
Automation of Penetration Testing

Thesis submitted in accordance with the requirements of the University of

Liverpool for the degree of Doctor in Philosophy by

Ge Chu

September 2021

To my grandmother

Automation of Penetration Testing Ge Chu

Abstract

Penetration testing (PT) is a well-established proactive approach to evaluating the

security of digital assets by actively identifying and exploiting existing vulnerabilities.

It is a widely used approach to improving the information security level of the target

system. However, the use of PT has been restricted to advanced security experts

who have many years of experience. Furthermore, the complex manual process is

costly and time-consuming.

Automation can significantly reduce the time, cost and human labour required

in the stage of information gathering, analysis and exploitation. In terms of privacy

protection, automated PT can prevent the leakage of sensitive information by human

testers.

To date, there has been little academic research on automated PT, and the field

is still in its infancy in security. Many studies or implementations of automation

merely map the results of vulnerability scanners to the corresponding exploitation

tools. Most research treats PT as a planning problem expressed in terms of an

attack tree, an attack graph, a planning domain definition language (PDDL) or

a partially observable Markov decision process (POMDP). However, these solutions

either cannot handle incomplete knowledge, uncertainty and a dynamic environment,

or they exhibit poor scaling.

The contribution of the thesis is to achieve real-time automation of PT based on

the belief-desire-intention (BDI) model, and to validate the model, which can work

well in the Internet of Things (IoT) environment. An ontology for PT was built

based on semantic web rule language (SWRL) rules for knowledge reuse and better

reasoning ability. The experiment results illustrate that the model’s performance is

i

Ge Chu Automation of Penetration Testing

better than the manual PT and other existing approaches.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Dr Alexei Lisitsa and

Prof Boris Konev, for their encouragement, patience and guidance on my way to

becoming an independent researcher. Without them, this work would not have been

possible. I also want to express my very special thanks to my grandmother for her

love and support, as she accompanied me through the most important period in my

life.

Ge Chu

iii

Ge Chu Automation of Penetration Testing

iv

Contents

Abstract i

Acknowledgements iii

Contents viii

List of Figures x

List of Tables xi

List of Abbreviations xii

Declaration xiv

1 Introduction 1

1.1 What is Penetration Testing? . 1

1.2 Manual VS Automated . 2

1.3 Research Question . 4

1.4 Motivation . 5

1.5 Contribution . 5

1.6 Thesis Overview . 6

1.7 Summary . 6

2 Preliminaries 7

2.1 Introduction . 7

v

Ge Chu Automation of Penetration Testing

2.2 Introduction to Penetration Testing 7

2.2.1 Penetration Testing Standards 9

2.2.2 Penetration Testing Process 10

2.2.3 Taxonomy of Attacks . 12

2.2.4 Penetration Testing Tools . 15

2.3 Introduction to Agent Architectures 18

2.3.1 Agent Architectures . 20

2.3.2 BDI Agent Architecture . 20

2.4 Ontology . 22

2.5 Summary . 24

3 Related Work 25

3.1 Introduction . 25

3.2 Attack Tree . 25

3.3 Attack Graph . 27

3.4 PDDL-based Attack Planning . 33

3.5 POMDP Model for Penetration Testing 35

3.6 Ontology for Information Security . 37

3.7 Summary . 38

4 BDI Architecture for Penetration Testing 39

4.1 Introduction . 39

4.2 Analysis of Penetration Testing Problem 39

4.2.1 Environment . 40

4.2.2 State . 40

4.2.3 Action . 41

4.2.4 Decision Making . 41

4.2.5 Goal . 41

4.3 BDI Architecture for Penetration Testing 41

4.3.1 Agent World . 42

4.3.2 Action Space . 42

vi

Automation of Penetration Testing Ge Chu

4.3.3 BDI Model . 42

4.4 Simulation . 45

4.4.1 Target Agent . 47

4.4.2 BDI Agent . 49

4.4.3 Simulation Results . 49

4.5 Knowledge Base . 51

4.6 Reporting . 51

4.7 Summary . 55

5 Ontology for BDI-based Automation of Penetration Testing 56

5.1 Introduction . 56

5.2 Ontology Design . 56

5.3 SWRL and Reasoning . 59

5.4 Automation . 62

5.4.1 Interaction between a BDI Model and an Ontology 62

5.4.2 Automation Process . 64

5.5 Attack Scenario . 64

5.6 Summary . 69

6 Penetration Testing for Internet of Things and Its Automation 70

6.1 Introduction . 70

6.2 Security Issues in the Internet of Things 71

6.2.1 Perception Layer Security . 71

6.2.2 Network Layer Security . 71

6.2.3 Application Layer Security . 72

6.3 Penetration Testing for IoT . 72

6.3.1 Information Gathering . 72

6.3.2 Analysis . 75

6.3.3 Exploitation . 75

6.3.4 Reporting . 77

6.4 Experiment . 77

vii

Ge Chu Automation of Penetration Testing

6.4.1 IoT Target . 77

6.4.2 BDI Agent . 79

6.4.3 Simulation . 79

6.5 Summary . 85

7 Experiments and Evaluation 86

7.1 Introduction . 86

7.2 Experiments . 86

7.2.1 Attack on Linux . 92

7.2.2 Attack on Windows . 92

7.3 Evaluation . 97

7.4 Summary . 99

8 Conclusions 100

8.1 Introduction . 100

8.2 Summary . 100

8.3 Main Findings . 101

8.4 Future Work . 101

References 102

viii

List of Figures

1.1 PT marketing by region [62] . 4

2.1 Differences between the types of PT 8

2.2 Agent and environment . 19

2.3 The Procedural Reasoning System (PRS) 22

2.4 An example of an attack ontology . 23

3.1 Example of an attack tree . 26

3.2 An example of an attribute attack graph 29

3.3 POMDP model . 36

4.1 The BDI agent reasoning cycle for PT 46

4.2 The interaction between a BDI agent and a target agent 47

4.3 Belief set in the target agent . 48

4.4 The result of simulation 1 . 50

4.5 Belief set of the BDI agent in simulation 1 52

4.6 Belief set of the BDI agent in simulation 2 53

4.7 The result of simulation 2 . 54

5.1 Ontology for PT (OntoPT) . 57

5.2 Example for Rule-1 SWRL rule-based reasoning 60

5.3 Example for Rule-2 SWRL rule-based reasoning 61

5.4 Process of automation of PT using an ontology 65

5.5 Probe target’s port . 66

ix

Ge Chu Automation of Penetration Testing

5.6 MS08-067 attack . 67

5.7 System permission . 67

5.8 Properties update in the ontology . 68

6.1 The process of IoT PT . 73

6.2 The interaction between a BDI agent and IoT 78

6.3 The process of PT for IoT by BDI agent 80

6.4 The belief set of BDI agent . 81

6.5 The belief set of network layer agent 82

6.6 The belief set of application layer agent 83

6.7 The belief set of Node 1 . 84

6.8 The belief set of Node 2 . 84

7.1 Network topology . 88

7.2 The relation update between attacker 1 and target 2 91

7.3 Experiment: Information gathering from Linux 93

7.4 Experiment: The process of attacking Metasploitable2 linux 94

7.5 Experiment: The process of attacking Windows XP 95

7.6 Experiment: The process of attacking Windows 7 96

x

List of Tables

1.1 Comparison between manual and automated PT 3

2.1 Overview of attacks. 13

4.1 Target information . 47

6.1 IoT information . 78

7.1 Implementation of a PROFETA program 87

7.2 Beliefs used in the experiment . 87

7.3 The description of the attacker agent behaviour 89

7.4 Time-consumed by the BDI model and PT (Seconds) 98

7.5 Comparison between the BDI model with other approaches 98

xi

List of Abbreviations

AI Artificial intelligence

ARP Address Resolution Protocol

BDI Belief-Desire-Intention

CAPEC Common Attack Pattern Enumeration and Classification

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DNS Domain Name System

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IMAP Internet Message Access Protocol

IoT Internet of Things

IP Internet Protocol address

NVD National Vulnerability Database

xii

Automation of Penetration Testing Ge Chu

OS Operating system

PT Penetration testing

SMTP Simple Mail Transfer Protocol

SQL Domain specific language

SWRL Semantic Web Rule Language

SYN Synchronize

TCP Transmission Control Protocol

UDP User Datagram Protocol

VNC Virtual Network Computing

xiii

Declaration

This thesis is the work of Ge Chu and was carried out at the University of Liverpool.

The content of Chapters 4-6 has been published in the following papers:

• Chu, Ge, and Alexei Lisitsa. “Poster: Agent-based (BDI) modeling for au-

tomation of penetration testing.” 2018 16th Annual Conference on Privacy,

Security and Trust (PST). IEEE, 2018.

• Chu, Ge, and Alexei Lisitsa. “Agent-based (BDI) modeling for automation of

penetration testing.” arXiv preprint arXiv:1908.06970 (2019).

• Chu, Ge, and Alexei Lisitsa. “Ontology-based Automation of Penetration Test-

ing.” ICISSP. 2020.

• Chu, Ge, and Alexei Lisitsa. “Penetration testing for internet of things and

its automation.” 2018 IEEE 20th International Conference on High Perfor-

mance Computing and Communications; IEEE 16th International Conference

on Smart City; IEEE 4th International Conference on Data Science and Sys-

tems (HPCC/SmartCity/DSS). IEEE, 2018.

xiv

Chapter 1

Introduction

1.1 What is Penetration Testing?

In recent years, malicious network attacks have become an increasingly severe threat

to individuals, businesses and even national information security [91]. Penetration

testing (PT) [22] is a well-established proactive approach to evaluating the security

of digital assets by actively identifying and exploiting existing vulnerabilities. The

practice simulates real attacks carried out by hackers while not affecting the avail-

ability of target systems. In other words, PT aims to improve system security rather

than destroy or access information illegally. It gives administrators of the target

system a very intuitive understanding of the current system security problems.

On the one hand, PT can check whether the security protection measures of the

system are working effectively or not from the perspective of the attacker. On the

other hand, potential security risks can be highlighted in real events, thus improving

the level of awareness of relevant personnel on security issues. The main difference

between a hacker and a penetration tester is that PT is carried out after a contract

has been signed with an organisation or company, and it provides a report. After

the PT is completed, security issues found are immediately fixed, thereby effectively

preventing real security incidents. It should be noted that there is an essential

difference between PT (which is intended to exploit vulnerabilities for unauthorised

1

2 Ge Chu

access) and vulnerability assessment (which aims to identify and mitigate existing

vulnerabilities) [91].

In the 1970s, the U.S. military used PT to discover potential unknown vulnerabil-

ities. A group of professional information security experts (Red Team), was tasked

to attack the defence (Blue Team), thereby checking and improving the information

security level in a practical way. In the 1990s, PT began to expand from military to

industry. Currently, it is widely agreed that PT is one of the most effective methods

to improve the information security level of a target system. An increasing number

of companies and organisations has begun to use this method to ensure that any

potential vulnerabilities in their system are found and repaired before being exposed

[62].

1.2 Manual VS Automated

A growing number of enterprises is implementing security measures due to the in-

creased sophistication of cyberattacks. Total spending on cybersecurity by the year

2021 is USD 1 trillion [72]. The global PT market size is expected to grow from

USD 1.7 billion in 2020 to USD 4.5 billion by 2025 [62]. Figure 1.1 shows the PT

marketing by region from 2018 to 2025. However, the information security industry

will experience a workforce shortage of 3.5 million individuals by 2021 [73].

PT is a complex, expensive and time-consuming task. Moreover, the test results

are highly dependent on the skill and experience of a penetration tester or team. To

enhance efficiency, automated PT methods and tools are needed. Automation can

significantly reduce the time, cost and human involvement in the process of infor-

mation gathering, analysis and exploitation. Table 1.1 summarises the comparison

between manual and automated PT.

There are four different levels to describe the degree of automated PT [33]:

• Fully autonomous (level 4): The system is fully autonomous in performing

all PT tasks.

Chapter 1. Introduction 3

Automated Manual
Testing process Fast, standard process; Easily repeat-

able tests.
Manual, non-standard process; capital
intensive; High cost of customisation.

Testing process
Vulnerability /at-
tack Database
management

Attack database is maintained and up-
dated attack codes are written for a va-
riety of platforms.

Maintenance of database is manual;
Need to rely on public databases; Need
re-write attack code for functioning
across different platforms.

Exploit Develop-
ment and Manage-
ment

Product vendor develops and main-
tains all exploits. Exploits are contin-
ually updated for maximum effective-
ness. Exploits are professionally de-
veloped, thoroughly tested, and safe to
run. Exploits are written and optimised
for various platforms and attack vec-
tors.

Developing and maintaining an exploit
database is time-consuming and re-
quires significant expertise. Public ex-
ploits are suspect and can be unsafe
to run. Re-writing and porting code is
necessary for cross-platform functional-
ity.

Reporting Reports are automated and customised. Requires collecting the data manually.
Clean-up Automated testing products offer

clean-up solutions.
The tester has to manually undo the
changes to the system vulnerabilities
that are found.

Network modifica-
tion

System remain unchanged. Often results in numerous system mod-
ifications.

Logging/ Auditing Automatically records a detailed record
of all activity.

Slow, cumbersome, often inaccurate
process.

Training Training for automated tools is easier
than manual testing.

Testers need to learn non-standard
ways of testing; Training can be cus-
tomised and is time-consuming.

Privacy Automated testing does not expose sen-
sitive information.

Human testers are at risk of leaking
sensitive information.

Table 1.1: Comparison between manual and automated PT
[69, 97]

4 Ge Chu

Figure 1.1: PT marketing by region [62]

• Partially autonomous (level 3): The system is semi-autonomous in per-

forming PT tasks. In this case, the system is under continuous supervision by

human experts.

• Decision-making assisting mode (level 2): The system acts alongside

with the human expert and assists him/her in the decision making.

• Learning mode (level 1): The system is running in the background to learn

from the decisions made by human experts when the human tester is performing

PT.

1.3 Research Question

This thesis attempts to answer the question of whether automated PT can be

achieved in real-time. To answer the main research question, the sub-questions

below must also be addressed:

• What artificial intelligence (AI) approaches can be used to deal with interactive,

Chapter 1. Introduction 5

dynamic, uncertain and complex real-world PT scenarios?

• How can PT problems be modelled with these methods?

• How can an ontology be used to improve reasoning ability and enable knowledge

reusability within PT scenarios?

• How can automated PT be carried out in the IoT environment?

1.4 Motivation

Existing approaches to automation include those mapping vulnerability scanner re-

sults to the corresponding exploitation tools and those addressing the PT as a plan-

ning problem. Due to mainly non-interactive processing, such solutions can only

deal effectively with deterministic targets. However, the target environment of PT is

ordinarily dynamic, uncertain and complex. The penetration tester needs to interact

with the environment or targets and choose the best action to compromise the target

system based on the information collected. To deal with these issues, an agent-based

architecture is proposed for the automation of PT. An agent can interact with the

environment by perception, decision making and action.

Moreover, the behaviour of an agent can be flexible and is generally characterised

as autonomous, reactive, proactive and social. Currently, agent-based technologies

are considered promising for applications in various areas. The BDI model among

the classical and most representative models of cognitive architecture. It enables

agents to have cognitive abilities to deal with dynamic, uncertain and complex envi-

ronments by using mental states, and characteristics/attitudes such as belief, desire

and intention.

1.5 Contribution

This thesis proposed a BDI model to achieve real-time automation of PT and demon-

strated that the approach remains applicable in the environment of IoT. An ontology

6 Ge Chu

called OntoPT for PT was created to improve the reasoning ability of the BDI model.

This thesis successfully addressed the difficulties experienced in previous studies

which were unable to conduct PT in real-time and has improved performance.

1.6 Thesis Overview

The rest of this thesis is organised as follows:

• Chapter 2 provides a background to the research.

• Chapter 3 reviews the focus in previous research on related approaches as

well as contributions to the automation of PT.

• Chapter 4 introduces how automated PT can be achieved by using the agent-

based BDI architecture.

• Chapter 5 presents an ontology for PT and uses SWRL rules to achieve

reasoning ability.

• Chapter 6 considers IoT security problems and proposes a PT methodology

and its automation based on the BDI model to evaluate IoT security.

• Chapter 7 gives details of experiments applying the BDI model in a real

environment and their evaluation.

• Chapter 8 summarises the contribution of the research and indicates possible

directions for future study.

1.7 Summary

This chapter introduced the thesis, including a background to the field of PT, re-

search question, motivation, contribution and structure. Later chapters give a de-

tailed description of how automated PT can be achieved.

Chapter 2

Preliminaries

2.1 Introduction

This chapter describes the basic concepts of PT, agent architecture and ontology.

Section 2.1 introduces PT in terms of types, standards, process and tools. Section

2.2 discusses the agent architecture and BDI model used to implement the main

function of automated PT. Section 2.3 introduces the ontology used to increase the

reasoning ability of the BDI model.

2.2 Introduction to Penetration Testing

There are three basic PT types: Black-box testing, White-box testing and Grey-box

testing [91]. Each is discussed in further detail in the following sub-sections. Figure

2.1 shows the differences between the types of PT.

Black-box testing, also called external testing, occurs when the PT team has

no prior knowledge of targets. The PT team simulates a real-world attacker and

performs various real attacks on the target, from remote or external locations, to

discover the unknown vulnerabilities of the target system. Black-box testing can also

evaluate the responsiveness of the security team within the target organisation and

whether their defensive scheme is effective. However, Black-box testing is a time-

7

8 Ge Chu

Figure 2.1: Differences between the types of PT

consuming and challenging task that requires a high technical level of knowledge

among participants.

White-box testing, also called internal testing, occurs when the PT team has

knowledge of the targets, including network topology, system information, services,

ports, applications and even the source code. Therefore, the PT team can find

and verify the security issues of the target at minimal cost. Typically, White-box

testing can find and eliminate more security issues than Black-box testing. The

process of White-box testing is similar to that of Black-box testing, except that

it does not require information-gathering operations. However, White-box testing

cannot effectively evaluate the responsiveness of the security team within the target

organisation and whether their defensive scheme is effective.

Grey-box testing is a combination of White-box testing and Black-box that allows

for a more comprehensive and deeper security evaluation of the target system. A

Grey-box tester partially knows the details of the target, but not at the source code

level. Attacks mounted by Grey-box testing can achieve better results in external

PT than either White-box or Black-box testing.

Chapter 2. Preliminaries 9

2.2.1 Penetration Testing Standards

PT is a highly complex task that requires participants to have a relatively high level

of skills and be able to engage in a wide variety of complex scenarios. Nevertheless,

according to the commonality of PT in methods, processes, and steps, there are some

execution standards in the information security field.

2.2.1.1 Open Source Security Testing Methodology Manual

The Open Source Security Testing Methodology Manual (OSSTMM) was published

by the Institute for Security and Open Methodologies (ISECOM) [41]. It is a popular

international standard for information security testing and analysis and is used in

many organisations. It covers all the elements of PT, including physical security, psy-

chology, data networks, wireless communication and telecommunications facilities.

In practice, OSSTMM can significantly reduce false negatives and false positives,

and provide more accurate security metrics. Among of OSSTMM’s more impor-

tant features are the fact it pays great attention to technical details and has good

operability.

2.2.1.2 NIST Special Publication 800-42

SP800 is a series of guidelines on information security issued by the NIST (National

Institute of Standards and Technology) in the United States. SP 800-42 [104] intro-

duces security testing techniques, system development life cycle, development strate-

gies and standard testing tools. Although it is not as comprehensive as OSSTMM,

it is accepted by the many organisation’s management department.

2.2.1.3 Penetration Testing Execution Standard

The Penetration Testing Execution Standard (PTES) [76] is a relatively new stan-

dard, having been developed in 2010 by information security experts. It defines a

practical PT process which consists of seven stages. Moreover, it is a very compre-

hensive PT framework that covers all the technical aspects of PT, even including

10 Ge Chu

expert experience and related tools. PTES is currently one of the most popular PT

standards in the information security industry.

2.2.1.4 Open Web Application Security Project

The Open Web Application Security Project (OWASP) is a non-profit organisation

that focuses on web security, providing security testers and developers with a guide-

line to identify and avoid security threats. Each year, OWASP publishes a top 10

[102] threats security report, which covers the most common security issues on web

applications. These reports are widely used and analysed in detail by information

security experts.

2.2.2 Penetration Testing Process

At present, PTES, has the following seven stages, has been widely accepted by the

security industry [76]. Each stage is discussed in further detail in the following

sub-sections.

2.2.2.1 Pre-engagement Interactions

In the pre-engagement interactions stage, the PT team discusses test technology, test

target, test scope, test cycle, test scheme and the corresponding price with clients.

In general, PT should not affect the availability of the target.

2.2.2.2 Information Gathering

After the pre-engagement interactions stage, the PT team needs to acquire knowl-

edge about the targets. Information gathering is one of the most critical stages in PT

and aims to collect as much information as possible to be utilised, such as physical

information, logic relationships, organisational structure, physical assets, individual

information, footprinting information and protection mechanisms. The more infor-

mation that can be collected during this stage, the more vectors of attack may be

used in the future.

Chapter 2. Preliminaries 11

2.2.2.3 Threat Modelling

After the information-gathering stage, the PT team conducts threat modelling and

attack planning to determine the most feasible attack path based on the information

obtained. The threat modelling consists of business asset analysis, business process

analysis, threat agents/community analysis, threat capability analysis, motivation

modelling, and finding relevant news of comparable organisations being compro-

mised. In terms of attack planning, PT teams determine the attack methods, tools

and schemes.

2.2.2.4 Vulnerability Analysis

Vulnerability analysis is a process of discovering vulnerabilities in systems and ap-

plications. The PT team needs to appropriately consider the scope of testing for

the depth and breadth of applications to meet the goals and/or requirements of the

desired outcome. The process of vulnerability analysis includes active testing, pas-

sive testing, validation and research. Sometimes, experienced teams can even find

zero-day (unknown) vulnerabilities in target systems.

2.2.2.5 Exploitation

The exploitation stage is the most challenging part of PT. The PT team performs

various real attacks on targets, such as SQL injection attack, password attack, buffer

overflow attack, cross-site scripting (XSS) attack, man-in-the-middle (MITM) attack

and social engineering attack. Typically, the targets are protected by different kinds

of countermeasures such as anti-virus, intrusion detection system (IDS), web ap-

plication firewall (WAF), packing, cryptography, white-black list, data execution

prevention (DEP) and address space layout randomisation (ASLR). Thus, the ex-

ploitation stage focuses on how to perform a successful attack by bypassing security

countermeasures in the target system. Moreover, in the case of Black-box testing,

the PT team must avoid being discovered by the target security team.

12 Ge Chu

2.2.2.6 Post Exploitation

The purpose of the post-exploitation stage is to keep control of the machine for fu-

ture use. In this stage, the PT team analyses network interfaces, routing, domain

name system (DNS), cache ARP tables, proxy servers, network services and direc-

tory information to identify other targets for further attack and install backdoor

programmes to maintain the long-term access privilege of a target. Sometimes, a

clean-up process is applied to systems once the PT has been completed.

2.2.2.7 Reporting

Finally, after the execution of the first six stages, a report is submitted to the client

for the entire task, which outlines all aspects of PT, such as objectives, methods and

results, and gives repair solutions. In general, the report includes a PT and technical

summary.

2.2.3 Taxonomy of Attacks

According to PT in practice [13], there are many types of attack, such as information-

gathering attack, configuration attack, buffer overflow attack, password attack, web

attack, sniffer attack, social engineering attack and denial-of-service (DOS) attack.

Table 2.1 provides an overview of attacks in PT. The first row of the table describes

the taxonomy of attacks, and the columns of the table respectively describe the

attack approaches or targets. This sub-section provides a review of the different

types of attack that can be anticipated.

2.2.3.1 Information Gathering

Information gathering is the most critical step in PT. Typically, the target informa-

tion to be collected includes IP address, open ports, application, OS type, human

or organisation information, network topology, defence mechanism, configuration,

vulnerability and physical environment. The collection of the above information

determines whether the PT will be successful or not.

Chapter 2. Preliminaries 13

In
fo

rm
at

io
n

ga
th

er
in

g
C

on
fi
gu

ra
ti

on
er

ro
r

at
ta

ck
B

u
ff

er
ov

er
fl
ow

at
ta

ck
P

as
sw

or
d

at
ta

ck
W

eb
at

ta
ck

S
n
iff

er
at

ta
ck

S
o
ci

al
en

gi
n
ee

r
at

ta
ck

D
en

ia
l

of
se

rv
ic

e
at

ta
ck

p
or

t
ro

b
ot

.t
x
t

F
T

P
H

tt
p
/H

tt
p
s

S
Q

L
In

je
ct

io
n

M
an

in
th

e
M

id
d
le

at
ta

ck
F

or
ge

em
ai

l
D

D
oS

at
ta

ck

ap
p
li
ca

ti
on

S
S
H

co
n
fi
gu

ra
ti

on
B

ro
w

se
r

S
S
H

X
S
S

F
T

P
F

or
ge

li
n
k

S
Y

N
F

lo
o
d

O
S

ty
p

e
F

T
P

co
n
fi
gu

ra
ti

on
W

in
d
ow

s
T

E
L

N
E

T
C

S
R

F
S
S
H

F
or

ge
w

eb
si

te
T

C
P

F
lo

o
d

W
h
oi

s
T

E
L

N
E

T
co

n
fi
gu

ra
ti

on
L

in
u
x

F
T

P
B

ro
ke

n
A

u
th

en
ti

ca
ti

on
T

el
n
et

F
or

ge
fi
le

IC
M

P
F

lo
o
d

N
et

w
or

k
to

p
ol

og
y

S
en

d
m

ai
l

co
n
fi
gu

ra
ti

on
N

et
w

or
k

d
ev

ic
e

D
at

ab
as

e
S
en

si
ti

ve
D

at
a

E
x
p

os
u
re

h
tt

p
F

or
ge

S
M

S
U

D
P

F
lo

o
d

D
ef

en
ce

m
ec

h
an

is
m

W
eb

se
rv

er
co

n
fi
gu

ra
ti

on
W

eb
ap

p
li
ca

ti
on

M
ai

l
sy

st
em

B
ro

ke
n

A
cc

es
s

C
on

tr
ol

D
at

ab
as

e
F

or
ge

W
IF

I
D

N
S

F
lo

o
d

C
on

fi
gu

ra
ti

on
D

at
ab

as
e

co
n
fi
gu

ra
ti

on
D

at
ab

as
e

V
N

C
S
ec

u
ri

ty
M

is
co

n
fi
gu

ra
ti

on
V

N
C

S
p

o
ofi

n
g

S
lo

w
P

O
S
T

V
u
ln

er
ab

il
it

y
V

N
C

co
n
fi
gu

ra
ti

on
M

ai
l

sy
st

em
N

E
T

B
IO

S
F

il
e

u
p
lo

ad
M

ai
l

sy
st

em
P

h
y
si

ca
l

H
T

T
P

F
lo

o
d

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

T
ab

le
2.

1:
O

ve
rv

ie
w

of
at

ta
ck

s.

14 Ge Chu

2.2.3.2 Configuration Error Attack

This type of attack is usually based on an administrator’s configuration error of the

system. For example, the robot.txt file usually exposes the structure information

of the website, or the directory that allows users to upload files has executable

permission so attackers can upload and execute a malicious file.

2.2.3.3 Buffer Overflow Attack

A buffer overflow is a typical software coding mistake that an attacker could exploit

to gain access to the target system [56]. While writing data to a buffer, a programme

overruns the buffer’s boundary and overwrites adjacent memory locations. It allows

attackers to change the programme flow and execute their commands or programmes.

Buffer overflow is a widespread and very dangerous vulnerability; it appears in many

operating systems and application software. It is a famous attack used in PT.

2.2.3.4 Password Attack

Password attack is an essential part of PT. Usually, an attacker can gain specific

permission from the target system if a password attack is successful. Most password

attacks are based on a dictionary, which consists of possible passwords.

2.2.3.5 Web Attack

Web attack is an attack against web applications. The most common attacks are

injection, XSS, and cross-site request forgery (CSRF). The OWASP publishes a top

10 of vulnerabilities every year to raise awareness amongst developers and managers.

2.2.3.6 Sniffer Attack

If a target system has no known vulnerabilities, an experienced human penetration

tester typically attempts to perform a sniffer attack. They first break into other sys-

tems under the same sub-network with the original target, after which they monitor

and then analyse all network flow to gain sensitive information such as a password.

Chapter 2. Preliminaries 15

2.2.3.7 Social Engineering Attack

Social engineering attacks are directed against humans, such as administrators or

users, who have weak security awareness. Social engineering refers to a variety of

malicious activities carried out through human interactions. In remote PT, these

attacks are usually performed using spear-phishing attacks by emails or links, website

forge attacks or spoofing attacks.

2.2.3.8 Denial of Service Attack

In a DoS attack, the attackers attempt to prevent legitimate users from accessing a

service. In this case, the attacker usually sends excessive data flow to the network

or server to exhaust target resources. DoS attacking is not typically used in PT

and usually leads to the reboot of the target system for some purpose. This kind of

attack includes SYN flood, TCP/UDP attack, SMTP attack and ICMP attack. If

the attack source comes from a different device, it is a distributed denial-of-service

attack (DDoS) attack.

2.2.4 Penetration Testing Tools

Various tools or frameworks are available in each PT stage to perform information

gathering and different kinds of attack. This section introduces some of the essential

penetration tools.

2.2.4.1 Penetration Testing Platform: Kali Linux

Kali Linux [3] is a Debian-based Linux distribution aimed at advanced PT and

security auditing, which is maintained and funded by Offensive Security. Kali Linux

contains more than 600 PT tools for various information security tasks, such as

PT, security research, computer forensics and reverse engineering. Kali Linux is

specifically designed to meet the needs of PT professionals.

16 Ge Chu

2.2.4.2 Information Gathering: Nmap

Nmap [60] is the best-known and most professional security scanner and can be used

to discover ports, hosts and services on a network. It was written in C/C++ and

Python by Gordon Lyon starting in 1997. To discover hosts on a network, Nmap

sends specially-built packets to the target host and then analyses responses. The

programme is different from other available port scanners. Nmap sends packets

based upon network conditions. Unlike other scanners, Nmap can not only scan

ports and discover online hosts but can also recognise the system type running in

remote hosts. In general, Nmap is an essential tool in the information-gathering

stage.

2.2.4.3 Vulnerability Scanner: Nessus and OpenVAS

A vulnerability scanner is a programme that automatically finds and discovers secu-

rity vulnerabilities in computers, information systems, networks and applications. It

identifies vulnerabilities by sending specific packets to the target and then analysing

responses to match its vulnerability database. Nessus [6] is the world’s most famous

vulnerability scanner, used by more than 75,000 organisations worldwide. The tool

provides a full vulnerability scanning function, and its vulnerability library is up-

dated very frequently. Similar to Nessus, OpenVAS [1] is an open-source branch

of the Nessus project and one of the most popular vulnerability scanners. In the

information-gathering stage, a vulnerability scanner is the best way to discover

known vulnerabilities in the target system.

2.2.4.4 Exploitation: Metasploit, Core Impact and CANVAS

Metasploit [52] is the most popular PT framework. It provides tools to be exploited

against remote targets and contains hundreds of professional exploit tools for known

software vulnerabilities. Before Metasploit was published, penetration testers had to

repeat the complex process of exploiting a code search, compiling, testing, modifying

exploit code, execute exploit until they achieved success. Metasploit not only collects

exploits but allows users to develop exploits in their environment.

Chapter 2. Preliminaries 17

Core Impact [26] is an expensive commercial PT system developed by the com-

pany Core Security Technologies. It enables security teams to exploit security weak-

nesses, increase productivity and improve efficiency. Core Impact is designed for

users at every level, from beginners to experts, and all modules, exploits and tools

are written in Python. It includes professional exploit libraries and engines that

can perform PT on web applications, network systems, user terminals and wireless

networks.

CANVAS [39] includes hundreds of exploits and is an automated exploitation

system for penetration testers and security professionals worldwide. Moreover, it

is a platform designed to allow the easy development of other security products.

Immunity, the company which developed CANVAS, also provides services, products

and education around information security.

2.2.4.5 Password Attack Tools: Hydra and John the Ripper

Hydra is a powerful online password attack tool that can support most protocols or

applications, such as FTP, HTTP, HTTPS, MySQL, MSSQL, Oracle, Cisco, IMAP

and VNC. John the Ripper is a famous password attack tool in the Linux system.

The success rate of password cracking is related to the dictionary.

2.2.4.6 Web Security Assessment Framework: W3af and Sqlmap

W3af is a widely used web application attack and audit framework [85]. The project

aims to create a framework to help administrators secure their web applications

by finding and exploiting all web application vulnerabilities. This framework is

developed using Python thus it is easy to use and extend. W3af can identify more

than 200 vulnerabilities in web applications, including SQL injection, XSS, guessable

credentials, unhandled application errors and PHP configuration errors.

Sqlmap [7] is another web attack tool that automates the process of detecting

and exploiting SQL injection. It has a powerful engine that automates the following

operations: (I) database Identification, (II) obtain data from the database, (III)

accessing the underlying file system and (IV) executing commands on the operating

18 Ge Chu

system.

2.2.4.7 Man-in-the-Middle Attack Tool: Ettercap

An MITM attack is performed through data tampering and sniffing attacks by in-

tercepting communication data in a target network [15]. Usually, MITM attacks are

difficult to detect. Ettercap [78] is a comprehensive suite for MITM attacks, which

can be used for computer network protocol analysis and security auditing. It fea-

tures, among other elements, sniffing live connections and content filtering. Ettercap

supports the active and passive dissection of many protocols.

2.2.4.8 Social Engineering Attack Tool: SET

Social engineering attack [74] is an attack vector that relies heavily on human in-

teraction and often involves manipulating people into breaking standard security

procedures and best practices to gain access to systems, networks or physical loca-

tions, or for financial gain. In high-level PT, targets are often well protected; thus

social engineering attacks are often the key to success for the attacker. SET [19] is

the best-known social engineering tool and can perform 11 kinds of social engineering

attack.

2.3 Introduction to Agent Architectures

During PT, humans are often required to constantly interact with the target and

act accordingly to the target’s response. The agent architecture is a candidate for

simulating and solving PT interaction problems. The agent is a critical concept in

the field of AI. It refers to software or hardware entities that can autonomously inter-

act with an environment where they can monitor and respond to changes proactively

and reactively or communicate with other agents to achieve certain goals/tasks [108].

In other words, agents can perceive their environment through sensors and perform

possible actions to change it via effectors or actuators (see Figure 2.2). The most

Chapter 2. Preliminaries 19

important question for the agent is how to decide what to do according to the infor-

mation gained from its perception. The agent function maps any percept sequences

to an action (as shown in Equation (2.1)).

f : P ∗ → A (2.1)

The environment for an agent may be physical or software. An agent possesses

certain distinct characteristics, such as the following [109]:

• Autonomous: the ability that automatically adjusts its behaviour according

to changes in the external environment.

• Social: the ability to interact with humans and other agents.

• Reactive: the ability to perceive and respond to changes in the environment.

• Proactive: the ability to show goal-directed behaviour.

Figure 2.2: Agent and environment
[10]

20 Ge Chu

2.3.1 Agent Architectures

The agent architecture is the foundation of any agent reasoning mechanism and is

intended to support a decision-making process. The agent architecture is a critical

part of the agent. It determines how the knowledge or information is represented and

what actions the agent should take, based on a reasoning mechanism. Three types

of agent architecture have been proposed: (I) classical architecture, (II) cognitive

architecture and (III) semantic architecture [17]. Classical architecture encompasses

logic-based architecture, reactive architecture, BDI architecture and hybrid architec-

ture. Logic-based architecture is based on the traditional artificial symbolic approach

to modelling the environment and agent actions. The logic-based approach is a de-

duction process based on a set of inference rules. The main problem of logic-based

architecture is that it is difficult to translate perception or environmental information

into symbolic representation for reasoning. Reactive agent architecture is based on

the match of a situation to an action without reasoning ability. In this architecture,

an agent takes an action according to a change in the environment, and each situation

is mapped into an action. The advantage of reactive architecture is that it is easy

to design and implement. However, this architecture has less long-term planning

ability. Therefore, it is not easy to build task-driven agents and solve complex tasks.

Hybrid architecture allows both reactive and deliberate agent behaviour, consisting

of two types of interaction that flow between the horizontal and vertical layers. Cog-

nitive architecture is based on cognitive sciences, which focus on human cognition

and psychology, while semantic architecture is adopted into semantic technology.

2.3.2 BDI Agent Architecture

BDI architecture is based on practical reasoning, as proposed by Bratman [11]. Prac-

tical reasoning is reasoning toward actions, the process of determining what to do,

while the theoretical reasoning process aims to obtain conclusions by using knowl-

edge. Human practical reasoning consists of two activities, namely deliberation and

means-end reasoning. Deliberation describes the state of affairs which needs to be

achieved, and means-end reasoning represents how to achieve such state of affairs.

Chapter 2. Preliminaries 21

Means-end reasoning is better known in the AI field as planning [32], which gener-

ates a course of action to achieve a specific goal. The major problems within this

approach are that it is very computationally costly and incapable of planning and

acting in real-time. Agent technology is a natural candidate approach to deal with

complex tasks in a dynamic environment. In BDI architecture, agents consist of

three logical components representing mental states namely:

• Beliefs: information the agent has about the environment.

• Desires: the agents motivation or possible options that the agent may like to

carry out.

• Intentions: the states of affairs that the agent has decided to carry out.

Intentions are key components in practical reasoning and critical to an agent’s suc-

cess. The BDI is the best-known architecture [83] and the procedural reasoning

system (PRS) is one of its best-known implementations. PRS was initially devel-

oped at Stanford Research Institute by Michael Georgeff and Amy Lansky [31]. It

has proved to be one of the most durable approaches to develop agents to date. To

build a real-time reasoning system, PRS can deal with complex tasks in dynamic

environments. The architecture of PRS consists of four key features: beliefs, desires,

intentions and plans, and an interpreter (See Figure 2.3).

In the PRS system, plans indicate a course of action for the agent to achieve its

intentions. Plans are manually constructed and pre-defined with a library by the

agent programmer. Plans in the PRS have the following components:

• a context: the pre-condition of the plan.

• a body: the course of actions to carry out.

• a goal: the post-condition of the plan.

The agent interpreter is used to update beliefs from observations of the envi-

ronment, generating new desires based on beliefs and selecting desires to act as

22 Ge Chu

Figure 2.3: The Procedural Reasoning System (PRS)
[10]

intentions. Finally, the interpreter selects an action to perform the agent’s current

intentions. Since the mid-1980s, the PRS has been re-implemented several times,

such as the Australian AI Institutes dMARS system [24], the University of Michi-

gans C++ implementation UM-PRS and a Java version called JAM! [46]. JACK

extends the Java language with a number of BDI features [14], while a program-

ming language called AgentSpeak is used to define a programme in the form of plans

[10]. Some implementations support BDI-style programming as libraries, such as

BDIPython [12].

2.4 Ontology

The concept of an ontology [36] comes from the field of philosophy and has been

widely used for knowledge representation in the field of AI in recent years. It can

be used to describe concepts and their relationships in a certain domain. The main

Chapter 2. Preliminaries 23

components of an ontology are classes, relations, functions, axioms and instances.

An ontology can be created by Protege [75], a widely-used open-source ontology

editor and knowledge management system. With the assistance of domain experts,

researchers have established ontologies in many areas. For example, the SENSUS

ontology [55] provides a conceptual structure for machine translation, the UMLS

ontology [9] is a medical language system, the CYC ontology [59] is used to establish

human common sense, and an English dictionary is based on the cognitive linguistics

Word-Net ontology [68]. An example of an attack ontology is shown in 2.4.

Figure 2.4: An example of an attack ontology

An ontology not only allows domain knowledge to be shared and reused through

a formalisation, but it also has an excellent conceptual hierarchy and support for

logical reasoning. The SWRL [44] is a semantic web rule language combining the Web

Ontology Language (OWL) and RuleML, which can be used to implement inference

functions and create a knowledge base. SWRL can be regarded as a combination of

rules and an ontology; it can directly use relationships and vocabulary in an ontology.

The SWRL rules have two parts, a body and a head, which represent a precondition

24 Ge Chu

and post-condition. The body and head consist of a set of atoms, which are the

smallest unit in a rule.

Drawing on the benefits outlined above, this thesis establishes an ontology to

describe the relationship between targets, vulnerabilities and attack actions. Using

SWRL and an ontology, the reasoning ability of the BDI model is strengthened.

2.5 Summary

This chapter introduced background knowledge related to this thesis about PT, agent

architectures, especially the BDI model, and ontology. The BDI model provides

reasoning from action output to environmental response. The taxonomy of PT is

used to create a PT ontology. Based on ontology, the ability of BDI reasoning can

be improved. This research follows the PTES PT standard and process, while the

action space is based on, but not limited to, the Metasploit framework.

Chapter 3

Related Work

3.1 Introduction

To date, there has been little academic research on automated PT, and the field

is still in its infancy [65]. Many studies or implementations lend to only mapping

vulnerability scanner results to the corresponding exploitation tools [38]. Most of the

research addresses PT as a planning problem expressed in terms of an attack tree,

an attack graph, or based on PDDL. Some researchers have attempted to achieve

automated PT using the POMDP. Ontologies are also widely used to represent, share

and reuse knowledge in the information security field. This chapter introduces the

above content in detail.

3.2 Attack Tree

Attack trees are conceptual structures describing how an asset or a target might

be attacked, and were first proposed by Bruce Schneier [90]. An attack tree has

been used to describe threats to and possible attacks on targets. If administrators

have knowledge of all the different ways of attacking a system, it is easy to design

countermeasures to mitigate these attacks. Basically, attacks are represented in

a tree structure. The root node represents the target, and other nodes represent

25

26 Ge Chu

different attack actions. Figure 3.1 presents an example of an attack tree. The OR

Figure 3.1: Example of an attack tree
[107]

nodes indicate alternative ways to achieve the goal, while the AND nodes represent

the steps that should be taken to achieve the same goal. Attackers cannot achieve

the goal unless all sub-goals are satisfied.

To systematically model cyber-attacks, an attack specification language was spec-

ified in [101] to express aggregate attack behaviours and modalities. Each attack

model contains descriptive properties, pre-conditions, sub-goals and post-conditions.

Properties are used to express attack characteristics, such as attack description, CVE

link and version. Pre-conditions indicate the system environment or configuration

properties. Sub-goals represent antecedent objectives of system intrusions or com-

promises. Post-conditions refer to state changes in systems and environments or the

effect of attacks. Using the attack specification language, the attack decision-making

problem can be transferred to an attack tree search problem.

An attacker can use an attack tree to paths to compromise the targets. Naturally,

Chapter 3. Related Work 27

attack trees can be used to perform automated PT. In [111], the rule trees method

was used to achieve the automation of PT; each chain of rule trees stores a complete

attack process. The likelihood of an attack can be calculated according to their

vulnerability information table and threat classification model. They also proposed

the security assessment process to meet NIST guidelines. In theory, the result of

their approach can be improved by adding a number of rules. In [77], a penetration

attack tree model can describe, organise, classify, manage and schedule the attacks

for an attack resistance test. This model integrated the attack execution relations

and attribute relations, which can be used to construct the unification description

of the test plan and attack operation sequence to guide the tests to complete PT

tasks. Firstly, they established the penetration attack tree based on an attack tree

structure and redefine two kinds of nodes, such as attack attribute and characteristic

node (AttN) and attack behaviour node (BehN) as well as using “and” and “or” to

express the relationship of nodes. Then, they established the attack behaviour node

execution order sequence, based on the penetration attack tree, in order to assist

attack implementation.

The advantages of the attack tree model are that it is intuitive and easy to

understand. It not only describes the attack path but also quantifies the various

factors of the attack. However, the disadvantages of attack trees are also apparent.

The scalability of the structure of attack trees is limited. For example, and/or nodes

are difficult to prune and extend. Moreover, it is challenging to model complex

relations between various attacks using attack trees. Another problem associated

with attack trees is that they are computationally expensive due to the numerous

state spaces. Attack trees face challenges in decision-making environments where

an agent must plan and act in real-time. In addition, the attack tree model is not

suitable for multi-objective scenarios.

3.3 Attack Graph

Attack graphs were first proposed by Swiler in 1998 [99]. They are a type of directed

graph that can describe all paths that an attacker can take to reach the target from

28 Ge Chu

the starting point of the attack. Nodes in an attack graph represent state of the

attack, for example, the target machines to which the attacker has gained access

and the user privilege the attack has compromised. Arcs represent a change of state

caused by a single action taken by the attacker. By assigning probabilities of attack

success to the arcs, various graph algorithms, such as shortest-path algorithms, can

identify attack paths with the highest probability of success. The attack graph

can be generated by three components: attack templates, a configuration file and

an attacker profile. The Attack templates consist of the information or conditions

which must hold for the attack, such as operating system version or open port. The

configuration file gives information about target systems, including the topology

of the network, configuration information of workstations, printers or routers. The

attacker profile provides information about the attacker’s capabilities, such as attack

actions. The attack graph not only describes multiple attackers and multiple targets

but also supports reasoning.

There are two types of attack graphs: state-based attack graphs and attribute-

based attack graphs [16]. In state-based attack graphs, each node represents network

states or attack states such as operating system version, open ports, services, vulner-

abilities and user privilege. The arcs represent the path of transition from one state

to another. The state attack graph can show all possible attack paths from the initial

state to a goal state. However, the number of attack paths increases exponentially

according to the scale and number of target vulnerabilities. Therefore, this type of

attack graph is not suitable for large-scale networks. In contrast, attribute-based

attack graphs have better scalability in large-scale network [47]. Attribute-based

attack graphs have two types of nodes, which represent atomic attacks and attribute

nodes, respectively. The attribute node indicates the pre-condition and effects of

atomic attacks. Figure 3.2 demonstrates an example of an attribute attack graph

[93]. Each node includes an attack ID number, which indicates the atomic attack; a

flag S/D shows whether the attack is detectable or not by intrusion detection system,

as well as the sources and targets. The paths from a root node to a leaf node shows

a sequence of atomic attacks the attacker can act without being detected.

In many network security analyses based on attack graphs, researchers have con-

Chapter 3. Related Work 29

Figure 3.2: An example of an attribute attack graph
[93]

structed attack graphs based on their network and vulnerability modelling to de-

termine whether attacks can gain access privilege from starting location to targets.

Artz et al. [5] described the first version of the Network Security Planning Archi-

tecture (NetSPA) system implemented using C++. Its input information from a

custom database includes host, software types and versions, network vulnerabilities,

intrusion detection system placement, gateways, firewall rules and exploits. This tool

generates attack graphs based on the input information, then uses a depth-limited

forward chaining depth-first search algorithm. The authors evaluated this tool in a

realistic network with 17 hosts; it took less than 90 seconds to produce three attack

graph layers.

Kyle Ingols et al. [49] described major improvements to the NetSPA attack

graph system. It requires to model zero-day exploits, client-side attacks and coun-

termeasures such as intrusion prevention system (IPS) and proxy and personal fire-

walls. NetSPA models reachability, firewall, branching between chains, network ad-

dress translation (NAT), reverse reachability, non-transparent proxy and IPS system.

30 Ge Chu

However, the scaling is poor because it generates a full attack graph that finds all

paths to all possible goals. In addition, NetSPA has not modelled attacks specific to

a web server or database, such as SQL injection and XSS.

Ammann et al. described a polynomial algorithm [4] that can be used to generate

attack graphs based on vulnerabilities, attacker privileges and exploits. The algo-

rithm can compute paths to a goal and determine the minimum attack actions that

can be used. The main problem of this approach is that it cannot deal with changes

in network state; for example, DoS attacks cannot be modelled in the approach.

Jajodia et al. [50] described a topological vulnerability analysis (TVA) tool which

automates the labour-intensive type of analysis performed by penetration testers.

The TVA tool requires vulnerability information from the Nessus vulnerability scan-

ner. Nevertheless, conditions of exploits, attack goals and network topology need to

be provided by hand. This tool can generate and analyse attack graphs based on

a polynomial-time algorithm [4] to prevent the attacker from reaching goal states.

This was one of the most comprehensive tools, before 2005, for the generation and

analysis of attack graphs. However, firewalls and router rules are not analysed and

there is poor scaling to large networks.

Some studies have present formal languages that can be used to describe ac-

tions and states in attack graphs. These languages define the pre-conditions and

post-conditions of an attacker action to represent the premises and effects of such

an action. In addition, these languages describe network components such as hosts,

routers, firewalls, topology and vulnerabilities. Templeton et al. regarded attacks

as a set of capabilities supporting abstract attack concepts [100]. When the require-

ments of these concepts are satisfied, the concept provides capabilities that other

concepts can use. An example of a scenario attack is presented in a language called

JIGSAW to show the model of remote shell connection spoofing. This is one of

the first papers to present how attack scenarios can be generated automatically to

achieve multiple attack actions. The main weakness of this research is that it re-

quires a great deal of human labour to manually describe the concepts in JIGSAW.

Cuppens et al. presented an attack description language based on logic which uses

a declarative approach to describe attack scenarios as a combination of actions [20].

Chapter 3. Related Work 31

In the language, the conditions and effects of an attack are described with logi-

cal formulas and provide a description of the attack from the point of view of the

attacker.

Some reported research has applied genetic algorithms or security metric models

in attack graph generation methods. Alhomidi et al. [2] proposed a graph-based risk

assessment model, which helps organisations and decision-makers to make appro-

priate decisions in terms of security risks. They also developed a genetic algorithm

(GA) approach to determine the risks of attack paths and produced useful numeric

values for the overall risk of a given network. The algorithm provided a natural way

of exploring a large number of possible attack paths. However, it may omit high-risk

paths. Wang et al. [106] proposed an attack graph-based probabilistic metric for

network security. The authors defined the basic metric and provided an intuitive and

meaningful interpretation of it. Computing the metric directly from its definition is

not efficient in many cases; to solve this problem, the authors proposed heuristics to

improve the efficiency of such computation.

To take the probability of an attack of each attack path into consideration, some

researchers have tried to make use of Common Vulnerability Scoring System (CVSS)

information to generate attack graphs. Gallon et al. [28] proposed to combine attack

graphs and a CVSS framework in order to add damage and exploitability probability

information. They defined a notion of risk for each attack scenario based on quan-

titative information added to attack graphs. However, this approach is not suitable

for large networks. Keramati et al. [53] proposed a method that can measure the

impact of each shown attack in the attack graph on the security parameters (con-

fidentiality, availability and integrity) of the network. They defined some security

metrics by combining a CVSS framework and attack graph that can help to assess

network security quantitatively by analysing attack graphs as well as finding the

most perilous vulnerability in the network. The main problem of this method is that

it takes no account of the issues of the circular path and combination explosion.

In the most recent studies, published in 2020, researchers utilised MulVAL [80]

to generate attack graphs. Drew Malzahn et al. [61] presented an automated vul-

nerability and risk analysis (AVRA) approach for use in cyber risk assessments. A

32 Ge Chu

scanner is used to capture system information and generate attack graphs using

MulVAL. Finally, AVRA executes the attack graph to verify and validate vulnera-

bilities using Metasploit. The limitations associated with AVRA are that the results

of AVRA are strongly dependent on the quality of the input data and it is difficult

translate from system fact to exploit parameter.

Researchers have also tried to combine attack graphs with reinforcement learn-

ing. Zhenguo Hu et al. [45] used the Shodan search engine [96] to capture system

information and generate an attack graph using MulVAL. Unlike other studies, the

authors first used a depth-first search (DFS) algorithm to find all possible attack

paths and construct a simplified transfer matrix. Finally, they utilised the deep Q-

learning network (DQN) algorithm [70] to determine the optimal attack path and

execute the attack graph using Metasploit. Similarly, Ankur Chowdary et al. [18]

proposed an autonomous security analysis and penetration (ASAP) testing frame-

work. The authors used MulVAL to generate an attack graph based on network

service and vulnerability information. The attack graph is stored in an XML file.

The CVSS [66] is used to determine the reward function in DQN to generate attack

plans. Finally, the authors used an ELK server [95] to obtain evidence of a successful

attack performed by Metasploit. However, these studies did not prove that the DQN

improves the performance of attack graphs.

Attack graphs can generate all possible attacks in the network and provide the

perspective of an attacker. Intuitively, they can help to achieve automation of PT.

However, the main shortcoming of attack graphs is that the output is usually a

path, namely a sequence of actions from the initial state to the goal state. In fact,

automation of PT needs not only to plan but to execute actions in real-time to

interact with dynamic decision-making environments. In other words, the problem

that has not yet been addressed is how to execute and validate the attack paths from

the analysis of the attack graph. Another limitation is that the scalability of attack

graphs is poor, and the computation is expensive because the number of targets or

states grows exponentially in attack graphs. Generating an attack graph is time-

consuming, and it is difficult to select the optimal path if the system model is large

or complicated.

Chapter 3. Related Work 33

3.4 PDDL-based Attack Planning

Automated planning (AP) is a process of selecting actions in achieving expected

outcomes, and plays a significant role in various AI applications [32]. It is the AI

branch that automates reasoning about plans and formulates a plan to achieve a

specific goal in a given situation. A planning system takes as input a description

of the initial state, the actions available and the conditions to reach a goal. The

output of a planning system is a sequence of actions to be executed from the initial

state to the goal. The PDDL is a formal knowledge representation language designed

to express planning models. It is commonly used for encoding domain knowledge

[64] into a PDDL domain file and a problem file. Each PDDL problem description

includes a set of world objects, an initial condition and a goal description. There

are various classical and forward heuristic planners available, such as Metric-FF [42],

which use problem-solving techniques to generate attack plans. A planner begins its

execution from the initial state with a graph-based representation called plangraph.

The plangraph is generated starting from the initial state; successive application of

state transition operators over all instances are then used to maps states and goals

into actions [63].

Many studies make use of PDDL to express the action needed for attack planning

and to model the problem of PT. Boddy et al. made use of classical planning

to generate hypothetical attack scenarios to exploit the system [8]. Their study

applies classical planning techniques to analyse computer network vulnerabilities

and generate courses of action from the initial state to the attacker’s goal. Their

behavioral adversary modelling system (BAMS) is based on PDDL and Metric-FF

planner, which includes 25 different objects, 124 predicates and 56 actions, while

each problem contains 200 to 300 facts. This application has demonstrated the

generation of attack plans for a simple but realistic model of a web-based document

management system.

To solve the scalability problem of the attack graph, Ghosh et al. [35] proposed

an approach based on GraphPlan planner, PDDL and a customised attack path

enumeration algorithm to generate minimal attack paths. Their model can be scaled

34 Ge Chu

to realistic and complex networks. The analysis shows that the attack graphs using

customised algorithms can be generated in polynomial time.

Similarly, researchers have presented a complete PDDL representation of an at-

tack model and integrated a planner into a PT framework [79]. A transformation

algorithm is used to convert attack models into PDDL representation. Attack infor-

mation includes initial conditions, PDDL actions and the goal encoded into a domain

file. In contrast, the information about systems, such as networks, machines, oper-

ating systems, ports and running services, is stored in a problem file. The PT tool

includes about 700 exploits, and the PDDL domain has about 1800 actions.

Roberts et al. complemented previous approaches by integrating user actions and

supporting personalisation to extend attack graphs [86]. Their work focus to those

vulnerabilities present in a particular user/system combination based on PDDL and

Metric-FF planner. In the same year, Elsbroek et al. [25] designed a FIDIUS system

for an intelligent vulnerability testing tool. The system consists of the knowledge,

decision and action components, which represent information about targets, plan-

ning for the next steps based on the current knowledge, and action space. The

critical component is the decision, which includes two intelligent agents: one using

action state planning for attack plan generation based on PDDL, FF planner and

cFF planner while the other predicts of a hosts value based on a neural network.

The planner-based agents cannot be used in a Black-box scenario as the agent plans

everything in advance, while the hosts value prediction agent decides which is the

next host to be exploited rather than the following action to be executed. The ac-

tion component is based on Metasploit. Previous approaches based on PDDL attack

planning have been limited due to its inability to deal with uncertain situations. To

address this issue, Sarraute et al. proposed a model that takes into account the prob-

ability of success of the actions and their expected cost [89]. Their planner is based

on the PPDDL language [110], an extension of PDDL for expressing probabilistic

effects, and was integrated into the PT framework Core Impact. They showed that

probabilistic attack planning could be solved efficiently for large networks.

PDDL-based attack planning for security testing has attracted a large number

of studies showing how to execute and validate the attack paths which result from

Chapter 3. Related Work 35

analysis of the attack graph. In addition, planners can solve the scalability issues of

attack graphs. However, the main drawback is that it uses classical planning. The

system cannot handle incomplete knowledge, uncertainty and interaction with the

dynamic environment, because the result of a planner is a list of actions.

3.5 POMDP Model for Penetration Testing

A POMDP is a model for decision making under uncertainty [71] and usually defined

by a tuple <S, A, T, R, Z, O> where,

• s ∈ S (state space) represents a finite set of possible states about the environ-

ment.

• a ∈ A (action space) represents a finite set of possible actions available.

• T (state transition function) T(s, a, s’) = Pr(s’| s, a) represents the probabilistic

relationship about how the state of the world can be changed by executing the

actions.

• R (reward function) R(s, a) describes how the agent should behave.

• Z (observation space) o ∈ Z represents a finite set of observations of the state.

• O (observation function) O(s’, a, o) = Pr(o|s’, a) describes the relationship

between the states and observations.

POMDP aims to find out an optimal policy π that maps states to actions where:

π : S → A. The optimal policy gives the best actions at each state based on its

observations and maximises its future gain (total reward). Figure 3.3 shows an

illustration of the POMDP model.

Compared to the classical deterministic planning mentioned above, the agent

has to interact with a system with an uncertain dynamic environment and whose

current state is unknown. The choice and effect of actions are also uncertain. As

PT concerns acting under uncertain scenarios, POMDP is a natural candidate to

36 Ge Chu

Figure 3.3: POMDP model
[84]

model this particular problem. Sarraute et al. [88] modelled the PT problem in

terms of POMDP. They modelled the states to describe target information such as

OS, software version and vulnerabilities. In addition, a terminal state was used to

describe quitting. Two types of actions, tests and exploits, were taken from a Core

Security database, which allowed them to collect information about targets such as

OS detection and port scan and then exploit targets. They modelled the reward

function in terms of the asset value, maximum time and detection risk. In contrast,

no reward was received when the terminate action is executed or once the terminal

state is reached. The transition function and observation function were specified as

the action’s transition matrix and probability 0 or 1. In this research, generating

a POMDP model for PT required knowledge about states, actions, observations,

reward function, transition function and the initial belief state. To solve the POMDP

problem, Kurniawati et al. [57] used an approximate POMDP planning (APPL)

solver written in C++ based on the SARSOP algorithm. However, the research

Chapter 3. Related Work 37

concluded by raising the scaling issue that limits POMDP in PT scenarios. If the

number of hosts increases, the time needed to find exploits grows exponentially.

Further research [87] proposed a method to generate better attack plans for a

particular machine within a short period. The author’s solution applied POMDP

to find feasible attacks for each machine. The research tried to solve the scalability

issues using an additional 4AL decomposition algorithm to create policies for each

attack graph. However, the issue of scalability has not been resolved in realistic PT

scenarios.

Despite all its advantages, POMDP has two major limitations: firstly, its scala-

bility is a significant issue. Secondly, it is difficult to design the initial belief for every

real-world problem and its accurate probability distribution. In the PT scenario, it

is unclear how agents can obtain these distributions. Additionally, POMDP models

are complicated and require expensive computational resources.

3.6 Ontology for Information Security

Knowledge of PT is usually acquired by a small number of individuals, and it is

difficult to share and reuse. Moreover, the establishment and management of the

knowledge base are the most challenging and critical problems in automated PT

research. Some previous work has been performed on taxonomy and ontology in the

security field, which is the foundation of the automated PT approach.

Pinkstion et al. [82] produced an ontology specifying a model of computer attacks

based on over 4,000 classes of computer attacks for intrusion detection. The classes

were categorised according to the system component targeted, means of attack, con-

sequence of attack and location of the attacker. The authors presented their model

as a target-centric ontology and illustrated the benefits of an ontology instead of a

taxonomy.

Herzog et al. [40] presented an ontology of information security that models

assets, threats, vulnerabilities, countermeasures and their relations. This ontology

covered general knowledge and can be used as a vocabulary, roadmap and extensible

dictionary of information security. The ontology was also used for reasoning about

38 Ge Chu

relationships between entities, and answering questions about information security.

Hansman et al. [37] provided a method for the analysis and categorisation of

both computer and network attacks. The taxonomy was designed to deal with an

increasing number of attacks every day and consists of four dimensions: attack vector,

attack targets, vulnerabilities and payloads.

Venter et al. [103] discussed a taxonomy for information security technologies,

which are used to secure information at the application, host and network level. The

authors described security technologies in terms of two categories: proactive and

reactive. Gao et al. [30] proposed a taxonomy that consisted of five dimensions,

namely attack impact, attack vector, attack target, vulnerability and defence. The

authors also provided a method to evaluate the effect after an attack.

Some ontologies have been based on vulnerabilities as opposed to ontologies built

to capture attack or information security concepts. For example, Wang et al. [105]

built an ontology for vulnerability management (OVM) which was populated with

all vulnerabilities in NVD, such as CVE, CWE, CVSS and CAPEC, and the rela-

tionships among them.

3.7 Summary

In this chapter, related research about the automation of PT was reviewed, including

attack trees, attack graphs, PDDL-based attack planning, POMDP and ontology.

These methods have their own characteristics and limitations and do not carry out

real-time automated PT. In the next chapter, an agent model is introduced to solve

the problems.

Chapter 4

BDI Architecture for Penetration

Testing

4.1 Introduction

Related research has used planning algorithms to model PT. However, these solutions

either cannot handle incomplete knowledge, uncertainty and a dynamic environment

or they exhibit poor scaling. This chapter presents the BDI architecture, which

provides a complete practical reasoning framework for automation of PT and re-

porting. The BDI knowledge base is used for decision making, which includes expert

experience.

4.2 Analysis of Penetration Testing Problem

PT implies the external security evaluation of an organisation by an analyst, identify-

ing vulnerabilities and assessing possible attack actions. As a widely-used evaluation

approach for information security, PT possesses specific characteristics, such as:

• Interactivity: PT is an activity whereby attackers can execute actions di-

rected at target environments and receive responses.

39

40 Ge Chu

• Dynamic: The state of the target environment may change after an attacker

carries out actions.

• Uncertainty: The knowledge and response of the target environment are un-

certain. In Black-box PT, attackers usually cannot obtain accurate information

about targets. Moreover, the action effects of targeting the environment are

unknown.

• Complexity: In PT, the state space and action space are infinite in theory

because the target configuration is infinite and attackers can carry out infinite

actions to obtain target privilege. Usually, attackers need to choose the best

actions based on their experience.

4.2.1 Environment

In general, the PT environment refers to various hardware targets, including hosts,

firewalls, gateways, routers, network bridges, modems, wireless access points, switches,

hubs and repeaters. Also, the environment includes information about targets such

as IP address, operating system, configurations, open port, DNS, services, network

topology, protocols, vulnerabilities, users and privileges. In practice, environmental

information is unknown, and attackers try to collect as much information as possible

about the environment at the information-gathering stage.

4.2.2 State

States refer to the changes of environment or attacker’s privilege. In the context of

PT, there is no need to know the full state of the system to describe the current

situation but only to focus on aspects that are relevant to the task. In addition, a

terminal state indicates whether the PT is successful or has terminated, as any PT

has a finite execution.

Chapter 4. BDI Architecture for Penetration Testing 41

4.2.3 Action

Actions refer to any executions that an attacker can carry out during PT. These

actions include either known PT tools such as Metasploit or attack scripts created

by attackers in order to acquire information about targets or attempt to obtain

privileges from targets by exploiting a vulnerability. Typically, each action has pre-

conditions and post-conditions.

4.2.4 Decision Making

When action space and environmental information are available, attackers need to

carry out actions to interact with environments based on their skills and experi-

ence. According to previous experience, attackers know how to perform actions in

particular states. Sometimes, attackers make decisions according to their intuition.

4.2.5 Goal

The goal created for the agent needs to be consistent and achievable [23]. PT is a

process of identifying vulnerabilities by performing real attacks from the prospect of

an attacker. The goal of PT is to obtain high-level access privileges, such as root

or administrator, in target systems. However, the goal is not always achievable in

practice, a terminal state is needed to avoid infinite loops. Attackers can perform

various attacks to exploit targets and do not need to find the shortest attack path.

PT is more concerned about whether it can succeed in a specific time rather than

succeed in the shortest time.

4.3 BDI Architecture for Penetration Testing

According to the analysis above, agent-based BDI is a natural candidate to solve

the automation of PT. It provides a complete practical reasoning framework that

can interact with the target. This section presents how to model PT problems using

agent-based BDI architecture.

42 Ge Chu

4.3.1 Agent World

In the process of PT, the BDI agent interacts with the target by perceiving informa-

tion, and in response, it outputs actions to change it. In the BDI model, the attacker

agent is single, while the number of targets is unlimited. The agent world consists of

a network environment such as the Internet or the local area network. It is assumed

that the agent can interact with targets via different kinds of connections, either

wired or wireless.

4.3.2 Action Space

In the action space, different actions have been defined to be performed throughout

the whole PT process, from the information-gathering stage to the report stage.

Whereas some scanners or PT tools provide a degree of automation, the BDI model

can execute external tools directly as part of the action space to make this model

more extensible. Moreover, the BDI model can perform various types of attacks,

such as buffer overflow attack, SQL injection attack, password attack, sniffer attack

and social engineering attack. In the BDI model, most actions are derived from the

Metasploit framework.

4.3.3 BDI Model

The BDI model expects the agent to act in a dynamic environment such that the

agents reasoning should take environmental changes into account to make an action.

It can properly define the process whereby agents choose actions based on target

information in PT. The basic logical components of a BDI agent are belief, desire

and intention.

A BDI agent is defined as a tuple < Ag, B, D, I, P, A, S; fBS, fBI ,fBDI >, where:

• Ag is an agent’s name.

• B is a set of beliefs.

• D is a set of desires.

Chapter 4. BDI Architecture for Penetration Testing 43

• I is a set of intentions.

• P is a set of plans.

• A is a set of actions.

• S is a set of perceptions.

• fBS is a belief update function.

• fBI is a desire determination function.

• fBDI is an intention generation function.

Belief set B represents environment or state information about the target, which

is updated after executing actions. In general, beliefs are represented symbolically

by ground atoms of first-order logic. At the early stage of PT, information-gathering

actions build belief set B to signify environmental information in terms of different

values and parameters from the agent’s perception. The function fBS shows that

the new beliefs can be generated based on current beliefs and perceived information

in the perception set S.

fBS : B × S → B (4.1)

Desire set D represents all the options or possible candidate plans of PT for

the agent that an agent might like to accomplish. In real-time PT, multiple types

of attack methods can be carried out in response to specific target information. For

example, if the hosts port 80 is left open, a number of attacks might be carried out,

including SQL injection attack, password attack or buffer overflow attack. Human

penetration testers would need to choose one type of attack according to their expe-

rience or preferences. The function fBI shows that the desires are determined based

on beliefs and intentions.

fBI : B × I → D (4.2)

44 Ge Chu

Intention set I represents the agent’s goals or the plans the agent decides to

carry out. In PT, the agent needs to choose one plan to carry out from the possible

candidate plans. The plan becomes an intention after being selected. The function

fBDI shows that beliefs, desires and intentions can generate new intentions.

fBDI : B ×D × I → I (4.3)

Action set A is used to represent minimal attack units, driving an agent to

achieve PT goals.

Plan set P consists of available plans, each giving information about (1) how

to respond to events, and (2) how to achieve goals. A plan comprises three parts:

trigger event, context and body, where:

• Trigger Event: is an event that the plan can handle, such as beliefs or goals

about the target environment or state information.

• Context: defines the conditions under which the plan can be used. In PT,

each attack needs to meet specific conditions.

• Body: defines a series of actions to be executed if the plan is chosen. It is

possible to have goals. The BDI model covers various types of attack actions,

combinations of which are pre-defined.

Given the description of the BDI architecture above, the dynamic process and

reasoning cycle of a BDI agent for PT can be depicted as shown in Figure 4.1. The

process is as follows:

1. Initial beliefs and intentions are set up by the penetration tester and typically

represent information regarding the target, such as the domain or IP address and

the privilege that the PT must achieve.

2. The BDI agent perceives the target information by performing various information-

gathering actions. For example, Nmap can collect OS type and ports from the target.

3. After the gathered information is perceived, current beliefs are updated. At

this time, the BDI agent should hold the information about the target.

Chapter 4. BDI Architecture for Penetration Testing 45

4. According to the new current belief, all relevant action plans are found. For

example, if port 80 of the target is open, then password attack, buffer overflow attack

and SQL injection attack become candidate options for the human penetration tester.

5. The BDI agent chooses one plan from the candidate action plans to become

the intention and waits for it to be executed according to the plan’s context. A plan

can be taken from a human knowledge database. The priority of all actions is defined

in a human knowledge database.

6. The BDI agent executes the chosen plan. If the plan fails, then the agent

chooses another plan.

7. The BDI agent checks whether the initial goal is achieved or not and decides

either: (1) to output the report which records the process of the whole PT, or (2) to

return to the new reasoning cycle. Some conditions are defined to stop the reasoning

cycle, for example, all plans have been executed or the running time reaches the

limit.

4.4 Simulation

The BDI simulation was implemented in Jason, working on a PC with an Intel

I7 CPU at 2.0 GHz and 4GB of RAM. In Figure 4.2, the simulation experiment

consisted of two agents representing the BDI agent and the target agent. In order to

simplify the process of PT in the virtual environment, the internal communication

actions in Jason such as send(tell) and send(ask) were used to simulate the attack

and probe actions between the BDI agent and the target agent. The print() was

used to output the process of interaction. The structure of the plan in the Jason

interpreter is shown below:

Trigger Event: Context <- Body.

This simulation was designed to validate the proposed BDI model in PT scenar-

ios and shows how beliefs can be changed according to environmental responses or

changes.

46 Ge Chu

Figure 4.1: The BDI agent reasoning cycle for PT

Chapter 4. BDI Architecture for Penetration Testing 47

Figure 4.2: The interaction between a BDI agent and a target agent

4.4.1 Target Agent

The basic information regarding the target was set up in the target agent’s initial

belief set, including system type, ports, services, vulnerabilities and the Secure Shell

(SSH) password (Table 4.1). To make the scenario uncertain, the success probability

of an SSH password attack was defined as 20%. The success probability of a remote

and local buffer overflow attack was defined as 50% and 70%, respectively, based

on personal PT experience. The original belief set of the target agent is shown in

Figure 4.3

OS Port Service vulnerability Password

Linux 80, 22,3306 Nginx, SSH, MySql CVE-remote, CVE-local SSH:456

Table 4.1: Target information

48 Ge Chu

Figure 4.3: Belief set in the target agent

Chapter 4. BDI Architecture for Penetration Testing 49

4.4.2 BDI Agent

For the BDI agent, the current privilege was initially set up as none, and the initial

goal was root privilege. Information-gathering plans were defined to probe OS type,

ports, service and vulnerability information from the target agent. The attack plans

were defined for password attack and buffer overflow attack. Validation actions such

as check remote() and check local() were defined to check the result of buffer overflow

attacks. Moreover, an stop() action was defined to avoid falling into an infinite loop.

The set of beliefs, desires and intentions for the simulation were defined as follows:

• Belief: ostype(string), port(string), service(string), vulnerability(string),

password ssh(string).

• Desire: probe os(), probe port(), probe service(), probe vul(), check remote(),

check local(), password attack ssh(), buffer overflow attack local(),

buffer overflow attack remote()

• Intentions: stop()

4.4.3 Simulation Results

Two simulations were conducted to show how the BDI agent interacts with the tar-

get agent in different circumstances.

1) Simulation 1

Figure 4.4 presents the result of simulation 1. From the figure, it can be seen

that the BDI agent probed all information about the target in the belief set and

successfully performed the password attack because the rate of the password attack

was over the specified 0.8 threshold. Then, the BDI agent performed a local buffer

overflow attack successfully; the prerequisite of a successful password attack was as-

sumed. However, the remote buffer overflow attack failed. The current privilege had

been changed from none to user and root. Three new beliefs, attacked(“cve local”),

password ssh(456) and privilege(root), were added to the belief set of the BDI agent,

50 Ge Chu

Figure 4.4: The result of simulation 1

Chapter 4. BDI Architecture for Penetration Testing 51

as shown in Figure 4.5.

2) Simulation 2

In simulation 2, the BDI agent probed all the information about the target. All

attacks failed, and the BDI agent was stopped. The belief set is shown in Figure 4.6.

From the figure, it can be seen that the current privileges were not changed in the

belief set of the BDI agent. Figure 4.7 shows the result of simulation 2, in which the

remote buffer overflow attack and SSH password attack failed.

4.5 Knowledge Base

A knowledge base can be used for decision making, which consists of all plans and

their preferences provided by human experts. An agent can have multiple plans

triggered by the same event and thus deal with this event in different ways. Hence,

an agent can have multiple different responses to events. If a plan fails to achieve a

goal, then the agent can select another plan from all candidate plans. By default,

the chosen plan is executed in its turn in a BDI interpreter. In the knowledge base,

the utilities are used to indicate an action’s priority based on expert experience,

so that the agent simply selects the plan that has the highest utility. In addition,

MITRE ATT&CK [98] is a globally-accessible knowledge base of adversary tactics

and techniques based on real-world observations, which is an ideal framework to help

construct a BDI-based knowledge base. It has become a useful tool across many

cybersecurity disciplines to convey threat intelligence, perform PT, and improve

network and system defences against intrusions.

4.6 Reporting

The goal of PT is to find, exploit and determine the risk of system vulnerabili-

ties. The proposed BDI model can automatically generate a report, including target

information, implementation process, action set and result. In general, system in-

formation such as IP address, ports, configurations, services and vulnerabilities are

52 Ge Chu

Figure 4.5: Belief set of the BDI agent in simulation 1

Chapter 4. BDI Architecture for Penetration Testing 53

Figure 4.6: Belief set of the BDI agent in simulation 2

54 Ge Chu

Figure 4.7: The result of simulation 2

Chapter 4. BDI Architecture for Penetration Testing 55

stored in the belief set after the information-gathering stage to drive further actions.

Firstly, the BDI model can extract this information into a report file. Secondly, dur-

ing the automated PT, the BDI model can print each action performed to represent

the implementation process and action set. Finally, the results are stored in the

report to show the privilege has already been obtained. For future work, Natural

Language Processing (NLP) [48] technology can be used to generate more readable

PT reports.

4.7 Summary

This chapter presented an agent-based BDI model for the automation of PT, enabling

interactions between dynamic and uncertain targets. PT actions are defined as a

series of BDI plans, and the BDI reasoning cycle is used to represent the PT process.

To validate the BDI model, two simulations show the BDI agent behaviour and

reasoning process. A BDI-based knowledge base is used to determine how to act

during PT. Finally, the BDI model generates a PT report automatically.

Chapter 5

Ontology for BDI-based

Automation of Penetration Testing

5.1 Introduction

The BDI model can make decisions based on pre-defined plans and interact with

environments, while humans can obtain new knowledge from collected information

by reasoning. Generally, new beliefs need to be generated after performing actions

in the BDI model. This can be done using an ontology. Also, ontologies can achieve

the reusability of knowledge. This chapter presents an ontology for PT and how to

achieve its reasoning ability based on SWRL rules. By combining an ontology with

SWRL rules, the reasoning ability of BDI models can be improved in the automation

of PT.

5.2 Ontology Design

According to the attack taxonomy in chapter 2, an ontology is created for PT (On-

toPT) using Protege [75]. Figure 5.1 presents the OntoPT outline. Specifically, the

yellow dots represent classes, and purple diamonds represent instances. The arcs

indicate the relationship between instances or classes.

56

Chapter 5. Ontology for BDI-based Automation of Penetration Testing 57

Figure 5.1: Ontology for PT (OntoPT)

58 Ge Chu

In OntoPT, attacker, target, attack method and vulnerability classes are created

as top-level concepts. The attacker class includes a set of attacker instances, such as

attacker1. All the targets which have the root privilege belong to the attacker class.

The target class includes a set of target instances such as target 1 and target 2.

These target instances are described by data properties such as IP address, port, OS,

application, configuration and current permission. In this case, when two targets are

in the same subnet, this is indicated by a relation. Through ontology, it is easy to

understand the network topology of the target.

The vulnerability class includes a set of instances to represent vulnerability infor-

mation. The CVSS database can be used to establish the instances and the relation-

ships between the vulnerabilities through the pre-condition and post-condition of the

vulnerability. In OntoPT, the MS08-067 vulnerability instance has been included for

presentation purposes.

The attack method class consists of multiple levels of attack methods, based

on the PT taxonomy, such as buffer overflow attack or password attack. Within

the attack method class, specific attack actions are defined as instances which in-

clude data properties such as action, pre-condition and post-condition. If there is

a relation between an attacker instance and an action instance, that represent the

attacker performs the specific action. In OntoPT, one instance indicates performing

a buffer overflow attack with CVE number MS08-067. Property characteristics and

descriptions are used to represent axioms and restrictions in OntoPT. For example,

the object property isSameSubnet is symmetric. Moreover, all attack methods are

pre-defined and extensible in OntoPT.

To describe the relations between instances, five object properties are defined

below:

• hasPermission: represents an attacker who has specific current permission in

a target.

• isConnected: represents an attacker instance that can be connected to the

target instance.

Chapter 5. Ontology for BDI-based Automation of Penetration Testing 59

• isNotConnected represents an attacker instance that cannot be connected to

the target instance.

• isSameSubnet: represents an target instances which are in the same subnet.

• exploitBy: represents an attacker who can perform a specific attack.

• hasVul: represents an target that has specific vulnerability.

5.3 SWRL and Reasoning

SWRL is regarded not only as a combination of rules and ontologies but also as being

able to directly use the relationships and vocabulary in an ontology. SWRL rules

comprise a body and head, which represent pre-conditions and post-conditions. The

body and head consist of a set of atoms. Informally, a rule can be read as meaning

that if the body is true, then the head must also be true. SWRL rules are established

by using the attributes and relationships in the ontology.

SWRL rules are used to determine attack actions when certain pre-conditions

are satisfied as well as to obtain new knowledge. Therefore, the SWRL rule base is

a vital part of making decisions in the automation of PT.

Rule-1:

isConnected(attacker, target1)
∧

hasVul(target1,MS08-067)

→ exploitBy(attacker,MS08− 067 attack)

Rule 1 presents the process of an attack on vulnerability MS08-067: when the

attacker can connect to target 1, which has MS08-067 vulnerability, then the attacker

can perform an MS08-067 attack. After reasoning using the inference engine in

Protege, a new relation occurs between the attacker instance and the MS08-067

instance, represented by the object property exploitBy. Figure 5.2 shows how attacker

1 performs the MS08-067 attack.

60 Ge Chu

Figure 5.2: Example for Rule-1 SWRL rule-based reasoning

Unlike the BDI model, SWRL rules can be directly reasoned to obtain new knowl-

edge, while the BDI model needs to perform specific actions on the environment.

For example, ontology can discover potential attack paths through a combination of

SWRL rules, property characteristics and descriptions. Rule 2 presents a PT sce-

nario in an internal network, whereby, if the attacker can connect to target 2 and

successfully gain root permission, then target 2 becomes an internal attacker. In this

way, it is easy to ensure that the path reaches its final target. Figure 5.3 shows that

target 2 belongs to the attacker class after SWRL rule-based reasoning.

Rule-2:

isConnected(attacker, target2)
∧
exploitBy(attacker, target2)

∧
currentPermission(target2, root) → attacker(target2)

Chapter 5. Ontology for BDI-based Automation of Penetration Testing 61

Figure 5.3: Example for Rule-2 SWRL rule-based reasoning

62 Ge Chu

5.4 Automation

Based on an ontology and SWRL rules, the BDI agent framework achieves a better

performance in automated PT. In general, an ontology is used to store knowledge of

targets and attacks, while the BDI agent performs specific attack actions. Owlready

[58] is a module for ontology-oriented programming in Python which is used to

interact between the ontology and the BDI agent by performing actions such as

load, query, create, update classes, instances, properties and reasoning. In addition,

BDIPython is used to implement the BDI mechanism, which is a Python library

used to support BDI-style programming. The approach has two knowledge bases,

SWRL rules and BDI plans. The SWRL rules are used to make decisions about

an attack by inference using the ontology, while plans are used to perform multiple

attack steps in the BDI agent. In fact, the ontology is only updated with the result

of an attack rather than with the information generated by the intermediate process

of an attack. The advantage of using an SWRL-based ontology knowledge base is

that the agent can infer new knowledge rather than relying on pre-defined plans.

5.4.1 Interaction between a BDI Model and an Ontology

The interaction between a BDI agent and on ontology can be illustrated by the

pseudocode given in the algorithm 1. Firstly, the BDI model acts and returns the

result (lines 1 - 3). Secondly, the ontology instances and data properties are created

based on the result (lines 5 - 8). Finally, the BDI model can act if the ontology

instance has a specific data property in exploityBy relation (lines 10 - 14).

Algorithm 2 shows an example of the interaction between an agent and an on-

tology to perform the MS08-067 attack: Firstly, the BDI model collects the open

port information by running Nmap and returns the result (lines 1 - 3). Secondly,

the ontology instances and data properties are created based on the result (lines 5

- 8) and run a reasoning engine. Finally, the BDI model can perform an MS08-067

attack if the ontology instance has MS08-067 data property in exploityBy relation

(lines 10 - 14).

Chapter 5. Ontology for BDI-based Automation of Penetration Testing 63

Algorithm 1 Interaction between an agent and an ontology

1: function bdiaction(parameters)
2: result← action
3: return result
4: end function
5: function updateontology(result)
6: onto← ontology.load
7: onto.target.bdiaction← result
8: syncReasoner
9: end function
10: function bdiaction(onto.parameters)
11: if onto.attacker.exploitBy = onto.bdiaction then
12: result← bdiaction(parameters)
13: end if
14: end function

Algorithm 2 Example: Interaction between an agent and an ontology

1: function nmap(ip)
2: port← nmap
3: return port
4: end function
5: function updateontology(port)
6: onto← ontology.load
7: onto.target.port← port
8: syncReasoner
9: end function
10: function ms08067attack(ip)
11: if onto.attacker.exploitBy = onto.ms08067 then
12: result← ms08067attack(ip)
13: end if
14: end function

64 Ge Chu

5.4.2 Automation Process

The target information and PT knowledge can be stored using the ontology. The

target information is stored as instances under target classes with data properties

such as IP address, ports, OS, applications, configurations, vulnerabilities and cur-

rent permission. The object property isSameSubnet represents the relation between

targets. From the attacker’s perspective, attack actions are stored as instances un-

der the attacker methods class with data properties such as actions, pre-conditions

and post-conditions. SWRL rules are used to determine attack actions and their

preference according to target information, while also updating the information or

relations in the ontology. After the ontology determines the specific attack action,

the BDI plan can perform the attack. At this point, the belief set in the BDI agent

is used to store new information generated during the attack. Finally, the ontology

is updated, including the object property exploitBy and data property current prop-

erty, after the attack is finished in the BDI agent, using Owlready2. The process of

the ontology-based automation of PT is presented in Figure 5.4:

5.5 Attack Scenario

An attack scenario is used to validate the ontology-based method in a virtual en-

vironment. The demonstration runs on the Kali Linux virtual machine, while the

target runs on a Windows XP SP3 virtual machine. Metasploit, a popular PT frame-

work, is used for attack action space. In BDIPython, functions are used to define

attack actions and plan rules to achieve the BDI reasoning cycle. The demonstration

shows the process of attacking target 2. The target information is shown below:

- IP address: 192.168.1.162

- Ports: 135, 139, 445, 3389

- Operating system: Windows XP SP3

- Vulnerabilities: MS08-067, Weak password

- Current permission: None

Chapter 5. Ontology for BDI-based Automation of Penetration Testing 65

Figure 5.4: Process of automation of PT using an ontology

66 Ge Chu

The MS08-067 buffer overflow attack and SSH password attack are used to show

the process of attack, as shown in Figure 5.5. Firstly, after inputting the target 2

IP address and attacker’s IP address, the agent starts to probe the target 2 ’s port.

Then, according to the port scan results, there is no SSH port running on target

2. Thus, the agent performs the MS08-067 attack. Finally, the MS08-067 attack is

successful (see Figure 5.6), and the agent obtains the highest permission in the target

2 system. Figure 5.7 shows a connection has been created between the agent and

target machine with a system privilege through the 4444 port.

Figure 5.5: Probe target’s port

All the information about target 2 is stored in the data property. Figure 5.8

shows the updates of the data property in target 2 and the relation between attacker

instance and MS08-067 instance in the ontology. In target 2 data properties, current

permission is changed to system.

Chapter 5. Ontology for BDI-based Automation of Penetration Testing 67

Figure 5.6: MS08-067 attack

Figure 5.7: System permission

68 Ge Chu

Figure 5.8: Properties update in the ontology

Chapter 5. Ontology for BDI-based Automation of Penetration Testing 69

5.6 Summary

In this chapter, an ontology-based automated PT approach was proposed. An ontol-

ogy was created by Protege based on PT attack taxonomy. To help make decisions

and generate new knowledge, SWRL rules were used to create an extra PT knowl-

edge base. To validate the approach, the BDIPython library was used to implement

an attack scenario in a virtual environment. By using an ontology, the BDI model

obtained better reasoning ability in the automation of PT.

Chapter 6

Penetration Testing for Internet of

Things and Its Automation

6.1 Introduction

The IoT was proposed by MIT in 1999; this particular period heralded a critical

episode in the new generation of information technology [21]. The IoT is considered

an extension of the traditional Internet, whereby things in the physical world can

be connected to the Internet. The IoT allows information communication transfer

along with recognition, location, tracking information, monitoring and management

based on Radio Frequency Identification (RFID), sensor, GPS or machine to machine

technologies. According to the literature, the IoT structure consists of three layers:

application, network and perception [29]. The application layer provides various ser-

vices to users in different scenarios. The network layer is responsible for information

transmission and processing. Finally, the perception layer collects information and

identifies objects in the physical world, including various hardware terminals such as

RFID, sensor and GPS. Currently, IoT technology has been applied in various fields

such as smart grid, intelligent traffic, smart city, smart home, intelligent healthcare,

physical activity and smart building. However, due to a growing number of attacks,

a significant number of researchers have recently focused on security.

70

Chapter 6. Penetration Testing for Internet of Things and Its Automation 71

Most IoT security research focuses on the analysis, defence or attack of a specific

device. To date, no approach has been devised to evaluate the overall security of

IoT from the perspective of an attacker. Although PT is a heavily favoured method,

the process incurs extensive financial costs and takes a significant amount of time.

Automation can significantly improve the efficiency of PT. This chapter analyses the

security problems of IoT and proposes a PT methodology and its automation based

on the BDI model to evaluate IoT security.

6.2 Security Issues in the Internet of Things

IoT security has specialised characteristics which the traditional Internet lacks, be-

cause its three-layered structure causes more vulnerabilities and attack surfaces.

Therefore, traditional network security solutions are not sufficient to protect the

IoT. In the three-layered IoT structure, each layer has specific security issues, some

of which are similar to the traditional network. This section analyses the security

issues in each layer.

6.2.1 Perception Layer Security

The perception layer, also known as a recognition layer or physical layer, collects

information from the real world and integrates it into the digital world by RFID,

sensors, GPS and other hardware devices. Normally, the nodes in the perception

layer are light, with low power, limited computing ability, low storage space, and they

remain unattended. Therefore, the traditional information security solutions are not

adopted in the perception layer. From perception network to nodes, specific security

issues cause more attack surfaces. For example, nodes are vulnerable to attack by

skimming, eavesdropping, spoofing, cloning, killing, jamming and shielding [81].

6.2.2 Network Layer Security

The network layer is responsible for the transmission of information between the

application layer and the perception layer. The network layer is a combination of

72 Ge Chu

various networks, including the Internet, mobile communication network, satellite,

GSM network, GPRS, 3G, 4G and WIFI network. The security issues of these

networks are similar to traditional ones, and they are vulnerable to DDoS attack,

sniffing attack, data tampering attack, data replay attack and signal interference

attack. In addition, the mix of different network architectures may cause new security

issues [81].

6.2.3 Application Layer Security

The application layer provides various services to users, such as smart grid, intelligent

traffic, smart city, smart home, intelligent healthcare and smart building. The IoT

can be accessed and managed by users through various applications in different

technological platforms such as computers, mobiles or smart hardware devices. The

main security risk of the application layer (as with the others) is its vulnerability

to attack depending on the IoT scenario (e.g, buffer overflow attack, SQL injection,

XSS, password attack and social engineering attack).

6.3 Penetration Testing for IoT

Research on IoT-specific security issues and the IoT attack surface areas project

by OWASP [67], has demonstrated that the perception layer is what distinguishes

traditional PT from the PT for IoT. The process of IoT PT be considered in terms

of four stages, as shown in Figure 6.1, namely, 1) information gathering, 2) analysis,

3) exploitation, and 4) reporting.

6.3.1 Information Gathering

The information gathering in the initial stage is a critical step that determines PT

success by probing information from all three IoT structural layers (perception, net-

work and application).

Chapter 6. Penetration Testing for Internet of Things and Its Automation 73

Figure 6.1: The process of IoT PT

74 Ge Chu

6.3.1.1 Perception Layer

In the perception layer, it is essential to collect information regarding the physical

environment, location of the node, type of node, range of the node, type of connec-

tion, type of communication protocol, topology of the node, type of node operation

system, power of the node, security mechanism, node vulnerability and transmission

protocol vulnerability. Examples of tools include, but are not limited to:

• Hardware Bridge API: an IoT PT extension in Metasploit.

• Nmap: a free and open source utility for network discovery and security au-

diting.

• OpenVAS: an advanced open source vulnerability scanner and management

system.

• Nessus: a globally used vulnerability scanner.

• Shodan: detects which of your devices are connected to the Internet, where

they are located, any vulnerabilities and who is using them.

6.3.1.2 Network Layer

The network layer is critical to collect information similar to traditional PT such

as network, type of connection, security mechanism, type of communication and

transmission protocol vulnerability by network attack tools, such as the well-known

wireless attack suite Aircrack-ng.

6.3.1.3 Application Layer

Information gathering in the application layer is similar to traditional PT. It is

vital to collect information regarding OS, port, services information, type of access

control, configuration information and vulnerability information by Nmap, OpenVAS

and Nessus.

Chapter 6. Penetration Testing for Internet of Things and Its Automation 75

6.3.1.4 Social Engineering Information

To improve the probability of success in PT, social engineering information also

needs to be collected, for example, DNS information, the email list and application

information. The DNSenum and Fierce are famous for collecting DNS information,

and the email list can be collected by theHarvester.

6.3.2 Analysis

In the analysis stage, information regarding the target must be organised and anal-

ysed; subsequently, viable attack paths must be discerned and planned to obtain

access privilege to the target. Additionally, a validity check is often required and

performed within an experimental environment.

6.3.3 Exploitation

Real attacks are performed based on viable attack paths and planning in the analysis

stage. During PT, the DDoS attack is prohibited to ensure the availability of the

target.

6.3.3.1 Perception Layer

The IoT node characteristic in the perception layer determines the attack on this

layer and is the cause of the difference between traditional and IoT PT. Specific

attacks can be performed by Hardware Bridge API or IoTseeker, including [54]:

• Skimming: reading the node information illegally.

• Eavesdropping: sniffer information between nodes and router.

• Spoofing: generating fake node data.

• Cloning: cloning the node.

• Killing: stealing and destroying the node.

76 Ge Chu

• Buffer overflow attack on the node.

• Access control attack on the node: IoTseeker breaks the IoT device’s

default password.

6.3.3.2 Network Layer

Attacks on the network layer normally include: network traffic sniffer, signal replay,

signal fake and signal hijacking in different network communication protocols, such

as WIFI, 3G, 4G, GSM, Bluetooth by wireless attack Aircrack-ng. The description

of these attacks is as follows:

• Network traffic sniffer: sniffer information between networks.

• Signal replay: replaying the legal information to attack the target.

• Signal fake: generating legal information to attack the target.

• Signal hijacking: jamming the target network and forcing the target node to

connect to a controllable fake network.

6.3.3.3 Application Layer

The attack on the application layer is very similar to traditional PT, which consists

of web application attack, software buffer overflow attack and password attack by

using tools such as, but not limited to:

• Metasploit: The most critically acclaimed PT framework includes thousands

of exploitation loads.

• W3af: A web application attack framework.

• John the Ripper: A password cracker.

Chapter 6. Penetration Testing for Internet of Things and Its Automation 77

6.3.3.4 Social Engineering Attack

Social engineering attack refers to a type of attack on the general publics lack of

security awareness. In a hypothetical example, employees can be targeted by de-

livering a malicious email to them, which enables machine access privilege to the

targets sub-network and further PT objectives. The ability to perform this type of

attack requires Setoolkit, the best-known tool within the field of PT, consisting of

social engineering attack tools.

6.3.4 Reporting

Successful PT results in identifying vulnerabilities, whose details are processed and

subsequently reported to the owner of the target as information to improve security.

6.4 Experiment

The model runs on a PC with an Intel I5 CPU at 2.3 GHz and 8GB of RAM. As shown

in Figure 6.2, the simulation experiment represents the BDI agent and the three

layers of IoT. The internal communication actions in Jason were used to simulate

the interaction between the BDI model and the IoT. The model is implemented by

AgentSpeak Jason.

6.4.1 IoT Target

The IoT targets information in three layers, including services and corresponding

vulnerabilities, as shown in Table 6.1, and this information is stored in the belief

set. Simulation of the three IoT structural layers required the creation of four agents

that represent the application and network layer and the two nodes in the perception

layer, respectively. Information can be transmitted between each layer and nodes,

and the network layer is responsible for the information transmission between the

application layer and the perception layer. Moreover, to make the scenario uncertain,

random numbers were used to determine the result of an attack.

78 Ge Chu

Figure 6.2: The interaction between a BDI agent and IoT

IoT Structure Service Vulnerability

Application layer Linux, App, Nginx, MySQL, port, SSH CVE-remote CVE-local, weak password:SSH:456

Network layer WiFi No encryption

Perception layer light, lightness sensor, ZigBee protocol No encryption, Replay attack

Table 6.1: IoT information

Chapter 6. Penetration Testing for Internet of Things and Its Automation 79

6.4.2 BDI Agent

In BDI agents, the default privilege is none, and the initial goal is root privilege in

the application layer or control of the IoT. Plans are defined to probe information

and attacks on three layers agents based on the PT for IoT, described in the previous

section. For example, the BDI agent can probe OS type, port, service, vulnerability

information, network type and perform a password attack, sniffer attack, replay

attack and buffer overflow attack on three layers. The simulation experiment was

achieved by Jason’s internal actions, which are askAll and tell.

6.4.3 Simulation

A failed attack on the application layer was assumed. The attack on the network

and perception layer successfully showed the difference between the traditional and

current PT system for IoT. The basic information in the three layers was successfully

obtained, including OS type, ports, services, network type, network security and

vulnerabilities. The process of PT for IoT by the BDI agent can be observed in

Figure 6.3. Moreover, the BDI agent was successful in breaking the SSH password

and obtaining the users privilege. However, it failed to perform a local buffer overflow

attack to get root privilege. The BDI agent successfully performed a sniffer attack

due to the lack of security protection over each layer’s information transmission.

This resulted in the necessary information being gained regarding the light sensor

and light control instructions. Figure 6.4 shows the information collected by the BDI

agent that was stored in the belief set.

Figure 6.5 shows the process of information transmission in the network layer.

The command ’turn on the light’ and the light sensor information were transmitted

between the application and the network layer, which is exhibited in the belief set

of the network layer. Basic information and the value from the perception layer

are contained within the belief set of the application layer agent displayed in Figure

6.6. In the simulation, the value of the light sensor is 40. In the perception layer,

two agents represent light and light sensors. The BDI agent can perform the replay

attack according to the light sensor information and light control instructions, as

80 Ge Chu

Figure 6.3: The process of PT for IoT by BDI agent

Chapter 6. Penetration Testing for Internet of Things and Its Automation 81

Figure 6.4: The belief set of BDI agent

82 Ge Chu

Figure 6.5: The belief set of network layer agent

shown by the belief set of node 1 and node 2 displayed in Figure 6.7 and Figure 6.8.

Chapter 6. Penetration Testing for Internet of Things and Its Automation 83

Figure 6.6: The belief set of application layer agent

84 Ge Chu

Figure 6.7: The belief set of Node 1

Figure 6.8: The belief set of Node 2

Chapter 6. Penetration Testing for Internet of Things and Its Automation 85

6.5 Summary

This chapter considered the IoT security features and proposed a PT methodology for

IoT. Its automation was achieved based on the BDI model. A simulated experiment

in Jason was used to verify its feasibility.

Chapter 7

Experiments and Evaluation

7.1 Introduction

This chapter describes the performance of the BDI model in a real environment.

The BDI model was much faster than manual PT. In addition, the BDI model was

superior to the other approaches in regard to automation, real-time, uncertainty,

dynamic and scaling.

7.2 Experiments

For the performance analysis and evaluation, the proposed BDI model was tested in a

real environment. The experiment consisted of a Kali Linux machine as the attacker

agent and three target machines: Windows XP Service Pack 3, Windows 7 Service

Pack 1 and Metasploitable2 Linux. Metasploitable2 is a virtual machine based on

Ubuntu Linux that is designed to test common security vulnerabilities. For the ex-

periment, the BDI model was implemented using PROFETA [27], a Python tool for

programming autonomous systems using a declarative approach. PROFETA is a for-

mal language for creating BDI software agents, which is mainly used in autonomous

agents. One of the features of PROFETA is that it combines an object-oriented

paradigm and a declarative paradigm. A PROFETA program can be implemented

86

Chapter 7. Experiments and Evaluation 87

Implementation of a PROFETA program
1: Import PROFETA libraries
2: Define beliefs, goals and sensors as classes
3: Define actions as classes and override the execute() methods
4: Define rules using declarative syntax
5: Instantiate the engine
6: Run the engine

Table 7.1: Implementation of a PROFETA program
[27]

Name Description
port(Belief) represents open port information
ostype(Belief) represents operating system information
privilege(Belief) represents privilege information
password(Belief) represents password information
vul(Belief) represents vulnerability information
application(Belief) represents application information

Table 7.2: Beliefs used in the experiment

using the steps shown in Table 7.1.

To ensure connectivity, all experimental machines were in the same local area

network. Figure 7.1 shows the network topology of the experiment. The target’s

response was saved in the form of a file. In other words, the attacker agent could

obtain the response of the target by reading the file. The beliefs were defined as

classes to represent the information, states or response from targets, or environment,

which trigger events to carry out actions. Table 7.2 shows the beliefs used in the

experiment, which are necessary for PT.

The action space was based on Metasploit since it provides a large number of

exploits and payloads for different operating systems. The attack actions and sensor

actions were defined as classes to carry out the port scan, OS identification, password

88 Ge Chu

Figure 7.1: Network topology

Chapter 7. Experiments and Evaluation 89

Name Description
scanport(Action) Scan port, OS identification
check ms17010(Action) Determine if the vulnerability MS17010 exists
determine ms17010(Action) Obtain information from check MS17010 log file
ms17010 xp(Action) Attack Windows XP by MS17010 vulnerability
attack result ms17010 xp(Action) Determine the result of MS17010 attack on Windows XP
ms17010 win7(Action) Attack Windows 7 by MS17010 vulnerability
attack result ms17010 win7(Action) Determine the result of MS17010 attack on Windows 7
ssh password attack(Action) Crack SSH password
attack result ssh password attack(Action) Determine the result of SSH password attack
irc attack(Action) Attack by IRC vulnerability
attack result irc attack(Action) Determine the result of IRC attack
onto input(Action) Input information into an ontology
onto get(Action) Get information from an ontology
syncReasoner(Action) Run reasoning in an ontology

Table 7.3: The description of the attacker agent behaviour

attacks and buffer overflow attacks as well as to determine corresponding results. In

addition, two actions were used to exchange information between the BDI model and

ontology. The description of the attacker agent’s behaviour is shown in Table 7.3.

PROFETA uses declarative language to express the behaviour of agents as a set

of plans. The declarative syntax for the behaviour of an agent is described below:

Event/Condition / [setofActions]

The event can be a belief or a goal to trigger specific plans. The condition refers

to a set of pre-conditions, while the actions can be goals or a user-defined set of

actions. The goal was defined for the BDI agent to obtain root privilege of targets

or a set of plans to cover the whole PT process. The plans are shown below:

Define r u l e s

+s t a r t () >> [s canport () , onto input () , syncReasoner () ,

onto ge t ()]

+port (”445”) >> [check ms17010 () , determine ms17010 ()]

+vul (”ms17010”) / ostype (”windowsxp”) >>[ms17010 xp () ,

a t tack r e su l t ms17010 xp ()]

90 Ge Chu

+vul (”ms17010”) / ostype (”windows7”) >>[ms17010 win7 () ,

a t tack re su l t ms17010 win7 ()]

+port (”22”) >> [s sh pas sword at tack () ,

a t t a c k r e s u l t s s h p a s s w o r d a t t a c k ()]

+port (”6667”) >> [i r c a t t a c k () , a t t a c k r e s u l t i r c a t t a c k ()]

+p r i v i l e g e (” root ”) >> [show l ine (”we got root ”)]

The proposed PT ontology was used to store targets or environmental informa-

tion, and relations between targets and vulnerabilities. The collected target infor-

mation was inserted into the ontology through onto input action. New knowledge

was obtained after SWRL-based reasoning and could determine the strategy of at-

tacks. SWRL rules are more suitable for expressing some common sense knowledge

of PT than the plans of the BDI model. Also, it is easier to express vulnerability

chains based on the relations between vulnerabilities. The new knowledge obtained

by SWRL-based reasoning was passed into the BDI model through the onto get ac-

tion to trigger new BDI rules. In the experiment, the characteristic of relations

isSameSubnet was defined as symmetric, so as to represent the common sense of

the subnet. Thus, it was easy to determine the connection relations between the

attacker and targets based on SWRL Rule 3. This new knowledge helped attackers

test more targets. For the experiment, Linux, Windows XP and Windows 7 were on

the same network. By default, the attacker agent could connect to one of the three

targets. Based on SWRL-based ontology inference, the new knowledge showed that

the attacker could connect to the other two targets. The relation update between

Attacker 1 and Target 2 is shown in Figure 7.2.

Rule-3:

isConnected(attacker1, ?x)
∧

isSameSubnet(?x, ?y)

→ isConnected(attacker1, ?y)

Chapter 7. Experiments and Evaluation 91

Figure 7.2: The relation update between attacker 1 and target 2

92 Ge Chu

7.2.1 Attack on Linux

Figure 7.3 shows the information gathering from Metasploitable2 Linux. To simplify

the attack, only the ports 22, 445 and 6667 were inserted into the belief set after

the information-gathering action in the experiment. The attacker agent then tried

to carry out an SSH password attack, MS17-010 attack and IRC attack. The result

shows that only the IRC attack was successful and obtained the root privilege of the

target. The process of attacking Metasploitable2 Linux is shown in Figure 7.4.

7.2.2 Attack on Windows

The BDI model was able to attack Windows XP by using the MS17-010 vulnerability.

Firstly, it was able to learn from information-gathering actions that ports 135, 139

and 445 were open and that Windows XP ran on the target. To simplify the attack,

only the port 445 and operating system were inserted into the belief set. Then, the

model tried to determine whether MS17-010 vulnerability existed on the target and

performed the MS17-010 attack. The result shows that the attack was successful

and obtained the root privilege of the target. The process of attacking the Windows

XP machine is shown in Figure 7.5.

Similarly, the BDI model was able to attack Windows 7 by using the MS17-010

vulnerability. The process of attacking Windows 7 was similar to Windows XP, as

shown in Figure 7.6.

Chapter 7. Experiments and Evaluation 93

Figure 7.3: Experiment: Information gathering from Linux

94 Ge Chu

Figure 7.4: Experiment: The process of attacking Metasploitable2 linux

Chapter 7. Experiments and Evaluation 95

Figure 7.5: Experiment: The process of attacking Windows XP

96 Ge Chu

Figure 7.6: Experiment: The process of attacking Windows 7

Chapter 7. Experiments and Evaluation 97

7.3 Evaluation

A range of metrics was used to assess the performance of the proposed automated

PT system, such as problem size, number of hosts in exposure, genetic generation,

training epoch, network state, number of objectives, action model, AI engine, con-

nectivity and vulnerabilities [65]. However, it is impossible to completely compare

related studies because the test environments are different. A large number of stud-

ies [93, 86, 4, 94, 92, 34, 43] used their own test targets to assess the performance of

their proposed solutions. Also, it is difficult to know the details of the test targets

used in each solutions. For example, a proposed automated PT system can attack

some targets easily, but not others. This makes the performance relevant only to the

model proposed in the respective study as there is no standardised basis for testing.

The process of automatic PT is dynamic and uncertain, while the probability of

success depends on the model and knowledge base. After a belief triggers a plan, the

BDI model executes the plan sequentially. If it fails to execute one plan, it goes back

to the previous step to execute another one. The model stops if beliefs can trigger

no plans, or all plans have been executed but do not realise the initial goal. Human

experts can adjust the priority of the plans based on their experience to improve the

model’s efficiency.

To highlight the performance enhancement of the BDI model, an evaluation was

carried out to compare the time consumption between the BDI model and manual PT

using the same target and attack. Usually, the BDI model requires a few seconds to

perform an attack, while it takes a few minutes to execute an attack manually. In the

experiment to attack Metasploitable2 Linux, for example, a series of configurations

was required to carry out a buffer overflow attack, password attack and port scan,

in Metasploit, including attack payload, target IP address, port and attack type.

It usually takes a few minutes to complete each configuration manually. However,

since all actions are pre-defined, the BDI model only took a few seconds to perform

similar actions. Table 7.4 shows the time taken for each action by the BDI model

and PT to attack Metasploitable2 Linux.

Human experts need at least a few minutes or more to decide what action to per-

98 Ge Chu

Action BDI model Manual
Port scan 9 18
SSH password attack 22 109
IRC attack 21 52
Total 52 179

Table 7.4: Time-consumed by the BDI model and PT (Seconds)

form, while the BDI model completes the decision almost instantaneously. Therefore,

the BDI model is much faster than manually performing a similar PT task.

The BDI model can perform real-time automated PT in an uncertain, dynamic

environment. Chapter 3 mentioned the limitations of attack trees, attack graphs,

PDDL-based planning and POMDP in the automation of PT. In industry, Metas-

ploit supports automation using resource scripts [51]. These scripts contain a set of

console commands that are executed when the script load. However, this approach

only executes pre-defined commands in order and cannot deal with uncertainty and

dynamic scenarios. Table 7.5 shows the comparison of the BDI model with these

approaches.

Approaches Automation Real-time Uncertainty Dynamic Scaling

BDI model Yes Yes Yes Yes Good

Attack tree [90, 111, 77] No No No No Poor

Attack graph [5, 50, 2, 106, 28, 53] No No No No Poor

PDDL based planning [8, 35, 79, 86, 25] No No No No Good

POMDP [88, 57, 87] Yes Yes Yes Yes Poor

Metasploit Resource Scripts [51] Yes No No No Good

Table 7.5: Comparison between the BDI model with other approaches

Chapter 7. Experiments and Evaluation 99

7.4 Summary

In this chapter, the proposed BDI-based automated PT model was tested in a real

environment. The BDI model was implemented using the PROFETA and SWRL

rule-based ontology, which performed automated PT on Linux, Windows XP and

Windows 7. It is difficult to completely compare related studies because the test en-

vironments were different, and there is no standardised basis for testing. This chap-

ter presented an evaluation to compare the time consumption of the BDI model and

manual PT. Also, it was possible to compare the BDI model with other approaches,

namely automation, real-time, uncertainty, dynamic and scaling. The result illus-

trated that the performance of the BDI model was much better than manual PT

and other approaches. It was also found that the proposed BDI model could per-

form more comprehensive and complex automated attacks on various targets by

expanding the action space and plan.

Chapter 8

Conclusions

8.1 Introduction

This chapter concludes by summarising the research carried out and the main con-

tributions, as well as addresses some directions for future research.

8.2 Summary

This thesis has achieved real-time automation of PT by using the BDI model and

OntoPT. The BDI model can deal with problems such as interactivity, dynamic,

uncertainty and complexity in real-world scenarios. The ontology is designed for PT

based on SWRL rules for knowledge reuse and reasoning. Based on OntoPT, the

BDI model can identify relationships between the targets and the vulnerabilities and

enhance its reasoning ability. Moreover, this thesis has proposed a PT methodology

for IoT and its automation based on the BDI model to evaluate IoT security. The

results of a real experiment, including Windows XP, Windows 7 and Linux, illustrate

that the performance of the BDI model is better than the manual and existing ap-

proaches. The BDI model can achieve more comprehensive and complex automated

attacks on various targets by expanding the action space and plan.

100

Chapter 8. Conclusions 101

8.3 Main Findings

The main findings of this thesis are that real-time automation of PT can be achieved

by:

• Using the BDI model to deal with interactive, dynamic, uncertain and complex

real-world scenarios of PT.

• Using the BDI to model the state space, action space and execution in PT

activity.

• Creating an ontology with SWRL rules to improve the reasoning ability and

enable knowledge reusability within PT scenarios

• Analysing the characteristics of IoT security and using a BDI model to evaluate

its security.

8.4 Future Work

There are certain limitations to this study. The proposed BDI-based automated PT

model’s performance depends on whether the knowledge base and action space cover

enough scenarios, which could be time-consuming for human testers to construct

manually. It is also a significant challenge to transform human experience into a

knowledge base, because PT experience does not take the form of structured data.

The biggest difficulty with automated PT is that the action space and state space are

theoretically infinite. Reinforcement learning seems to be a potential solution that

can learn how to interact with the environment based on maximising the cumulative

rewards. By using artificial neural networks, reinforcement learning can deal with

large state space. Further research could also investigate the combination of human

knowledge, neural networks and reinforcement learning, which is a potential research

direction for automated PT.

Bibliography

[1] M Ugur Aksu, Kemal Bıçakçı, and Enes Altuncu. A first look at the usability

of openvas vulnerability scanner. In Workshop on Usable Security (USEC)

2019. NDSS, 2019.

[2] Mohammed Alhomidi and Martin Reed. Risk assessment and analysis through

population-based attack graph modelling. In World Congress on Internet Se-

curity (WorldCIS-2013), pages 19–24. IEEE, 2013.

[3] Lee Allen, Tedi Heriyanto, and Shakeel Ali. Kali Linux–Assuring security by

penetration testing. Packt Publishing Ltd, 2014.

[4] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-

based network vulnerability analysis. In Proceedings of the 9th ACM Confer-

ence on Computer and Communications Security, pages 217–224. ACM, 2002.

[5] Michael Lyle Artz. Netspa: A network security planning architecture. PhD

thesis, Massachusetts Institute of Technology, 2002.

[6] Jay Beale, Haroon Meer, Charl van der Walt, and Renaud Deraison. Nessus

Network Auditing: Jay Beale Open Source Security Series. Elsevier, 2004.

[7] AG Bernardo Damele and M Stampar. Sqlmap: automatic sql injection and

database takeover tool, 2012.

[8] Mark S Boddy, Johnathan Gohde, Thomas Haigh, and Steven A Harp. Course

of action generation for cyber security using classical planning. In ICAPS,

pages 12–21, 2005.

102

Bibliography 103

[9] Olivier Bodenreider. The unified medical language system (umls): integrating

biomedical terminology. Nucleic acids research, 32(suppl 1):D267–D270, 2004.

[10] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming

multi-agent systems in AgentSpeak using Jason, volume 8. John Wiley & Sons,

2007.

[11] Michael Bratman. Intention, plans, and practical reason, volume 10. Harvard

University Press Cambridge, MA, 1987.

[12] Paul Bremner, Louise A Dennis, Michael Fisher, and Alan F Winfield. On

proactive, transparent, and verifiable ethical reasoning for robots. Proceedings

of the IEEE, 107(3):541–561, 2019.

[13] James Broad and Andrew Bindner. Hacking with Kali: practical penetration

testing techniques. Newnes, 2013.

[14] Paolo Busetta, Nicholas Howden, Ralph Rönnquist, and Andrew Hodgson.

Structuring bdi agents in functional clusters. In International Workshop on

Agent Theories, Architectures, and Languages, pages 277–289. Springer, 1999.

[15] Franco Callegati, Walter Cerroni, and Marco Ramilli. Man-in-the-middle at-

tack to the https protocol. IEEE Security & Privacy, 7(1):78–81, 2009.

[16] SU Jin-Shu HAN Wen-Bao CHEN Feng, ZHANG Yi. Two formal analyses of

attack graphs. Journal of Software, 21:838–848, 2010.

[17] Kim On Chin, Kim Soon Gan, Rayner Alfred, Patricia Anthony, and Dick-

son Lukose. Agent architecture: An overviews. Transactions on science and

technology, 1(1):18–35, 2014.

[18] Ankur Chowdary, Dijiang Huang, Jayasurya Sevalur Mahendran, Daniel

Romo, Yuli Deng, and Abdulhakim Sabur. Autonomous security analysis and

penetration testing.

104 Ge Chu

[19] Sharon Conheady. Social engineering in IT security: Tools, tactics, and tech-

niques. McGraw-Hill Education Group, 2014.

[20] Frédéric Cuppens and Rodolphe Ortalo. Lambda: A language to model a

database for detection of attacks. In International Workshop on Recent Ad-

vances in Intrusion Detection, pages 197–216. Springer, 2000.

[21] Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A survey.

IEEE Transactions on industrial informatics, 10(4):2233–2243, 2014.

[22] Matthew Denis, Carlos Zena, and Thaier Hayajneh. Penetration testing: Con-

cepts, attack methods, and defense strategies. In 2016 IEEE Long Island

Systems, Applications and Technology Conference (LISAT), pages 1–6. IEEE,

2016.

[23] FPM Dignum, David Kinny, and Liz Sonenberg. From desires, obligations and

norms to goals. Cognitive science quarterly, 2(3-4):407–430, 2002.

[24] M DInverno, D Kinny, M Luck, and M Wooldridge. A formal specification

of dmars. intelligent agents iv: Proc. In Fourth International Workshop on

Agent Theories, Architectures and Languages. Singh, MP and Rao, AS and

Wooldridge, M. Springer-Verlag, pages 155–176.

[25] Dominik Elsbroek, Daniel Kohlsdorf, Dominik Menke, and Lars Meyer. Fidius:

Intelligent support for vulnerability testing. In Working Notes for the 2011

IJCAI Workshop on Intelligent Security (SecArt), page 58, 2011.

[26] Alexandre Miguel Ferreira and Harald Kleppe. Effectiveness of automated

application penetration testing tools, 2011.

[27] Loris Fichera, Fabrizio Messina, Giuseppe Pappalardo, and Corrado Santoro.

A python framework for programming autonomous robots using a declarative

approach. Science of Computer Programming, 139:36–55, 2017.

Bibliography 105

[28] Laurent Gallon and Jean-Jacques Bascou. Cvss attack graphs. In 2011 Sev-

enth International Conference on Signal Image Technology & Internet-Based

Systems, pages 24–31. IEEE, 2011.

[29] Gang Gan, Zeyong Lu, and Jun Jiang. Internet of things security analysis. In

2011 international conference on internet technology and applications, pages

1–4. IEEE, 2011.

[30] Jian-bo Gao, Bao-wen Zhang, Xiao-hua Chen, and Zheng Luo. Ontology-

based model of network and computer attacks for security assessment. Journal

of Shanghai Jiaotong University (Science), 18(5):554–562, 2013.

[31] Michael P Georgeff. Reasoning About Actions & Plans. Elsevier, 2012.

[32] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory

and practice. Elsevier, 2004.

[33] Mohamed C Ghanem and Thomas M Chen. Reinforcement learning for intel-

ligent penetration testing. In 2018 Second World Conference on Smart Trends

in Systems, Security and Sustainability (WorldS4), pages 185–192. IEEE, 2018.

[34] Nirnay Ghosh and SK Ghosh. An intelligent technique for generating minimal

attack graph. In First Workshop on Intelligent Security (Security and Artificial

Intelligence)(SecArt09). Citeseer, 2009.

[35] Nirnay Ghosh and Soumya K Ghosh. A planner-based approach to generate

and analyze minimal attack graph. Applied Intelligence, 36(2):369–390, 2012.

[36] Nicola Guarino. Formal ontology, conceptual analysis and knowledge repre-

sentation. International journal of human-computer studies, 43(5-6):625–640,

1995.

[37] Simon Hansman and Ray Hunt. A taxonomy of network and computer attacks.

Computers & Security, 24(1):31–43, 2005.

106 Ge Chu

[38] Kevin P Haubris and Joshua J Pauli. Improving the efficiency and effectiveness

of penetration test automation. In 2013 10th International Conference on

Information Technology: New Generations, pages 387–391. IEEE, 2013.

[39] Liwen He and Nikolai Bode. Network penetration testing. In EC2ND 2005,

pages 3–12. Springer, 2006.

[40] Almut Herzog, Nahid Shahmehri, and Claudiu Duma. An ontology of infor-

mation security. International Journal of Information Security and Privacy

(IJISP), 1(4):1–23, 2007.

[41] Pete Herzog. Open-source security testing methodology manual. Institute for

Security and Open Methodologies (ISECOM), 2003.

[42] Jörg Hoffmann. The metric-ff planning system: Translating“ignoring delete

lists”to numeric state variables. Journal of artificial intelligence research,

20:291–341, 2003.

[43] Jörg Hoffmann. Simulated penetration testing: From” dijkstra” to” turing

test++”. In Twenty-Fifth International Conference on Automated Planning

and Scheduling, 2015.

[44] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet, Benjamin

Grosof, Mike Dean, et al. Swrl: A semantic web rule language combining owl

and ruleml. W3C Member submission, 21(79):1–31, 2004.

[45] Z. Hu, R. Beuran, and Y. Tan. Automated penetration testing using deep

reinforcement learning. In 2020 IEEE European Symposium on Security and

Privacy Workshops (EuroS PW), pages 2–10, 2020.

[46] Marcus J Huber. Jam: A bdi-theoretic mobile agent architecture. In Pro-

ceedings of the third annual conference on Autonomous Agents, pages 236–243.

ACM, 1999.

Bibliography 107

[47] Nwokedi Idika and Bharat Bhargava. Extending attack graph-based security

metrics and aggregating their application. IEEE Transactions on dependable

and secure computing, 9(1):75–85, 2010.

[48] Nitin Indurkhya and Fred J Damerau. Handbook of natural language processing,

volume 2. CRC Press, 2010.

[49] Kyle Ingols, Matthew Chu, Richard Lippmann, Seth Webster, and Stephen

Boyer. Modeling modern network attacks and countermeasures using attack

graphs. In 2009 Annual Computer Security Applications Conference, pages

117–126. IEEE, 2009.

[50] Sushil Jajodia, Steven Noel, and Brian Oberry. Topological analysis of network

attack vulnerability. In Managing Cyber Threats, pages 247–266. Springer,

2005.

[51] Nipun Jaswal. Mastering Metasploit. Packt Publishing Ltd, 2016.

[52] David Kennedy, Jim O’gorman, Devon Kearns, and Mati Aharoni. Metasploit:

the penetration tester’s guide. No Starch Press, 2011.

[53] Marjan Keramati, Ahmad Akbari, and Mahsa Keramati. Cvss-based security

metrics for quantitative analysis of attack graphs. In ICCKE 2013, pages

178–183. IEEE, 2013.

[54] Benjamin Khoo. Rfid as an enabler of the internet of things: Issues of security

and privacy. In 2011 International Conference on Internet of Things and 4th

International Conference on Cyber, Physical and Social Computing, pages 709–

712. IEEE, 2011.

[55] Kevin Knight, Ishwar Chander, Matthew Haines, Vasileios Hatzivassiloglou,

Eduard Hovy, Masayo Iida, Steve K Luk, Richard Whitney, and Kenji Yamada.

Filling knowledge gaps in a broad-coverage machine translation system. arXiv

preprint cmp-lg/9506009, 1995.

108 Ge Chu

[56] Benjamin A Kuperman, Carla E Brodley, Hilmi Ozdoganoglu, TN Vijaykumar,

and Ankit Jalote. Detection and prevention of stack buffer overflow attacks.

Communications of the ACM, 48(11):50–56, 2005.

[57] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-

based pomdp planning by approximating optimally reachable belief spaces. In

Robotics: Science and systems, volume 2008. Zurich, Switzerland., 2008.

[58] Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in python

with automatic classification and high level constructs for biomedical ontolo-

gies. Artificial intelligence in medicine, 80:11–28, 2017.

[59] Douglas B Lenat and Ramanathan V Guha. Building large knowledge-based

systems; representation and inference in the Cyc project. Addison-Wesley

Longman Publishing Co., Inc., 1989.

[60] Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project

guide to network discovery and security scanning. Insecure, 2009.

[61] Drew Malzahn, Zachary Birnbaum, and Cimone Wright-Hamor. Automated

vulnerability testing via executable attack graphs. In 2020 International Con-

ference on Cyber Security and Protection of Digital Services (Cyber Security),

pages 1–10. IEEE, 2020.

[62] MarketsandMarkets. Penetration testing market by component. 2020.

[63] Mario Martin and Hector Geffner. Learning generalized policies from planning

examples using concept languages. Applied Intelligence, 20(1):9–19, 2004.

[64] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,

Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the planning domain

definition language, 1998.

[65] Dean Richard McKinnel, Tooska Dargahi, Ali Dehghantanha, and Kim-

Kwang Raymond Choo. A systematic literature review and meta-analysis

Bibliography 109

on artificial intelligence in penetration testing and vulnerability assessment.

Computers & Electrical Engineering, 75:175–188, 2019.

[66] Peter Mell, Karen Scarfone, and Sasha Romanosky. Common vulnerability

scoring system. IEEE Security & Privacy, 4(6):85–89, 2006.

[67] Daniel Miessler. Securing the internet of things: Mapping attack surface areas

using the owasp iot top 10. In RSA Conference, 2015.

[68] George A Miller. Wordnet: a lexical database for english. Communications of

the ACM, 38(11):39–41, 1995.

[69] Mahin Mirjalili, Alireza Nowroozi, and Mitra Alidoosti. A survey on web

penetration test. Advances in Computer Science: an International Journal,

3(6):107–121, 2014.

[70] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[71] George E Monahan. State of the arta survey of partially observable markov

decision processes: theory, models, and algorithms. Management science,

28(1):1–16, 1982.

[72] S Morgan. Global cybersecurity spending predicted to exceed

1trillionfrom2017− 2021.CybercrimeMagazine, Jun, 2019.

[73] Steve Morgan. Cybersecurity talent crunch to create 3.5 million unfilled jobs globally

by 2021. Cybercrime Magazine, 2019.

[74] Francois Mouton, Louise Leenen, and Hein S Venter. Social engineering attack

examples, templates and scenarios. Computers & Security, 59:186–209, 2016.

[75] Mark A Musen et al. The protégé project: a look back and a look forward. AI

matters, 1(4):4, 2015.

110 Ge Chu

[76] Chris Nickerson, Dave Kennedy, E Smith, A Rabie, S Friedli, J Searle, B Knight,

C Gates, and J McCray. Penetration testing execution standard, 2014.

[77] Zhu Ning, Chen Xin-yuan, Zhang Yong-fu, and Xin Si-yuan. Design and application

of penetration attack tree model oriented to attack resistance test. In 2008 Interna-

tional Conference on Computer Science and Software Engineering, volume 3, pages

622–626. IEEE, 2008.

[78] Duane Norton. An ettercap primer. SANS Institute InfoSec Reading Room, 5, 2004.

[79] Jorge Lucangeli Obes, Carlos Sarraute, and Gerardo Richarte. Attack planning in

the real world. arXiv preprint arXiv:1306.4044, 2013.

[80] Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel. Mulval: A logic-

based network security analyzer. In USENIX security symposium, volume 8, pages

113–128. Baltimore, MD, 2005.

[81] Yusuf Perwej, Firoj Parwej, Mumdouh Mirghani Mohamed Hassan, and Nikhat

Akhtar. The internet-of-things (iot) security: A technological perspective and re-

view. International Journal of Scientific Research in Computer Science, Engineering

and Information Technology (IJSRCSEIT), ISSN, pages 2456–3307, 2019.

[82] John Pinkston, Jeffrey Undercoffer, Anupam Joshi, and Timothy Finin. A target-

centric ontology for intrusion detection. In In proceeding of the IJCAI-03 Workshop

on Ontologies and Distributed Systems. Acapulco, August 9 th. Citeseer, 2004.

[83] Anand S Rao and Michael P Georgeff. Modeling rational agents within a bdi-

architecture. KR, 91:473–484, 1991.

[84] Rajesh PN Rao. Decision making under uncertainty: a neural model based on par-

tially observable markov decision processes. Frontiers in computational neuroscience,

4:146, 2010.

[85] Andrs Riancho. w3af-web application attack and audit framework. World Wide Web

electronic publication, 21, 2011.

Bibliography 111

[86] Mark Roberts, Adele Howe, Indrajit Ray, Malgorzata Urbanska, Zinta S Byrne, and

Janet M Weidert. Personalized vulnerability analysis through automated planning.

In Working Notes for the 2011 IJCAI Workshop on Intelligent Security (SecArt),

page 50, 2011.

[87] Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. Pomdps make better hackers:

Accounting for uncertainty in penetration testing. In Twenty-Sixth AAAI Conference

on Artificial Intelligence, 2012.

[88] Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. Penetration testing== pomdp

solving? arXiv preprint arXiv:1306.4714, 2013.

[89] Carlos Sarraute, Gerardo Richarte, and Jorge Lucángeli Obes. An algorithm to find

optimal attack paths in nondeterministic scenarios. In Proceedings of the 4th ACM

workshop on Security and artificial intelligence, pages 71–80, 2011.

[90] Bruce Schneier. Attack trees. Dr. Dobbs journal, 24(12):21–29, 1999.

[91] Sugandh Shah and Babu M Mehtre. An overview of vulnerability assessment and

penetration testing techniques. Journal of Computer Virology and Hacking Tech-

niques, 11(1):27–49, 2015.

[92] Blake Shepard, Cynthia Matuszek, C Bruce Fraser, William Wechtenhiser, David

Crabbe, Zelal Güngördü, John Jantos, Todd Hughes, Larry Lefkowitz, Michael Wit-

brock, et al. A knowledge-based approach to network security: applying cyc in

the domain of network risk assessment. UMBC Computer Science and Electrical

Engineering Department Collection, 2005.

[93] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M

Wing. Automated generation and analysis of attack graphs. In Proceedings 2002

IEEE Symposium on Security and Privacy, pages 273–284. IEEE, 2002.

[94] Dorin Shmaryahu, G Shani, J Hoffmann, and M Steinmetz. Constructing plan trees

for simulated penetration testing. In The 26th international conference on automated

planning and scheduling, volume 121, 2016.

112 Ge Chu

[95] Walidatush Sholihah, Sangga Pripambudi, and Anggi Mardiyono. Log event manage-

ment server menggunakan elastic search logstash kibana (elk stack). JTIM: Jurnal

Teknologi Informasi dan Multimedia, 2(1):12–20, 2020.

[96] Kai Simon, Cornelius Moucha, and Jörg Keller. Contactless vulnerability analysis

using google and shodan. J. UCS, 23(4):404–430, 2017.

[97] Yaroslav Stefinko, Andrian Piskozub, and Roman Banakh. Manual and automated

penetration testing. benefits and drawbacks. modern tendency. In 2016 13th Interna-

tional Conference on Modern Problems of Radio Engineering, Telecommunications

and Computer Science (TCSET), pages 488–491. IEEE, 2016.

[98] Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels, Adam G

Pennington, and Cody B Thomas. Mitre att&ck: Design and philosophy. Technical

report, 2018.

[99] Laura P Swiler and Cynthia Phillips. A graph-based system for network-vulnerability

analysis. Technical report, Sandia National Labs., Albuquerque, NM (United States),

1998.

[100] Steven J Templeton and Karl Levitt. A requires/provides model for computer at-

tacks. In Proceedings of the 2000 workshop on New security paradigms, pages 31–38,

2001.

[101] Terry Tidwell, Ryan Larson, Kenneth Fitch, and John Hale. Modeling internet

attacks. In Proceedings of the 2001 IEEE Workshop on Information Assurance and

security, volume 59. United States Military Academy West Point, NY, 2001.

[102] Andrew van der Stock, Brian Glas, and T Gigler. Owasp top 10 2017. The Ten Most

Critical Web Application Security Risks, 2017.

[103] HS Venter and Jan HP Eloff. A taxonomy for information security technologies.

Computers & Security, 22(4):299–307, 2003.

Bibliography 113

[104] John Wack, Miles Tracy, and Murugiah Souppaya. Nist special publication 800-

42,guideline on network security testing. Computer Security Division, National In-

stitute of Standards and Technology, pages 1–92, 2003.

[105] Ju An Wang and Minzhe Guo. Ovm: an ontology for vulnerability management. In

Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelli-

gence Research: Cyber Security and Information Intelligence Challenges and Strate-

gies, page 34. ACM, 2009.

[106] Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajodia. An attack

graph-based probabilistic security metric. In IFIP Annual Conference on Data and

Applications Security and Privacy, pages 283–296. Springer, 2008.

[107] Jonathan D Weiss. A system security engineering process. In Proceedings of the 14th

National Computer Security Conference, volume 249, pages 572–581, 1991.

[108] Michael Wooldridge. An introduction to multiagent systems. John Wiley & Sons,

2009.

[109] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and prac-

tice. The knowledge engineering review, 10(2):115–152, 1995.

[110] H̊akan LS Younes and Michael L Littman. Ppddl1. 0: The language for the proba-

bilistic part of ipc-4. In Proc. International Planning Competition, 2004.

[111] Jianming Zhao, Wenli Shang, Ming Wan, and Peng Zeng. Penetration testing au-

tomation assessment method based on rule tree. In 2015 IEEE International Con-

ference on Cyber Technology in Automation, Control, and Intelligent Systems (CY-

BER), pages 1829–1833. IEEE, 2015.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Declaration
	Introduction
	What is Penetration Testing?
	Manual VS Automated
	Research Question
	Motivation
	Contribution
	Thesis Overview
	Summary

	Preliminaries
	Introduction
	Introduction to Penetration Testing
	Penetration Testing Standards
	Penetration Testing Process
	Taxonomy of Attacks
	Penetration Testing Tools

	Introduction to Agent Architectures
	Agent Architectures
	BDI Agent Architecture

	Ontology
	Summary

	Related Work
	Introduction
	Attack Tree
	Attack Graph
	PDDL-based Attack Planning
	POMDP Model for Penetration Testing
	Ontology for Information Security
	Summary

	BDI Architecture for Penetration Testing
	Introduction
	Analysis of Penetration Testing Problem
	Environment
	State
	Action
	Decision Making
	Goal

	BDI Architecture for Penetration Testing
	Agent World
	Action Space
	BDI Model

	Simulation
	Target Agent
	BDI Agent
	Simulation Results

	Knowledge Base
	Reporting
	Summary

	Ontology for BDI-based Automation of Penetration Testing
	Introduction
	Ontology Design
	SWRL and Reasoning
	Automation
	Interaction between a BDI Model and an Ontology
	Automation Process

	Attack Scenario
	Summary

	Penetration Testing for Internet of Things and Its Automation
	Introduction
	Security Issues in the Internet of Things
	Perception Layer Security
	Network Layer Security
	Application Layer Security

	Penetration Testing for IoT
	Information Gathering
	Analysis
	Exploitation
	Reporting

	Experiment
	IoT Target
	BDI Agent
	Simulation

	Summary

	Experiments and Evaluation
	Introduction
	Experiments
	Attack on Linux
	Attack on Windows

	Evaluation
	Summary

	Conclusions
	Introduction
	Summary
	Main Findings
	Future Work

	References

