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Abstract

We propose POLAR 2, a polynomial arithmetic framework that leverages polyno-
mial overapproximations with interval remainders for bounded-time reachability
analysis of neural network-controlled systems (NNCSs). Compared with existing
arithmetic approaches that use standard Taylor models, our framework uses a novel
approach to iteratively overapproximate the neuron output ranges layer-by-layer
with a combination of Bernstein polynomial interpolation for continuous activation
functions and Taylor model arithmetic for the other operations. This approach
can overcome the main drawback in the standard Taylor model arithmetic, i.e. its
inability to handle functions that cannot be well approximated by Taylor polyno-
mials, and significantly improve the accuracy and efficiency of reachable states
computation for NNCSs. To further tighten the overapproximation, our method
keeps the Taylor model remainders symbolic under the linear mappings when
estimating the output range of a neural network. We show that POLAR can be
seamlessly integrated with existing Taylor model flowpipe construction techniques,
and demonstrate that POLAR significantly outperforms the current state-of-the-art
techniques on a suite of benchmarks.

1 Introduction

Machine learning models, especially deep neural networks, have been increasingly used as general
decision makers [1, 2, 3]. This has given birth to a category of autonomous systems known as
neural-network controlled systems (NNCSs). NNCSs are becoming pervasive in areas such as cyber-
physical systems (CPS) for a variety of tasks in which the controllers are difficult to synthesize using
traditional approaches. However, using a neural network controller also gives rise to a new challenge
which is to verify the correctness of the resulting closed-loop control system.

It is difficult to formally verify an NNCS in general due to complex system behaviors involving
continuous evolution and neural network feedback. Although a lot of effort has been devoted
to developing techniques for computing or estimating neural network output ranges [4, 5, 6, 7,
8], very few of them can be applied to verifying NNCSs due to their limitation in coping with
continuous system evolution. New techniques have been developed for NNCS verification via
reachable set computation (overapproximation), however they are often confined by either the
category of continuous dynamics, or the type of the activation functions used in the neural network
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controller. In [9], the authors propose to first translate an NNCS to a hybrid system and then use the
existing tool Flow* [10] to verify the later one. The method is later improved to directly use Taylor
model arithmetic [11] and preconditioned Taylor models [12] to compute more accurate reachable
sets. Due to the limitation of Taylor approximations, these methods cannot handle ReLU functions.
In [13], the authors present an approach of tracking the dependency of state variables under a neural
network input-output mapping using piecewise linear polynomials for improving the accuracy of
reachable set computation. However, the technique can only handle ReLU neural networks. The
use of Bernstein polynomials as abstractions of neural networks has been considered in [14, 15].
Although these methods can in theory handle all continuous activation functions, the estimation
requires performing subdivisions and sampling in a multidimensional state space which leads to an
exponential blowup in the number of the state variables in the worst case. An effective technique that
uses star sets is described in [16], but it can only handle linear continuous dynamics and piecewise
linear activation functions in the absence of additional linearization techniques.

In this paper, we propose POLAR, a polynomial arithmetic framework to iteratively overapproximate
the neuron output ranges layer-by-layer. It adopts univariate Bernstein polynomial interpolation to
approximate continuous activation functions, and Taylor model arithmetic for the other operations.
Our approach also tries to keep Taylor model remainder symbolic under linear mappings simultane-
ously. Compared with [13], our approach can handle a wider spectrum of neural networks beyond
ReLU networks. Compared with [11, 12], the use of Bernstein polynomial interpolation for activation
function along with symbolic remainder makes our approach much more efficient and accurate.
Compared with multivariate Bernstein polynomial interpolation [14], our neuron-wise approximation
shows a significant advantage on efficiency. Compared with symbolic star set technique [16], our
approach can handle more general systems with nonlinear dynamics.

In summary, our work makes the following novel contributions.

• We propose a novel polynomial arithmetic framework for bounded time reachability analysis of
NNCSs. Our approach has the advantage of being able to handle NN controllers with general and
heterogeneous activation functions.

• We propose neuron-wise Bernstein polynomial interpolation and show that it can be seamlessly
integrated with Taylor model approximation for physical plant dynamics. We further use symbolic
remainder to tighten the overapproximation of neural network behavior under linear mappings.

• We conduct a comprehensive comparison of our approach with state-of-the-art techniques, includ-
ing evaluation on the full set of benchmarks published in these works and an additional complex
multi-input-multi-output system, showing the overwhelming advantage of our proposed approach.

2 Preliminaries

In this section, we first give formal definitions of neural-network controlled systems and the associated
verification problem. Then we revisit the set-based arithmetic techniques using intervals and Taylor
models. We use R to denote the set of real numbers.

2.1 Neural-Network Controlled Systems

A neural-network controlled system (NNCS) is a continuous plant governed by a neural network
controller, as shown in Figure 1. We denote an NNCS by a tuple (X,U, F, κ, δc,X0) wherein
X = {x1, . . . , xn} is the set of finitely many state variables, U = {u1, . . . , um} is the set of finitely
many control variables (or inputs), F is the ODE defining the continuous dynamics of the plant, κ(·)
denotes the input-output mapping defined by the neural network controller, δc is a positive number
denoting the control stepsize, and X0 ⊂ Rn is the set of the initial values of the state variables.

We consider ODEs in the form of ~̇x = f(~x, ~u) as the formal definition of plant dynamics. The vector
~x is a collective denotation for the variables x1, . . . , xn and ~u is the denotation for the variables
u1, . . . , um. We assume that the function f is at least locally Lipschitz continuous such that its
solution w.r.t. an initial state and constant control inputs is unique [17].

An execution (trajectory) of an NNCS can be generated in the following way. Starting from an initial
state ~x(0)∈X0, the controller senses the system state at the beginning of every control step t=kδc for
k=0, 1, . . ., and update the control inputs to ~vk=κ(~x(kδc)). The system’s dynamics in that control
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Figure 1: Neural-network controlled system. Figure 2: An Execution over 4 control steps.

step is governed by the ODE ~̇x=f(~x,~vk). Figure 2 illustrates an execution of NNCS. Because of the
Lipschitz continuity of the plant dynamics, the execution from an initial state is always unique.

All executions of an NNCS can be formally defined by a flowmap function ϕN : X × R≥0 → Rn,
such that the system state at any time t ≥ 0 from any initial state ~x(0) ∈ X0 is the function output
ϕN (~x(0), t). We call a state ~x′ ∈ Rn reachable if there exists ~x(0) ∈ X0 and t ≥ 0 such that
~x′ = ϕN (~x(0), t). The reachability problem on NNCS is to decide whether a state is reachable in a
given NNCS, and it is undecidable due to their higher expressiveness than the two-counter machines
on which the reachability problem is already undecidable [18].

Formal Verification. Many formal verification problems can be reduced to the reachability problem.
For example, the safety verification problem can be reduced to the reachability problem of checking
whether an unsafe state is reachable. In the paper, we verify a safety or reachability property on
an NNCS by computing its reachable set over a given number of control steps. Since the actual
reachable set is hard to compute, we focus on computing a tight overapproximation of it.

2.2 Taylor Model Arithmetic

Our reachable set overapproximation approach uses the set-based computation methods on intervals
and Taylor models. We briefly revisit these techniques.

An interval [a, b] wherein a ≤ b denotes the set of all real values ranging from a to b. Intervals
are used as overapproximate representations for reals in numerical computation. They can also
be organized as vectors or matrices. The basic operations on reals can be extended to intervals,
e.g., the interval addition and multiplication are defined by [a, b] + [c, d] = [a + c, b + d] and
[a, b] · [c, d] = [min{a · c, a ·d, b · c, b ·d},max{a · c, a ·d, b · c, b ·d}] respectively. and such extension
is called interval arithmetic which is very useful in computing conservative ranges for the results of
various computation tasks in which approximation or roundoff errors need to be taken into account.

Taylor models are originally proposed to compute higher-order overapproximations for the ranges of
continuous functions (see [19]). A Taylor model (TM) is a pair (p, I) wherein p is a polynomial of
degree k over a finite group of variables x1, . . . , xn ranging in an interval domain D ⊂ Rn, and I is
the remainder interval. The range of a TM is the Minkowski sum of the range of its polynomial and
the remainder interval. Thereby we sometimes intuitively denote a TM (p, I) by p+ I in the paper.

Comparing to intervals, TMs often provide more accurate overapproximations. Given a continuous
function f(~x) with ~x ∈ D such that f has partial derivatives upto the order of k > 0. An interval
overapproximation for the range of f can only be as accurate as an interval whose lower bound is
min{f(~x) | ~x ∈ D} and upper bound is max{f(~x) | ~x ∈ D}, such that the dependency between
the value of f and the value of ~x is not characterized in the overapproximation. However, a TM
overapproximation (pf , If ) can be obtained by computing pf as the order k Taylor expansion of
f at the center of D and If as an interval including the remainder error. Such a model provides
a point-wise overapproximation: ∀~x ∈ D.(f(~x) ∈ pf (~x) + If ) wherein + denotes the operation
that adding the interval If onto the point pf (~x). Although the range of a TM overapproximation is
not always smaller than the interval overapproximation range for a function, the accumulation of
overestimation in a computation task on TMs is often much smaller than that on intervals due to the
characteristics of the dependencies. This fact has already been demonstrated in verified integration
and global optimization tasks [20, 21].
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Algorithm 1 Flowpipe Construction for NNCS

Input: NNCS (X,U, F, κ, δc,X0), number of control steps K.
Output: Overapproximation of the reachable set over the time interval of [0,Kδc] such that δc is the

control stepsize.
1: R ← ∅; # the resulting overapproximation set
2: Xi ← X0; # the initial set in every control step
3: for i = 1 to K do
4: Computing the an overapproximation Ui for the range κ(Xi);
5: Computing the reachable set overapproximationRi over the time interval of [0, δc] under the

continuous dynamics ~̇x = f(~x, ~u), ~̇u = 0 from the initial set ~x(0) ∈ Xi, ~u(0) ∈ Ui;
6: R ← R∪Ri;
7: Evaluating a set for the last flowpipe inRi at the end of the time step and assigning it to Xi;
8: end for
9: return R.

TM Arithmetic. TMs are closed under operations such as addition, multiplication, and integration
(see [22]). Given functions f, g that are overapproximated by TMs (pf , If ) and (pg, Ig) respectively.
A TM for f + g can be computed as (pf + pg, If + Ig), and an order k TM for f · g can be computed
as ( pf · pg − rk , If · B(pg) + B(pf ) · Ig + If ·Ig + B(rk) ) wherein B(p) denotes an interval
enclosure of the range of p, and the truncated part rk consists of the terms in pf · pg of degrees > k.
Similar to reals and intervals, TMs can also be organized as vectors and matrices to overapproximate
the functions whose ranges are multidimensional. For a vector of TMs ((p1, I1), . . . , (pn, In))T

such that p1, . . . , pn are over the same variables, we collectively denote it by (p, I) such that p is the
polynomial vector (p1, . . . , pn)T and I is interval vector (I1, . . . , In)T . As an example, given the
TMs (1− 0.5x2, [−0.1, 0.1]) and (x+ 0.1x4, [−0.2, 0.2]) over the domain x ∈ [−1, 1]. The order
4 TM for the sum is (1 + x − 0.5x2 + 0.1x4, [−0.3, 0.3]), and the order 4 TM for the product is
(x− x3 + x4, [−0.38, 0.38]).

3 Verification Framework Using Polynomial Arithmetic

We present our framework for computing NNCS reachable set overapproximations using polynomial
arithmetic. Our approach has three main components: (a) flowpipe construction under ODE dynamics,
(b) computing a TM output range for a neural network controller for a given TM input, and (c) a
technique of symbolically representing interval remainders in (b). The tasks of (a) can be handled
by the existing TM flowpipe construction technique in [23], whereas (b) and (c) constitute our main
contributions which allow a seamless integration of the three components to produce state-wise
overapproximations for NNCS reachable sets. In this section, we first present our main framework,
briefly recall the TM flowpipe construction method, and then describe (b) and (c) in detail.

3.1 Flowpipe Construction for NNCS

We verify a property on a given NNCS by checking its reachable set over a bounded number of
control steps. Since the exact set of the reachable states cannot be computed, we use an adaption of
the classic flowpipe construction scheme for NNCS, and it is shown in Algorithm 1.

The algorithm basically performs an overapproximated set-based simulation on the given NNCS
for a bounded time horizon which is defined by K control steps. At the beginning of every control
step, it computes an overapproximated set for the control inputs which are obtained from the NN
controller based on the current system state set Xi (Line 4). Then the algorithm performs the flowpipe
construction technique (Line 5) to compute the reachable set overapproximation over the current
control step under the continuous dynamics defined by the ODE: ~̇x = f(~x, ~u), ~̇u = 0, which is an
extension of the original ODE by treating the constant control inputs as new static state variables.
Notice that such an extension has the same behavior at the state variables ~x as the original dynamics
~̇x = f(~x, ~u) with time-invariant ~u ∈ Ui (see [23]).

Property Verification. A property such as safety or reachability of the original NNCS can be verified
based on the computed reachable set overapproximations (see [24, 14]). (i) Safety: If R does not
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violate the safety property, then the system is safe. If we are able to find a flowpipe which completely
violates the safety property, then the system is unsafe. Otherwise, the safety is unknown and we need
to refine the overapproximations. (ii) Reachability: The unreachability proof is similar to the safety
proof, and the reachability proof is similar to the unsafety proof.

In our framework, the sets Xi, Ui are computed as TMs, andRi is a union of TMs. We will briefly re-
visit the flowpipe construction technique for ODEs and introduce our higher-order overapproximation
technique to compute the output range of an NN controller in the rest of the section.

Flowpipe Construction for ODEs. We recall the TM flowpipe construction technique for computing
reachable set overapproximations under the dynamics defined by ODEs. More details are described
in [19, 24, 23]. Here, we only consider the ODE defined in the form of ~̇x = f(~x), since the dynamics
in Algorithm 1 can be equivalently translated to this form by treating ~x, ~u as state variables.

Given a continuous dynamics ~̇x = f(~x) and an initial set ~x(0) ∈ X0 such that X0 is represented
by a TM or interval, the method of TM integration is to compute a finite set of TM flowpipes
(p1, I1), . . . , (pN , IN ) with a given flowpipe time stepsize δ > 0 such that (pi(~z, t), Ii) is an over-
approximation of the exact system reachable state set ϕf (~z, t + (i − 1)δ) with ~z ∈ X0, t ∈ [0, δ],
for 1 ≤ i ≤ N , i.e., all of the reachable set over the time interval from (i− 1)δ to iδ. To do so, the
flowpipes are computed iteratively. In the i-th iteration which is also called integration step the local
initial set is X0 if i = 1, and is computed as a TM Xi−1 = (pi−1(~z, δ), Ri−1) if i ≥ 2. Then, the
i-th TM flowpipe can be obtained from the following steps.
(1) Computing the order k Taylor expansion Φi(~y, t) at t=0 for the ODE solution ϕf (~y, t) with
~y∈Xi−1.
(2) Finding a proper remainder Ri such that ϕf (~y, t) is overapproximated by (Φi(~y, t), Ri) with
t ∈ [0, δ]. It can be done by verifying the contractiveness (the output TM is contained in the input
TM) of the Picard operator on (Φi(~y, t), Ii) (see [19, 23]).
(3) Computing the i-th TM flowpipe (pi, Ii) by evaluating (Φi(Xi−1, t), Ri) using TM arithmetic.

The TM flowpipes computed by the above method provide state-wise (point-wise) overapproximations
for the exact reachable set, i.e., for any initial state ~x(0) ∈ X0 and t ∈ [0, Nδ], the exact reachable
state ~x(t) = ϕf (~x(0), t) is guaranteed to be contained in the TM pi(~x(0), t − (i − 1)δ) + Ii such
that 1 ≤ i ≤ N and t ∈ [(i− 1)δ, iδ].

TM flowpipe construction can be applied to the task in Line 5 of Algorithm 1. The flowpipe time
stepsize is δ = δc/N , and the resulting TMs overapproximate all reachable states in the control step.
The local initial set Xi for the next control step (Line 7) can be obtained from evaluating the last
flowpipe inRi at the end of the flowpipe step time, i.e., the TM (pN (~z, δ), IN ). Notice that the time
variable t in each flowpipe are independent and only ranges in a single flowpipe time step: [0, δ].

3.2 Polynomial Arithmetic for Overapproximating Neural Network Outputs

In this section, we describe our key contribution – a polynomial arithmetic to compute a TM
overapproximation of a feedforward neural network which is only required to have continuous
activation functions. Given a TM input set for a neural network, our approach combines the use of
TM arithmetic and Bernstein polynomial interpolation to produce a point-wise overapproximation
set for the output of a neural network. The high-level steps are described in Algorithm 2, in which
we assume that the neural network has M hidden layers, the neurons in the same layer have the
same type of activation functions, and the output layer’s neurons also have activation functions. We
collectively use σ(~y) to denote applying the activation function σ to each element of ~y.

Computing the Bernstein polynomial pσ . Given the computed TM (pt, It) in Line 3, pσ is a vector
of univariate Bernstein polynomials [25] each component of which is expressed in a variable yj
which denotes the range of the j-th component (dimension) of (pt, It). Then the j-th component

of pσ is computed as pjσ(yj) =
∑k
s=0

(
σ(

Ȳj−Y j

k s+ Y j)
(
k
s

) (yj−Y j)s(Ȳj−yj)k−s

(Ȳj−Y j)k

)
which is an

approximation of the σ(yj) such that Ȳj and Y j denotes the upper and lower bounds respectively of
the range in the j-th dimension in (pt, It), and they can be obtained by interval evaluating the TM.
Here, the positive integer k is a user given Bernstein approximation order.

Evaluating a conservative remainder Iσ for pσ . The remainder Iσ is a vector of intervals, each
component of which is a conservative remainder for the corresponding Bernstein polynomial in pσ
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Algorithm 2 Polynomial arithmetic for overapproximating neural network outputs

Input: Input TM (p(~z), I) with ~z ∈ D, the M + 1 matrices W1, . . . ,WM+1 of the weights on the
incoming edges of the hidden and the output layers, the M + 1 vectors B1, . . . , BM+1 of the
neurons’ bias in the hidden and the output layers, the M + 1 activation functions σ1, . . . , σM+1

of hidden and output layers.
Output: a TM (pr(~z), Ir) that contains the set κ((p(~z), I)).

1: (pr, Ir)← (p, I);
2: for i = 1 to M + 1 do
3: (pt, It) ← Wi · (pr, Ir) +Bi; # Using TM arithmetic
4: Computing an order kB Bernstein polynomial pσ for the activation function over the range

defined by (pt, It), i.e., pσ(~y) ≈ σi(~y) with ~y ∈ (pt, It);
5: Evaluating a safe remainder Iσ for the polynomial pσ such that ∀~y ∈ (pt, It).(σi(~y) ∈

pσ(~y) + Iσ) holds;
6: (pr, Ir) ← pσ(pt + It) + Iσ; # Using TM arithmetic
7: end for
8: return (pr, Ir).

N1,1 N2,1NI,1

N1,2 N2,2NI,2

NO
1.5

−1

0.5

2

−0.8

1.2

3

0.1

2

1

0.3

0

−1

−2

0

1−0.5z1+z2
−0.3z1z2+[−0.1, 0.1]

−2+z2−0.1z21
+[−0.2, 0.2]

0.607+0.198z2−0.099z1−0.015z22+
0.015z1z2−0.010z21+[−0.280, 0.280]

0.098−0.042z2+0.021z1−0.004z22−
0.004z1z2−0.007z21+[−0.454, 0.454]

0.308−0.045z2+0.023z1+0.005z22−
0.005z1z2−0.002z21+[−0.457, 0.457]

0.930+0.014z2−0.007z1−0.002z22−
0.002z1z2−0.001z21+[−0.065, 0.065]

0.796−0.011z2+
0.006z1+0.001z22+0.002z1z2
−0.001z21+[−0.265, 0.265]

Figure 3: Demonstration of TM Output Computation

such that the approximation error for σ((pt, It)) is contained. To do so, the j-th interval in Iσ is
evaluated as [−εj , εj ] such that

εj = max
i=1,··· ,m

(∣∣∣∣∣pjσ(
Ȳj − Y j
m

(i− 1

2
) + Y j)− σ(

Ȳj − Y j
m

(i− 1

2
) + Y j)

∣∣∣∣∣+
Ȳj − Y j
m

)
wherein m is the number of samples which are uniformly selected to estimate the remainder.

Unlike using multivariate Bernstein polynomials in [14], our framework only computes univariate
Bernstein polynomials such that the computation complexity is always linear in the approximation
order k, and the remainder is much easier to be evaluated. In contrast, the size of a multivariate
Bernstein polynomial grows exponentially in the order k.

Example 1 We demonstrate the computation of a TM output for a small neural network shown in
Figure 3. The neural network has 2 inputs, 1 output and 2 hidden layers each of which has 2 neurons.
The neuronsNI,1,NI,2 in the input layer has identity activation function, and the activation functions
of all of the other neurons are sigmoid. The weights are given along with their edges, and the bias are
show in blue along with the neurons. In the figure, the TMs 1− 0.5z1 + z2 − 0.3z1z2 + [−0.1, 0.1]
and −2 + z2 − 0.1z2

1 + [−0.2, 0.2] are the inputs of NI,1 and NI,2 respectively, and all of the other
TMs are the output of the corresponding neurons.

Advantages of Bernstein polynomials. We briefly discuss the advantages of using Bernstein poly-
nomials over Taylor expansions in the approximation of activation functions. (i) Bernstein approxi-
mations are essentially polynomial interpolations which are more accurate approximation forms than
Taylor expansion at the same order for the a function (see [26]). (ii) Taylor approximation requires
the approximated function to be differentiable, however Bernstein approximation only requires the
function to be continuous. This fact makes Taylor approximation not applicable to ReLU functions.
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If the input TM (p, I) is a state-wise overapproximation for the reachable state at the beginning of
i-th control step, i.e., p(~z) + I contains the reachable state at the time t = (i− 1)δc from ~z for all
~z ∈ X0, then the returned TM pr(~z)+ Ir contains the exact i-th control input in the execution starting
from ~z for all ~z ∈ X0, i.e., the output TM (pr, Ir) is a state-wise overapproximation of the control
input. Hence, we have the important property given in Theorem 1, and then the setR computed in
Algorithm 1 is an overapproximation of the system reachable set in K control steps.

Theorem 1 If (p(~z, t), I) is the i-th flowpipe computed in the j-th control step, then for any initial
state ~x0 ∈ X0, the box (p(~x0, t), I) is guaranteed to contain the reachable state ϕN (~x0, (j − 1)δc +
(i− 1)δ + t), i.e., the TM flowpipes computed by our approach are point-wise overapproximations
for the reachable sets.

3.3 Symbolic Remainders in Neural Network Analysis

We describe the symbolic remainder method which is a modification of the one described in [27]
to reduce the overestimation produced in Algorithm 2. Since the TM flowpipes produced by our
framework are state-wise overapproximations, the overestimation size in a flowpipe is directly
reflected by the width of the remainder interval. The main idea of the symbolic method is to treat the
remainders during the computation of the output TM remainder symbolic by only computing their
matrix coefficients. For example, an interval for Ak · · · · ·A1 · I can be more accurately evaluated by
first computing the matrix coefficients A = Ak · · · · ·A1 and then evaluating the interval A · I than
performing the iterations Ii = Ai · Ii−1 from I0 = I by k times using interval arithmetic (see [28]).
The overestimation accumulation in the latter method is called wrapping effect [28]. The purpose of
our symbolic remainder method is to avoid the wrapping effect in purely linear mappings.

We denote the resulting TM (pr, Ir) and the Bernstein overapproximation (pσ, Iσ) in the i-th iteration
in Algorithm 2 by (pr,i, Ir,i) and (pσi , Iσi) respectively. Then (pr,i(~z), Ir,i) for i = 1, . . . ,M + 1
is computed as pr,i(~z) + Ir,i = pσi(Wi · (pr,i−1(~z) + Ir,i−1) + Iσi with (pr,0(~z), Ir,0) = (p(~z), I)
which is the input TM. If we use qi(~y) to denote the function pσi(Wi · ~y), the above expression
can be simplified to pr,i(~z) + Ir,i = qi(pr,i−1(~z) + Ir,i−1) + Iσi . By decomposing the linear and
the remaining part in qi, the function can be expressed as qi(~y) = Qi~y + qRi (~y) such that Qi is the
constant matrix consists of the coefficients of the linear terms in qi, and qRi is the nonlinear and the
constant part in qi. Hence, the output TM can be further expressed as

pr,i(~z) + Ir,i = Qi(pr,i−1(~z) + Ir,i−1) + qRi (pr,i−1(~z) + Ir,i−1) + Iσi︸ ︷︷ ︸
φi(~z)+Ji

and then by unfolding the recurrence relation, we have

pr,i(~z) + Ir,i = Qi(pr,i−1(~z) + Ir,i−1) + φi(~z) + Ji
= Qi(Qi−1(pr,i−2(~z) + Ir,i−2) + φi−1(~z) + Ji−1) + φi(~z) + Ji
= Qi · · · · ·Q1 · p(~z) +Qi · · · · ·Q1 · I + Φi(~z) + Ji

(1)

wherein Φi = φi(~z) +Qi · φi−1(~z) + · · ·+Qi · · · · ·Q2 · φ1(~z), and Ji = Ji +Qi · Ji−1 + · · ·+
Qi · · · · ·Q2 · J1. Hence, the term Qi · · · · ·Q1 · I can be evaluated without wrapping effect, and if
we keep an array for Jj , the computation of Ji is also free from wrapping effect. Algorithm 3 shows
the improvement of Algorithm 2 in accuracy using the symbolic remainder method such that we
additionally use two arrays: Q[j] is Qi · · · · ·Qj and J [j] is Ji for 1 ≤ j ≤ i.
Time and space complexity. Although Algorithm 3 always produces a TM with a smaller remainder
than Algorithm 2 because of the symbolic treatment of the remainder intervals I and Ji under linear
mappings, it requires (1) two extra arrays to keep the matrices QM , QM ·QM−1, . . . , QM · · · · ·Q1,
and the remainder JM+1, . . . , J1, (2) two extra inner loops which perform i− 1 and i− 2 iterations
in the i-th outer iteration. The size of Qi · · · · ·Qj is determined by the rows in Wi and the columns
in Wj , and hence the maximum number of neurons in a layer determines the maximum size of the
matrices in Q. Similarly, the maximum dimension of Ji is also bounded by the maximum number of
neurons in a layer. Because of the two inner loops, time complexity of Algorithm 3 is quadratic in M ,
whereas Algorithm 2 is linear in M .
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Algorithm 3 TM output computation using symbolic remainders, input and output are the same as
those in Algorithm 2

1: (pr, Ir)← (p, I);
2: Setting Q as an empty array which can keep M + 1 matrices;
3: Setting J as an empty array which can keep M + 1 multidimensional intervals;
4: for i = 1 to M + 1 do
5: Computing the composite function qi and the remainder interval Iσi

using Bernstein overap-
proximation and TM arithmetic (similar to Line 3 to 5 in Algorithm 2);

6: Constructing Qi using the coefficients of the linear terms in qi;
7: Computing qRi from qi by eliminating the linear terms;
8: (φi, Ji)← qRi (pr + Ir) + Iσi ; # Using TM arithmetic
9: J← Ji;

10: for j = 1 to i− 1 do
11: Q[j]← Qi · Q[j];
12: end for
13: Adding Qi to Q as the last element;
14: for j = 2 to i do
15: J← J +Q[j] · J [j − 1];
16: end for
17: Adding Ji to J as the last element;
18: Computing (pr, Ir) according to (1); # Using TM arithmetic
19: end for
20: return R.

4 Experiments

In this section, we first present an illustrating example of attitude control with 6 state variables and 3
control inputs. We then present a comprehensive comparison to the state-of-the-art tools over the full
benchmarks in the related work [14]. Finally, we remark on the observed limitations of our approach.
All our experiments were run on a machine with 6-core 2.90 GHz Intel Core i5 and 8GB of RAM.

4.1 Illustrating Example: Attitude Control.

We consider the attitude control of a rigid body with six states and three inputs as a physically
illustrating example [29]. The complexity of this example lies in the combination of the numbers of
the state variables and control inputs. The system dynamics is

ω̇1 = 0.25(u0 + ω2ω3), ω̇1 = 0.5(u1 − 3ω1ω3), ω̇3 = u2 + 2ω1ω2,

ψ̇1 = 0.5
(
ω2(ψ2

1 + ψ2
2 + ψ2

3 − ψ3) + ω3(ψ2
1 + ψ2

2 + ψ2 + ψ2
3) + ω1(ψ2

1 + ψ2
2 + ψ2

3 + 1)
)
,

ψ̇2 = 0.5
(
ω1(ψ2

1 + ψ2
2 + ψ2

3 + ψ3) + ω3(ψ2
1 − ψ1 + ψ2

2 + ψ2
3) + ω2(ψ2

1 + ψ2
2 + ψ2

3 + 1)
)
,

ψ̇3 = 0.5
(
ω1(ψ2

1 + ψ2
2 − ψ2 + ψ2

3) + ω2(ψ2
1 + ψ1 + ψ2

2 + ψ2
3) + ω3(ψ2

1 + ψ2
2 + ψ2

3 + 1)
)
.

wherein the state ~x=(ω, ψ) consists of the angular velocity vector in a body-fixed frame
ω∈R3, and the Rodrigues parameter vector ψ∈R3. The control torque ~u∈R3 is updated
every 0.1 seconds by a neural network with 3 hidden layers each of which has 64 neu-
rons. The activation of the hidden layers are sigmoid and identity respectively. The initial
state set is: ω1∈[−0.45,−0.44], ω2∈[−0.55,−0.54], ω3∈[0.65, 0.66], ψ1∈[−0.75,−0.74], ψ2 ∈
[0.85, 0.86], ψ3 ∈ [−0.65,−0.64]. POLAR computed the TM flowpipes for 30 control steps in
313 seconds without symbolic remainder techniques, and in 201 seconds with symbolic remainder.
The symbolic remainder method surprisingly uses less time, since tighter (smaller) flowpipes are
easier to compute. Figure 4 shows the plot of the octagonal enclosures of the flowpipes. It can be
seen that only the flowpipes at the end have a slight swelling. Also the symbolic remainder technique
better tightens the overapproximations. For a comparison, although Verisig 2.0 [12] can also handle
such system in theory, its remainder explodes very quickly and the tool crashes after a few steps.
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Figure 4: Comparison between reachable sets of the 6-dimensional attitude control benchmark
produced by Verisig 2.0 (grey), POLAR without using symbolic remainder (blue) and POLAR
using symbolic remainder (green). Verisig 2.0 can only produce reachable sets up to the 6th step
(after which the tool crashes due to high uncertainty in its estimation of the reachable set), whereas
both POLAR approaches can verify the system for at least 30 steps. The red curves are simulated
trajectories.

4.2 Comparison to state-of-the-arts.

We compare POLAR to the state-of-the-art tools on the full benchmarks in [14], including Sherlock
[13] (only for ReLU) , Verisig 2.0 [12] (only for sigmoid and tanh), NNV [16], and ReachNN*[15]3.
For each benchmark, the goal is to check whether the system will reach a given target set. For each
tool and in each test, if the computed reachable set overapproximation for the last control step lies
entirely in the target set, we consider the tool to have successfully verified the reachability property.
If the overapproximation of the reachable set does not intersect with the target set, the tool would
have successfully disproved the reachability property. Otherwise, we consider the verification result
to be unknown. We refer to [14, 12] for the details of the benchmarks.

Plots of reachable sets computed by different techniques are shown in 5. The red trajectories are
sample system executions and should be contained entirely by the flowpipes computed by each tool.
The dark green sets are the flowpipes computed by POLAR. The light green sets are the flowpipes
computed by ReachNN* [14, 15]. The blue sets are the flowpipes computed by Sherlock [13].
The grey sets are the flowpipes computed by Verisig 2.0 [11]. In some benchmarks, the reachable
sets computed by Verisig 2.0 are almost overlapping with the reachable sets computed by POLAR.
However, POLAR takes much less time to compute the reachable sets compared to Verisig 2.0 as
shown later in Table 1. We also show results from NNV [16] in yellow for some of the benchmarks.
For the rest, NNV used up all of the system memory (8GB) and could not finish the computation.
Our observations are consistent with those in [11] where NNV is not able to verify any of these
benchmarks. The blue box represents the target set in each test. Except for ex2-sigmoid, POLAR
produces the tightest reachable set estimation and successfully proves or disproves the reachability
property for all the examples.

The computation time are presented in Table 1, where NNV is not included since we were not able to
successfully use it to prove any of the benchmarks. We can see that POLAR finishes all cases within
seconds, and achieves the best performance among all the tools simultaneously. In addition, POLAR
scales better with the size of the neural network controller compared to ReachNN* and Verisig 2.0.
This demonstrates the potential of handling larger scale systems such as the attitude control example.
We discuss the only exception #2 with sigmoid NN controller (ex2-sigmoid) in detail below.

Limitations. POLAR did not prove the property on test # 2 with sigmoid activation but Verisig 2.0
and ReachNN* did. The main reason is the combined use of Bernstein and Taylor approximations.
Although a lower-order Taylor approximation can be derived from a higher-order one by truncating
the higher-order terms, it is not the case for a Bernstein approximation since the term coefficients
often need to be recomputed if the order is changed. Thus, simply using truncation to simplify a TM
may produce a large remainder. Secondly, TM-based techniques can be sensitive to the choice of TM
settings (stepsizes, orders, etc.). In our experiments, we use the same TM settings for all the tools.

3The results of ReachNN* are based on multi-core acceleration.
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Figure 5: Results of Benchmarks. We can see that except for ex2-sigmoid, POLAR produces
the tightest reachable set estimation (dark green sets) and successfully proves or disproves the
reachability property for all the examples. This is in comparison with other state-of-the-art tools
including ReachNN* [14, 15] (light green sets), Sherlock [13] (blue sets), Verisig 2.0 [11] (grey sets),
and NNV [16] (yellow sets).
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Table 1: V : number of state variables, σ: activation functions, M : number of hidden layers, n:
number of neurons in each hidden layer. For each approach (POLAR, ReachNN*, Sherlock, Verisig
2.0), we give the runtime in seconds if it successfully verifies the property. ‘Unknown’: the property
could not be verified. ‘–’: the approach cannot be applied due to the type of σ.

# V NN Controller POLAR ReachNN* [15] Sherlock [13] Verisig 2.0 [12]
σ M n

1 2

ReLU 3 20 22 26 42 –
sigmoid 3 20 20 75 – 47

tanh 3 20 18 Unknown – 46
ReLU+tanh 3 20 11 71 – –

2 2

ReLU 3 20 2 5 3 –
sigmoid 3 20 Unknown 13 – 7

tanh 3 20 3 73 – Unknown
ReLU+tanh 3 20 2 8 – –

3 2

ReLU 3 20 13 94 143 –
sigmoid 3 20 24 146 – 44

tanh 3 20 22 137 – 38
ReLU+sigmoid 3 20 14 Unknown – –

4 3

ReLU 3 20 1 8 21 –
sigmoid 3 20 3 22 – 11

tanh 3 20 3 21 – 10
ReLU+tanh 3 20 2 12 – –

5 3

ReLU 4 100 7 103 15 –
sigmoid 4 100 15 27 – 190

tanh 4 100 16 Unknown – 179
ReLU+tanh 4 100 6 Unknown – –

6 4

ReLU 4 20 4 1130 35 –
sigmoid 4 20 6 13350 – 83

tanh 4 20 6 2416 – 70
ReLU+tanh 4 20 4 1413 – –

5 Conclusion

In this paper, we propose POLAR, a polynomial arithmetic framework, which integrates TM flowpipe
construction, Bernstein overapproximation, and symbolic remainder method to efficiently compute
reachable set overapproixmations for NNCS. Empirical comparison over a suite of benchmarks
show that POLAR performs significantly better than state-of-the-art techniques with respect to both
computation efficiency and reachable set estimation accuracy. Future work includes the automatic
design of the hyper-parameters in POLAR to further improve performance and accessibility.
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