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Abstract

We introduce a new technique for proving membership of problems in FIXP - the class capturing
the complexity of computing a fixed-point of an algebraic circuit. Our technique constructs a
“pseudogate” which can be used as a black box when building FIXP circuits. This pseudogate, which
we term the “OPT-gate”, can solve most convex optimization problems. Using the OPT-gate, we
prove new FIXP-membership results, and we generalize and simplify several known results from the
literature on fair division, game theory and competitive markets.

In particular, we prove complexity results for two classic problems: computing a market equi-
librium in the Arrow-Debreu model with general concave utilities is in FIXP, and computing an
envy-free division of a cake with general valuations is FIXP-complete. We further showcase the
wide applicability of our technique, by using it to obtain simplified proofs and extensions of known
FIXP-membership results for equilibrium computation for various types of strategic games, as well
as the pseudomarket mechanism of Hylland and Zeckhauser.
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1 Introduction

Equilibria, i.e., stable states of some dynamic process or environment [Yannakakis, 2009], appear in
several classic applications in economics and computer science. Prominent examples include the Nash
equilibrium [Nash et al., 1950], which captures the stable outcome of deliberation between strategic
agents, as well as the competitive equilibrium [Arrow and Debreu, 1954], which corresponds to a market-
clearing outcome after the adjustment of prices based on demand and supply. These equilibria can most
often be captured by fixed points of functions, i.e., points x for which f (x) = x. For instance, Nash’s
existence theorem, i.e., that every strategic game has a mixed Nash equilibrium, was famously proven
using Brouwer’s fixed point theorem [Brouwer, 1911].

The computational class FIXP was defined by Etessami and Yannakakis [2010] to capture the
complexity of fixed point problems, and in particular those related to Brouwer’s fixed point theorem.
These problems are total search problems, i.e., problems for which a solution is guaranteed to exist via
Brouwer’s (or some other) fixed point theorem, and for which we aim to find such a solution. Indeed, the
class has been successful in that regard, with interesting problems related to game theory [Etessami and
Yannakakis, 2010] and competitive markets [Etessami and Yannakakis, 2010; Garg et al., 2017; Chen
et al., 2017] among others, being either members of FIXP, or complete for the class.

At the heart of the definition of FIXP lies the computational model of an algebraic circuit that defines
a continuous function from a domain to itself. This definition effectively allows for the computation
of exact fixed points of the function, including irrational ones, and therefore can capture the exact
complexity of these types of equilibrium problems. In contrast, in the usual Turing model of computation,
sometimes the best one can hope for is approximate solutions (e.g., ε-Nash equilibria). The counterpart
of FIXP in the Turing model is the class PPAD of Papadimitriou [1994] which famously captures the
complexity of computing an ε-Nash equilibrium in strategic games [Daskalakis et al., 2009; Chen and
Deng, 2006]. Indeed, for several of the aforementioned problems, computing approximate equilibria is
in PPAD, whereas computing exact equilibria is in FIXP. Another interpretation of FIXP in the Turing
model of computation is in terms of strong approximations, i.e., computing points that are close in the
sense of distance (e.g., in the max norm) to equilibrium points. In contrast, PPAD typically captures weak
approximations, i.e., points that are approximately equilibrium points, but not necessarily close to an
exact equilibrium point in the geometric sense.

Contrary to the case of decision problems in NP, for which the membership in the class is often
immediate, proving membership of a total search problem in the corresponding computational class is
typically much more involved, and often requires “transforming” an existence proof into a computational
reduction. This tasks poses certain challenges, but it has been largely successful for problems in PPAD.
For example, the PPAD-membership of Nash equilibrium computation incorporates Nash’s existence
proof (e.g., see [Goldberg, 2011, Section 3.2]), and the PPAD-membership of the approximately envy-free
cake cutting problem [Robertson and Webb, 1998; Brams et al., 1996; Deng et al., 2012] is essentially a
modification of an existence proof due to Simmons [Su, 1999].

In the case of FIXP however, the aforementioned challenges are much more pronounced; for an
existence proof to be used as a basis for a membership result, it has to display several characteristics.
First, it has to go via Brouwer’s fixed point theorem, and more importantly, it has to avoid using any
“discontinuous” components, precluding the use of several types of discrete steps and limit arguments.
For this reason, FIXP-membership results tend to be much more ad-hoc, using inventive but often rather
involved techniques, which do not necessarily follow the known existence proofs. Even worse, for certain
problems like the envy-free cake cutting problem for instance, the literature had not managed to produce
any FIXP-membership result for the reasons mentioned above.

A closer inspection into the several proofs of existence for versions of strategic games or compet-
itive markets reveals that they often exhibit a common characteristic: they all include one or multiple
optimization problems as subroutines. For example, at the heart of the Nash equilibrium notion is an
agent’s utility maximization problem, which can be expressed as a linear program (see Equation (1) in
Section 3.1). Another example comes from competitive markets, where the market equilibrium notion
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includes convex optimization programs for maximizing the utilities of consumers and producers given a
set of prices. This offers a possible explanation as to why the literature has fallen short of producing a
systematic and unified approach for proving FIXP-membership results: Up until now, it was not known
how to actually compute these optimization programs in FIXP, or more specifically, how to incorporate
these programs as part of a FIXP circuit, as required by the membership result.

Our paper remedies this situation: We show how to compute convex optimization programs, which
can be used as black-box components of FIXP circuits. Simply put, under some mild assumptions,
whenever such an optimization program is encountered in an existence proof, it can be effectively
substituted by such a component in the FIXP-membership proof. Using our newly introduced technique,
we manage to generalize and simplify several FIXP-membership proofs in the literature of game theory
and competitive markets, as well as prove for the first time the seemingly elusive FIXP-completeness
result for the envy-free cake cutting problem. We present our contributions in more detail below.

1.1 Our Contribution

Our main contribution is the introduction of the OPT-gate, a new “plug and play” component which can be
used as a black-box in FIXP-membership proofs for computing Linear Programs or more general convex
optimization programs. The OPT-gate is a “pseudogate”, in the sense that its correct operation is ensured
at a fixed point of the function encoded by the algebraic circuit; with regards to a FIXP-membership
proof, it operates as a normal gate for all intents and purposes. More specifically, the OPT-gate can
solve any convex program with convex inequality constraints, explicit equality constraints and an explicit
bound on its feasible region, as long as it satisfies a “FIXP-appropriate” variant of the well-known Slater
condition [Slater, 2014] for convex programs (see Section 3.3, Section 3.4, and Definitions 8 and 9).
Having programs of this form is in fact necessary (see the discussion in Section 3), but at the same time it
is sufficient for capturing the rather general optimization problems that appear in the existence proofs
mentioned above.

To demonstrate the effectiveness of our technique, we present a host of different applications related
to the envy-free cake cutting problem, to computing different types of equilibria in various strategic
games, and to computing competitive equilibria in markets. Our results advance the state of the art in
three different ways: (a) we provide results for problems for which the complexity was previously entirely
unknown, (b) we provide results that generalize known special cases in the literature to domains which
are as general as possible, and (c) we provide proofs which are conceptually simpler and reminiscent of
the known proofs of existence for those problems. Regarding this last part, we emphasize that our ability
to obtain proofs that are quite simple and intuitive is precisely only because we now have the OPT-gate at
our disposal; as evidenced by the lack of results of this generality and simplicity in the literature, this
would be very challenging without it.

Applications to Game Theory

First, we discuss the application of our technique to the problem of computing exact equilibria in strategic
games. Already in Section 3.1, we use the case of normal form games as a motivating example to
demonstrate the strength of the OPT-gate. The FIXP-completeness of the problem was established by
Etessami and Yannakakis [2010], in the same paper where they defined the class FIXP. We show that via
the employment of our technique, the membership problem essentially boils down to simply writing the
standard utility-maximization linear programs for the players and substituting them by the OPT-gate in
the FIXP circuit, making the proof entirely straightforward.

Then in Section 4 we move on to present more general classes of games and different equilibrium
concepts, for which we also obtain FIXP-completeness or FIXP-membership results. In particular:

- FIXP-completeness of concave games. In Section 4.1, we prove the FIXP-completeness of concave
games [Rosen, 1965], a class of games which generalizes the class of normal-form games. Rosen
[1965] showed via the employment of Kakutani’s fixed point theorem [Kakutani, 1941] that a Nash
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equilibrium of these games always exists. Our FIXP-membership proof defines a Brouwer function
that uses the agent’s utility-maximization program, now a convex program, as a subroutine, substituted
by the OPT-gate. Similarly to the case of normal form games described above, our proof is very simple
and intuitive.

- FIXP-membership of ε-proper equilibria. In Section 4.2, we consider a Nash equilibrium refinement
notion due to Myerson [1978], that of an ε-proper equilibrium.1 Hansen and Lund [2018] showed that
approximating a proper equilibrium (i.e., a limit point of ε-proper equilibria) is complete for FIXPa

[Etessami and Yannakakis, 2010], the class of discrete total search problems that reduce to (strong)
approximate Brouwer fixed points. We show that computing an ε-proper equilibrium is in FIXP. To
obtain the result, we first develop a more general method based on solving systems of conditional
convex constraints (see Section 4.2.1), making use of our OPT-gate, which might have applications
beyond the ε-proper equilibrium result.

- FIXP-completeness of n-player Stochastic Games. In Section 4.3, we consider n-player stochastic
games, which generalize the classic 2-player stochastic games of Shapley [1953]. The existence of a
stationary λ -discounted equilibrium for any discount factor λ was proven by Takahashi [1964] and
Fink [1964] using a generalization of Kakutani’s fixed point theorem. For 2-player zero-sum games,
Etessami and Yannakakis [2010] showed that computing a stationary λ -discounted equilibrium is in
FIXP. We generalize this membership result to n-player general stochastic games. Our proof is based
on an enlarged domain of triples consisting of valuation profiles and pairs of stationary strategies, and
constructs a Brouwer function from this domain to itself, for which the fixed points “contain” fixed
points of the correspondence defined in Takahashi’s proof on the original domain. For this result we do
not actually use our OPT-gate, but the result is in a sense inspired by the approach that we take for the
other proofs, which are based on LPs and convex programs. The FIXP-hardness follows from [Etessami
and Yannakakis, 2010], by noting that a normal form game may simply be viewed as a stochastic game
with a single state.

Applications to Cake Cutting

Next, in Section 5, we prove our main result for the well-known envy-free cake cutting problem [Gamow
and Stern, 1958] (see also [Brams et al., 1996; Robertson and Webb, 1998; Procaccia, 2013]). In this
problem, the cake serves as a metaphor for a divisible resource, which needs to be divided fairly among a
set of agents. The agents have different preferences over how to divide the resource, and an envy-free
division is one which guarantees that each agent would rather have their own piece than any other agent’s
piece. The existence of an envy-free division was proven by Stromquist [1980], even for the case where
each agent receives a single piece (known as the contiguous version or the version with connected pieces).
An alternative proof was provided by Simmons (cited in [Su, 1999]). Both proofs employ a discretization
of the space of possible divisions and then apply some topological lemma (either a variant of the K-K-M
lemma of Knaster et al. [1929] or Sperner’s lemma [Sperner, 1928]), together with a limit argument.

In terms of the complexity of the problem, results were only known for the approximate version of
the problem: Deng et al. [2012] proved that for general preferences, computing a contiguous envy-free
division of the cake is PPAD-complete. Deng et al.’s proof closely follows Simmons’ proof [Su, 1999],
which, without the limit argument, obtains the existence of an approximately envy-free division. However,
before our paper, the complexity of the exact envy-free cake cutting problem was not known. To this end,
we provide the following result.

The (contiguous) envy-free cake cutting problem with general valuations is FIXP-complete.

By “general valuations” here we mean valuations that are not necessarily additive measures or even
monotone over subsets of the cake, and which can assign different values to different divisions for an

1We remark here that the ε parameter is not the same type of approximation as in an ε-Nash equilibrium mentioned earlier,
see Definition 11 and the “approximate” vs “almost” discussion in [Etessami, 2021, Section 2].
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agent, even if the agent receives the same piece in all of those. The aforementioned existence proofs
apply to this very general case as well, and therefore our FIXP-membership result is as strong as possible.
We discuss this in more detail in Section 5 (see Remark 3).

In order to obtain the FIXP-membership result, we develop a new proof of existence for envy-free
cake cutting, one which is not based on discretizations and limit arguments. Our proof constructs a
bipartite graph between agents and preferred pieces and computes a maximum flow on this graph. This
computation can be immediately substituted by our OPT-gate, effectively turning this new existence
proof into a FIXP-membership result. This proof is somehow reminiscent of another existence proof by
Woodall [1980], but as we explain in Section 5, Woodall’s proof uses discontinuous steps and therefore
cannot conceivably be “turned” into a FIXP-membership proof.

For the FIXP-hardness, we construct a very simple reduction from a generalization of Brouwer’s
fixed point problem due to Bapat [1989]. The very same reduction also shows that Bapat’s Brouwer
fixed point problem is in FIXP, which in turn implies the FIXP-completeness of the rainbow K-K-M
problem [Gale, 1984], a generalization of the K-K-M problem [Knaster et al., 1929] which we show to
be FIXP-complete via reductions from and to Brouwer’s fixed point problem. These results, which are
included in Section 5.2, develop a potentially useful machinery for proving FIXP-completeness results
for more general cake cutting and fair division problems, e.g., see Aharoni et al. [2020].

Applications to Markets

Our last application domain is that of competitive markets. Here we provide results for general Arrow-
Debreu markets [Arrow and Debreu, 1954], as well as for the pseudomarket mechanism of Hylland and
Zeckhauser [1979].

- Arrow-Debreu markets. In Section 6.1 we prove a very general result, namely that computing
competitive equilibria in Arrow-Debreu markets with concave utilities is in FIXP. The Arrow-Debreu
market is the most fundamental market model, proposed and studied by Arrow and Debreu [1954]. It
consists of a set of consumers with utilities, consumption sets and endowments, and a set of producers
or firms with production sets. A competitive or market equilibrium is a stable state in which supply
equals demand, and all participants maximize their utilities or profits at the current set of prices. Arrow
and Debreu [1954] proved that under mild assumptions, every market has a competitive equilibrium.

FIXP-membership results were only previously known for special cases of Arrow-Debreu markets.
Etessami and Yannakakis [2010] in their original paper already proved the FIXP-membership of a
setting where there are no explicit utilities, and the aggregate demand is a given function, rather
than a correspondence which is typically the case in these markets. Garg et al. [2016] proved a
FIXP-membership result for markets with Piecewise Linear Concave (PLC) utilities, straightforward
consumption sets (i.e., where consumption is only constrained to be non-negative), and production sets
that are also given by PLC functions.

Our result for Arrow-Debreu markets generalizes2 the aforementioned results as it considers (a) more
general utility functions (i.e., general concave functions) and (b) more general consumption and
production sets (i.e., general convex sets). Additionally, compared to the proofs in these papers, our
membership proof is arguably simpler and follows rather easily from the original existence proof of
Arrow and Debreu. Essentially, the only difference is that we “organically” devise a Brouwer function
rather than a fixed point correspondence, and we substitute the various convex optimization programs
that appear in the proof (for the consumers’ and producers’ optimality) by our OPT-gate.

- The pseudomarket mechanism of Hylland and Zeckhauser [1979]. In Section 6.2 we consider the
problem of computing equilibria of the pseudomarket mechanism of Hylland and Zeckhauser [1979].

2To be precise, our result applies to any class of concave utility functions, as long as we have access to the supergradients of
those functions or when we can compute them given access to the functions. This is possible for the PLC utilities of [Garg et al.,
2016] as we explain in Appendix A, but not for the CES utilities of [Chen et al., 2017], since these are non-superdifferentiable at
0 coordinates. See Remark 4 in Section 6.1 for more details.
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This mechanism solves the random assignment problem (e.g., see [Bogomolnaia and Moulin, 2001])
by allocating to each agent a unit of artificial currency, and by then setting up a “pseudomarket” where
agents buy probability shares of the different items. The Hylland and Zeckhauser pseudomarket is not
a special case of the Arrow-Debreu market, because of additional allocation constraints that ensure that
each agent receives exactly one item in expectation. Hylland and Zeckhauser employed Kakutani’s
fixed point theorem to prove that an equilibrium of this market is always guaranteed to exist.

The complexity of computing a Hylland and Zeckhauser equilibrium was an open problem since the
definition of the mechanism in 1979 and certainly since the introduction of the relevant complexity
classes for equilibrium computation problems. Very recently, Vazirani and Yannakakis [2021] showed
that the problem lies in FIXP, leaving the FIXP-hardness as an open question. We employ our OPT-gate
to obtain the same membership result, via, what we believe to be, an easier proof. Again, like most of
our results, the proof resembles strongly the existence proof of Hylland and Zeckhauser [1979], except
that it constructs a Brouwer fixed point function (rather than a Kakutani fixed point correspondence)
and substitutes the agents’ utility maximization Linear Programs by instances of the OPT-gate.

1.2 Related Work

Below we present some further related work related to our applications, as well as to fixed point
computation problems.

Strategic games. The field of game theory was developed in the late 1920s by the works of von
Neumann [von Neumann, 1928; Von Neumann and Morgenstern, 1944] and then notably in the 1950s
with the concept of the Nash equilibrium, guaranteed to exist by Nash’s theorem [Nash et al., 1950].
Nash first proved the theorem using Brouwer’s fixed point theorem in his thesis [Nash, 1951] and
then subsequently provided a simpler proof using Kakutani’s fixed point theorem [Nash et al., 1950].
The complexity of Nash equilibrium computation was firstly considered by Papadimitriou [1994], who
actually defined the class PPAD with this problem as the central consideration. More than a decade
later, the celebrated results of Daskalakis et al. [2009] and Chen and Deng [2006] showed the PPAD-
completeness of the approximate version of the problem, followed by the definition of FIXP and the
FIXP-completeness result of Etessami and Yannakakis [2010] for exact equilibria. Since then, several
variants of the main normal form game setting and several refinements of the standard equilibrium notions
have been considered, with corresponding complexity results being obtained (e.g., see [Deligkas et al.,
2016, 2017; Hansen et al., 2010; Rubinstein, 2016]). Out of these refinements, the most relevant to us is
the notion of proper equilibria defined by [Myerson, 1978]. These equilibria were studied by Hansen and
Lund [2018] as we explained above, and it was shown that approximating them is complete for the class
FIXPa, a discrete variant of FIXP also defined by Etessami and Yannakakis [2010].

Stochastic games were defined by Shapley [1953] in the early 1950s, and they constitute one of the
most fundamental models of repeated games in the literature, which can capture very general scenarios;
we refer the reader to [Mertens and Neyman, 1981; Neyman et al., 2003] for more details on different
types of stochastic games and their definitions. Our FIXP-membership result establishes the FIXP-
completeness of the problem for n-player games; for 2-player games, besides the FIXP-membership
shown in [Etessami and Yannakakis, 2010], the authors also show that the problem is at least as hard as
the Square Root Sum problem, defined therein; whether the 2-player problem is FIXP-complete is still an
open question. Exponential or superexponential time algorithms for the 2-player problem were developed
by Hansen et al. [2011] and Oliu-Barton [2021].

Cake cutting. The cake cutting problem was introduced by Steinhaus [1949] in the late 1940s and
has since been studied extensively in the literature of mathematics, economics and computer science.
The problem of finding an envy-free division was introduced by Gamow and Stern [1958] about a
decade later. The existence of an envy-free division was shown in several proofs, but perhaps the most
famous are those by Stromquist [1980] and Simmons [Su, 1999] that we mentioned earlier, which in
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fact guarantee the existence of contiguous divisions. The computational complexity of the approximate
problem was considered by Deng et al. [2012] who proved a PPAD-completeness result for the case of
general valuations, or more precisely the case of preferences over the possible divisions. As we explained
earlier, our paper provides the first computational complexity results for the problem of finding an exact
envy-free division. For the usual case of additive valuation functions (e.g., see [Brams et al., 1996;
Robertson and Webb, 1998]), the FIXP-hardness for exact equilibria, or even the PPAD-hardness for
approximate equilibria is still a major open problem.

In a related but in a sense orthogonal line of work, several discrete protocols for finding an envy-
free solution were proposed over the years, starting from the cut-and-choose protocol for 2 agents and
the Selfridge-Conway protocol for 3 agents (e.g., see [Robertson and Webb, 1998]), leading to recent
breakthrough results from the literature of computer science [Aziz and Mackenzie, 2016]. These protocols
interact with the agents via a set of queries, in the so-called Robertson-Webb (RW) model (see [Woeginger
and Sgall, 2007]). The RW model is not inherently a computational model, and RW queries can in fact
return irrational points as answers. In that regime, the goal is to come up with a protocol that finds an
envy-free solution using the smallest number of such queries possible. Even for the non-contiguous
version, the discrepancy between the lower bound of Procaccia [2009] and the upper bound of Aziz and
Mackenzie [2016] is astronomical.

Competitive Markets. The fundamental principles of competitive markets and equilibrium theory date
back to the 1870s and the works of Walras [2013]. Walras described a process of adjusting the market
prices based on supply and demand, the so-called “tâtonnement process”, which would eventually lead to
the stable outcome that was later known as the competitive equilibrium. Foundational in the establishment
of the associated equilibrium theory were the contributions of Arrow and Debreu [1954] and McKenzie
[1959],3 who proved the existence of an equilibrium. The proof of Arrow and Debreu uses a fixed point
theorem due to Debreu [1952], whereas McKenzie used Kakutani’s fixed point theorem to obtain the
result. An alternative proof via Brouwer’s fixed point theorem was given by Geanakoplos [2003].

In computer science, much work has been devoted to the question of computing exact or approximate
equilibria of different markets, which are special cases of the general Arrow-Debreu market that we study.
There are several works that developed polynomial algorithms for finding or approximating equilibria
for some classes of utility functions, e.g., see [Devanur et al., 2008; Jain et al., 2003; Jain, 2007; Duan
and Mehlhorn, 2015; Duan et al., 2016; Garg and Végh, 2019; Garg et al., 2004, 2015]. For more
complex utility functions, besides the results that we mentioned earlier, the approximate equilibrium
computation problem for additively separable piecewise linear concave (SPLC) functions was shown to be
PPAD-complete by [Vazirani and Yannakakis, 2011; Chen et al., 2009], where the approximation notion
is a “weak approximation” in the market clearing and utility-maximization conditions, see [Scarf, 1967].
For exact equilibria, Garg and Vazirani [2014] showed the PPAD-completeness of Arrow-Debreu markets
with linear utility functions and SPLC production sets; in this case, it turns out that exact equilibria
are rational, and thus they can be computed in PPAD. An interesting class of utility functions is that of
Leontief utilities, which are simultaneously subcases of the PLC utilities studied in [Garg et al., 2016,
2017] and limit cases of the CES utilities studied in [Chen et al., 2017]. For this class, Codenotti et al.
[2006] showed a PPAD-hardness result. Garg et al. [2017] showed hardness results for a market model
with Leontief utilities, but their FIXP-hardness does not quite yield a FIXP-completeness result together
with our membership proof, or even the membership proof of Garg et al. [2016], because it is obtained
for markets with different sufficiency conditions for equilibrium existence, and not for the market model
as presented by Arrow and Debreu [1954] that we study in Section 6.

Fixed point computation. Besides the applications above, the class FIXP also captures the complexity
of other problems, such as branching process and context-free grammars [Etessami and Yannakakis,
2010], equilibrium refinements [Etessami et al., 2014; Etessami, 2021], and more recently the complexity

3In fact, sometimes the fundamental market model is referred to as the “Arrow-Debreu-McKenzie” market.
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of computing a Bayes-Nash equilibrium in the first-price auction with subjective priors [Filos-Ratsikas
et al., 2021]. Besides FIXP, there are some other computational classes that capture the complexity of
different fixed point problems, namely the classes BU [Deligkas et al., 2021] and BBU [Batziou et al.,
2021] which correspond to the Borsuk-Ulam theorem [Borsuk, 1933], and the class HB [Goldberg and
Hollender, 2019], which corresponds to the Hairy Ball theorem [Poincaré, 1882].

2 Preliminaries

In this section, we provide some definitions and theorems that we will use or reference throughout the
paper, as well as the formal definition of the class FIXP.

2.1 Fixed Point Theorems

We start with the definition of Brouwer’s fixed point theorem [Brouwer, 1911], one of the most widely
used fixed point theorems in economic applications, such as game theory or market theory.

Theorem 1 (Brouwer’s Fixed Point Theorem [Brouwer, 1911]). Let A⊆ Rn be a nonempty, compact,
and convex set. Let f : A→ A be continuous. Then there is x ∈ A such that f (x) = x.

The next fixed point theorem that we will present is Kakutani’s fixed point theorem [Kakutani, 1941],
a generalization of Brouwer’s fixed point theorem. Importantly, this fixed point theorem applies to
correspondences rather than functions; we provide the definition of a correspondence below.

Definition 1 (Correspondence). A correspondence f (or multi-valued function) between sets A and B is
a function f : A→P(B). We denote this by f : A ⇒ B. In case f (a) = {b} we use the function notation
f (a) = b for notational simplicity. In a similar way, if for all a ∈ A we have

∣∣ f (a)∣∣= 1, we may think of
f simply as a function f : A→ B.

For the statement of the theorem, we need the definitions of upper- and lower hemicontinuous correspon-
dences.

Definition 2 (Upper and lower hemicontinuous correspondence). Let A⊆ Rn, B⊆ Rm, and f : A ⇒ B.

1. f is upper hemicontinuous (uhc) at a ∈ A if and only if for all open sets V ⊆ B for which f (a)⊆V
there is an open set U ⊆ A with a ∈U such that f (x)⊆V for all x ∈U .

2. f is lower hemicontinuous (lhc) at a∈A if and only if for all open sets V ⊆B for which f (a)∩V 6= /0
there is an open set U ⊆ A with a ∈U such that f (x)∩V 6= /0 for all x ∈U .

We say that f is uhc (lhc) if f is uhc (lhc) at every a ∈ A. If f is both uhc and lhc we simply say that f is
continuous.

We are now ready to state the fixed point theorem.

Theorem 2 (Kakutani’s Fixed Point Theorem [Kakutani, 1941]). Let A⊆ Rn be a nonempty, compact,
and convex set. Let f : A ⇒ A be uhc as well as nonempty-, compact- and convex-valued. Then there is
x ∈ A such that x ∈ f (x).

Kakutani’s point theorem is often used in conjunction with the following theorem, called the maxi-
mum theorem, proven in 1963 by Berge [1997]. For this it is additionally needed that the maximizer-
correspondence g∗ is convex-valued. This is in particular ensured if f is quasi-concave in its second
variable and g is convex-valued.

Theorem 3 (Berge’s Maximum Theorem [Berge, 1997]). Let A⊆Rn and B⊆Rm. Let f : A×B→R be
continuous and g : A ⇒ B continuous as well as nonempty- and compact-valued. Define f ∗ : A→ R and
g∗ : A ⇒ B by f ∗(a) = maxb∈g(a) f (a,b) and g∗(a) = argmaxb∈g(a) f (a,b). Then f ∗ is continuous and g∗

is uhc as well as nonempty- and compact-valued.
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2.2 The Class FIXP

As we said in the introduction, the class FIXP captures the complexity of real-valued search problems
associated with Brouwer’s fixed point theorem. We provide the formal definition of the class below.

A search problem with real-valued search space Π is defined by associating to any input instance I
(encoded as a string over a finite alphabet Σ) a search space DI ⊆ RdI and a set of solutions Sol(I). We
assume there is a polynomial time algorithm that given I computes a description of DI . In order to define
FIXP, we first introduce a set of basic FIXP-problems corresponding to the formulation of Brouwer’s
fixed point theorem. Afterwards, we explain how the class is closed with respect to a certain type of
reductions. We start with the definition of an algebraic circuit.

Definition 3 (Algebraic Circuit). An algebraic circuit C is a circuit using gates in {+,−,∗,÷,max,min}
as well as rational constants. We let size(C) denote the size of the circuit, including the description of the
rational constants.

Next, we define the notion of a basic FIXP problem.

Definition 4 (Basic FIXP problem). A search problem Π is a basic FIXP problem if every instance I
describes a nonempty compact convex domain DI described by a set of linear inequalities with rational
coefficients and a continuous map FI : DI → DI given by an algebraic circuit CI , and the solution set is
Sol(I) = {x ∈ DI | FI(x) = x}.

We now discuss reductions between search problems. Let Π and Γ be search problems with real-valued
search space. A many-one reduction from Π to Γ is a pair of maps ( f ,g). The instance mapping f maps
instances I of Π to instances f (I) of Γ, and for any solution y ∈ Sol( f (I)) the solution mapping g maps
the pair (I,y) to a solution g(I,y) ∈ Sol(I) of Π. In order to avoid meaningless reductions, it is required
that Sol( f (I)) 6= /0 if Sol(I) 6= /0. We require that the instance mapping f is computable in polynomial
time. Etessami and Yannakakis [2010] defined the notion of SL-reductions where the solution mapping g
is separable linear. This means there exists a map π : {1, . . . ,dI}→ {1, . . . ,d f (I)} and rational constants
ai,bi, i = 1, . . . ,dI, such that for y ∈ Sol( f (I)) one has that x = g(I,y) is given by xi = aiyπ(i)+bi for all
i. For example, this allows one to project away auxiliary variables.

We are now ready to define the class FIXP.

Definition 5 (FIXP). The class FIXP consists of all search problems with real-valued search space that
SL-reduce to a basic FIXP problem for which the domain DI is a convex polytope described by a set of
linear inequalities with rational coefficients and the function FI is defined by an algebraic circuit CI .

In our definition, we assume that the domains of the functions are polytopes. However the basic FIXP
problems could have been defined as having for instance unit-balls Bd

p as domains, p ∈ [0,∞], and one
could have allowed the functions FI to be computed by circuits over {+,−,∗,÷,max,min, k

√}.

3 The OPT-gate

In this section, we present a new technique for proving membership in FIXP. Namely, we introduce the
OPT-gate: a gate that can essentially solve Linear Programs, under some minor conditions. This gate can
be used like any other gate for the purpose of proving FIXP-membership. We begin with a motivating
example in Section 3.1 and then present some obstacles to constructing the OPT-gate, which lead us to
define the notion of a pseudogate in Section 3.2. Using this notion we show how to construct an OPT-gate
that solves LPs (Section 3.3) and even more general convex programs (Section 3.4).

3.1 A motivating example: Nash equilibrium computation

To provide an example of how the OPT-gate could be used, we consider the classical problem of computing
a Nash equilibrium in a normal form game.

9



Normal form game. There are n players and every player i ∈ [n] has a finite set of pure strategies
Si = [mi] and a payoff function ui : S→ R, where S := S1× ·· · × Sn. A mixed strategy of player i
is a probability distribution on Si. We let Σi := ∆(Si) denote the set of all such distributions, i.e.,
Σi := {y ∈ Rmi

≥0 : ∑ j y j = 1}. In other words, Σi is the (mi− 1)-dimensional unit simplex. A mixed
strategy profile is a vector x ∈ Σ := Σ1×·· ·×Σn, where xi ∈ Σi is the mixed strategy played by player i
in the strategy profile x. For j ∈ Si = [mi], the jth coordinate of xi is denoted xi, j and it corresponds to the
probability that player i plays its pure strategy j. The payoff function ui can be extended to all mixed
strategy profiles to obtain the expected payoff function ũi : Σ→ R where

ũi(x) = E
ji∼xi

[ui( j1, . . . , jn)] = ∑
( j1,..., jn)∈S

x1, j1 . . .xn, jnui( j1, . . . , jn).

For a mixed strategy profile x ∈ Σ and a mixed strategy x′i ∈ Σi for player i, we let (x′i,x−i) ∈ Σ denote
the mixed strategy profile where xi has been replaced by x′i. A mixed strategy profile x ∈ Σ is a Nash
equilibrium if for every player i and every mixed strategy x′i ∈ Σi it holds that ũi(x)≥ ũi(x′i,x−i). In other
words, no player can improve its expected utility by unilaterally modifying its strategy.

Computational problem. We consider the problem of computing a Nash equilibrium of a normal form
game, where the payoff functions ui are given explicitly, i.e., for every i ∈ [n] and every ( j1, . . . , jn) ∈ S,
the value ui( j1, . . . , jn) is provided as a rational number. By Nash’s theorem such an equilibrium always
exists.

The simplest proof of Nash’s theorem uses Kakutani’s fixed point theorem (Theorem 2). However,
this proof cannot be directly used to prove membership of the computational problem in FIXP. Instead,
the membership in FIXP has been shown by relying on an alternative proof of Nash’s theorem that uses
Brouwer’s fixed point theorem.

Now assume for an instant that we allow an extra gate in the definition of FIXP, namely the OPT-gate:
a gate that can solve a Linear Program (LP). To be more precise, assume that the gate takes as input the
description of an LP of the form

maximize cTx

subject to Ax≤ b

namely, it takes as input c,A,b and it outputs an optimal solution of the LP.
If such a gate was allowed in the construction of a FIXP-circuit, then the FIXP-membership of the

Nash problem would essentially follow immediately. Indeed, note that at a Nash equilibrium x, every
player maximizes its utility given the mixed strategies chosen by the other players. In other words, the
mixed strategy xi played by player i is an optimal solution of the following LP, where the variables are
y ∈ Rmi :

maximize ũi(y,x−i)

subject to
mi

∑
j=1

y j = 1

y j ≥ 0 j = 1, . . . ,mi

(1)

Note that this is indeed an LP, since ũi(y,x−i) is linear in y.
In more detail, the FIXP-circuit F for this problem would be constructed as follows. On input

x = (x1, . . . ,xn), it outputs F(x) = (F1(x), . . . ,Fn(x)), where Fi(x) ∈ Rmi is an optimal solution of the
corresponding LP (1). Since the LP (1) can be put in the form needed for the hypothetical OPT-gate
above by replacing the equality constraint by two inequality constraints, we can use the hypothetical gate
for solving an LP for this. In more detail, the inputs to the gate will be A and b that encode the inequality
constraints, and the vector c for the objective function, which will depend on the values of the other inputs
x−i. Clearly, any fixed point of F is a Nash equilibrium of the game.

This simple example already shows how such a gate could make some FIXP-membership results
very easy to prove. Importantly, the technique also feels very “natural”, because it can be applied almost
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immediately given the description of the problem, without the need to reformulate the problem in any
way.

Unfortunately, this “ideal” gate described above is in fact too good to be true. Indeed, there are some
fundamental obstacles to constructing such a gate using the standard gates allowed in FIXP-circuits.

3.2 Pseudogates: Circumventing obstacles to the construction of an OPT-gate

We consider the task of constructing a gate that solves LPs. To be more precise, we would like to use the
standard algebraic gates allowed in a FIXP-circuit to construct, for any n ∈ N and m ∈ N0, a new gate
Gn,m that takes as input c ∈ Rn, A ∈ Rm×n and b ∈ Rm, and outputs an optimal solution to the following
LP:

maximize cTx

subject to Ax≤ b
(2)

Obstacle 1. Any function mapping the description of an LP to an optimal solution of the LP cannot be
continuous everywhere. This holds even for very simple LPs.

As an example for this obstacle, consider the following very simple LP:

maximize x1v1 + x2v2

subject to x1 + x2 = 1

x1,x2 ≥ 0

(3)

where the variables are x1,x2, and v1,v2 ∈ R are external parameters. Clearly, our gate should be able
to solve the following task: given v1,v2 as input, output any optimal solution of the LP. However, note
that this function is not continuous: when v1 > v2 it outputs (x1,x2) = (1,0), but when v1 < v2 it outputs
(x1,x2) = (0,1). Thus, there is no hope of implementing a gate computing this function by using the
gates allowed in a FIXP-circuit, which are all continuous.

Pseudogates: The power of fixed point computation. The crucial observation that allows us to go
beyond this impossibility result is the following: when the gate is used inside a FIXP-circuit F , it does
not have to work correctly for all inputs x to F; it suffices if it works correctly whenever the input to F
is a fixed-point x∗ of F . Indeed, in order to prove the membership of some problem in FIXP using F ,
we have to show that any fixed point x∗ of F yields a solution to the problem. Thus, we only care about
the behavior of the gate when the input to F is some fixed point x∗. Of course, the gate should remain
well-defined for all inputs x, namely not divide by zero, etc.

This observation essentially allows us to use an additional—very powerful—tool in the construction
of the gate: fixed point computation. In order to illustrate this point, we show how this tool can be used to
construct a “gate” that computes the so-called Heaviside step function. For our purposes, we define the
Heaviside function as the correspondence H: R⇒ [0,1] with

H(x) =


1 if x > 0
[0,1] if x = 0
0 if x < 0

.

We would like a gate that on input x, outputs any y ∈ H(x). Clearly, a gate that is constructed using
only the standard FIXP-gates cannot compute H, which is discontinuous at x = 0. Indeed, note that
the Heaviside function is closely related to the example LP (3) above. If we had a gate computing the
Heaviside function, then by computing y ∈ H(v1− v2) and then outputting (y,1− y), we would simulate
a gate solving (3). Similarly, if we had a gate solving the LP (3), then by computing a solution (x1,x2) to
the LP (3) with parameters (v1,v2) = (x,0), and outputting x1, we would simulate a gate for H.

Let us now see how we can construct a “gate” computing the Heaviside function H. Consider the
function G : R× [0,1]→ [0,1] given by G(x,y) = min(1,max(0,x+ y)). Let us examine the fixed points
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of G, where we think of x as being fixed or an external parameter. If x > 0, then the fixed point condition
G(x,y) = y implies that y must be equal to 1. If x < 0, then the fixed point condition implies that y = 0.
Finally, when x = 0, the fixed point condition implies that y can take any value in [0,1]. In particular, note
that we always have y ∈ H(x).

How can we use this to prove membership in FIXP? Imagine that we can reduce our problem of
interest to the problem of finding a fixed point of a correspondence F : D ⇒ D, i.e., a point x ∈ D with
x ∈ F(x). Imagine, further, that we can construct a circuit computing F that uses the standard gates, but
also a gate computing H. Then, we can construct a FIXP-circuit F̃ for this problem by replacing the gate
for H in F by the function G defined above. In more detail, if we want to use a gate computing H with
some input x, we instead compute G(x,y), where y is an additional input to F̃ . We also add this value
G(x,y) as an additional output to F̃ (namely, the output corresponding to the new input y). As a result, we
obtain a FIXP-circuit F̃ : D× [0,1]→D× [0,1] that only uses the standard gates and is such that any fixed
point (z,y) of F̃ satisfies z ∈ F(z). In other words, finding a fixed point of the correspondence F reduces
to finding a fixed point of the function F̃ , which is a standard FIXP-circuit. In the case where F makes use
of multiple gates computing H, every occurrence of the gate will be replaced by the construction above
using G. In particular, if the gate for H is used ` times, then we will obtain F̃ : D× [0,1]`→ D× [0,1]`

such that F̃(z,y1, . . . ,y`) = (z,y1, . . . ,y`) =⇒ z ∈ F(z).
As a result, when constructing a FIXP-circuit for some problem, we can assume that we also have

access to a gate computing H. However, one should keep in mind that the gate is only guaranteed to work
correctly at a fixed point of the circuit. In order to stress this limitation, we say that we have a pseudogate
computing H. Note that for the purpose of proving membership in FIXP, a pseudogate is just as good as
a normal gate. We now present these ideas more formally.

Definition 6. Let A⊆ Rn, and let B⊂ R` be a nonempty, compact, and convex set. For any continuous
function G : A×B→ Rm×B we let FixB[G] denote the correspondence induced by G with fixed-point
constraints on B. Formally, the correspondence FixB[G] : A ⇒ Rm is defined as

x 7→ {z ∈ Rm : ∃y ∈ B G(x,y) = (z,y)}.

When f = FixB[G] we will say that G is a fixed-point representation of f . We will often have B = [0,1]`

for some ` ∈ N, in which case we will use Fix` as an abbreviation for Fix[0,1]` .

Example 1. The function GH : R× [0,1]→R× [0,1], (x,y) 7→ (y,min(1,max(0,x+y))), is a fixed-point
representation of the Heaviside function H, i.e., Fix1[GH] = H. Now let us consider a function similar to
the Heaviside function, but which will require us to have the first output of G be something other than
just y itself. Let f : R⇒ R be defined by

f (x) =


x+1 if x > 0
[0,1] if x = 0
x if x < 0

.

Then a fixed-point representation of f is given by

G f : R× [0,1]→ R× [0,1], (x,y) 7→ (x+ y,min(1,max(0,x+ y)))

i.e., Fix1[G f ] = f .

Definition 7. Let A ⊆ Rn and let f : A ⇒ Rm be a correspondence. We say that there is a pseudogate
computing f if there exists ` ∈ N0 and an algebraic circuit computing G : A× [0,1]`→ Rm× [0,1]` such
that for all x ∈ A, Fix`[G](x)⊆ f (x).

The algebraic circuit computing G can use any of the standard gates allowed in FIXP-circuits, and
should be well-defined, in the sense that it never divides by zero, never takes the square root of a negative
number, etc. Note that by Brouwer’s fixed point theorem, Fix`[G](x) is never empty. Thus, if there is a
pseudogate computing some correspondence f , then f must be nonempty-valued.

Using this terminology we can now formally state:
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Lemma 1. There exists a pseudogate computing the Heaviside function H: R⇒ [0,1].

Proof. The function GH : R× [0,1]→ R× [0,1], (x,y) 7→ (y,min(1,max(0,x+ y))), can be represented
by an algebraic circuit using the gates +,max,min and rational constants 0 and 1. Furthermore, it is easy
to see that Fix1[GH] = H.

The pseudogate for the Heaviside function will be a crucial building block for the construction of the
OPT-gate. In fact, as mentioned above, the pseudogate for H essentially immediately yields a pseudogate
solving the simple LP (3).

Note that a (potential) pseudogate for our general LP (2) will necessarily depend on n and m, namely
the number of variables and constraints, respectively. As a result, we say that a pseudogate solves such an
LP, if, given n,m we can, in polynomial time in n and m, construct a pseudogate solving the LP for fixed
n and m.

Can we construct a pseudogate for the general LP (2)? Unfortunately, there a few more obstacles.

Obstacle 2. A pseudogate cannot solve a general LP without some explicit bound on the feasible region.

As an example, consider the following LP, which corresponds to letting n = 1, m = 2, c = 1,
A = (a,−1)T and b = (1,0) in (2):

maximize x

subject to ax≤ 1

x≥ 0

where the variable is x ∈ R. The solution to this LP is x = 1/a when a > 0, and the LP is unbounded
when a≤ 0.

Assume that we have a pseudogate solving the LP (2) and we use it to solve the LP above. It
is reasonable to only demand that the pseudogate solve the LP correctly when a > 0. However, the
pseudogate—or, to be more precise, the continuous function G implementing it—should be well-defined
for all a ∈R. In particular, it should never divide by zero or take a square root of a negative number. This
is to ensure that the pseudogate can really be used like a normal gate without a second thought.

Unfortunately, this means that no pseudogate can be constructed for LP (2). Indeed, the existence of
such a pseudogate would imply the existence of an algebraic circuit G : R× [0,1]`→R× [0,1]` such that
Fix`[G](a) = {1/a} for all a > 0. In particular, Fix`[G](a) would be unbounded when a tends to 0 from
above. However, this is a contradiction to the continuity of G, which says that G([0,1]× [0,1]`) must be
compact and thus, in particular, bounded.

Explicitly bounded domain. This issue can be resolved by introducing an explicit bound on the
feasible region, namely by replacing (2) by:

maximize cTx

subject to Ax≤ b

x ∈ [−R,R]n
(4)

where R ∈ R>0. Note that the notation “ x ∈ [−R,R]n ” is used for convenience here; this constraint can
equivalently be rewritten as “−R≤ xi ≤ R,∀i ”.

Importantly, the parameter R is not fixed, but is just another input to the gate, like c, A and b. As a
result, this explicit bound is not a significant limitation, since in most applications it is straightforward—or
even trivial—to provide such a bound. For example, in the problem of computing a Nash equilibrium, the
LP (1) that we used is clearly bounded with R = 1.

If we are only interested in finding a feasible point of the LP (4), or equivalently in solving the LP
when c = 0, then indeed there exists a pseudogate for that! However, there is still one last obstacle to
constructing a pseudogate that solves (4).
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Obstacle 3. A pseudogate cannot solve a general LP without some constraint qualification.

A constraint qualification is some property that the constraints must satisfy. Importantly, it is a
property of the constraints and not of the feasible region. In other words, when a feasible region can be
represented by various different sets of constraints, some of them may satisfy the constraint qualification,
and others not.

As an example for this obstacle, consider the following LP:

maximize x2

subject to x1 +ax2 ≤ 0

x1 ≥ 0

x ∈ [−1,1]n

Note that for a = 0 the optimal solution is (x1,x2) = (0,1), while for a > 0 it is (x1,x2) = (0,0). Clearly,
this LP can be expressed in the form (4) by letting n = 2, m = 2, and

c =

(
0
1

)
, A =

(
1 a
−1 0

)
, b =

(
0
0

)
, R = 1.

Thus, a pseudogate for (4) should in particular correctly solve this LP for any a ∈ [0,1]. This would mean
that there exists an algebraic circuit G : [0,1]× [0,1]`→ R2× [0,1]` such that Fix`[G](a) = {(0,0)} for
all a ∈ (0,1], and Fix`[G](0) = {(0,1)}. However, this contradicts the continuity of g.

Indeed, consider the sequence (an)n where an = 1/n > 0. For any n ∈ N, let yn ∈ [0,1]` be a fixed
point of the function h : [0,1]` → [0,1]`, y 7→ G2(an,y), where G2(an,y) ∈ [0,1]` denotes the second
output of G on input (an,y). Recall that such a fixed point must exist by Brouwer’s fixed point theorem.
Since (yn)n is a sequence in the compact set [0,1]`, it has a subsequence (ynk)k that converges to some
y ∈ [0,1]`. Note that for all k ∈ N we have G(ank ,ynk) = ((0,0),ynk), because Fix`[G](ank) = {(0,0)}.
Now, since ank → 0, ynk → y, and by the continuity of G, it follows that G(0,y) = ((0,0),y). However,
this implies that (0,0) ∈ Fix`[G](0), a contradiction to Fix`[G](0) = {(0,1)}.

The issue in this example essentially stems from the fact that, when a = 0, the two inequality
constraints are equivalent to a single equality constraint. In fact, it is possible to construct a pseudogate for
(4) that works as long as this does not happen, i.e., as long as the constraint qualification {x ∈ (−R,R)n :
Ax < b} 6= /0 holds (where < is componentwise). However, this rules out equality constraints, which we
would clearly like our pseudogate to be able to handle, in particular for the Nash problem. To address
this issue, in the next section we consider a modified formulation of our LP that allows explicit equality
constraints and we show that we can construct a pseudogate that solves it as long as a well-known
constraint qualification holds.

In particular, our constraint qualification will require that equality constraints are linearly independent.
As an example for why the linear independence of the equality constraints is needed, consider the
following LP:

maximize x2

subject to x1 +ax2 = 0

x1 = 0

x ∈ [−1,1]n

By the same arguments as above, a pseudogate cannot solve this LP correctly for all a ∈ [0,1].
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3.3 The OPT-gate for Linear Programming

We consider the following LP formulation, which includes explicit equality constraints and an explicit
bound on the feasible region:

maximize cTx

subject to Ax = b

Cx≤ d

x ∈ [−R,R]n

(5)

where x ∈Rn is the vector of unknown variables, c∈Rn defines the objective function, and the constraints
are given by A ∈ Rm×n, b ∈ Rm, C ∈ Rk×n, d ∈ Rk, and R ∈ R>0.

We introduce the following constraint qualification for our LP formulation.

Definition 8. We say that the explicit Slater condition is satisfied by the LP (5) if the following two
conditions hold:

1. non-empty interior: there exists x ∈ (−R,R)n with Ax = b and Cx < d (componentwise),

2. linear independence: the rows of A are linearly independent.

The Slater condition is very popular in convex optimization, where it is usually defined using only
the first condition. This is without loss, because the second condition can always be enforced with some
additional preprocessing (namely, eliminating redundant equality constraints). For our purpose, however,
the second condition is required because we cannot perform the usual preprocessing inside an algebraic
circuit. To avoid any confusion, we thus refer to the two conditions above as the explicit Slater condition.

The main result of this section can now informally be stated as:

The OPT-gate for Linear Programs

There exists a pseudogate for the LP formulation (5). This pseudogate has the following guarantees:

• when the feasible region of the LP is non-empty, it outputs a feasible point.

• when the LP satisfies the explicit Slater condition, it outputs an optimal solution.

This pseudogate can be used like any other algebraic gate for the purpose of proving membership in
FIXP.

The informal statement above is formally stated in Theorem 4 below. Note that with the OPT-gate we can
in particular directly prove the FIXP-membership of the Nash problem (Section 3.1), since the explicit
Slater condition is trivially satisfied by all the LPs in question.

To formalize the statement, we think of the LP (5) as being parameterized by the tuple (c,A,b,C,d,R).
Thus, after fixing n ∈ N and m,k ∈ N0, we can define the parameter space

Pn,m,k = Rn×Rm×n×Rm×Rk×n×Rk×R>0.

For any choice of parameters p = (c,A,b,C,d,R) ∈ Pn,m,k we let LP(p) denote the corresponding LP
formulated in (5). We will use Feas(LP(p)) and Opt(LP(p)) to denote its set of feasible and optimal
solutions, respectively. The main result of this section can be stated formally as follows.

Theorem 4. Given n ∈ N and m,k ∈ N0 we can construct an algebraic circuit G : Pn,m,k× [0,1]` →
Rn× [0,1]` in time poly(n,m,k) such that for any parameters p = (c,A,b,C,d,R) ∈ Pn,m,k it holds:

• if the feasible region of LP(p) is non-empty, i.e., Feas(LP(p)) 6= /0, then

Fix`[G](p)⊆ Feas(LP(p)).
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• if LP(p) satisfies the explicit Slater condition, then

Fix`[G](p)⊆ Opt(LP(p)).

Theorem 4 follows from the more general Theorem 5, which is stated and proved in the next section.

3.4 The OPT-gate for Convex Optimization

We can apply the approach presented above to the more general setting of convex optimization. Consider
a Convex Program (CP) of the following form:

minimize f (x)

subject to Ax = b

gi(x)≤ 0 i = 1, . . . ,k

x ∈ [−R,R]n

where f : Rn → R and gi : Rn → R, i = 1, . . . ,k, are convex functions, and, as before, the remaining
constraints are given by A ∈ Rm×n, b ∈ Rm, and R ∈ R>0.

Explicit Slater condition. For this setting we can again define the appropriate explicit Slater condition.

Definition 9. We say that the explicit Slater condition is satisfied by the Convex Program (6) if the
following two conditions hold:

1. non-empty interior: there exists x ∈ (−R,R)n with Ax = b and gi(x)< 0 for i = 1, . . . ,k,

2. linear independence: the rows of A are linearly independent.

The main result of this section can now informally be stated as follows:

The OPT-gate for Convex Optimization

There exists a pseudogate for the Convex Program (CP) (5). This pseudogate has the following
guarantees:

• when the feasible region of the CP is non-empty, it outputs a feasible point.

• when the CP satisfies the explicit Slater condition, it outputs an optimal solution.

This pseudogate can be used like any other algebraic gate for the purpose of proving membership in
FIXP.

For a formal statement, see Theorem 5 below.

Parameters. On the way to making this statement formal, we need various parts of the optimization
problem to depend on a set of parameters (which are going to be the inputs to our pseudogate). Clearly,
A, b and R are such parameters—as before—but we would also like the objective function f and the
inequality constraints gi to be parameterized. To address this, we introduce an additional parameter
w ∈ Rs and reformulate the optimization problem as follows:

minimize f (x ;w)

subject to Ax = b

gi(x ;w)≤ 0 i = 1, . . . ,k

x ∈ [−R,R]n

(6)
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where f : Rn×Rs→R and gi : Rn×Rs→R, i = 1, . . . ,k, are continuous functions such that f (· ;w) and
gi(· ;w) are convex functions for any w ∈ Rs. Note that x ∈ Rn is still the vector of unknown variables
and w is simply an additional external parameter, just like A, b and R, and is thus treated as completely
fixed when optimizing.

After fixing n ∈ N and m,k,s ∈ N0, as well as the functions f and gi, i = 1, . . . ,k, we can define the
parameter space Pn,m,k,s, f ,g = Rs×Rm×n×Rm×R>0. To simplify notation we write Pn,m, f ,g to mean
Pn,m,k,s, f ,g, since k and s are, in a certain sense, also implicitly given by f and g = (g1, . . . ,gk). For any
choice of parameters p = (w,A,b,R) ∈ Pn,m, f ,g we let CP(p) denote the corresponding CP formulated
in (6). As before, we will use Feas(CP(p)) and Opt(CP(p)) to denote its set of feasible and optimal
solutions, respectively.

Representation of functions and subgradients. For computational purposes, we assume that the
functions f and gi are given as algebraic circuits. However, we will also need access to subgradients of
these functions.

Definition 10. Let A⊆ Rn be a convex set and let f : A→ R be a convex function. A vector v ∈ Rn is a
subgradient of f at the point x ∈ A if, for all y ∈ A,

f (y)− f (x)≥ v · (y− x).

We let ∂ f (x) denote the subdifferential of f at x, namely the set of all subgradients of f at x.
If f is a concave function instead, then the superdifferential of f at x is given by ∂ f (x) :=−∂ (− f )(x).

In that case, the elements of ∂ f (x) are called supergradients.

The subdifferential has the following well-known properties (see, e.g., [Rockafellar, 2015]).

Lemma 2. Let A⊆ Rn be a convex set and let f : A→ R be a convex function. Then it holds that:

• ∂ f (x) is a closed convex set for all x ∈ A,

• ∂ f (x) is nonempty for all x ∈ rel int A,

• if f is differentiable at x, then ∂ f (x) = {∇ f (x)},

• x? ∈ A is a global minimum of f on A, if and only if 0 ∈ ∂ f (x?).

Note that since f (· ;w) and gi(· ;w), i = 1, . . . ,k, are convex functions defined over Rn, the subdif-
ferentials ∂ f (· ;w), ∂gi(· ;w) : Rn ⇒ Rn, i = 1, . . . ,k, are guaranteed to exist and be nonempty. For our
purposes we will assume that we are given pseudogates computing these subgradients. In other words, we
assume that we are given algebraic circuits G∂ f ,G∂gi

: Rn×Rs× [0,1]`→ Rn× [0,1]`, i = 1, . . . ,k, such
that Fix`[G∂ f ](x,w)⊆ ∂ f (x ;w) and Fix`[G∂gi ](x,w)⊆ ∂gi(x ;w), i = 1, . . . ,k, for all x,w ∈Rn×Rs. See
Appendix A for an example of how such pseudogates can be constructed.

Example 2. As an example, let us see why our convex optimization setting (6) is indeed a generalization
of our LP setting (5). To go from (5) to (6) we set s = n+ kn+ k and decompose w = (c,C,d) ∈
Rn×Rk×n×Rk accordingly. Then we let f (x ;w) =−cTx and gi(x ;w) =CT

i x−di for i = 1, . . . ,k, where
Ci denotes the ith row of C. As a result, it is easy to see that the subdifferentials are in fact gradients,
namely ∇ f (x ;w) =−c and ∇gi(x ;w) =Ci. Clearly, the functions are convex for any fixed value of w,
and both the functions and their subdifferentials can easily be expressed as algebraic circuits. In particular,
this means that Theorem 5 below implies Theorem 4.

We can now formally state the main result of this section.

Theorem 5. Given n ∈ N, m,k,s ∈ N0 and G∂ f , gi, G∂gi , i = 1, . . . ,k, we can construct an algebraic
circuit G : Pn,m, f ,g× [0,1]`→ Rn× [0,1]` in time poly(n,m,k,s,size(G∂ f ),size(g),size(G∂gi)) such that
for any parameters p = (w,A,b,R) ∈ Pn,m, f ,g it holds:
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• if the feasible region of CP(p) is non-empty, i.e., Feas(CP(p)) 6= /0, then

Fix`[G](p)⊆ Feas(CP(p)).

• if CP(p) satisfies the explicit Slater condition, then

Fix`[G](p)⊆ Opt(CP(p)).

Remark 1. A careful examination of the proof of Theorem 5 below reveals that the construction also
works if the functions f and gi are pseudoconvex, instead of convex. A differentiable function f : A→ R,
where A⊆ Rn is an open convex set, is said to be pseudoconvex if for all x,y ∈ A it holds that

f (y)< f (x) =⇒ ∇ f (x) · (y− x)< 0.

Any differentiable convex function is pseudoconvex, but every pseudoconvex function is not necessarily
convex. Furthermore, every convex function is not necessarily pseudoconvex, because it might not be
differentiable. It is possible to define a notion that generalizes both convexity and pseudoconvexity, and
to state Theorem 5 with this notion, but for simplicity we have stated it only for convex functions above.

3.5 Proof of Theorem 5

Let GH : R× [0,1]→ R× [0,1] denote the algebraic circuit which implements the pseudogate computing
the Heaviside function H, as given by Lemma 1, i.e., such that Fix1[GH](x)⊆ H(x) for all x ∈ R.

For i = 1, . . . ,k let gi : Rn ×Rs → R denote the algebraic circuits computing the functions for
the inequality constraints. For i = 1, . . . ,k let G∂gi

: Rn×Rs× [0,1]t → Rn× [0,1]t denote an algebraic
circuit which implements a pseudogate computing the subdifferential ∂gi, i.e., such that Fixt [G∂gi ](x,w)⊆
∂gi(x ;w) for all (x,w) ∈Rn×Rs. Similarly, let G∂ f : Rn×Rs× [0,1]t →Rn× [0,1]t denote an algebraic
circuit which implements a pseudogate computing the subdifferential ∂ f , i.e., such that Fixt [G∂ f ](x,w)⊆
∂ f (x ;w) for all (x,w) ∈ Rn×Rs. Note that we have assumed that G∂ f , G∂g1 , . . . ,G∂gk all use the same
number t of auxiliary inputs/outputs. This is without loss of generality, because additional auxiliary
inputs/outputs can be added to such a circuit without altering the represented correspondence.

Construction of the algebraic circuit G. We now describe the construction of the algebraic circuit
G : Pn,m, f ,g× [0,1]` → Rn× [0,1]`. The circuit G has exactly ` = n+ k +m+ t(k + 1) auxiliary in-
puts/outputs. We denote the input to circuit G by (w,A,b,R,y,y′) where (w,A,b,R) ∈ Pn,m, f ,g are the
parameters for the convex program (i.e., the inputs to the pseudogate we are constructing), y ∈ [0,1]n are
the first n auxiliary inputs, and y′ ∈ [0,1]`−n are the remaining `−n = k+m+ t(k+1) auxiliary inputs.
The output of the circuit is denoted by (z,y,y′), where z ∈ Rn is the primary output (i.e., the actual output
of the pseudogate we are constructing), y ∈ [0,1]n are the first n auxiliary outputs, and y′ ∈ [0,1]`−n are
the remaining n− ` auxiliary outputs. We now describe how the outputs of the circuit are computed using
the inputs and standard algebraic gates.

The circuit G begins by computing the vector x ∈ [−R,R]n as x := 2Ry−R. This simply corresponds
to scaling y ∈ [0,1]n to a vector in [−R,R]n, and can clearly be computed using the standard algebraic
gates. Next, G uses the given algebraic circuits gi to compute g1(x ;w), . . . ,gk(x ;w). Then, for each
i = 1, . . . ,k, the circuit computes µi ∈ H(gi(x ;w)) by using the pseudogate computing H. To be more
precise, the circuit computes (µi,y′i) := GH(gi(x ;w),y′i), using the algebraic circuit GH. Note that when
y′i = y′i, we indeed have µi ∈ H(gi(x ;w)), as desired.

For j = 1, . . . ,m let a j ∈ Rn denote the jth row of the matrix A. In particular, the jth equality
constraint can be written as a j · x = b j. The next step is to compute λ j ∈ 2H(a j · x− b j)− 1 for each
j = 1, . . . ,m, again by using the pseudogate computing H. Formally, this means that the circuit sets
(λ ′j,y

′
k+ j) := GH(a j · x−b j,y′k+ j) and then λ j := 2λ ′j−1. Note that the computation of the µi’s and the

λ j’s has used up exactly k+m coordinates of the auxiliary inputs/outputs y′,y′, which means that t(k+1)
are still available at this point.

18



Next, the circuit computes v0 ∈ ∂ f (x ;w) and vi ∈ ∂gi(x ;w) for i = 1, . . . ,k. Formally, this is
achieved by setting (v0,y′(0)) := G∂ f (x,w,y′(0)) and (vi,y′(i)) := G∂gi(x,w,y

′
(i)) for i = 1, . . . ,k, where

y′(i) = (y′k+m+it+1, . . . , y′k+m+it+t) for i = 0,1, . . . ,k, and y′(i) is defined analogously.
We summarize some properties of the construction up to this point in the following claim.

Claim 1. If y′ = y′, then we have:

• µi ∈ H(gi(x ;w)) for i = 1, . . . ,k,

• λ j ∈ 2H(a j · x−b j)−1 for j = 1, . . . ,m,

• v0 ∈ ∂ f (x ;w),

• vi ∈ ∂gi(x ;w) for i = 1, . . . ,k.

We are now ready to finish the construction of G. The circuit computes

µ0 := 1−max(µ1, . . . ,µk, |λ1|, . . . , |λm|).

Note that |λ j| can simply be computed as max(λ j,−λ j). We let ΠR : Rn→ [−R,R]n denote the projection
onto [−R,R]n. The function ΠR can easily be computed using algebraic gates, since it suffices to apply the
function α 7→max(−R,min(R,α)) on each coordinate separately. The primary output z of G is computed
as

z := ΠR

x−µ0v0−
k

∑
i=1

µivi−
m

∑
j=1

λ ja j

 (7)

and the auxiliary output y ∈ [0,1]n of G is then computed as

y :=
z+R
2R

which, in particular, implies that y ∈ [0,1]n. Note that here it is important that we always have R > 0.
This completes the construction of the circuit G. Clearly, the construction can be performed in time

poly(n,m,k,s,size(G∂ f ),size(g1), . . . ,size(gk),size(G∂g1), . . . ,size(G∂gk)). Note that, in particular, we
have not used a circuit computing f at any point in the construction.

Fixed-point properties. In Claim 1 we have already noted some properties that must hold when y′ = y′.
Now we consider the implications of y= y. First of all, when y= y, it follows that x = z, since x = 2Ry−R
and z = 2Ry−R. From (7) we then obtain:

Claim 2. If y = y, then x = z and the vector

ν := µ0v0 +
k

∑
i=1

µivi +
m

∑
j=1

λ ja j (8)

satisfies, for r = 1, . . . ,n,
νr > 0 =⇒ xr =−R

and
νr < 0 =⇒ xr = R.

Next, we prove the following technical result, which will be useful for the remainder of the proof.

Claim 3. If (y,y′) = (y,y′) and u is a feasible point, i.e., u ∈ Feas(CP(w,A,b,R)), then

• νr(ur− xr)≥ 0 for r = 1, . . . ,n,
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• µivi · (u− x)≤ 0 for i = 1, . . . ,k,

• λ ja j · (u− x)≤ 0 for j = 1, . . . ,m.

Furthermore, if µ0 = 0, then all these terms are equal to zero.

Proof. Since u ∈ Feas(CP(w,A,b,R)), it holds that u ∈ [−R,R]n, Au = b and gi(u ;w)≤ 0 for i = 1, . . . ,k.
It follows that νr · (ur− xr)≥ 0 for r = 1, . . . ,n, because

νr > 0 =⇒ xr =−R =⇒ ur ≥ xr

and
νr < 0 =⇒ xr = R =⇒ ur ≤ xr

where we used Claim 2 and the fact that u ∈ [−R,R]n.
By Claim 1 we know that µi ≥ 0 for i = 1, . . . ,k. Now, if µi > 0 for some i, then it must be that

gi(x ;w)≥ 0. But this means that gi(x ;w)≥ gi(u ;w), because u is feasible. Since vi ∈ ∂gi(x ;w) (Claim 1),
and by the definition of subgradients (Definition 10), it follows that vi · (u− x)≤ gi(u ;w)−gi(x ;w)≤ 0.
As a result, we obtain that µivi · (u− x)≤ 0 for all i = 1, . . . ,k.

If λ j > 0 for some j, then by Claim 1 we have a j ·x−b j ≥ 0. Since u is feasible, we have a j ·u−b j = 0
and thus a j · (u− x)≤ 0. Similarly, if λ j < 0 for some j, then by Claim 1 we have a j · x−b j ≤ 0, which
by feasibility of u yields a j · (u− x)≥ 0. As a result, we obtain that λ ja j · (u− x)≤ 0 for all j = 1, . . . ,m.

Finally, consider the case where µ0 = 0. Taking the inner product of (8) with (u− x), we obtain

n

∑
r=1

νr(ur− xr) =
k

∑
i=1

µivi · (u− x)+
m

∑
j=1

λ ja j · (u− x)

which, together with the above, implies that all the terms must be zero.

We are now ready to prove the desired properties of G in the following two claims. Recall that z is
the primary output of the circuit G, i.e., the output of the pseudogate it computes.

Claim 4. If (y,y′) = (y,y′) and Feas(CP(w,A,b,R)) 6= /0, then z ∈ Feas(CP(w,A,b,R)).

Proof. We will show that x ∈ Feas(CP(w,A,b,R)), which suffices to prove the claim since x = z by
Claim 2. Since Feas(CP(w,A,b,R)) 6= /0, there exists a feasible vector u, i.e., u ∈ [−R,R]n such that
Au = b and gi(u ;w)≤ 0 for i = 1, . . . ,k.

Now, towards a contradiction, let us assume that x /∈ Feas(CP(w,A,b,R)). Since x ∈ [−R,R]n, this
means that there exists i? with gi?(x ;w)> 0, or j? with a j? · x 6= b j? . In both cases, it follows that µ0 = 0,
since by Claim 1, µi? = 1 or λ j? ∈ {−1,1}, respectively. By Claim 3, it follows that µivi · (u− x) = 0 for
all i, and λ ja j · (u− x) = 0 for all j.

If there exists i? with gi?(x ;w)> 0, then by Claim 1 we have that µi? = 1 > 0. Furthermore, since
vi? ∈ ∂gi?(x ;w) (Claim 1), it follows by the definition of subgradients (Definition 10) that vi? · (u− x)≤
gi?(u ;w)−gi?(x ;w)< 0, since u is feasible. But this means that µi?vi? · (u− x)< 0, a contradiction.

It remains to consider the case where there exists j? with a j? · x 6= b j? . If a j? · x > b j? , then λ j? =
1 > 0 (Claim 1), and a j? · (u− x) < 0, since u is feasible. On the other hand, if a j? · x < b j? , then
λ j? =−1 < 0 (Claim 1), and a j? · (u−x)> 0, since u is feasible. As a result, in both cases we obtain that
λ j?a j? · (u− x)< 0, a contradiction.

Since we have obtained a contradiction in all cases, it must be that x ∈ Feas(CP(w,A,b,R)).

Claim 5. If (y,y′) = (y,y′) and CP(w,A,b,R) satisfies the explicit Slater condition, then we have z ∈
Opt(CP(w,A,b,R)).
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Proof. By Claim 2, x = z, and thus it suffices to show that x ∈ Opt(CP(w,A,b,R)). By Claim 4, we
already know that x is feasible for CP(w,A,b,R).

By Claim 1, we always have µ0 ≥ 0. Let us first consider the case where µ0 > 0. Let u ∈ [−R,R]n be
any feasible point. Taking the inner product of (8) with (u− x) we obtain

µ0v0 · (u− x) =
n

∑
r=1

νr(ur− xr)−
k

∑
i=1

µivi · (u− x)−
m

∑
j=1

λ ja j · (u− x).

By Claim 3, all the terms on the right hand side are non-negative. This implies that µ0v0 · (u− x)≥ 0 and
thus v0 · (u− x)≥ 0. Since v0 ∈ ∂ f (x ;w) (Claim 1), by the definition of subgradients (Definition 10), it
follows that f (u)− f (x)≥ v0 · (u− x)≥ 0. Since this holds for any feasible point u, this means that x is
an optimal solution, i.e., x ∈ Opt(CP(w,A,b,R)).

It remains to handle the case where µ0 = 0. We will show that this case cannot occur. Towards a
contradiction, assume that indeed µ0 = 0. Since CP(w,A,b,R) satisfies the explicit Slater condition, there
exists u ∈ (−R,R)n with Au = b and gi(u ;w) < 0 for i = 1, . . . ,k. In particular, u is feasible and since
µ0 = 0, by Claim 3 we obtain that νr(ur−xr) = 0 for all r, µivi ·(u−x) = 0 for all i, and λ ja j ·(u−x) = 0
for all j.

If νr > 0 for some r, then, by Claim 2, we have xr =−R. Since ur ∈ (−R,R), it follows that ur−xr > 0,
and thus νr(ur− xr)> 0, a contradiction. If νr < 0 for some r, then, by Claim 2, we have xr = R, and
thus again νr(ur− xr)> 0, a contradiction. As a result, we obtain that νr = 0 for all r = 1, . . . ,n.

If µi > 0 for some i, then by Claim 1 it must be that gi(x ;w)≥ 0. Since vi ∈ ∂gi(x ;w) (Claim 1), it
follows by the definition of subgradients (Definition 10) that vi ·(u−x)≤ gi(u ;w)−gi(x ;w)< 0, because
gi(u ;w)< 0. Thus, we obtain that µivi · (u− x)< 0, a contradiction. As a result, we have µi = 0 for all
i = 1, . . . ,k.

Now, since µ0 = µi = νr = 0, the equation in Claim 2 just yields ∑
m
j=1 λ ja j = 0. But CP(w,A,b,R)

satisfies the explicit Slater condition, so the vectors a j, j = 1, . . . ,m, are linearly independent. It follows
that λ j = 0 for all j = 1, . . . ,m. However, note that this is a contradiction, because according to the
construction of µ0, if µi = 0, for all i = 1, . . . ,k, and λ j = 0, for all j = 1, . . . ,m, then µ0 = 1.

The proof of Theorem 5 is thus completed.

4 Applications to Game Theory

In this section, we discuss further applications of our technique to equilibrium computation in strategic
games. In Section 3.1, we already demonstrated how the employment of our OPT-gate can make the
FIXP-membership proof of normal form games essentially straightforward. In this section, we provide
further FIXP-membership results, namely:

- Computing equilibria in concave n-player games [Rosen, 1965]. In these games, which generalize
the normal form games mentioned above, the players have continuous strategy spaces and continuous
payoff functions. Again via a relatively simple proof based on convex programs rather than Linear
Programs, we show that computing equilibria of these games is in FIXP; the FIXP-completeness
follows from the FIXP-hardness of normal form games due to Etessami and Yannakakis [2010].

- Computing ε-proper equilibria in normal form games, an equilibrium refinement due to Myerson
[1978]. We show that the corresponding problem is in FIXP. Our proof first shows how to compute
solutions to systems of conditional convex constraints (Section 4.2.1) using our OPT-gate, and then
employs this to show the FIXP-membership result for ε-proper equilibria.

- Computing stationary λ -discounted equilibria in n-player congestion games [Shapley, 1953]. We
show that this problem is FIXP-complete. The FIXP-membership result does not technically use our
OPT-gate, and could already be achieved via the machinery used by Etessami and Yannakakis [2010]
to achieve the FIXP-membership of the 2-player problem, which we generalize. That being said, the
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proof is in a sense inspired by the ideas used in our LP- and convex program-based proofs, via the use
of the auxiliary parameters. The FIXP-hardness follows from [Etessami and Yannakakis, 2010] by
viewing a normal form game as a stochastic game consisting of a single state.

4.1 Concave n-player games

In this section, we generalize the FIXP-membership result from normal form games to concave games, a
class of games studied by Rosen [1965], which we define below. Together with the FIXP-hardness result
for normal form games [Etessami and Yannakakis, 2010], we obtain the following result.

Theorem 6. Computing an equilibrium of a concave n-player game is FIXP-complete.

An n-player game G consists of n players, with each player i ∈ [n] having a compact and convex
strategy space Σi ⊆ Rmi and a continuous payoff function ui : Σ→ R, where Σ := Σ1×·· ·×Σn. For a
strategy profile x ∈ Σ, let (y,x−i) = (x1, . . . ,xi−1,y,xi+1, . . . ,xn) denote the strategy profile where player
i unilaterally changes strategy. The game G is concave if for any player i and fixed x ∈ Σ, the function
ui(y,x−i) is concave in y.

A strategy profile x ∈ Σ is an equilibrium if ui(x) = maxy∈Σi ui(y,x−i) for every player i, that is, no
player can increase its payoff by a unilateral change of strategy. Rosen [1965] provides a proof that every
concave game admits an equilibrium point by constructing an upper hemicontinuous correspondence
F : Σ→ 2Σ mapping any x ∈ Σ to the set {y ∈ Σ | ∀i : yi is a best response to x−i}. One then applies
Kakutani’s fixed point theorem to show the existence of some strategy profile x ∈ Σ with x ∈ F(x). As xi

is a best response to x−i for all players by construction, x is an equilibrium.

Computational problem. In the computational problem, we assume that each strategy space Σi is
given as the set of all x ∈ [−Ri,Ri]

mi satisfying equality constraints Aix = bi and inequality constraints
gi j(x)≤ 0 for some Ri > 0, matrix Ai ∈ Rdi×mi , vector bi ∈ Rdi , and convex functions gi j, j = 1, . . . ,ki.
As Ai is given as input, we may apply preprocessing to eliminate linear dependence among the rows, so
we just have to assume that the constraints satisfy the general Slater condition. We also assume that we
are given algebraic circuits for gi j and pseudogates computing their subdifferentials ∂gi j, as well as the
superdifferentials ∂ui.

In order to prove FIXP-membership, we construct a circuit F : D→ D, where D =×i[−Ri,Ri]
mi . On

input x, the ith output of the circuit F will be a best response of player i to x−i. Namely, the i-th output of
F is simply set as the output of the OPT-gate for the following convex program:

minimize −ui(y,x−i)

subject to Aiy = bi

gi j(y)≤ 0 j = 1, . . . ,ki

y ∈ [−Ri,Ri]
mi

Note that the explicit Slater condition is satisfied by assumption. Thus, the OPT-gate correctly solves the
convex program. As a result, if x is a fixed point of F , then x ∈ Σ and xi is a best response to x−i for every
player i, meaning that x is indeed an equilibrium of the game.

Remark 2. Rosen [1965] actually considers a more general setting where the space of strategy profiles Σ

is not assumed to be equal to the product space of the players’ individual strategy spaces. Rather, he just
assumes that the space of strategies is a compact and convex subset Σ ⊆ Σ1×·· ·×Σn. Let us assume
that Σ is given as the set of all x ∈ [−R,R]m that satisfy Ax = b and g j(x) ≤ 0, j = 1, . . . ,k, where, as
per usual, A is a matrix, b a vector and the g j are convex functions. We may write A = (A1 | · · · | An) as
a concatenation of block matrices. For fixed x ∈ Σ, player i would then maximize its utility ui(y,x−i)
subject to the constraints Aiy = bi(x−i) := b−∑ j 6=i A jx j and g j(y,x−i) ≤ 0 for all j. As Ai is given in
the input we can apply preprocessing to it and remember the linear combinations required to eliminate
potential linear dependence in the rows of Ai. Applying these same linear combinations to the Ai and bi,
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we obtain constraints Ãiy = b̃i. It suffices to require that the constraints Aiy = bi(x−i) and g j(y,x−i)≤ 0,
j = 1, . . . ,k, satisfy the general Slater condition for all i ∈ [n] and x ∈ Σ.

4.2 Computing an ε-proper equilibrium via systems of conditional convex constraints

In this section we consider the Nash equilibrium refinement of proper equilibrium due to Myerson [1978].
First, we define the notion of ε-proper equilibrium and then define a proper equilibrium as a limit point
of ε-proper equilibria.

Definition 11 ([Myerson, 1978]). Let Γ be a finite n-player game in strategic form. Given ε > 0, a mixed
strategy profile x is an ε-proper equilibrium in Γ if it is fully mixed and satisfies xik ≤ εxi` whenever
ui(k,x−i)< ui(`,x−i) for all players i and all pairs of actions k, ` of player i.

A mixed strategy profile x is a proper equilibrium if and only if it is a limit point of a sequence of ε-proper
equilibria with ε → 0+.

It was proved recently by Hansen and Lund [2018] that the task of approximating a proper equilibrium is
complete for the class FIXPa of [Etessami and Yannakakis, 2010]. This work follows a line of similar
results [Etessami et al., 2014; Etessami, 2021] for approximating other notions of equilibrium refinements,
e.g. Selten’s trembling hand perfect equilibrium [Selten, 1988], that are, like proper equilibria, defined as
limit points of certain ε-equilibria. These previous results were proved by showing that the problems
of computing the ε-equilibria are in FIXP. In fact they can be computed by a reduction to a basic
FIXP-problem (Definition 4) where ε is an input variable of the algebraic circuit. This additional property
is exploited to prove that approximating the equilibrium refinement notions is in FIXPa by using the
ability of an algebraic circuit to compute a “virtual infinitesimal” by means of repeated squaring that then
takes the place of ε .

Hansen and Lund [2018] did not prove that computing an ε-proper equilibrium is in FIXP, but instead
proved that computing a so-called δ -almost ε-proper equilibrium is in FIXP. These equilibria can in fact
be computed by reducing to a basic FIXP-problem where δ and ε are inputs of the algebraic circuit. It is
then shown that approximating a proper equilibrium is in FIXPa by substituting “virtual infinitesimals”
for both δ and ε . The question of whether computing an ε-proper equilibrium is in FIXP was left as an
open problem. Using our technique we resolve this question, and thereby significantly simplify the proof
of Hansen and Lund [2018] that approximating a proper equilibrium is FIXPa-complete.

Theorem 7. The problem of computing an ε-proper equilibrium of a given finite game n-player game in
normal form is in FIXP.

To establish existence of ε-proper equilibria, Myerson [1978] made use of Kakutani’s fixed point theorem
(Theorem 2). Suppose that Γ is a given n-player game in strategic form and ε > 0. Let Si = [mi] and ui be
the set of strategies and utility function of Player i. Define ηi(ε) = εmi/mi and let

Σ
ηi
i =

{
y ∈ Rmi

∣∣∣∑
j

y j = 1;∀ j : y j ≥ ηi

}
be the set of ηi-perturbed mixed strategies for Player i. Let η = (η1, . . . ,ηn) and define Ση = ∏

n
i=1 Σ

ηi
i to

be the set of all η-perturbed mixed strategy profiles for Γ. Define the correspondence F : Ση ⇒ Ση by
F(x) = ∏

n
i=1 Fi(x), where

Fi(x) = {y ∈ Σ
η | ∀k, ` ∈ Si : ui(k,x−i)< ui(`,x−i)⇒ yik ≤ εyi`} .

Clearly any fixed point of F is an ε-proper equilibrium of Γ. Myerson concluded his proof by showing
that F satisfies the conditions of the Kakutani fixed point theorem. In particular, Fi is nonempty since we
have yi ∈ Fi(x) where

yik = ε
ρi(k)/ ∑

`∈Si

ε
ρi(`)

and ρi(k) =
∣∣{` ∈ Si | ui(k,x−i)< ui(`,x−i)}

∣∣.
Computing a fixed point of F is a special case of the result of the following subsection (see Theorem 8).
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4.2.1 Solving Systems of Conditional Convex Constraints

In this section we consider the task of solving systems of what we refer to as conditional convex constraints
by finding fixed points. We make use of the main result of the section (Theorem 8) to prove Theorem 7,
but it could be applicable to other problems as well, and therefore it could be of independent interest.

Definition 12. A conditional convex constraint on n variables is a pair ( f ,g) of a continuous function
f : Rn→ R and a convex function g. A point x ∈ Rn satisfies ( f ,g) if f (x)> 0⇒ g(x)≤ 0.

A system of conditional convex constraints naturally defines a search problem, where the task is to
find a point x that satisfies all constraints of the system. A system of conditional convex constraints also
defines a correspondence in a natural way. We shall further restrict our attention to correspondences with
nonempty, compact, and convex domain.

Definition 13. Let D ⊆ Rn be a non-empty, compact and convex set. Let ( f1,g1), . . . ,( fm,gm) be
conditional convex constraints on n variables. The correspondence F : D ⇒ D defined by D and
( f1,g1), . . . ,( fm,gm) is given by

F(x) = {y ∈ D | ∀i : fi(x)> 0⇒ gi(y)≤ 0} .

Note that there is a one-to-one correspondence between fixed points of F and solutions of the system
of constraints contained in D.

Except for the property of nonempty-valued, such correspondences satisfy the conditions of Kakutani’s
fixed point theorem.

Proposition 1. Let F be a correspondence defined by a non-empty, compact and convex set D⊆ Rn and
conditional convex constraints ( f1,g1), . . . ,( fm,gm). Then F is uhc as well as compact and convex-valued.

Proof. Let x ∈ D and let V ⊆ D be an open set such that F(x)⊆V . By continuity of the functions fi we
may find an open set U containing x such that if x′ ∈U and fi(x′)> 0 then we have fi(x)> 0 as well. It
follows that F(x′)⊆ F(x)⊆V , which means that F is uhc. We also have that F(x) is an intersection of
closed and convex sets, and F(x) is thus closed and convex as well.

Thus if we had a guarantee that F was nonempty-valued as well, a fixed point would be guaranteed
by Kakutani’s fixed point theorem. We can associate a total search problem with F where the task is to
find x ∈ D such that either x ∈ F(x) or F(x) = /0. For the computational problem, we assume that D is
given as a set of linear constraints x ∈ [−R,R]n and Ax = b, and convex constraints hi(x)≤ 0, i = 1, . . . ,k.
We also assume that we are given algebraic circuits computing fi,gi and hi, and pseudogates computing
the subgradients of gi and hi.

The idea is that the function G in the proof below is derived from a system of convex constraints
in variables y that are parametrized by variables x. A fixed point in variables y should give a feasible
point. We consider the constraints given by max(0, fi(x))gi(y)≤ 0. When fi(x)> 0 this is equivalent to
the constraint gi(x)≤ 0. When fi(x)≤ 0, the constraint becomes trivial.

Theorem 8. The problem solving systems of conditional convex constraints is in FIXP.

Proof. Define a map G : D×D→D×D by (x,y) 7→ (y,H(x,y)), where H(x,y) is obtained as the output
of our convex OPT-gate for the following feasibility problem

maximize 0

subject to Az = b

hi(z)≤ 0 i = 1, . . . ,k

z ∈ [−R,R]n

max(0, fi(x))gi(z)≤ 0 i = 1, . . . ,m
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Suppose that (x,y) ∈ D×D is a fixed point of F . By the first coordinate function, we have that x = y. We
argue that x is a solution to the search problem described above. If the set of feasible solutions to the
convex program is empty, then it follows that F(x) = /0, and so x is indeed a solution. Suppose on the
other hand that the set of feasible solutions is non-empty. It then follows from the first part of Theorem 5
that x = y is a solution to feasibility problem. The first three constraints show that x ∈ D, and from the
inequalities max(0, fi(x))gi(x)≤ 0 it follows that fi(x)> 0⇒ gi(x)≤ 0. In this case x ∈ F(x). In either
case, x is a solution to the search problem.

4.3 n-player Stochastic Games

Stochastic games, as first introduced by Shapley in his seminal work [Shapley, 1953], model dynamic
interaction between players in an environment whose state is changing according to a stochastic process
influenced by the actions of the players. We shall here consider discrete-time finite games, where players
receive immediate payoffs in each round of play and discount future payoffs. Shapley’s model then
corresponds the special case of two-player zero-sum games.

The main result of this section is the following.

Theorem 9. Computing a stationary λ -discounted equilibrium of an n-player stochastic game is FIXP-
complete.

Next, we first define n-player stochastic games formally, as well as the equilibrium notion which appears
in the statement Theorem 9 above. Then we present the proof of FIXP-membership for the problem;
the FIXP-hardness follows from [Etessami and Yannakakis, 2010], by consider a single-state stochastic
game, i.e., a normal form game.

An n-player finite stochastic game Γ is given as follows. The game is played on a finite set of states S. To
every player i is associated a finite set of actions Ai. Let A = A1×·· ·×An denote the set of action profiles
and P = {(s,a) : s ∈ [n],a ∈ A} the pairs of states and actions profiles. The immediate payoffs to player i
are then given by a function ui : P→R and the state transitions are given by a function q : P→ ∆(S). Let
M = maxi,(s,a)∈P

∣∣ui(s,a)
∣∣.

A play of Γ is an infinite sequence h∈ P∞. A finite play up to stage t is an sequence ht ∈ Pt−1×S. Let
H = ∪̇∞

t=1

(
Pt−1×S

)
denote the set of all finite plays. A behavioral strategy for player i is a function

σi : H → ∆(Ai). A stationary strategy is a behavioral strategy that depends only on the last state of
a finite play. A stationary strategy xi may thus be viewed as a function xi : S→ ∆(Ai). A behavioral
strategy σi for each player i form a behavioral strategy profile σ = (σ1, . . . ,σn). In the same way,
stationary strategies for each player form a stationary strategy profile. A behavioral strategy profile σ

and an initial state s1 ∈ S define by Kolmogorov’s extension theorem a unique probability distribution
Prs1,σ on plays (s1,a1,s2,a2, . . .), where the conditional probability of at = a given the play upto stage t,
ht = (s1,a1, . . . ,st), is equal to ∏

n
i=1 Pr[σi(ht) = ai], and the conditional probability of st+1 given st and

at is equal to q(st ,at). We denote by Es1,σ the expectation with respect to Prs1,σ .

For every discount factor 0 < λ ≤ 1, the λ -discounted payoff to player i is defined to be

γ
λ
i (s

1,σ) = E
s1,σ

[
λ

∞

∑
t=1

(1−λ )t−1ui(st ,at)

]
. (9)

A behavioral strategy profile σ is a λ -discounted equilibrium if

γ
λ
i (s

1,σ)≥ γ
λ
i (s

1,(σ ′i ,σ−i)) , (10)

for all states s1 ∈ S, all players i ∈ [n], and all behavioral strategies σ ′i for player i. It was proved by Fink
[1964] and Takahashi [1964] that any finite discounted stochastic game has a λ -discounted equilibrium in
stationary strategies for any discount factor λ . In the case of two-player zero-sum games, Shapley proved
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existence of the λ -discounted value vλ ∈RS, as well as optimal stationary strategies, for the λ -discounted
payoff.

The results of Shapley, Fink, and Takahashi lead the to natural real-valued total search problem. Etessami
and Yannakakis [2010] proved the FIXP-membership of the problem of finding the λ -discounted values
and optimal stationary strategies in two-player zero-sum stochastic games with discounted payoffs.

Now let Γ be an n-player stochastic game. The proofs by Fink and Takahashi of existence of
λ -discounted equilibrium in stationary strategies both make use of Kakutani’s fixed point theorem
(Theorem 2).4 Let us now consider the approach of Takahashi, specialized to finite stochastic games.

Valuations of states vi : S→ Rn by every player i now form a valuation profile v = (v1, . . . ,vn). Given a
discount factor λ and a valuation profile v, we can form associated n-player normal form games Γs,λ (v),
generalizing the case of two players. For every state s ∈ S, the utility function us,λ ,v

i : A→ R of player i
in Γs,λ (v) is given by

us,λ ,v
i (a) = λui(s,a)+(1−λ ) ∑

s′∈S
q(s′ | s,(i, j))vi(s′)

A stationary strategy profile x = (x1, . . . ,xn) in Γλ induces strategy profiles x(s) = (x1(s), . . . ,xn(s)) in
the games Γs,λ (v), and corresponding valuations of states us,λ ,v

i (x(s)). Let

D = ([−M,M]S)n× (∆(A1)
S×·· ·×∆(An)

S)

be the set valuation profiles v and stationary strategy profiles x. Takahashi defines a correspondence
F : D ⇒ D whose fixed points are pairs of valuation profiles and stationary strategy profiles such that
the stationary strategy profiles are λ -discounted equilibria in Γλ . Letting F(v,x) = (G(v,x),H(v,x)),
Takahashi defines

G(v,x)i,s = max
y(s)i∈∆(Ai)

us,λ ,v
i (y(s)i;x(s)−i)

and
H(v,x)i,s = argmax

y(s)i∈∆(Ai)

us,λ ,v
i (y(s)i;x(s)−i)

By Berge’s maximum theorem (Theorem 3), the correspondence F satisfies the requirements of Kakutani’s
fixed point theorem (Theorem 2) which in turn yields existence of a fixed point (v,x). Takahashi then
proves that the stationary strategy profile x is a λ -discounted equilibrium in Γλ .

To obtain a proof of existence by Brouwer’s fixed point theorem, and consequently a FIXP-membership
result, we consider the larger domain

D̃ = ([−M,M]S)n× (∆(A1)
S×·· ·×∆(An)

S)2

of triples consisting of a valuation profile v and a pair of stationary strategy profiles (x,y).
We define a function F̃ : D̃→ D̃ whose fixed points are of the form (v,x,x) where the pair (v,x) is a

fixed point of F . Let G̃ be given by

(G̃(v,x,y))i,s = us,λ ,v
i (y(s)i;x(s)−i).

Next, let H̃ : D̃→ (∆(A1)
S×·· ·×∆(An)

S) be a continuous function such that for any (v,x) ∈ D the set
of fixed points of K(v,x,y) in the third coordinate are best replies to x in the games Γs,λ (v). That is, H̃
satisfies that if H̃(v,x,y) = y for given (v,x), then y ∈ H(v,x).

We finally define F̃(v,x,y) = (G̃(v,x,y),y, H̃(v,x,y)). Suppose now that (v,x,y) is a fixed point of
F̃ . From the third coordinate we have H̃(v,x,y) = y and by the property of H̃ it follows that y ∈ H(v,x).
From the second coordinate we have that x = y and thus x ∈ H(v,x). From the first coordinate we have
v(s)i = (G̃(v,x,y))i,s. Since y ∈ H(v,x), we in fact have v(s)i = G(v,x)i,s. Thus (v,x) is a fixed point of F
and the result follows.

4More accurately, the proof by Takahashi [1964] applies to stochastic games with infinte action spaces, and as a consequence
uses a generalization of Kakutani’s fixed point to locally convex spaces due to Fan [1952] and Glicksberg [1952].
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5 Applications to Cake Cutting

In this section, we discuss the applications of our main technique to the area of fair division, and in
particular to the complexity of the well-known envy-free cake cutting problem [Gamow and Stern, 1958]
(see also [Robertson and Webb, 1998; Brams et al., 1996; Procaccia, 2013]). In this problem, the cake
serves as a metaphor for a divisible resource - represented without loss of generality by the interval [0,1] -
which needs to be divided among a set of n agents, such that every agent receives a piece of cake she
prefers compared to any piece assigned to any other agent. In the general formulation of the problem, a
“piece” can be a collection of possibly disconnected subintervals. In the contiguous version, each piece is
a single interval (and hence the cake is divided using n−1 cuts), and in that case any division of the cake
can be represented as a point x in the simplex ∆n−1, with x j denoting the j-th coordinate.

Formally, the valuation of agent i for the j-th piece is given by a map ui j : ∆n−1→ R≥0. Given a
division x, we say that agent i prefers the j-th piece if ui j(x)≥ uik(x) for every k. We say that a division x
is envy-free if there exists a permutation π of {1, . . . ,n} such that for every i, agent i prefers piece π(i).
For the computational version of the problem, we will assume that the valuations are given by means of
an algebraic circuit as defined in Definition 3.

Stromquist [1980] proved that an envy-free division of the cake is guaranteed to exist, even for the
contiguous version, as long as the valuations ui j are continuous functions and the agents are hungry, that
is no agent prefers an empty piece of cake.

Theorem 10 (Stromquist [1980]). When the valuations are continuous and the agents are hungry, an
envy-free division of the cake always exists.

Stromquist’s proof considers the simplex of divisions as described above, and applies a variant of the
K-K-M lemma of Knaster et al. [1929] (see Lemma 5 in Section 5.2), which regards the covering of the
simplex by sets. While this lemma is defined on a continuous domain (the unit-simplex), Stromquist
[1980] actually applied it after constructing a subdivision of the simplex into “cells”, first obtaining
the existence of an approximately envy-free division, and then invoked a limit argument to prove the
existence for exact envy-freeness. Another proof of existence was developed independently by Simmons
in 1980 (published for the first time in [Su, 1999] and attributed to Simmons as “private communication
to Michael Starbird”). This proof made use of the well-known Sperner’s lemma from topology [Sperner,
1928], and therefore also works on a subdivision (a “triangulation”) of the unit-simplex. Similarly to
the proof of Stromquist [1980], the proof first establishes the existence of an approximately envy-free
division, and then applies a limit argument to obtain the existence for the exact version.

Given their nature as described above, these existence proofs cannot be turned into a membership in
FIXP. Indeed, the related literature has only gone as far as proving the membership of the approximate
version of the problem in the class PPAD of Papadimitriou [1994], a result due to Deng et al. [2012]. PPAD
is fundamentally related to an approximate computational version of Brouwer’s fixed point theorem, and
in that sense can be seen as a discrete, approximate analogue of FIXP. Before our paper, the complexity of
the exact envy-free cake-cutting problem was not known. To this end, we provide the following theorem.

Theorem 11. The envy-free cake cutting problem with general valuations is FIXP-complete.

In order to obtain the FIXP-membership result above, in the process we (implicitly) develop a new
existence proof for the envy-free cake cutting problem, one which is not based on discrete subdivisions of
the unit-simplex and limit arguments. Our proof is based on maximum flow computation on a network
given by a bipartite graph with the agents on one side and the pieces of cake on the other side, as given by a
division x. Using our OPT-gate from Section 3, we can turn this existence proof into a FIXP-membership
result rather easily. Our approach is somewhat reminiscent of the only markedly different proof for
envy-free cake cutting that we know of, that of Woodall [1980]. This proof constructs a similar bipartite
graph and uses Brouwer’s fixed point theorem to prove the result, but crucially, it uses a discontinuous
step (see Stage 2 of the construction in [Woodall, 1980]) which impedes its applicability as a potential
argument for a FIXP-membership proof.
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Remark 3 (General valuations). The statement of Theorem 11 regards the case of general agents’
valuations. Note that according to the definition of the problem in the beginning of the section, an agent
has a possibly different valuation for each possible division of the cake. In this generality, the setting
captures scenarios in which an agents’ value for a piece is not necessarily the sum of her values for the
subpieces that comprise the piece (i.e., the valuations are not necessarily additive), or even where an
agent’s value for a piece could be smaller for her value for a subset of that piece (i.e., the valuations are
not necessarily monotone), and also scenarios that exhibit externalities, as an agent might value differently
two allocations that assign her the same piece. In several fair division textbooks (e.g., see [Robertson and
Webb, 1998; Brams et al., 1996]), the problem is typically presented for the case where the valuations are
simply additive measures. On the other hand, the aforementioned existence proofs apply to the case of
general valuations.

Ideally of course, we would like to obtain a FIXP-hardness result for the version of the problem with
additive valuations, and this is in fact a major open problem in the literature of computational fair division.
That being said, our FIXP-hardness result is in fact in line with the PPAD-hardness result of Deng et al.
[2012] for the approximate version of the problem, which only holds for general valuations, or more
precisely, for ordinal preferences which do not even necessarily induce valuation functions. Besides, our
focus in this paper is primarily establishing the FIXP-membership of interesting problems via our newly
introduced technique in Section 3, and clearly the FIXP-membership result is stronger for the case that
we consider, i.e., that of general valuations.

Before we proceed with the proof of Theorem 11, we remark that in Section 5.2, we prove that the
computational versions of several well-known topological lemmas and theorems, very much related to
the cake cutting problem and its generalizations are also FIXP-complete. In particular, we show that
the computational versions of the K-K-M lemma of Knaster et al. [1929] that we mentioned above, its
“rainbow” generalization due to Gale [1984], as well as a “rainbow” generalization of Brouwer’s fixed
point theorem due to Bapat [1989] are also FIXP-complete. These results could be useful for showing
FIXP-completeness for more general versions of the envy-free cake cutting problem, or other “multi-label”
problems in fair division (e.g., see [Aharoni et al., 2020]).

5.1 Envy-free cake cutting is FIXP-complete - The proof of Theorem 11

5.1.1 FIXP-membership

We start with showing the membership of the problem in FIXP. Given a division x ∈ ∆n−1 of the cake,
consider the bipartite graph with agents on the left and pieces of cake on the right and an edge between
agent i and piece j if and only if agent i prefers piece j. It is clear that x is an envy-free division if and
only if this bipartite graph admits a perfect matching.

Construction of the circuit. Using the above idea we construct a circuit whose fixed points are envy-
free divisions. The domain of the circuit is D = ∆n−1× (∆n−1)n× ([0,1]n)n which we note is compact
and convex. The first simplex represents the division, the n copies of ∆n−1 represent the capacities of the
edges from every agent, and the n copies of [0,1]n represent the flow along the edges from every agent.

We now construct F : D→ D. On input (x,c1, . . . ,cn,y1, . . . ,yn) ∈ D, the circuit F outputs (x,c1, . . . ,cn,
y1, . . . ,yn), which is computed as follows. First the circuit computes rk = 1−∑

n
i=1 yik for every k. Then

the output x is computed as follows

x :=
(

x j + r j

1+∑
n
k=1 rk

)
1≤ j≤n
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The output capacities ci are obtained as the output of the OPT-gate for the LP:

maximize
n

∑
j=1

zi j ·ui j(x)

subject to
n

∑
j=1

zi j = 1

z≤ 0

Finally, the output flow y is obtained as the output of the OPT-gate for the following LP:

maximize ∑
1≤i, j≤n

zi j

subject to 0≤ zi j ≤ ci j +
1
n3

n

∑
i=1

zi j ≤ 1, ∀ j

n

∑
j=1

zi j ≤ 1, ∀i

We note that both linear programs satisfy the explicit Slater condition (Definition 8) that is required for
the OPT-gate to output an optimal solution by Theorem 4.

Fixed points. Suppose that (x,c1, . . . ,cn,y1, . . . ,yn) is a fixed point of F , i.e., (x,c1, . . . ,cn,y1, . . . ,yn) =
(x,c1, . . . ,cn, y1, . . . ,yn). In the following we argue that x is an envy-free division. First, we argue that it
is sufficient that the total flow y is n.

Lemma 3. If the total flow (yi j)i, j is n, then x is an envy-free division.

Proof. We argue by contradiction, so suppose that x is not an envy-free division. This means that there
is no perfect matching in the bipartite graph described at the beginning of this subsection. For a set of
agents A, let N(A) denote the set of pieces that is preferred by some agent i ∈ A. By Hall’s theorem
[Hall, 1935], there must exist some set of agents A with |N(A)| < |A|. In particular the y-flow from A
to N(A) is at most |A|−1. Because of the first linear program, we have that ci j = 0 for any i ∈ A and
j /∈ N(A). This means that yi j ≤ 1/n3 for any i ∈ A and j /∈ N(A). We conclude that the total flow from A
to {1, . . . ,n}\N(A) is bounded by 1

n3 · |A| · |{1, . . . ,n}\N(A)| ≤ n2

n3 < 1. Therefore the flow out of A is
less than |A|. We conclude that the total flow is strictly less than n.

By Lemma 3, it now suffices to show that the total flow is n. This is the same as saying that r j = 0 for all
j. From the first coordinate function, we have that x j = (x j + r j)/(1+∑

n
k=1 rk) for all j. This implies that

x j ·
n

∑
k=1

rk = r j for all j. (11)

We have the following lemma.

Lemma 4. There exists some j with r j = 0 and x j > 0.

Proof. Suppose towards a contradiction that for all j we have that r j > 0 or x j = 0. Because x j > 0 for
some j, this means that the total flow is less than n. Therefore, there exists some agent i whose out-flow
is less than 1. We claim that there exists some j ∈ N(i) with r j = 0. Suppose towards a contradiction
that r j > 0 for all j ∈ N(i). Then we can send more flow along the edge (i, j) for some j ∈ N(i), because
∑

n
k=1 yik < 1 and ∑k∈N(i) cik = 1. This contradicts the fact that y is an optimal solution to the second

second linear program. Hence, there exists some j ∈ N(i) with r j = 0. This concludes the proof, since
x j > 0 holds by the hungriness-condition.
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Combining Lemma 4 and Equation (11), we conclude that rk = 0 for every k. Hence, the total flow is n,
and it follows from Lemma 3 that x is an envy-free division. Hence, we have shown the following.

Proposition 2. The envy-free cake cutting problem with general valuations is in FIXP.

5.1.2 FIXP-hardness

We now turn our attention to showing FIXP-hardness. Since we are considering general valuations, the
FIXP-hardness result is rather straightforward. For the proof, we will use the following generalization of
Brouwer’s fixed point theorem due to Bapat [1989], which we refer to as Bapat’s Brouwer fixed point
theorem.

Theorem 12 (Bapat’s Brouwer fixed point theorem [Bapat, 1989]). Let fi : ∆n−1→ ∆n−1 be continuous
functions for i = 1, . . . ,n. There exists some z ∈ ∆n−1 and a permutation π of {1, . . . ,n} such that
zπ(i) ≥ fi,π(i)(z) for all i.

Theorem 12 implies Brouwer’s fixed point theorem by choosing all the fi’s to be equal. The computational
version of the problem is defined similar to the computational version of Brouwer’s fixed point theorem
(see Definition 5). Since Bapat’s version is a generalization of Brouwer’s fixed point problem, its
FIXP-hardness is immediate.

Let continuous functions fi : ∆n−1 → ∆n−1 be given. To show FIXP-hardness of the cake cutting
problem, we define an instance with n players. The valuation of player i for the j-th piece is defined
to be ui j(x) = max(0,x j − fi j(x)) for any point x ∈ ∆n−1. If x is an envy-free division and π is the
corresponding permutation, we obtain for any i that

max(0,xπ(i)− fi,π(i)(x))≥max(0,x j− fi j(x)) for all j, (12)

because of the inequalities vi,π(i)(x)≥ vi j(x) for all i, j. We claim that xπ(i) ≥ fi,π(i)(x) for all i. Suppose
that there exists some i for which this is not the case, i.e., xπ(i) < fi,π(i)(x). This implies the left-hand side
of Inequality (12) is equal to 0. However, we also have that

xi j, fi j(x)≥ 0, xi,π(i) < fi,π(i)(x), and
n

∑
j=1

xi j =
n

∑
j=1

fi j(x) = 1,

which implies that xi j > fi j(x) for some j. This implies that the right-hand side of Inequality (12) is
strictly positive, leading to a contradiction. From this, we obtain the following.

Proposition 3. The envy-free cake cutting problem with general valuations is FIXP-hard.

5.2 The K-K-M Lemma

As we mentioned in the beginning of the section, our technique also has implications to the FIXP-
membership of some known topological problems which are related to the cake cutting problem, in the
sense that they have been, or can be used to prove the existence of an envy-free division. Here, we present
those results.

The Knaster–Kuratowski–Mazurkiewicz (K-K-M) lemma [Knaster et al., 1929] is a basic result concerning
certain covers of the unit simplex by closed sets, related to Brouwer’s fixed point theorem. First we
present the definition of a K-K-M covering and then the statement of the lemma.

Definition 14 (K-K-M covering). Let T1, . . . ,Tn ⊆Rn be a collection of closed sets. We say that T1, . . . ,Tn

form a K-K-M covering of ∆n−1 if conv({ei : i ∈ S})⊆ ∪i∈STi, for any set S⊆ [n].

Lemma 5 (K-K-M lemma [Knaster et al., 1929]). Let T1, . . . ,Tn be a K-K-M covering of ∆n−1. Then
∩n

i=1Ti 6= /0.
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We can derive a corresponding total search problem that applies to any collection T1, . . . ,Tn of closed sets
as follows.

Corollary 1. Let T1, . . . ,Tn ⊆ Rn be a collection of closed sets. Then there exists x ∈ ∆n−1 such that
exactly one of the following conditions holds.

1. x ∈ ∩m
i=1Ti

2. x /∈ ∪i∈Supp(x)Ti

In case the second condition never holds we say that the sets T1, . . . ,Tn satisfy the K-K-M condition.

Proof. Let us note that for any x ∈ ∆n−1 we have that x = ∑i∈Supp(x) xiei ∈ Conv({ei : i ∈ Supp(x)}).
Thus, if the second condition does not hold for any x ∈ ∆n−1 it follows that T1, . . . ,Tn form a K-K-M
covering. By the K-K-M lemma we have ∩n

i=1Ti 6= /0, which means that there exist x ∈ ∆n−1 satisfying
the first condition.

Knaster et al. [1929] gave a proof of Brouwer’s fixed point theorem from the K-K-M lemma, whereas
Gale [1955] conversely gave a proof of the K-K-M lemma from Brouwer’s fixed point theorem. To adapt
these proofs to a computational setting, we need to settle on the generality of closed sets we would like
to consider and how to represent those. It is natural to restrict attention to closed semi-algebraic sets
definable in the first order theory of the reals using polynomials with integer coefficients.

Definition 15 (Basic closed semi-algebraic set). A set S ∈Rn is a basic closed semi-algebraic set if there
exists polynomials P1, . . . ,Pk such that S = {x ∈ Rn | ∧k

i=1Pi(x)≥ 0}.

Any closed semialgebraic set S is a finite union of basic closed semialgebraic sets, see e.g. [Bochnak
et al., 1998], and if S is definable using polynomials with integer coefficients, this holds also for the
basic closed semialgebraic sets whose union is S. Disregarding complexity concerns, all such sets can be
represented as an inverse image F−1(0) of a nonnegative function F computed by an algebraic circuit as
shown in the following lemma.

Lemma 6. Let S⊆Rn be a closed semialgebraic set definable using polynomials with integer coefficients.
Then there exists an algebraic circuit C computing a nonnegative function F such that S = {x ∈ Rn |
F(x) = 0}.

Proof. We may write S as a union S = ∪s
i=1Si of basic closed semialgebraic sets Si = {x ∈ Rn |

∧ki
j=1Pi j(x)≥ 0}, where each polynomial Pi j have integer coefficients.

Note that Si j = {x ∈ Rn | Pi j(x)≥ 0}= {x ∈ Rn |max(0,−Pi j(x)) = 0}, which means in particular
that Si j may be represented by as the inverse image F−1

i j (0) of a nonnegative function Fi j computed by an
algebraic circuit. We complete the proof by showing that the collection of sets representable in this way
is closed under intersection and union.

Suppose F1 and F2 are nonnegative functions computed by algebraic circuits and let S1 = F−1
1 (0) and

S2 = F−1
1 (0). Then the two functions max(F1(x),F2(x)) and min(F1(x),F2(x)) are nonnegative functions

computed by algebraic circuits that represents S1∩S2 and S1∪S2, respectively.

We note that if S is any closed set, then the distance d(x,S) is a nonnegative continuous function that
assumes the value 0 precisely in the set S. We may thus think of F is a stand-in for the distance d(x,S)
from x to S.

We can now define a search problem based on Corollary 1 and the representation of closed semialgebraic
sets used in Lemma 6.

Definition 16 (K-K-M problem). Given algebraic circuits C1, . . . ,Cn computing non-negative functions
F1, . . . ,Fn :Rn→R, a point x∈∆n−1 is a solution of the associated K-K-M problem if one of the following
conditions holds.
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1. ∀i : Fi(x) = 0.

2. ∀i : xi > 0⇒ Fi(x)> 0.

In case the second condition never holds we say that the functions F1, . . . ,Fn satisfy the K-K-M condition.

Let us note that while the condition that the functions Fi are non-negative is a semantic condition, it
can be enforced syntactically when computed by algebraic circuits by considering either (Fi(x))2 or
max(Fi(x),0) depending on whether we wish to represent the set F−1

i (0) or the set {x ∈ Rn | Fi(x)≤ 0}.
We can now adapt the proof by Gale [1955] to show that the K-K-M problem is in FIXP, and the

proof of Knaster et al. [1929] to show that the K-K-M problem is also FIXP-hard. We have the following
theorem.

Theorem 13. The K-K-M problem is FIXP-complete.

Proof. We first prove FIXP-membership of the K-K-M problem. Define the function G : ∆n−1→ ∆n−1
by

G(x)i =
xi +Fi(x)

1+∑
n
j=1 Fj(x)

Given algebraic circuits for all functions Fi, an algebraic circuit computing G can clearly be constructed in
polynomial time. Suppose now that x ∈ ∆n−1 such that G(x) = x. It follows that xi ∑

n
j=1 Fj(x) = Fi(x) for

all i. If Fi(x) = 0 for all i, x is a solution satisfying the first condition of the K-K-M problem. Otherwise,
suppose there is i such that Fi(x)> 0. Then ∑

n
j=1 Fj(x)> 0 as well and it follows that

xi =
Fi(x)

∑
n
j=1 Fj(x)

for all i. Hence xi > 0 implies Fi(x)> 0, for all i, and x is a solution satisfying the second condition of
the K-K-M problem.

To prove FIXP-hardness we reduce from the basic FIXP problem with domain ∆n−1. Suppose that
G : ∆n−1→ ∆n−1 is a continuous function computed by an algebraic circuit. We may then in polynomial
time construct algebraic circuits computing the functions Fi(x) = max(0,G(x)i− xi), for i = 1, . . . ,n.
We claim that these functions satisfy the K-K-M property. Suppose for the contrary that x ∈ ∆n−1 such
that Fi(x)> 0 whenever xi > 0. Letting S = Suppx we then have G(x)i > xi for all i ∈ S, leading to the
contradiction

1 = ∑
i∈S

xi < ∑
i∈S

G(x)i ≤
n

∑
i=1

G(x)i = 1 .

Thus if x ∈ ∆n−1 is a solution of the K-K-M problem it satisfies that Fi(x) = 0, for all i, which implies
that xi ≥ G(x)i, for all i. Since also G(x) ∈ ∆n−1 it follows that in fact xi = G(x)i, for all i, which means
that x is a fixed point of G.

5.2.1 The rainbow K-K-M lemma and Bapat’s Brouwer fixed point generalization

Several years after his proof for the K-K-M lemma in [Gale, 1955], Gale [1984] also proved a generaliza-
tion of the K-K-M lemma, commonly referred to as the rainbow K-K-M lemma.5

Lemma 7 (Rainbow K-K-M lemma [Gale, 1984]). Let T n
i, j=1 ⊆Rn be a collection of closed sets such that

for every i, the collection Ti,1, . . . ,Ti,n form a K-K-M covering of ∆n−1. Then there exists a permutation π

of [n] such that ∩n
i=1Ti,π(i) 6= /0.

5Sometimes in the literature the term “colorful” is used instead of “rainbow”.
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Bapat [1989] provided a proof of the rainbow K-K-M lemma via the introduction of a generalization of
Sperner’s lemma. In the same paper, he also provided his generalization of Brouwer’s fixed point theorem
(Theorem 12), which we used in the proof of Proposition 3. Our reduction in Section 5.1.2 also proves the
membership of the computational version of Bapat’s Brouwer fixed point theorem in FIXP (henceforth
Bapat’s Brouwer fixed point problem), since envy-free cake cutting is in FIXP by Proposition 2.

The reduction of Theorem 13 from the K-K-M problem to the computational version of Brouwer’s
fixed point theorem generalizes immediately to the case of reducing from the rainbow K-K-M version
(henceforth the rainbow K-K-M problem) to Bapat’s Brouwer fixed point problem, thus establishing the
FIXP-membership of the rainbow K-K-M problem as well. In fact Bapat’s proof uses the rainbow K-K-M
lemma in the same way as Knaster et al. [1929] does to prove Brouwer’s fixed point theorem from the
K-K-M lemma. Therefore, we have the following theorem.

Theorem 14. The rainbow K-K-M problem and Bapat’s Brouwer fixed point problem are FIXP-complete.

6 Applications to Markets

In this section, we show how our main technique can be used to prove the FIXP-membership of computing
equilibria in competitive markets. Our first result here is a rather general one, namely that the problem
of computing a market equilibrium in Arrow-Debreu markets with concave utilities is in FIXP. This
generalizes previously known results, on markets with specific utility functions [Garg et al., 2016] but at
the same time is conceptually easier, as long as our OPT-gate is used as a black box. We state the main
theorem below.

Theorem 15. The problem of computing a market equilibrium in an Arrow-Debreu market with concave
utilities is in FIXP.

Our second result regards the problem of computing an equilibrium in the pseudomarket mechanism
of Hylland and Zeckhauser [1979], which was shown to be in FIXP quite recently by Vazirani and
Yannakakis [2021]. We obtain the same result, via a conceptually simpler proof based on our general
technique.

Theorem 16. The problem of computing an equilibrium of the Hylland-Zeckhauser mechanism is in
FIXP.

The crucial ingredient that allows us to obtain proofs which are conceptually simpler and often more gen-
eral is in the utility-maximizing optimization program of the agents, which appears in the corresponding
proofs of existence. Generally speaking, given a set of prices, an agent computes a utility-maximizing
allocation given a set of constraints on consumption and endowment. Then, market clearing is en-
sured by the fixed point condition on the prices. Using our OPT-gate, we can directly “simulate” the
utility-maximization program in these proofs, which makes our membership results look very similar to
the existence proofs themselves, which rely on some fixed point correspondence theorem, most often
Kakutani’s fixed point theorem (Theorem 2). Note however that proving FIXP-membership using the
OPT-gate implicitly also yields a proof of existence based on Brouwer’s fixed point theorem (Theorem 1).

6.1 Arrow-Debreu Markets

The fundamental model of competitive markets was established in the pioneering work of Arrow and
Debreu [1954], formalizing some ideas of Walras [2013]. Arrow and Debreu showed that under relatively
mild assumptions, every market has an equilibrium, i.e., a set of prices and allocations such that supply
equals demand, and every market participant is maximally satisfied with their assigned commodities at
the given prices. We present the formal setting of the Arrow-Debreu market below, following closely
their original paper.
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Arrow-Debreu Market. An Arrow-Debreu market consists of

- A set L of commodities (i.e., divisible resources or items); let `= |L|.

- A set N of production units or firms; let n = |N|.

For each firm j ∈ N, there is a set Yj of possible production plans. An element y j ∈ Yj is a vector in
R`, i.e., y j = (y j,1,y j,2, . . . ,y j,`), where y j,h is the output (i.e., the produced amount) of commodity
h according to plan y j. The production can also be negative, where y j,h < 0 is interpreted as the
commodity h being an input to the production plan, rather than an output. Let Y = ∑

n
j=1Yj.

The production sets Yj satisfy the following assumptions:

I.a. For all j ∈ N, Yj is a closed convex subset of R` containing 0, (non-increasing returns to scale)

I.b. Y ∩R`
≥0 = {0}, (no output without input)

I.c. Y ∩ (−Y ) = {0}. (irreversible production)

- A set M of consumption units or consumers; let |M|= m.

For each consumer i ∈ M, there is a set Xi of possible consumption vectors, indicating the set of
resources that a consumer could possibly consume, if there were no budgetary constraints. We
use xi = (xi,1,xi,2, . . . ,xi,`) to denote the consumption of agent i, where xi,h denotes the consumer’s
consumption of commodity h. The consumption can also be negative, where xi,h < 0 is interpreted as a
labor service provided by the consumer to the market. The consumption sets Xi satisfy:

II. For all i ∈M, Xi is a closed, convex subset of R` which is bounded from below, i.e., there is a
vector ξi such that ξi ≤ xi for all xi ∈ Xi.

Each consumer has a utility function ui : Xi→ R, that satisfies the following properties:

III.a. ui(xi) is a continuous function on Xi, (continuity)

III.b. For any xi ∈ Xi, there is an x′i ∈ Xi such that ui(x′i)> ui(xi), (non-satiation)

III.c. If ui(xi)> ui(x′i) and 0 < t < 1, then ui
(
txi +(1− t)x′i

)
> ui(x′i). (convexity of preferences)

Each consumer i ∈M is also endowed with a vector ζi = (ζ1,i,ζ2,i, . . . ,ζ`,i) ∈ R` of initial holdings
of the different commodities, which we will refer to as the endowment of consumer i. The following
assumption is made:

IV.a. For all i ∈M, there exists some xi ∈ Xi with xi < ζi.

Additionally, consumer i has a share αi j of the profit of the j-th production unit, for each j ∈ N. Shares
are non-negative and the profits are entirely shared among the consumers, i.e.,

IV.b. For all i ∈M and j ∈ N, αi j ≥ 0; for all j ∈ N, ∑
m
i=1 αi j = 1.

Before we proceed, we provide a brief discussion on some of the assumptions of the model above.6

For the production plans, Assumption I.a. corresponds to non-increasing returns to scale, i.e., when all
production variables are increased by an amount, the output is increased by an “at-most-proportional”
amount. Assumption I.b. states that it is not possible for the production to have output without having
some input. Finally, Assumption I.c. asserts that it is not possible to have two production vectors that
exactly “cancel” each other, since some labor is necessary for production, and labor cannot be produced.
For the consumers’ utilities, Assumption III.a. is a standard assumption in consumer and market theory.
Assumption III.b. asserts that there is no “saturation point”, i.e., a consumption vector that the consumer

6The reader is referred to the original paper by Arrow and Debreu [1954] for an extensive discussion on the assumptions of
the model.
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prefers to all others. A related sufficient condition would be that the utility function is strictly mono-
tone, although non-satiation is a weaker condition which is still sufficient for the existence of a market
equilibrium by Theorem 17. Finally, Assumption III.c. is a standard assumption on the convexity of the
indifference curves.

At the center of competitive markets is the concept of competitive or market equilibrium, i.e., a set
of prices, production plans and consumption vectors such that supply equals demand and all agents
maximize their individual utility at the given set of prices. We provide the formal definition below.

Definition 17 (Arrow-Debreu Market Equilibrium). A tuple of vectors (x∗1,x
∗
2, . . . ,x

∗
m,y
∗
1,y
∗
2, . . .y

∗
n, p∗) is

a (Arrow-Debreu) market equilibrium if the following conditions are satisfied:

1. y∗j ∈ argmaxy j∈Y j p∗ · y j, for all j ∈ N, (firm profit maximization)

2. x∗i ∈ argmaxxi∈Si ui(xi), where (consumer utility maximization)
Si = {xi|xi ∈ Xi, p∗ · xi ≤ p∗ ·ζi +∑

n
j=1 αi j p∗ · y∗j}, for all i ∈M,

3. p∗ ∈ P = {p|p ∈ R`, p≥ 0,∑`
h=1 ph = 1}, (non-negative, normalized prices)

4. z∗ ≤ 0 and p∗ · z∗ = 0, where z∗ = ∑
m
i=1 x∗i −∑

n
i=1 y∗j −∑

m
i=1 ζi. (market clearance)

Again, we briefly discuss the four conditions of the Arrow-Debreu market equilibrium definition above.
Condition 1 requires that at the given set of prices, the firms maximize their profits within their production
plans. Condition 2 requires that at the given set of prices, the consumers maximize their utility within
their consumption vectors that satisfy their budget constraint. Condition 3 stipulates that the prices
are non-negative, and can be normalized to sum to 1 without loss of generality. Finally, Condition 4
is the market clearing, the “supply equals demand” condition. The condition states that (a) the total
consumption of each commodity minus the sum of the total production and the consumers’ endowment of
that commodity has to be non-positive (i.e., consumers cannot consume more than what is available) and
(b) this difference is actually zero (i.e., consumers consume exactly what is available), for commodities
for which the price is non-zero. Commodities which are priced at zero are allowed to not be entirely
consumed. We remark that in the related literature (e.g., see [Mas-Colell et al., 1995, Chapter 10]),
Condition 4 is often replaced by the strong condition of “supply equals demand” for all commodities,
regardless of the price, namely

m

∑
i=1

x∗i,h =
n

∑
i=1

y∗j,h +
m

∑
i=1

ζi,h, for h = 1, . . . , `.

Then, in order to guarantee the existence of a market equilibrium as in Theorem 17, the extra assumption
of free disposability needs to be added to the list of Assumptions I.a. to I.c. for the production sets (e.g.,
see [Mas-Colell et al., 1995, Chapter 5]), namely:

I.d. Y −R`
≥0 ⊆ Y . (free disposability)

The property asserts that it is always possible to absorb additional inputs without producing any extra
output (i.e., the inputs can be “freely disposed”). Our approach still works even if one requires this
stronger clearing condition, see Remark 5.

Arrow and Debreu [1954] proved that for any market as defined above, a market equilibrium always
exists.

Theorem 17. [Arrow and Debreu, 1954] Every instance of the market above admits a market equilibrium.

One important observation is that Conditions 1 and 2 are essentially convex programs whereas Condi-
tions 3 and 4 are essentially sets of constraints. Using our OPT-gate from Section 5.2, we can “substitute”
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these optimization programs by pseudogates, effectively transforming an existence proof into a FIXP-
membership proof. Indeed, the proof of Theorem 17 as presented in [Arrow and Debreu, 1954] uses
these conditions essentially as optimization programs to construct a fixed point correspondence for the
consumption, the production and the prices. Then the existence of an equilibrium is proven via a fixed
point theorem due to Debreu [1952]. Subsequent proofs used Kakutani’s fixed point theorem (Theorem 2)
to obtain the same existence result. Our FIXP-membership result essentially devises a proof via Brouwer’s
fixed point theorem instead, similar in that regard to the proof of Geanakoplos [2003].

Our result in Theorem 15 generalizes some membership results that were already presented in the
literature, for markets with specific utility functions, production and consumption sets. Etessami and
Yannakakis [2010] proved the FIXP-membership of a setting where there are no explicit utilities, and
the aggregate demand is a given function, rather than a correspondence which is typically the case in
these markets. Garg et al. [2016] provided a FIXP-membership result for Arrow-Debreu markets with
Piecewise Linear Concave (PLC) utility functions, and PLC production sets. The authors consider
straightforward consumption sets, namely that the consumption of an agent is non-negative. For the
formal definition of PLC functions, we refer the reader to Appendix A.

Remark 4. Besides the FIXP-membership results mentioned above, Chen et al. [2017] proved a FIXP-
membership result for markets with CES utilities, only non-negativity constraints on consumption and
no production. While these are a special case of the Arrow-Debreu market that we consider, strictly
speaking, our result does not generalize theirs. This is exclusively due to technical reasons, which we
highlight below.

As we explain in Section 6.1.1 below, we assume that access to the utility functions is given to us
via the supergradients of those functions; this is clearly necessary when dealing with general concave
functions without any additional structure. In the case of explicit utility functions however, like PLC
utilities or CES utilities, ideally we would like to be able to compute the supergradients given the utility
functions, rather than assume access to them. For PLC utilities (and actually much more general utility
functions) we can do that, and we show how in Appendix A. In that sense, our FIXP-membership result
is a strict generalization of the corresponding membership result proven in [Garg et al., 2016]. On the
other hand, CES utilities are not superdifferentiable when some coordinate is 0, and therefore we cannot
claim the same for the results of Chen et al. [2017]. We believe that it is possible to adapt our approach in
Section 6.1 to capture the case of CES utilities, but we leave that for future work.

6.1.1 The computational Arrow-Debreu market problem

In some of the applications that we have presented so far, deriving the corresponding computational
problems from the existence theorems has been relatively straightforward, and thus not explicitly stated.
In the market domain, due to the generality of the utility functions, as well as the production and
consumption sets, some additional discussion is in order.

- For the utility functions ui, we will assume that we are given a pseudogate computing the supergradients
∂ui (see Sections 3.2 and 3.4). This is in a sense necessary, since we are concerned with general
concave utility functions, with no further particular structure. In the case of specific utility functions,
such as the PLC utilities studied in [Garg et al., 2016], we can easily construct pseudogates computing
the supergradients. In Appendix A, we explain how to compute the supergradients for a general class
of utility functions that subsumes PLC utilities, which we refer to as Piecewise Differentiable Concave
(PDC) functions, rather than assuming that they are given to us as inputs.

- For the consumption and production sets, we will assume that they are given to us as sets of convex
inequalities and linear equations that satisfy the (standard) Slater condition, see Section 3.4. Note
that here we do not need them to satisfy the explicit Slater condition of Definition 9; this is because
the consumption and production sets are part of the input to the problem, and therefore we can apply
preprocessing to the corresponding constraints to eliminate any linear dependence. For the convex
inequalities, we also assume that we are given pseudogates computing their subgradients, as explained
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in Section 3.4. We further assume that the endowments ζi, the shares αi j, and the lower bounds ξi on
the consumption are given in the input as rational numbers.

- For the production sets, the assumptions in the Arrow-Debreu model ensure that the set of all
(y1, . . . ,yn) ∈ (R`)n that satisfy

y j ∈ Yj, for j = 1, . . . ,n and
m

∑
i=1

ξi−
n

∑
j=1

y j−
m

∑
i=1

ζi ≤ 0 (13)

is bounded. This is proved by Arrow and Debreu [1954, pp. 276-277] and, from a technical standpoint,
one of the main purposes of the various assumptions on the production sets is to ensure that this property
indeed holds. Note that any production plan (y1, . . . ,yn) that satisfies the market clearing condition must
necessarily satisfy the inequality constraint above. Thus, in any market equilibrium, the production
plan lies in this bounded set.

For the definition of the computational problem, we assume that the input to the problem contains
an explicit bound C on the set above (in the `∞-norm). This is needed to ensure that solutions can be
bounded with some bound that has polynomial bit-complexity. We remark that in the case of the PLC
production sets used in [Garg et al., 2016], the constraint y ∈ Yj corresponds to a set of linear equalities
and inequalities. As a result, the bound C does not need to be provided in the input in that case, since it
can easily be obtained by solving an LP.

6.1.2 Membership in FIXP- the proof of Theorem 15

Bounding the domain of allocations. Consider any (x1, . . . ,xm) ∈ (R`)m and (y1, . . . ,yn) ∈ (R`)n that
satisfy xi ∈ Xi for i = 1, . . . ,m, y j ∈ Yj for j = 1, . . . ,n, and

z :=
m

∑
i=1

xi−
n

∑
j=1

y j−
m

∑
i=1

ζi ≤ 0.

By Assumption II., we have ξi ≤ xi, and as a result (13) is satisfied. It follows that ‖y j‖ ≤ C for
j = 1, . . . ,n, where ‖ · ‖ denotes the `∞-norm. Now, z≤ 0 also implies that for any i ∈ [m]

xi ≤
n

∑
j=1

y j +
m

∑
k=1

ζk−∑
k 6=i

xk ≤
n

∑
j=1

y j +
m

∑
k=1

ζk−∑
k 6=i

ξk

where we used ξk≤ xk again. Together with ξi≤ xi, it follows that ‖xi‖≤ nC+mmaxk ‖ζk‖+mmaxk ‖ξk‖=:
C′.

We let K :=C′+1. From the above, we have that if (x1, . . . ,xm,y1, . . . ,yn) satisfies xi ∈ Xi, y j ∈ Yj,
and z≤ 0, then xi,y j ∈ (−K,K)` for all i, j. In particular, this must be satisfied at any equilibrium. Note
that K can be computed in polynomial time from the inputs to our problem.

Construction of the circuit. We construct a circuit F : D→D, where D=([−K,K]`)m×([−K,K]`)n×
[0,1]`. We let (x1, . . . ,xm,y1, . . . ,yn, p) denote the input to F , and (x1, . . . ,xm,y1, . . . ,yn, p) denote the
output of F .

We set y j as the output of the OPT-gate for the convex optimization problem:

maximize p · v
subject to v ∈ Yj

v ∈ [−K,K]`
(14)
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We set xi as the output of the OPT-gate for the convex optimization problem:

maximize ui(v)

subject to v ∈ Xi

p · v≤ p ·ζi +
m

∑
j=1

αi j p · y j

v ∈ [−K,K]`

(15)

The inequality constraint p · v≤ p ·ζi +∑
m
j=1 αi j p · y j is called the budget constraint.

Finally, we set p as the output of the OPT-gate for the LP:

maximize v · z

subject to
`

∑
h=1

vh = 1

v ∈ [0,1]`

(16)

where z := ∑
m
i=1 xi−∑

n
j=1 y j−∑

m
i=1 ζi.

Fixed points. Consider any fixed point of F , i.e., (x1, . . . ,xm,y1, . . . ,yn, p) ∈ D such that

(x1, . . . ,xm,y1, . . . ,yn, p) = (x1, . . . ,xm,y1, . . . ,yn, p).

We begin by showing that the explicit Slater condition holds at (x1, . . . ,xm,y1, . . . ,yn, p) for all three
optimization problems, and thus they are solved correctly by the OPT-gate. Then, we show that
(x1, . . . ,xm,y1, . . . ,yn, p) is indeed a market equilibrium, as desired.

Explicit Slater condition. Clearly, the constraints of (16) satisfy the explicit Slater condition. As a
result, the OPT-gate functions properly and p = p is indeed an optimal solution of this LP.

The constraints of the convex optimization problem (14) also satisfy the explicit Slater condition.
To see this, note that, by assumption, the constraints describing Yj satisfy the explicit Slater condition,
i.e., there exists v ∈ Yj that satisfies the inequality constraints of Yj strictly. Since 0 ∈ Yj ∩ (−K,K)`

(Assumption I.a.) and by convexity of the inequality constraints of Yj, there must exist v′ ∈ Yj∩ (−K,K)`

that satisfies the inequality constraints of Yj strictly as well. As a result, the OPT-gate functions properly
and y j = y j is an optimal solution of (14). In particular, y j ∈ Yj.

By Assumption IV.a., there exists v ∈ Xi with v < ζi (componentwise). Since ξi ≤ v (Assumption II.),
it also follows that v ∈ Xi∩ (−K,K)`, by construction of K. Since y j is an optimal solution of (14), we
have p · y j ≥ 0, because 0 ∈ Yj ∩ [−K,K]` is a feasible point of (14). Thus, ∑

m
j=1 αi j p · y j ≥ 0, since

αi j ≥ 0. Now, since v < ζi and since there exists h ∈ [`] with ph > 0 (by optimality of p for (16)), it
follows that p · v < p ·ζi +∑

m
j=1 αi j p · y j, i.e., v ∈ Xi∩ (−K,K)` strictly satisfies the budget constraint in

(15).
Recall that the constraints describing Xi are assumed to satisfy the explicit Slater condition, i.e., there

exists v′ ∈ Xi that satisfies the inequality constraints of Xi strictly. By the convexity of the inequality
constraints of Xi, it follows that there exists v′′ on the segment [v,v′] such that v′′ ∈ Xi ∩ (−K,K)`, v′′

strictly satisfies the budget constraint in (15), and v′′ strictly satisfies the inequality constraints of Xi. This
means that the constraints of (15) satisfy the explicit Slater condition and thus the OPT gate for (15)
works correctly. As a result, xi = xi is an optimal solution of (15). In particular, xi ∈ Xi and xi satisfies the
budget constraint for consumer i.

Market equilibrium. By summing up the budget constraints satisfied by each xi, and using the fact that
∑

m
i=1 αi j = 1 (Assumption IV.b.) we immediately obtain that p · z≤ 0. Now, since p is an optimal solution
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of (16), it must be that z≤ 0. But then, by construction of K, it follows that xi,y j ∈ (−K,K)` for all i and
j. As a result, y j is also an optimal solution of (14) without the constraint v ∈ [−K,K]`. Similarly, by
convexity of preferences (Assumption III.c.), which in particular holds for concave ui, xi is also an optimal
solution of (15) without the constraint v ∈ [−K,K]`. We have thus shown that Conditions 1 and 2 hold.

Recall that we have z≤ 0 and p · z≤ 0. In order to prove that Condition 4 holds, it remains now to
show that p · z = 0. Clearly, if the budget constraint for each consumer i is tight, then indeed p · z = 0.
Assume that for some i, the budget constraint is not tight, i.e., p · xi < p · ζi +∑

m
j=1 αi j p · y j. By non-

satiation (Assumption III.b.), there exists x′i ∈ Xi with ui(x′i) > ui(xi). By convexity of preferences
(Assumption III.c.), there exists x′′i ∈ Xi∩ (−K,K)` with ui(x′′i ) > xi and such that x′′i also satisfies the
budget constraint. This is a contradiction to the optimality of xi for (15). Thus, Condition 4 also holds.

Finally, note that Condition 3 trivially holds, since p is a feasible point for (16). It follows that any
fixed point (x1, . . . ,xm,y1, . . . ,yn, p) of F is indeed a market equilibrium.

Remark 5. If we also assume free disposability (Item I.d.), then there exists a market equilbrium that
also satisfies z = 0, i.e., supply equals demand for all commodities, even those with zero price. We briefly
sketch how F can be modified to yield FIXP-membership for this problem too.

Instead of outputting (y1, . . . ,yn), F outputs (y′1, . . . ,y
′
n), which is set as the output of the OPT-gate

for the convex feasibility problem:

maximize 0

subject to
n

∑
j=1

v j =
m

∑
i=1

xi−
m

∑
i=1

ζi

p · v j = p · y j,∀ j

v j ∈ Yj,∀ j

v j ∈ [−K,K]`,∀ j

Furthermore, in (15) and (16), we replace y j by y j, including in z.
Using the same arguments as above, it follows that p = p is an optimal solution of (16), y j is an

optimal solution of (14), and xi = xi is an optimal solution of (15). As before, this implies that z≤ 0 and
p · z = 0.

Recall that we have redefined z := ∑
m
i=1 xi−∑

n
j=1 y j−∑

m
i=1 ζi. By free disposability (Item I.d.), and

since z≤ 0, it follows that w := ∑
n
j=1 y j+z∈Y . This means that we can write w = ∑

n
j=1 w j where w j ∈Yj,

and it holds that z′ := ∑
m
i=1 xi−∑

n
j=1 w j−∑

m
i=1 ζi = 0. In particular, w j ∈ (−K,K)` by construction of K.

Furthermore,
n

∑
j=1

p ·w j = p ·w =
n

∑
j=1

p · y j + p · z =
n

∑
j=1

p · y j

since p · z = 0. This implies that p ·w j = p · y j for all j, because y j is an optimal solution of (14), and w j

is feasible for (14). As a result, (w1, . . . ,wn) is feasible for the feasibility problem above. In particular,
the feasible region is nonempty, and thus the OPT-gate ensures that (y′1, . . . ,y

′
n) is indeed feasible for the

feasibility problem.
Since xi satisfies the budget constraint with y j, it also satisfies it with w j instead. It follows that

(x1, . . . ,xm,y1, . . . ,yn, p) is a market equilibrium where supply equals demand for all commodities, even
those with zero price.

6.2 The Hylland-Zeckhauser pseudomarket mechanism

In 1979, Hylland and Zeckhauser [1979] introduced the random assignment problem (also known as the
randomized house allocation problem, e.g., see [Bogomolnaia and Moulin, 2001; Abdulkadiroğlu and
Sönmez, 1998]). In this problem, the goal is to assign a set of indivisible goods G = {1, . . . ,n} to a set of
agents A = {1, . . . ,n}, who have preferences over the goods. These preferences are expressed via cardinal
utilities values, i.e., every agent i has a utility vector ui, where ui j denotes the utility of agent i for good j.
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Together with the introduction of the problem, Hylland and Zeckhauser [1979] also proposed a
mechanism for coming up with an allocation that satisfies several desirable properties, namely ex-ante
envy-freeness and ex-ante Pareto efficiency. The mechanism works by assigning every good a price p j ≥ 0
and every agent i, endowed with one unit of artificial currency, buys probability shares xi = (xi1, . . . ,xin)
of the goods in a manner that maximizes the agent’s expected utility ∑

n
j=1 ui jxi j subject to a budget

constraint ∑
n
j=1 p jxi j ≤ 1 and a feasibility allocation constraint ∑

n
j=1 xi j = 1. We require that every good

is entirely assigned to the agents, that is ∑
n
i=1 xi j = 1 for every j, and if this is not the case, the mechanism

reacts by adjusting the prices. A set of prices and an allocation for which all the items are entirely
allocated (and the artificial budgets are exhausted) is an equilibrium point of the mechanism, which we
refer to as a HZ-equilibrium.

Definition 18 (HZ-equilibrium). A pair (p,x) of a price vector p and an allocation matrix x form a
HZ-equilibrium for the pseudomarket described above if:

i. For every good j ∈ G : ∑
n
i=1 xi j = 1.

ii. For every agent i, the allocation xi maximizes ∑
n
j=1 ui jxi j subject to the constraints ∑

n
j=1 p jxi j ≤ 1

and ∑
n
j=1 xi j = 1. Also, if there are multiple allocations for i that satisfy this, then xi must be the

cheapest such allocation.

From the definition above, it is clear why the Hylland-Zeckhauser mechanism is often referred to as a
pseudomarket. The HZ-equilibrium clearly resembles the Competitive Equilibrium from Equal Incomes
[Foley, 1966; Varian, 1974], except for the allocation constraints which restrict a buyer’s allocation to be
a total of one unit. This constraint turns out to be rather crucial, as computing a CEEI can be done in
polynomial time, whereas the precise complexity of computing HZ-equilibria is still an open problem.

The reason for requiring that the xi are the cheapest utility-maximizing allocations is that this ensures
that a HZ-equilibrium (p,x) is ex-ante Pareto optimal. We note that p j ≤ n for all j, because of the budget
constraints. Using Kakutani’s fixed point theorem, Hylland and Zeckhauser proved the following result.

Theorem 18. [Hylland and Zeckhauser, 1979] Every instance of the pseudomarket above admits a
HZ-equilibrium (p,x). Also, p may be chosen such that p j = 0 for some j.

6.2.1 Membership in FIXP - the proof of Theorem 16

Vazirani and Yannakakis [2021] recently provided a proof of membership in FIXP for the problem of
computing a HZ-equilibrium. Their proof defines a map of prices and allocations F = (Fp,F1, . . . ,Fn).
Each of the coordinate functions is defined by a straight-line-program consisting of various steps. For
instance, in one of the steps of Fi the allocation xi is altered in the case that agent i has not exhausted its
budget and xi j > 0 for some good j with ui j < maxk uik. Using a potential function argument, they argue
that if (x, p) is a fixed point, then none of the steps of the coordinate functions of F will alter (x, p). With
this in mind, they then argue that if (p,x) is not an equilibrium, then there must be some step of F that
causes a change, implying that (x, p) cannot be a fixed point. Next, we present a different proof which
makes use of our general technique and which we believe to be conceptually simpler.

The domain of our map F is D = [0,n]n×(∆n−1)n×(∆n)n. The basic idea of the map is that if (p,x,y)
is a fixed point of F , then xi is an allocation for agent i that maximizes the expected utility (but not
necessarily the cheapest among those). Using xi, we then compute yi, which satisfies that the projection
onto the first n coordinates π(yi) is an allocation that maximizes the expected utility at minimal cost. The
extra coordinate in yi represents a “dummy” good that allows us to solve the LP. We will argue that this
good is never chosen in a fixed point.

40



Description of the map. On input (p,x,y), let F(p,x,y) = (p̄, x̄, ȳ). The output price vector is obtained
from a solution p∗ to the following Linear Program:

maximize
n

∑
j=1

q j

( n

∑
i=1

yi j−1
)

(17)

subject to 0≤ q j ≤ n, ∀ j

Namely, we put p̄ = p∗− (min j p∗j) · e where e = (1, . . . ,1). The initial allocation x̄i is obtained as a
solution to the Linear Program:

maximize
n

∑
j=1

ui jzi j (18)

subject to
n

∑
j=1

zi j = 1

n

∑
j=1

p jzi j ≤ 1

zi j ≥ 0,∀ j

Before describing the Linear Program computing ȳi, we introduce the dummy good that we mentioned
earlier. For every agent i, we let δi denote the difference in utility between its most preferred and second
most preferred good (if the agent prefers all goods equally, we let δi = 1). The utility of agent i for the
dummy good is now defined as ui,n+1 = uimax +δi. Furthermore, we let pn+1 = 3n. Now, ȳi is obtained
as a solution to the Linear Program:

minimize
n+1

∑
j=1

p jzi j (19)

subject to
n+1

∑
j=1

zi j = 1

n+1

∑
j=1

ui jzi j ≥
n

∑
j=1

ui jxi j

zi j ≥ 0,∀ j

Fixed points. Suppose that (p,x,y) is a fixed point of F . This implies that there exists some j with
p j = 0. Using this, it can be seen that there exists a feasible solution to LP (18) that satisfies the inequality
constraints strictly: one may let zik = ε for all k 6= j and zi j = 1− (n−1)ε for a sufficiently small ε > 0.
Also, the equality constraints are clearly linearly independent. This implies that x is an optimal solution
to the LP. Similarly, using that ui,n+1 > ui j for all j ≤ n one may show that there exists a feasible solution
to LP (19) that satisfies all the inequalities strictly. Again, yi is an optimal solution.

Lemma 8. For every i we have yi,n+1 = 0.

Proof. Suppose towards a contradiction that yi,n+1 > 0. Because yi is a cost-minimizing allocation
and pn+1 > p j for all j ≤ n, there exists some j with yi j > 0 and ui j < uimax, where uimax = max j ui j.
Otherwise, one could achieve a better allocation that consists of only one of the goods that has maximal
utility for agent i.

Let k denote a good of maximal utility for agent i, and pick 0 < ε < yi j,yi,n+1. Now, define a new
allocation y′i by y′il = yil for l 6= j,k,n+1, y′ik = yik +2ε , y′i j = yi j− ε , and y′i,n+1 = yi,n+1− ε . We claim
that y′i is a strictly better allocation. Clearly, y′i is still a stochastic vector. Also, using the definition of δi,
we have that ui j ≤ uimax−δi, so we may bound the change in utility as

∆u = 2εuimax− εui j− εui,n+1 = ε(2uimax−ui j− (uimax +δi))≥ 0
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We conclude that y′i also satisfies the utility constraint. Using that p j, pk ∈ [0,n] and pn+1 = 3n, we may
bound the change in price of the allocation as

∆P = 2ε pk− ε p j− ε pn+1 ≤ 2εn−3εn < 0

We conclude that y′i is a strictly better solution, contradicting the optimality of yi. Therefore we have that
yi,n+1 = 0.

By the lemma above, we obtain that π(yi) is a cheapest utility-maximizing allocation for agent i at
prices p. In particular, it satisfies the budget constraint. What remains to show is that every good j ≤ n
is allocated fully. If that was not the case, we would have that there is some j with ∑

n
i=1 yi j < 1. This

means that a solution p∗ to LP (17) must have p∗j = 0. There must also exist some k with ∑
n
i=1 yik > 1

which implies that p∗k = n. As p∗j = 0, we obtain that pk = n. However, pk = n together with ∑
n
i=1 yik > 1

implies that ∑
n
i=1 pkyik > n which contradicts the budget constraints of the agents. Therefore ∑

n
i=1 yi j = 1

for every good j. We conclude that (p,π(y)) forms a HZ-equilibrium, therefore proving Theorem 16.

7 Conclusion and Future Work

In this paper, we introduced the OPT-gate, a powerful tool that can be used as a black box for FIXP-
membership proofs, essentially substituting the various Linear Programs and more general convex
optimization programs that often appear in the several existence proofs. We demonstrated the strength
of our technique via a set of different applications on quite important and fundamental equilibrium
computation problems in game theory, fair division and competitive markets.

We believe that our technique can be used even more broadly in the future, to enable clean and simple
FIXP-membership proofs of other interesting problems. For example, one could study the equilibria
of the various generalizations of the Hylland and Zeckhauser mechanism, e.g., due to He et al. [2018]
and Echenique et al. [2019]; we believe that our OPT-gate can be used to show membership results
for those problems as well, but the details need to be worked out. Independently of our technique but
related to our results, some important open problems are whether one can show a FIXP-hardness result
for the equilibrium computation problem in Hylland and Zeckhauser pseudomarkets, or in Arrow-Debreu
markets. As we explained in Section 1.2, the result of Garg et al. [2017] does not quite yield the
FIXP-completeness result for the market model as presented in [Arrow and Debreu, 1954]. On the other
hand, our FIXP-membership result enables future work to consider rather general markets (with general
concave utilities and convex consumption and production sets), in the quest of establishing the desired
FIXP-completeness of the problem.
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A Piecewise Differentiable Concave Functions

A piecewise differentiable concave function is a function that is obtained by taking the lower envelope of
differentiable concave functions. Formally, a piecewise differentiable concave function f : Rn→ R is
given by

f (x) = min
j∈[m]

g j(x)

where for each j ∈ [m], g j : Rn→R is differentiable and concave. Note that, as a result, f is also concave
and, in particular, admits a superdifferential ∂ f .

For computational purposes f is represented as follows. For each j ∈ [m], we are given:

• an algebraic circuit computing g j, and

• an algebraic circuit computing ∇g j, the gradient of g j.
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Clearly, given the circuits for g j we can easily construct an algebraic circuit that computes f .

Lemma 9. Given f represented as above, we can in polynomial time construct a pseudogate computing
the superdifferential ∂ f .

Before proving this Lemma, we provide some notable special cases of piecewise differentiable
concave function.

• Piecewise Linear Concave (PLC): This corresponds to the special case where the functions g j

are linear affine, i.e., g j(x) = a j · x+b j. PLC functions are usually represented by the rationals
a j, b j for j = 1, . . . ,m. Circuits for g j and ∇g j can easily be constructed from these. This class of
functions also contains Leontief utilities.

• Piecewise Polynomial Concave: This corresponds to the special case where the functions g j are
concave polynomials. The polynomials are represented explicitly as a list of monomials. Again,
circuits for g j and ∇g j can easily be constructed from these.

Proof of Lemma 9. We show how to construct a circuit G∂ f : Rn × [0,1]` → Rn × [0,1]` such that
Fix`[G∂ f ](x)⊆ ∂ f (x) for all x ∈ Rn.

On input x ∈ Rn, G∂ f first computes g j(x) and ∇g j(x) for j = 1, . . . ,m, using the circuits for g j and
∇g j. Then using the OPT-gate, it computes w ∈ Rn as an optimal solution to the following LP:

minimize
m

∑
j=1

v jg j(x)

subject to
m

∑
j=1

v j = 1

v j ≥ 0,∀ j

Finally, G∂ f outputs ∑
m
j1 w j∇g j(x). Note that the ` auxiliary inputs/outputs of G∂ f are used to implement

the OPT-gate.
Clearly, the LP above satisfies the explicit Slater condition (Definition 8), and as a result w is indeed

an optimal solution of the LP. In other words, any z ∈ Fix`[G∂ f ](x) can be written as z = ∑
m
j1 w j∇g j(x),

where w is an optimal solution to the LP above. By construction, optimality for the LP ensures that
z ∈ Conv{∇g j(x) : g j(x) = mink gk(x)} ⊆ ∂ f (x). The last containment follows from standard properties
of the superdifferential, see, e.g., [Rockafellar, 2015].
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