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Grove Change / Variability Decomposition 2 

Climatic change and climatic variability: an objective decomposition 

 

Abstract 

Over the past 25 years research concerning the effects of climatic fluctuations on past human societies 

has shifted focus considerably, with most recent hypotheses emphasizing shorter-term variability over 

longer-term change. Definitions of change and variability, however, remain subjective and vary 

considerably between researchers. It is suggested that white noise, due to its inherent 

unpredictability, provides a theoretically robust model of variability that accords with perceptions of 

variability conveyed by the existing literature. The use of white noise as a model for variability enables 

the development of an algorithm that objectively decomposes an empirical climatic signal into change 

and variability components. The algorithm, which combines singular spectrum analysis and Fourier 

methods, is validated via an extensive series of simulations and two empirical case studies. It is shown 

that the algorithm has the potential to produce genuine advances by isolating features of interest and 

facilitating more rigorous hypothesis testing. Its use will therefore aid researchers studying 

palaeoclimatic effects on prehistoric human societies as well as those studying the nature and effects 

of contemporary climate change. 

 

Keywords: climatic change; climatic variability; time series; singular spectrum analysis; white noise; 

Southern Oscillation Index; El Niño; domestication; agriculture; Natufian. 

 

 

1. Introduction 

Over the past 25 years research into the possible links between palaeoclimatic change and human 

evolution has shifted focus considerably, with most recent hypotheses emphasizing shorter-term 

variability rather than longer-term change as the key challenge to ancestral human groups. This shift 

in focus has been driven in part by the increasing number of high-resolution palaeoclimatic and 

palaeoenvironmental records available, as well as by the development and application of more 

sophisticated methods of time-series analysis. The combination of detailed records and advanced 

analyses has led to a greater understanding of the complexities of prehistoric environments, with a 

major consequence being the development of more sophisticated, nuanced hypotheses that are more 

closely aligned with foundational work in evolutionary biology (Grove 2015). 

The shift towards a focus on variability is particularly apparent in the fields of palaeoanthropology and 

Palaeolithic archaeology. Less than 25 years ago, Potts (1998a:109) was able to assert that “the most 

prominent narratives of hominin adaptive evolution are habitat-specific”. In the intervening period, 

such narratives have been replaced to a great extent by hypotheses that focus on habitat generality, 

climatic variability, and environmental heterogeneity (e.g., Potts 1996a, 1998b; Kingston 2007; Maslin 

and Trauth 2009; Grove 2011a, 2011b). The idea that major developments in human evolution such 

as the origins of bipedalism, tool use, and widespread hunting behaviours were driven by the gradual 

contraction of forest cover and the concomitant expansion of savannah environments (Dart, 1925, 

1953; Robinson, 1954; Washburn, 1960) has thus been substantially replaced by hypotheses such as 

variability selection (Potts 1996a, 1996b, 1998b), the shifting heterogeneity model (Kingston 2007; 

Kingston and Harrison 2007; Kingston et al. 2007) and the pulsed climate variability hypothesis (Maslin 
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and Trauth 2009; Trauth et al. 2010, 2014). These latter hypotheses focus on increases in behavioural 

flexibility, versatility, or plasticity in general, though such capacities are sometimes considered to 

underlie particular developments in the archaeological or fossil records (e.g., Potts and Faith 2015; 

Potts et al. 2018). 

The exemplar of this new generation of ‘heterogeneity hypotheses’ is Potts’ (1996a, 1996b, 1998) 

variability selection hypothesis (henceforth VSH). As with most subsequent heterogeneity hypotheses, 

the VSH takes as its starting point that fact that analyses of palaeoenvironmental proxies from various 

sources document a record of increasing variability over at least the past 5 Ma. Potts therefore argues 

that hominin evolution has been driven more by the need to adapt to this increasing variability than 

to any longer-term trend visible in the data, and that adaptive versatility is therefore the key to 

survival. This fundamental conclusion – that temporal heterogeneity promotes adaptive versatility – 

accords with foundational work in genetics (e.g., Levene 1953; Dempster 1955; Haldane and Jayakar 

1962; Cohen 1966; Levins 1968; Lewontin and Cohen 1969; Gillespie 1973; Moran 1992; see Grove 

2015), and with research examining evolutionary dynamics in fluctuating environments at broader, 

macroevolutionary scales (Simons, 2002; Lee and Doughty, 2003). 

The progress prompted by theoretical and empirical analyses of heterogeneity hypotheses has been 

considerable, yet both ‘variability’ and ‘change’ remain subjectively defined. Uses of the term 

‘variability’ are themselves highly variable, resting on an intuitive but subjective underlying notion of 

the “I know it when I see it” variety. The issue is complicated by the fact that variability can be 

identified at numerous scales, with examples in the literature ranging from fluctuations caused by the 

cycling of orbital eccentricity through precessional or semi-precessional timescales down to variations 

at the scale of human generations (e.g., Potts and Faith 2015; Potts et al. 2020; Maslin and Trauth 

2009; Maslin et al. 2014; Richerson et al. 2001; Grove 2011a). 

The difficulties involved in identifying the boundary between change and variability are immediately 

apparent in the definitions adopted by the United Nations Framework Convention on Climate Change 

(UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC). The UNFCCC adopts the bizarre 

position that ‘climate change’ is necessarily anthropogenic whereas ‘variability’ is necessarily ‘natural’; 

as noted by Pielke (2004), this position is politically rather than scientifically motivated and is of little 

ultimate value. The IPCC sensibly and deliberately departs from this position, providing an attempt at 

scientific definition. The IPCC currently defines climate change as “a change in the state of the climate 

that can be identified… by changes in the mean and/or the variability of its properties that persists for 

an extended period, typically decades or longer” (IPCC 2018:544, emphasis added). Climate variability, 

by contrast, “refers to variations in the mean state and other statistics… of the climate on all spatial 

and temporal scales beyond that of individual weather events” (IPCC 2018:546). The IPCC should be 

applauded for recognising that variability can occur on all spatial and temporal scales, but suggesting 

that variability ‘refers to variation’ merely introduces a synonym that itself remains undefined. The 

definition of climate change is ultimately reliant on the idea of a characteristic timescale; this is 

perfectly reasonable in spirit, but the typical vagaries remain. The idea that changes must persist for 

‘decades or longer’ suggests that there is no upper bound on this timescale, and the lower bound 

(which is only ‘typical’, not universal) is quickly dissolved by counterexamples.  

The El Niño – Southern Oscillation (ENSO) cycle, for example, occurs at timescales of less than a 

decade, but to describe one of the Earth’s most important and far-reaching climate oscillations as 

consisting merely of ‘variability’ would be at odds with most scientific analyses (e.g. Aceituno 1992; 

Allan et al. 1996; Glantz 1996; Trenberth 1997; Larkin and Harrison 2005). Seasonal cycles occur 

annually by definition, but few researchers would be content to describe them simply as ‘annual 

variability’. It is illogical to describe seasonal cycles as variability not because of the timescale at which 
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they occur but because they are periodic; the causes of this periodicity are well understood, with the 

result that seasonal cycles are to a certain extent predictable. A more useful operational definition 

would therefore identify all periodic and low-frequency components of the signal as ‘change’ and treat 

the remainder as ‘variability’. The inclusion of low-frequency components as part of the ‘change’ 

retains the IPCC’s intuitive notion that we must recognise change by its persistence, whilst the 

inclusion of periodic components prevents us from mistakenly subsuming regular patterning (even if 

it occurs at high frequency) within ‘variability’. 

At the heart of most definitions of variability – whether explicit or implicit – is the related notion of 

variance, or some similar (possibly non-parametric) measure of dispersion. In one of the more cogent 

discussions of the issue Burroughs (2005:20), for example, describes variability as “fluctuation about 

the mean”. The variance, however, is a summary statistic; via a single scalar parameter it describes 

the mean squared deviation from the central tendency over an entire series of data. While this may 

be useful in certain circumstances, ideally the variability should be an entire time series in itself, of 

length equal to the original time series. A reasonable starting point for a definition of variability might 

therefore be the full series of deviations from some measure of central tendency, but this starting 

point only serves to highlight the fundamental problem: in any non-stationary time series the central 

tendency itself will change through time, and such change must be quantified prior to calculation of 

the variability. Just as the calculation of the variance depends on the prior calculation of the mean, so 

the calculation of the variability depends on the prior calculation of the change. 

Figure 1 shows six simulated times series and is inspired by the figures and accompanying discussion 

provided by Burroughs (2005:19-22). The time series depicted in Figure 1a is strictly stationary and 

consists purely of a series of Gaussian random variates. As this series has a long-term slope of zero, 

most researchers would conclude that in this case the climate is variable but does not change. The 

time series of Figure 1b is equally simple; the change component is strictly periodic, consisting of a 

single sine wave, and variability is constant throughout. If variability increases, however, as it does 

during the course of the time series depicted in Figure 1c, it can become increasingly difficult to discern 

the underlying change, and therefore to separate it from the variability. This difficulty is exacerbated 

considerably when the change becomes even slightly more complex, as with the three superposed 

sine waves of Figure 1d. Further difficulties arise when either the sampling resolution or the total 

duration sampled are reduced (as shown in Figures 1e and 1f respectively). 

~Figure 1 here~ 

It rapidly becomes clear that in all but the simplest cases – none of which are representative of 

empirical climate records – the decomposition of a time series into change and variability components 

is a complex problem, requiring a quantitative method that 1) reflects the intuitive notion of variability 

being the dispersion around some central tendency and 2) accommodates the fact that the central 

tendency itself is likely to be non-stationary. Three broad and overlapping categories of methods that 

satisfy the above conditions are available, but each depends on the subjective choice of multiple 

parameter values. Basic smoothing techniques involve convolution of the time series by a series of 

coefficients or weights; these coefficients represent a smoothing kernel such as rectangular (uniform), 

triangular, or Gaussian distribution. In such cases the analyst must choose the form of the kernel, the 

span of the kernel (i.e. the number of coefficients), and additional details of the coefficients such as 

the variance or bandwidth of the chosen distribution. The simplest smoothing kernel, the uniform 

distribution, only requires the analyst to choose the span; minimising the number of parameter 

choices in this way reduces subjectivity, but this form of smoothing produces undesirable effects such 

as the eradication or reversal of fluctuations at certain frequencies (Trauth 2015:231-5). 
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As the application of basic smoothing corresponds to the use of a simple lowpass filter, an alternative 

is to directly employ a lowpass filter with a specific frequency cut-off. However, commonly used filters 

in geosciences such as the Butterworth filter require specification of both the frequency cut-off 

(broadly comparable to the span of a smoothing kernel) and the order of the filter; more complex 

filters such as the Chebyshev family of filters require the specification of a greater number of 

parameters. Finally, various least squares methods exist that could be used for separating change and 

variability such as global nonlinear or polynomial least squares, local polynomials (e.g., Savitsky-Golay 

or spline methods), or local regression (e.g. LoESS or LoWeSS). Global methods require the 

specification of a polynomial order, whilst local methods require (minimally) the specification of a 

span as well as a choice of linear or quadratic regression.  

The brief review above demonstrates that all existing methods rely on subjective parameter choices 

for decomposing a time series into change and variability components. All methods detailed above 

are theoretically valid, but their quantitative character can disguise the essentially subjective nature 

of their use. This subjectivity is not merely a theoretical problem; it can lead to genuine analytical 

inconsistencies when analysing empirical climate data. Figure 2a shows a simulated time series 

together with two Gaussian smoothings using different spans; when these smoothings are interpreted 

as the change component of the signal and the variability is calculated as the difference between the 

smoothed signal and the raw data, it leads to the estimates of variability shown in Figures 2b and 2c. 

Figure 2d demonstrates that the discrepancies between these two estimates of the variability are 

considerable; these two arbitrary but equally valid choices of the span of the Gaussian kernel lead to 

quite different assessments of the variability. It is not inconceivable that choosing different parameter 

values when using any of the above methods could lead to support for or rejection of the same 

hypothesis using the same data. 

~Figure 2 here~ 

Although the above focuses on hypotheses rooted in palaeoanthropology and Palaeolithic 

archaeology, there are many instances beyond these fields in which being able to separate the 

‘variability’ component from the ‘change’ component of a climatic time series allows for the resolution 

of fundamental questions. The algorithm outlined below, therefore, is not limited to palaeoclimatic 

studies, or to research in evolutionary anthropology, but has general applications in the study of 

historical, contemporary, and future climates. The remainder of the paper is organised as follows: 

Section 2 establishes white noise as a theoretically robust and mathematically tractable model for 

‘variability’, demonstrating its essential unpredictability; Section 3 describes an algorithm for the 

objective decomposition of a time series into ‘change’ and ‘variability’ components. Section 4 presents 

a series of four simulations that validate the algorithm by demonstrating reliable, consistent 

performance under a wide range of different circumstances. Sections 5 and 6 act as case studies 

presenting empirical uses of the algorithm, the former examining the Southern Oscillation Index and 

the latter testing a prominent hypothesis for the origins of agriculture in southwest Asia. Finally, 

Section 7 briefly recapitulates and summarises the foregoing sections, discusses possible limitations 

of the algorithm, and considers future applications. 

 

2. Climatic variability as white noise 

A time series can be considered white noise if it consists of a series of independent, identically 

distributed (IID) random variables with zero mean, finite variance, and equal power across the 

frequency range. Importantly for what follows, this implies that the time series shows no significant 
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autocorrelation: the value of the time series at time 𝑡 provides no information about the value of the 

time series at time 𝑡 + 1. As Keshner (1982:215) memorably put it, “white noise has no memory of 

the past”. By contrast, time series describing long-term trends, whether directional or periodic (or 

both) show significant autocorrelation: previous states contain significant information about the 

probable occurrences of future states. For an autocorrelated series the current value provides a 

reasonably good guess of the next value; for a white noise series, the only sensible guess is the mean 

of the whole series. The latter will not be a particularly good guess, but it will, on average, be the best 

guess. Garland and colleagues (2014) evaluate time series on an equivalent scale of complexity; 

essentially, lower autocorrelation equates to higher complexity. Accordingly, these authors state that 

low-complexity time series exhibit perfect predictive structure; a sine wave would be one simple 

example. At the other end of the scale are ‘fully complex’ time series such as white noise, for which 

“knowledge of the past gives no insight into the future, regardless of what model one chooses to use” 

(Garland et al. 2014:1). 

Gaussian random variables are often used to simulate white noise, but white noise need not be 

Gaussian; series created by flipping a coin (implying a binomial distribution) or rolling a dice (implying 

a uniform distribution) are also white noise due to the independence criterion (flipping heads ten 

times in a row does not make it any more or less likely that the next flip will yield tails; rolling a six 

does not make it any more or less likely that you will roll another). The independence criterion is the 

critical point that unites the widely held (if vague) notion of ‘variability’ with the clearly defined, 

explicit mathematical definition of white noise. 

In terms of the challenges posed to hominin groups, variability is often described as being unexpected, 

unpredictable, or uncertain (e.g. Potts 1998, 2012; Kingston 2007). Potts (1998a:85), for example, 

refers to the “unpredictable adaptive settings” experienced by our ancestors, and stresses how “the 

adaptability of human ancestors expanded over time and enhanced their capacity to respond to 

unexpected change and resource uncertainty” (Potts 2012:162). The lack of autocorrelation 

characteristic of a white noise series corresponds directly to the unpredictability noted as the key 

feature of variability by Potts and others. This inverse relationship between autocorrelation and 

predictability has been observed and exploited in several disciplines. Since Fama’s foundational work 

on efficient markets (1970; see also Fama 1991, Lim and Brooks 2011), for example, economists have 

used low values of autocorrelation statistics applied to stock returns as evidence of a lack of 

predictability. Research in quantitative genetics has also explicitly equated low autocorrelation with 

unpredictability (e.g., Lande and Shannon 1996; Ashander et al. 2016; Chevin et al. 2017); in this 

context, it has been demonstrated that lower autocorrelation reduces the ability of a population to 

adaptively track environmental optima via genetic evolution (Lande and Shannon 1996). 

The unpredictability of white noise relative to other signals can be quantitatively demonstrated via 

the application of the approximate entropy (ApEn) metric derived by Pincus (1991). ApEn is variously 

considered to measure sequential irregularity, complexity, instability, or simply randomness (e.g. 

Pincus 1995, 2008; Pincus and Kalman 2004; Pincus and Singer 1998; Delgado-Bonal 2019, 2020; 

Delgado-Bonal and Marshak 2019); all of these terms mirror the unpredictability generally considered 

to characterise variability in climatic time series. As predictability declines, values of the ApEn statistic 

described by Pincus (1991) will increase. 

To demonstrate that white noise has maximal ApEn, we compare white noise signals to a series of 

alternative ‘colours’ of noise. White noise is so named because it has equal power across the 

frequency spectrum and is therefore broadly equivalent to the wave frequency spectrum of white 

light. Equivalently, blue noise contains proportionately higher spectral power at higher frequencies, 

whereas red noise contains proportionately higher spectral power at lower frequencies. The power 
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spectra of these different colours of noise can all be described by equations of the form 𝑝 = 1/𝑓𝛼, 

with 𝑝 equal to power, 𝑓 to frequency, and 𝛼 an exponent describing the colour of the noise. A noise 

is reddened if 𝛼 > 0, blue if 𝛼 < 0, and white if 𝛼 = 0. Noise colour is now recognised as an important 

characteristic of geophysical, ecological, and financial time series, and is increasingly used as a tool in 

modelling environmental fluctuations (e.g., Halley 1996; Halley and Kunin 1999; Halley and Inchausti 

2004; Inchausti and Halley 2001; Grove et al. 2020). 

Figure 3 shows median and 95 percentile ranges of lag-1 ApEn for coloured noise time series with 

values from 𝛼 = −2 to 𝛼 = 2, in increments of 𝛼 = 0.1. Distributions of ApEn for a given 𝛼 value were 

calculated from 1,000 time series each of 512 time steps, generated using the Inverse Fast Fourier 

Transform (IFFT) method (see Press 1978; Saupe 1988; Voss 1988; Hastings and Sugihara 1993; Kasdin 

1995; Grove et al. 2020; further details in Section 4). All time series were 𝑧-transformed prior to 

analysis, with ApEn calculations made using the default similarity criterion of 0.2 (see Chon et al. 2009; 

Fadlallah et al. 2013). As ApEn is a logarithmic measure (Pincus 1991), all results were exponentiated 

prior to graphical display. Results demonstrate that white noise (𝛼 = 0, indicated by the dashed 

vertical line) is associated with maximal ApEn values, and is therefore the most complex or least 

predictable signal analysed. By way of a reference point, single sine waves yield exp(ApEn) values of 

≈1.2, lower even than that for red noise. 

~Figure 3 here~ 

Overall, most climatic time series have 𝛼 values in the pink to red range (i.e. 1 ≤ 𝛼 ≤ 2), meaning that 

they are less predictable than simple sine waves but substantially more predictable than white noise 

(Ditlevsen et al. 1996; Pelletier 1997; Cuddington and Yodzis 1999; Grove et al. 2020). In practice, 

however, palaeoclimatic time series of any appreciable length are combinations of periodic 

components (e.g., orbital forcing), directional trends (e.g., Miocene drying) and high-frequency 

variability, consistent with white noise. Only the white noise component is genuinely unpredictable, 

and it is therefore desirable to be able to separate this component from the remainder of the signal. 

The algorithm detailed below provides an objective means of achieving this separation, and therefore 

of isolating the unpredictable ‘variability’ component of the signal from the background of longer-

term ‘change’. 

 

3. The Change / Variability Decomposition (CVD) Algorithm 

The algorithm for decomposing a time series into change and variability components relies on Singular 

Spectrum Analysis (SSA; Allen and Roberton 1996; Allen and Smith 1996; Broomhead and King 1986; 

Ghil et al. 2002; Golyandina et al. 2001; Golyandina and Zhigliavsky 2013; Vautard and Ghil 1989; 

Vautard et al. 1992) coupled with a frequency domain test for white noise based on the Discrete 

Fourier Transform (DFT) and the theoretical expectation for the power spectrum of a white noise 

series. The input to the analysis is an evenly sampled time series 𝑑𝑛 of 𝑁 points and an equivalent 

time axis 𝑡𝑛. As SSA requires a (weakly) stationary time series (Vautard and Ghil 1989, Vautard et al. 

1992), the input series is first de-trended by subtracting the values of a linear regression of 𝑑 on 𝑡 at 

each time step, 

𝑑𝑛 → 𝑑𝑛 − (𝛼 + 𝛽𝑡𝑛)          [1] 

Where 𝛼 and 𝛽 are the constant and slope of the regression equation respectively. The data are then 

𝑧-score transformed (i.e. 𝑑 →
𝑑−𝜇𝑑

𝜎𝑑
) such that the input to the SSA is a time series with zero mean and 

unit variance. The coefficients of the regression of 𝑑 on 𝑡 (𝛼 and 𝛽) and the mean and standard 
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deviation of the time series prior to the z-score transformation (𝜇𝑑 and 𝜎𝑑) are retained so that the 

change and variability components of the time series can be accurately reconstructed. 

A trajectory matrix 𝑿 is formed of 𝑀 successively lagged copies of the original time series 𝑑1, … , 𝑑𝑁, 

as 

𝑿 = [

𝑑1 𝑑2 … 𝑑𝑀

𝑑2 𝑑3 … 𝑑𝑀+1

⋮ ⋮ ⋱ ⋮
𝑑𝐾 𝑑𝐾+1 … 𝑑𝑁

]         [2] 

Where 𝑀 is the embedding dimension and 𝐾 = 𝑁 − 𝑀 + 1. 𝑀 is normally chosen so as to represent 

a lag time at least as long as the period of the longest oscillation present in the data; this can be 

estimated via inspection of the Fourier spectrum of the data, though the simulations of Section 4 

demonstrate that the choice of 𝑀 has limited effect on the output of the CVD algorithm. The lag-

covariance of the time series is then calculated as 

𝑪 = 𝐾−1𝑿𝑇𝑿           [3] 

Where the superscript 𝑇 indicates transposition. Diagonalization of 𝑪 yields the 𝑀 × 𝑀 diagonal 

eigenvalue matrix 𝜦 and the eigenvector matrix 𝜬. The diagonal elements of 𝜦 are extracted and 

arranged in descending order, with the eigenvectors (columns of 𝜬; also referred to in SSA as the 

‘empirical orthogonal functions’) arranged in equivalent order. The principal component matrix is 

given by 𝒀 = 𝑪𝜬. Note that the eigenvectors have length 𝑀 and the principal components have length 

𝐾. 

To convert the principal components into reconstructed components 𝑅 of length 𝑁 each column of 

the principal component matrix is multiplied by the equivalent transposed eigenvector; for 𝑅1, for 

example, we calculate 𝒀1𝜬1
𝑇, yielding a matrix of size 𝐾 by 𝑀 (here the subscript 1 indicates the first 

column). The value of 𝑅1 at 𝑡 = 1 is then produced by averaging along the first anti-diagonal of this 

matrix, the value at 𝑡 = 2 by averaging along the second anti-diagonal, and so on. Note that whilst the 

values of the reconstructed components for 𝑀 ≤ 𝑡 ≤ 𝐾 are produced from averages of diagonals of 

length 𝑀, those for 𝑡 < 𝑀 and 𝑡 > 𝐾 are produced from averages of diagonals of lesser length; the 

values for 𝑡 = 1 and 𝑡 = 𝑁 are in fact produced by ‘averaging’ over single values (the values in cells 

(1,1) and (𝐾, 𝑀) of the 𝒀1𝜬1
𝑇 matrix respectively). The anti-diagonal averaging procedure is then 

repeated for 𝑅2 via the 𝒀2𝜬2
𝑇 matrix and so on, concluding with the 𝒀𝑀𝜬𝑀

𝑇  matrix for 𝑅𝑀. 

∑ 𝑅𝑀
1  reproduces the original time series; the goal of the present analysis is to find an integer 𝜔∗ such 

that ∑ 𝑅𝑀
𝜔∗  does not differ significantly from a white noise signal. The test for conformity to white 

noise is performed in the frequency domain by defining successive subsets 𝑆𝜔, {𝑆𝜔 ⊆ 𝑅|𝜔 ≤ 𝑅 ≤ 𝑀}, 

𝜔 = 1, … , 𝑀, summing each of these subsets, and performing a Discrete Fourier Transform (DFT) on 

each resultant series. The absolute magnitude of the DFT at each frequency is squared and normalized 

by 𝑁 and the sampling frequency 𝑓𝑆. As one half of the symmetrical DFT output is then dropped, the 

remaining half is doubled, with the exception of the first frequency (𝑓 = 0; Trauth 2015:157ff.). The 

DFT output is thus transformed into a standard empirical periodogram format. 

As the signal has been 𝑧-transformed prior to SSA, the theoretical spectrum corresponding to this 

empirical output at each frequency 𝑓 is given by (Gilman et al. 1963; Priestley 1981; Mudelsee 2014) 

𝛾(𝑓) =
2𝑑(1−𝑎2)

1−2𝑎 cos(2𝜋𝑓𝑑)+𝑎2         [4] 
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For 0 ≤ 𝑓 ≤ 1/(2𝑑), where 𝑑 is the sampling period (thus 1/𝑑 is the sampling frequency 𝑓𝑆  and 

1/(2𝑑) is the Nyquist frequency) and 𝑎 is the estimated autocorrelation of the series. Since for white 

noise 𝑎 = 0, equation [1] reduces to 

𝛾 = 2𝑑            [5] 

at all frequencies. If we further normalize the empirical spectrum obtained via the DFT by dividing by 

2𝑑 we have a theoretical expectation for white noise of 𝛾 = 1 regardless of the sampling frequency 

(for a similar approach see Torrence and Compo 1998). As the real and imaginary components of the 

DFT are both normally distributed and the periodogram represents the sum of the squares of these 

components, the empirical spectrum is distributed around the theoretical spectrum following a chi-

squared distribution with two degrees of freedom, 𝜒2
2 (Jenkins & Watts 1968; Priestley 1981; Chatfield 

1989; Bloomfield 2000; Vaughan 2005). The 95% confidence bound for the spectrum is thus 𝛾95 =

𝜒2
2/2 = 2.9957. If the DFT of the empirical time series is less than 𝜒2

2/2 for 0 ≤ 𝑓 ≤ 1/(2𝑑) we can 

conclude that the series is not significantly different from white noise. As noted by Vaughan 

(2005:392) the above constitutes an exact test for a white noise spectrum, and is not subject to the 

problems that occur when testing models with 𝑎 > 0. 

Beginning with 𝜔 = 1, successive subsets 𝑆𝜔 are subjected to this test; the first for which the empirical 

spectrum is < 𝜒2
2/2 for 0 ≤ 𝑓 ≤ 1/(2𝑑) is denoted 𝑆𝜔∗. ∑ 𝑅𝜔∗−1

1  then constitutes the ‘change’ 

element of the SSA output and ∑ 𝑅𝑀
𝜔∗  constitutes the ‘variability’ component of that output. To 

translate these two separate components back into their original form, maintaining the original trend, 

mean, and variance of the data, the change component is computed as 

𝐶𝑑 = 𝐿 + 𝜇𝑑 + 𝜎𝑑 ∑ 𝑅𝜔∗−1
1          [6] 

Where 𝐿 is a vector of length 𝑁 with 𝐿𝑛 = 𝛼 + 𝛽𝑡𝑛 (i.e. it returns the trend initially removed via the 

regression of equation [1]). The variability component is computed as 

𝑉𝑑 = 𝜎𝑑 ∑ 𝑅𝑀
𝜔∗            [7] 

A Matlab function for performing the above test and returning the change and variability components 

is available as Supplementary File 1. 

 

4. Validation with simulated data 

Any novel quantitative method should be validated with simulated data prior to empirical 

applications; only once the method has been shown to reliably extract the known features of 

simulated datasets can we be sure that the results of empirical applications will be reliable. The 

simulation experiments reported below were therefore designed to test whether the CVD algorithm 

can extract a white noise (variability) component from time series that contain other components 

frequently found in (palaeo)climatic signals. The signal in Simulation 1 consists of a mixture of periodic 

components and white noise (with the amplitude of the white noise component exhibiting marked 

changes), whilst the signal in Simulation 2 consists of a mixture of periodic components, red noise, 

and white noise. Indicative examples are explored for both simulated signals; for the second simulated 

signal, which represents the more demanding test of the algorithm, a full range of simulations are 

assessed over a range of relative variances of the periodic and red noise components in Simulation 3. 

Finally, Simulation 4 examines the effects of variation in 𝑀 - the one free parameter in the CVD 

algorithm – on the resulting estimates of the change and variability elements.  
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4.1. Simulation 1 

The simulated signal consists of 500 time steps of two superposed sine waves with periods of 23 and 

59 time steps. To this signal is added a contant of 10, a linear trend of -0.02 units per time step and 

Gaussian white noise with a standard deviation equal to: 

• 0.5 in time steps 1 to 200 and 301 to 500; 

• 2 in time steps 201 to 300. 

Formally, the value of the signal 𝑑 at time 𝑡 is given by 

𝑑(𝑡) = −0.02𝑡 + 10 + sin(2𝜋𝑡/23) + sin(2𝜋𝑡/59) + 𝜀     [8] 

Where 

𝜀 = {
 Ɲ(0,2) if 200 < 𝑡 < 301

 Ɲ(0,0.5) otherwise
         [9] 

For the purposes of the analysis, the ‘variability’ element of the signal is defined as the Gaussian white 

noise component; the ‘change’ element of the signal is the therefore the combination of the two sine 

waves and the linear trend. As the periods of the sine waves are known, the embedding dimension for 

the SSA is set to  𝑀 = 60. Since 𝜀 is a random variable, each realisation of the signal 𝑑 will have a 

slightly different form. The results below examine one such realisation; more comprehensive 

simulations using more complex signals are described under Section 4.3. 

Figure 4 shows an example of the CVD algorithm applied to the simulated signal described above. As 

would be expected from the basic logic of SSA, the number of reconstructed components comprising 

the change element of the signal (𝑆𝜔∗) is equal to four in this example: one pair in quadrature 

representing the 23-unit period sine wave and another pair in quadrature representing the 59-unit 

period sine wave. The remaining 𝑀 − 𝑆𝜔∗ = 56 reconstructed components comprise the variability 

element of the signal. Though it is clear from Figure 4b that some of the variability element leaks into 

the change element during the high variability phase (time steps 201-300), Pearson product-moment 

coefficients describing the correlations between the original and reconstructed elements indicate that 

greater than 90% of the original signal is recovered for both the change and variability elements. 

~Figure 4 here~ 

4.2. Simulation 2 

The second simulated signal used to test the CVD algorithm is identical to that described in Simulation 

1 except that the linear trend is replaced by a red noise element. The background signal of empirical 

(palaeo)climatic records is often found to be in the pink to red range (Cuddington and Yodzis 1999; 

Ditlevsen et al. 1996; Lovejoy and Shertzer 1986; Mandelbrot and Wallis 1969; Pelletier 1997); as such, 

the ability to decompose a signal consisting of periodic, red noise, and white noise elements is an 

important benefit of the CVD algorithm. Red noise is generated via the Inverse Fast Fourier Transform 

(IFFT). Assuming an arbitrary sampling frequency of unity and a timescale 𝑡 of 𝑁/2 integer units, a 

frequency scale is established as 𝑓 = (𝑡/2)/(𝑁/2). Amplitudes corresponding to red noise in the 

frequency domain are then calculated as 𝐴𝑓 = √0.5(1/𝑓2), after which 𝐴𝑓 is doubled in length by 

adding a mirrored version to the bottom of the existing vector. A vector of 𝑁 random phase angles 

𝜃 ∈ [0, 2𝜋] is generated and the final vector 𝑉 = 𝐴𝑓𝑒√−1𝜃 is passed to the IFFT, with only the 

standardized, real component ℜ of the resulting complex output retained. The full value of the signal 

𝑑 at time 𝑡 is therefore given by 
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𝑑(𝑡) = ℜ + sin(2𝜋𝑡/23) + sin(2𝜋𝑡/59) + 𝜀       [10] 

Where 𝜀 is given by equation [9]. 

For the purposes of the analysis, the ‘variability’ element of the signal is defined as the Gaussian white 

noise component; the ‘change’ element of the signal is the therefore the combination of the two sine 

waves and the red noise. As above, the embedding dimension for the SSA is set to  𝑀 = 60. As per 

Simulation 1, the fact that ℜ and 𝜀 are random variables implies that each realisation of the signal 𝑑 

will be different; this variation is examined in more detail under Section 4.3. 

Figure 5 shows an example of the CVD algorithm applied to the simulated signal described above. In 

this example 𝑆𝜔∗ = 5; four components represent the two sine waves, with the red noise represented 

by a single component. Given the length of the series relative to the embedding dimension (𝑁 = 500, 

𝑀 = 60) and the fact red noise is by definition dominated by the relatively high amplitude of relatively 

low frequencies, it is not surprising that in this example the red noise element is represented by a 

single reconstructed component. The red noise element simulated here is stochastic, however, and 

𝑆𝜔∗  will vary considerably in line with this stochasticity (see Simulation 3, below). SSA will 

automatically group oscillations at frequencies < 1/𝑀 as trend components; although there is no 

definitive, automated method for choosing 𝑀 for an empirical time series, this suggests that larger 

values of 𝑁/𝑀 will lead to smaller values of 𝑆𝜔∗. As per Simulation 1, some of the variability element 

leaks into the change element during the high variability phase; however, again the Pearson product-

moment coefficients describing the correlations between the original and reconstructed elements 

indicate that greater than 90% of the original signal is recovered for both the change and variability 

elements. 

~Figure 5 here~ 

4.3. Simulation 3 

Simulation 3 uses essentially the same time series as Simulation 2, but allows the sine wave, red noise, 

and white noise components to vary in relative amplitude across simulations. Three sets of simulations 

were performed: in each, one of the three components takes on variances between 0.25 and 4 in 16 

logarithmically equal increments while the other two components are stabilised with variances of 

unity. This allows for analysis of the effects of changes in the variance of each component separately; 

furthermore, because in each simulation two components were processed to have unit variance, 

changes in the variance of the third component can be read as direct multiples of the variances of the 

other components (e.g., when white noise has a variance of 2, this means that its variance is twice 

that of both the sine wave and red noise components). In each simulation 1,000 time series were 

generated at each increment; Pearson product-moment correlations between the known (generated) 

change and variability and the change and variability recovered by the CVD algorithm were calculated 

for each time series, with overall results presented as the median correlation plus or minus the median 

absolute deviation in correlation. Note that each individual time series analysed differs due to 

stochastic generation of the white and red noise components; the underlying sine wave component 

is identical in form in each time series. 

The results of these simulations are shown in Figure 6. Figure 6 panels a-c indicate that recovery of 

the change component diminishes as white noise variance increases, improves as sine wave variance 

increases, and is relatively unaffected by changes in red noise variance. Figure 6 panels d-f indicate 

that recovery of the variability component diminishes as red noise variance increases, is relatively 

unaffected by sine wave variance, and rapidly improves as white noise variance increases up to the 

point at which its variance is roughly equal to that of the summed red noise and sine wave variances, 
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after which it slowly declines. Importantly, these simulations reveal that the median correlation never 

falls below 0.8, suggesting that a substantial proportion of both the change and variability components 

is recovered under all conditions analysed. 

~Figure 6 here~ 

4.4. Simulation 4 

A major criticism levelled at the use of existing methods for the assessment of change and variability 

above is that they rely on numerous subjective parameter choices. The CVD algorithm, however, does 

contain a single free parameter – the embedding dimension (𝑀). The simulations reported below 

document the effects of variation in 𝑀 on the resulting estimates of the change and variability 

components. In standard SSA the choice of 𝑀 is based on a trade-off between the need to capture 

sufficient information about low-frequency components (favouring large 𝑀) and the need for 

sufficient repetitions of the embedding window over the total length of the time series (favouring 

small 𝑀/𝑁). Vautard and colleagues (1992:102) suggest that SSA is successful at identifying 

periodicities in the range 𝑀/5 to 𝑀, and further that one should chose 𝑀 small enough to allow at 

least three repeats of the window (i.e., 𝑀 ≤ 𝑁/3). The CVD algorithm, however, is not concerned with 

identifying significant periodicities in the data – existing Monte Carlo SSA methods are sufficient to 

achieve this (Allen and Robertson 1996; Allen and Smith 1996; Groth and Ghil 2015). As demonstrated 

below, the CVD algorithm is therefore far less dependent on the choice of 𝑀 than is standard SSA. 

The experiments below were carried out using pink noise as the signal subject to decomposition. Pink 

noise is a good approximation for many climatic data sets (Ditlevsen et al. 1996; Pelletier 1997; 

Cuddington and Yodzis 1999), and the fact that its power varies directly as the reciprocal of frequency 

makes it a particularly hard signal to decompose. The results are therefore conservative regarding the 

magnitude of the effect of varying 𝑀. 100 pink noise time series of 𝑁 = 300 time steps were 

generated using the IFFT method (see above); each was then subject to the CVD algorithm using 19 

different values of 𝑀 ranging from 10 to 100 in increments of 5. The resulting change and variability 

output were saved as separate 𝑁 × 19 matrices, and their variance-covariance matrices calculated. 

These variance-covariance matrices were then averaged over all 100 signals to estimate the 

differences in estimates of change and variability caused by variation in 𝑀. 𝜔∗ was also recorded for 

each of the 100*19 analyses to examine how it changes in response to changes in 𝑀.  

Figure 7a shows that 𝜔∗ increases approximately logarithmically with 𝑀, although there is 

considerable variance around this broad trend. That 𝜔∗ covaries positively with 𝑀 is important, 

however, because this relationship stabilises the resulting estimates of change and variability. As 𝑀 

increases, the number of eigenvectors (or reconstructed components) used to characterise both the 

change and the variability elements increases, leaving the relationship between these two elements 

relatively stable. Figure 7b shows that, over an order of magnitude difference in 𝑀, estimates of 

variability and change remain remarkably consistent; the smallest correlation coefficients between 

estimates are >0.93, and most of the differences occur at either end of the series where the effects of 

different embedding dimensions are greatest (see Figure 8 for an individual example). 

~Figure 7 here~ 

~Figure 8 here~ 

There is therefore far greater latitude in choosing 𝑀 when using the CVD algorithm than when 

employing MC-SSA to identify significant periodicities in a time series. This is partly due to the fact 

that all periodic components with periods > 𝑀 will be subsumed into the change component of the 
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SSA output (Vautard and Ghil 1989; Ghil et al. 2002) and partly due to the documented positive 

covariation between 𝜔∗ and 𝑀. Although 𝑀 is a ‘subjective parameter’ in the CVD algorithm, 

therefore, it has little effect on the resulting assessment of the change and variability components / 

elements. In some analyses there will be a clear a priori empirical rationale for the choice of 𝑀 (see 

Section 5 for an example); in analyses where this is not the case, the above results provide confidence 

that the choice of 𝑀 will have minimal bearing on the estimation of change and variability. Where the 

choice of 𝑀 is totally ‘naïve’ (i.e. there is no underlying expectation, and no significant periodicity 

evident in preliminary spectral analyses) simulations like those above could be used to verify the 

effects of varying 𝑀, but in most analyses this is unlikely to be necessary. 

 

5. Case Study: The El Niño – Southern Oscillation 

The first case study examines a time series describing the atmospheric component of the El Niño – 

Southern Oscillation, a fundamentally important climatic cycle that has often been subject to SSA-

based analyses, has wide-ranging global impacts, and is also recognised as having had substantive 

effects on prehistoric climates (e.g. Kaboth-Bahr et al. 2021). El Niño events weaken or even reverse 

the normal easterly trade winds in the equatorial Pacific Ocean, increasing the depth and decreasing 

the slope of the ocean thermocline and preventing upwelling of nutrient-rich water in the east. 

Warmer waters in the eastern equatorial Pacific decrease atmospheric pressure, disrupting the Walker 

Circulation and causing a southward shift of the Pacific jet stream. Proximate effects include increased 

precipitation in coastal South America and drought in Indonesia and Australia; however, El Niño’s 

strong teleconnections can ultimately lead to increased storm frequency in the coastal states of North 

America, weaker monsoons in Southeast Asia and even more pronounced rainy seasons in sub-

Saharan Africa (Nicholson and Selato 2000). Whilst El Niño events cause floods in South America and 

droughts in Australasia, the inverse of this pattern is found when the trade winds are strengthened 

during La Niña events. Technically El Niño and La Niña events represent the opposite poles of an 

oceanic phenomenon, but this cannot be meaningfully decoupled from the associated atmospheric 

phenomenon referred to as the Southern Oscillation. The term ENSO (El Niño – Southern Oscillation) 

thus encompasses the full oceanic-atmospheric cycle, a cycle closely linked to the Walker Circulation 

and thus to climatological patterns across the planet (Allan et al. 1996; Power et al. 1999; Vecchi et al. 

2006). 

The climatic anomalies caused by El Niño events have pervasive ecological consequences. Reduced 

upwelling in the eastern equatorial Pacific leads to a nutrient deficit and reduced phytoplankton 

populations, with cascading effects at higher trophic levels including reduced fish populations along 

the eastern Pacific coast from Chile to Alaska (Barber and Chavez 1983; Bakun and Broad 2003). 

Terrestrial effects are equally pervasive, with far-reaching effects on floral, avian, and mammalian 

species. In the eastern Pacific, plant cover on the normally barren islands of the Gulf of California can 

increase from 0-4% to 54-89% during El Niño years (Polis et al. 1997), while in Australia and Northern 

Sumatra drought conditions inhibit the ability of mangroves to produce a defensive toxic sap, leaving 

them susceptible to defoliation by lepidopteran larvae (McKillup and McKillup 1997). On a broader 

scale, Tian and colleagues (1998) suggest that the hot, dry weather experienced in the Amazon Basin 

forest during El Niño years converts the area from a carbon sink to a source of atmospheric carbon 

(see also Humphrey et al. 2018). The wider ENSO phenomenon is now recognised as the most 

important single driver of the terrestrial carbon cycle (Cox et al. 2013; Betts et al. 2016). Droughts 

caused by El Niño events can lead to widespread forest fires with long-lasting effects on ecological 

dynamics, particularly in tropical Asia (Liu et al. 2017). Chen and colleagues (2017) calculate that, for 
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the 1997-2016 period, fire emissions from tropical forests in El Niño years were 1.33 times greater 

than those in La Niña years. 

Increases in primary productivity due to wetter conditions also have terrestrial effects at higher 

trophic levels; initial population increases in herbivores are followed by subsequent increases in 

carnivore numbers (Jaksic et al. 1997; Wright et al. 1999; Grant et al. 2000). Jaksic (2001) demonstrates 

that populations of small rodents in western South America increase dramatically within months of 

increased El Niño rains; increases in larger rodent populations show a greater lag and are less 

pronounced. Increases in predator numbers occur approximately a year after increases in their prey, 

with effects again more pronounced in smaller-bodied animals. Letnic and colleagues (2005) find 

similar patterns in central Australia during La Niña periods, also noting an increase in avian predators 

of small rodents such as black-shouldered kites (Elanus axillaris). Studies of individual avian species on 

oceanic islands have revealed equally profound patterns; on the Galapagos island of Daphne Major, 

for example, two species of Darwin’s Finches (Geospiza fortis and G. scandens) showed extended 

breeding seasons, greater brood production, and increased clutch sizes during El Niño years (Grant et 

al. 2000). 

ENSO fluctuations are monitored via numerous continuous sea surface temperature (SST) and 

atmospheric pressure measures, yet there remains no universally agreed definition of what 

constitutes an El Niño (or La Niña) event (e.g. Aceituno 1992; Glantz 1996; Trenberth 1997; Larkin and 

Harrison 2005). In terms of SST, there exists disagreement over which region of the equatorial Pacific 

is most indicative of ENSO cycling. Initial efforts focused on the Niño 3 (5°N-5°S, 90°-150°W) or, less 

frequently, Niño 4 (5°N-5°S, 160°E-150°W) regions; more recently the Niño 3.4 region (5°N-5°S, 

170°W-120°W) has risen to prominence, as this longitudinal compromise appears to better represent 

average SSTs across the equatorial Pacific. SST time series are generally presented not as raw data but 

as excursions relative to the mean (and sometimes the standard deviation) of some base period (e.g. 

the base period of 1950-1979; see Trenberth 1997). As noted by Trenberth (1997), the choice of base 

period can of course have marked effects on the calculation of excursions. To reduce noise in the 

resultant time series, data are often presented as 3- or 5-monthly running means. 

The foregoing vagaries notwithstanding, NOAA currently defines an El Niño event as “a positive sea 

surface temperature departure from normal (for the 1971–2000 base period) in the Niño 3.4 region 

greater than or equal in magnitude to 0.5°C, averaged over three consecutive months” 

(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml). This 3-month running 

mean excursion relative to the 1971-2000 base period is referred to as the Oceanic Niño Index (ONI). 

The atmospheric component of ENSO, by contrast, has predominantly been quantified via the 

Southern Oscillation Index (SOI), a standardized measure of the difference in mean sea-level air 

pressure between Tahiti (French Polynesia; 17°21´S, 210°29´E) in the east and Darwin (Australia; 

12°28´S, 130°50´E) in the west. There are many advantages to the SOI as an ENSO indicator: it is 

relatively simple to calculate, is tightly correlated with changes in ocean temperatures across the 

eastern tropical Pacific, and measurements reach further back in time than those for SSTs (for which 

values prior to 1950 are often reconstructed from other proxies rather than directly measured). It is 

also worthy of note that the Niño 3.4 SST series has achieved primacy among analysts at least partly 

because it correlates better with the SOI than do either the Niño 3 or Niño 4 series. 

The analyses below therefore employ the monthly SOI time series from January 1870 to December 

2019 (Ropelewski and Jones 1987; Allan et al. 1991; data obtained from 

https://crudata.uea.ac.uk/cru/data/soi/). The CVD is performed to eliminate high-frequency 

variability, permitting a clearer analysis of the periodic (and quasi-periodic) ENSO components that 

are the principal drivers of the major fluctuations, and facilitating identification of El Niño events. The 
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focus here is on El Niño, but one could equally use the technique to examine the dynamics of La Niña. 

The analysis is designed to pick out pronounced troughs in the raw SOI and in the ‘change’ output of 

the CVD, and to compare these to identified El Niño events (Smith and Sardeshmukh 2000); it is 

demonstrated that employing the ‘change’ component of the SVD makes meaningful troughs more 

apparent, reduces the frequency of false positive El Niño identifications, and detects a series of El Niño 

events more consistent with current estimates of their chronology. The focus is therefore on the 

central chronological locations of events rather than their duration, though in some cases it becomes 

clear that single events consist of multiple troughs. 

As stated above, definitions of El Niño events remain contentious; nonetheless, a comparison of 

events identified via the raw SOI and the ‘change’ component of the CVD with a robust chronology 

remains an important aspect of any evaluation of the CVD. The chronology employed here is that 

developed by Smith and Sardeshmukh (2000; data obtained from 

https://www.psl.noaa.gov/people/cathy.smith/best/#years). Smith and Sardeshmukh (2000) 

standardised (i.e., z-scored) both the SOI and the Niño 3.4 SST time series over the period from 1870 

to 2019, then calculated ‘strong’ El Niño months as those in which both times series exceeded the 

20th percentile; ‘weak’ El Niño months were defined as those in which both time series exceeded the 

33rd percentile. Both the ‘strong’ and ‘weak’ indices are employed below. 

The CVD algorithm was applied to the monthly SOI series, employing 𝑀 = 60 months; this embedding 

value corresponds to a five-year period and is frequently employed in SSA analyses of the SOI (e.g., 

Keppenne and Ghil 1992; Allen and Smith 1996). The 𝜔∗ value demonstrates that the first 15 

reconstructed components are retained to form the ‘change’ element of the decomposition whilst the 

remaining 45 form the ‘variability’ element. The CVD removes a substantial part of the high-frequency 

variation in the SOI, as shown in the spectral analysis of Figure 9. Following application of the CVD, a 

simple algorithm is used to define troughs in both the raw SOI and the ‘change’ component that 

predict chronological locations of El Niño events: a trough is a value that is less than either of the 

adjacent values and also less than -1 (Kiladis and van Loon 1988). Use of this algorithm leads to the 

identification of events in the raw SOI (Figure 10a) and the ‘change’ element of the CVD (Figure 10b). 

The chronology of both ‘strong’ and ‘weak’ El Niño months (following Smith and Sardeshmukh 2000) 

is displayed at the base of each figure, with individual identified troughs indicated as consistent (red 

triangles) or inconsistent (black triangles) with this chronology. An identified trough is regarded as 

consistent with the chronology if it falls within either a ‘weak’ or a ‘strong’ El Niño month as identified 

by Smith and Sardeshmukh (2000). 

~Figure 9 here~ 

It is immediately apparent that use of the CVD reduces the number of false positives (black triangles 

in Figure 10) relative to use of the raw SOI. Table 1 demonstrates that the reduction in false positives 

is approximately 11-12%; this constitutes an important advance, as it provides a considerably better 

correspondence with the chronology developed by Smith and Sardeshmukh (2000) and allows for 

clearer delineation of true El Niño events. Of equal importance is the reduction in the number of 

troughs identified per El Niño event; this reduction makes it considerably easier to identify maximal El 

Niño states and to examine their periodicity. Simple histograms of inter-event periods (Figure 11) 

demonstrate the improvement in the signal afforded by the CVD; after removing sub-annual periods 

from both signals it is clear that the distribution of inter-event periods for the raw SOI shows positive 

skewness with most values in the 1-2 year bin. The distribution of inter-event periods for the ‘change’ 

component of the CVD, however, shows a distinct mode in the 3-4 year bin, consistent with the 

average periodicity of El Niño events (Trenberth 1997). 
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~Figure 10 here~ 

~Figure 11 here~ 

~Table 1 here~ 

There are therefore clear empirical advantages of employing the CVD to examine the SOI time series; 

in addition, there are clear theoretical advantages. Monthly time series of the SOI (and other El Niño 

indicators) are often smoothed using either 3- or 5-month running means. However, the choice of 3 

or 5 months for the smoothing is arbitrary, and the two alternatives necessarily lead to different 

results. Furthermore, as noted by Trauth (2015:234-5), the use of running means is undesirable as it 

can eliminate elements of the frequency response and can even lead to inversion of the signal. The 

use of Gaussian smoothing or the careful design of frequency-specific filters avoids such issues, but 

requires the analyst to choose a window width, parameters of the smoothing kernel, or a type of filter 

and an associated frequency band. The CVD, by contrast, employs a data-driven approach to remove 

low-variance, high-frequency components of the signal; the ‘change’ component therefore gives an 

empirically justified reconstruction of the long-term dynamics. 

The above analysis demonstrates the value of employing the CVD to examine the SOI in relation to El 

Niño events; however, such analyses could certainly be taken further. Future analyses should consider 

the Niño 3.4 SST series as well as the SOI, and there would be value in applying the CVD to individual 

components of these composite indices; for example, application of the CVD separately to the Tahiti 

and Darwin sea-level air pressure time series prior to construction of the SOI could lead to greater 

clarity in pinpointing El Niño events. The CVD may also prove useful in generating predictions of future 

ENSO activity; since the CVD can be used to remove variability, the ‘change’ component analysed 

above provides a useful baseline for prediction. If ‘change’ and ‘variability’ are equated with ‘signal’ 

and ‘noise’ then future predictions can be based on the ‘signal’ component, with the distribution of 

the ‘noise’ used to produce confidence intervals encompassing known historical variability. 

 

6. Case Study: The origins of agriculture in southwest Asia 

As with many other aspects of human evolution, there is a considerable history of research into the 

links between climatic change and the origins of agriculture (e.g., Richerson et al. 2001; Bettinger et 

al. 2009; Moore and Hillman 1992; Bar-Yosef and Belfer-Cohen 1992, 2002; Bar-Yosef 1998; Henry 

1989, 1995, 2013; Hillman 1996; Wright 1968, 1976, 1993; Childe 1928; Flannery 1969; Braidwood 

1960; Braidwood and Braidwood 1953; Braidwood and Howe 1960). Childe (1928) suggested that 

agriculture was one possible strategy adopted to mitigate climatic changes at the onset of the 

Holocene. The prevailing climatic model of the time suggested that high-latitude glacials equated to 

pluvial phases at lower latitudes; as such, the onset of the Holocene interglacial was seen as a period 

of environmental drying, punctuated spatially by oases acting as refugial zones for plants, animals and 

humans. Childe identified the Near East as one such oasis, and prompted the future work by 

Braidwood and Wright that reversed this climatic interpretation, demonstrating the generic pattern 

of cold, dry glacials and warm, wet interglacials in the region (e.g. Braidwood 1960; van Zeist and 

Wright 1963; Wright 1968, 1976). 

The revisions resulting from Wright’s (1968, 1976, 1993) research, together with an increasingly 

comprehensive understanding of the chronology and conditions of the last glacial termination (e.g. 

Rasmussen et al. 2006), led to the prevalence of a second major hypothesis. Moore and Hillman (1992) 

argued that the cool, dry conditions of the Younger Dryas (henceforth YD) reduced the availability of 
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wild plant foods relative to the preceding Bølling-Allerød (henceforth BA) and that this reduction in 

the resource base prompted human groups to accelerate incipient experiments in crop domestication, 

leading to the origins of agriculture (see also Wright 1993; Bar-Yosef 1998; Bar-Yosef and Belfer-Cohen 

2002; Blockley and Pinhasi 2011). Although this latter hypothesis has remained prevalent, several 

weaknesses in its explanatory ability have become apparent as the dating of the relevant 

archaeological sequences has become more detailed. 

Most debates on the origins of agriculture in the Near East revolve around the Natufian, and to a lesser 

extent on the succeeding early aceramic phase (the Pre-Pottery Neolithic A, henceforth PPNA). In its 

current form, the Moore and Hillman (1992) hypothesis rests on the alignment of the Early Natufian 

with the BA and the Late Natufian with the YD. It also depends, to a lesser extent, on the 

demonstration of increasing sedentism, increasing percentages of ‘founder crop’ progenitors in 

archaeobotanical assemblages, and greater evidence of the elements of material culture associated 

with their processing. The first appearance of the Early Natufian closely postdates the onset of the BA, 

suggesting that the large settlements, semi-circular stone structures, burials, symbolic artefacts, and 

possible storage facilities of this period indicate an increasingly sedentary lifestyle facilitated by the 

BA climatic amelioration. However, recent evidence suggests that the Late Natufian began perhaps 

300-600 years prior to the onset of the YD in the Mediterranean (Henry 2013; Grosman 2013; Caracuta 

et al. 2016), and that archaeological signatures of the Early and Late Natufian show considerable 

chronological overlap (Barzilai et al. 2017). This casts considerable doubt on the hypothesis that the 

Late Natufian was a response to the YD specifically but, as Blockley and Pinhasi (2011) note, the 

beginnings of the Late Natufian may still coincide with climatic deterioration evident during the 

Allerød oscillation (see Figure 12). 

~Figure 12 here~ 

The prevailing archaeological picture is of increased sedentism in the Early Natufian followed by a 

return to smaller, more ephemeral sites and greater mobility in the Late Natufian (Goring-Morris and 

Belfer-Cohen 1997; Bar-Yosef and Belfer-Cohen 2002; Munro 2004), though some degree of 

sedentism may have persisted in the southern Levantine Mediterranean core zone (Richter et al. 

2017). Ground stone artefacts increase in frequency during the Natufian, and are more numerous in 

later phases (Rosen and Rivera-Collazo 2012); sickles show a similar pattern (Maeda et al. 2016), but 

the precise meaning of their presence is clouded by similar artefacts from Upper Palaeolithic sites in 

the region such as Wadi Kubbaniya and Ohalo II (e.g. Snir et al. 2015; Arranz-Otaegui et al. 2018a). 

Finally, the archaeobotanical evidence of the last decade casts doubt upon the conception of Late 

Natufian peoples as incipient agriculturalists. Rosen (2010) suggests that the Natufians responded to 

environmental deterioration by exploiting a wider variety of plant foods, without a particular focus on 

cereals. Analysing the extensive archaeobotanical record from Shubayqa 1, Arranz-Otaegui and 

colleagues (2018a) argue that founder crop progenitors were not an integral component of Natufian 

subsistence and did not become so until the early Pre-Pottery Neolithic B (henceforth PPNB). Instead, 

evidence from this site suggests that club-rush tubers were a primary source of plant food in the Early 

Natufian (Richter et al. 2017; Arranz-Otaegui et al. 2018b). 

A third hypothesis, evaluated below via the CVD algorithm, focuses not on the increases in 

temperature and precipitation created by the last glacial termination, but on the concomitant 

reduction in climatic variability. Richerson and colleagues (2001; see also Bettinger et al. 2009) 

advance the provocative hypothesis that “agriculture was impossible during the last glacial” but was 

ultimately “compulsory in the Holocene” (Richerson et al. 2001:388). Although these authors 

reference the more arid climates and lower CO2 levels of the last glacial, the central plank of their 

argument is that the high-amplitude, high-frequency fluctuations of the period made the necessarily 
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high investments in and delayed returns of agriculture inefficient and unreliable (Bettinger et al. 2009). 

Rather than the YD providing a stimulus to further exploitation of founder crop progenitors, these 

authors argue that it simply stalled any incipient agricultural experiments undertaken among the Early 

Natufians during the relative amelioration of the BA (see also Feynman and Ruzmaikin 2007). 

The ‘variability hypothesis’ of Richerson and colleagues (2001) is more nuanced than it first appears, 

and takes into account the contingencies of cultural innovation and transmission in the various 

independent ‘centres of origin’ in which agriculture emerged. To be clear, the Holocene decrease in 

climatic variability could not possibly have caused the evolution of agriculture, but it could certainly 

have facilitated it; the fact that agriculture did evolve in at least 11 geographically independent centres 

during the Holocene (Larson et al. 2014; Fuller et al. 2014) suggests that the benefits for plant 

cultivation of a relatively stable climate were repeatedly recognised and exploited by humans during 

this period. As the region in which agriculture developed the earliest, the Near East provides a 

particularly germane archaeological case study with which to test the variability hypothesis; evidence 

of agricultural development prior to a significant reduction in climatic variability would falsify the 

hypothesis, at least in relation to this region. 

To construct a test of the variability hypothesis, the CVD algorithm was applied to the last 25 ka of the 

20-year mean NGRIP oxygen isotope data using the GICC05 timescale (Grootes and Stuiver 1997; 

Johnsen et al. 1997; Stuiver and Grootes 2000; NGRIP Members 2004; Rasmussen et al. 2014; 

Seierstad et al. 2014), with 𝑀 = 100 (= 2,000 years). Although NGRIP is a high-latitude record, there is 

comprehensive evidence that the fluctuations it displays are very similar to those seen in regional Near 

Eastern records (e.g. Bar-Matthews et al. 1999, 2000, 2003; Vaks et al. 2006; Robinson et al. 2006). 

The correlations between the NGRIP records and those from the Soreq and Peqiin Cave speleothems, 

as well as with eastern Mediterranean marine core records, are particularly striking (Bar-Matthews et 

al. 2003). Furthermore, NGRIP δ18O fluctuations are closely tied to total tree taxa percentages in pollen 

records from southern Europe such as those from Lake Ohrid (e.g. Sadori et al. 2016; Sinopoli et al. 

2018) and Tenaghi Philippon (e.g. Milner et al. 2012, 2013, 2016; Wulf et al. 2018). 

Following isolation of the variability component of the NGRIP δ18O signal, statistically significant 

increases and decreases in variability were identified using the running Mann-Whitney test proposed 

by Trauth and colleagues (2009; Trauth 2015) on absolute values of the first derivative of the variability 

component. Note that the running Mann-Whitney is preferred to the running Ansari-Bradley test in 

this case as the key question relates to the absolute magnitude of the variability component. Following 

the recommendations of Trauth and colleagues (2009) this test was performed using three separate 

window widths (of 50, 100, and 150 data points [=1000, 2000, and 3000 years]); transitions in the 

magnitude of the variability were deemed significant only if all three window widths yielded 

simultaneous significant results at 𝛼 = 0.99. 

The results of the above analysis are summarised in Figure 13. Four statistically significant transitions 

were observed: increases in variability at 12,990 – 13,260 BP and 9,060 BP, and decreases in variability 

at 14,760 – 14,980 BP and 11,810 BP. Where boundaries rather than point dates are given, this is 

because in some cases smaller windows suggest multiple significant results whereas larger windows 

clearly demonstrate that these multiple significant results were components of the same transitions 

(see Figure 13, bottom panel). Smaller windows therefore help to localize transitions in time, whereas 

larger windows ensure that protracted transitions are not interpreted as multiple separate events. In 

terms of the overall palaeoclimatic chronology, the decreases in variability at 14,760 – 14,980 BP and 

11,810 BP correspond broadly to the onset of the Bølling-Allerød and the start of the Holocene 

respectively. The increase in variability at 12,990 – 13,260 BP predates the onset of the Younger Dryas 
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by ~90 years, and the small but significant increase at 9,060 BP occurs well within the Holocene, has 

not been previously recognised, and broadly coincides with the end of the PPNB. 

~Figure 13 here~ 

The dates of these transitions in the magnitude of variability are next compared to two archaeological 

datasets documenting the origins of agriculture in southwest Asia. The first is a general chronology of 

key plant domestication dates for southwest Asia compiled by Larson and colleagues (2014). These 

authors document three important phases in the domestication process: 1) exploitation prior to 

domestication; 2) management or pre-domestication cultivation, and; 3) the appearance of the 

morphological changes associated with domestication. In terms of testing the variability hypothesis, 

only (2) and (3) can be regarded as evidence for domestication, but (1) provides a useful addition, 

particularly given the debate surrounding the exploitation of ‘founder crop’ progenitors during the 

Natufian period outlined above. 

The alignment of this chronology with the dates of the variability transitions highlighted via use of the 

CVD algorithm is shown in Figure 14. It can be seen from this figure that, although pre-domestication 

exploitation of founder crops may have begun prior to the transition to low variability at 11,810 BP, 

management and cultivation occurred only after this transition. This pattern supports the variability 

hypothesis in terms of the Holocene decrease in variability acting as a possible precursor to 

domestication, but also raises the intriguing question of why there is such limited evidence for founder 

crop exploitation during the Early Natufian (e.g. Rosen 2010; Asouti and Fuller 2012; Arranz-Otaegui 

et al. 2018a), which corresponds to a period of reduced variability associated with the Bølling-Allerød. 

Several researchers (e.g. Rosen 2010; Asouti and Fuller 2012) have suggested that Early Natufian plant 

exploitation was highly diversified rather than being focussed on cereal and pulse crop progenitors, 

and it may simply be the case that this broad pattern of consumption prevented the need for active 

investment in particular plant resources. On the other hand, evidence for the production of flour from 

wild grasses as early as 23 ka (Piperno et al. 2004; Snir et al. 2015) and the production of breads made 

of wild einkorn and club-rush tubers by 14.4 ka (Arranz-Otaegui et al. 2018b) suggests that there may 

have been numerous “false starts and dead ends” (Fuller et al. 2012:619) on the road to the eventual 

widespread adoption of cultivars. 

~Figure 14 here~ 

The second dataset was collated by Arranz-Otaegui and colleagues (2018) and consists of the 

percentages of founder crops among the non-woody plant macro-remains at 35 southwest Asian 

archaeological sites dated to between 15 and 9.7 ka cal. BP. Following Weiss and Zohary (2011), the 

eight founder crops are identified as einkorn, emmer, barley, lentil, pea, chickpea, bitter vetch, and 

flax. Arranz-Otaegui and colleagues (2018:278) perform a Pearson correlation on these data to 

demonstrate the increase in percentages of founder crops through time. However, it is clear from the 

accompanying plot (Arranz-Otaegui et al. 2018:279) that the linear fit implied by the correlation may 

not be the best characterisation of the trajectory demonstrated by these data. While the analysis 

presented by Arranz-Otaegui and colleagues (2018) is certainly valuable in demonstrating the increase 

in percentages of founder crops, the analyses reported here fit an alternative sigmoid model to the 

data. 

Following Trauth and colleagues (in press), the sigmoid fit is described as 

𝐹 = 𝑎 +
𝑏

1+𝑒−𝑐(−𝑡+𝑑)          [11] 



Grove Change / Variability Decomposition 20 

Where 𝐹 is the percentage of founder crops in the assemblage, 𝑡 is the age of the assemblage in years 

cal. BP and 𝑎, 𝑏, 𝑐, and 𝑑 are model parameters. The value of the sigmoid is that it allows for the 

identification of the transition date at which the greatest increase in percentages of founder crops in 

these assemblages takes place. The parameter 𝑑 estimates the most likely date of this transition, and 

the 95% confidence intervals on this parameter can be used to provide a probabilistic estimate of 

when the most rapid increase in founder crop percentages occurred. 𝑎 is the mean equilibrium 

percentage of founder crops prior to the transition, 𝑎 + 𝑏 is the mean equilibrium percentage of 

founder crops after the transition, and 𝑐 is proportional to the speed of the transition. 

Figure 15 shows the sigmoid fit together with the dates of decreases and increases in variability 

demonstrated via CVD analysis of the NGRIP δ18O data. The mean percentage of founder crops in the 

assemblages increases from 5.6% to 44.1%; the 95% confidence interval on the 𝑑 parameter 

demonstrates that 95% of this increase occurs between 11,997 and 10,545 cal. BP, with a mean 

transition date of 11,270 cal. BP. Although the start of this transition at 11,997 cal. BP predates the 

decrease in variability at 11,810 demonstrated via the CVD analysis this occurs during a gap in the 

archaeological data of around 600 years between the assemblages from Mureybet I-II (c. 12,300 cal. 

BP) and Hallan Çemi (c. 11,700 cal. BP). As above, therefore, the results of this second analysis also 

support the variability hypothesis of Richerson and colleagues (2001). The lack of significant evidence 

for cultivation during the low-variability phase associated with the Bølling-Allerød proves that low 

variability alone is not sufficient to lead to agriculture, precluding strict environmentally determinist 

arguments for the origins of plant domestication (cf. Roberts et al. 2018). Cultural responses to the 

environmental conditions of the Holocene, however, led to the rapid development of agriculture in 

southwest Asia following the decrease in variability documented via the CVD algorithm. 

~Figure 15 here~ 

 

7. Recapitulation and Conclusions 

As stated in Section 1, hypotheses concerning the effects of climatic fluctuations on past human 

societies have shifted towards the position that variability may be more important than change in 

shaping both biological and cultural adaptations. This shift is particularly apparent in the literature on 

human evolution, but is also reflected in studies of more recent periods as well as analyses of 

contemporary and future climates (e.g., Thornton et al. 2014; Vasseur et al. 2014; Seddon et al. 2016; 

Bathiany et al. 2018). It is widely understood that high-frequency fluctuations are more likely to govern 

adaptive dynamics and that, for example, cultural evolution becomes a more pervasive force when 

fluctuations occur rapidly relative to the generation time of the species concerned (e.g., Stephens 

1991; Grove 2017). Yet despite this understanding definitions of climatic change and climatic 

variability are many and varied, with analyses often resting on subjective measures; it is clear that the 

intuitive but often implicit understanding of variability requires an objective, quantitative counterpart 

in order for the many valuable hypotheses regarding climatic variability to be rigorously tested, 

evaluated, and expanded. 

Establishing a clear distinction between climatic change and climatic variability is particularly 

important from an evolutionary perspective, as these two components of climate can lead to distinct 

evolutionary responses. Whist climatic change often leads to directional selection or shifts in the 

geographic range of a species, climatic variability often leads to the evolution of various forms of 

phenotypic or behavioural plasticity. Evolutionary biologists have been aware of this distinction for 

decades (e.g. Dempster 1955; Levins 1968; Gillespie 1973; Moran 1992; Lande and Shannon 1996; 
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Simons 2002), and it has achieved even greater importance in the context of contemporary 

anthropogenic effects on global climates (e.g. Neukom et al. 2019). Species that have developed 

greater plasticity as a result of experiencing and adapting to temporal climatic variability are often 

more capable of dispersing into novel habitats (e.g. Mayr 1965; Vazquez 2006; Sol 2007), with 

important implications for conservation initiatives. The degree of environmental fluctuation has also 

been suggested to produce different macroscale evolutionary patterns, with gradual evolution more 

likely in relatively stable environments and punctuated equilibrium predominating under conditions 

of greater fluctuation (Sheldon 1996). This considerable body of literature is reviewed in greater detail 

in Grove (2015); in the present paper, it is sufficient to note that isolating climatic change from climatic 

variability will substantially enhance the potential for evolutionary analysis. 

The CVD algorithm, detailed in Section 3, employs white noise as a quantitative model of variability. 

As white noise is stationary, lacks significant autocorrelation, and has high entropy, it fulfils all the 

necessary criteria for such a model. Crucially, white noise is fundamentally unpredictable, and as such 

it accords with the intuitive notion of variability that is adopted, implicitly or explicitly, by most 

researchers working with climatic time series. Although white noise by definition has equal power at 

all frequencies, its effects are most clearly manifest at high frequencies, where it stands out above the 

periodic or directional components that also regularly appear in climatic time series (see, for example, 

Figure 9). 

The identification of white noise with variability allows for the construction of an algorithm that 

objectively decomposes a time series into change and variability components. Existing methods for 

performing such a decomposition require the analyst to make subjective choices of multiple 

parameter values; the CVD algorithm has only one free parameter, and the simulations of Section 4.4 

demonstrate that varying this parameter has minimal effect on the result. The combination of non-

parametric, data-adaptive SSA with more traditional Fourier-based methods obviates the need for 

computationally intensive simulation, resulting in a fast, efficient algorithm. As well as being valuable 

for the growing number of researchers studying the effects of climatic variability, this algorithm can 

also be employed as a ‘de-noising’ process by researchers focussing on the effects of longer-term 

trajectories. By way of demonstration, Section 5 presents a case study of a contemporary time series 

with the research focus on the change component, whereas Section 6 presents a case study of a 

prehistoric time series with a research focus on the variability component. 

The extensive validation simulations of Section 4 demonstrate that the CVD algorithm is successful at 

recovering the variability and change components from a wide range of synthetic signals. Importantly, 

it isolates the variability component from a background that includes both periodic and red noise 

components, the two forms of fluctuation found most commonly in empirical climatic time series. The 

case studies of Sections 5 and 6 demonstrate that the decomposition of complex empirical climatic 

time series into change and variability components has the potential to produce genuine advances by 

isolating features of interest and facilitating more rigorous hypothesis testing. 

Despite the numerous advantages of the CVD algorithm, a number of caveats must be noted. Some 

researchers may disagree with the view that variability and white noise should be viewed as 

synonymous. It is undoubtedly true that a proportion of the white noise identified via the algorithm 

will be instrumental, reflecting the precision with which a given proxy can be measured. However, in 

the vast majority of cases instrumental noise can be directly quantified (by, for example, repeatedly 

measuring the same sample and assessing the variance of the results). It is also clear from the case 

studies above that the amplitudes of white noise recovered far exceed those that could be produced 

via instrumental noise, and therefore that the vast majority of the white noise component represents 

true climatic variability. 
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The decomposition of a climatic time series into change and variability components does not explicitly 

address the issue of individual extreme events, but may be profitably combined with existing methods 

designed for the analysis of such events (a review of such methods is provided by Mudelsee 2014, 

Chapter 6). Individual events that temporally or permanently alter local climatic patterns (such as 

volcanic eruptions or tectonic shifts) may be recorded as alterations in either the change or variability 

components. The advantage of isolating these two components is that it will facilitate the 

identification of any effects caused by these events. For example, a temporary cooling caused by a 

‘volcanic winter’ may be represented in the change component and, provided that the eruption is 

independently dated, this would allow researchers to investigate the consequences of that eruption 

in more detail. In a similar vein, tectonic events that alter the magnitude of a proxy – by, for example, 

diverting more runoff into a lake subject to coring for a precipitation record – should be recorded as 

a permanent change in the value of that proxy; any such change will be more apparent once the 

variability component of the time series has been removed. 

The view that variability and white noise are synonymous permits the first objective, theoretically and 

mathematically grounded definition of variability as well as enabling the construction of an algorithm 

for its isolation; it is hoped that the white noise perspective will attract many users to the CVD 

algorithm, and will at least prompt debate among those who disagree with its theoretical foundations. 

A second caveat regards data quality, and is central to all studies of climatic time series. The SSA 

component of the algorithm requires time series equal in length to at least three times the period of 

the longest oscillatory fluctuation of interest; coverage of less than this threshold may lead to a less 

distinct separation of change and variability. Although SSA is the best solution for “short, noisy, chaotic 

signals” (Vautard et al. 1992:95), there are of course limits. Results generated via the CVD algorithm 

may be unreliable when signals are too short or are sampled at too low a resolution. In many cases, a 

beneficial approach to data collection may be to couple long, low-resolution signals with shorter, high-

resolution sections of the same record (e.g., Lupien et al. 2020). 

The case studies of Sections 5 and 6 indicate examples of how the CVD algorithm can be used, and are 

designed more as explications of the method than as definitive answers to the research questions they 

examine. In the future, more robust analyses using the algorithm could be generated by employing 

multiple time series that cover the same period and region but address different facets of climatic 

fluctuation. To take the case study of Section 6 as an example, the NGRIP and other Greenland cores 

also present dust (Ca2+) and CO2 data (e.g., Rasmussen et al. 2014), and the work of Bar-Matthews and 

colleagues (2003) suggests that the δ18O and δ13C records from the Soreq and Peqiin Cave 

speleothems, as well as organic carbon and G. ruber δ18O records from eastern Mediterranean core 

MD84641 (Fontugne and Calvert 1992), provide in combination a fuller picture of palaeoclimatic 

fluctuations in southwest Asia across the period at which domestication first occurs. Whilst the high-

variability phases of all these records would not necessarily be expected to align, they would in 

combination provide a more nuanced view of the different facets of variability during this important 

period. 

The CVD algorithm allows researchers to decompose a time series into change and variability 

components, but this is merely a first step in the search for causal mechanisms or operational 

explanations. The analyses of Section 6, for example, establish the regional chronology of increases 

and decreases in variability and the relationship of this chronology to that of relevant archaeological 

records, but they do not delve into the finer-scale climatological patterns associated with these 

changes. For example, the amplitude and predictability of the seasonal cycle as well as the realised 

length of the growing season would have had profound consequences for the viability of agriculture. 

Faunal remains from Shubayqa 1 (Yeomans et al. 2017; Martin et al. 2016) suggest that winter 
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precipitation was declining and becoming more variable during the Late Natufian; the pollen record 

from Dor Lagoon (Kadosh et al. 2004) suggests a generally drier Late Natufian period followed by 

increased precipitation during the PPNA. It is important to note, however, that similar patterns of total 

annual precipitation can mask differences in the distribution of precipitation throughout the year. 

Geographically, Levantine precipitation decreases from west to east and from north to south, leading 

to substantial ecological variability within the region (Bar-Yosef 2011); the responses of different 

components of this ecological mosaic to varying longer-term fluctuations in precipitation would have 

been key to determining the feasibility of an agricultural mode of subsistence. Examining how patterns 

of seasonality interface with decadal and longer-term patterns of variability is a critical next step not 

only in terms of understanding the climatology but also in examining societal responses to regional 

and chronological variations. 

Finally, the ability of the CVD algorithm to isolate the change and variability components of empirical 

time series may also prove useful in analysing contemporary climates and in forecasting their likely 

futures. The twin concerns of increasing variability (or increasing frequency of extremes) and global 

warming (e.g., Neukom et al. 2019) map clearly onto the variability and change components 

distinguished via the CVD algorithm, and it is of vital importance that their signatures are not 

conflated. Decomposing a time series into these two components not only allows researchers to 

analyse them separately, but also permits analysis of the relationships between them. In the terminal 

Pleistocene and Holocene NGRIP δ18O record, for example, there is a clear association between cold, 

dry climates and higher variability; if contemporary climate records continue to reveal an association 

between warmer, wetter climates and higher variability then this shift in dynamics may be analysed 

further to provide insights into the nature of anthropogenic climate change. It is hoped that the CVD 

algorithm will therefore aid those studying the nature and effects of contemporary climate change as 

much as it will help those studying prehistoric human societies. 
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Figures 

Figure 1. Simulated time series demonstrating some of the difficulties of distinguishing between 

change and variability. See text for further details. 

 

Figure 2. a) a simulated time series with two examples of Gaussian smoothing. b) and c) show the 

estimates of variability produced by detrending the original time series by the two smoothing 

examples. d) shows the differences between these two estimates of variability. 
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Figure 3. The approximate entropy of simulated time series in the blue (1/𝑓−2) to red (1/𝑓2) 

spectrum. See text for further details. 

 

Figure 4. Example result of Simulation 1. (A) shows the original simulated signal. (B) and (D) compare 

the original change and variability components respectively to those reconstructed via the CVD 

algorithm; original components are shown in blue, with reconstructed components in red. (C) and (E) 

show scatterplots of the original and reconstructed change and variability components with Pearson 

product-moment correlation coefficients between originals and reconstructions; dashed blue lines 

show isometric relationships. 
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Figure 5. Example result of Simulation 2. (A) shows the original simulated signal. (B) and (D) compare 

the original change and variability components respectively to those reconstructed via the CVD 

algorithm; original components are shown in blue, with reconstructed components in red. (C) and (E) 

show scatterplots of the original and reconstructed change and variability components with Pearson 

product-moment correlation coefficients between originals and reconstructions; dashed blue lines 

show isometric relationships. 

 

Figure 6. Results of Simulation 3. a), b), and c) show correlation coefficients between original and 

reconstructed change components of the simulated signals under increasing variance of white noise, 

red noise, and the sine wave signal respectively. d), e), and f) show equivalent plots for the variability 

component. Dots indicate medians; whiskers show median absolute deviations. 
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Figure 7. Results of Simulation 4. a) shows variation in 𝜔∗ (the number of reconstructed components 

comprising the ‘change’) under varying 𝑀 (embedding dimension). Red lines at notches show 

medians, boxes show inter-quartile ranges, and whiskers encompass all data. b) plots the average 

variance-covariance matrix of change signals constructed under varying 𝑀 (below the anti-diagonal) 

and variability signals constructed under varying 𝑀 (above the anti-diagonal). 

 

Figure 8. A single example of Simulation 4 output. a) shows the original signal. b) and c) show the 19 

estimates of change and variability produced under values of 𝑀 from 10 to 100 in increments of 5. 

Note minimal disparities over an order of magnitude difference in 𝑀. 
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Figure 9. Power spectrum (periodogram) of the change and variability components of the monthly 

Southern Oscillation Index from 1870 to 2019. 

 

Figure 10. a) the raw monthly SOI from 1870 to 2019 and b) the change component of the SOI over 

the same period. Orange and yellow squares show ‘strong’ and ‘weak’ El Niño months respectively 

(after Smith and Sardeshmukh 2000). Red and black triangles show true positive and false positive 

identifications of El Niño months respectively (as per the method of Kiladis and van Loon 1988). 
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Figure 11. Histograms of inter-event periods for the monthly raw SOI and change component of the 

SOI over the period 1870-2019. 

 

Figure 12. Timelines of major palaeoclimatic and archaeological phases in southwest Asia over the 

period from 17 ka to 9 ka (b2k) shown with the relevant section of the NGRIP δ18O record (Rasmussen 

et al. 2014). 
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Figure 13. Application of the running Mann-Whitney statistic advocated by Trauth and colleagues 

(2009) to the absolute first derivative of the variability component. The top panel shows the change 

component, the middle panel the absolute first derivative of the variability component, and the 

bottom panel the 𝑝-values (as − log(𝑝)) generated via the running Mann-Whitney statistic. Red, 

green, and blue horizontal bars in the bottom panel show significant transitions at window widths of 

50, 100, and 150 data points respectively. The horizontal grey line is at − log(0.01). Vertical dashed 

lines show transitions identified as significant under all three window widths simultaneously. 

 

Figure 14. The identified variability transitions aligned with major palaeoclimatic and archaeological 

phases in southwest Asia and the domestication chronology given by Larson and colleagues (2014). 

Coloured bars indicate exploitation prior to domestication (grey), management or pre-domestication 

cultivation (blue) and appearance of morphological changes associated with domestication (red). The 

kernel density plot summarises the dates of management or pre-domestication cultivation (blue line) 

and morphological changes associated with domestication (red line). Green arrows indicate decreases 

in variability; purple arrows indicate increases in variability. 
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Figure 15. Sigmoid plot fitted to the data on percentages of founder crops found among non-woody 

plant macro-remains at southwest Asian archaeological sites collated by Arranz-Otaegui and 

colleagues (2018a). The purple line shows the sigmoid, with the purple region showing the 95% 

confidence region. Vertical dashed lines show the mean (black) and 95% confidence intervals (grey) of 

the 𝑑 parameter dating the significant increase in founder crop percentages. Green arrows indicate 

decreases in variability; purple arrows indicate increases in variability. 

 

 

Tables 

Table 1. Percentages of false positives using the raw monthly SOI and the change component of the 

SOI. Results are shown for the entire period from 1870 to 2019, and for the reduced period from 1900 

to 2019 (for which records are more reliable). 

  Period Total Months True Months False Months False Pos % 

Raw SOI All 204 134 70 34.31 

 From 1900 162 116 46 28.40 

Change All 61 47 14 22.95 

  From 1900 48 40 8 16.67 
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CVD Algorithm 

 

% CVD (Change Variability Decomposition) Algorithm 

% matt.grove@liverpool.ac.uk 

% CVD.m 

 

function [RCSig,Change,Varia] = CVD(t,data,M) 

    X = [ones(size(t)) t]; 

    b = X\data; 

    Ltrend = b(1)+b(2)*t; 

    data = data-Ltrend; 

    Mdata = mean(data); 

    data = data-Mdata; 

    SDdata = std(data); 

    data = data/SDdata; 

    N = length(data); 

    Y = zeros(N-M+1,M); % Trajectory matrix 

    for m = 1:M 

        Y(:,m) = data(m:N-M+m); % Embedding 

    end 

    C = Y'*Y/(N-M+1); % Covariance matrix 

    [RHO,LAMBDA] = eig(C); % Eigendecomposition 

    LAMBDA = diag(LAMBDA); 

    [~,ind] = sort(LAMBDA,'descend'); 

    RHO = RHO(:,ind); 

    PC = Y*RHO; % Principal components 

    RC = zeros(N,M); % Reconstructed components 

    for m = 1:M 

        buf = PC(:,m)*RHO(:,m)'; 

        buf = buf(end:-1:1,:); 

        for n = 1:N % anti-diagonal averaging 

            RC(n,m) = mean(diag(buf,-(N-M+1)+n)); 

        end 

    end 

    nfft = 2^nextpow2(N); 

    Fs = 1/(t(2)-t(1)); % Sampling frequency from t 

    wn95 = 0.5*chi2inv(0.95,2); 

    d = -1; 

    RCSig = -1; 

    while d <= 0 

        RCSig = RCSig + 1; 

        Rec = sum(RC(:,1+RCSig:M),2); 

        ftRec = fft(Rec,nfft); 

        ftRec = ((abs(ftRec(1:nfft/2,1)).^2)/Fs/N); 

        ftRec = [ftRec(1); 2*ftRec(2:end)]; 

        ftRec = ftRec/(2*(1/Fs)); 

        mx = max(ftRec); 

        d = wn95-mx; 

    end 

    Change = sum(RC(:,1:RCSig),2)*SDdata+Mdata+Ltrend; 

    Varia = sum(RC(:,RCSig+1:end),2)*SDdata; 

end 

 

 

Validation Simulation 1 

 

% CVD Validation Simulation 1 

% CVDValSim1.m 

% matt.grove@liverpool.ac.uk 

% NOTE: Calls function CVD.m 

% NOTE: Simulation is stochastic; each run will produce a different white 

% noise signal 

% This simulation produces Figure 4 in the paper 

 

clear, clc, close all 

t = (0:1:500)'; 

p1 = 23; p2 = 59; 

pr = 1; 
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noise = 0.5*randn(length(t),1); 

noise(201:300,1) = 4*noise(201:300,1); 

signal = -0.02*t+10+sin(2*pi*t/p1)+pr*sin(2*pi*t/p2); 

data = signal+noise; 

M = 60; 

[RCSig,Change,Varia] = CVD(t,data,M); 

sws = -0.02*t+10+sin(2*pi*t/23)+sin(2*pi*t/59); 

rC = corrcoef(signal,Change); 

rC = round(rC(2,1),3); 

rV = corrcoef(noise,Varia); 

rV = round(rV(2,1),3); 

 

subplot(3,3,[1 2]) 

mns = min(data); 

mxs = max(data); 

mn = mns-((mxs-mns)*0.1); 

mx = mxs+((mxs-mns)*0.1); 

plot(t,data,'k-') 

ylim([mn mx]) 

set(gca,'FontSize',14) 

ylabel('Signal','FontSize',18) 

text(-45,mx,'(A)','FontSize',20,'FontWeight','bold') 

 

subplot(3,3,[4 5]) 

mns = min(min(signal),min(Change)); 

mxs = max(max(signal),max(Change)); 

mn = mns-((mxs-mns)*0.1); 

mx = mxs+((mxs-mns)*0.1); 

plot(t,signal,'b-'), hold on 

plot(t,Change,'r-'), hold off 

ylim([mn mx]) 

set(gca,'FontSize',14) 

ylabel('Change','FontSize',18) 

text(-45,mx,'(B)','FontSize',20,'FontWeight','bold') 

 

subplot(3,3,6) 

plot([mn mx],[mn mx],'b--'), hold on 

scatter(signal,Change,21,'r','Marker','.'), hold off 

axis square 

xlim([mn mx]) 

ylim([mn mx]) 

P = 0.1*abs(mn-mx); 

text(mn+P,mx-P,['r = ',num2str(rC)],'FontSize',14) 

set(gca,'FontSize',14) 

ylabel('Recon.','FontSize',18) 

text(mn-((mx-mn)*(180/500)),mx,'(C)','FontSize',20,'FontWeight','bold') 

 

subplot(3,3,[7 8]) 

mns = min(min(noise),min(Varia)); 

mxs = max(max(noise),max(Varia)); 

mn = mns-((mxs-mns)*0.1); 

mx = mxs+((mxs-mns)*0.1); 

plot(t,noise,'b-'), hold on 

plot(t,Varia,'r-'), hold off 

set(gca,'FontSize',14) 

xlabel('Time','FontSize',18) 

ylabel('Variability','FontSize',18) 

text(-45,mx,'(D)','FontSize',20,'FontWeight','bold') 

 

subplot(3,3,9) 

plot([mn mx],[mn mx],'b--'), hold on 

scatter(noise,Varia,21,'r','Marker','.'), hold off 

axis square 

xlim([mn mx]) 

ylim([mn mx]) 

P = 0.1*abs(mn-mx); 

text(mn+P,mx-P,['r = ',num2str(rV)],'FontSize',14) 

set(gca,'FontSize',14) 
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xlabel('Original','FontSize',18) 

ylabel('Recon.','FontSize',18) 

text(mn-((mx-mn)*(180/500)),mx,'(E)','FontSize',20,'FontWeight','bold') 

set(gcf,'color','w') 

 

 

Validation Simulation 2 

 

% CVD Validation Simulation 2 

% CVDValSim2.m 

% matt.grove@liverpool.ac.uk 

% NOTE: Calls function CVD.m 

% NOTE: Simulation is stochastic; each run will produce different red and 

% white noise signals 

% This simulation produces Figure 5 in the paper 

 

clear, clc, close all 

t = (0:1:500)'; 

p1 = 23; p2 = 59; 

pr = 1; 

noise = 0.5*randn(length(t),1); 

noise(201:300,1) = 4*noise(201:300,1); 

noise = zscore(noise); 

t2 = (1:1:256)'; 

sf = 1;  

f = (t2/(2*sf))/length(t2);  

len = length(t2); 

i = sqrt(-1); 

PSD = f.^-2;  

amp = sqrt(2*(PSD));  

amp(len+1:2*len) = flipud(amp);  

r3 = (2*pi)*rand(length(amp),1);  

out = amp.*exp(i*r3);  

R = real(ifft(out)); 

R = zscore(R(1:501)); 

signal = sin(2*pi*t/p1)+pr*sin(2*pi*t/p2)+R; 

data = signal+noise; 

clearvars -except data signal noise t 

M = 60; 

[RCSig,Change,Varia] = CVD(t,data,M); 

 

rC = corrcoef(signal,Change); 

rC = round(rC(2,1),3); 

rV = corrcoef(noise,Varia); 

rV = round(rV(2,1),3); 

 

subplot(3,3,[1 2]) 

mns = min(data); 

mxs = max(data); 

mn = mns-((mxs-mns)*0.1); 

mx = mxs+((mxs-mns)*0.1); 

plot(t,data,'k-') 

ylim([mn mx]) 

set(gca,'FontSize',14) 

ylabel('Signal','FontSize',18) 

text(-45,mx,'(A)','FontSize',20,'FontWeight','bold') 

 

subplot(3,3,[4 5]) 

mns = min(min(signal),min(Change)); 

mxs = max(max(signal),max(Change)); 

mn = mns-((mxs-mns)*0.1); 

mx = mxs+((mxs-mns)*0.1); 

plot(t,signal,'b-'), hold on 

plot(t,Change,'r-'), hold off 

ylim([mn mx]) 

set(gca,'FontSize',14) 

ylabel('Change','FontSize',18) 

text(-45,mx,'(B)','FontSize',20,'FontWeight','bold') 



Grove Change / Variability Decomposition 47 

 

subplot(3,3,6) 

plot([mn mx],[mn mx],'b--'), hold on 

scatter(signal,Change,21,'r','Marker','.'), hold off 

axis square 

xlim([mn mx]) 

ylim([mn mx]) 

P = 0.1*abs(mn-mx); 

text(mn+P,mx-P,['r = ',num2str(rC)],'FontSize',14) 

set(gca,'FontSize',14) 

ylabel('Recon.','FontSize',18) 

text(mn-((mx-mn)*(180/500)),mx,'(C)','FontSize',20,'FontWeight','bold') 

 

subplot(3,3,[7 8]) 

mns = min(min(noise),min(Varia)); 

mxs = max(max(noise),max(Varia)); 

mn = mns-((mxs-mns)*0.1); 

mx = mxs+((mxs-mns)*0.1); 

plot(t,noise,'b-'), hold on 

plot(t,Varia,'r-'), hold off 

set(gca,'FontSize',14) 

xlabel('Time','FontSize',18) 

ylabel('Variability','FontSize',18) 

text(-45,mx,'(D)','FontSize',20,'FontWeight','bold') 

 

subplot(3,3,9) 

plot([mn mx],[mn mx],'b--'), hold on 

scatter(noise,Varia,21,'r','Marker','.'), hold off 

axis square 

xlim([mn mx]) 

ylim([mn mx]) 

P = 0.1*abs(mn-mx); 

text(mn+P,mx-P,['r = ',num2str(rV)],'FontSize',14) 

set(gca,'FontSize',14) 

xlabel('Original','FontSize',18) 

ylabel('Recon.','FontSize',18) 

text(mn-((mx-mn)*(180/500)),mx,'(E)','FontSize',20,'FontWeight','bold') 

set(gcf,'color','w') 

 

 

Validation Simulation 3 

 

% CVD Validation Simulation 3 

% CVDValSim3.m 

% matt.grove@liverpool.ac.uk 

% NOTE: Calls function CVD.m 

% This simulation produces Figure 6 in the paper 

 

clear, clc, close all 

tic 

t = (0:1:500)'; 

t2 = (1:1:256)'; 

sf = 1; 

f = (t2/(2*sf))/length(t2); 

len = length(t2); 

PSD = f.^-2; 

amp = sqrt(2*(PSD)); 

amp(len+1:2*len) = flipud(amp); 

sw = zscore(sin(2*pi*t/23)+sin(2*pi*t/59)); 

vs = 0.5:0.1:2; 

iter = 1000; 

M = 60; 

 

[ONEC,ONEV] = deal(zeros(iter,length(vs))); 

for n = 1:length(vs) 

    v = vs(n); 

    for m = 1:iter 

        noise = randn(length(t),1); 
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        noise = v*zscore(noise); 

        rpa = (2*pi)*rand(length(amp),1); 

        out = amp.*exp(sqrt(-1)*rpa); 

        R = real(ifft(out)); 

        R = zscore(R(1:501)); 

        CC = sw+R; 

        data = CC+noise; 

        [~,change,varia] = CVD(t,data,M); 

        rC = corrcoef(change,CC); 

        rV = corrcoef(varia,noise); 

        ONEC(m,n) = rC(1,2); 

        ONEV(m,n) = rV(1,2); 

    end 

end 

 

[TWOC,TWOV] = deal(zeros(iter,length(vs))); 

for n = 1:length(vs) 

    v = vs(n); 

    for m = 1:iter 

        noise = randn(length(t),1); 

        noise = zscore(noise); 

        rpa = (2*pi)*rand(length(amp),1); 

        out = amp.*exp(sqrt(-1)*rpa); 

        R = real(ifft(out)); 

        R = v*zscore(R(1:501)); 

        CC = sw+R; 

        data = CC+noise; 

        [~,change,varia] = CVD(t,data,M); 

        rC = corrcoef(change,CC); 

        rV = corrcoef(varia,noise); 

        TWOC(m,n) = rC(1,2); 

        TWOV(m,n) = rV(1,2); 

    end 

end 

 

[THREEC,THREEV] = deal(zeros(iter,length(vs))); 

for n = 1:length(vs) 

    s = sw*vs(n); 

    for m = 1:iter 

        noise = randn(length(t),1); 

        noise = zscore(noise); 

        rpa = (2*pi)*rand(length(amp),1); 

        out = amp.*exp(sqrt(-1)*rpa); 

        R = real(ifft(out)); 

        R = zscore(R(1:501)); 

        CC = s+R; 

        data = CC+noise; 

        [~,change,varia] = CVD(t,data,M); 

        rC = corrcoef(change,CC); 

        rV = corrcoef(varia,noise); 

        THREEC(m,n) = rC(1,2); 

        THREEV(m,n) = rV(1,2); 

    end 

end 

tt = toc; 

save ValSim3.mat vs ONEC ONEV TWOC TWOV THREEC THREEV tt 

 

%% Plot 

 

clear, clc, close all 

load ValSim3.mat 

xt = 0.5:0.5:2; 

medONEC = median(ONEC); 

madONEC = mad(ONEC,1); 

medONEV = median(ONEV); 

madONEV = mad(ONEC,1); 

medTWOC = median(TWOC); 

madTWOC = mad(TWOC,1); 
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medTWOV = median(TWOV); 

madTWOV = mad(TWOC,1); 

medTHREEC = median(THREEC); 

madTHREEC = mad(THREEC,1); 

medTHREEV = median(THREEV); 

madTHREEV = mad(THREEC,1); 

 

subplot(2,3,1) 

errorbar(vs,medONEC,madONEC,'o','Color','k','MarkerSize',5,... 

    'MarkerEdgeColor','red','MarkerFaceColor','red') 

xlim([0.4 2.1]) 

xticks(xt) 

xticklabels({'0.25','1','2.25','4'}) 

ylim([.8 1]) 

set(gca,'FontSize',12) 

xlabel('White Noise Variance','FontSize',16) 

ylabel('Correlation','FontSize',16) 

text(.1,1,'a)','FontSize',20,'FontWeight','bold') 

 

subplot(2,3,2) 

errorbar(vs,medTWOC,madTWOC,'o','Color','k','MarkerSize',5,... 

    'MarkerEdgeColor','red','MarkerFaceColor','red') 

xlim([0.4 2.1]) 

xticks(xt) 

xticklabels({'0.25','1','2.25','4'}) 

ylim([.8 1]) 

set(gca,'FontSize',12) 

xlabel('Red Noise Variance','FontSize',16) 

ylabel('Correlation','FontSize',16) 

text(.1,1,'b)','FontSize',20,'FontWeight','bold') 

 

subplot(2,3,3) 

errorbar(vs,medTHREEC,madTHREEC,'o','Color','k','MarkerSize',5,... 

    'MarkerEdgeColor','red','MarkerFaceColor','red') 

xlim([0.4 2.1]) 

xticks(xt) 

xticklabels({'0.25','1','2.25','4'}) 

ylim([.8 1]) 

set(gca,'FontSize',12) 

xlabel('Sine Wave Variance','FontSize',16) 

ylabel('Correlation','FontSize',16) 

text(.1,1,'c)','FontSize',20,'FontWeight','bold') 

 

subplot(2,3,4) 

errorbar(vs,medONEV,madONEV,'o','Color','k','MarkerSize',5,... 

    'MarkerEdgeColor','red','MarkerFaceColor','red') 

xlim([0.4 2.1]) 

xticks(xt) 

xticklabels({'0.25','1','2.25','4'}) 

ylim([.8 1]) 

set(gca,'FontSize',12) 

xlabel('White Noise Variance','FontSize',16) 

ylabel('Correlation','FontSize',16) 

text(.1,1,'d)','FontSize',20,'FontWeight','bold') 

 

subplot(2,3,5) 

errorbar(vs,medTWOV,madTWOV,'o','Color','k','MarkerSize',5,... 

    'MarkerEdgeColor','red','MarkerFaceColor','red') 

xlim([0.4 2.1]) 

xticks(xt) 

xticklabels({'0.25','1','2.25','4'}) 

ylim([.8 1]) 

set(gca,'FontSize',12) 

xlabel('Red Noise Variance','FontSize',16) 

ylabel('Correlation','FontSize',16) 

text(.1,1,'e)','FontSize',20,'FontWeight','bold') 

 

subplot(2,3,6) 
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errorbar(vs,medTHREEV,madTHREEV,'o','Color','k','MarkerSize',5,... 

    'MarkerEdgeColor','red','MarkerFaceColor','red') 

xlim([0.4 2.1]) 

xticks(xt) 

xticklabels({'0.25','1','2.25','4'}) 

ylim([.8 1]) 

set(gca,'FontSize',12) 

xlabel('Sine Wave Variance','FontSize',16) 

ylabel('Correlation','FontSize',16) 

text(.1,1,'f)','FontSize',20,'FontWeight','bold') 

set(gcf,'color','w') 

 

 

Validation Simulation 4 

 

% CVD Validation Simulation 4 

% CVDValSim4.m 

% matt.grove@liverpool.ac.uk 

% NOTE: Calls function CVD.m 

% This simulation produces Figures 7 and 8 in the paper 

 

clear, clc, close all 

m = 256; 

t = (1:1:m)'; 

sf = 1; 

f = (t/(2*sf))/length(t); 

len = length(t); 

i = sqrt(-1); 

PSD = f.^-1; 

amp = sqrt(0.5*abs(PSD)); 

amp(len+1:2*len) = flipud(amp); 

T = (1:1:300)'; 

MS = 10:5:100; 

iter = 100; 

[VS,CS,sVS,sCS] = deal(zeros(length(T),length(MS))); 

RS = zeros(length(iter),length(MS)); 

sENV = zeros(length(T),1); 

[AllVs,AllCs] = deal(zeros(length(MS),length(MS),length(iter))); 

for m = 1:iter 

    r3 = (2*pi)*rand(length(amp),1); 

    out = amp.*exp(i*r3); 

    K = real(ifft(out)); 

    K = zscore(K(1:300)); 

    for n = 1:length(MS) 

        M = MS(n); 

        [RS(m,n),CS(:,n),VS(:,n)] = CVD(T,K,M); 

    end 

    if m == 1 

        sVS = VS; 

        sCS = CS; 

        sENV = K; 

    end 

    AllVs(:,:,m) = corrcoef(VS); 

    AllCs(:,:,m) = corrcoef(CS); 

end 

V = mean(AllVs,3); 

C = mean(AllCs,3); 

R = mean(RS); 

Rlow = prctile(RS,25); 

Rhi = prctile(RS,75); 

save VaryingM.mat MS C V sVS sCS R T K sENV Rlow Rhi RS 

 

%% Figure 7 

 

clear, clc, close all 

load VaryingM.mat 

a = triu(C); 

b = tril(V); 
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z = max(a,b); 

neg = R-Rlow; 

pos = Rhi-R; 

 

subplot(2,2,1) 

boxplot(RS,MS,'Notch','on','Whisker',inf) 

set(gca,'xtick',1:2:19,'xticklabel',{'10','20','30','40','50','60','70','80','90','

100'}) 

set(gca,'FontSize',14) 

xlabel('M','FontSize',18) 

ylabel('\omega*','FontSize',18) 

ylim([0 18]) 

text(-2,17,'a)','FontSize',20,'FontWeight','bold') 

 

subplot(2,2,2) 

pcolor(MS,MS,z) 

axis square 

colorbar 

set(gca,'FontSize',14) 

xlabel('M','FontSize',18) 

ylabel('M','FontSize',18) 

text(-15,100,'b)','FontSize',20,'FontWeight','bold') 

set(gcf,'color','w') 

 

%% Figure 8 

 

clear, clc, close all 

load VaryingM.mat 

MeanC = mean(sCS,2); 

MeanV = mean(sVS,2); 

 

subplot(3,1,1) 

plot(T,sENV,'k-') 

set(gca,'FontSize',14) 

xticklabels({}) 

ylabel('Signal','FontSize',18) 

yl = ylim; 

text(5,0.8*yl(2),'a)','FontSize',20,'FontWeight','bold') 

 

subplot(3,1,2) 

plot(T,sCS,'Color',[.7 .7 1]), hold on 

plot(T,MeanC,'b-'), hold off 

set(gca,'FontSize',14) 

xticklabels({}) 

ax = gca; 

ax.YAxisLocation = 'right'; 

ylabel('Change','FontSize',18) 

ylim(yl) 

text(5,0.8*yl(2),'b)','FontSize',20,'FontWeight','bold') 

 

subplot(3,1,3) 

plot(T,sVS,'Color',[1 .7 .7]), hold on 

plot(T,MeanV,'r-'), hold off 

set(gca,'FontSize',14) 

ylabel('Variability','FontSize',18) 

xlabel('Time','FontSize',18) 

ylim(yl) 

text(5,0.8*yl(2),'c)','FontSize',20,'FontWeight','bold') 

set(gcf,'color','w') 

 

 

 

 

 


