrile; (b) Fluorescence 

emission and excitation spectra of Bpy-sp2c-COF in acetonitrile and triethanolamine (30/1) mixture; (c) 

Fluorescence emission and excitation spectra of Re-Bpy-sp2c-COF in acetonitrile; (d) Fluorescence emission and 

excitation spectra of Re-Bpy-sp2c-COF in acetonitrile and triethanolamine (30/1) mixture. 

Emission spectroscopy and TCSPC measurements was then applied to study the 

mechanism of photocatalysis for Re-Bpy-sp2c-COF. Two emissive states with λmax at 

475 and 640 nm were observed for the photocatalyst Bpy-sp2c-COF in acetonitrile 

suspension (Figure 3.20a). From the excitation spectrum in Figure 3.20a, the 640 nm 

emission results from a broad range of absorption bands in the UV/Vis spectrum (from 

300 to 500 nm). By comparison, excitation into a single band at 390 nm causes the sharp 
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emission band centred at 475 nm. PL spectra of Bpy-sp2c-P and Re-Bpy-sp2c-P (Figure 

3.21a) are comparable to those of Bpy-sp2c-COF and Re-Bpy-sp2c-COF. Two 

emissive states with λmax at 475 and 620 nm were observed for Bpy-sp2c-P in 

acetonitrile suspension, and one emissive state with λmax at 475 nm (Figure 3.21b, c and 

d) was detected for Bpy-sp2c-P and Re-Bpy-sp2c-P in acetonitrile/TEOA suspension. 

 

Figure 3.21 Fluorescence emission and excitation spectra of Bpy-sp2c-P in MeCN (a) and MeCN/TEOA (30/1) 

(b) and Re-Bpy-sp2c-P in MeCN (c) and MeCN/TEOA (30/1) (d). 
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Table 3.4 Fluorescence life-time measurements. 

Materials λem / nm τ1 / ns B1 / % τ2 / ns B2 / % τ3 / ns B3 / % χ2 τAVG 

Bpy-sp2c-COF[a] 475 0.56 5.11 2.55 84.22 4.16 10.66 1.18 2.62 

Bpy-sp2c-COF[b] 475 0.06 9.16 1.95 31.27 3.13 59.57 1.25 2.48 

Bpy-sp2c-COF[a] 640 0.64 34.16 2.56 46.82 7.5 19.02 1.19 2.84 

Bpy-sp2c-COF[b] 640 0.66 38.23 2.48 42.59 7.34 19.18 1.19 2.72 

Bpy-sp2c-COF[c] 475 0.15 16.42 0.55 60.10 1.19 18.48 1.20 0.60 

Bpy-sp2c-COF[d] 475 0.08 6.14 0.66 87.52 2.20 6.34 1.02 0.72 

Bpy-sp2c-COF[c] 620 0.79 35.05 2.74 46.03 7.94 18.93 1.19 3.04 

Bpy-sp2c-COF[d] 620 0.72 33.59 2.57 46.47 7.54 19.94 1.16 2.94 

Re-Bpy-sp2c-COF[a] 475 0.14 5.90 1.98 44.30 3.09 49.80 1.39 2.42 

Re-Bpy-sp2c-COF[b] 475 0.25 4.89 2.57 78.73 4.26 16.38 1.25 2.73 

Re-Bpy-sp2c-COF[c] 475 0.22 28.82 0.75 67.21 3.96 3.97 1.29 0.72 

Re-Bpy-sp2c-COF[d] 475 0.23 26.95 0.77 68.78 3.83 4.27 1.33 0.76 

Bpy-sp2c-P[a] 475 0.33 7.65 2.24 55.04 3.23 37.31 1.31 2.47 

Bpy-sp2c-P[b] 475 0.41 4.94 2.57 65.68 3.67 29.37 1.11 2.79 

Bpy-sp2c-P[a] 620 0.36 41.04 1.42 43.42 4.39 15.55 1.37 1.44 

Bpy-sp2c-P[b] 620 0.37 40.39 1.45 42.51 4.52 17.11 1.41 1.54 

Bpy-sp2c-P[c] 620 0.52 30.22 1.94 50.57 6.24 19.22 1.31 2.34 

Bpy-sp2c-P[d] 620 0.52 30.50 1.92 50.19 6.18 19.31 1.24 2.32 

Re-Bpy-sp2c-P[a] 475 0.37 27.92 1.91 30.20 3.14 41.88 1.13 1.99 

Re-Bpy-sp2c-P[b] 475 0.39 23.77 2.43 50.10 3.60 26.12 1.19 2.25 

Re-Bpy-sp2c-P[c] 475 0.38 66.06 0.99 31.10 5.25 2.85 1.01 0.71 

Re-Bpy-sp2c-P[d] 475 0.38 57.86 0.98 38.00 6.13 4.15 1.13 0.85 

[a] Acetonitrile purged with N2; [b] Acetonitrile purged with CO2; [c] Acetonitrile and triethanolamine (30/1) 

purged with N2; [d] Acetonitrile and triethanolamine (30/1) purged with CO2; [e] Fluorescence lifetimes were 

obtained upon excitation at λexc = 405 nm with a laser and observed at λem = 475, 640 nm. Fluorescence lifetimes 

in solvent suspension obtained from fitting time-correlated single photon counting decays to a sum of three 

exponentials, which yield τ1, τ2, and τ3 according to ∑ (𝐴 + 𝐵𝑖
𝑛
𝑖=1 exp(−

𝑡

𝜏𝑖
)). τAVG is the weighted average lifetime 

calculated as ∑ 𝐵𝑖𝜏𝑖
𝑛
𝑖=1 . Note that the poor χ2 values are due to ultrafast decays for these materials which were 

very similar to the instrument response. 

TCSPC measurements are used to estimate the excited-state lifetimes of the COFs under 



 118 

different conditions. The lifetimes of the 640 nm emissive state of Bpy-sp2c-COF and 

the 620 nm emissive state of Bpy-sp2c-P seem insensitive to the presence of the TEOA 

scavenger (Table 3.4). The average weighted photoluminescence emission lifetimes of Bpy-

sp2c-COF (τavg = 2.62 ns, λem = 475 nm; τavg = 2.84 ns, λem = 640 nm) in MeCN purged with 

N2 were similar with that (τavg = 2.48 ns, λem = 475 nm; τavg = 2.72 ns, λem = 640 nm) in MeCN 

purged with CO2. Bpy-sp2c-P also has a similar lifetime in MeCN purged with N2 and 

CO2. The emission yields at 640 nm are also unchanged (Figure 3.20a and Figure 3.21a). 

The lifetime of the 475 nm emissive state of Bpy-sp2c-COF, in contrast, decreases from 

2.48 ns to 0.72 ns when tested in the presence of the TEOA electron donor (Table 3.4, 

Figure 3.20b). The lifetime of the 475 nm emissive state of Bpy-sp2c-P also decreases 

from 2.79 ns to 1.54 ns when tested in the presence of the TEOA electron donor (Table 

3.4, Figure 3.21b). The emission yields are also very sensitive to TEOA. This indicates 

that that reductive quenching of this excited state can occur when the system contains 

TEOA. 

In previous studies, sp2c-COF-2 synthesized with TFPPy and 2,2’-(biphenyl-4,4’-

diyl)diacetonitrile shows a similar structure to Bpy-sp2c-COF. Two emissive states are 

also presented for sp2c-COF-2 bulk and exfoliated thin film samples.24 Therein, 

emission at 640 nm was attributed to the presence of a delocalised excited state across 

both pyrene and the sp2-carbon backbone on the basis of the significantly redshifting of 

the emission when compared to that typically measured for excimer state of pyrene 

systems alone (ca. 480 nm). It is quite interesting to observe a second emission at ca. 

468 nm for exfoliated sp2c-COF-2 thin film samples in literature. The exfoliation of 

COF can remove the π-π stacking force between COF layers, allowing twisting of the 

structure and a loss of conjugation across the backbone.  

Here, the samples (Bpy-sp2c-COF and Re-Bpy-sp2c-COF) are sonicated in solvent 

before testing and a similar assignment is also proposed. Additionally, the introduction 

of a Re complex into Bpy-sp2c-COF results in a significant change in the measured 

photophysical behaviour. With Re-Bpy-sp2c-COF a single emissive state (λmax = 475 



 119 

nm), proposed to be due exfoliated COF material remains. Exfoliation of COFs might 

cause the loss of conjugation, leading to limited electron or energy transfer from the 

COF framework to the Re centre. That is why emission at this wavelength is insensitive 

to the presence of the Re centre. Besides, the emissive state with λmax at 640 nm of Bpy-

sp2c-COF is totally absent in the Re-Bpy-sp2c-COF (Figure 3.20c and d). This strongly 

demonstrates that the delocalized COF excited state is quenched by the Re complex. 

The assignment of the sensitization of the Re centre by the delocalized COF in the bulk 

material framework excited state is supported by the good agreement between the 

wavelength dependent CO measurement (Figure 3.15) and the excitation spectrum of the 

640 nm emission of the Bpy-sp2c-COF sample (Figure 3.20a). 

  



 120 

3.12 Transient absorption (TA) spectroscopy 

 

Figure 3.22 Transient absorption spectra of (a) Re-Bpy-sp2c-COF and (c) Bpy-sp2c-COF in pure acetonitrile at 

pump-probe time delays chosen to highlight the changing nature of the excited electronic states probed. Complete 

transient absorption surface probed (b) Re-Bpy-sp2c-COF and (d) Bpy-sp2c-COF in pure acetonitrile. 

To further explore the photophysics of the system, transient absorption (TA) 

spectroscopy was involved to study both Re-Bpy-sp2c-COF and Bpy-sp2c-COF (Figure 

3.22). Following excitation at 400 nm, 80 µW (5 kHz) of Bpy-sp2c-COF, complex TA 

spectra (Figure 3.22 c and d) were shown with broad negative bands between 450 to ca. 

700 nm that formed within 0.5 ps. The minimal absorption by the ground state of Bpy-

sp2c-COF is observed at wavelengths longer than 600 nm (Figure 3.11b). Therefore, the 

negative signal is proposed to be the overlap of stimulated emission from both the 

conjugated Bpy-sp2c-COF structure (λmax = 640 nm) and the exfoliated Bpy-sp2c-COF 

(λmax = 475 nm), overlapped with the ground state bleach, giving rise to the complex 

shape. 
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Figure 3.23 Transient absorption kinetics recorded at 550 nm following 400 nm excitation of the samples indicated 

in CH3CN. 

It is difficult to determine accurate kinetics due to the complex nature of the bleach. 

Hence, the time taken for the bleach to decrease by 50% (named t50%) was used as a 

rough measure of the lifetime of the photogenerated excited state. For Bpy-sp2c-COF 

at 550 nm, t50% = ca. 5 ps (Figure 3.23). Within 0.5 ps a photoinduced absorption (PIA) 

is observed at 770 nm. This PIA decays within 10 ps to form a new PIA centred at 700 

nm which decays over the course of the experiment to leave only a small PIA by 3 ns.  

Re-Bpy-sp2c-COF, on the contrary, gives a simpler TA spectrum following 400 nm 

excitation (Figure 3.22 a and b). The negative signal centred at 540 nm is contributed to 

a combination of ground state bleaching and stimulated emission from the exfoliated 

COF framework (λmax =475 nm). Notably, the negative band of Re-Bpy-sp2c-COF is 

narrower than that of Bpy-sp2c-COF. For Re-Bpy-sp2c-COF at 550 nm, t50% = ca. 200 

ps (Figure 3.23), significantly longer than that observed for Bpy-sp2c-COF. Within 0.5 

ps a PIA is also observed for Re-Bpy-sp2c-COF at 770 nm. Within the first 5 ps, a blue 

shift of this initially formed PIA is occurred and a band centred at ca. 720 nm is formed. 
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This state decays over the course of the time-delays, demonstrating the negative band is 

contributed to ground state bleaching and stimulated emission recovers.  

 

Figure 3.24 Transient absorption spectra of (a) Re-Bpy-sp2c-COF and (c) Bpy-sp2c-COF in a 30:1 mixture of 

acetonitrile and TEOA at pump-probe time delays chosen to highlight the changing nature of the excited electronic 

states probed. Complete transient absorption surface probed (b) Re-Bpy-sp2c-COF and (d) Bpy-sp2c-COF in a 

30:1 mixture of acetonitrile and TEOA. 

In the presence of TEOA, we again find that the TA signals are significantly weaker with Re-

Bpy-sp2c-COF (Figure 3.24a and c). The ground state bleach of Re-Bpy-sp2c-COF centred at 

ca. 540 nm is significantly (ca. 85%, 1 ps) diminished in the presence of TEOA even at the 

earliest timescales studied indicating that the TEOA can act as an electron donor. Interestingly 

the addition of TEOA to Bpy-sp2c-COF leads to only weak signals being recorded in the TA 

spectrum indicating that TEOA can reductively quench the excited states probed by 

wavelengths employed in the TA experiment – in contrast to results of the TCSPC experiments. 

Although no direct spectral fingerprint is observed for the formation of the reduced Re 

centre by TA spectroscopy in the UV/Vis spectral region, it is clear from the simplified 

TA spectra, combined with the significantly increased lifetime of the ground state bleach 
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for Re-Bpy-sp2c-COF, that the rhenium can promote charge separation within the 

structure, reinforcing the TCSPC study.  

3.13 Calculations 

 

Figure 3.25 Representative molecular models (a) Bpy-sp2c(L) and (b) Re-Bpy-sp2c(L) of Bpy-sp2c-COF 

and Re-Bpy-sp2c-COF, respectively, together with fragment definition for inter-fragment charge transfer 

calculations; (c) (TD-)CAM-B3LYP calculated IP, EA, and IP* potentials of Bpy-sp2c(L) and Re-Bpy-

sp2c(L). Dashed coloured lines indicate the potentials for CO2 reduction to CO, proton reduction, and 

TEOA oxidation, respectively. 

Density functional theory (DFT) calculations were carried out for representative 

molecular fragments of the COFs to further investigate the excellent CO2 reduction 

performance of the COFs. Molecular models Bpy-sp2c(L) and Re-Bpy-sp2c(L) in Figure 

3.25a and Figure 3.25b represent Bpy-sp2c-COF and Re-Bpy-sp2c-COF, respectively. 

These fragments were also used for inter-fragment charge transfer calculations, which 

will be discussed later. By comparing the electron affinity (EA) and the ionization 

potential (IP) values of COF models with potentials of CO2 reduction and oxidation of 

TEOA, the driving forces were estimated for CO2 reduction systems. Using these 

models, DFT and time-dependent (TD) DFT calculations were performed (Figure 3.25c) 

and indicated that the EA and the IP values of both COFs straddle the reduction potential 

of CO2 to CO, as well as the proton reduction potential, and the oxidation potential of 
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TEOA. The DFT calculations show that Re-Bpy-sp2c-COF has thermodynamic driving 

force for CO2 reduction to CO in the system with TEOA as the sacrificial agent.  

 

Figure 3.26 The frontier orbitals of Bpy-sp2c(L) (a) and Re-Bpy-sp2c(L) (b) in the excited state (TD-CAM-

B3LYP/Def2SVP); isodensity = 0.03 a.u. 

Table 3.5 Calculated TD-DFT (TD-CAM-B3LYP) excitation energies for the lowest transition (E), oscillator 

strengths (f), and composition in terms of molecular orbital contributions. 

 State Composition a E (eV, nm) f ∆r (Å) 16 

Bpy-sp2c(L) 

S1 84.8% H → L 2.4537 (505.29) 2.52 5.49 

S2 

35.1% H-2 → L; 

13.9% H-1 → L+1; 

12.0% H → L+2 

3.2197 (385.08) 1.50 8.72 

S3 

32.8% H-1 → L+1; 

17.7% H-1 → L+2; 

11.0% H-2 → L 

3.3683 (368.09) 1.09 10.45 

Re-Bpy-sp2c(L) 

S1 
76.0% H → L; 

10.2% H → L+1 
2.3880 (519.19) 2.64 7.61 

S2 49.8% H-2 → L 3.1047 (399.34) 0.47 6.80 

S3 
30.0% H-4 → L; 

16.7% H-2 → L 
3.1889 (388.80) 0.80 6.29 
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a H = HOMO, L = LUMO, ∆r is state-specific charge-transfer length. 

Figure 3.26 shows the frontier orbitals of Bpy-sp2c(L) and Re-Bpy-sp2c(L) in the excited 

state. The major contribution to each of the first three electronic excitations is indicated 

by the arrow, together with the state, excitation energy (eV, nm), oscillator strength and 

percentage of the transition. In Table 3.5, TD-CAM-B3LYP calculations predict that the 

lowest-energy, excited electronic state (S1) for both Bpy-sp2c(L) and Re-Bpy-sp2c(L) 

corresponds to the LUMO ← HOMO transition, with a strong oscillator strength. 

Electron distributions of the excited-state frontier orbitals suggest that for both Bpy-

sp2c(L) and Re-Bpy-sp2c(L) the HOMO orbital is predominantly located on the pyrene 

unit of the COF. And the LUMO orbital is mainly located on the bipyridine unit (with 

or without ligated Re complex; Figure 3.26).  

Table 3.6 Calculated inter-fragment charge transfer (in number of electrons) in the excited state (TD-CAM-

B3LYP), with fragment definitions shown in Figure 3.24.  

Bpy-sp2c(L) 

1st Excited state 

1 → 2: 0.00 1 ← 2: 0.00 Net 1 → 2: 0.00 

1 → 3: 0.12 1 ← 3: 0.25 Net 1 → 3: -0.14 

2 → 3: 0.00 2 ← 3: 0.00 Net 2 → 3: 0.00 

2nd Excited state 

1 → 2: 0.08 1 ← 2: 0.11 Net 1 → 2: -0.03 

1 → 3: 0.13 1 ← 3: 0.16 Net 1 → 3: -0.02 

2 → 3: 0.10 2 ← 3: 0.08 Net 2 → 3: 0.01 

3rd Excited state 

1 → 2: 0.07 1 ← 2: 0.13 Net 1 → 2: -0.06 

1 → 3: 0.03 1 ← 3: 0.05 Net 1 → 3: -0.02 

2 → 3: 0.13 2 ← 3: 0.13 Net 2 → 3: 0.00 

Re-Bpy-sp2c(L) 

1st Excited state 

1 → 2: 0.00 1 ← 2: 0.00 Net 1 → 2: 0.00 

1 → 3: 0.11 1 ← 3: 0.31 Net 1 → 3: -0.20 

2 → 3: 0.00 2 ← 3: 0.00 Net 2 → 3: 0.00 

2nd Excited state 

1 → 2: 0.05 1 ← 2: 0.07 Net 1 → 2: -0.01 

1 → 3: 0.15 1 ← 3: 0.13 Net 1 → 3: 0.02 

2 → 3: 0.02 2 ← 3: 0.01 Net 2 → 3: 0.01 
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3rd Excited state 

1 → 2: 0.09 1 ← 2: 0.13 Net 1 → 2: -0.03 

1 → 3: 0.12 1 ← 3: 0.12 Net 1 → 3: 0.01 

2 → 3: 0.04 2 ← 3: 0.03 Net 2 → 3: 0.01 

Table 3.6 shows the results of the calculated inter-fragment charge transfer in the excited 

states of Bpy-sp2c(L) and Re-Bpy-sp2c(L). Arrows in Table 3.6 indicate the electron 

transfer direction between the fragments defined in Figure 3.25. A negative value for the 

net transfer means that the electrons are transferred in the opposite direction to the one 

indicated by the arrow. Analyses of excited-state, inter-fragment charge transfer 

between the building units of the COFs demonstrate that considerable amounts of 

electrons are transferred from the pyrene fragment to the bipyridine fragment (Table 3.6), 

with a sizable electron–hole distance as measured by the charge centroids of the orbitals 

involved (∆r in Table 3.5).  

From the computational results, it is clear that there is electron transfer from the COF 

backbone to the catalytically active Re complex. Compared to the homogeneous catalyst, 

the CO2 reduction mechanism of the Re-Bpy-sp2c-COF are different. Here we propose 

pyrene excitation to a bipyridine based LUMO. In contrast, in solution excitation upon 

irradiation forms a metal to bipyridine excited state (3MLCT) which is then quenched 

by an electron donor (Figure 1.6 in Chapter 1).38 The same results about the 

photogenerated electron transfer from COF to Re complexes were also demonstrated for 

2D Re-COF.12 The proposed mechanism includes three steps. Initially, an 

intramolecular charge transfer state occurs under irradiation, which is reduced by TEOA 

to form a TEOA+-(COF-Re)- charge separation state. Then, the chloride ion is 

eliminated from the Re complex. CO2 is bound at the empty coordination site to form 

an intermediate species such as TEOA+-(COF-Re[CO2])
- or/and TEOA+-(COF-

Re[CO2H])-. Finally, carbon monoxide is released. 
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3.14 Dye sensitization  

 

Figure 3.27 (a) structure of (Ir[dF(CF3)ppy]2(dtbpy))PF6; (b) CO (closed dots) and H2 (open dots) 

production using visible light (λ > 420 nm, 300 W Xe light source) for Re-Bpy-sp2c-COF (1 mg) and 

Re-Bpy-sp2c-COF with dye (1 mg catalyst with 0.3 mmol or 1.0 mmol dye in 5 mL solvent with ratio of 

MeCN/TEOA = 30/1).  

In previous literature, FS-COF was indicated to have accessible pores which can 

potentially act as a host for dyes to further enhance photocatalytic activity for hydrogen 

evolution.8 Here, (Ir[dF(CF3)ppy]2(dtbpy))PF6 (ppy = 2-phenylpyridine, tbpy = 4,4′-di-

tert-butyl-2,2′-dipyridyl) was used in conjunction with Re-Bpy-sp2c-COF to increase 

the photocatalytic CO2 reduction performance (Figure 3.27a).  

Different amounts of the dye were used, and the CO production rates were enhanced by 

32% and 84% compared to the unsensitized COF when using 0.3 mmol and 1.0 mmol 

of the dye, respectively, with 1 mg COF over 5 hours (Figure 3.27b). The H2 production 

rates were unchanged. When Re-Bpy-sp2c-COF was loaded with 1.0 mmol dye, the 

highest CO production rates were 1400 µmol h-1 g-1, with a selectivity of 86% for CO, 

over 5 hours.  

A series of control experiments was conducted for the systems with dye to investigate 

the crucial factors influencing the photocatalytic CO2 reduction performance. Under an 

argon atmosphere in the absence of CO2, Re-Bpy-sp2c-COF with dye produced H2 and 

CO at a rate of 511.7 µmol g-1 h-1 and 18.3 µmol g-1 h-1, respectively. Bpy-sp2c-COF 
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with or without dye only generated a negligible amount of H2, proving the crucial role 

of the Re complexes in the COFs. Without COFs, no gas production was measured by 

systems with dye, demonstrating the dye alone cannot be a photocatalyst for CO2 

reduction and the crucial role of COFs. 

Table 3.7 Photocatalytic CO2 reduction using different experimental conditions. 

Entry Photocatalyst CO (μmol) H2 (μmol) 

Re 

content  

(μmol) 

TON 

(CO) 

CO selectivity 

(%) 

1[a] Re-Bpy-sp2c-COF 12.48 2.99 0.97 12.9 80.7 

2[a] 
Re-Bpy-sp2c-COF + 

dye 
16.80 2.64 0.97 17.3 86.4 

3[a] Bpy-sp2c-COF 0.21 n.d. 0 / / 

4[b] 
Re-Bpy-sp2c-COF + 

dye 
0.22 6.14 0.97 0.2 3.4 

5[a] Bpy-sp2c-COF + dye 0.19 n.d. 0 / / 

6[a] dye n.d. n.d. 0 / / 

7[c] Re(bpy)(CO)3Cl 10.03 0.67 0.97 10.3 93.8 

[a] Reaction conditions: Photocatalyst (1 mg), solvent (5 mL, acetonitrile/TEOA = 30 : 1), CO2 (1 atm.), 300 W Xe 

light source equipped with λ > 420 nm cut-off filter, 12 hours; [b]Ar atmosphere instead of CO2; [c]Photocatalyst 

(0.45 mg, 0.97 μmol), Solvent (5 mL, acetonitrile/TEOA = 30 : 1), CO2 (1 atm.), 300 W Xe light source equipped 

with λ > 420 nm cutoff filter, 12 hours. n.d.: none detected; Dye: (Ir[dF(CF3)ppy]2(dtbpy))PF6. 
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Figure 3.28 (a) (TD-)CAM-B3LYP calculated IP, EA, and IP* potentials of (Ir[dF(CF3)ppy]2(dtbpy))- (dye) 

and Re-Bpy-sp2c(L). Dashed coloured lines indicate the potentials for CO2 reduction to CO, proton 

reduction, and TEOA oxidation, respectively; (b) Fluorescence emission spectra (λexc = 440 nm) of 

(Ir[dF(CF3)ppy]2(dtbpy))PF6 in acetonitrile (3 mL) and (Ir[dF(CF3)ppy]2(dtbpy))PF6 with different 

amounts of Re-Bpy-sp2c-COF and acetonitrile (1 mg in 5 mL) mixture; (c) Stern-Volmer plot of F0/F versus 

Re-Bpy-sp2c-COFs concentration, [Q], in acetonitrile. 

To investigate the interaction between COF and dye, calculations and fluorescence emission 

measurements were carried out. DFT calculation was also performed to estimate the EA and 

IP values of the dye and Re-Bpy-sp2c-COF. Relative energy levels of the dye and the 

molecular COF models (Figure 3.28a) suggest that the dye provides the thermodynamic 

driving force for excited electrons to be transferred to Re-Bpy-sp2c-COF. To further 

study the photogenerated electron transfer from dye to the Re-Bpy-sp2c-COF, PL 

quenching experiments were carried out. (Ir[dF(CF3)ppy]2(dtbpy))PF6 shows two broad 
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emission peaks around 475 and 500 nm under 440 nm excitation. With the addition of 

different amounts of Re-Bpy-sp2c-COF, the PL peaks of excited 

(Ir[dF(CF3)ppy]2(dtbpy))PF6 were quenched. Emission quenching experiments suggest 

an electron transfer mechanism between the dye and the COF via oxidative quenching 

(Figure 3.28b). Stern-Volmer plots were used to investigate the quenching behaviors. Stern-

Volmer plots based on fluorescence quenching intensity ratios F0/F of dye and Re-Bpy-sp2c-

COF solutions are plotted in Figure 3.28c to quantify the quenching behavior. F0 is the 

fluorescence intensity of the dye without quencher (Re-Bpy-sp2c-COF) and fluorescence 

intensity F is for the dye with Re-Bpy-sp2c-COF added in various concentrations. As shown 

in Figure 3.28c, the Stern-Volmer plots show an upward deviation (positive deviation) from a 

linear trend for F0/F ratios with increasing quencher concentration, which suggesting the 

simultaneous presence of dynamic and static quenching. 

3.15 Syngas generation 

 

Figure 3.29 Photocatalytic syngas generation of Pt modified Re-Bpy-sp2c-COF under visible light 

irradiation (λ > 420 nm, 300 W Xe light source). 

Syngas plays an important role in chemical industry on large scale for processes. Control 

of the ratio is crucial as Fischer–Tropsch process requiring a ratio of 2:1 H2 / CO. 

Electrocatalysts39,40 and inorganic photocatalysts41,42 have been explored for the 

production of syngas with tunable ratios of CO and H2. In Chapter 1, it has been proven 
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that residual metal could act as cocatalyst and influence the ratio of obtained syngas. 

Here, Re-Bpy-sp2c-COF loaded with additional in situ photodeposited colloidal Pt, 

which is a well-studied cocatalyst for HER, was used as a photocatalyst for syngas 

production. By adding different amounts of Pt, Re-Bpy-sp2c-COF could generate CO-

rich or H2-rich mixtures ranging from approximately 4:1 to 1:10 for CO:H2 (Figure 3.29). 

This demonstrated the versatility of Re-Bpy-sp2c-COF as a photocatalyst for CO2 

reduction to meet the different needs in industrial areas of generating CO with high 

selectivity or specific ratios of syngas. 

3.16 Conclusions 

In conclusion, a new porous, crystalline bipyridine-containing sp2c-COF was 

synthesized via a Knoevenagel condensation reaction, which was then post-

synthetically modified with a rhenium complex to enhance the photocatalytic CO2 

reduction performance. Re-Bpy-sp2c-COF is very stable and can constantly generate 

CO at a rate of 1040 µmol g-1 h-1 with 81% selectivity over H2 over 17.5 h illumination. 

Re-Bpy-sp2c-COF is porous and its CO2 reduction performance can be further 

improved over 5 hours by up to 84% by dye-sensitization, giving a CO production rate 

of 1400 µmol h-1 g-1 and a CO/H2 selectivity of 86%. A series of experimental and 

computational studies suggest that the COF is excited followed by charge-transfer to the 

Re-centre, which is a different mechanism compared to the homogeneous catalyst 

[Re(bpy)(CO)3Cl]. Re-Bpy-sp2c-COF outperforms the homogeneous catalyst in terms 

of stability. Crystallinity and porosity are proven to be important in these materials since 

an amorphous, low-porosity analogue showed almost no photocatalytic activity. The 

catalytic selectivity of the COF can be tuned from favouring CO to favouring H2 by 

varying the level of platinum cocatalyst, and this can be used to produce syngas directly. 
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3.17 Experimental Methods  

3.17.1 Materials and methods 

All reagents were obtained from Sigma-Aldrich, TCI Europe or Fluorochem Ltd. Anhydrous 

solvents were purchased from Acros Organics or Fisher Scientific. All chemicals were used as 

received and without further purification.  

3.17.1.1 Solution nuclear magnetic resonance 

1H and 13C{1H} NMR spectra were recorded on a Bruker Avance 400 NMR spectrometer, 

operating at frequencies of 400 MHz and 100 MHz, respectively. 

3.17.1.2 Powder X-ray diffraction 

Powder X-ray diffraction (PXRD) measurements were carried out on a Panalytical Empyrean 

diffractometer, equipped with a Cu X-ray source (λ = 1.5418 Å, Cu Kα), PIXcel3D detector 

and X-ray focusing mirror. The loose powdered sample was held on Mylar film in aluminium 

well plates and screened in high throughput transmission mode. Powder diffraction analysis 

was performed using TOPAS-Academic.3 

3.17.1.3 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) was measured on an EXSTAR6000 with an automated 

vertical overhead thermobalance under nitrogen flow, ramping heating at 10 °C min-1 from 

25 °C to 600 °C. 

3.17.1.4 Gas sorption analysis 

Nitrogen adsorption and desorption were measured at 77.3 K using a Micromeritics ASAP 

2020 volumetric adsorption analyzer. Powder samples were degassed offline at 393 K for 12 

hours under dynamic vacuum (10-5 bar) before analysis. BET surface areas were fitted over 

relative pressure (p/p°) from 0.1 to 0.2. Pore size distributions of COFs were obtained from the 

adsorption data by fitting a nonlocal density functional theory (NL-DFT) model with method 

of N2-cylindrical pores-oxide surface. CO2 isotherms were collected up to a pressure of 1200 
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mbar on a Micromeritics ASAP 2020 at 273 K and 298 K. 

3.17.1.5 Fourier-transform infrared spectroscopy 

FT-IR spectra were collected on a Bruker Tensor 27 FT-IR spectrometer. Samples were 

prepared as KBr disks before analyzing for 16 scans with a resolution of 4 cm-1.  

3.17.1.6 UV-Visible absorption spectra 

UV-Visible absorption spectra were measured on an Agilent Cary 5000 UV-Vis-NIR 

Spectrometer by measuring the reflectance of powders in the solid-state. 

3.17.1.7 Scanning electron microscopy 

The morphology of the materials was studied using a Hitachi S-4800 cold field emission 

scanning electron microscope (FE-SEM). Samples were prepared by depositing the powders 

with an adhesive high-purity carbon tab on Hitachi M4 aluminium stubs. 

3.17.1.8 Scanning transmission electron microscopy  

STEM and EDX images were obtained on a JEOL 2100F Cs-corrected analytical FEG S/TEM 

operating at 200 kV, and fitted with an EDAX Octane T Optima windowless 60 mm2 SDD 

EDX detector. The samples were prepared by drop-casting sonicated ethanol suspensions of 

the materials onto a copper grid. 

3.17.1.9 Isotopic labelling experiments 

13CO2 Labelling experiments were carried on a Bruker Vertex 70V Fourier-transform infrared 

spectrometer with an argon-purged custom-made gas IR cell. A vial containing COF powders, 

acetonitrile and triethanolamine was purged with 13CO2 (Sigma-Aldrich, 99 atom % 13C, <3 

atom % 18O) for 3 minutes, then it was illuminated for 4 hours using a 300 W Xe light source 

equipped with λ > 420 nm filter. Gas from the headspace of the vial (500 μL) was injected into 

the gas IR cell and a spectrum was measured (32 scans with a resolution of 0.5 cm-1). 
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3.17.1.10 Photoelectrochemical measurements 

1 mg of the photocatalyst was dispersed in 0.1 mL acetonitrile and ultrasonicated for ten 

minutes giving a homogenous suspension. Fluoride-tin oxide (FTO) glass slides were covered 

with a copper mask giving an area of 0.28 cm2. 10 μL of the suspension was drop-casted on the 

FTO glass and dried overnight at room temperature. The photocurrent response was measured 

using a three-electrode setup with a working electrode (COF on FTO glass), counter electrode 

(Pt wire), and reference electrode (Ag/AgCl). An Oriel Instruments LSH-7320 Solar Simulator 

(IEC ABA certified) with 1 Sun output was used to illuminate the sample. A 0.1 M Na2SO4 (pH 

= 7) solution with a bias voltage of -0.1 V was used for the measurement. The EIS spectra were 

recorded by applying a 10 mV AC signal in the frequency range from 100 kHz to 0.01 Hz. The 

potential was converted to reversible hydrogen electrode (RHE) using the following equation4: 

 

3.17.1.11 ICP-OES analysis 

Samples were digested in nitric acid (67–69%, trace metal analysis grade) with a microwave 

using an in-house procedure. The obtained solutions were diluted with water before the 

measurement by Spectro Ciros ICP-OES and the instrument was calibrated with standards in 

an aqueous solution. 

3.17.1.12 Transmission and backscattering experiments 

Samples were tested on a Formulaction S.A.S. Turbiscan AGS with an 880 nm NIR diode and 

a detector at 180° or 45° (relative to the light source) in a cylindrical glass cell. Before the 

measurements, samples were dispersed in 20 mL acetonitrile and sonicated for 15 minutes. 

Then, the transmission and backscattering of the suspensions were measured in cylindrical 

glass cells from 5000 to 30,000 μm every 40 μm. 
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3.17.1.13 TCSPC measurements 

TCSPC experiments were performed on an Edinburgh Instruments LS980-D2S2-STM 

spectrometer equipped with picosecond pulsed LED excitation sources and a R928 detector, 

with a stop count rate below 3%. An EPL-375 diode (λ = 370.5 nm, instrument response 100 

ps, fwhm) with a 450 nm high pass filter for emission detection was used. Suspensions were 

prepared by ultrasonicating the materials in acetonitrile or acetonitrile with triethanolamine 

(30/1) purged with N2 and CO2. The instrument response was measured with colloidal silica 

(LUDOX® HS-40, Sigma-Aldrich) at the excitation wavelength without filter. Decay times 

were fitted in the FAST software using suggested lifetime estimates.  

3.17.1.14 Determination of apparent quantum yield (AQY) for CO production 

The apparent quantum yield of CO production was determined using monochromatic LED light 

(λ = 420 nm). The reactions were conducted on the same photochemical experimental setup 

under the optimized reaction conditions. For the experiments, COFs (1 mg) was suspended in 

acetonitrile and triethanolamine (30:1 vol. mixture, 5 mL). The illuminated area was 8 cm2 and 

the light intensity was measured by a ThorLabs PM100D Power and Energy Meter Console 

with a ThorLabs S120VC photodiode power sensor. The AQY was calculated as follow:  

AQY% = 2 × [(n CO) × NA × ħ × c)] × 100% / (I × S × t × λ) 

Where NA is Avogadro constant (6.022 × 1023 mol-1), ħ is the Planck constant (6.626 × 10-34 J 

s), c is the speed of light (3 × 108 m s-1), S is the irradiation area (cm2), I is the intensity of 

irradiation light (W cm-2), t is the photoreaction time (s), λ is the wavelength of the 

monochromatic light (m). 

3.17.1.15 Photocatalytic CO2 reduction experiments 

A quartz flask was charged with the COF powder (1 mg), acetonitrile (MeCN) and 

triethanolamine (TEOA) (30:1 vol. mixture, 5 mL) and sealed with a septum. The resulting 

suspension was ultrasonicated for 5 minutes and then purged with CO2 for 15 minutes. The 

reaction mixture was illuminated with a 300 W Newport Xe light source (model: 6258, Ozone 
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free) equipped with a λ > 420 nm cut-off filter. Gaseous products were taken with a gas-tight 

syringe and run on a Shimadzu GC-2014 gas chromatograph equipped with a ShinCarbon ST 

micropacked column (Restek 80-100 mesh, 2 m length, 0.53 mm inner diameter) and a thermal 

conductivity detector.  

3.17.1.16 X-ray photoelectron spectroscopy (XPS) measurements 

X-ray photoelectron spectroscopy (XPS) measurements were performed using a Kratos AXIS 

Ultra DLD instrument. The chamber pressure during the measurements was 5 × 10-9 Torr. Wide 

energy range survey scans were collected at pass energy of 80 eV in hybrid slot lens mode and 

a step size of 0.5 eV. Wide scan and high-resolution data on the C 1s, O 1s, Cl 2p, Re 4f and 

Co 2p photoelectron peaks was collected at pass energy 20 eV over energy ranges suitable for 

each peak, and collection times of 5 min, step sizes of 0.1 eV. The charge neutralizer filament 

was used to prevent the sample charging over the irradiated area. The X-ray source was a 

monochromated Al Kα emission, run at 10 mA and 12 kV (120 W). The energy range for each 

‘pass energy’ (resolution) was calibrated using the Kratos Cu 2p3/2, Ag 3d5/2 and Au 4f7/2 three-

point calibration method. The transmission function was calibrated using a clean gold sample 

method for all lens modes and the Kratos transmission generator software within Vision II. 

3.17.1.17 TA spectroscopy 

The apparatus employed to obtain transient absorption, TA, spectra of the COFs of interest 

consists of an Ytterbium laser system (PHAROS Short-Pulse 10 W, PH1-SP-10W, Light 

Conversion) with an output power of 10 W, wavelength of 1028 nm, repetition rate of 10 kHz 

and pulse duration of ~180 fs. Of this, ~1 W is used to drive an Optical Parametric Amplifier, 

OPA (ORPHEUS, Light Conversion) in tandem with a second harmonic generation module 

(LYRA, Light Conversion) in order to generate radiation centred at 400 nm with a bandwidth 

(FWHM) of 3 nm.  

This 400 nm output was used as the pump source for subsequent TA measurements which 

employed a commercial TA spectrometer (HARPIA, Light Conversion). The probe light was 
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visible white light super continuum generated by focusing < 0.1 W of 1028 nm radiation onto 

a sapphire window. Variable delay times between the pump and probe beams were obtained by 

passing the pump beam through a multi-pass mechanical delay stage allowing pump-probe 

delays up to 3.6 ns to be achieved. The pump and probe beams were focused to 600 and 400 

μm spots at the sample. The pump laser beam was chopped, allowing, or blocking several pump 

pulses, resulting in an effective pumping repetition rate of 5 kHz to be obtained; the state of 

pumping of the sample (i.e. pumped/unpumped), along with stability of the pump laser power, 

is monitored using a photodiode. The power of the chopped beam incident on the sample was 

0.8 mW. The samples were suspensions of the COF of interest, in either pure acetonitrile, or a 

30:1 mixture of acetonitrile and TEOA, held within a quartz cuvette with a 2 mm path length. 

The white light supercontinuum was collimated and routed to the detector. Here the white light 

was spectrally dispersed by a spectrograph (Kymera 193i, Andor), employing a grating of 150 

lines/mm, blazed at 800 nm, and detected using an NMOS detector (S3901, Hamamatsu).  

3.17.1.18 Density functional theory (DFT) and time-dependent DFT (TD-DFT) 

calculations  

Representative molecular fragments of the COFs studied here were calculated for their standard 

reduction potentials of half-reactions for free electrons/holes and excitons, using density 

functional theory (DFT) and time-dependent DFT (TD-DFT). The CAM-B3LYP density 

functional was used for all the DFT and TD-DFT calculations, together with the Def2-SVP 

basis set, using the Gaussian 16 software. Vertical reduction potentials (i.e., IP and EA) and 

vertical exciton potentials (i.e., IP* and EA*) were calculated using the geometry optimized in 

the ground state, which had been confirmed to be a true minimum by a frequency calculation.  

For calculations of excited-state properties, S1 optimizations were first carried out using the 

Tamm–Dancoff approximation as this is more robust than full TD-DFT away from the ground-

state geometry. Single-point, full TD-DFT calculations were then performed to obtain all 

necessary information for the electron excitation analyses using Multiwfn.15 The effect of 

solvation by acetonitrile was accounted for by using the PCM/SMD solvation model.  
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Chapter 4  

 

 

 

Highly selective photocatalytic CO2 reduction from fluorinated 

covalent organic frameworks with molecular Co co-catalysts 
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4.2 Introduction 

In previous reports, COFs have been designed as the scaffold to anchor non-noble metal 

molecular catalysts (e.g. bipyridine Co, Ni complex) for photocatalytic CO2 reduction which 

additional noble metal photosensitizers, such as bipyridine Ru complex, were indispensable for 

such systems.1–3 Photoactive tricarbonylchloro(bipyridyl) Re complex molecular catalyst was 

also integrated into COFs for efficient CO2 reduction.4,5 Recently, a Zn-based 

porphyrintetrathiafulvalene COF was used for photocatalytic CO2 reduction with almost 100% 

selectivity using H2O as the electron donor, while the CO production rate is still low.6 Thus, to 

our best knowledge, it is still challenging to achieve both high CO2 reduction efficiency and 

selectivity for non-noble metal organic CO2 reduction photocatalysts. Fluorination is a strategy 

to improve the affinity of materials to CO2 molecules.3,7–9 Besides, fluorinated 2D-COFs shows 

better crystallinity and larger surface areas than non-fluorinated analogues because fluorination 

results in the polarization of the aromatic rings leading to stronger interlayer interactions.10  

 

Figure 4.1 Schematic representation of structures of non-fluorinated COFs and fluorinated COFs. 

In this chapter, taking full advantage of COFs and fluorination, we reported a series of β-

ketoenamine-linkers COFs synthesized with aromatic linkers of different lengths and their 

isostructural fluorinated forms (Figure 4.1). The obtained fluorinated COFs with various pore 
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sizes and band gaps were applied as photosensitizers, coupled with a low-cost, molecular cobalt 

(II) bipyridine complex ([Co(bpy)3]
2+) as a cocatalyst for photocatalytic CO2 reduction under 

visible light. Their structure−property−activity relationships were explored by screening CO2 

reduction photoactivity for isostructural COFs under the same conditions. CO2 affinity, pore 

size and light absorption of photosensitizer had significant influences on photocatalytic CO2 

reduction activity.  

4.3 NMR Spectra 

 
Figure 4.2 1H NMR spectrum of 2,2''-difluoro-[1,1':4',1''-terphenyl]-4,4''-diamine in DMSO-d6. 

 

Figure 4.3 13C{1H} NMR spectrum of 2,2''-difluoro-[1,1':4',1''-terphenyl]-4,4''-diamine in DMSO-d6. 

2,2''-difluoro-[1,1':4',1''-terphenyl]-4,4''-diamine was first used for synthesizing COFs 

and obtained from Shanghai Kaiyulin Pharmaceutical Technology Co. Ltd. (M+H)+ = 

297.1. 1H NMR (400 MHz, DMSO-d6) d 7.46 (s, 4H), 7.21 (t, J = 8.8 Hz, 2H), 6.45 (dd, 
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J = 24.5, 11.0 Hz, 4H), 5.54 (s, 4H). 13C NMR (101 MHz, DMSO-d6) d 161.85, 159.43, 

150.71, 150.60, 134.45, 134.44, 131.08, 131.03, 128.47, 128.44, 115.09, 114.96, 111.04, 

111.02, 101.07, 100.81. 

4.4 Synthetic procedures 

 

Figure 4.4 Scheme of the synthesis of P-COF. 

Synthesis of P-COF: A Pyrex tube (25 mL) was charged with 1,3,5-triformylphloroglucinol 

(63 mg, 0.3 mmol), p-phenylenediamine (48.66 mg, 0.45 mmol), mesitylene (1.5 mL), 1,4-

dioxane (1.5 mL) and aqueous acetic acid (0.3 mL, 6 M). The mixture was ultrasonicated for 

two minutes and then flash frozen at 77 K (liquid N2 bath) and degassed through three freeze-

pump-thaw cycles and sealed under vacuum using a Schlenk line and oil pump. The tube was 

heated at 120 °C for three days. After cooling to room temperature, the precipitate was washed 

with acetone and THF three times. The resulting powder was then solvent exchanged with 

acetone six times. The powder was collected and dried at 120 °C under a vacuum overnight. 

Anal. Calcd for (C36H24N6O6)n: C, 67.92; H, 3.80; N, 13.2. Found: C, 49.59; H, 4.21; N, 8.08. 
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Figure 4.5 Scheme of the synthesis of BP-COF. 

Synthesis of BP-COF: A Pyrex tube (25 mL) was charged with 1,3,5-triformylphloroglucinol 

(63 mg, 0.3 mmol) and benzidine (82.9 mg, 0.45 mmol), mesitylene (1.5 mL), 1,4-dioxane 

(1.5 mL) and aqueous acetic acid (0.3 mL, 6 M). The mixture was ultrasonicated for two 

minutes and then flash frozen at 77 K (liquid N2 bath) and degassed through three freeze-pump-

thaw cycles and sealed under vacuum using a Schlenk line and oil pump. The tube was heated 

at 120 °C for three days. After cooling to room temperature, the precipitate was washed with 

acetone and THF three times. The resulting powder was then solvent exchanged with acetone 

six times. The powder was collected and dried at 120 °C under a vacuum overnight. Anal. 

Calcd for (C54H36N6O6)n: C, 74.99; H, 4.20; N, 9.72. Found: C, 64.89; H, 4.21; N, 8.08. 
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Figure 4.6 Scheme of the synthesis of TP-COF. 

Synthesis of TP-COF: A Pyrex tube (25 mL) was charged with 1,3,5-triformylphloroglucinol 

(63 mg, 0.3 mmol) and 4,4''-diamino-p-terphenyl (117.2 mg, 0.45 mmol), 1,2-dichlorobenzene 

(1.5 mL), 1-butanol (1.5 mL) and aqueous acetic acid (0.3 mL, 6 M). The mixture was 

ultrasonicated for two minutes and then flash frozen at 77 K (liquid N2 bath) and degassed 

through three freeze-pump-thaw cycles and sealed under vacuum using a Schlenk line and oil 

pump. The tube was heated at 150 °C for three days. After cooling to room temperature, the 

precipitate was washed with acetone and THF three times. The resulting powder was then 

solvent exchanged with acetone six times. The powder was collected and dried at 120 °C under 

a vacuum overnight. Anal. Calcd for (C72H48N6O6)n: C, 79.11; H, 4.43; N, 7.69. Found: C, 

74.90; H, 4.39; N, 7.14. 
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Figure 4.7 Scheme of the synthesis of FP-COF. 

Synthesis of FP-COF: A Pyrex tube (25 mL) was charged with 1,3,5-triformylphloroglucinol 

(63 mg, 0.3 mmol) and 1,4-diamino-2,5-diflurobenzene (64.8 mg, 0.45 mmol), mesitylene (1.5 

mL), 1,4-dioxane (1.5 mL) and aqueous acetic acid (0.3 mL, 6 M). The mixture was 

ultrasonicated for two minutes and then flash frozen at 77 K (liquid N2 bath) and degassed 

through three freeze-pump-thaw cycles and sealed under vacuum using a Schlenk line and oil 

pump. The tube was heated at 120 °C for three days. After cooling to room temperature, the 

precipitate was washed with acetone and THF three times. The resulting powder was then 

solvent exchanged with acetone six times. The powder was collected and dried at 120 °C under 

a vacuum overnight. Anal. Calcd for (C36H18N6O6F6)n: C, 58.07; H, 2.44; N, 11.29. Found: C, 

49.07; H, 2.80; N, 7.63. 
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Figure 4.8 Scheme of the synthesis of FBP-COF. 

Synthesis of FBP-COF: A Pyrex tube (25 mL) was charged with 1,3,5-

triformylphloroglucinol (63 mg, 0.3 mmol) and 4,4’-diamino-2,2’-difluorobiphenyl (99.1 mg, 

0.45 mmol), mesitylene (1.5 mL), 1,4-dioxane (1.5 mL) and aqueous acetic acid (0.3 mL, 6 M). 

The mixture was ultrasonicated for two minutes and then flashed frozen at 77 K (liquid N2 bath) 

and degassed through three freeze-pump-thaw cycles and sealed under vacuum using a Schlenk 

line and oil pump. The tube was heated at 120 °C for three days. After cooling to room 

temperature, the precipitate was washed with acetone and THF three times. The resulting 

powder was then solvent exchanged with acetone six times. The powder was collected and 

dried at 120 °C under a vacuum overnight. Anal. Calcd for (C54H30N6O6F6)n: C, 66.67; H, 3.11; 

N, 8.64. Found: C, 57.05; H, 2.88; N, 4.45. 
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Figure 4.9 Scheme of the synthesis of FTP-COF. 

Synthesis of FTP-COF: A Pyrex tube (25 mL) was charged with 1,3,5-

triformylphloroglucinol (63 mg, 0.3 mmol) and 2,2''-difluoro-[1,1':4',1''-terphenyl]-4,4''-

diamine (133.3 mg, 0.45 mmol), 1,2-dichlorobenze (1.5 mL), 1-butanol (1.5 mL) and aqueous 

acetic acid (0.3 mL, 6 M). The mixture was ultrasonicated for two minutes and then flashed 

frozen at 77 K (liquid N2 bath) and degassed through three freeze-pump-thaw cycles and sealed 

under vacuum using a Schlenk line and oil pump. The tube was heated at 150 °C for three days. 

After cooling to room temperature, the precipitate was washed with acetone and THF three 

times. The resulting powder was then solvent exchanged with acetone six times. The powder 

was collected and dried at 120 °C under a vacuum overnight. Anal. Calcd for (C72H42N6O6F6)n: 

C, 72.00; H, 3.52; N, 7.00. Found: C, 68.51; H, 3.49; N, 6.29. 
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4.5 Powder X-ray diffraction analysis 

 

Figure 4.10 PXRD patterns of P-COF (a), BP-COF (b), TP-COF (c), FP-COF (d), FBP-COF (e) and FTP-COF 

(f): experimental (black), calculated with the eclipsed (AA) stacking (red) and staggered (AB) stacking models 

(blue). 

A series of six COFs were designed and synthesized as illustrated in Figure 4.1. Three β-

ketoenamine COFs (P-COF, BP-COF and TP-COF) were synthesized according to the methods 

in literature via Schiff base condensation of 1, 3, 5-triformylphloroglucinol (TFG) with p-

phenylenediamine (P), 4,4'-diaminobiphenyl (BP) and 4, 4''-diamino-p-terphenyl (TP).11–13 The 

fluorinated isostructural COFs (FP-COF, FBP-COF and FTP-COF) were yielded via 

condensation of TFG with 1,4-Diamino-2,5-difluorobenzene (FP), 4,4′-diamino-2,2′-

difluorobiphenyl (FBP) and 2,2''-difluoro-[1,1':4',1''-terphenyl]-4,4''-diamine (FTP). 
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Powder X-ray diffraction (PXRD) measurements were used to characterize the crystallinity of 

all the COFs (Figure 4.10). The PXRD pattern of P-COF exhibited an intense peak at 4.7°, 

corresponding to the reflection from the (100) plane.11 Minor peaks also appeared at 8.3° and 

25.2° for P-COF, which were assigned to the (200) and (001) planes, respectively. The PXRD 

pattern of BP-COF showed diffraction peaks at 3.4°, 5.9° and 25.3°, corresponding to the (100), 

(2-10) and (001) planes, respectively.12 The PXRD pattern of TP-COF gave diffraction peaks 

at 2.7, 4.9 and 25.2°, which were assigned to the (100), (2-10) and (001) planes, respectively.13 

PXRD results of non-fluorinated COFs demonstrated that the COFs were successfully 

synthesized by the methods in the literature.  

Figure 4.10d, e and f exhibited the experimental and simulated PXRD patterns of fluorinated 

COFs. The PXRD pattern of FP-COF showed diffraction peaks at 4.5°, 7.8°, 9.3 and 26.9°, 

which were assigned to the (100), (110), (200) and (001) planes, respectively. FBP-COF gave 

strong PXRD peaks at 3.5°, 5.9°, 6.8° and 9.1°, corresponding to (100), (110), (200) and (210) 

planes, respectively. FTP-COF exhibited diffraction peaks at 2.7°, 4.6° and 7.2°, which were 

assigned to the (100), (110) and (120) planes, respectively.  

 

Figure 4.11 Experimental PXRD pattern (red), profile calculated from Pawley fitting (black) showing the residual 

(blue), compared with the pattern simulated from the eclipsed AA-stacking mode (green) for as synthesized FP-

COF (a), FBP-COF and FTP-COF (c). Reflection positions are shown by tick marks.  

Since all the fluorinated COFs were new reported COFs, Pawley refinements were involved in 

confirming the crystalline structures of fluorinated COFs. Experimental PXRD pattern, profile 

calculated from Pawley fitting, the residual and the pattern simulated from the structural model 

were shown as red, black, blue, and green lines, respectively, for each fluorinated COF. 
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Reflection positions were shown by tick marks. Unit cell parameters of these fluorinated COFs 

extracted by Pawley refinements with a P6/m space group (a = b = 22.331 Å and c = 3.526 Å 

for FP-COF; a = b = 29.730 Å and c = 3.660 Å for FBP-COF; a = b = 37.925 Å and c = 3.607 

Å for FTP-COF), which are consistent with the AA-stacked models of FP-COF, FBP-COF and 

FTP-COF (Figure 4.11). 
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4.6 Gas sorption analysis 

 

Figure 4.12 Nitrogen adsorption/desorption isotherms for P-COF (a), FP-COF (b), BP-COF (c), FBP-COF (d), 

TP-COF (e) and FTP-COF (f) recorded at 77.3 K (filled symbols = adsorption; open symbols = desorption). The 

inset shows the calculated pore size distribution. 

The permanent porosity of the obtained COFs was confirmed by nitrogen sorption experiments 

at 77 K (Figure 4.12). All the COFs exhibited reversible type-I adsorption isotherms. The 

Brunauer–Emmett–Teller (BET) surface areas were 740.4, 485.4 and 512.8 m2 g-1 for P-COF, 

BP-COF and TP-COF, respectively. The theoretical pore diameters of P-COF, BP-COF and 
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TP-COF were calculated to be 16.7, 24.2 and 31.8 Å, respectively. BET surface areas were 

calculated as 742.9, 807.3 and 1211.9 m2 g-1 for FP-COF, FBP-COF, and FTP-COF, 

respectively. The theoretical pore diameters of FP-COF, FBP-COF and FTP-COF were 

calculated to be 15.5, 23.1 and 31.3 Å, respectively. The pore size distribution profiles based 

on nonlocal density functional theory (NLDFT) in Figure 4.12 were close to the theoretical 

results. However, the pore size distribution profiles based on NLDFT did not show ideal 

narrow pore size distributions for all the COFs, which might be due to the fitting 

methods not being matched with COFs, or the COFs materials not being uniform inside 

due to the changing of morphology in the process of preparation.  

 

Figure 4.13 CO2 adsorption isotherms of COFs collected at 273 K and 298 K.  
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Figure 4.14 Comparison of theoretical pore sizes and CO2 adsorptions of COFs. 

CO2 adsorption (Figure 4.13) and CO2 isosteric heat of adsorption (Figure 4.15) were measured 

at both 273 and 298K to investigate the CO2 uptake capacity and affinity of all the COFs. 

Figure 4.14 showed the comparison of theoretical pore sizes and CO2 adsorptions of COFs. 

The CO2 adsorptions of P-COF were 3.2 mmol g-1 at 273 K and 2.1 mmol g-1 at 298 K (Figure 

4.13a), which were higher than those of FP-COF, showing 2.7 mmol g-1 at 273 K and 1.6 mmol 

g-1 at 298 K (Figure 4.13b). For other COFs, fluorinated COFs had higher CO2 adsorption 

amounts than non-fluorinated COFs. For instance, the CO2 adsorptions of BP-COF (Figure 

4.13c) were 1.5 mmol g-1 at 273 K and 0.9 mmol g-1 at 298 K and the CO2 adsorptions of FBP-

COF (Figure 4.13d) were 2.0 mmol g-1 at 273 K and 1.2 mmol g-1 at 298 K. Gas sorption data 

demonstrated that the P-COF and FP-COF were microporous materials with pore sizes of 1.70 

and 1.6 nm, and the other COFs were mesoporous polymers with pore sizes between 2.3 and 

3.2 nm. All of them had good CO2 capture and adsorption abilities. 

The isosteric heat of adsorption (Qst) was calculated to investigate the CO2 affinity of materials. 

The isosteric heat of adsorption of P-COF, BP-COF and TP-COF (Figure 4.15a) were 

33.6 kJ mol-1, 36.2 kJ mol-1 and 32.9 kJ mol-1, respectively. Moreover, the Qst of fluorinated 

COFs (Figure 4.15b) were 34.1 kJ mol-1, 36.5 kJ mol-1 and 33.2 kJ mol-1, respectively. The Qst 

results (Figure 4.15c) demonstrated that fluorinated COFs had stronger interactions between 

fluorinated COFs with CO2 than non-fluorinated COFs. FBP-COF and FTP-COF showed 
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higher CO2 capture amounts and CO2 isosteric heat of adsorption than their analogues (Figure 

4.15c), indicating their good CO2 capture and adsorption abilities. FP-COF had comparable 

CO2 capture amounts to P-COF. 

 

Figure 4.15 CO2 isosteric heats of adsorption calculated from 273 K and 298 K of (a) P-COF, BP-COF and TP-

COF and (b) Fluorinated COFs; (c) Comparison of theoretical pore size and CO2 isosteric heats of adsorption. 
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4.7 UV-visible spectra and band gaps 

 

Figure 4.16 (a) UV-Vis absorption spectra of P-COF, BP-COF and TP-COF in the solid state; (b) Band gaps of 

non-fluorinated COFs determined from the Kubelka-Munk function; (c) UV-Vis absorption spectra of FP-COF, 

FBP-COF and FTP-COF in the solid state; (d) Band gaps of fluorinated COFs determined from the Kubelka-

Munk function. 

UV-vis reflectance spectra of the COFs were measured in the solid state for comparing light 

absorption ability. As shown in Figure 4.16a, the absorption onsets were found at 615, 598 and 

558 nm for P-COF, BP-COF and TP-COF. The absorption onsets had a significant blue shift 

as the pore size increases of linker length. FP-COF, FBP-COF and FTP-COF showed a similar 

phenomenon. The absorption onsets of FP-COF, FBP-COF and FTP-COF were 631, 560 and 

538 nm, respectively (Figure 4.16c). Taking BP-COF and FBP-COF as examples, when 

compared to UV-vis spectra of COFs and their isostructural COFs, the introduction of fluorine 

atoms into the COF backbone caused a blue shift of 38 nm. The optical band gaps of P-COF, 

BP-COF and TP-COF were estimated according to the Kubelka-Munk equation (Figure 4.16b), 



 159 

corresponding to bandgaps of 2.10, 2.18 and 2.31 eV, respectively. In comparison, the 

bandgaps of FP-COF, FBP-COF and FTP-COF (Figure 4.16d) were estimated to be 2.05, 2.31 

and 2.38 eV, respectively. The COFs synthesized with longer linkers have bigger pore sizes 

and larger band gaps, restricting their visible light absorption. FP-COF has comparable band 

gap to P-COF; however, for FBP-COF and FTP-COF, the introduction of fluorine atoms also 

results in a blue shift. 

4.8 CO2 reduction characterization 

 

Figure 4.17 (a) CO/H2 production generated by FBP-COF using various amounts of Co cocatalyst in 

MeCN/H2O/TEOA (3:1:1) under visible light irradiation (300 W Xe light source, λ > 420 nm) for 5h; (b) CO and 

H2 production and CO selectivity by P-COF, BP-COF, TP-COF, FP-COF, FBP-COF and FTP-COF, over 5 hours 

under visible-light irradiation (λ > 420 nm, 300 W Xe light source); (c) Comparison of CO2 reduction 

performances for FBP-COF and other representative photocatalysts in Table  with molecular cocatalysts such as 

Co(bpy)3
2+, Ni(bpy)3

2+ and polymeric cobalt phthalocyanine catalyst14,15,24,16–23.  
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Photocatalytic CO2 reduction experiments were carried out under visible light irradiation (λ > 

420 nm) with the appropriate amount of cobalt (II) bipyridine complexes (Figure 4.17a) as 

cocatalyst without adding other noble metal complexes as photosensitizer or cocatalyst. When 

adding 0.25 μmol [Co(bpy)3]
2+, CO generation was low due to the lack of active reduction sites. 

When adding more than 1 μmol [Co(bpy)3]
2+, the CO generation amount decreased because 

excess cocatalyst will impact the light absorption efficiencies of materials in the system.25 

Hence, we used 1 μmol [Co(bpy)3]
2+ as the cocatalyst for CO2 reduction. A 4 mL mixture of 

acetonitrile (MeCN) / water (3:1 in volume) with 1 mL triethanolamine (TEOA) as the 

sacrificial agent was applied for the system. UV-vis spectra (Figure 4.16) of P-COF and FP-

COF indicated excellent light absorption ability. After 5 hours irradiation (Figure 4.17b), 

fluorinated FP-COF had a better performance than P-COF, showing a CO production of 2374.1 

μmol g−1 with a CO selectivity of 91.7%. Similarly, FTP-COF showed higher performance than 

TP-COF, exhibiting a CO production of 2196.1 μmol g−1 with a CO selectivity of 76.7%. BP-

COF with medium pore size showed the best performance among non-fluorinated COFs, 

producing 1603.4 μmol g−1 of CO with a selectivity of 93.2% over 5 hours. Among all the 

COFs, FBP-COF achieved the best performance for CO2 reduction. After 5 hours irradiation 

under visible light, FBP-COF achieved a CO production of 4132.1 μmol g−1 with a very high 

CO selectivity of 95.5%. The influence of fluorination, porosity and light absorption on 

photocatalytic activity will be discussed later. FBP-COF showed an external quantum 

efficiency (EQE) of 0.24% at 420 nm. Compared with other photocatalysts tested with 

molecular cocatalyst (Figure 4.17c), FBP-COF showed a high CO generation rate with an 

excellent CO/H2 selectivity. For instance, N-CP-D only has a CO selectivity of 82%, even 

though the CO generation rate is good.15 HR-CN could achieve a CO selectivity of 96.7% but 

only produced CO at a rate of 297 μmol g−1 h-1.23 However, these comparisons should be made 

with caution since CO2 reduction performance also depends strongly on the precise 

experimental setup that is used.15 
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Figure 4.18 (a) Control experiments using FBP-COF for CO2 photoreduction in 5h under different conditions; (b) 

CO/H2 production generated using various co-solvents of FBP-COF as the photosensitizer, [Co(bpy)3]2+ as the 

cocatalyst and 1 mL TEOA as the sacrificial agent under visible light irradiation (300 W Xe light source, λ > 420 

nm) for 5h; 3 mL Organic solvent and 1 mL water (MeCN: acetonitrile; DMF: N, N-dimethylformamide; THF: 

tetrahydrofuran; DCM: dichloromethane; MeOH: methanol); (c) Results of GC-MS spectrum of 13CO produced 

by FBP-COF in the photocatalytic reduction of 13CO2; inset: the corresponding gas spectrum. 

Control experiments were performed under the same conditions using FBP-COF to identify the 

key factors for CO2 reduction (Figure 4.18a). Without COF there was no CO2 to CO conversion, 

indicating the crucial role of COFs as the photosensitizer. The cocatalyst of cobalt bipyridine 

was indispensable for photocatalytic CO2 reduction. Without 2,2’-bipyridine or CoCl2 added, 

the system generated a negligible amount of CO. Moreover, no CO or H2 was detected when 

the system was in the dark, demonstrating the process is indeed photocatalytic and driven by 

the COFs and cobalt complexes. The absence of TEOA as the sacrificial agent results in no 

product generation. When CO2 was switched with N2, only H2 formation was observed, proving 

the CO2 was the source of CO. In such reaction conditions, no liquid products were detected. 



 162 

When CO2 reduction was performed in solutions containing various organic solvents (Figure 

4.18b), FBP-COF exhibited a higher CO production rate in MeCN than N,N-

dimethylformamide (DMF), tetrahydrofuran (THF), dichloromethane (DCM) and methanol 

(MeOH). Finally, GC-MS was involved in further demonstrating the source of CO. As shown 

in Figure 4.18c, the peak at 4.6 min in the GC spectrum with an m/z value of 29 in the MS 

spectrum was assigned to 13CO. The isotope labelling study for 13CO2 reduction proved that 

the CO was generated from CO2, ruling out the degradation of the COFs or scavenger as the 

source of the produced CO. 

 

Figure 4.19 (a) CO production comparison using visible light (λ > 420 nm, 300 W Xe light source) for 1 mg FBP-

COF (red dots) or 1mg [Ru(bpy)3]2+ with 1 μmol [Co(bpy)3]2+ (black dots); (b) CO (red dots) and H2 (blue dots) 

production using visible light (λ > 420 nm, 300 W Xe light source) for 1 mg FBP-COF in 5 mL solvent with ratio 

of MeCN/H2O/TEOA = 3/1/1) for 50 hours; (c) PXRD patterns of FBP-COF before and after 29 hours 

photocatalysis; (d) FT-IR spectra of FBP-COF before and after 29 hours of visible light irradiation (300 W Xe 

light source, λ > 420 nm).  
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To demonstrate the excellent photoactivity of FBP-COF, [Ru(bpy)]2+ was applied as the 

molecular photosensitizer in the same system for comparison. When applied [Ru(bpy)]2+ as the 

photosensitizer and [Co(bpy)3]
2+ as the cocatalyst (Figure 4.19a), CO generation almost 

stopped after 5 hours irradiation under visible light. On the contrary, FBP-COF could 

continuously produce CO with a high rate of up to 29 hours, proving the excellent stability of 

FBP-COF under such experimental conditions. The amount of CO produced by the FBP-COF 

system in 29 hours was almost two times higher than the amount generated by the bipyridine 

Ru complex system. When the experimental time was further extended to 50 hours (Figure 

4.19b), FBP-COF could still generate CO constantly at a high rate, showing a TON of 40, 

which is four times higher than that of bipyridine Ru complex containing system. The PXRD 

pattern and FTIR spectrum of FBP-COF after photocatalysis in Figure 4.19c and Figure 4.19d 

showed negligible difference with those of pristine COF, demonstrating FBP-COF still had its 

crystalline structure. All the data proved that FBP-COF could act as an excellent 

photosensitizer for CO2 reduction. 

4.9 Analysis of fluorinated COFs 

 

Figure 4.20 (a) CO (red dots) and H2 (blue dots) production using visible light (λ > 420 nm, 300 W Xe light 

source) for 1 mg FBP-COF (red) and BP-COF (black) in 5 mL solvent with a ratio of MeCN/H2O/TEOA = 3/1/1); 

(b) PXRD patterns of BP-COF before and after 5 hours photocatalysis. 

As shown in Figure 4.17a, all fluorinated COFs showed better performance than their non-

fluorinated counterparts. We attribute this to the enhanced interaction between layers after 
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fluorination, resulting in more excellent stability. As shown in Figure 4.20a, the CO generation 

of BP-COF stopped after 1 hour of irradiation. On the contrary, FBP-COF could generate CO 

constantly. The PXRD pattern of BP-COF after photocatalysis (Figure 4.20b) indicated that 

BP-COF lost its crystallinity after 5 hours irradiation under visible light. The stability of COF 

seems to have a significant influence on the performance. 

 

Figure 4.21 PXRD patterns of COFs before and after soaked in acetone overnight. 

The stability of all COFs was checked by soaking the COFs in acetone overnight. PXRD 

patterns of all non-fluorinated COFs after soaking in acetone exhibited weak peaks at small 

angles, while fluorinated COFs still had intense peaks at small angles. Results of all the COFs 

after soaking in acetone indicated that the non-fluorinated COFs lost crystallinity, while the 

fluorinated COFs retained their crystallinity (Figure 4.21). The introduction of fluorine atoms 

into COFs backbones could increase the interaction between layers.12 Non-fluorinated COFs 

might decompose in acetone which contains a small amount of water inside. This indicates the 

better stability of fluorinated COFs than their non-fluorinated analogues resulting in higher 

CO2 reduction performance. 
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Figure 4.22 (a) Transient photocurrent response at -0.2 V vs. Ag/AgCl under intermittent light irradiation 

for the COFs; (b) Comparison of theoretical pore size and current density. 

To investigate the charge separation and transformation properties of non-fluorinated COFs 

and fluorinated COFs, photoelectrochemical experiments were employed using FTO glass as 

a photocathode in 0.5 M Na2SO4 solution. To do this, 2 mg of the COFs and 10 µL Nafion 

were dispersed in 0.2 mL ethanol and then ultrasonicated for 10 minutes giving a slurry. the 

slurry was then coated onto FTO glass electrodes with an active area of 0.28 cm2 and dried 

overnight at room temperature. A three-electrode system with a working electrode (COFs on 

FTO glass), counter electrode (Pt wire), and reference electrode (Ag/AgCl) was used for testing. 

Transient photocurrent measurements (Figure 4.22) showed that the photocurrents of 

fluorinated COF photocathodes are higher than those of non-fluorinated COFs. Among them, 

FBP-COF and FTP-COF showed the fastest photoresponse with a photocurrent of about 3.2 

μA cm-2. It was found that photocurrents of fluorinated COFs increased with pore size (Figure 

4.22b). By contrast, photocurrents of non-fluorinated COFs decreased with increased pore size. 

This might be due to the introduction of fluorine atoms enhancing the conjugation of COFs. 
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4.10 Time-correlated single photon counting experiments 

 

Figure 4.23 Photoluminescence spectra of P-COF, BP-COF and TP-COF (a) and FP-COF, FBP-COF and FTP-

COF (b) suspended in acetonitrile (λexc = 375 nm). 

Table 4.1 Fluorescence lifetime measurements. 

Material 

λexc 

/ nm 

τ1 

/ ns 

B1 

/ % 

τ2 

/ ns 

B2 

/ % 

τ3 

/ ns 

B3 

/ % 

χ2 

τavg
a 

/ ns 

P-COF 375 0.74 65.87 1.64 32.96 8.12 1.17 1.16 1.12 

BP-COF 375 0.14 74.91 0.73 19.12 2.84 5.97 1.41 0.41 

TP-COF 375 0.14 81.64 0.65 13.57 2.68 4.79 1.47 0.33 

FP-COF 375 0.50 37.21 1.18 57.22 3.48 5.57 1.10 1.05 

FBP-COF 375 0.44 38.36 1.01 44.99 3.03 16.65 1.31 1.13 

FTP-COF 375 0.16 67.04 0.59 22.60 2.73 10.36 1.30 0.52 

[a] Fluorescence lifetimes obtained upon excitation at λexc = 375 nm with a laser and observed at λem = 500, 580 

or 630 nm. Fluorescence lifetimes in solvent suspension obtained from fitting time-correlated single photon 

counting decays to a sum of three exponentials, which yield τ1, τ2, and τ3 according to ∑ (𝐴 + 𝐵𝑖
𝑛
𝑖=1 exp(−

𝑡

𝜏𝑖
)). 

τAVG is the weighted average lifetime calculated as ∑ 𝐵𝑖𝜏𝑖
𝑛
𝑖=1 . Note that the poor χ2 values are due to ultrafast 

decays for these materials which were very similar to the instrument response. 
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Figure 4.24 Comparison of theoretical pore size and average emission lifetimes of COFs. 

The lifetimes of the excited states of all the COFs were investigated by time-correlated single 

photon counting (TCSPC) experiments. In acetonitrile suspension, two emissive states with 

λmax at 490 and 590 nm were observed for P-COF (Figure 4.23). BP-COF had one emissive 

state with λmax at 585 nm. TP-COF also showed two emissive states with λmax at 420 and 565 

nm. FP-COF, FBP-COF and FTP-COF had one emissive state with λmax at 489, 580, and 632 

nm in acetone suspension. Fluorescence lifetimes were obtained upon excitation at λexc = 375 

nm with a laser and observed at λem = 500, 580 or 630 nm. The average weighted 

photoluminescence emission lifetime (Table 4.1) of FP-COF (τavg = 1.05 ns) was similar with 

that of P-COF (τavg = 1.12 ns), while the average emission lifetimes of FBP-COF (τavg = 1.13 ns) 

and FTP-COF (τavg = 0.52 ns) were longer than those of their isostructural COFs, BP-COF (τavg 

= 0.41 ns) and TP-COF (τavg = 0.33 ns), which correlates with the observed photocatalytic 

performance. Lifetimes of non-fluorinated COFs decreased with the large pore sizes (Figure 

4.24) due to the longer linkers could influence the conjugation of COFs. The introduction of 

fluorine atoms into COFs backbones could increase the lifetimes which could facilitate the CO2 

reduction.  
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4.11 Influence of pore size with cobalt complexes 

 

Figure 4.25 Photoluminescence spectra of 1 mM [Co(bpy)3]2+ acetonitrile solution upon the addition 5 mg 

of FP-COF, FBP-COF (excitation at 350 nm). 

FP-COF with a pore size of 1.6 nm has better light absorption than FBP-COF with a pore size 

of 2.3 nm; however, the CO generation rate of FP-COF was lower than that of FBP-COF. We 

supposed the activity difference was due to pore size, which could let molecular cocatalyst into 

the COFs and increase the efficiency of interaction between COFs and cocatalyst. It was proven 

that the [Co(bpy)3]
2+ molecules were mainly dispersed at the external surface of DA-CTF with 

a pore size of 1.2 nm.17 We supposed that COFs with different pore sizes could influence the 

interaction between COFs and molecular cocatalysts which restrict the CO2 reduction 

performance. Hence, the influence of porosity on activity was investigated by measuring the 

adsorption capability of the cocatalyst for FP-COF and FBP-COF. To do this, 10 mL of 1 mM 

[Co(bpy)3]
2+ acetonitrile solution and 5 mg FP-COF and FBP-COF were added into vials. After 

4 hours, the solution was then separated by centrifugation, and the concentration of the 

[Co(bpy)3]
2+ in the liquid supernatant was determined using a PL spectrophotometer. As shown 

in Figure 4.25d, the PL intensity showed little difference between pristine [Co(bpy)3]
2+ solution 

and that soaked with FP-COF, indicating that the cobalt complexes are located at the external 

surface of FP-COF with only a small portion inside the pores.17 However, PL intensity of 

[Co(bpy)3]
2+ solution after soaking with FBP-COF shows a decrease compared to the pristine 
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solution, indicating the accessibility of [Co(bpy)3]
2+ in the pores of FBP-COF.3 Therefore, we 

suppose the larger pores can improve the interaction between the cocatalyst and the COFs, but 

at the same time it will limit their visible light absorption and conjugation. Hence, FBP-COF 

has medium-sized pores and a suitable band gap, giving the best photocatalytic performance. 

4.12 Conclusion 

In summary, we have synthesized a series of fluorinated COFs and achieved photocatalytic 

CO2 reduction with TEOA as a scavenger and Co (II) bipyridine complexes as a low-cost 

cocatalyst. Fluorinated COFs exhibited better performance than non-fluorinated COFs. Among 

them, FBP-COF with appropriate band gap and medium pore size achieved the best 

performance, demonstrating a CO generation rate of 4132.1 μmol g-1 with 95.5% selectivity 

over H2 over 5 h visible light illumination. FBP-COF can generate CO for up to 50 hours with 

a TON of 40. This result was higher than that of the system that applied Ru complex as a dye. 

Fluorination improves the stability of COFs dramatically. Our findings demonstrated CO2 

affinity and pore size of the COFs and the light absorption of the photosensitizer have a 

significant influence on photocatalytic CO2 reduction activity. 

4.13 Materials and methods 

All reagents were purchased from Sigma-Aldrich, TCI Europe, ABCR, Carbosynth, Shanghai 

Kaiyulin Pharmaceutical Technology or Fluorochem. Anhydrous solvents used for synthesis 

and experiment were obtained from Acros Organics or Fisher Scientific. All chemicals were 

used as received and without further purification. 1,3,5-triformylphloroglucinol was 

purchased from Carbosynth. P-phenylenediamine was obtained from Sigma-Aldrich. 

Benzidine was purchased from Fluorochem. 4,4''-diamino-p-terphenyl was obtained 

from TCI. 1,4-diamino-2,5-diflurobenzene and 4,4’-diamino-2,2’-difluorobiphenyl 

were purchased from ABCR. 

4.13.1 Solution nuclear magnetic resonance 

A Bruker Avance 400 NMR spectrometer operating at frequencies of 400 MHz and 100 MHz 
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was used to record 1H and 13C{1H} NMR spectra.  

4.13.2 Powder X-ray diffraction 

Powder X-ray diffraction (PXRD) measurements were collected on a Panalytical Empyrean 

diffractometer, applying with a Cu X-ray source (λ = 1.5418 Å, Cu Kα), PIXcel3D detector 

and X-ray focusing mirror. After loading loose powdered samples on Mylar film in aluminium 

well plates, samples were screened in high throughput transmission mode. 

4.13.3 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) was measured on an EXSTAR6000 under nitrogen flow, 

heating at 10 °C min-1 from room temperature to 1000 °C. 

4.13.4 Gas sorption analysis 

Nitrogen adsorption and desorption were obtained at 77.3 K using a Micromeritics ASAP 2020 

volumetric adsorption analyzer. Before analysis, all the COF powder samples were degassed 

offline at 120 ℃ for 12 hours under a dynamic vacuum (10-5 bar). Pore size distributions of 

COFs were calculated from the adsorption data by fitting a nonlocal density functional theory 

(NL-DFT) model. CO2 isotherms were measured on a Micromeritics ASAP 2020 at 273 K and 

298 K. 

4.13.5 Fourier-transform infrared spectroscopy 

FT-IR spectra were obtained on a Bruker Tensor 27 FT-IR spectrometer. Data of samples 

prepared as KBr disks were collected for 16 scans with a resolution of 4 cm-1. 

4.13.6 UV-Visible absorption spectra 

UV-Visible absorption spectra of all the materials were performed on an Agilent Cary 5000 

UV-Vis-NIR Spectrometer by testing the reflectance of powders in the solid state. 
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4.13.7 Scanning electron microscopy 

Scanning electron microscopy (SEM) observations were performed on a Hitachi S-4800 cold 

field emission scanning electron microscope. Samples were first deposited on Hitachi M4 

aluminium stubs with an adhesive high-purity carbon tab and then coated with a 2 nm layer of 

gold using an Emitech K550X automated sputter coater. 

4.13.8 Isotopic labelling experiments 

13CO2 labelling experiments were performed using COF powder (1 mg), 2,2’-bipyridyl (2 mg), 

CoCl2 (1 μmol), acetonitrile, water and triethanolamine (3:1:1 vol. mixture, 5 mL) and sealed 

with a septum. The resulting suspension was ultrasonicated for 5 minutes and then purged with 

13CO2 for 5 minutes. The reaction mixture was illuminated with a 300 W Newport Xe light 

source (model: 6258, Ozone free) equipped with a λ > 420 nm cut-off filter. The gas phase was 

run on Agilent GC-MS 7890B gas chromatograph with a mass spectrometer (Agilent GC-MS 

5977B) equipped with a GC-CARBONPLOT column (60 m length, 0.32 mm inner diameter). 

4.13.9 Photoelectrochemical measurements 

2 mg of the photocatalyst and 10 µL Nafion were dispersed in 0.2 mL ethanol and 

ultrasonicated for 10 minutes giving a slurry. The slurry was then coated onto FTO glass 

electrodes with an active area of 0.28 cm2 and dried overnight at room temperature. The 

photocurrent response was tested using a three-electrode system with a working electrode 

(COF on FTO glass), counter electrode (Pt wire), and reference electrode (Ag/AgCl) in 0.5 M 

Na2SO4 (pH = 7) aqueous solution. An Oriel Instruments LSH-7320 Solar Simulator (IEC ABA 

certified) with 1 Sun output was applied to illuminate the sample. The applied bias for the 

intermittent photocurrent intensity measurement was -0.2 V vs. Ag/AgCl. 

4.13.10 TCSPC measurements 

An Edinburgh Instruments LS980-D2S2-STM spectrometer equipped with picosecond pulsed 

LED excitation sources, and a R928 detector was applied for TCSPC experiments. An EPL-
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375 diode (λ = 375 nm, instrument response 100 ps, fwhm) was used for emission detection. 

Suspensions of COFs were prepared by ultrasonicating the materials in acetonitrile. The 

instrument response was tested with colloidal silica (LUDOX® HS-40, Sigma-Aldrich) at the 

excitation wavelength without any filter. Decay times were fitted in the FAST software using 

suggested lifetime estimates.  

4.13.11 External quantum efficiency (EQE) for CO production 

A monochromatic LED light (λ = 420 nm) was applied for measuring the external quantum 

efficiency of CO production. For the experiments, COF (1 mg), 2,2’-bipyridine (2 mg), and 

CoCl2 (1 μmol) were suspended in acetonitrile, water and triethanolamine (3:1:1 vol. mixture, 

5 mL). The illuminated area was 5 cm2 and the light intensity was measured by a ThorLabs 

PM100D Power and Energy Meter Console with a ThorLabs S120VC photodiode power sensor. 

The EQE was calculated as follow:  

EQE% = 2 × [(n CO) × NA × h × c)] × 100% / (I × S × t × λ) 

Where NA is Avogadro constant (6.022 × 1023 mol-1), h is the Planck constant (6.626 × 10-34 J 

s), c is the speed of light (3 × 108 m s-1), S is the irradiation area (cm2), I is the intensity of 

irradiation light (W cm-2), t is the photoreaction time (s), and λ is the wavelength of the 

monochromatic light (m). 

4.13.12 Photocatalytic CO2 reduction experiments 

A quartz flask was charged with the COFs (1 mg), 2,2’-bipyridine (2 mg) and CoCl2 (1 μmol) 

in acetonitrile, water and triethanolamine (3:1:1 vol. mixture, 5 mL) and sealed with a septum. 

The resulting suspension was ultrasonicated for 5 minutes and then purged with CO2 for 15 

minutes. The reaction mixture was illuminated with a 300 W Newport Xe light source (model: 

6258, Ozone free) equipped with a λ > 420 nm cut-off filter. Gaseous products were taken with 

a gas-tight syringe and run on a Shimadzu GC-2014 gas chromatograph equipped with a 

ShinCarbon ST micropacked column (Restek 80-100 mesh, 2 m length, 0.53 mm inner 

diameter) and a thermal conductivity detector.  
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The development of new materials for the conversion of carbon dioxide to value-added 

chemical fuels is a major goal in materials chemistry.1 Inorganic semiconductors, such as metal 

oxides, have been studied widely for this application, but they often lack a suitable electronic 

band structure, and this can be hard to tune.2,3 On the other hand, homogeneous molecular 

catalysts, such as organometallic complexes, are synthetically versatile but have poor long-

term stability.4–6  

Porous organic materials, such as carbon nitrides, conjugated microporous polymers (CMPs), 

7,8 covalent triazine-based frameworks (CTFs),7,8 and covalent organic frameworks (COFs),9–

12 have attracted growing interest for photocatalytic CO2 reduction. These organic materials are 

synthesized under mild conditions and their properties are easily tuned through the modular 

incorporation of different building blocks. In this thesis, we synthesized organic 

semiconductors such as linear conjugated polymers and COFs and explored their application 

to photocatalytic CO2 reduction. 

In Chapter 2, linear conjugated polymers achieved photocatalytic CO2 reduction for syngas 

production. The ‘one-pot’ generation of syngas (H2/CO) mixtures by the simultaneous 

reduction of water and CO2 is of significant interest because syngas is used in large-scale 

industrial processes. Direct photocatalytic syngas production has the potential to be 

technologically simple and scalable, necessary for large-scale applications. We firstly tested 

different linear conjugated polymers for CO2 reduction with cobalt bipyridine complexes as 

cocatalysts and TEOA as scavengers. Dibenzo[b,d]thiophene sulfone containing polymer 

photocatalysts (P7 and P10) were found to be highly active. A dibenzo[b,d]thiophene sulfone-

phenylene co-polymer, P7, showed a CO production rate of 959.1 µmol g-1 h-1, but it also 

produced H2 at a rate of 1523.7 µmol g-1 h-1, while a dibenzo[b,d]thiophene sulfone 

homopolymer P10 produced very little CO with a rate of 156.5 µmol g-1 h-1 and significantly 

more H2 (2575.6 µmol g-1 h-1). The selectivity over CO production for P10 can be explained 

by differences in thermodynamic driving force with the LUMO of P10 being less negative than 

for P7, resulting in the lower reduction potential of P10 relative to P7. 

We next studied in detail the influence of residual palladium on the catalytic activity and found 
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that the selectivity for CO increased when poly(p-phenylene) and P10 were made using a 

nickel-based coupling reaction. This shows that residual palladium acts as a co-catalyst for 

proton reduction, which competes with carbon dioxide reduction. We were able to control the 

composition of the H2/CO mixtures for P7 by varying the amount of palladium used in the 

synthesis, which allowed us to vary the H2:CO ratio between 1.9:1 to 5.3:1. Unlike imine linked 

COFs, these materials are conjugated polymers with irreversible covalent bonds; as such, they 

exhibit very good physicochemical stability and we observed little change in their activities 

over a period of 25 hours. 

COFs combine porosity with crystallinity and have shown strong potential as solar fuels 

photocatalysts; for example, we recently reported a highly active COF photocatalyst for 

photochemical hydrogen evolution from water.13 The synthetic reactions of COFs do not use 

metal-based catalysts, which reduces the competitive hydrogen production reactions compared 

to CO2 reduction and improves the selectivity of products. However, one challenge here is the 

reversible bond-formation chemistry needed to make most COFs, which leads to varying 

degrees of long-term instability under photocatalytic conditions. For example, for a COF 

synthesized via a Schiff-base condensation, the CO production rate stayed linear over a time 

span of less than two hours.10 In another recent study, more stable CO production was observed 

up to 10 hours, but the rate plateaued after that.14 This marked instability is perhaps the central 

challenge for such materials, even more than catalytic rate and selectivity. 

In Chapter 3, we designed and synthesized a new COF, Bpy-sp2c-COF, via Knoevenagel 

condensation of 1,3,6,8-tetrakis(4-formylphenyl)pyrene and 5,5’-bis(cyanomethyl)-2,2’-

bipyridine. Bpy-sp2c-COF incorporates bipyridine sites to allow ligation of a rhenium complex. 

Re-Bpy-sp2c-COF was made by refluxing Bpy-sp2c-COF with [Re(CO)5Cl] in toluene. The 

Re-Bpy-sp2c-COF is significantly more stable than previous examples, discussed above, and 

shows steady photochemical reduction of CO2 to CO under visible light irradiation (λ > 420 

nm) over 17.5 hours. Re-Bpy-sp2c-COF generated CO at a rate of 1040 µmol g-1 h-1 (TON = 

18.7) with 81% selectivity over H2. An apparent quantum yield (AQY) of 0.5% was measured 

at 420 nm for CO production. In contrast, the homogeneous counterpart deactivated after 3 
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hours with a TON of 10.3 under the same conditions. The chemical robustness of the COF 

stems from its fully π-conjugated backbone, which is also beneficial for efficient light-

harvesting and charge transport, and hence photocatalytic activity.  

The Bpy-sp2c-COF is porous and can also be dye-sensitized, giving CO production rates of up 

to 1,400 µmol g-1 h-1 with a selectivity of 86%, which is the highest rate reported for a COF so 

far. We also show that the crystalline COF shows a much higher and more stable catalytic 

activity than an amorphous analogue, illustrating that isoreticular design principles provide a 

strong practical advantage in this application. The catalytic selectivity of the COF can be tuned 

from favouring CO to favouring H2 by varying the level of platinum cocatalyst, and this can be 

used to produce syngas directly.  

In previous reports, most COFs were designed as a scaffold to integrate a molecular catalyst 

for photocatalytic CO2 reduction.12,14,15 Inevitably, additional noble metal photosensitizers such 

as ruthenium(II) complexes were necessary for such systems and the stability of the reported 

COFs are relatively poor as they are based on Schiff-base chemistry.10 On the other hand, 

photoactive COF photosensitizers still need noble metal complexes; for example, our rhenium 

complex acts as a cocatalyst to achieve CO2 reduction with good selectivity.14 The Re-Bpy-

sp2c-COF in Chapter 3 used rhenium complexes as cocatalysts. Until now, COFs 

photosensitizers have rarely been reported for highly selective CO2 reduction to CO without 

noble metal complexes as cocatalysts.16 Introducing fluorine heteroatoms into organic 

semiconductors has been well studied to improve the photovoltaic performance for organic 

solar cell.17 COF photosensitizers incorporating fluorine and chlorine were applied and 

investigated for photocatalytic H2 evolution.18 Obtaining low-cost and high performance 

photoactive COFs through minor changes of reported COFs with heteroatom fluorine is very 

attractive. Therefore, it is worthwhile to explore COFs as photosensitizers with this strategy 

and develop systems with earth-abundant catalysts.19  

In Chapter 4, we reported a series of β-ketoenamine-linkers COFs with various pore sizes and 

band gaps made by reacting 1,3,5-triformylphloroglucinol (TFG) with aromatic linkers of 

different lengths or their isostructural fluorinated analogues. The obtained fluorinated and non-
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fluorinated COFs were tested as photosensitizers, coupled with the low-cost molecular cobalt 

(II) bipyridine complex ([Co(bpy)3]
2+) as a cocatalyst for photocatalytic CO2 reduction under 

visible light. Compared with those of other obtained COFs, results indicated that FBP-COF 

with [Co(bpy)3]
2+ as co-catalyst had the best CO evolution rate of 826.4 μmol h-1 g−1 with a 

selectivity of 95.5%. This system showed steady CO evolution for 50 hours, showing a TON 

of 40, which is four times higher than the equivalent bipyridine Ru complex containing system. 

Taken together, the results of this thesis show that both linear conjugated polymers and COFs 

were demonstrated to be promising photocatalysts for CO2 reduction under different 

experimental conditions. Precious metal complexes (rhenium complexes) and non-noble metal 

complexes (cobalt bipyridine complexes) were applied as cocatalysts for generating CO.  

However, it is believed that this is just the beginning of photocatalytic CO2 reduction using 

organic semiconductors. Products such as CH4 and methanol are more challenging to make but 

more rewarding. However, additional sacrificial electron donors are still needed. Without any 

other scavengers, systems that can effectively achieve overall CO2 reduction with low-cost 

organic semiconductors, non-noble metal complexes as cocatalysts and water as electron donor 

are the ideal choice. The work in this thesis suggests that, overall, COFs might be the better 

choice for CO2 reduction photocatalysts, largely because of their high crystallinity and our 

ability to control atomistically the placement of functionality in predictable way. This will only 

be true, however, if the materials are sufficiently stable. There are various strategies here, such 

as fluorination and the introduction of more stable sp2 carbon-carbon bonding, both of which 

are explored in this thesis. 

It is hoped that the results in this thesis will encourage work on photocatalytic CO2 reduction 

using organic semiconductors toward the long-term goal of materials that yield useful products 

without the use of any additional sacrificial agents. 
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Figure A-1 UV-Vis absorption spectra of 5,5’-bis(cyanomethyl)-2,2’-bipyridine and 1,3,6,8-tetrakis(4-

formylphenyl)pyrene in the solid-state. 

 

 

 

Figure A-2 TGA traces of Bpy-sp2c-COF and after loading with [Re(CO)5Cl] (Re-Bpy-sp2c-COF) measured 

under nitrogen. 

  



 184 

 

Figure A-3 SEM images of Bpy-sp2c-COF (a, b), Re-Bpy-sp2c-COF (c, d), Bpy-sp2c-P (e, f) and Re-Bpy-sp2c-

P (g, h). 
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Figure A-4 SEM images of P-COF (a), FP-COF (b), BP-COF (c), FBP-COF (d), TP-COF (e), and FTP-COF (f). 
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Table A-1 Previously reported photocatalytic CO2 reduction using different photocatalysts with molecular 

cocatalysts in Figure 4.17c. 

Photocatalyst Cocatalyst 
Main products and highest 

yield (μmol h-1 g-1) 
Selectivity Reaction solvent Irradiation condition 

FBP-COF [Co(bpy)3]
2+ 826.4 (CO) 95.5% (CO) 

MeCN / H2O / TEOA 

(3/1/1) 

1 atm, λ > 420 nm (300 

W Xe light source) 

PI-COF-TT [Ni(bpy)3]
2+ 483 (CO) 93% (CO) 

MeCN / H2O / TEOA 

(3/1/1) 

UV-vis light (300 W Xe 

light source) 

N-CP-D [Co(bpy)3]
2+ 2274 82% (CO) 

MeCN / H2O / TEOA 

(7/3/1) 

80 kPa, λ > 400 nm (300 

W Xe light source) 

mpg-CNx CoPPc 17.9 84.4% (CO) 
MeCN / TEOA 

(4/1) 

1 atm, UV-Vis light (AM 

1.5G, 100 mWcm-2 , λ > 

300 nm) 

DA-CTF [Co(bpy)3]
2+ 155 (CO) 69% (CO) MeCN / TEOA (2/1) 

1 atm, λ ≥ 420 nm (225 

W Xe light source) 

CTF-BT [Co(bpy)3]
2+ 1213 (CO) 81.6% (CO) 

MeCN / H2O / TEOA 

(4/1/1) 

1 atm, λ > 420 nm (300 

W Xe light source) 

CdS/UiO-

bpy/Co 
- 235 (CO) 85% （CO） MeCN / TEOA (4/1) 

1 atm, λ > 420 nm (300 

W Xe light source) 

CdS-BCN [Co(bpy)3]
2+ 250 (CO) 81.7% (CO) 

MeCN / H2O / TEOA 

(4/2/1) 

1 atm, λ > 420 nm (300 

W Xe light source) 

In2S3-CdIn2S4 [Co(bpy)3]
2+ 825 73.3% (CO) 

MeCN / H2O / TEOA 

(3/2/1) 

1 atm, λ > 400 nm (300 

W Xe light source) 

CNNS-UiO-

66(Zr) 
- 9.9 - 

MeCN / TEOA 

(4/1) 

1 atm, 400 nm < λ < 800 

nm (300 W Xe light 

source) 

BCN [Co(bpy)3]
2+ 93 (CO) 76.2% (CO) 

MeCN / H2O / TEOA 

(4/2/1) 

1 atm, λ > 420 nm (300 

W Xe light source) 

HR-CN [Co(bpy)3]
2+ 297 (CO) 96.7% (CO) 

MeCN / H2O / TEOA 

(3/1/1) 

1 atm, λ > 420 nm (300 

W Xe light source) 

MCN/CoOx [Co(bpy)3]
2+ 204 (CO) 78.5% (CO) 

MeCN / TEOA 

(2/1) 

1 atm, λ > 420 nm (300 

W Xe light source) 

      

 

 


