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Abstract

WENO schemes are a popular class of shock-capturing schemes which adopt an 1 

adaptive-stencil approach to interpolation. WENO schemes rely on smoothness 2 

indicators to assess the relative smoothness of the solution within the sub-stencils. 3 

Computing these smoothness indicators is the most expensive operation in the 4 

WENO reconstruction procedure. In this paper, an efficient algorithm is proposed to 5 

compute these quantities without sacrificing the positivity property of the 6 

smoothness indicators. The proposed algorithm involves linear combinations of the 7 

undivided differences which can be computed efficiently in a recursive manner. 8 

This allows the computation of the smoothness indicators to be performed using 9 

significantly fewer floating-point operations compared to conventional 10 

implementations. Moreover, the proposed algorithm is simple to implement and 11 

involves fewer constants.  12 
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1 Introduction 13 

Hyperbolic conservation laws admit discontinuous solutions. Solving such problems numerically 14 

requires nonlinear reconstruction schemes, known as shock-capturing schemes, which introduce 15 

numerical dissipation to prevent the formation of spurious oscillations near sharp gradients. Weighted 16 

essentially non-oscillatory (WENO) schemes are one such class of high order shock-capturing 17 

schemes. Introduced by Liu, et al. [1], WENO schemes adopt an adaptive-stencil approach (as 18 

opposed to the fixed-stencil approach of linear schemes) by combining the reconstructions from 19 

several sub-stencils (subsets of a stencil) using weights which are determined based on the relative 20 

smoothness of the solution within each sub-stencil. This allows WENO schemes to eliminate 21 

contributions from sub-stencils containing discontinuities and, at the same time, to achieve the 22 

optimal order of accuracy on the stencil when the solution is smooth in all the sub-stencils. 23 

Key to achieving the optimal order of accuracy is the design of the sub-stencil smoothness indicator. 24 

The smoothness indicator proposed by Liu, et al. [1], though simple to compute, does not satisfy the 25 

requirement for optimal accuracy. Jiang and Shu [2] proposed a different smoothness indicator based 26 

on the cell average of the squares of derivatives which satisfy the requirement for optimal accuracy in 27 

regions away from critical points [3]. The Jiang-Shu smoothness indicators have since become the 28 

most popular choice of smoothness indicators. However, they are more expensive to compute 29 

compared to the Liu-Osher-Chan smoothness indicators, especially for high order WENO schemes. 30 

Since computing these quantities is the most demanding step in the WENO reconstruction procedure, 31 

overall computational efficiency could be vastly improved by speeding up this step. While much 32 

effort has been devoted to devise new smoothness indicators for better accuracy (e.g., [4-7]), the 33 

computational efficiency of such indicators has not received the nearly same attention. Notable 34 

exceptions include the works of Teng, et al. [8] and Baeza, et al. [9]. Teng, et al. [8] avoided WENO 35 

reconstructions altogether where the solution is deemed nearly uniform based on first order undivided 36 

differences. Baeza, et al. [9] introduced a set of efficient smoothness indicators for a (2ᵅ� − 1)th order 37 

WENO scheme using squared undivided differences of only the first and (2ᵅ� − 2)th orders. 38 
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Instead of introducing new smoothness indicators, this paper proposes a more efficient algorithm for 39 

computing the Jiang-Shu smoothness indicators, the most common choice in the community. The 40 

algorithm mimics the form of the Liu-Osher-Chan smoothness indicators in that it uses squared 41 

undivided differences up to (ᵅ� − 1)th order. The proposed algorithm is simpler-to-implement and 42 

requires fewer floating-point operations compared to conventional implementations. The paper is 43 

organized as follows: First, a review of the WENO reconstruction procedure is described along with a 44 

discussion on two common implementations of computing the Jiang-Shu smoothness indicators. 45 

Finally, the fast algorithm is derived and a comparison of the computational efficiency of the 46 

proposed algorithm is provided by counting the number of floating-point operations. 47 

 48 

2 Methodology 49 

2.1 Review of WENO scheme 50 

In the finite volume approach, the computational domain is discretized into non-overlapping control 51 

volumes (cells) and the solution is obtained in terms of cell averages. On a uniform grid, the ᵅ�th cell 52 

average ᵅ̅�� of a scalar function ᵅ�(ᵅ�) is defined as, 53 

 ᵅ̅�� = 1
Δᵅ�

� ᵅ�(ᵅ�) ᵃ�ᵅ�

��+� �⁄

��−� �⁄

, ᵅ� = 0,… , ᵃ� − 1 (1)

  

where Δᵅ� denotes the cell width, ᵅ�ᵅ� the cell centres and ᵅ�ᵅ�±1 2⁄ = ᵅ�ᵅ� ± Δᵅ�/2 the cell interface 54 

locations. Without loss of generality, let us consider the left-biased reconstruction of the cell averages 55 

at the cell interface ᵅ�ᵅ�+1 2⁄ . The right-biased reconstruction can be derived by symmetry. For a 56 

(2ᵅ� − 1)th order WENO scheme, the left-biased reconstruction ᵅ��+� �⁄
�  is computed on the stencil 57 

ᵊ��+� �⁄
� = {ᵅ� − ᵅ� + 1,… , ᵅ� + ᵅ� − 1}. ᵊ��+� �⁄

�  is split into ᵅ� overlapping sub-stencils ����+� �⁄
� =58 

{ᵅ� − ᵅ� + 1 + ᵅ�,… , ᵅ� + ᵅ�} each consisting of ᵅ� cells. The sub-stencil index ᵅ� runs from 0 to ᵅ� − 1.  59 

Each sub-stencil ����+� �⁄
�  yields an ᵅ�th order approximation ᵅ����+� �⁄

�  which can be computed as, 60 
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 ᵅ����+� �⁄
� = �M��

(�)ᵅ̅��−�+�+�+�

�−�

�=�
 (2)

  

using a reconstruction matrix M(�). The WENO reconstruction ᵅ��+� �⁄
�  is computed as a convex 61 

combination of ᵅ����+� �⁄
�  given below. 62 

 ᵅ��+� �⁄
� = � ᵱ��ᵅ����+� �⁄

�
�−�

�=�
 (3)

  

The nonlinear sub-stencil weights ᵱ�� in Eq. (3) are computed using the ideal weights ᵃ��
(�)

 smoothness 63 

indicators ᵃ�ᵃ��
(�)

 are as follows. 64 

 ᵱ�� =
ᵃ��

(�) �ᵃ�ᵃ��
(�) + ᵱ��

�
�

∑ ᵃ��
(�) �ᵃ�ᵃ��

(�) + ᵱ��
�

��−�
�=�

 (4)

  

The smoothness indicator proposed by Jiang and Shu [2] is given below. 65 

 ᵃ�ᵃ��
(�) = 1

Δᵅ�
� ��

ᵃ������+� �⁄
� (ᵅ�)
ᵃ�ᵅ�� Δᵅ���

��−�

�=�
 ᵃ�ᵅ�

��+� �⁄

��−� �⁄

 (5)

  

����+� �⁄
� (ᵅ�) in the above definition refers to the ᵅ�th order polynomial reconstructed on sub-stencil 66 

����+� �⁄
� . Computation of ᵃ�ᵃ��

(�)
 is usually implemented using the cell averages belonging to sub-stencil 67 

ᵅ� in the following form,  68 

 ᵃ�ᵃ��
(�) = � ᵃ�� ��ᵃ�����

(�) ᵅ̅��−�+�+�+�

�−�

�=�
�

��−�

�=�
 (6)

  

where ᵃ�� and ᵃ�����
(�)

 are constants. This is referred to as the compact implementation because when 69 

the polynomial ����+� �⁄
� (ᵅ�) in Eq. (5) is expressed in the basis of Hermite polynomials, the 70 

expressions for ᵃ�ᵃ��
(�)

 reduce to a compact form in terms of the modal coefficients [10-12]. Since 71 

ᵃ�ᵃ��
(�)

 is computed as a sum of squares, the compact implementation ensures its positivity, and this 72 
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property has been demonstrated to improve accuracy [13]. Despite its name, the compact 73 

implementation is computationally expensive. As the order of the WENO scheme increases, the 74 

number of sub-stencils increases and, the expressions for each ᵃ�ᵃ��
(�)

 become longer and more 75 

unwieldy. It should come as no surprise that computation of smoothness indicators is the most 76 

demanding operation in the WENO reconstruction procedure. Therefore, it would be of tremendous 77 

advantage to devise a faster algorithm to compute them without sacrificing their positivity. 78 

2.2 Proposed algorithm for computing ᵆ�ᵆ��
(�)

 79 

To motivate the design of a more efficient algorithm, consider the compact form of ᵃ�ᵃ��
(�)

. 80 

 
ᵃ�ᵃ��

(�) = ��
�
ᵅ̅��−� − �

�
ᵅ̅��−� + 3ᵅ̅��−� − ��

�
ᵅ̅���

�
+ ��

�
��

�
ᵅ̅��−� − 2ᵅ̅��−� + �

�
ᵅ̅��−� − ᵅ̅���

�

+ ���
��

��
�
ᵅ̅��−� − �

�
ᵅ̅��−� + �

�
ᵅ̅��−� − �

�
ᵅ̅���

�
 

(7)

  

Eq. (7) can be re-arranged into a slightly different form below. 81 

 

ᵃ�ᵃ��
(�) = �− �

�
(ᵅ̅��−� − ᵅ̅��−�) + �

�
(ᵅ̅��−� − ᵅ̅��−�) − ��

�
(ᵅ̅�� − ᵅ̅��−�)�

� 

+��
��

[(ᵅ̅��−� − 2ᵅ̅��−� + ᵅ̅��−�) − 2(ᵅ̅�� − 2ᵅ̅��−� + ᵅ̅��−�)]� 

+���
���

[−(ᵅ̅�� − 3ᵅ̅��−� + 3ᵅ̅��−� − ᵅ̅��−�)]� 

(8)

  

Observe that the terms inside the first, second and third pair of square brackets are linear 82 

combinations of the first, second and third order undivided differences, respectively, computed on the 83 

four cells which belong to sub-stencil ᵅ� = 0. Indeed, it is possible to cast ᵃ�ᵃ��
(�)

 into the general form, 84 

 ᵃ�ᵃ��
(�) = � ᵃ��

(ᵅ�!)� � � ᵃ�����
(�) Δ��ᵅ̅��−�+�+�+��

�−�−�

�=�
�

��−�

�=�
 (9)

  

where Δ�[ᵅ̅��] = ᵅ̅�� and Δ�+�[ᵅ̅��] = Δ�[ᵅ̅��+�] − Δ�[ᵅ̅��] denote the undivided differences. ᵃ�� are 85 

the same constants which appear in Eq. (6) for the compact implementation. Eqs. (6) and (9) result in 86 

identical expressions when expended in terms of the cell averages. The main advantage of using Eq.  87 

(9) is that it is written in terms of the undivided differences which can be computed efficiently in a 88 
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recursive fashion, i.e., the first order differences can be computed from the zeroth order differences, 89 

the second order differences from the first, and so on. 90 

The constants ᵃ�� and ᵃ�����
(�)

 can be determined in a straightforward manner. The derivation of ᵃ�� 91 

and ᵃ�����
(�)

 used in Eq. (8) for computing ᵃ�ᵃ��
(�)

 will be presented next. For ᵅ� = 4, a cubic polynomial 92 

is reconstructed from each sub-stencil. Let the cubic polynomial be expressed in terms of the Taylor 93 

series coefficients about the cell centre ᵅ�� as shown below. 94 

 �(ᵅ�) = �ᵅ� + ᵃ�ᵊ�
ᵃ�ᵅ�
(ᵅ� − ᵅ�ᵅ�)+ 1

2 
ᵃ�2ᵊ�
ᵃ�ᵅ�2(ᵅ� − ᵅ�ᵅ�)

2 + 1
6 

ᵃ�3ᵊ�
ᵃ�ᵅ�3(ᵅ� − ᵅ�ᵅ�)

3 (10)

  

�� = �(ᵅ��) refers to the point value at ᵅ�� and the derivatives are also evaluated at ᵅ��. Substituting 95 

Eq. (10) into Eq. (5) and simplifying yields the general expression for ᵃ�ᵃ��
(�)

. 96 

 ᵃ�ᵃ��
(�) = 1 ⋅ ���

��
Δᵅ� + �

��
���
���Δᵅ���

�
+ ��

��
⋅ ����

���Δᵅ���
�
+ ���

���
⋅ ����

���Δᵅ���
�
 (11)

  

The constants which pre-multiply each pair of square brackets in Eq. (11) are ᵃ�� (ᵅ�!)�⁄ . These 97 

constants factor out when the smoothness indicator is written as a sum of squares under the condition 98 

that the coefficient of the leading order term inside each pair of square brackets be unity. It must be 99 

remarked that these constants are the same for all combinations of ᵅ� and ᵅ�. They are listed in Table 3 100 

in the Appendix for ᵅ� = 1 to ᵅ� = 5. 101 

For ᵅ� = 0, the sub-stencil ����+� �⁄
�  consists of cells {ᵅ� − 3, ᵅ� − 2, ᵅ� − 1, ᵅ�}. Averaging Eq. (10) over 102 

each of these four cells yields the expression for the respective cell average in terms of the Taylor 103 

series terms which can be cast into a linear system as follows. 104 

 

⎝
⎜⎜
⎜⎛

ᵅ̅��−�
ᵅ̅��−�
ᵅ̅��−�
ᵅ̅�� ⎠

⎟⎟
⎟⎞ =

⎣
⎢
⎢
⎡

1 −3 ���
��

− ��
�

1 −2 ��
��

− ��
��

1 −1 ��
��

− �
��

1 0 �
��

0⎦
⎥
⎥
⎤

⎝
⎜⎜
⎜⎜
⎜⎛
��
��
��

��

���
������

���
������⎠

⎟⎟
⎟⎟
⎟⎞

 (12)

  

 105 
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The first order undivided differences (ᵅ� = 1) can be computed from Eq. (12) as follows. 106 

 

⎝
⎜⎜⎛

Δ�[ᵅ̅��−�]
Δ�[ᵅ̅��−�]
Δ�[ᵅ̅��−�]⎠

⎟⎟⎞ =
⎣
⎢⎡

−1 1
−1 1

−1 1 ⎦
⎥⎤

⎝
⎜⎜
⎜⎛

ᵅ̅��−�
ᵅ̅��−�
ᵅ̅��−�
ᵅ̅�� ⎠

⎟⎟
⎟⎞ =

⎣
⎢⎡

1 − 
�
�

��
��

1 − �
�

��
��

1 − 
�
�

�
��⎦

⎥⎤

⎝
⎜⎜
⎜⎛

��
��

Δᵅ�
���
������

���
������⎠

⎟⎟
⎟⎞ (13)

  

Now, a linear combination of the first order undivided differences is sought such that it results in the 107 

term inside the first pair of square brackets on the RHS of Eq. (11).  108 

 

ᵃ�����
(�) Δ�[ᵅ̅��−�] + ᵃ�����

(�) Δ�[ᵅ̅��−�] + ᵃ�����
(�) Δ�[ᵅ̅��−�] = ��

��
Δᵅ� + �

��
���
���Δᵅ�� 

⎝
⎜⎜
⎜⎜
⎛ᵃ�����

(�)

ᵃ�����
(�)

ᵃ�����
(�)

⎠
⎟⎟
⎟⎟
⎞

�

⎝
⎜⎜⎛

Δ�[ᵅ̅��−�]
Δ�[ᵅ̅��−�]
Δ�[ᵅ̅��−�]⎠

⎟⎟⎞ =
⎝
⎜⎛

1
0
�

��⎠
⎟⎞

�

⎝
⎜⎜
⎜⎛

��
��

Δᵅ�
���
������

���
������⎠

⎟⎟
⎟⎞ 

(14)

  

Eqs. (13) and (14) lead to the following linear system which can be solved for the constants ᵃ�����
(�)

. 109 

 

⎣
⎢⎡

1 1 1
− �

�
− �

�
− �

�

 ��
��

��
��

 �
��⎦

⎥⎤

⎝
⎜⎜
⎜⎜
⎛ᵃ�����

(�)

ᵃ�����
(�)

ᵃ�����
(�)

⎠
⎟⎟
⎟⎟
⎞

=
⎝
⎜⎛

1
0
�

��⎠
⎟⎞  ⇒  

⎝
⎜⎜
⎜⎜
⎛ᵃ�����

(�)

ᵃ�����
(�)

ᵃ�����
(�)

⎠
⎟⎟
⎟⎟
⎞

=
⎝
⎜⎜
⎛

 �
�

− �
�

��
� ⎠
⎟⎟
⎞

 (15)

  

Comparing the values of ᵃ�����
(�)

 with those in Eq. (8), it can be observed that there is a difference in 110 

sign. However, this is inconsequential as the term inside each square bracket is squared. 111 

Next, the second order undivided differences (ᵅ� = 2) can be computed from Eq. (13) as follows. 112 

 �
Δ�[ᵅ̅��−�]
Δ�[ᵅ̅��−�]

� = �−1 1
−1 1�

⎝
⎜⎜⎛

Δ�[ᵅ̅��−�]
Δ�[ᵅ̅��−�]
Δ�[ᵅ̅��−�]⎠

⎟⎟⎞ = �1 −2
1 −1��

���
���Δᵅ��

���
������

� (16)

  

Now, a linear combination of the second order undivided differences is sought such that it results in 113 

the term inside the second pair of square brackets on the RHS of Eq. (11). 114 

 ᵃ�����
(�) Δ�[ᵅ̅��−�] + ᵃ�����

(�) Δ�[ᵅ̅��−�] = ���
���Δᵅ�� (17)
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�
ᵃ�����

(�)

ᵃ�����
(�) �

�

�
Δ�[ᵅ̅��−�]
Δ�[ᵅ̅��−�]

� = �1
0�

�
�

���
���Δᵅ��

���
������

� 

  

Eqs. (16) and (17) lead to the following linear system which can be solved for the constants ᵃ�����
(�)

. 115 

 � 1 1
−2 −1��

ᵃ�����
(�)

ᵃ�����
(�) � = �1

0�   ⇒  �
ᵃ�����

(�)

ᵃ�����
(�) � = �−1

2� (18)

  

Finally, the third order undivided difference (ᵅ� = 3) can be computed from Eq. (16) as follows. 116 

 Δ�[ᵅ̅��−�] = [−1 1] �
Δ�[ᵅ̅��−�]
Δ�[ᵅ̅��−�]

� = ���
���Δᵅ�� (19)

  

By inspection with the term inside the third pair of square brackets on the RHS of Eq. (11), it can be 117 

seen that the constant ᵃ�����
(�) = 1. The derivation procedure is similar for other combinations of ᵅ� and 118 

ᵅ�. The constants ᵃ�����
(�)

 are listed in Tables 4-7 in the Appendix for ᵅ� = 3 to ᵅ� = 6. 119 

Determining the constants ᵃ�����
(�)

 for a (2ᵅ� − 1)th order WENO scheme requires solving ᵅ� − 1 linear 120 

systems, one for each order of undivided differences from first order to (ᵅ� − 1)th order. Obviously, 121 

all ᵅ� − 1 matrices must remain non-singular for the procedure to be successful. The fact that the 122 

matrices remain non-singular for any ᵅ� can be proved as follows. The general expression for the cell 123 

average ᵅ̅��+� can be obtained from an (ᵅ� − 1)th order polynomial approximation as given below. 124 

 

ᵅ̅��+� = Δ�[ᵅ̅��+�] = 1
Δᵅ�

� �� 1
ᵅ�!

ᵃ��ᵊ�
ᵃ�ᵅ�� (ᵅ� − ᵅ��)�

�−�

�=�
�  ᵃ�ᵅ�

��+(�+� �⁄ )��

��+(�−� �⁄ )��
 

= �� 1
(ᵅ� + 1)!

��ᵅ� + 1
2
�

�+�
− �ᵅ� − 1

2
�

�+�
��ᵃ��ᵊ�

ᵃ�ᵅ�� Δᵅ��
�−�

�=�
 

(20)

  

For simplicity, the notation ���
��� = ᵊ�� has been introduced in the above result. The derivation 125 

procedure begins with the linear system Δ�[ᵆ�����] = ᵃ��ᵃ�ᵍ�� similar to Eq. (12) where Δ�[ᵆ�����] represents 126 

the vector of ᵅ� cell averages in sub-stencil ᵅ� and ᵃ�ᵍ�� the vector of the Taylor series terms �
��

��� Δᵅ�� 127 
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from ᵅ� = 0 to ᵅ� = ᵅ� − 1. Elements of the ᵅ� × ᵅ� matrix ᵃ�� are the coefficients inside the curly 128 

brackets in Eq. (20) evaluated for appropriate values of ᵅ� and ᵅ�. Since the point value ᵊ�� =129 

(ᵃ��
−�Δ�[ᵆ�����]) can be uniquely determined from the polynomial approximation, ᵃ�� must be invertible. 130 

The vector of first order undivided differences Δ�[ᵆ�����] is obtained by multiplying the (ᵅ� − 1) × ᵅ� 131 

difference matrix ᵃ�� to Δ�[ᵆ�����] as shown below. 132 

 
 Δ�[ᵆ�����] =

⎣
⎢⎢
⎡

−1 1
−1 1

⋱ ⋱
−1 1 ⎦

⎥⎥
⎤

�����������
��

Δ�[ᵆ�����] = (ᵃ��ᵃ��)ᵃ�ᵍ�� 
(21)

  

The difference matrix ᵃ�� has a rank of ᵅ� − 1. The (ᵅ� − 1) × ᵅ� matrix (ᵃ��ᵃ��) must also have a rank 133 

of ᵅ� − 1 since multiplication by an invertible matrix preserves rank. Substituting ᵅ� = 0 into the term 134 

inside the curly brackets in Eq. (20), it can be easily verified that the coefficient of ���
��� Δᵅ�� in 135 

Δ�[ᵅ̅��+�] is one for all values of ᵅ�. Therefore, the first column of ᵃ�� consists of ones. Applying the 136 

difference matrix ᵃ�� to ᵃ�� results in the first column of (ᵃ��ᵃ��) being all zeros, i.e., (ᵃ��ᵃ��)  has the 137 

form (ᵃ��ᵃ��) = [ᵼ� ᵃ��] where ᵃ�� is an (ᵅ� − 1) × (ᵅ� − 1) matrix. For (ᵃ��ᵃ��) to have rank (ᵅ� − 1), 138 

ᵃ�� must have the full rank of ᵅ� − 1 since span{cols(ᵃ��ᵃ��)} = span{cols(ᵃ��)}. Thus, ᵃ�� is also 139 

non-singular. Since the first column of (ᵃ��ᵃ��) consists of zeros, Eq. (21) can be simplified to 140 

Δ�[ᵆ�����] = ᵃ��ᵃ�ᵍ�� where ᵃ�ᵍ�� is the vector of Taylor series terms �
��

��� Δᵅ�� from ᵅ� = 1 to ᵅ� = ᵅ� − 1. 141 

This is precisely the result obtained earlier in Eq. (13) for the particular case of ᵅ� = 3 and ᵅ� = 0. 142 

Comparing the matrices in Eqs. (13) and (15), it can be concluded that determining constants ᵃ�����
(�)

 143 

requires ᵃ��
�  to be non-singular. Since (ᵃ��

� )−� = (ᵃ��
−�)�  and since ᵃ�� has been shown to be non-144 

singular, ᵃ��
�  is also non-singular and the constants ᵃ�����

(�)
 can be uniquely determined. 145 

The argument for higher orders proceeds inductively in the same manner. In general, Δ�[ᵆ�����] =146 

ᵃ��ᵃ�ᵍ�� and Δ�+�[ᵆ�����] = ᵃ��−�Δ�[ᵆ�����] = (ᵃ��−�ᵃ��)ᵃ�ᵍ��. Here ᵃ�� is an (ᵅ� − ᵅ�) × (ᵅ� − ᵅ�) 147 

matrix, ᵃ�ᵍ�� is the vector of Taylor series terms �
��

��� Δᵅ�� from ᵅ� = ᵅ� to ᵅ� = ᵅ� − 1, and ᵃ��−� is the 148 
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(ᵅ� − ᵅ� − 1) × (ᵅ� − ᵅ�) difference matrix. The crucial point is that the first column of ᵃ�� consists of 149 

ones for all ᵅ�. In other words, the coefficient of �
��

��� Δᵅ�� in Δ�[ᵅ̅��+�] is one regardless of the value 150 

of ᵅ�. Denoting this coefficient as ᵃ��, it can be shown from Eq. (20) that ᵃ�� has the following form. 151 

 ᵃ�� = 1
(ᵅ� + 1)!

�(−1)� �ᵅ� + 1
ᵅ� ��ᵅ� + ᵅ� + 1

2
− ᵅ��

�+��+�

�=�
 (22)

  

The proof that ᵃ�� = 1 follows from Eq. (6.22) in Ref. [14]. So, the (ᵅ� − ᵅ� − 1) × (ᵅ� − ᵅ�) matrix 152 

(ᵃ��−�ᵃ��) has a first column of zeros. The remaining (ᵅ� − ᵅ� − 1) columns form the matrix ᵃ��+�. 153 

Based on the same argument used for ᵅ� = 0, it follows that if ᵃ�� is non-singular, then so is ᵃ��+�. 154 

Since an (ᵅ� − 1)th polynomial reconstruction on uniform grid always produces a non-singular matrix 155 

ᵃ��, all matrices ᵃ�� for ᵅ� = 1 to ᵅ� = ᵅ� − 1 are non-singular. Therefore, the procedure can be 156 

successfully extended to any order. 157 

2.3 Comparison of algorithms 158 

Since the undivided differences Δ�[ᵅ̅��] can be computed efficiently, the proposed algorithm brings 159 

about significant computational savings compared to the compact implementation. The approximate 160 

number of floating-point operations required for computing the ᵅ� smoothness indicators of a (2ᵅ� −161 

1)th order WENO scheme using the different implementations is listed in Table 1. The operations 162 

required to compute the undivided differences have been accounted for in the operation count for 163 

the proposed algorithm. The proposed algorithm requires only about 60% the number of 164 

multiplication operations and about 80% the number of addition/subtraction operations as the compact 165 

implementation. A comparison of the number of constants required (including ᵃ��) is also given in 166 

Table 1. It can be seen that the proposed algorithm requires only about half the number of constants as 167 

the compact implementation. Hence, the proposed algorithm can be implemented relatively faster.  168 

The compact and proposed algorithms were implemented in an in-house Euler code which uses a 169 

hybrid flux methodology [15]. Unlike conventional Euler codes which reconstruct fluxes, the hybrid 170 

flux methodology relies on the reconstruction of primitive variables predominantly. This allows the 171 
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undivided differences to be reused for the left- and right-biased WENO reconstructions. The in-house 172 

code was used to compute the Shu-Osher shock-entropy wave interaction problem [16] and the double 173 

Mach reflection problem [17] at several difference resolutions. The double Mach reflection problem 174 

was set up using the second alternative method described in Ref. [18] to obtain clean, artefact-free 175 

solutions. Solutions obtained from both algorithms were identical. The speedups achieved by the 176 

proposed algorithm over the compact algorithm are given in Table 2.  177 

Though the speedups were somewhat marginal for fifth order, they started to increase quickly for 178 

higher orders. The proposed algorithm shortened the computation time by about 6% and 10% for 179 

ninth and eleventh orders, respectively. The speedups are expected to increase further for even higher 180 

orders. With a proper implementation, there is a potential for greater savings when the undivided 181 

differences are computed for an entire row/column of cells at a time in structured Cartesian grids as 182 

adjacent faces along a row/column share all but one sub-stencils. 183 

 184 

3 Conclusion 185 

Computing sub-stencil smoothness indicators is the most expensive operation in the WENO 186 

reconstruction procedure. In this paper, an efficient algorithm for computing these quantities is 187 

presented. For a (2ᵅ� − 1)th order WENO scheme, a table of undivided differences is constructed up 188 

to order ᵅ� − 1 in a recursive manner. Then, the smoothness indicators are computed as squares of 189 

linear combinations of these undivided differences ensuring positivity of the computed values. It has 190 

Table 1: Comparison of number of floating-point operations (±, ×) and constants (C) 
required for smoothness indicators 

 Compact [Eq. (6)] Proposed [Eq. (9)] 

WENO5 15± 30× 20C 13± 18× 11C 

WENO7 44± 72× 51C 35± 44× 27C 

WENO9 95± 140× 104C 71± 85× 54C 

WENO11 174± 240× 185C 124± 144× 95C 
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been shown that the proposed algorithm requires considerably fewer floating-point operations  and 191 

fewer constants compared to the compact implementation. 192 

 193 

4 Appendix 194 

The constants ᵃ�� (ᵅ�!)�⁄  are given in Table 3.  195 

Table 3: Constants ᵃ�� (ᵅ�!)�⁄  

ᵅ� 1 2 3 4 5 

ᵃ�� (ᵅ�!)�⁄  1 
��
��

 ���
���

 �������
�������

 �����������
�����������

 

 

 

The constants ᵃ�����
(�)

 are given in Tables 4-7 for ᵅ� = 3 to ᵅ� = 6. - 196 

Table 4: Constants ᵃ�����
(�)

 for ᵅ� = 3 

  ᵅ� 

ᵅ� ᵅ� 0 1 

0 
1 − �

�
 �

�
 

2 1 - 

1 
1 

�
�
 �

�
 

2 1 - 

Table 2: Comparison of speedups achieved using proposed algorithm [Eq. (9)]  
over compact algorithm [Eq. (6)] 

Case Resolution WENO5 WENO7 WENO9 WENO11 

Shock-entropy  400 1.014 1.024 1.049 1.081 

wave interaction 800 1.016 1.011 1.058 1.117 

problem 1600 1.021 1.018 1.064 1.130 

Double Mach  480×120 1.002 1.017 1.067 1.092 

reflection  960×240 1.008 1.032 1.062 1.094 

problem 1920×480 1.003 1.038 1.067 1.098 
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2 
1 

�
�
 − �

�
 

2 1 - 
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Table 5: Constants ᵃ�����
(�)

 for ᵅ� = 4 

  ᵅ� 

ᵅ� ᵅ� 0 1 2 

0 

1 
�
�
 − �

�
 ��

�
 

2 −1 2 - 

3 1 - - 

1 

1 − �
�
 �

�
 �

�
 

2 0 1 - 

3 1 - - 

2 

1 
�
�
 �

�
 − �

�
 

2 1 0 - 

3 1 - - 

3 

1 
��
�

 − �
�
 �

�
 

2 2 −1 - 

3 1 - - 
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Table 6: Constants ᵃ�����
(�)

 for ᵅ� = 5 

  ᵅ� 

ᵅ� ᵅ� 0 1 2 3 

0 

1 − �
�
 ��

��
 − ��

��
 ��

��
 

2 
���
���

 − ���
��

 ���
���

 - 

3 − �
�
 �

�
 - - 

4 1 - - - 

1 

1 
�
��

 − �
��

 ��
��

 �
�
 

2 − ��
���

 ��
��

 ���
���

 - 

3 − �
�
 �

�
 - - 
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4 1 - - - 

2 

1 − �
��

 �
��

 �
��

 − �
��

 

2 − ��
���

 ��
��

 − ��
���

 - 

3 
�
�
 �

�
 - - 

4 1 - - - 

3 

1 
�
�
 ��

��
 − �

��
 �

��
 

2 
���
���

 ��
��

 − ��
���

 - 

3 
�
�
 − �

�
 - - 

4 1 - - - 

4 

1 
��
��

 − ��
��

 ��
��

 − �
�
 

2 
���
���

 − ���
��

 ���
���

 - 

3 
�
�
 − �

�
 - - 

4 1 - - - 
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Table 7: Constants ᵃ�����
(�)

 for ᵅ� = 6 

  ᵅ� 

ᵅ� ᵅ� 0 1 2 3 4 

0 

1 
�
�
 − ��

��
 ���

��
 − ���

��
 ���

��
 

2 − ��
��

 ���
���

 − ���
��

 ���
���

 - 

3 
������
�����

 − �����
�����

 ������
�����

 - - 

4 −2 3 - - - 

5 1 - - - - 

1 

1 − �
��

 ��
��

 − ��
��

 ��
��

 �
�
 

2 
��
���

 − ��
��

 ��
��

 ��
��

 - 

3 
�����
�����

 − �����
�����

 ������
�����

 - - 

4 −1 2 - - - 

5 1 - - - - 

2 

1 
�
��

 − ��
��

 ��
��

 �
��

 − �
��

 

2 0 − ��
���

 ��
��

 − ��
���

 - 

3 − �����
�����

 �����
�����

 �����
�����

 - - 
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4 0 1 - - - 

5 1 - - - - 

3 

1 − �
��

 �
��

 ��
��

 − ��
��

 �
��

 

2 − ��
���

 ��
��

 − ��
���

 0 - 

3 
�����
�����

 �����
�����

 − �����
�����

 - - 

4 1 0 - - - 

5 1 - - - - 

4 

1 
�
�
 ��

��
 − ��

��
 ��

��
 − �

��
 

2 
��
��

 ��
��

 − ��
��

 ��
���

 - 

3 
������
�����

 − �����
�����

 �����
�����

 - - 

4 2 −1 - - - 

5 1 - - - - 

5 

1 
���
��

 − ���
��

 ���
��

 − ��
��

 �
�
 

2 
���
���

 − ���
��

 ���
���

 − ��
��

 - 

3 
������
�����

 − �����
�����

 ������
�����

 - - 

4 3 −2 - - - 

5 1 - - - - 
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